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Abstract— Reservoir Computing (RC) is a computing scheme 

related to recurrent neural network theory. As a model for 

neural activity in the brain it attracts a lot of attention, especially 

because of its very simple training method. However, building a 

functional, on-chip, photonic implementation of RC remains a 

challenge. Scaling delay lines down from optical fibre scale to 

chip scale results in RC systems that compute faster, but at the 

same time require that the input signals are also scaled up in 

speed, which might be impractical or expensive. In this paper, we 

show that this problem can be alleviated by a masked RC system 

in which the amplitude of the input signal is modulated by a 

binary-valued mask. For a speech recognition task we 

demonstrate that the necessary input sample rate can be a factor 

of 40 smaller than in a conventional RC system. Additionally, we 

also show that linear discriminant analysis and input matrix 

optimisation is a well-performing alternative to linear regression 

for reservoir training.   

 
Index Terms—Photonic reservoir computing, Optical neural 

network, Supervised learning, Photonic integrated circuits 

 

I. INTRODUCTION 

Reservoir Computing (RC) emerged as a machine learning 

concept a little more than a decade ago. In their seminal 

papers [1–3] on Echo State Networks and Liquid State 

Machines respectively, H. Jaeger and W. Maas introduced the 

basics of RC as a method that combines the strength of 

recurrent neural networks with the ease of a linear readout as 

the only part that is trained in a supervised manner. Research 

efforts have been made ever since, both towards applications 

and towards a better theoretical understanding [4–7]. Powerful 

RC systems have since been designed and applied successfully 

to tasks such as robot control, speech recognition or channel 

equalisation [2], [8–10]. The field of RC has also opened new 

perspectives on analogue computing, leading to the first 

hardware reservoir implementations, using hybrid analogue-

digital technologies [11–13]. In this work the neural network 

computation is performed by analogue components, but the 

preprocessing and learning stages are still performed offline 
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on conventional computers. A special role is attributed to all-

optical RC set-ups due to their inherent high bandwidth which 

allows for a tremendous increase in computing speed. A 

network of integrated SOAs (semiconductor optical 

amplifiers) [14], [15], a single non-linear node in a delayed 

feedback loop [16], and a semiconductor laser diode subject to 

delayed self-feedback [17] have been proposed among others. 

The on-chip photonic integration of a reservoir offers the 

advantage of miniaturisation, cost-effectiveness and the 

possibility for mass fabrication. However, it can only perform 

useful computation if its internal timescales match the 

timescale of the input signal at hand. It is desirable to preserve 

the inherently high bandwidth that is offered by the photonic 

implementation. Yet, this choice compels timescale 

compression for many real-time applications, e.g. speech 

recognition, and implies the use of high-speed, analogue 

waveform generators as prerequisites for RC. Given that these 

are very costly, leading-edge technology for working 

frequencies of modern optical networks, we endeavour to 

enlarge the range of input signal bandwidths supported by the 

integrated reservoir system. 

In this article, we will show that this can be achieved by 

means of an earlier introduced data-processing scheme, called 

‘masking’ [16], in which the input signal is multiplied by a 

much faster periodic signal called the mask. It can be shown 

that this essentially realises a non-trivial mapping of a large 

recurrent neural network onto a smaller one and is 

accomplished by serialising the computations, i.e. rather than 

unfolding calculations in space in a large network, the 

calculations are unfolded in time in a smaller network. In the 

extreme case, this even renders reservoir computing with a 

single non-linear node possible as has been demonstrated in 

[16]. Because of this serialisation the single node system 

emulates a much bigger network which greatly enhances its 

computational power. Our goal is not only to translate the 

masking approach from a single-node network to an all-

optical, multi-node SOA network, but also to adapt the 

technique to relax the input signal’s bandwidth requirements. 

This masking scheme is not only restricted to integrated 

photonic devices but is equally pertaining to extended optical 

system solutions opening a wider range of applications.   

