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1
Introduction

1.1 General overview

Fungi are remarkable organisms that have been populating planet Earth long be-
fore humans. The oldest fungal fossil dates from the Paleozoic, suggesting that
fungi may have been the first organisms to creep out of the Ocean and live on the
Earth’s land. Therefore, fungi may be the organisms responsible for accommodat-
ing the land for the arrival of animals and plants. Humans have been aware of the
existence of fungi for thousands of years. Several civilizations used fungal fruiting
bodies as food resource or for their medicinal characteristics. However, fruiting
bodies represent only the tip of the iceberg of fungi since most fungal activity hap-
pens underground where complex hyphal networks, referred to as mycelia (sing.
mycelium), can cover kilometres. For instance, fungi are considered the soul of
forests where their mycelium coordinate the distribution of nutrients to the differ-
ent plant organisms present. Fungi are able to survive in all environments, as they
are able able to adapt to the environmental characteristics. The first systematic
studies on fungi date back from the 18th century. The appreciation of fungi as a
proper subject of study together with the advances in study techniques resulted
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in more detailed studies and the discovery of several fungal species. This bet-
ter understanding revealed some characteristics that made scientists question the
genetic relation between fungi and plants. For instance, the composition of the
fungal cell wall and the nutrition of fungi appeared more closely related to simi-
lar properties in animals than in plants. For these reasons and the high diversity
of fungal species discovered, fungi were finally classified as a proper Kingdom in
1969. From this moment, the research on fungi gained even more momentum and
more complex processes were studied, including their genetics and their evolu-
tionary relationships.

In parallel to the theoretical discoveries on fungal composition, behaviour and di-
versity, different industries studied fungi for their commercial potential. Histori-
cally, fungi were used in fermentation processes to produce food products such
as bread, cheese or beer. However, in 1928 Alexander Fleming discovered that
fungi could be used for much more than just the production of food products. His
discovery, penicillin, a powerful antibiotic derived from a common fungus, Penicil-

lium notatum, triggered the industrial research on fungi. Ever since, industry has
profited from fungi. They have been used in the production of diverse products
ranging from paper and textile to biofuels and bioremediation agents. In contrast,
efforts have also been made in the opposite direction by investigating treatments
and products able to stop or at least slow down the action of fungi. The reason
for this is that many products can be consumed and degraded by fungi, including
most organic materials such as food and building materials. For instance, several
fungal species are plant pathogens, as such causing diseases affecting crops, re-
sulting in substantial economic losses in the agricultural sector. In addition, some
fungi are also harmful for humans and other living organisms since they induce
allergic reactions, diseases and even the death of their hosts.

In summary, fungi have been widely studied to gain a better understanding of
their unique characteristics and habits, to improve production processes and gen-
erate new products, or to limit their growth in order to protect organic materials
and living organisms. These extensive studies have resulted in remarkable con-
tributions to modern society, and as new discoveries were presented, other chal-
lenges and possibilities arose, as such demonstrating the importance of research
on fungi. However, most established experimental techniques are not able to ef-
ficiently produce quality data, as such hindering the study of fungi in general and
fungal growth dynamics more specifically.

For instance, most experimental techniques require direct manipulation of the
samples, as such being susceptible to human errors and time consuming. Other
techniques involve the destruction of the samples which makes it impossible to
track growth on the same individual. Even though some techniques are able to
overcome some of these problems, they often focus on small regions of the stud-
ied fungus, and are therefore unable to characterize the behaviour of the whole
mycelium. In addition, experiments have to be performed repeatedly to account
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for the natural variability of fungi. For these reasons, new techniques able to pro-
duce high-quality data in an automated and non-destructive way are needed to
further study the dynamics of mycelia.

Fortunately, the rise of new data acquisition techniques, such as the automated
processing of biological imagery, opens new avenues of study which can help to
overcome some of these limitations. Image analysis has gained momentum due to
the availability of cheap imaging and processing equipment, and the development
of dedicated image analysis algorithms. The scale at which fungi grow allows for
the extraction of numerous images using basic machinery, making them the per-
fect subjects to study with such techniques. Furthermore, images can be captured
in an automated and non-destructive way, as such overcoming the limitations of
existing techniques.

Even though image analysis techniques represent an improvement in comparison
with most established techniques, they are still subject to the space and time re-
strictions of laboratory experiments. In addition, the processes occurring within
the mycelium cannot be captured by most imaging devices despite their impor-
tance for the development of fungi.

In order to overcome the limitations imposed by laboratories, researchers need
to address the study of fungi from a broader perspective, and relying on more
abstract concepts and techniques. One powerful option to tackle such limitations
resides in the use of mathematical models which are gaining momentum due to
the increase in computing power. For instance, different scientific disciplines have
benefited from the use of mathematical models, as they were used to complement
laboratory experiments and to extend and understand experimental data.

Several mathematical models have already been proposed to mimic fungal growth
by relying on different hypotheses, methods, scales and modelling paradigms.
Nevertheless most of these models are not able to represent the evolution of fungi
realistically or in sufficient detail since they rely on unrealistic space discretizations
or restrict growth to two dimensions. Additionally, some modellers neglect the un-
derlying biological processes driving growth or do not include the effect of external
factors on the fungal development. Therefore, most models are not able to fully
grasp the development of fungi and to simulate realistic fungal growth scenarios.

All models including those accounting for the aforementioned factors require data
in order to improve the accuracy of their results. Such data need to be in line
with the growth scenarios covered by the model, for instance representing similar
scales and initial conditions of those in the model. So mathematical models and
experimental techniques can benefit from one another and combining them can
help to overcome some of the limitations that hinder the study of fungal growth
dynamics.
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1.2 Objectives

Motivated by the shortcomings of current experimental techniques and the cur-
rent advances in technology, this dissertation studies the possibilities that more
updated methods can offer to the study of fungi. More specifically, the main ob-
jectives of this dissertation are:

1. Develop an experimental technique able to track fungal growth of different
fungal species and in different fungal growth scenarios. This technique needs
to address the issues of current approaches, therefore being able to track en-
tire mycelia in an automated and non-destructive way. In addition, this tech-
nique should be efficiently repeatable, therefore accounting for the natural
variability of fungi.

2. Formulate a mathematical model able to realistically simulate fungal growth.
Consequently, such a model should be able to represent fungal growth in
three dimensions accounting for both the biological processes driving growth
and the effect of different external stimuli. Ultimately, this model should be
able to replicate similar growth scenarios as those most commonly studied
in laboratories in order to allow for comparison between experiments and
simulations.

1.3 Outline of this dissertation

This dissertation is organized in four parts. Part I gives the background and pro-
vides detailed information on some of the methods and processes used throughout
the remainder of this dissertation. Parts II and III describe the main contributions.
Finally, Part IV summarizes the most important conclusions and elaborates on pos-
sible extensions of the work presented here.

Part I of this dissertation is divided into two chapters. The first chapter (Chapter 2)
gives the biological background on fungi and summarizes their most relevant uses
in industry, their importance in natural ecosystems and their impact on human and
other living organisms. In addition, the morphology and diversity of fungi is briefly
discussed, followed by a detailed overview of the processes driving the growth of
filamentous fungi. Chapter 3 consists of a detailed discussion and comparison of
different mathematical models encoding fungal growth. Some of the most com-
mon mathematical paradigms and different modelling approaches are explained
in this chapter. In addition, the most relevant fungal growth models are presented
according to the scale they operate at.

Part II is divided into three chapters, Chapter 4 focuses on how to transform images
of mycelia into simplified versions. For this purpose, an image analysis algorithm
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based on Gaussian kernels is introduced and tested. It is able to remove redun-
dant information from the original images, as such allowing for a better analysis
of the fungal images. In Chapter 5, an innovative experimental set-up to track
fungal growth using basic imaging devices and the mathematical techniques used
to extract fungal growth features from the binary images obtained using the al-
gorithm introduced in Chapter 4, are described. Several fungal growth features
are then extracted for different fungal species allowing for a mutual comparison
of their growth behaviour and a detailed study of their evolution. Chapter 6 uses
similar techniques to assess the effect of temperature and relative humidity on
fungal growth.

Part III presents an innovative spatially explicit model able to simulate fungal
growth in three dimensions occurring under a variety of growth scenarios. Chap-
ter 7 explains the development of the model and includes a sensitivity analysis of
the main model parameters. In addition, different scenarios are simulated indicat-
ing the importance of the environment on the growth of fungi.

In Chapter 8 the most important conclusions of this dissertation are summarized,
while Chapter 9 presents avenues for future research.
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2
Biological Background

2.1 Introduction

Millions of different fungal species are estimated to inhabit the Earth (Blackwell,
2011), some of which include the largest and oldest living organisms. Fungi have
been collected and harvested as food and exploited for product development, such
as alcoholic beverages and antibiotics. They are crucial in nutrient cycles in forests
for litter decomposition and live in symbiosis with trees and plants, as such facil-
itating the redistribution of nutrients through the ecosystem. They are, however,
detrimental in human ecosystems as the main decaying organisms of building ma-
terials and the main cause of food spoilage.

For all of these reasons, fungi have been widely studied, still some of their main
features are not yet well understood. For instance, the total number of fungal
species is still an open debate. While some studies estimate the number of species
at 1.5 million based on ratios of known fungi to plant species (Hawksworth, 2001),
other studies based on analyses of environmental DNA of soil samples predict that
more than 5 million fungal species exist (O’Brien et al., 2005). However, only
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around 99.000 fungal species have been formally described (Blackwell, 2011). In
this chapter, the motivation and framework of fungal research will be discussed.
The main fungal structures and processes are introduced together with a brief re-
view on fungal morphology. This will be followed in Section 2.4 by an in-depth
study of fungal growth focusing on mycelial growth including the different environ-
mental conditions and nutrient requirements needed for growth.

2.2 Motivation and framework

Fungi populate most known ecosystems, even those with extreme environmental
conditions or a lack of nutrients (Magan, 2007). For instance, fungal activity has
been found in deserts (Stutz et al., 2000), the Arctic (Robinson, 2001), in the deep
ocean (Le Calvez et al., 2009), and even in man-made structures such as nuclear
reactors (Zhdanova et al., 2000). The reason for this resides in the unique body
of most fungi, the mycelium, which allows them to redistribute nutrients across
large distances and consequently to survive in inhospitable environments (Boddy,
1999). In addition, fungal nutritional needs are easy to meet, which means that
most organic materials are a potential target for fungal decay (Adan and Samson,
2011), and consequently most ecosystems can be colonized by fungi.

In natural ecosystems, such as forests, fungi are the main organisms in charge
of organic matter degradation and therefore they are also essential in nutrient
recycling (Krivtsov et al., 2006). Fungi are able to degrade organic matter by
releasing enzymes targeting different chemical components. They are the only
organisms able to degrade lignin, one of the main components of both plants and
trees. Different fungal species are able to degrade moist wood of dead and living
trees (Figure 2.1(a)) in different ways, which are referred to as brown rot, white
rot and soft rot (Schwarze, 2007). While in brown rot and soft rot the cellulose of
wood is broken down by the attacking fungus, other fungal species are specialized
in the breakdown of lignin causing white rot.

In addition to their degrading behaviour, fungi are key to the formation of symbi-
otic relationships with plants and trees in natural ecosystems (Gadd et al., 2007).
The most well-known symbiotic relationship between plants and fungi is the one
between roots and fungi, referred to as mycorrhizal symbiosis (Dickson and Kole-
sik, 1999) (see Figure 2.1(b)). Fungi fuse with the roots of their symbiotic part-
ners, as such being able to redistribute nutrients from the plant to themselves
and vice versa. In exchange, the hyphae of fungi extend into the soil, increasing
the absorption potential for water and nutrients of the host plant. Furthermore,
these mycorrhizal associations have been proven to protect the plants from root
pathogens, such as nematodes and other fungi. Fungi are able to produce antibi-
otic substances in order to protect their symbiotic partners (Brimner and Boland,
2003). Other fungi create symbiotic relationships with other parts of the plant such
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(a) Fungi growing on a death tree (b) Mycorrhizal symbiosis
between plant and fungus

Figure 2.1: Examples of the action of fungi in natural ecosystems. (Source: Aberdeen Mycorrhiza
Research Group)

as the leaves or the stem. These fungi are referred to as endophytes and they pro-
tect their host from harmful fungi, insects and mammals (Faeth and Fagan, 2002;
Sun and Guo, 2012).

The presence of fungi in human ecosystems is also crucial. Different industries
benefit from the action of fungi as they are used to develop products ranging from
medicines to food products (Grimm et al., 2005). Fungi such as truffles and mush-
rooms are harvested and consumed as nutritious food. In addition, some fungi
have been used for centuries as fermenting agents to develop products as bread
and alcohol (Papagianni, 2004). Fungal metabolites can be used to develop an-
tibiotics (Berdy, 2005) and plant growth stimulators (Sahasrabudhe and Sankpal,
2001). In addition, enzymes are extracted from fungi to produce dairy products,
such as yogurt (Gougouli et al., 2011), in paper production (Torres et al., 2012) and
biofuel generation (Vicente et al., 2009). Fungi are also used as biological control
agents against insects, nematodes and fungi harming plants and crops (Brimner
and Boland, 2003). The use of fungi in industry and their impact on humans and
other organisms is summarized in Figure 2.2.

During the last years, fungi have also been used as climate change and global
warming indicators (Boddy et al., 2014). This use is motivated by the fact that
fungi are present all over the world and most fungal species are susceptible to
temperature and humidity changes making them the perfect indicators to study
climate change. For instance, mycologists have recently identified a change in
host affinity in certain fungal species associated with changes in environmental
conditions (Gange et al., 2011). In addition, a shift in the timing of the spring
fruiting of different fungal species as a consequence of climate change has been
observed (Kauserud et al., 2010), as such providing an indicator of the evolution
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Fig. 1. Some of the activities of fungi influencing man.