The article is structured as follows. We review the concept 

of RC and explain the masking in more detail in Section II. 

Section III describes the way the reservoir is modeled and how 

it is used to numerically solve a speech recognition task which 

consists in classifying digits. In Section IV we discuss the 

main simulation results and compare it to previous research 

that was conducted using the same task.  

Using digital masks to enhance the bandwidth tolerance and improve 

performance in on-chip reservoir computing systems 
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II. REVIEW OF THE RESERVOIR COMPUTING AND MASKING 

CONCEPT  

In 2001, Jaeger et al. [1] published a paper proposing a 

novel way of training recurrent neural networks in an easy 

manner. Recurrent neural networks are known for their 

excellent performance with respect to language modeling, 

real-time computing, and handwritten character recognition, 

but they are difficult to train [19–21]. 

RC copes with that problem by leaving the recurrent weights 

of the network untrained. Indeed, a random set of weights in a 

reservoir of large size provides a large variety of complex 

oscillator dynamics in different node subsets. If this variety is 

rich enough to represent the target signal faithfully by linearly 

combining the outputs from the reservoir nodes, RC equips us 

with a simple but powerful machine learning method. 

Interference effects and complex-valued interconnections 

enrich the reservoir behaviour [15], [22] in a coherent optical 

reservoir. It is often convenient to use the optical power at the 

readout, which is a non-linear mapping of the node state 

variables and hence a non-linear effect by itself.  

A quite recent breakthrough in experimental RC is based on 

the masking concept [16] where a periodic mask – a set of 

weights – modulates the input signal. We now briefly explain 

how this mechanism works in an experimental setup (Fig.1) 

for the binary-valued mask and which conditions must be 

satisfied for useful computations. The successive steps 

involved in the preprocessing and masking scheme are part of 

Fig. 1 (green and blue dotted-dashed box). A more stringent 

mathematical notation of all the subsequent steps is 

summarised in Table I. 

First of all, during a preprocessing step, the discrete-time 

input signal s, which can be multi-dimensional, is projected 

onto the reservoir’s state space via a projection matrix Winp2res. 

The reservoir consists of 16 coupled SOAs (reservoir nodes), 

so the state space spanned by the respective SOA integrated 

gain variables is 16-dimensional. An affine transformation is 

applied to the resulting input vector s16 to ensure that all its 

components are positive-definite functions of time. This is a 

necessary step as we encode inputs to the reservoir as optical 

power values. The preprocessing stage leads to an effective 

input vector u which varies with time in discrete time steps 

defined by the signal sample time Tsample, which we allow to 

range from 20 ps to 10 ns. Each of the 16 components of the 

effective input vector u is now running through the masking 

stage as indicated by the blue dotted-dashed box of Fig. 1. 

At the start of the masking stage every input vector 

component is converted to continuous-time with the help of a 

digital-to-analogue converter (DAC) implemented as a zero-

order hold or a non-ideal DAC followed by a sample-and-hold 

circuit. The resulting piecewise-constant signal can be thought 

of as output by a fast arbitrary waveform generator and is used 

for direct modulation of a laser diode. During each hold 

segment the laser light intensity is constant too. The critical 

part of the masking procedure consists of the periodic 

amplitude modulation of those piecewise-constant segments 

by the mask signal, in which the mask period is equal to the 

sampling time, i.e. Tsample = Tmask. Another important fact is the 

piecewise-constant nature of the periodic mask signal itself. 

Indeed, one period of the mask signal is composed of N non-

return-to-zero bits. Consequently, the mask signal changes at a 

N-times higher rate than the input signal sampling rate. As a 

consequence of the masking procedure, i.e. the multiplication 

of two piecewise-constant signals (the effective input vector 

component and the periodic mask), the final, masked version 

of the effective input vector component presents itself again as 

a piecewise-constant function. Time bins of constant light 

intensity and duration Tsample / N occur naturally and are 

termed ‘virtual nodes’ [16] in accordance to the RC literature. 

As shown in Fig. 1, any masked input signal has a fast 

component, switching it on and off (for a binary mask signal 

only) at a freqeuncy N/Tsample, and a slower component where 

the masked signal’s amplitude is changed. Eventually each of 

the 16 masked components of the effective input vector u is 

injected into a different reservoir node (SOA). We included a 

low-pass filter effect at this point in order to take into account 

the physical upper bandwidth limits of modulator and DAC. In 

principle it is possible to choose a different periodic bit 

sequence as a mask for each component of u. In all our 

simulations, however, we decided to use a common mask 

signal that is applied to all the components of u. This reduces 

the otherwise exponentially growing parameter space of 

different mask signal combinations and avoids an excess of 

time-consuming simulations. 

 
TABLE I  

MATHEMATICAL DESCRIPTION OF THE SIGNAL 

TRANSFORMATIONS APPEARING IN THE PIPELINE OF FIGURE 1 

Type of signal 

transformation 

Mathematical Description 

Projection 

      
         

                  
 

Affine 
transformation 

(peak signal 

amplitude s0) 

              

                     
     

         
 

Sample&hold 
(DAC with zero-

order hold)                    
 

     
 

       

 
 

 
    

Masking  
(e.g. bit = 

(1,1,0,1,0) with 

N=5) 

                          

                 
 

         
 
 
 
         

    

 

Low-pass filter of 
time constant τ 

(          )                                    
 

    
 

Demasking 

       
            

                                                 
 

Detection (PD) 
and centroids       
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Virtual nodes arise in the context of ‘masking’. They are not 

physical in the sense that they form well-defined components 

of the reservoir, but are of dynamical nature. They are the 

artificial result of a serialised input; the well-defined constant 

power levels play the role of an increased signal state space 

upon which the non-linearity of the physical reservoir node 

acts. The virtual nodes undergo an update rule similar to the 

neurons in a formal recurrent network, and the coupling 

among them is a consequence of the finite relaxation time of 

the latent (physical) node variable [16]. This sets an upper 

bound on the duration of each virtual node, since coupling 

only occurs if is less than the relaxation time of the physical 

variables that determine the state space. In contrast, choosing 

the piecewise-constant sections too short leads to increasing 

inertial effects and the reservoir system is unable to follow the 

fast input changes. These bounds on the virtual node duration 

constitute the aforementioned constraints on the masking 

mechanism. For the case of a single non-linear node with 

delayed feedback comprising 400 virtual nodes [16], the 

authors found an optimal relaxation time-to-virtual node 

duration ratio of 1:5 which we will also adopt as a starting 

point. 

The masking procedure is always matched with a 

‘demasking’ procedure at the readout stage. For each masking 

period, it extracts the N virtual nodes and offers them in 

parallel (i.e. at the same time) to the linear readout function. 

This is a crucial step for the subsequent application of the 

machine learning algorithm which operates on the enlarged 

node set and maps it back to a discrete-time output signal. 

Experimentally, the demasking procedure can be designed and 

carried out as shown schematically in the orange, dotted-

dashed box of Fig. 1. At every reservoir node, a small portion 

of the SOA output light power is branched out and used to 

implement an N-fold readout function. There are as many 

virtual nodes per masking period as there are bits in the 

masking bit sequence. The branched optical signal is fed 

through an 1xN splitter and forked into N distinct delay lines 

of increasing length. Each length increment in the delay lines 

corresponds to a readout delay of one virtual node duration. 

Therefore the demasking procedure mimics a deinterleaver 

that parallelises the sequential order of appearance of the 

virtual nodes in one masking cycle. If the signals at the 

individual photodetectors are gated using the clock output of 

the sample-and-hold unit as a trigger, a lower-speed 

implementation of the photodetector array is conceivable 

which makes the output units available for training at once. 