Although the history of mycology is inti-
mately associated with understanding
the role of fungi in the diseases of impor-
tant crop plants, and for many people the
word mouldy implies spoilage, there are
many aspects of fungal activity which
are beneficial to man. An excellent
general review of 'Mycology in Biotech-
nology' has already been published in the
Bulletin (Berry, 1983) and Fig. 1
paraphrases some of the activities of
fungi as friend and foe. In the present
article it is intended to bring together a

few strands from recent studies in ap-
plied mycology in the hope of demon-
strating the rich diversity of fungal ac-
tivity and structure which can be mani-
pulated for the benefit of man.

FUNGAL BIOMASS AS FOOD

Of course, filamentous fungi such as
Rhizopus oligosporus Saito have been
used to upgrade plant products like soy-
beans for many centuries, and single-

Figure 2.2: Summary of the beneficial and detrimental activities of fungi. (Source: Moss (1987))

of the climate conditions in the studied areas.

Fungi can also have detrimental effects on both natural and human ecosystems.
In contrast to their ability to develop symbiotic relationships with plants, many
fungal species are plant pathogens (Dean et al., 2012). In nature, most plant
species are susceptible to fungal diseases (Hansen, 2008). As their natural coun-
terparts, plants harvested in man-made ecosystems are also vulnerable to the
action of plant pathogen fungi. Fungal diseases affect key crops for humans, such
as rice (Couch et al., 2005), wheat (Bolton et al., 2008) and potato (Secor and
Gudmestad, 1999). Therefore, the action of fungi results in substantial economic
losses in the agricultural sector. For instance, the fungus Magnaporthe oryzae,
present in 85 countries worldwide, is responsible for the rice blast disease which
causes 10 to 35% loss of harvest (Fisher et al., 2012).

In response, different industries use and develop fungicides in order to prevent
fungal attack. Fungicides are not only used for crops, but also to protect building
materials since they are also affected by fungi (Adan and Samson, 2011). Building
structures can be damaged by the action of fungi due to the presence of mois-
ture or water (Viitanen et al., 2010b). Unfortunately, indoor plumbing problems,
condensation or leaky roofs are common situations that lead to the degradation of
building materials. In addition, some building parts such as the façade are often
exposed to long periods of condensation bringing along optimal conditions for fun-
gal growth (Gobakken and Westin, 2008). Due to these problems, preventing the
deterioration of buildings by fungi is extremely difficult.
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Fungal decay does not only affect building structures but also the different living
areas. Indoors, fungi spoil food and other organic products (Adan and Samson,
2011). The environmental conditions needed for fungi to grow prevail in many
buildings, due to structural or insulation problems (Pasanen et al., 1992). For in-
stance, air currents promote the propagation of spores, while areas with low venti-
lation are more suitable to sustain the conditions required for fungal growth (Coo-
ley et al., 1998). In addition to food spoilage (Samson, 1989), indoor fungi gen-
erate mycotoxins that cause several diseases for humans and domestic animals,
referred to as mycoses. A prolonged exposure to certain fungi can result in se-
vere illnesses and even death (Thornton, 2011). Fungal mycotoxins can access
the human body through inhalation or wounds causing diseases affecting inter-
nal organs known as systemic mycoses. Even though most mycoses only affect
immune-depressed patients, certain fungi have proven to increase allergic reac-
tions and respiratory conditions such as asthma in healthy individuals (Denning
et al., 2006). Therefore, preventing the action of fungi is a health issue and, con-
sequently, it is a priority for the research community.

In summary, fungi play an important role in most known ecosystems either in a
positive or in a negative way. For this reason fungi have been widely studied in
different scientific fields such as forestry and engineering. Nevertheless, some
aspects of fungi and their development remain a mystery due to the narrow scope
of current experimental techniques for tracking the evolution of fungi. Therefore,
the study of fungi and fungal development is a critical issue for the whole society.

2.3 Fungal diversity and morphology

Fungi are present all over the world in a wide range of shapes and sizes, some
of which represent the largest and oldest living organisms on Earth (Anderson,
1992). Fungi are grouped in their own taxonomic kingdom, within the super-
group Opisthokonta of the taxon Eukaryota (Adl et al., 2005), in the light of their
unique features such as the structure of their cell walls, composed of glucans and
chitin (Adams, 2004), substances found in the cell wall of plants and arthropods,
respectively. As is the case for plants (kingdom Plantae), fungi are immobile and
growth is their only way of moving. Additionally, fungi and plants share growth
habitats and the fruiting bodies of some fungi resemble plant structures, which
explain why they were initially classified as part of the plant kingdom (Whittaker,
1969). In contrast to plants, fungi are heterotrophs and they are not able to fix
carbon from inorganic compounds implying that they need to obtain carbon from
their environment, similar to animals (kingdom Animalia). On the other hand,
fungal digestion differs significantly from animal digestion since the former takes
place outside the fungal body while the latter usually takes place inside the animal
body. Hence, even though the kingdom of fungi shares features with other king-
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doms, it also has unique characteristics that distinguish it clearly from the other
kingdoms.

Historically, there are two ways of classifying organisms, either according to their
morphological characteristics or their ability to reproduce with individuals of the
same species (biological species). These two classifications are not the best option
for fungi since most species reproduce through asexual reproduction and several
fungal species are unicellular whose morphological characteristics are not easy to
differentiate. Therefore, genetics are mostly used to classify fungi in phylogenetic
trees, thereby showing the evolutionary relations between different organisms.
These trees are constructed using DNA sequence analysis and they group the or-
ganisms sharing certain ancestors. For instance, the fungi kingdom is divided in
five so-called phyla (sing. phylum), referred to as basidiomycetes, ascomycetes,
zygomycetes, chytrids and glomeromycota. Table 2.1 shows the different phyla of
the concerned kingdom, together with their main characteristics and some of the
species included.

Table 2.1: Key characteristics and most representative species of each of the four fungal phyla.
(Sources:Webster and Weber (2007); Blackwell (2011)).

Phylum Key characteristics Typical examples
Number
of species

Basidiomycota

Reproduce mainly
sexually via the formation
of specialized club-shaped
end cells called basidia

Mushrooms, puffballs,
boletes and rusts 31,515

Ascomycota

Form non-motile spores in a
microscopic sexual structure
called ascus as part of sexual
reprodution

Yeasts, truffels
Fusarium and morels 64,163

Zygomycota
Reproduce mainly asexually
and lack septa

Black bread mold
(Rhizopus stolonifer) 1,065

Chytridiomycota
Predominately aquatic
and produce zoospores Allomyces 1,500

Glomeromycota
Form arburscular
mycorrhizae with plants Arbuscular mycorrhizal fungi 169

Fungi can be typified according to their cellular structure as unicellular fungi or
yeasts and filamentous fungi, also known as moulds (Wendland, 2001). The former
consist of a single cell that grows new cells by asexual and/or sexual reproduction.
The most common form of asexual reproduction in yeasts is by budding. In this
case, a new organism arises as an outgrowth of the mother cell, as such resulting in
a smaller genetic clone of the mother cell (Balasubramanian et al., 2004). Asexual
reproduction of yeast can also occur by fission, where two identical daughter cells
originate from the mother cell’s division. Under stress, yeasts are able to produce
haploid spores able to fuse with other spores, as such creating diploid cells able to
survive even under stress conditions (Wagstaff et al., 1982).
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Filamentous fungi are multicellular organisms formed by thread-like structures re-
ferred to as hyphae (sing. hypha). The hyphae of a filamentous fungus form a
network referred to as mycelium (plur. mycelia) or fungal colony. A fungal hypha
consists of one or more cells surrounded by a thin tubular cellular wall. All the
cells in the hypha are connected allowing for the redistribution of nutrients, water
and organelles within the whole fungus. The hyphae of some fungal species are
separated in different compartments by cross-walls (Barnett and Hunter, 1972),
referred to as septa (sing. septum). These septa have pores allowing for the com-
munication between adjacent compartments of neighbouring hyphae. Other fun-
gal species are mainly composed of aseptate hyphae and have septa only at the
bases of reproductive structures. The structure and functions of the hyphae will
be further discussed in Section 2.4.

A last kind of fungi is referred to as dimorphic since it is able to exist both as
hyphae and single cells. They are able to change their morphology depending
on the environmental conditions. For example, some plant, human and animal
pathogens grow as hyphae outside their hosts and take a yeast form once inside
the host (Gauthier, 2015).

Different morphological characteristics can be observed across the fungal species
comprising the fungi kingdom. Even simple unicellular fungi show different colours,
shapes and sizes (Agarwal et al., 2011). The morphological characteristics among
the filamentous fungi also differ substantially. Even though the tubular structure is
common to all filamentous fungi, the shape and thickness of the cells composing
the hyphae can differ significantly (Alexopoulos et al., 1996). In addition, the mor-
phology of the asexual spores produced by fungi and the pigmentation of the hy-
phae also varies among species. From a mesoscopic point of view, a fungus can be
characterized in terms of the morphology of its colony. Growing filamentous fungi
produce different shapes as the result of the extension and branching behaviour
of their hyphae, ranging from really condense circular colonies to sparse irregu-
lar mycelia. One of the most common ways to identify fungi from a macroscopic
point of view is by means of their fruiting bodies. The fruiting bodies of fungi, also
referred to as sporocarps, formed by the more evolved groups (ascomycetes and
basidiomycetes) are used to produce and store the spores needed for sexual re-
production (Alexopoulos et al., 1996). The shape and size of fruiting bodies differ
widely between different fungal species (see Figure 2.3). The best known fungal
fruiting body is the agaric, a mushroom-like structure characteristic of most edible
mushrooms. There are sporocarps resembling corals, cups or flasks (Alexopoulos
et al., 1996) (see Figure 2.3 for some examples of fungal fruiting bodies).
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(a) Entoloma hochstetteri

(b) Clathrus ruber (c) Mycena chlorophos

(d) Hydnellum peckii (e) Hericium erinaceus

Figure 2.3: Different fungal fruiting bodies. (From Creative Commons)

2.4 Fungal growth

We will focus on filamentous fungi since most fungi belong to this group Gadd
et al. (2007). The most remarkable characteristic of filamentous fungi is their
growth. These fungi are able to gain biomass only by extending existing hyphae.
Moreover, filamentous fungi are able to create new hyphae by branching. The
processes involved in both the generation of new hyphae and the extension of
existing hyphae have been studied at different scales. Growth only occurs under
certain environmental and nutritional conditions which differ among fungal species
making the study of fungal growth even more challenging.

2.4.1 The life cycle of fungi

The fungal life cycle is divided in different phases. In the first phase, fungi take the
form of spores. Spores are haploid structures that are dispersed in the environ-
ment by mature fungi for sexual or asexual reproduction. They are usually able to
survive in unfavourable conditions and they develop into a new mycelium under
favourable environmental conditions (Ayerst, 1969). The transition between spore
and mycelium is called germination and during this stage the fungal spore loses
its spore-specific characteristics and generates new hyphae (see Figure 2.4).
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Figure 2.4: Summary of the life cycle of an ascomycete.

The hyphae developed from the spores are of a specific mating strain and are able
to form a mycelium, referred to as primary mycelium or haploid mycelium (Web-
ster and Weber, 2007) (Figure 2.4). The primary mycelium is able to grow on
independently and to produce new individuals either by fragmentation of hyphae
or by generating new asexual spores, referred to as conidia.

When different mating strain mycelia meet, first their hyphae fuse in a process
referred to as plasmogamy, resulting in a combined mycelium (Figure 2.4). This
new mycelium is composed of cells with two haploid nuclei and is referred to as
secondary mycelium or dikariotic mycelium (Webster and Weber, 2007). The sec-
ondary mycelium of usually grows in soil and in some fungal species it is able
to form compact masses just below the soil surface. These compact masses of
hyphae are known as mushroom primordia and are able to develop into fruiting
bodies (also known as mushrooms or sporocarps). The nuclei of certain cells of
the secondary mycelium can fuse in a process referred to as karyogamy as such
resulting in diploid cells able to produce sexual spores via meiosis. These spores
are usually stored in the fruiting bodies and can be released in the environment,
ultimately giving rise to new fungi as such closing the cycle.
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2.4.2 A closer look into the hypha

A hypha is composed of one or more cells organized in a thread-like structure with
connected protoplasm surrounded by a thin tubular wall. Hyphae are usually com-
posed of different types of cells that can be classified in terms of their morphology
and function (Bistis et al., 2003; Riquelme et al., 2011). There are hyphal cells
whose primary function is the growth of the mycelium, for instance leading hy-
phae situated at the periphery of the colony. Leading hyphae are very active and
are able to grow and generate new hyphae by branching (Bistis et al., 2003). Other
hyphal cells, referred to as fusion hyphae, are specialized in making new connec-
tions within the mycelium. These cells create bridges between different parts of
the mycelium improving the connectivity of the hyphal network (Bistis et al., 2003).
Hyphae involved in the sexual reproduction of fungi are able to sense and react
to each other. For instance, trichogyne are hyphae exhibiting positive tropisms
towards cells of the other mating type (Bistis et al., 2003). Hyphae can also react
to their environment by growing towards or away from certain materials. An ex-
ample of this behaviour are aerial hyphae showing a negative tropism towards the
growth medium surface in order to disperse asexual spores more efficiently (Bistis
et al., 2003).

The fungal cell wall is common to all fungal cells and is responsible for the char-
acteristic shape of the hyphae (Alexopoulos et al., 1996). It is composed of chitin,
glucan and glycoproteins and protects the fungus from the environment by acting
as a filter controlling what enters and exits the cell protoplasm (Dijksterhuis, 2011).
The fungal wall is rigid enough to safely contain turgor pressure inside the hyphae
and to maintain the shape of the hyphae under environmental stress (Bowman
and Free, 2006). However, it is also a dynamic and malleable structure able to
change throughout the fungal cycle, as such allowing for hyphal branching, fusion
and extension (Bowman and Free, 2006). The mechanisms involved in the remod-
elling of the fungal wall in order to accommodate branch formation and extension
remain one of the most intriguing mysteries in mycology (Riquelme et al., 2011).