Alternatively, one could use a single higher-speed photo 

detector for readout of each reservoir node, sample at a rate 

N/Tsample, and perform the parallelisation electronically. 

Thus the masking-demasking pair can be understood as an 

efficient mapping between a given input space and an abstract, 

increased, implicit feature space that eventually boosts the 

reservoir system’s computational power. The combined 

system of masking-demasking and RC forms a building block 

for non-linear, adaptive filters. 

 
Fig. 1.  Simulation flow diagram: preprocessing step (green box, offline) - the 

input dimensions of 77 are matched to the reservoir dimension of 16 using a 

projection matrix; masking step (blue box) using a sample & hold circuit and 
a modulator driven by a bit pattern generator which multiplies a fast binary 

mask onto a slower input signal; signal processing by the SOA reservoir; 

readout and demasking stage (orange box) where the signal is temporally 
deinterleaved and detected. For clarity only the connections of 3 reservoir 

nodes are shown. 

 

Whether a masked RC system is suitable for a certain task 

depends on how many virtual nodes it employs. One is thus 

eager to design a tunable delay line as interconnect between 

two physical nodes, which is amenable to host a varying 

number of virtual nodes and which scales linearly with the 

network size. This was done experimentally for the RC based 

on single-node dynamics in an electronic set-up [16]. 

However, the operational bandwidth therein is limited by the 

node’s intrinsic timescale of ~ 10 ms. In this paper, we try to 

compensate for the deleterious bandwidth effects and shift to 

an integrated photonic platform, using the faster 

semiconductor’s gain dynamics (~ 100 ps) as source of non-

linearity. Unfortunately, this transition to integrated, all-

optical reservoirs has to face two major difficulties that are not 

present in the electronic set-up. Firstly, integrated optical 

delay lines are lossy waveguides that cannot be tuned easily 

over a wide range. Especially when hundreds of virtual nodes 

are needed, this solution is quickly loss-limited. Secondly, the 

benefit of high intrinsic bandwidth in an all-optical reservoir 

system (~ 10 GHz) poses stringent requirements on the speed 

of the analogue, effective input vector u which might stem 

from a lower speed physical process (e.g. speech) or from 

readily available low-speed analogue waveform generators (~ 

100 MHz) and thus introduces several orders of timescale 

compression. Hereafter, we show that the first difficulty is 

overcome by a RC device with more than one physical node – 
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in our case a swirl network comprising 16 integrated SOAs 

that is easily scalable due to its integrated solution. 

Furthermore, we demonstrate numerically that the masking 

approach still allows one to use lower-speed input signals 

when modulating them with higher-speed binary masks. 

III. SOFTWARE IMPLEMENTATION 

A. Reservoir and integration method 

We have simulated the spoken digit task (recognising the 

spoken digits ‘zero’ through ‘nine’), a standard benchmark 

task in the RC community, for a 4-by-4 network of SOAs 

connected according to a swirl topology (see Fig. 2). Each of 

the SOAs obeys the state space rate equation indicated in (1), 

where the dimensionless variables h represent the integrated 

SOA gain and Gss (13.2 dB) the integrated small signal gain 

[23]. The incoming light field is denoted Ain and its square 

magnitude is written in units of the SOA saturation power Psat 

(21.1 mW). There is one free parameter, α, which depends on 

the ratio between delay and SOA carrier lifetime (0.3 ns) 

under the assumption that all the photonic wire connections 

have equal length. We therefore refer to time in units of the 

interconnection delay whenever the reservoir response is 

solved numerically. The nodes influence each other via the 

incoming light waves which are modeled as a coherent 

superposition of the outgoing waves of all the neighbouring 

nodes plus the external driving signal. Due to the presence of 

splitters, combiners and the waveguide interconnects, losses as 

well as phase shifts will be imparted to the outgoing waves. 