Inside a fungal cell, the same organelles present in most eukaryotic cells can be
found (see Figure 2.5). However, the distribution of these organelles in the case of
hyphae is stratified, i.e. the organelles are distributed along the whole hypha (Dijk-
sterhuis, 2011). A typical fungal hypha can be divided in different regions, each of
which contains several cells and different organelles (Roberson et al., 2010). Even
though not all organelles are present in each region of the hypha, they are able to
migrate within the hypha in order to cover the needs of a specific region. This mi-
gration of organelles and vesicles occurs along the cytoskeleton (Steinberg, 1998),
a dynamic structure composed of microtubules and actin microfilaments. The cy-
toskeleton supports the shape of the hypha and controls the cell movements. In
addition, the cytoskeleton has proven to be crucial for fungal cellular division and
the spatial regulation of organelles in growing tips (Riquelme et al., 2011). For
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instance, actin is abundantly present in growing hyphal tips and the inhibition of
the compounds of the cytoskeleton has a direct negative impact on the growth of
tips (Bartnicki-García, 2002).

Figure 2.5: Fungal cell and organelles. 1. Hyphal wall. 2. Septum. 3. Mitochondrion. 4. Vacuole. 5.
Ergosterol crystal. 6. Ribosome. 7. Nucleus. 8. Endoplasmic reticulum. 9. Lipid body. 10. Plasma

membrane. 11. Spitzenkorper. 12. Golgi apparatus. (From Creative Commons, original artist -
AHiggins12)

From all the organelles present in the protoplasm of a hypha, the most interest-
ing is the Spitzenkörper due to its important role in fungal growth and its unique
structure. The Spitzenkörper contains macrovesicules, microvesicules, ribosomes
and cytoskeletal components (Bartnicki-García, 2002). This structure is believed
to function as a vesicle supply centre regulating the delivery of fungal cell wall-
building vesicles to the apex, as such inducing growth. The Spitzenkörper is always
located at the tip of growing hyphae and its position inside the tip determines the
growth direction (Riquelme et al., 1998). Due to the importance of this structure
for both apical growth and branching, its role will be further discussed in the fol-
lowing sections.

2.4.3 Apical growth

Apical growth occurs at the tips of the hyphae, also known as apices, and results
in the elongation of existing hyphae. The tip of a hypha has a different structure
than the rest of the hypha since it contains mostly vesicles, assembled into the
Spitzenkörper, and its cell wall is weaker than elsewhere in the hypha (Harold,
1997). During apical growth, the vesicles containing the components needed for
tip extension are manufactured in different parts of the mycelium and then carried
through the microtubules to the tips (Riquelme et al., 2011). There, the vesicles
are transported to the Spitzenkörper that acts as a vesicle supply center deliv-
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ering the cell-wall building vesicles to the tip (Bartnicki-Garcia et al., 1995). At
the tip, the cell-wall is thin and structurally weak (Harold, 1997), so turgor pres-
sure exerted on the wall of the tip causes its deformation (Lew et al., 2004). This
deformation enables the insertion of new wall material in the existing wall, thus
resulting in the extension of the cell wall and the hypha (Wessels, 1986; Steinberg,
2007).

As the tip extends, the Spitzenkörper moves keeping its location at the end of the
tip. Its position within the hyphal tip is not fixed and determines the growth direc-
tion of the hypha (Bartnicki-García, 2002). For instance, a Spitzenkörper placed
at the axis of a growing tip makes the hypha extend straight ahead, whereas off-
centre displacement of the Spitzenkörper precedes a change in the growth direc-
tion of the hypha. Even though the trajectory of the Spitzenkörper mostly follows
the existing cell axis leading to straight growth (Riquelme et al., 1998), this trajec-
tory often shifts resulting in changes of the growth direction.

The Spitzenkörper has proven to be the main intracellular factor determining the
growth direction of a hypha but external factors such as light, chemicals or oxygen
also have an impact (Brand and Gow, 2009). Thus, the Spitzenkörper is reposi-
tioned in response to these external stimuli resulting in reorientation (Riquelme
et al., 2011), known as tropism. For instance, growing tips within the same fun-
gal colony are able to sense and avoid each other to maximize the colonization of
substrate (Brand and Gow, 2009). Chemotropisms, i.e tropisms towards chemical
substances can be observed when hyphal tips re-orient in response to pheromones
secreted by hyphae of the opposite mating type. Fungi are able to react to other
organisms such as certain plant pathogen fungi able to grow towards their hosts
in a plant-directed tropism (Brand and Gow, 2009).

The elongation of hyphae does not occur at a steady rate even under constant en-
vironmental conditions (Lopez-Franco et al., 1994). Apical growth is a pulsatile
phenomenon, i.e. periods of fast and slow growth alternate, for some species
ranging from 2.7 to 14 pulses/min (Bartnicki-García, 2002). The rate at which
a hypha elongates depends on its genetic characteristics and the environmental
conditions (Boddy, 1983). Extension rates vary significantly even within strains of
the same fungal species.

2.4.4 Branching

Fungi are able to generate new hyphae from existing ones in a process known
as branching. The result of branching is a new tip that is able to grow apically,
thus generating new fungal biomass. The formation of new branches results in
exponential biomass growth of the fungal colony, an increase of the surface area of
the colony and a better exploitation of the substrate in the environment (Riquelme
et al., 2011; Harris, 2008). In addition, the branching behaviour of fungi plays an
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important role in their interactions with other organisms (Akiyama et al., 2005)
and even among hyphae of the same colony (Hickey et al., 2002).

Two branching processes can be observed in most fungi, namely lateral and apical
branching (Harris, 2008). Both processes result in a new tip, but the mechanisms
differ significantly. Apical branching (also referred to as dichotomous branching)
occurs at the tip of the parental hypha and seems to be the result of an abnor-
mal accumulation of vesicles at the tip. Apical branching is often associated with
periods of rapid hyphal growth during which the supply of vesicles exceeds the
capacity to be incorporated into the existing tip, as such leading to the formation
of new tips (Harris, 2008). One of the main characteristics of apical branching is
the disappearance of the Spitzenkörper. During apical branching the Spitzenkör-
per disappears temporally, as such disturbing the growth and morphology of the
parental tip (Harris, 2008). In contrast, lateral branching occurs at sites distant
to the original hyphal tip. It has been hypothesized that the location of lateral
branches in the hypha away from the growing tip illustrates a phenomenon re-
ferred to as apical dominance (Webster and Weber, 2007). It is a well-known phe-
nomenon, also observed in plants and other organisms, where the growing tip
suppresses the development of lateral branches in its vicinity (Harris, 2008). An-
other difference with apical branching is that lateral branching is triggered by the
appearance of a new Spitzenkörper (Harris, 2008). Therefore, the production of
lateral branches does not impact the growth rate and morphology of the parental
hypha. New lateral branches can be formed at any position within the existing hy-
pha (Riquelme et al., 2011). Spontaneous polarization is the most accepted theory
explaining the emergence of new branch sites (Harris, 2008). It states that a new
branch is formed when the local level of polarity determinants on a site exceeds
a certain threshold. The local levels of polarity determinants fluctuate randomly
and, consequently, the location of new branches is also random.

Any new branch is formed in different consecutive steps (Riquelme et al., 2011).
Once a new branching site is selected, the components required for fungal ex-
tension need to be transferred to the branching site. This process is known as
recruitment, since the morphogenetic machinery (i.e. the components and vesi-
cles required for cell and cell wall expansion) is recruited from different places in
the hypha to the branching site. During the second step, referred to as polariza-
tion, the morphogenetic machinery functions in order to create the new branch.
The final step is the maturation of the new branch during which the new tip at-
tains its maximal extension rate. After maturation the new hypha is able to grow
apically as described in Section 2.4.3.

Even though branches can occur at any position, some external factors have
proven to influence their formation. For instance, environmental factors such as
light (Lauter et al., 1998), temperature (Watters and Griffiths, 2001) and substrate
distribution (Watters et al., 2000) have a direct effect on the branching behaviour
of fungi. Furthermore, branching is also induced by external organisms such as
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plants and algae. For instance, in mycorrhizal associations between fungi and
plant roots (see Figure 2.1(b)), root exudates are able to trigger profuse fungal
branching (Akiyama et al., 2005). Other hyphae can induce the formation of new
branches in order to promote the fusion of hyphae (see Section 2.4.5), as such
allowing for the communication between neighbouring hyphae. This can be ob-
served when a hyphal tip gets close to an existing hypha, where it induces the
formation of a new Spitzenkörper, as such triggering the formation of a new lateral
branch at the former (Glass et al., 2004).

2.4.5 Anastomosis

Fusion of hyphae has been observed in filamentous fungi. Hyphal fusion occurs
at different stages of the life cycle of fungi and serves different purposes (Alex-
opoulos et al., 1996). Connections between hyphae of the same fungus make the
mycelium more efficient, allowing for a better translocation of nutrients, water and
fungal organelles inside the fungus (Glass et al., 2004). In addition, hyphal fusion
between opposite mating hyphae is crucial for sexual reproduction (Coppin et al.,
1997). Unfortunately, the frequency, spatial and temporal distribution of fusions
are not yet well understood (Hickey et al., 2002). Anastomosis occurs in different
parts of the mycelium, but all fusions require at least one hyphal tip (Hickey et al.,
2002). Therefore, two types of anastomosis can be observed: tip-to-tip anastomo-
sis, where two hyphal tips fuse, and tip-to-side anastomosis, when a tip fuses with
a part of the hypha different than the tip (Hickey et al., 2002).

Both kinds of anastomosis occur in three different stages, namely, pre-contact,
post-contact and post-fusion (Glass et al., 2004). In tip-to-side anastomosis, the
tip approaching the hypha secretes a signal during the first stage of hyphal fusion.
This signal induces the formation of a new Spitzenkörper at the site of the up-
coming fusion and therefore the formation of a new lateral branch. Then, similar
to tip-to-tip anastomosis, the two tips grow towards each other until they make
contact, which is the starting point of the post-contact phase. During this phase,
the hyphal tip extension ceases (growth arrest) and the tips secrete an adhesive
substance in order to stick together. Once glued together, they start to dissolve
their fungal walls until the cytoplasm of both tips is in contact. In the last stage,
the two former tips combine their cytoplasm and their Spitzenkörpers disappear.
The result of this fusion is a hyphal cell connecting the two initial hyphae that is
no longer able to grow.

Within the same fungal colony, anastomosis occurs at the interior of the fungal
colony rather than the periphery (Glass et al., 2004). The reason for this is that
hyphae at the periphery of the colony avoid other hyphae, i.e. exhibit negative au-
totropism. In contrast, the hyphae at the interior show positive autotropism (Glass
et al., 2004).
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2.4.6 Fungal nutrition

Fungi are able to use almost any carbon source (Alexopoulos et al., 1996). How-
ever, the specific nutritional needs differ from species to species. For instance,
while some species are able to utilise anything that contains organic matter, other
species have restrictive nutritional needs and can only feed on very specific sub-
strates. Fungi are often classified according to their nutrition in three groups:
saprobes, parasites and mutualists (Alexopoulos et al., 1996). The former use
dead or decaying organic material, such as leaves, branches and animals. Para-
sitic fungi obtain their food by attacking living organisms. They damage their host
and can eventually cause its death. Finally, mutualistic fungi are able to obtain
food from living organisms without causing any damage to their hosts. In some
cases, the presence of fungi in animals and plants can even be advantageous for
the host, such as protection or additional sources of substrate. For instance, the
relationship between algae and fungi in lichens is an example of a mutualistic re-
lationship, where the fungi use the carbon obtained by the photosynthesis of the
algae, while the algae get protection and moisture from the fungi.

Fungi need extracellular sources of organic material, for their maintenance, growth
and reproduction (Alexopoulos et al., 1996). The nutrients have to be absorbed
through the fungal cell wall, so that only small particles are able to enter the fun-
gus. Since most nutrients are not able to pass through the fungal wall, the fungus
needs to break down the nutrients in the environment into soluble molecules that
can then be absorbed (Jennings, 1995). Hence, the fungal digestion occurs outside
the fungus.

Fungal digestion is carried out by enzymes released by the fungus into the en-
vironment. Since fungi have many different vacuoles, they are able to generate
enzymes targeting a wide range of substrates. For instance, most fungi are able
to produce all the enzymes needed for exploiting the substrates present in their
natural environments (Jennings, 1995). During fungal digestion, fungi decompose
simpler compounds first and then move to more complex compounds. The sim-
plest compounds present in the environment of most fungi are sugars. Glucose
is ready to use by all fungi and it can pass almost intact through the fungal wall.
Therefore, fungi target first glucose and once the glucose is depleted they release
enzymes able to degrade other molecules, such as cellulose or lignin. Cellulose is
the most common complex carbohydrate available in the environment and there-
fore many fungi specifically target its breakdown. It is broken down by special
enzymes known as cellulases. In natural ecosystems cellulose is often associated
with lignin, the second more common organic polymer in the environment (Dasht-
ban et al., 2010). Some fungi are able to degrade lignin, but this process is often
much slower and more complex than the degradation of cellulose (Jennings, 1995).
Furthermore, the degradation of lignin demands a lot of energy and therefore it
usually requires a co-substrate to provide the extra energy for lignin degradation.
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For these reasons, the degradation of lignin takes place only in the absence of
better nutrient sources. In addition to the above-mentioned compounds, almost
any molecule able to release energy on digestion can be completely or partially
degraded by one or more fungal species (Alexopoulos et al., 1996). However, the
breakdown of some molecules requires the action of additional microorganisms,
and their digestion rate may be much slower than in the case of cellulose, glucose
and lignin.

The products of fungal digestion are absorbed by the fungus in a process referred
to as uptake. Only small molecules are able to pass through the plasma membrane
and wall of the hyphae, so mainly simple sugars, amino acids and fatty acids can
be taken up following digestion (Jennings, 1995). These molecules are absorbed
in solution, so water is needed in the environment in order to enter the fungal
cell (Alexopoulos et al., 1996). Some nutrients are able to be absorbed faster
than others. Hence, the affinity of the uptake process depends on the type of
nutrient and the fungal species, and it is quantified using an affinity constant of the
fungus for a particular nutrient (Jennings, 1995). Consequently, the amount of a
particular nutrient taken up depends on its affinity constant and the environmental
concentration and saturation of the nutrient. The flux of a particular nutrient into
a fungus can be used to determine the competitive ability of the fungus for that
nutrient (Jennings, 1995).

One of the main characteristics of fungi is their ability to redistribute nutrients
within the mycelium. This redistribution mechanism or translocation allows so-
lutes and water to travel within the hyphae across long distances, as such covering
the specific needs of different parts of the mycelium. Translocation is particularly
important in habitats with an irregular spatial distribution of nutrients and miner-
als (Fricker et al., 2008). Due to translocation, fungi are also able to grow and
survive in oligotrophic and polluted habitats, by exploiting the resources available
in other parts of the mycelium (Boswell et al., 2002).

Translocation is a combination of different processes, such as mass flow, diffu-
sion, cytoplasmatic streaming and specific vesicular transport (Tlalka et al., 2007).
Translocation is usually divided in two distinct mechanisms; passive transloca-
tion and active translocation. While the former is usually characterized by dif-
fusion of substrate within the network, the latter is described as metabolically
driven (Boswell et al., 2002). In the case of active translocation the nutrients
travel mainly through the cytoskeleton, usually in the direction of the growing tips.
In contrast, diffusion usually follows the opposite direction and occurs as a con-
sequence of the concentration gradient within the fungus (Jennings, 1995). Long-
distance nutrient translocation is mainly driven by mass flow and shows a strong
pulsatile behaviour (Fricker et al., 2007). The mechanisms governing the mass
flow within the network are not yet well understood, but it has been hypothesized
that the flow of water entering and exiting the mycelium could be the main factor
steering the mass flow (Fricker et al., 2007).
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The speed and direction of translocation depend on different factors. For in-
stance, the position, size and quality of the available resources affect the flow
direction (Fricker et al., 2008). Translocation is a bidirectional process since nu-
trients can be redistributed in both directions within the mycelium (Tlalka et al.,
2007). For instance, when a fungal colony grows starting from a nutrient source,
the translocation of nutrients occurs towards the growing margin of the colony in
order to promote growth (Fricker et al., 2007). However, when the growing hyphae
reach additional resources, they can be redistributed in order to cover the local
needs of areas in the absence of nutrients (Fricker et al., 2007). In addition, the
structure of the mycelium also plays an important role in translocation since the
number of connections in the network, its length and the number of branches and
tips have a direct impact on the translocation strategy of the fungus (Fricker et al.,
2007).

2.4.7 Other factors affecting fungal growth

Aside from substrate, also other external factors influence the growth of fungi.
One of the main factors is moisture (Pasanen et al., 1992). Even though moisture
requirements vary considerably between different fungal species, the fungal wall
of all fungi is susceptible to desiccation (Alexopoulos et al., 1996). Water is needed
to dilute the solutes resulting from the digestion in order to pass them through the
fungal wall (Alexopoulos et al., 1996). Therefore, water needs to be present in a
fungus’ environment in order to sustain its growth. Moreover, the study conducted
in Ayerst (1969) to assess the effect of humidity on fungal growth, established the
optimal moisture content to be above 90% for all studied species.

The second most important external factor affecting the growth of fungi is tem-
perature. Temperature is crucial for the development of mycelia since each fungal
species is able to grow only in certain temperature ranges (Tommerup, 1983).
Wood rotting fungi grow only under temperatures between 5◦ and 40◦ and reach
optimum growth rates between 20◦ and 30◦ (Boddy, 1983). In contrast, other
species are able to grow only under very low temperatures or in environments
with temperatures up to 100◦C (Magan, 2007).

Most fungi are aerobes and need oxygen to survive (Webster and Weber, 2007).
It has been reported that hyphae sense and grow towards oxygen and therefore
oxygen also determines the overall shape of the mycelium (Brand and Gow, 2009).
Fungal growth is also influenced by the pH of the environment (Sundari and Adho-
leya, 2003) and, as in the case of temperature, the optimal range of pH depends
on the fungal species (Alexopoulos et al., 1996).

Finally, the last factor affecting fungal growth is light (Lauter et al., 1998). Even
though light is not required for fungal growth, it is often important for sexual and
asexual reproduction (Alexopoulos et al., 1996). Certain fungal species require a
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light source in order to produce asexual spores (Bayram et al., 2008), since light
is involved in the orientation of spore-bearing structures and spores are usually
discharged toward the light (Pöggeler et al., 2006).



3
3

Overview of mathematical
models in mycology for

fungal growth

3.1 Introduction

The recent increase of computing power and the decrease of computing cost have
advanced the field of mathematical modelling, resulting in more efficient and accu-
rate models. A mathematical model is a description of a part of reality using math-
ematical constructs. Mathematical models are widely used to complement studies
on biological phenomena. In contrast to lab experiments, simulations are non-
destructive, inexpensive and often faster than their experimental counterparts.
Therefore, mathematical models are the perfect tool to extend results obtained
in laboratories and to test hypotheses raised from experiments. For instance,
mathematical models have been employed to predict the spread of infectious
diseases in order to minimize their impact on society (Funk et al., 2010). Other
models are able to reproduce the dynamics of different populations of organisms



3

3 OVERVIEW OF MATHEMATICAL MODELS IN MYCOLOGY FOR FUNGAL
GROWTH 28

resulting in a better understanding of the factors driving these dynamics (Grimm,
1999). In contrast, some models focus on the dynamics of a single individual or
even on only one of its parts, such as those representing the growth of individual
plants (Prusinkiewicz, 2004) or the extension of their roots (Dupuy et al., 2010),
respectively.

Mathematical models in biology usually describe the evolution of biological pro-
cesses as a function of time and/or space. Space, time and the characteristics
of the modelled entity (state) can be represented in different ways, resulting in
different modelling paradigms. For instance, time is often discretized using time
steps of the same duration, while the discretization of space is done using grids
of equally sized cells. In the case of the state set, features such as population
size can be modelled in a continuous or a discrete way. For example, a system of
differential equations can be used to model the biomass of a community of plants.
In this case, time and space are continuous, as well as the state, which here is
the average biomass. Therefore, the average biomass can take any value and it is
known for every point in time and space. In contrast, a cellular automaton would
model the same phenomenon using discrete time steps and a grid of cells dividing
the space, where each cell can take one of a finite number of states, represent-
ing different biomass values. Hence, a cellular automaton is able to represent the
spatial spread of the community accurately but not the exact biomass value since
it models presence or absence rather than amount. In this way, models can be
classified according to whether space, time and state are discrete or continuous
(Table 3.1).

In addition to this classification, models can also be classified depending on their
space dimension, into one, two and three-dimensional models. Besides, most bi-
ological phenomena can be studied at different scales, resulting in macro-, meso-
and microscopic models. For instance, the growth of most organisms can be mod-
elled at population, individual or cellular level using macro-, meso- and microscopic
models, respectively.

The field of mycology has also benefited from mathematical models. Mathematical
models in this field focus on different features of fungi and their interactions with
their environment. The scope of these models is wide and their use manifold. They
can be used to study biological processes occurring in natural ecosystems or to op-
timize production processes involving fungi in industries, such as the dairy (Valík
et al., 1999) and pharmaceutical industry (Geng and Yuan, 2010), and the build-
ing (Hukka and Viitanen, 1999) and the agricultural sector (Jeger et al., 2008).

An example of a widely modelled fungal phenomenom occurring in natural ecosys-
tems is the symbiosis between roots and fungi, captured in several models (Schnepf
et al., 2008; Declerck et al., 2001). Some of them focus on the effect of the
mycelium on the uptake potential of its symbiotic partner. For instance, the model
presented in Schnepf et al. (2008) combines a fungal growth model with a model
for the phosphorus concentration in the soil surrounding the roots. By mimicking



3

3.1 INTRODUCTION 29

Table 3.1: Typification of spatio-temporal models based upon the structure, discrete (D) or continuous
(C), of the involved space-time region and the state space. (Adapted from: Berec (2002))

Time Space State Common label Constructs1

C C C PDE-based model PDEs
C D C Spatially implicit model ODEs
D C C Reaction-diffusion model IdEs
D D C Coupled-map lattice PdEs
C C D Spatial point model Set of rules
D C D Agent-based model Set of rules
C D D Interacting particle system Set of rules
D D D Cellular automata Set of rules

1 PDE: partial differential equation; IdE: integro-difference equa-
tion; ODE: ordinary differential equation; PdE: partial difference
equation

three different fungal growth patterns and two possible uptake strategies for the
depletion of phosphorus, this model leads to results similar to those obtained in
experiments, as such shedding some light on the possible processes leading to
phosphorus uptake by mycorrhizal fungi. Another related example can be found
in Declerck et al. (2001). In this paper, experimental data on the evolution of
spores of an arburscular mycorrhizal fungus over time is used to compare three
possible growth models representing sporulation dynamics, leading to the conclu-
sion that the sporulation of the studied fungal strains follows a sigmoidal pattern.

Mathematical models have also been used to study fermentation processes of
fungi, due to their importance for different industries. In dairy industry, different
models have been developed to determine the optimal conditions for the produc-
tion of cheese (Valík et al., 1999) and yoghurt (Gougouli et al., 2011). Despite their
simplicity, such models capture the effects of factors such as temperature, water
potential or pH, on fungal features including the growth rate and lag time. For
example, the fed-batch fermentation of Penicillium chrysogenum has been mod-
elled to improve its yield and productivity in the pharmaceutical industry (Geng
and Yuan, 2010). In Vázquez and Martin (1998) the use of peat in the fermentation
process of Phaffia rhodozyma is simulated in order to optimize the fermentation
time and biomass yield, and to study the affinity of the fungus for peat.

Different building materials are prone to the attack of fungi. For instance, mould
fungi are able to grow on the surface of several materials, as such affecting the
permeability and the aesthetical performance of the attacked material. For these
reasons, in Hukka and Viitanen (1999), the effects of temperature and relative
humidity on a healthy wood sample are modelled. Their model introduces the
concept of mould index, a numerical scale representing mould growth as the per-
centage of the sample that is covered by fungus. Other fungal species do not
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restrict their growth to the surface and can also grow inside different materials.
This often results in more severe damage and even the decomposition of the at-
tacked building material. Despite the importance of this problem in the building
sector, only few models, such as the one described in Fuhr et al. (2011), have
simulated the decay of building materials by fungi.

The spoilage of food has also been modelled at various scales and using different
modelling paradigms (Gibson and Hocking, 1997; Dantigny et al., 2005). These
models focus mainly on the presence and germination of spores by calculating the
probability of a product to become infected by fungi, and allow to determine the
effectiveness of specific food preservation methods.

Still, most of the established models are those representing the growth of fungi
due to their relevance for all processes involving fungi. Microscopic fungal growth
models study the processes driving growth at cellular level, i.e. representing small
hyphal regions. On the other hand, macroscopic models study the spread of entire
populations of fungi by relying on models similar to those mimicking the spread
of diseases. In addition, some macroscopic models are able to describe the col-
onization of substrates by fungi, and the genotypic evolution of different fungal
strains. Finally, mesoscopic models simulate the growth of a single colony. They
use information from microscopic studies without restricting growth to a single cell
or hyphal region. They are also able to represent large colonies and can be scaled
up to provide information similar to that obtained using macroscopic models. The
data extracted by current experimental techniques can be easily incorporated into
such models, thereby resulting in more realistic models (Falconer et al., 2010). For
these reasons, mesoscopic models are the most abundant ones. In the remain-
der of this chapter, the most relevant models for fungal growth will be reviewed,
according to the scale they operate at.

3.2 Macroscopic models for fungal growth

Macroscopic fungal growth models describe the evolution of fungal populations
over time and through space. While some of these models are able to represent
the spread of fungi in response to the available resources, most of them simulate
the spread of pathogen fungi (Davidson, 2007) given their impact on the agri-
cultural industry. An example of the former is given in Jeger et al. (2008) where a
model, relying on a system of ODEs, representing the colonization of a certain sub-
strate and the decomposition of carbon by the fungus Rhizoctonia solani is used
to identify the key factors driving fungal invasion.

Most macroscopic models aim at representing the dynamics of fungal pathogens
in crops or the efficiency of fungicides against fungal diseases (van den Bosch
and Gilligan, 2008). For instance, the stochastic model described in Milgroom



3

3.2 MACROSCOPIC MODELS FOR FUNGAL GROWTH 31

et al. (1990) simulates the evolution of a pathogen and its capacity to become
resistant to a certain fungicide. The results obtained using this model include
the probability that the fungicide resistance of the population reaches a certain
threshold and the final host population size by the end of an epidemic period. The
model described in Oliveira et al. (2004) also addresses the effects of fungicides,
but in contrast to the one of Milgroom et al. (1990), this model focuses on the
leaves of the host plant. This model is spatially implicit and relies on a system of
ODEs that represents the evolution of the populations of resistant and susceptible
plants. Instead of using a fixed growth rate, Oliveira et al. (2004) formulate a
growth rate that changes over time, thereby being able to represent the effects
of temperature on fungal growth. This model proved its worth for the agricultural
sector since it can be used to calculate the optimal time to apply a fungicide in
order to minimize crop loss.

Apart from studying the dynamics within a single crop field, macroscopic models
can be used to model the spread of fungi at larger scales. For instance, in Parnell
et al. (2006), a spatially implicit model is used to study the regional spread of a
pathogen fungus. The model is based on a system of ODEs representing the evolu-
tion of infected and non-infected fields over time. The former contain spores that
can be blown to healthy fields, thereby infecting them. The action of fungicides is
included by allowing parts of the fields to be treated against the pathogens during
the course of the simulation, resulting in resistant-infested and sensitive-infested
field fractions. Four parameters drive the spread of the pathogen, namely the frac-
tion of fields treated with fungicide, the effectiveness of the treatment, the cost of
resistance of the pathogen, and the capacity of the pathogen to infest other fields.