Hence, we model the update rule for the incoming light fields 

according to (2). The complex coefficient γi,j describes the 

attenuation and the phase shift experienced by the wave 

travelling from the j-th node to the i-th node, and ß (a typical 

value of which is 5) is the linewidth enhancement factor. The 

outgoing wave is related to the incoming wave as stated in 

(3a, 3b), tSOA being the group delay inside each amplifier. 

To decrease the large parameter space and to save 

computational resources, we decided to leave the reservoir 

size unchanged and chose the same SOA settings as in [15], 

[22]. 

 

             
            

  (1) 

                            (2) 

               
 

 
            (3a) 

                            
 

 
            (3b) 

 

We solve the problem stated above, (1)-(3), which can be 

rewritten as a delay differential equation by the method of 

steps: Equation (1) is integrated on the interval t = [0,1] given 

the input history           , the field amplitudes are 

updated according to (2) and used as the new input history for 

the interval t = [1,2] as we go on. This procedure is repeated 

until the solution is constructed for the complete interval of 

interest, t = [0,tfinal]. A commercial MATLAB™ ode23 solver 

was used to carry out the integration (relative accuracy 10
-4

) in 

which all signals are interpolated to the required order for 

dense output. 

 
Fig. 2.  Reservoir exhibiting a swirl topology. The nodes consist of identical 

SOAs and are represented as circles. Each arrow corresponds to a waveguide 

wire connecting node i and j, and confers a unit delay Δt to the signal. Thinner 
arrows impart an additional loss of 3 dB to the connections as compared to 

thicker ones. 

 

B. Data set and preprocessing 

The data set consists of the TI 46 corpus [14] wherein 500 

spoken digits were selected (five speakers uttering the digits 

‘zero’ through ‘nine’ ten times). In order to make the 

classification task harder, 3 dB of babble noise was added 

from the NOISEX-92 database [24]. The noise-corrupted 

speech signal is then down-sampled by a factor of 128 and 

subsequently preprocessed by the Lyon Ear Model [15]. This 

model emulates the response of the human cochlea and 

outputs 77 predictive features. These features are combined 

into a 16-dimensional input vector via the reservoir’s input 

weight matrix, with weights drawn independently from the 

discrete set {-1, 1}. Given that we encode our signal as optical 

power values, we have to apply a bias term to ensure positive 

values. We also rescale each sample drawn from the data set 

so that the overall peak power equals the input scaling. 

As mentioned in the introduction, in contrast to the standard 

approach to RC where the weighted and rescaled signal is 

directly fed to the numerous reservoir nodes, we add another 

preprocessing step up front. It consists of modulating the input 

streams with a periodic NRZ (non-return-to-zero) bit sequence 

of length N common to all the reservoir nodes (referred to as 

the shared digital mask, see also Fig. 1). 

The digital masking is carried out by chirp-free amplitude 

modulation. We approximate the time continuity of the signal 

by upsampling the input by a factor of 16 and include a low-

pass filtering effect of the modulator. 

C. Post-processing and training 

The output power is monitored at all the reservoir SOA 

nodes, including the demasking step (cf. Fig. 1), as long as an 

input is applied. We call this time span the observation frame 

which is necessarily proportional to the input length. In all our 

simulations the observation frame exceeds the intrinsic 

timescales of the reservoir. Note that by the virtue of 

demasking, we increased the number of different output 

signals by a factor of N, resulting in a total of 80 for a 4-by-4 

network with a 5 bit binary mask. This increases the number 

of signals available for the classifier by a factor of N, which is 
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beneficial for performance. 

Next, the time dependence of all the demasked output 

signals within each observation frame is averaged out, so as to 

calculate their centroids. The same  was done in [15]. 

Having post-processed the output as described above, 

contrary to earlier work [15] we do not perform a least-square 

optimisation to determine the optimal readout weights such 

that a linear combination of the output signals matches as 

closely as possible a desired output signal (e.g. 1 if the word to 

be recognised is present, 0 otherwise). Instead, we apply the 

more sophisticated lower-rank multiclass linear discriminant 

analysis (LDA) as supervised training method [18], which 

tries to maximise class separability, i.e., the distance between 

the lower-rank class means, by taking into account the within-

class scatter. As it is characterised by linear decision 

boundaries, we are still true to the philosophy of classical RC 

to implement only linear readout weights. In this LDA, the k
th

 

discriminant function δk is calculated from the class mean   , 

covariance matrix  , and class prior probability   . 

The magnitude of δk determines the probability of assigning 

the observation x at the output of the reservoir to the class of 

spoken digit k. The class means μk are calculated as the 

average position in parameter space of all the training 

observations belonging to the digit k, and the class prior πk 

reflects the frequency with which digit k occurs in the training 

set. The covariance matrix Σ is estimated in the same way as 

in the normal form of least squares. 

A convenient performance measure is the Word Error Rate 

(WER), i.e. the fraction of misclassified digits. Since we have 

worked with a rather small data set of 500 observations, we 

used leave-one-out cross validation (LOOCV) to obtain better 

model statistics for the generalization error. For LOOCV the 

i
th

 data point is removed from the data set and the retained 

samples are used to train the classification algorithm. A model 

prediction produced for the i
th

 input is then compared to the 

correct class label. This procedure is repeated for each data 

point in the data set and the overall fraction of misclassified 

samples constitutes the cross-validation error estimate. 

IV. RESULTS 

As benchmark, the same data set of 500 observations and 

leave-one-out cross-validation was simulated by reservoir-free 

LDA, regularised least-squares (LS), and k-Nearest 

Neighbours (kNN), a common instance-based machine 

learning algorithm [18]. This has two advantages. Firstly, it 

allows us to validate the use of LDA as classification 

algorithm given that its scores are indeed located between to 

those of kNN and LS. Secondly, the benchmark test aids us in 

putting the results from the RC techniques into the broader 

context of classification problems in the field of machine 

learning. 

A closer look on the results displayed in Table II clearly 

shows an average WER below 5 % when training is performed 

on the full 77-dimensional feature vector. In order to make the 

benchmark results more comparable to the RC techniques we 

employed, the same input-to-reservoir weight matrix Winp2res 

that the reservoir requires was applied to every training vector 

before presenting it to RC-free LDA or kNN. This projects the 

77 dimensions of the speech task down to a lower-dimensional 

representation, i.e. 16 dimensions for the 4x4 reservoir. 

Obviously the choice of Winp2res is far from optimal because 

the average WER increases significantly in this case: above 

20 % WER for both LDA and LS, and more than 10 % for 

kNN. We try to remedy the increase in the WER by choosing 

a particular input-to-reservoir projection matrix WPCA that was 

constructed from the data set’s 16 largest principal 

components. As expected, we notice an important 

improvement of the WER in the third column of Table II. 

 

 
Fig. 3.  WER performance plots for the 4x4 swirl network of SOAs trained by 
LDA. The red curves correspond to the conventional reservoir, the blue ones 

to the masked reservoirs (using an ‘11010’ sequence). In a) the input sampling 

frequency is swept. The gray reference line shows the WER achieved by 
reservoir-free LDA. Subplot b) displays a sweep of the interconnection delay 

at the optimal input sampling frequency point (1GHz) found in a). This time 

we included a gray reference curve for the best sampling frequency of the 
unmasked reservoir (at 40 GHz). For the lowest WER the statistical error due 

to the random choice of Winp2res is indicated by error bars (bars: min/max, box: 

1st/3rd quartile). 

 

Next, we simulated the 16-node reservoir without masking 

the input. In all our simulations, we swept the most important 

reservoir parameters: the input sample rate, the 

interconnection delay τ, and the input (power) scaling. The 

minimally achieved WER of 22.6 % (settings: 6 dB/cm 

additional waveguide loss, 40 GHz input sample rate 

(1/Tsample), 300 ps interconnection delay, and 0.5 mW input 

peak power, see also Fig. 3) is comparable to the benchmark 

results of reservoir-free LDA and Winp2res. Clearly, the use of a 

conventional reservoir is of little interest because it only adds 

complexity inside the RC layer without improving the WER 

any further. 