The model presented in Stacey et al. (2004) goes one step further since it is capa-
ble of representing the invasion and spread of rhizomania, a disease transmitted
by the soil borne fungus Polymyxa betae, affecting beetroot in farms throughout
the United Kingdom. The model includes two phases: expansion during which the
disease and the beetroot evolve mainly on a local scale (within the same field), and
dispersion, representing the movement of infectious material within and between
farms. The dynamics of each field is simulated by a system of ODEs representing:
the total population of roots (n), the susceptible population of roots (s) and the
new inoculum (M):
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dt
= r (1 − n) ,
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= r (1 − n) − λ(T)M s −ms,

dM

dt
= Qλ(T)M s,

(3.1)

where r, m, and Q represent the root growth rate, the inverse of the susceptible
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period for the roots, and the amplification of inoculum within infected root tissue,
respectively. λ(T) is the force of infection per unit inoculum initially present in
the vicinity of the plant M, depending on temperature T. The inoculum spreads
within a field as the result of cultivation. In addition, rhizomania travels from
infested fields to fields of the same and other farms due to the movement of
shared machinery. A farm shares machinery only with a certain number of farms,
represented by a contact network over which infested materials can be distributed.
The model was calibrated using historical data on the disease spread and then
used to predict the state of the epidemic in subsequent years, and to compare
the outcome of different control strategies. The results of such simulations can be
found in Figure 3.1.

(a) (b) (c)

Figure 3.1: Maps representing the predicted state of the epidemic in the year 2050 in different
scenarios: (a) containment implemented from the year 2000, (b) restriction of within-farm transmission
from the year 2000, (c) restriction of between-farm transmission to 10% of its standard level from the

year 2000. Darker shades indicate that a larger proportion of farms in a region are symptomatic.
Cross-hatching indicate regions where beet is not grown. (Source: Stacey et al. (2004))

The model presented in Cunniffe and Gilligan (2008) also represents the spread of
fungal infections, but in contrast to the models described by Parnell et al. (2006)
and Stacey et al. (2004), this model predicts the spread of the infection by scaling
up the growth dynamics of fungi. First, the evolution of the mycelium density
B(, t) is computed as:

∂B

∂t
= γN(t)∇2B + αN(t)B, (3.2)

where γN(t) and αN(t) represent the functional responses of the spread and
bulking-up to time-varying nutrient availability N(t). Then a system of ODEs is
used to track the total biomass evolution C(t) =

∫

∈Rn B(, t)d
n and the depletion

of substrate N(t):















dC

dt
= α N(t)C(t),

dN

dt
= −βαN(t)C(t) − γεN(t)C(t).

(3.3)
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where β and ε relate the rate of consumption of nutrients to the amount of bulking-
up and spatial spread by diffusion, respectively. This simulation of the growth of
the mycelium is similar to the one used in continuous mesoscopic models (see
Section 3.4). System of equations (3.3) is first solved and its analytical solution
is used in Eq. (3.2) to calculate B(, t). Finally, the evolution of the cumulative
probability pL(t) of infection over time of a target host, at a distance L from the
mycelium, is given by:

dpL

dt
= λe−μ t N(t)B(L, t) (1 − pL(t)) , (3.4)

where the initial rate of infection λ decays at rate μ as the host becomes pro-
gressively more resistant to infection. Therefore, this probability depends on the
fungal disease efficiency and the amount of fungal biomass. This model allows to
determine a pathozone, i.e. a map representing the probability of infection of a
host anywhere in space. Hence, this model succeeds in scaling up fungal growth
from the colony level to fungal infection dynamics at the population level.

Generally speaking, macroscopic models are a suitable option for studying and
combatting the spread of fungal diseases in crops. Unfortunately, their scale lim-
its their ability to represent fungal growth realistically. For instance, it has been
proven that the morphology of the early mycelium has a direct impact on later
growth phases, but macroscopic models are not able to account for this (Black-
ledge and Barry, 2011). Besides, macroscopic quantities such as the number of
infected hosts or the fraction of infected crops do not provide information on the
total fungal biomass yield or the structure and properties of the mycelium, so they
cannot capture fungal growth explicitly.

3.3 Microscopic fungal growth models

Microscopic fungal growth models describe growth within a single fungal cell or a
small hyphal region. They have been widely used to validate growth hypotheses
derived from experimental observations. Several microscopic models investigate
the role of separate hyphal components, such as the cytoskeleton or the cell wall,
on the overall growth. Similarly, other growth-related processes such as the turgor
pressure and the effect of external factors have been studied through the use of
such models. In the remainder of this section we will discuss some of the most
relevant microscopic models.

Two main fungal growth theories at cellular level have been studied using micro-
scopic models. The first one considers the extension of cells as the result of the
turgor pressure inside the cell and the elastic properties of the cell wall (Wessels,
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1986; Money, 1997; Steinberg, 2007). Ortega (1985) describes a model represent-
ing tip extension as the result of the aforementioned processes, based on an early
model for plant cell elongation by Lockhart (1965). The latter model consists of
a single ODE representing the cell elongation as the result of turgor pressure and
the plastic cell wall extension, i.e. the irreversible wall extension:

dV

V dt
=  (P − Pc) , (3.5)

where V is the volume of the cell,  is the extensibility of the cell wall, and P and Pc
represent the turgor pressure and the critical turgor pressure, respectively. Ortega
(1985) extended the Lockhart equation (1965)to include elastic stretching of the
cell wall, as such resulting in a simple, yet realistic, extended model of the exten-
sion of cells. Using a similar set of assumptions, the model proposed in Goriely
and Tabor (2003) represents a single hyphal tip as a three-dimensional membrane
using a system of PDEs. The membrane is composed of two materials, one able
to stretch, placed at the apical dome, and a rigid material, resulting from the age-
ing of old wall material (also referred to as lysis). The membrane is filled with a
viscous fluid under pressure that stresses the elastic material of the membrane,
resulting in the expansion of the tip. The composition of the membrane is con-
stantly reparametrized in order to keep elastic material at the apical dome which
can then stretch further (see Figure 3.2(a)). By changing the reparametrization
process at the membrane, this model is able to replicate different hyphal shapes
observed in vivo, including those resulting from apical swelling (Figure 3.2(b)) and
beading (Figure 3.2(c)).

(a) Growth sequence

(b) Apical swelling (c) Beading

Figure 3.2: Three-dimensional hyphal shapes simulated using the model proposed by Goriely and Tabor
(2003): (a) growth sequence obtained from an initial spherical shape, (b) apical swelling and (c) beading

obtained as the result of turgor preassure variations. (Source: Goriely and Tabor (2003))
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A second growth theory relies on the concept of the vesicle supply center (VSC),
introduced by Bartnicki-Garcia et al. (1989) (see Section 2.4.3) to simulate fungal
tip growth. This theory states that the Spitzenkörper (see Section 2.4.2), placed at
the tip of growing hyphae, acts as a VSC delivering wall-building vesicles to the tip
wall. In order to test their hypothesis, Bartnicki-Garcia et al. (1989) constructed
a mathematical model representing the VSC. This model simulates a single fungal
cell evolving on a two-dimensional square grid. The VSC delivers vesicles to the
cell wall, in all possible directions and as they impact the cell wall they are immedi-
ately added to it, as such increasing the cell surface. The VSC can either stay at a
fixed location or move along a straight line. While the former results in an expand-
ing circle, the latter generates a tubular shape (see Figure 3.3). The combination
of both types of growth allows the replication of different parts of the fungus such
as the sporangium, a sexual structure characteristic of some fungi, and growth
processes such as fungal germination. Furthermore, Bartnicki-Garcia et al. (1989)
provide evidence for the hypothesis about the role of the Spitzenkörper on the tip
formation.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.3: In silico spherical (a-d) and hyphal morphogenesis (e-h) obtained using the VSC model of
Bartnicki-Garcia et al. (1989): (a-d) spherical growth simulated by random discharge of vesicles from a

fixed VSC, (e-f) emergence of germ tube obtained by displacing the VSC toward the periphery, (f-h)
elongation of the hyphal tube as the result of the continuous advance of the VSC. Each color band shows

the growth obtained from the release of 8000 new vesicles. (Source: Bartnicki-Garcia et al. (1989))
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A three-dimensional version of the VSC was modelled in Gierz and Bartnicki-Garcia
(2001). This model relies on the same assumptions as its two-dimensional prede-
cessor. The advance to three dimensions requires the imposition of a pattern of
expansion on the cell wall. The three-dimensional derivation led to an indetermi-
nation whose solution required defining a priori the pattern of expansion of the cell
wall, i.e. the overall spatial movement of the wall as new wall materials displace
the existing wall. Consequently, three possible expansion patterns were studied,
namely orthogonal, isometric and rotational (see Figures 3.4(b) and 3.4(c)). Or-
thogonal growth forces the new wall material to grow perpendicular to the existing
wall surface. In the isometric expansion pattern, a new wall is forced to displace an
existing wall evenly in all directions. The rotational pattern is obtained by impos-
ing a fixed shape throughout the growth of the tip. The results obtained from the
different expansion patterns suggest that in vivo hyphal growth falls in the cate-
gory of the orthogonal expansion growth. The orthogonal growth pattern promotes
growth at the very end of the tip which could be the result of the turgor pressure
inside the cell, as such aligning the results of Gierz and Bartnicki-Garcia (2001)
with other studies pointing to turgor pressure as driving fungal extension (Lock-
hart, 1965; Ortega, 1985; Goriely and Tabor, 2003).

The three-dimensional VSC model is further extended in Tindemans et al. (2006).
Tindemans et al. (2006) claim that some of the assumptions made in the original
VSC model are unrealistic. For instance, the isotropic behaviour of the VSC, sup-
plying the same number of vesicles in all directions, would imply a ballistic vesicle
motion contrary to experimental observations of in vivo hyphae. In addition, in the
original VSC model, vesicles fuse immediately with the cell wall which seems to
contradict in vivo observations. In response, Tindemans et al. (2006) developed
the diffusive VSC (DVSC) model. Now, the vesicles diffuse freely in the cytoplasm
of the cell after leaving the VSC (see Figure 3.4(a)). The DVSC model also includes
a constant rate for vesicle fusion with the cell wall, referred to as the exocytosis
constant. The tip shapes obtained with this new model are blunter when compared
to those obtained using the original VSC model. In addition, the action of the ex-
ocytosis constant results in tips located closer to the VSC, compared to the VSC
model where tips grow farther from the VSC. Therefore, the inclusion of these two
new features results in a more realistic model still able to represent the essential
features of tip growth.

In Eggen et al. (2011), the effects of turgor pressure and cell wall elongation are
coupled with the VSC, as such combining both growth theories. The resulting mo-
del simulates the effects of cell wall ageing on tip growth in three dimensions. In
this model, each part of the cell wall expands independently according to an ex-
pansion propensity that ultimately depends on its age. The expansion propensity
extends the two cell-wall components, elastic and rigid, introduced in Lockhart
(1965) and Goriely and Tabor (2003). Wall material becomes older over time but it
can rejuvenate when it is in contact with new wall-building materials. This material
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(a) Schematic representation of the VSC

(b) Two-dimensional expansion patterns (c) Three-dimensional expansion patterns

Figure 3.4: Visual description of the theories used to develop three-dimensional VSC models: (a)
schematic representation of the VSC and comparison of the ballistic and diffusive VSC models, (b) point
trajectories and hyphal displacement for the isometric, orthogonal and rotational extension patterns in

two dimensions (from top to bottom) and (c) growing hyphae obtained using these patterns of expansion.
(Sources: (a) Tindemans et al. (2006) and (b-c) Gierz and Bartnicki-Garcia (2001))

is supplied to the cell wall in two different ways: using a simple geometrical model
based on the curvature of the cell wall (more material is supplied to more strongly
curved areas), and using a simplified version of the VSC model (more material is
delivered to the surroundings of the VSC). Hence, still mimicking cell extension as
the result of the vesicles supplied to the cell wall (Bartnicki-Garcia et al., 1989)
instead of being just the result of turgor pressure. The results of this model show
that by using this combined approach it is possible to obtain a wider variety of
tip shapes than those obtained using other three-dimensional models (Gierz and
Bartnicki-Garcia, 2001; Goriely and Tabor, 2003; Tindemans et al., 2006) (see Fig-
ure 3.5), as such demonstrating that the combination of both growth theories is
not only possible but also more realistic.
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Figure 3.5: Shapes obtained using the simple geometrical model proposed in Eggen et al. (2011) for
different parameter combinations. (Source: Eggen et al. (2011))

A very different theoretical approach is presented in Denet (1996). In this model,
the elongation of a single cell is simulated in response to a morphogen diffusing in
the environment. For this purpose, a system of PDEs is employed and its numerical
solutions lead to cylindrical shapes similar to the ones observed in fungal hyphae
and cells such as neurons, as such suggesting that external factors also play a role
in the fungal cell elongation.

Processes other than growth can also be mathematized using microscopic mod-
els. For instance, the transport of wall-building vesicles is modelled in Regalado
and Sleeman (1999). It is known that the vesicles required for fungal growth are
produced in different parts of the hyphae and then transported to the fungal tip
along the cytoskeleton (see Sections 2.4.2 and 2.4.3). Therefore, Regalado and
Sleeman (1999) model the cytoskeleton as a viscoelastic fluid responsible for the
transport of wall-building vesicles. The cytoskeleton is represented as an elastic
body whose deformation results in advective forces affecting the position of sur-
rounding vesicles. A conservation equation represents the viscoelastic forces in
the cytoskeleton:

m
∂2u

∂t2
= 0 = ∇
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, (3.6)

where m is the cytoskeleton mass contained in a unit volume and u is the dis-
placement vector of the cytoskeleton. η and ξ are the shear and bulk viscosity,
respectively. E is the stiffness and  measures how a strip of cytoskeleton com-
presses in one direction when it is stretched by a unit length in the perpendicular
direction. ε̃ is the strain tensor, θ is the dilation and ̃ is the unit tensor. ζ measures
the intensity of the elastic deformation resulting from the interaction between the
vesicles and the cytoskeleton. Finally, c represents the vesicles density which
evolution is simulated using the following PDE:
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ct = ΔD(ε̃) c − D2 ∇vc. (3.7)

Here, D is the diffusivity of the vesicles and v = ∂u(r,t)
∂t is the advective velocity. The

number of vesicles displaced by the adjective forces is proportional to the vesicle
density with proportionality constant D2. The simulations with this model are able
to replicate well-known hyphal phenomena such as aggregation (see Figure 3.6(a))
and the collapse of vesicles at the tips. Moreover, some of the studied scenarios
result in the formation of two vesicles aggregation peaks (see Figure 3.6(b)), which
confirms hypotheses on the formation of new apical branches after the loss of the
Spitzenkörper (Harris, 2008).