Then we repeated the same parameter sweeps for the 
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masked reservoir. Therefore we chose an arbitrary, 5 bit long 

mask, i.e. the yet non-optimal sequence ‘11010’. Later on we 

will investigate the model behaviour when the particular bit 

mask is changed. The presence of 5 bits in one mask period 

satisfies the constraints on the virtual node duration, the 

piecewise-constant parts of the input signal: in integrated 

photonics we are working with short delay lines (~300 ps) that 

are of the same order of magnitude as the SOA’s time constant 

(300 ps), hence 5 bits (virtual nodes) per delay line constitute 

a good balance between the relaxation and the inertial effects 

exerted on them when passing from one SOA node to the next 

one. The reservoir nodes constantly stay in a transient regime 

where computations are carried out. 

 
TABLE II 

LOWEST WER AND 95% CONFIDENCE INTERVAL OF BENCHMARK LEARNING 

METHODS AND METHODS INVOLVING RC 

Learning Methoda WER 

all input 

dimensions 
(77 channels) 

WER 

Winp2res 

WER 

WPCA 

Reservoir-free  

Methods 

 

LS 7.2 ± 2.3 % 31.4 ± 4.1 % 12.0 ± 2.9 % 

LDA 4.4 ± 1.8 % 25.8 ± 3.8 % 6.4 ± 2.2 % 

k-NN 2.2 ± 1.3 % 11.6 ± 2.8 % 2.4 ± 1.3 % 

Reservoir  

Methods 

 

LS + RC 

LDA + RC 

 

 

27.4 ± 3.9 % 

22.6 ± 3.7 % 

21.0 ± 3.6 % 

14.0 ± 3.0 % 

LS + MRC [11010]  13.2 ± 3.0 % 6.0 ± 2.1 % 

LDA + MRC [11010]  9.6 ± 2.6 % 3.6 ± 1.6 % 

LDA + opt. MRC [01101]  8.2 ± 2.4  % 3.6 ± 1.6 % 

aMethod acronyms: LDA – Linear Discriminant Analysis (9 dimensions); 
LS – Least Squares; k-NN – k Nearest Neighbour clustering (k = 4); RC – 

Reservoir Computing (16 nodes); MRC – Masked Reservoir Computing (bit 

mask in brackets, 16 nodes) 

 

Figure 3 shows the model behavior depending on the two 

most critical network parameters, viz. the input sample rate 

1/Tsample and the internodal delay. Their optimal values are 

located at 1 GHz and 400ps for the input sample rate and the 

interconnection delay, respectively. In order to find the 

optimal working point for the reservoir, we first minimised the 

WER with respect to the input sample rate and then, in a 

second step, with respect to the internodal delay. We omitted 

to include the dependence on the input (power) scaling 

because, except for very large input peak powers of tens of 

mW the WER does not deviate strongly from its optimal value 

at 0.5 mW. From Fig. 3 we conclude that upon applying the 

masking scheme a significant decrease of the WER is obtained 

throughout the parameter space. The best achieved WER in 

this case (LDA, Winp2res) is as low as 9.6 %. This result 

highlights not only the superior performance of a masked 

reservoir over an unmasked one, but also proves to outperform 

basic, off-the-shelf classification algorithms for even small 

network sizes. Crucially, it also shows that good performance 

is achieved over a much wider frequency band of input 

sampling rates of the input signals. We want to emphasise that 

our result differs significantly from the findings in [15], [22], 

in which ridge regression was applied to the output time traces 

before time-averaging and decision making. Therein the 

performance of small network sizes is much worse (26.4 % for 

the 4x4 SOA network) and the required input sampling 

frequency much higher (~80 GSample/s for 400 ps delay 

lines). This means that the use of LDA is beneficial from a 

machine-learning perspective since it provides a more robust 

training algorithm decreasing the WER by several percent 

points in both the masked and unmasked case (cf. LS + RC vs. 

LDA + RC and LS + MRC vs. LDA + MRC in Table II). 

Additionally, the masking scheme helps further improving the 

WER, lowering it to 3.6 % when combined with a judicious 

choice of the projection matrix. The key result, however, 

resides in the tremendously decreased input sample rate to and 

below 1 GSample/s. 

 

 
Fig. 4.  Bar plots showing the average WER for different masking sequences 

of the input signal. The digital masks are ordered and represented by their 

equivalent decimal notation. 
 

We finish this section by optimising the 5-bit mask. 

Recently, a similar study on binary masks has been carried out 

for the delayed-feedback, single-node reservoir system [25]. 

To this end we have studied the dependence of the average 

WER on the specific bit sequence in the mask at the 

previously found optimum for the particular 5-bit mask 

‘10110’. The overall minimum WER determined in such a 

way is 8.2 % (cf. Table II, LDA + opt. MRC), obtained with 

the bit-mask pattern ‘01101’. Fig. 4 shows all the possible 

mask patterns of length 5, except the all-zeros and all-ones 

sequences which we omitted for the reason that they either 

produce no input at all or just repeat the input signal without 

masking. We labelled the remaining 30 patterns according to 

their decimal representation, e.g. ‘00011’ maps to 3. 

According to Fig. 4, there exists only little variation in 

performance for the whole spectrum of possible masking 

sequences. Eventually, a ceiling analysis based on the entries 

in Table II makes clear that designing a better input weight 

matrix, e.g. via principal component analysis (PCA), 

contributes in a much better way to the overall system 

performance than improving the specific binary masking 

sequence: 1.4 % yield when optimising the binary mask vs. 

6.0 % when choosing a better input weight matrix WPCA. This 

corresponds to the findings in [26]. 
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V. CONCLUSION 

In this work we have demonstrated that a binary masking 

and demasking scheme can be used in combination with the 

RC concept in order to relax its input sample rate 

requirements: by multiplying a slow input signal with a fast 

mask, a new input signal is created that is compatible with the 

fast, intrinsic dynamics of the reservoir without sacrificing 

performance. A secondary time-multiplexing scheme, the 

demasking procedure, is applied to the readout nodes of the 

reservoir as described by Zhang et alii [27]. This additional 

demultiplexing stage provides the machine learning algorithm 

with a valuable extra set of predictors and results in 

significantly improved classification performances. Relaxed 

constraints on the input sample rate are of paramount 

importance for conducting experimental RC studies because 

low-bandwidth function generators are readily available. It is 

noteworthy that an experimental study is still very elaborate 

because of the large amount of optical and electronic 

components and devices destined to carry out the various 

signal processing steps. From our simulations we conclude 

that the necessary input sample rate can be reduced by a factor 

of 40 compared to conventional RC – that is from 40 

GSample/s down to 1GSample/s – without any loss of 

performance. This processing speed is similar in magnitude to 

the one reported by Zhang et alii [27], in which a passive 

linear system with a non-linear readout was used. In contrast 

to their work that combines masking and hierarchical time-

multiplexing to increase the effective node number (prediction 

accuracy) at constant processing speed, our approach 

introduces the masking and demasking concept to lower the 

input sample rate to practical values. Moreover, by using more 

advanced training mechanism like LDA and optimised input 

masks, we can achieve word error rates as low as 3.6 % in a 

small-sized reservoir consisting only of 16 reservoir nodes. 

Finally, we remark that the SOA network is operating at low 

input powers compared to the SOA’s saturation power which 

efficiently removes the node non-linearity. This implies a 

more power-efficient solution in form of cleverly designed 

passive reservoirs should be possible, provided that their loss 

management is properly addressed. 
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