(a) Single vesicle aggregation peak (b) Two vesicle aggregation peaks

Figure 3.6: Stationary solutions obtained for the conservation equation introduced by Regalado and
Sleeman (1999) representing the density of vesicles in two dimensions. (Source: Regalado and Sleeman

(1999))

Finally, it is worth mentioning that microscopic models can also be employed to
mimic fungal structures other than growing tips. For instance, a model represent-
ing the infection of rice by the fungus Magnaporthe grisea is introduced in Tongen
et al. (2006). This fungus develops a characteristic structure that sticks to the rice
leaves, the appressorium, in which an enormous pressure leads to a penetration
peg through the rice cell walls, thereby infecting the rice plant. This model is able
to reproduce some of the mechanical principles observed in the appressorium,
which is represented as an elastic shell subject to turgor pressure.

Different microscopic models are capable of representing fungal cell extension
mainly at the growing tip. These models are useful for the study of the role of mi-
croscopic processes driving the extension of tips, but are not able to capture the
complexity of apical growth even at the hyphal level. For instance, the shape of
the entire mycelium, the fungus’ environment and the amount of substrate within
the mycelium are key factors affecting fungal growth that can not be represented
at the microscopic level. In addition, most microscopic models focus only on apical
growth, as such not accounting for other important growth processes, like branch-
ing and anastomosis. Therefore, the scope of microscopic models is limited and
they cannot be scaled up to represent the growth dynamics of even individual
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fungal colonies.

3.4 Mesoscopic models of fungal growth

Growth at the level of the fungal colony has been studied using many mesoscopic
growth models. Mesoscopic models study the evolution of the mycelium and the
growth and interaction of all the hyphae composing the network. The features
of fungal colonies at the mesoscopic scale can be captured with most imaging
devices resulting in a significant amount of data that can be used to reinforce,
calibrate and validate mesoscopic models. In addition, most mesoscopic models
simulate growth as the result of several microscopic fungal processes, so they
combine the knowledge obtained from different microscopic models. Furthermore,
the morphology of the mycelium has an important role in macroscopic phenomena
(e.g. infections (Stacey et al., 2001)), which can only be studied at the mesoscopic
scale.

Two types of mesoscopic models can be distinguished. A first group of modellers
envisions the fungal colony as a continuum, mimicking average features of the
colony and its biomass evolution, while a second makes use of spatially explicit
models. In this section we will summarize the most relevant mesoscopic models.

3.4.1 The fungus as a continuum

The foundation of continuous fungal growth models was established by Edelstein
(1982). Her model combines apical growth, branching and hyphal lysis. Hence, the
gain of biomass takes place only at the tips of the hyphae, where the tips diffuse
and leave a trail of biomass. The fungus can generate new tips by lateral and/or
apical branching, whereas the number of tips decreases due to tip-to-tip anasto-
mosis, tip-to-hypha anastomosis and natural tip death. In addition, the hyphal
biomass decreases as the result of hyphal lysis following from hyphal autolysis
(natural hyphal death) and death as the result of an overcrowded environment.
These processes are coupled in a system of two ODEs:















∂p

∂t
= n − d,

∂n

∂t
= −

∂n

∂
+ σ.

(3.8)

where the first equation reflects the evolution of the hyphal density p(, t), in units
of filament length per unit area, as the result of the tip extension with rate , and
the death of hyphae with rate d. The second equation represents the tip density



3

3.4 MESOSCOPIC MODELS OF FUNGAL GROWTH 41

n(, t) (number per unit area) evolving as the result of tip diffusion and branching,
formalized through the function σ(n, p). By using different branching functions the
model allows the replication of several fungal growth patterns resembling those
observed in vivo. Yet, this model does not account for the interactions of the
colony with the environment and the growth of the colony is steered by constant
growth rates instead of the underlying biological processes.

The model formulated in Davidson et al. (1997) takes a completely different ap-
proach, modelling the spatial spread of the fungal colony in response to the nu-
trient concentration in the environment. For this purpose, Davidson et al. (1997)
constructed a reaction-diffusion model representing the interaction between an
activator (, t) and a generic substrate placed in the environment s(, t). The
activator is responsible for the conversion of substrate into energy, and subse-
quently into biomass, and decays at a constant rate μ. The activator also diffuses
(D) and its production is autocatalytic, depends on the substrate and is computed
using the constant conversion rate c1. Substrate is replenished at a constant rate
computed from the initial substrate s0 and a constant g. It diffuses through the
environment with diffusion constant Ds and is converted into activator based on a
conversion constant c2. All these processes are coupled in the following system of
PDEs:







t = D Δ + c1 2 s − μ,

st = Ds Δs − c2 2 s + s0 − gs,
(3.9)

where t =
∂(,t)
∂t and st =

∂s(,t)
∂t , represent the evolution of activator and sub-

strate, respectively. Different parameter combinations lead to steady state solu-
tions of the reaction-diffusion system, typically representing oscillatory patterns.
These growth patterns resemble those generated by fungi in nature (see Fig-
ure 3.7), assuming that the peaks of the activator correspond to peaks in fungal
biomass. Despite its simplicity, this model is able to demonstrate the importance
of the environment and the diffusion of substrate in the development of growth
colonies. However, the model assumes that peaks of activator correspond to peaks
in biomass, without a complete justification. In fact, Davidson et al. (1997) find
limitations in this model, such as the inability to sustain uniform growth without
reducing the capacity for substrate use in the interior.

Davidson (1998) further investigated the role of fungal nutrition on the overall
shape of the mycelium. The fungus is now represented as a continuum of biomass,
so the activator concentration is replaced by the fungal biomass density. In this
new model, the substrate is divided into two categories: external substrate, avail-
able in the environment, and internal substrate, contained within the fungus. The
external substrate can be taken up by the fungus, thereby becoming internal sub-
strate. Within the mycelium, the internal substrate is translocated to meet the
nutritional needs of the fungus and to produce new biomass. These assumptions
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(a) (b)

(c) (d)

Figure 3.7: Different activator concentration patterns obtained with the model described in Davidson
et al. (1997) for different parameter combinations. (Adapted from:Davidson et al. (1997))

are described by a system of three PDEs representing the evolution of the biomass
density m(, t), the internal substrate concentration s(, t) and the external sub-
strate concentration se(t):
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(3.10a)

(3.10b)

(3.10c)

In Eq. (3.10a), the transformation of internal substrate into biomass is expressed
using Michaelis-Menten kinetics with constant k1 and a conversion constant c1.
This equation also accounts for the biomass flux, which depends on the amount
of internal substrate and takes place from regions with high to low hyphal concen-
tration according to a diffusion constant Dm. The remaining two equations rep-
resent the change in internal and external substrate concentration, respectively.
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In Eq. (3.10b), diffusion occurs inside the mycelium and therefore depends on the
biomass density and diffusion constant D, while in Eq. (3.10c) the external sub-
strates diffuses free in the environment according to De. Eq. (3.10b) and (3.10c)
also account for the uptake of substrate, which is computed on the basis of the
biomass density, since hyphae are responsible of substrate uptake, and depends
on the amount of internal and external substrate with constants c4 and c5. In
addition, the uptake process has a cost in internal substrate proportional (with
constant c4) to the amount of substrate taken up. Finally, the transformation of
external substrate into internal substrate is calculated using Michaelis-Menten ki-
netics with constants c3, c6 and k2. By using this model in an environment where
the substrate concentration is spatially heterogeneous, Davidson (1998) are able
to predict readily observable aspects of the development of mycelia. Furthermore,
the numerical simulations replicate the growth patterns obtained in Olsson (1995),
thereby providing further grounds to the hypothesis that mycelial growth in het-
erogeneous environments depends on substrate uptake and nutrient redistribution
within the fungus.

The model proposed in Boswell et al. (2002) builds on the best of the Edelstein
(1982) and Davidson (1998) models. For instance, it simulates the density of hy-
phae and tips as the result of fungal growth biological processes as in Edelstein
(1982), while it also includes the effects of external and internal substrate as pro-
posed in Davidson (1998). In addition, the model introduces the concept of inac-
tive hyphae, an intermediate stage between fully active hyphae and dead hyphae.
Hence, hyphal degradation occurs in two subsequent stages. The model consists
of a system of PDEs representing the evolution of active hyphae m and inactive
hyphae m′, both expressed in cm cm−2, tips p expressed in number of tips per
cm−2, and internal substrate s and external substrate se (mol cm−2):
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In the first equation, the generation of new active biomass is modelled via apical
growth, which depends on the availability of internal substrate, the number of
tips and a constant . The active biomass becomes inactive at rate d and inactive
biomass dies at rate m′. Tip density is modelled as in Edelstein (1982). Tips diffuse
in order to generate new biomass and new tips are generated by branching. This
process depends linearly on the amount of internal substrate and the total active
biomass with rate b. In addition, tips can disappear due to anastomosis, which
depends on the number of tips, active biomass and an anastomosis constant ƒ .

To model substrate, Boswell et al. (2002) use a slightly different approach than
Davidson (1998). Instead of using Michaelis-Menten kinetics, they argue that the
amount of substrate taken up by the fungus depends linearly on the size of the
mycelium, the internal and the external substrate concentration, modelled using a
constant c3 determining the amount of substrate taken up and a constant c1 rep-
resenting the cost of this process. In addition, internal substrate is partly translo-
cated actively, and partly passively. While passive translocation is modelled as
normal diffusion inside the mycelium (using constant D), active translocation oc-
curs in the direction of higher tip density in order to deliver substrate to the more
active areas of the mycelium using the diffusion coefficient D. Active transloca-
tion has a cost in internal substrate (c4). Finally, as in Davidson (1998), external
substrate diffuses free in the environment with diffusion coefficient De. In view
of the results obtained by including passive and active translocation in the model,
Boswell et al. (2002) are able to differentiate between two kinds of tips: exploring
tips, at the periphery of the colony, and resource-exploiting tips. Hence, the mo-
del results suggest that passive translocation is used for exploration, while active
translocation supports resource exploitation, as such agreeing with observations.

In Boswell et al. (2003), the model presented in Boswell et al. (2002) is adapted
to represent fungal growth in two dimensions. This model succeeds in replicating
the experimental results obtained in Jacobs et al. (2002) representing two growth
scenarios: spatially homogeneous and heterogeneous substrate concentrations
(see Figure 3.8). So, this model represents the best approach so far for simulating
continuous fungal growth in heterogeneous environments.

The model constructed in Falconer et al. (2005) starts from the hypothesis of
biomass recycling by fungal mycelia. This hypothesis states that fungi are capable
of taking locally immobilized internal resources and remobilizing them, in order
to redistribute and reuse these resources. The mycelium is represented by two
types of biomass: immobile and mobile. The former is split between non-insulated
hyphae, representing active hyphae able to take up substrate, and insulated, in-
active hyphae hardly capable of taking up substrate. Non-insulated biomass in-
creases by diffusion and it leaves a trail of insulated biomass as it grows. Mobile
biomass is redistributed within the fungus by diffusion and it is produced as the
result of substrate uptake. In addition, mobile biomass becomes immobile and
vice versa according to constant rates. This approach results in a system of PDEs
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Figure 3.8: Total hyphal density (sum of active and inactive hyphal densities) in cm hyphae cm−2

computed from the model by Boswell et al. (2003) at (a) t = 1, (b) t = 2, (c) t = 3, (d) t = 4, (e) t = 5 and
(f) t =6 days. The model equations were solved using initial data representing a substrate tessellation of

19 agar droplets. (Source: Boswell et al. (2003))

representing the dynamics of the non-insulated and insulated immobile biomass,
mobile biomass and substrate.

This system of equations is solved across a two-dimensional grid representing a
constant substrate replenishment scenario. Falconer et al. (2005) conclude that
colony-scale features can be reproduced solely by fungal biomass recycling and
colony-scale transport. In Falconer et al. (2008) the above mentioned model is
extended in such a way that it includes a new PDE representing the evolution of
a growth inhibitor secreted by the in silico fungus. Due to this extension, Falconer
et al. (2008) are able to replicate the interactions between two fungal colonies over
time in both two and three dimensions (see Figure 3.9). The interactions replicated
include well-known phenomena such as coexistence and diffusion of different fun-
gal strains, and domination and engulfment of a fungal colony over another. In
addition, this model is used to predict the impact of different environments on
fungal competition processes, such as deadlock and intermingling.

Models representing the mycelium as a continuum can be used to gain insights
into the evolution of the fungal biomass over time and space. These models are
often based on systems of ODEs or PDEs and mostly represent growth processes
using reaction-diffusion equations. Their main advantage is that the underlying
equations are well known and widely used to simulate similar biological processes.
In addition, the results of these models are usually simpler than their explicit coun-
terparts and can often be adapted to different dimensions without having to tune
the equations. On the other hand, the equations used in mesoscopic continuous
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(a) Coexistence (b) Fusion of colonies

(c) Engulfment (d) Domination (e) Three-dimensional interaction of two fun-
gal colonies

Figure 3.9: Fungal colony interactions obtained using the model by Falconer et al. (2008) using different
parameter sets: (a) coexistence, (b) fusion of fungal colonies, (c) engulfment and (d) domination of a
colony over the other, (e) mycelial distributions of two fungal colonies interacting in three dimensions.

(Source: Falconer et al. (2008))

models are often difficult, if not impossible, to solve analytically, so one must turn
to numerical methods. Since numerical methods rely on discretizations of space
and/or time, using them to solve continuous models contradicts the principles of
this modelling approach (Toffoli, 1984).

Some of the processes commonly simulated by mesoscopic continuous models
strongly depend not only on the distribution of the fungal biomass, but also on the
shape of the mycelium. For example, the shape of the mycelium is crucial to the
translocation of nutrients occurring inside the fungal hyphae (Heaton et al., 2010).
Finally, continuous models rely on densities and averages that not represent the
shape of the fugal colony in full detail.

3.4.2 Spatially-explicit fungal growth models

Spatially explicit models represent the growth of fungal colonies by tracking the
interaction and evolution of all the hyphae in the colony. These models often rely
on a lattice to represent the growing hyphae and/or the growth environment as
discrete entities. Other spatially explicit models represent hyphae as growing and
interacting freely in two or three dimensions. These lattice-free models usually
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divide each hypha into hyphal segments of the same length, and are also referred
to in literature as vectorial models.

In Regalado et al. (1996) a model combining the principles from continuous and
explicit approaches is presented. In this model a system of ODEs represents the
evolution of a growth activator and an inhibitor diffusing in the two-dimensional
space. The interaction of these two factors results in new biomass. The model also
includes a source of substrate, which is converted into activator by the fungus,
as such contributing to the biomass generation. By solving the system of ODEs
over a two-dimensional square grid, Regalado et al. (1996) are able to explicitly
represent the morphology of the mycelium (see Figure 3.10(a)). The sites of the
grid that reach a certain biomass concentration are considered hyphae.

The fractal structure of the in silico mycelium is used to compare the results with
in vivo fungal growth behaviour. Even though the fractal dimension of the simu-
lated mycelium agrees with that observed for real world fungi, the square lattice
jeopardises any resemblance with in vivo fungi. The model introduced in López
and Jensen (2002) improves the mycelium representation by using a triangular
lattice. Each cell in this lattice is either empty or occupied by hyphae, and occu-
pied cells spread inhibitors by diffusion. At each time step, neighbouring cells of
an occupied cell can become occupied depending on the growth probability. The
latter is computed using the age of the neighbouring cells and the amount of in-
hibitor material in the cell. Despite its simplicity, this model is able to reproduce
the dense colonies developed by Aspergillus oryzae (see Figure 3.10(b)), as such
further demonstrating the possibilities of spatially explicit models.

The evolution of the mycelium is also studied in Boswell et al. (2007). In this mo-
del, the growth surface is meshed using hexagonal cells. The cells represent the
initial configuration of external substrate on top of which hyphal growth is simu-
lated. The hyphae are divided into hyphal segments of equal length connecting
the centres of neighbouring hexagonal cells. Accordingly, apical growth is sim-
ulated as the adhesion of one hyphal segment to an existing tip. New segments
grow predominantly along straight lines, but slight changes of the growth direction
occur by the use of a biased random walk. New tips can be generated by dichoto-
mous branching, resulting in the addition of two new segments. In order to account
for the inactivation of hyphae, the model distinguishes between active and inac-
tive hyphae. The former are able to translocate and uptake substrate but have a
maintenance cost, whereas the latter take part in the translocation and die slowly,
leaving space for new hyphae. Apart from the maintenance cost, growth processes
also consume internal substrate. The change of internal substrate concentration
in a cell is then the result of the uptake of external substrate, the consumption by
the hyphae present in the cell (in order to grow and survive) and the translocation
of internal substrate within the mycelium. Translocation is partly active, towards
the tips, and partly passive, normal diffusion between neighbouring cells like in
Boswell et al. (2002, 2003). By using this model, Boswell et al. (2007) simulate the
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(a) Square lattice

(b) Triangular lattice

(c) Hexagonal lattice

Figure 3.10: In silico fungal mycelia obtained using lattice-based models in two dimensions: (a) model
by Regalado et al. (1996), (b) by López and Jensen (2002) and (c) by Boswell et al. (2007). (Sources:

(a) Regalado et al. (1996), (b) López and Jensen (2002) and (c) Boswell et al. (2007))

evolution of the mycelium in a more precise way than with their continuous model
and succeed in evolving more realistic in silico fungal colonies than those obtained
with the models by Regalado et al. (1996) and López and Jensen (2002). However,
the restriction to two dimensions and the rigid structure imposed by the hexagonal
lattice still leads to unrealistic results (see Figure 3.10(c)), hence leaving room for
improvement. Therefore, this model is extended to represent three-dimensional
growth in Boswell (2008).

This three-dimensional model is based on the same processes and assumptions,
but uses a three-dimensional lattice based on layers of equally sized balls, named
the face-centred cubic lattice (FCC). The balls are arranged in such a way that each
ball has exactly twelve neighbours whose centres are located at the same distance
from the original ball, i.e. two times the radii of a ball. As in the two-dimensional
model, hyphae are represented by segments extending between the centres of
neighbouring balls. By using this approach, Boswell (2008) succeeds in simulating
growth in different environments (see Figure 3.11), and in complex soil structures.
Even though this model represents the best attempt so far representing fungal
growth using a lattice-based model, it is still inflexible due to the imposed lattice.
It cannot be adapted to replicate different growth strategies or fungal species.

In the models implemented by Fuhr et al. (2011, 2012), the available substrate
takes a central role, since it is used to construct an irregular lattice. Substrate
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(a) t = 0 d (b) t = 0.125 d

(c) t = 0.25 d (d) t = 0.375 d

Figure 3.11: Hyphal biomass in an environment with uniformly distributed substrate and volume
approximately 1 cm3 evolved using the model by Boswell (2008) at t= 0 (a), 0.125 (b), 0.25 (c) and

0.375 days (d). (Source: Boswell (2008))

is represented as a set of nodes, placed in the environment and hyphae are rep-
resented as edges connecting neighbouring substrate nodes (see Figure 3.12(a)).
Hence, the irregular lattice is constructed using the nodes representing the po-
sition of nutrients. At each time step, one hypha is able to grow, leading to the
colonization of a new node. This growth event has a cost in terms of substrate that
is subtracted from the node where the growth process started. In addition, a main-
tenance substrate cost is also subtracted from each colonized node. The direction
of hyphal growth depends on the distance and orientation of the node containing
the growing fungus to the reachable substrate nodes. Using this approach, Fuhr
et al. (2012) are able to simulate two-dimensional growth on agar (Fuhr et al.,
2012) (see Figure 3.12(b)) and inside a three-dimensional wood block (Fuhr et al.,
2011). In the latter case, the wood block is represented as a square lattice of
wood tracheids connected by pits full of nutrients represented by substrate nodes



3

3 OVERVIEW OF MATHEMATICAL MODELS IN MYCOLOGY FOR FUNGAL
GROWTH 50

(see Figure 3.12(c)). Therefore, fungal growth inside the wood block is restricted
to the path created between neighbouring pits. Despite the simplicity of some of
the model assumptions, the model constitutes a first attempt to simulate wood
degradation and fungal growth explicitly in three dimensions (see Figure 3.12(d)).
However, it is only able to describe general growth trends and not the detailed
hyphal growth that can be expected from spatially explicit models.

(a) Two-dimensional nutrient-based lattice
representing agar

(b) In silico mycelium on a Petri dish

(c) Three-dimensional lattice based on
wood structure

(d) In silico mycelium inside a wood block

Figure 3.12: Summary of irregular lattice-based modelling approaches for fungal growth in two and
three dimensions by Fuhr et al. (2011, 2012). (a) scheme showing the elements of the two-dimensional
lattice, (b) model results showing hyphal expansion after 0, 12 and 24 hours, (c) wood-based lattice and

(d) in silico mycelium in a wood block after 2.5 days. (Source: (a-b) Fuhr et al. (2012),(c-d) Fuhr et al.
(2011))

Established spatially explicit modelling approaches to study organisms like plants
have also been used to simulate the growth of fungal colonies. For instance, in Sod-
dell and Soddell (2005) a L-system, similar to those employed to model the growth
of plants, was developed in order to simulate fungal growth. Here, an initial string
(also known as an axiom) is rewritten at every discrete time step using a set of
rewriting rules. Each symbol of the string represents a real object and its charac-
teristics allow for its translation and consequent representation. In the case of the
Soddell and Soddell (2005) model, the branching, extension and change of direc-
tion of hyphae are represented using a set of 15 rules, some of which are stochas-
tic. In this way, the model imposes a growth path based on fixed rules. These
rules are based on parameters extracted from growth experiments of Geotrichum,
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a filamentous fungus. Despite its simplicity, this model is able to evolve fungal-
like networks and to account for the fractal nature of fungal growth. Unfortunately,
this model does not account for the effect of important processes such as fungal
nutrition or anastomosis, as such resulting in unrealistic simulation outcomes.

An early lattice-free model simulating the growth of a filamentous fungus in a
submerged culture was developed in Lejeune and Baron (1997). This model mim-
ics the dynamics of individual tips that are able to extend freely in the three-
dimensional space, while lateral branching is simulated as a stochastic process.
Oxygen in the environment is consumed by the fungus only for growth, as such
affecting the extension rate of the tips. Finally, the porosity of the environment is
included in the model as a growth constraint. All together, this model amounts to
a three-dimensional random walk of tips. It is able to describe the formation of a
fungal colony from one or more fungal spores in three dimensions. Although this
model neglects some crucial factors affecting fungal growth, especially those con-
cerning fungal nutrition, it demonstrates the advantages of resorting to a lattice-
free approach.

A more elaborated three-dimensional lattice-free model was introduced in Meš-
kauskas et al. (2004b). This model simulates the growth at the tips using the
so-called field concept. The field concept states that each point of the mycelium
generates different fields as the result of autotropisms (such as tip avoidance)
and tropisms generated by external factors (such as gravity or toxic metals). The
tropisms affect the orientation of the growing tips that are attracted and repelled
by different forces. In addition, tips are able to branch. This process depends
mainly on branching parameters that can change during the course of the simu-
lation, but also on the hyphal density of the surroundings. This model is capable
of reproducing the most realistic growth patterns, according to the authors, who
highlight the need for statistical methods to compare in silico and in vivo fungal
colonies. By tuning the model parameters it is possible to obtain almost any imag-
inable fungal pattern including fungal fruiting bodies (see Figure 3.13). Although
the patterns obtained with this model are impressive, the model overlooks almost
all biological processes occurring within the mycelium, therefore simulating fungal
growth as the result of parameter tuning instead of biological processes.

In Carver and Boswell (2008), a lattice-free two-dimensional model based on the
biological processes driving fungal growth is constructed using the assumptions
of Boswell et al. (2007). In order to get rid of the lattice, this model fixes the hyphal
segment length and models the fungus as a collection of identical connected seg-
ments. Apical growth is simulated as the addition of new segments to existing tips.
The position of a new segment is computed by only considering the growth direc-
tion of the parent segment and a noise term. Branching is modelled as a stochastic
process and it results in the addition of two new segments These growth proces-
ses have a substrate cost. The substrate is constantly replenished at the centre
of the colony and reaches the fungal hyphae via diffusion between neighbouring
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(a) (b) (c)

(d) (e) (f)

Figure 3.13: Diverse fungal patterns obtained with the lattice-free model introduced in Meškauskas
et al. (2004b), including a fruiting body (f). (Source: Meškauskas et al. (2004b))

segments. Hence, this model does not include the external substrate, nor the
active translocation or inactivation of hyphae included in Boswell’s previous mod-
els (Boswell et al., 2007; Boswell, 2008). The simulations result in more realistic
hyphae than those obtained with lattice-based models. Even though this model
overlooks some crucial aspects of fungal development, especially the effects of
the environment on the mycelium development, it demonstrates the possibilities
of biologically-based lattice-free models.

A more advanced lattice-free model also based on the one of (Boswell, 2008) is pre-
sented in Hopkins and Boswell (2012). This model also represents the mycelium
as a collection of connected segments, extending by apical growth and branching.
Besides, it incorporates external substrate in the environment, which diffuses and
can be taken up by the fungus and transformed into internal substrate. Internal
substrate is translocated within the hyphal network by normal diffusion and ac-
tive translocation in the direction of the growing tips as in Boswell et al. (2002,
2003). In addition, internal substrate is used to create new segments, and de-
pending on the amount of internal substrate branching occurs or not. The growth
direction of new segments is chosen using a velocity jump model where the tip
velocity undergoes a biased circular random walk. A new feature of this model as
compared to Carver and Boswell (2008) is the inclusion of an inhibitor secreted
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by the fungus in order to represent hyphal avoidance. Therefore, the final growth
direction is computed in two steps: first a preliminary value is obtained from the
circular random walk, and then this value is corrected according to the inhibitor
concentration in its surroundings. With this model, Hopkins and Boswell (2012)
are able to simulate the effects that additional substrate has on the network shape
(see Figure 3.14). According to the authors, several tropisms can be represented
by changing the parameters of the random walk. This model is able to replicate
fungal growth and substrate uptake as a result of biological processes, as such
constituting one of the best approaches to date. Unfortunately, it restricts growth
to two-dimensional space, contrary to in vivo fungal growth.

(a) (b) (c)

Figure 3.14: In silico mycelia obtained by Hopkins and Boswell (2012) model after two days: (a) without
additional substrate sources, (b) with an additional substrate source placed at the top-right corner of the
mycelium and (c) with two equidistant additional substrate sources. Darker line segments denote higher
internal substrate concentrations and red circles denote supplementary resource sites. (Source: Hopkins

and Boswell (2012))

In conclusion, spatially-explicit mesoscopic fungal growth models represent the
best option to study fungal growth at colony level. These models lead to explicit
representations of mycelia with more detail and accuracy than continuous models.
Unfortunately, these models often rely on lattices that confine growth to unrealis-
tic shapes (Regalado et al., 1996; López and Jensen, 2002; Boswell et al., 2007).
Lattice-free models do not require the use of lattices, and are therefore able to
replicate realistic growth patterns. However, these models often neglect crucial
biological processes occurring in the mycelium (Meškauskas et al., 2004a; Leje-
une and Baron, 1997), as such resulting in incomplete models. Moreover, most
lattice-free models are constructed in only two dimensions even though growth
is a three-dimensional process (Carver and Boswell, 2008; Hopkins and Boswell,
2012). Even those lattice-free models accounting for most fungal processes occur-
ring within the mycelium are unable to reproduce the effects of external stimuli on
the overall growth of the fungi, therefore leaving significant room for improvement.



3 OVERVIEW OF MATHEMATICAL MODELS IN MYCOLOGY FOR FUNGAL
GROWTH 54



PART II
EXTRACTING DATA FROM

FUNGI





4

4
Unsupervised ridge detection

using second order
anisotropic Gaussian kernels

4.1 Introduction

Line detection is one of the most fundamental procedures of low-level image pro-
cessing. Ridges (bright lines on a dark background) and valleys (the opposite)
usually hold critical information for the analysis of images, especially for the ex-
traction of graph-like structures. Such treatment plays a prominent role in many
automated processes, such as photogrammetry and remote sensing (Tupin et al.,

This chapter has been published as: C. Lopez-Molina, G. Vidal-Diez de Ulzurrun, J.M.
Baetens, J. Van den Bulcke, B. De Baets (2015). Unsupervised ridge detection using second
order anisotropic Gaussian kernels. Signal Processing 116, 55-67.
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1998; Laptev et al., 2000). Line detection is also relevant for the analysis of biolog-
ical or biomedical structures, including vessels or bronchi profiling and measure-
ment (Staal et al., 2004; Sluimer et al., 2006). Although such applications demand
high-level information for accomplishing their goals, they usually rely on an initial
phase of line characterization. In the remainder of this work, we refer to line de-
tection as ridge detection, in order to align with the established nomenclature in
the literature. Nevertheless, the adaptation of any ridge detection algorithm to
valley detection is usually straightforward (see e.g. Cornelis et al. (2013)).

Together with edges and corners, ridges are the most studied low-level features
in literature. The analysis of these three features is often coupled (Prewitt, 1970;
Lindeberg, 1998). Also in this work we exploit the relationship between edges
and ridges. This connection can be seen in many different ways, the most ev-
ident one being that a ridge is composed, at a very small scale, of two locally
parallel step edges (Laptev et al., 2000; Paton, 1979; Chaudhuri et al., 1989).
From an analytical point of view, edges are local maxima of the first order partial
derivative of a signal, while ridges (respectively valleys) are local maxima (respec-
tively minima) of the second order derivative1. Both notions can be formulated
in similar terms through the local analysis of the Jacobian or Hessian matrices of
an image, leading to an evident relationship between both features (Lindeberg,
1998; Jacob and Unser, 2004). An exhaustive analysis of this relationship can be
found in Eberly et al. (1994); Haralick (1983) from a mathematical perspective,
and in López et al. (1999) from a topological perspective. From this fundamental
relationship, it seems clear that the strategies used for detecting edges and ridges
basically differ in the order of differentiation applied to the original signal. In this
work we elaborate on this relationship to produce a flexible ridge detector inspired
by well-known first order differentiation kernels.

The analysis of edges and lines is so similar that there is some controversy on
whether they are different concepts. This is partially due to the fact that no clear
definition has been agreed upon for edges, leading to ad hoc or ground-truth-based
characterizations (Lopez-Molina et al., 2013a). For example, Papari and Petkov as-
sumed that the edges in an image are the set of lines that human observers would

consent on to be the contours in that image (Papari and Petkov, 2011). Since some
humans actually mark up lines as edges, they conclude that every line in the im-

age should be regarded as a contour, although none of the lines is a boundary

between two regions of different colors or textures (Papari and Petkov, 2011). Also
relevant is the fact described by Canny that boundaries between polyhedral ob-
jects manifest themselves as lines (Canny, 1986), which is also demonstrated by
the hybrid edge profiles presented by Perona and Malik (Perona and Malik, 1990).
Similar observations have been reported for specific types of images, such as ul-
trasound scans (Czerwinski et al., 1999), in which edges between tissues mani-

1More detailed definitions of ridges can be found in the literature. We refer to (Lindeberg,
1998) or (Eberly et al., 1994) for deeper insights.
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fest themselves as peaks in brightness. Despite such controversy, we adhere to
the widely accepted assertions by Lindeberg (Lindeberg, 1998) on the character-
ization of edges and lines as maxima of the first and second partial derivative,
respectively.

Ridge detection methods often rely on the analysis of the first or second derivative
of the images, which is usually extracted by filtering the image with kernels (Haral-
ick, 1983; Vlachos and Dermatas, 2010). Other ridge detection techniques impose
certain conditions on the processing or the images, or even demand the interven-
tion of humans (Laptev et al., 2000). For example, path optimization or tracking
techniques call for either the semi-supervised introduction of the endpoints of the
segments, or the inclusion of a critical initial phase of endpoint selection (Benman-
sour and Cohen, 2011; Rouchdy and Cohen, 2013). Although some authors advo-
cate the need for human intervention (Laptev et al., 2000), we believe that this
induces a severe, and often undesired, limitation for applied researchers. Alterna-
tively, transformation-based methods (such as those using the Hough transforma-
tion) are not well conditioned to analyze complex scenes with intricate networks in
which ridges merge, break and branch. An example of this can be seen in the LSD
method by Grompone von Gioi et al. (Grompone von Gioi et al., 2008), in which
edges are detected as relevant line segments in gradient magnitude images using
the Hough transformation. Despite the visually impressive results, the detected
edges do not match the exact position of the silhouettes in the original images,
since the Hough transformation results in a simplification of their traces. In this
work we elaborate on the use of elongated kernels for the characterization of the
second partial derivative of an image. These kernels, created as a second partial
derivative of the Anisotropic Gaussian Kernels introduced by Shui and Zhang (Shui
and Zhang, 2012), are able to adapt to the local conditions of the ridges in terms
of width, roundness and orientation. Moreover, we introduce a multiscale proce-
dure that permits the fusion of the local results obtained with several kernels, so
that the ridges at each region of the image are characterized by the most suitable
kernels. Note that most authors of practical applications combine a phase of line
detection with a subsequent phase of problem-aware line discrimination, which
incorporates contextual knowledge. Such discrimination can be done in terms of
the length of the ridge segments, their width or any other contextual hint, and
involves very different classification techniques (see, e.g. Tupin et al. (1998); Staal
et al. (2004); Zana and Klein (1999)). In our case, we propose a context-unaware
method for line detection, which is further customized for its application to fungal
branch delineation for in vitro growth tracking. This customization is tested on a
new dataset containing 100 images of fungi with hand-made ground truth.

The remainder of this chapter is organized as follows. In Section 4.2, we review
the use of Isotropic Gaussian Kernels (IGKs) of different orders in the literature.
Section 4.3 covers the use of Anisotropic Gaussian Kernels (AGKs), which are fur-
ther applied to a multiscale ridge detection algorithm in Section 4.4. Section 4.5
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includes an experimental validation with a new dataset of in vitro fungal images.
Finally, Section 4.6 discusses some conclusions.

4.2 Gaussian kernels for low-level feature de-
tection

Gaussian kernels are one of the most employed tools for image processing, and
have proven useful for a number of different tasks. The reasons for using such
kernels range from their isotropy, steerability or decomposability properties (Free-
man and Adelson, 1991; Poli and Valli, 1997) to the special characteristics related
to their integration or differentiation. Additionally, the fast computation of their
multidimensional extensions was given as an argument for their use during the
early years of image processing (Canny, 1986). It is generally agreed upon that
Gaussian kernels are a very convenient option for the robust computation of both
the first and the second derivative of a discrete signal, and consequently for the
computation of its Jacobian and Hessian.

The study of Gaussian kernels can be subdivided according to their order of differ-
entiation. The zero-th order kernels (i.e. Gaussian kernels) are used for regulariza-
tion prior to signal processing. The reasons are diverse, and include their ability
to eliminate Gaussian noise (Canny, 1986) and the fact that they produce no new
artefacts (maxima or minima of the first derivative) in the image (Babaud et al.,
1986). They form the core of the most employed scale-space in the literature, the
Gaussian Scale-Space (Lindeberg, 1998; Witkin, 1983; Lopez-Molina et al., 2014),
and they have also been linked to other scale-spaces (Weickert, 1998). Another
use is, for example, the approximation of the Laplacian of a signal by a difference
of Gaussians (see Marr and Hildreth (1980)).

First Order Isotropic Gaussian kernels (FOIGKs) have been used extensively as well,
especially after the results obtained by Canny (Canny, 1986). In his paper, Canny
observed that the optimal kernel for 1D step edge detection under additive white
Gaussian noise is similar to the negative first derivative of a Gaussian kernel2. Note
that FOIGKs are not the only Gaussian kernels used for edge characterization. (e.g.
the Laplacian of a Gaussian (LoG) kernel and its approximation (Marr and Hildreth,
1980)) A detailed review on the variety of usages of Gaussian kernels in the context
of edge detection is included in Basu (2002).

Also Second Order Isotropic Gaussian Kernels (SOIGKs) are relevant for low-level
feature computation. Apart from the aforementioned methods, the most evident
use is the localization of ridges as maxima of the second derivative of an image.

2In fact, Canny quantified the difference of performance between the optimal 1D kernel
and the negative first derivative of a Gaussian to be about 20% (Canny, 1986), in terms of
his penalty criteria.
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An early work by Chaudhuri et al. (Chaudhuri et al., 1989) elaborates on the idea
of finding a pattern for blood vessel characterization and involves the convolution
of the image with a range of oriented kernels created from Gaussian pulses. This
work has been expanded by studying variations of the kernels (Liu and Haralick,
2002) or making a more elaborated use of the pixel-based information (Staal et al.,
2004).

There are several known problems in the use of SOIGKs for the computation of the
second partial derivative of a signal, which manifest themselves in the manner
ridges are characterized. These problems, illustrated in Fig. 4.1, can be subdivided
in two categories:

(i) Crossings and junctions: Filtering with SOIGKs reduces to computing the
weighted difference between an oriented central segment and its parallel,
neighbouring areas (Jacob and Unser, 2004). Hence, they rely on the idea
that there should be background at both sides of the ridge candidate. How-
ever, such a background is not present in the case of crossings (Fig. 4.1,
upper row) or junctions (Fig. 4.1, middle row), which might lead to broken or
ragged edges. This effect manifests as near-zero second derivatives at the
positions of the ridges.

(ii) Blobs: Circular, noticeable visual structures are relatively common in real
images, either due to existing artefacts or contamination. Because of the
isotropy of the SOIGKSs, blobs can fit in the positive region of the kernels,
leading to very strong evidence of the presence of lines. An evident solution
for this problem is to compute the presence of a line as the difference be-
tween the result of a filter in two orthogonal directions (see, e.g. Lindeberg
(1998)). However, this solution would even further complicate the detection
of crossings and junctions, as can be inferred from the image in the Blob

image in Fig. 4.1, where the derivatives seem to indicate the presence of a
vertical line.

We identify a common root for both problems, namely the non-elongated nature of
the SOIGKs. Evidently, any kernel-based method must rely on the local manifesta-
tions of a global structure, which in this case is a line, but should also characterize
the semi-local properties in the best possible manner. In the case of ridge de-
tection, the semi-local properties relate to the straightness and continuity of line
segments. We claim that kernels elongated in the (estimated) direction of the line
segment are good candidates for capturing these semi-local properties.

There exists yet a third problem in ridge detection, which relates to the scale
(width) of the ridges. Although ridges are possibly monoscalar in synthetic im-
agery, or very controlled scenarios, this is usually not the case in real images.
Following the ideas of Bowyer et al. for edge detection (Bowyer et al., 2001), we
assert that the essence of the complexity of a real image is that it typically contains
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Original image () Horizontal der. () Vertical der. (yy) Max. der.

Figure 4.1: Example of images for which the Isotropic Gaussian Kernels produce an unsatisfactory
characterization of the second derivative. The leftmost column contains the images (), which are

referred to from top to bottom as cross image, junction image and blob image. The central columns
contain the visualization of the second derivative of the images in the horizontal () and vertical (yy)

direction, computed using second order isotropic Gaussian Kernels with standard deviation σ = 1.0. The
rightmost column contains the maximum value in any possible orientation in [0,2π[.

ridges of many different types, scales and curvatures. However, using non-optimal
scales is less destructive for edge detection than it is for ridge detection. While
in the former the poor fitting of the scale of a kernel leads to an imperfect inter-
pretation of a signal variation (too sensitive, or too unresponsive), in the latter the
interpretation can be absolutely unsuited. As an example, in Fig. 4.3(a) we observe
a 1D signal containing three ridges of different width, as well as a double (twin)
ridge. Figures 4.3(b)-(d) show the results of filtering the signal with three kernels
of different scales, shown in Fig. 4.2. When using a high frequency kernel (such
as G′′2.0), we obtain double maxima for the wide ridges, making it difficult to dis-
tinguish them from true double ridges. Alternatively, when using a low frequency
kernel (such as G′′6.0), we are unable to individually locate each of the components
of the double ridge in the right end of the signal. These problems are even more of
an issue in the case of real signals, which might (and probably will) include imper-
fections and contamination. From this simple example, we may infer that the use
of inadequate scales may lead to a poor interpretation of the ridges of an image.
Since we anticipate the presence of ridges of different scales in any natural image,
multiscale methods appear to be the only option to perform ridge detection in a
reliable way.
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(c) Kernel G′′4.0 (d) Kernel G′′6.0

Figure 4.2: One-dimensional second order Gaussian kernels (G′′
σ

) generated with different standard
deviations σ. The plotted lines represent the continuous function, while the dots illustrate the discrete

filter selected from it.

(a) Original signal S

-

+

(b) Signal S∗G′′2.0

-

+

(c) Signal S∗G′′4.0

-

+

(d) Signal S∗G′′6.0

Figure 4.3: Visual example of the problem in misadjusting the scale of a line detection operator. The
upper plot contains a signal with four ridges of different scales, while the lower ones include its filtering

with the second order Gaussian operators in Fig. 4.2.



4

4 UNSUPERVISED RIDGE DETECTION USING
SECOND ORDER ANISOTROPIC GAUSSIAN KERNELS 64

4.3 Anisotropic Gaussian kernels and their ap-
plication in second order differentiation

Notwithstanding the influence of Canny’s developments, he also lists some im-
provements that could be made to his own work, albeit not giving a detailed de-
scription of how to realize them. All of them involve the local adaptation of kernels
to the particular conditions of each region of (or object in) the image. For example,
Canny states that a differentiation kernel should be oriented normal to the direc-

tion of an edge to be detected, despite that information being, a priori, unknown.
Additionally, Canny mentions the combined use of Gaussian kernels with different
standard deviations, whose output would be later fused to create a single edge
map. This idea is very similar to other proposals for feature synthesis in multiscale
image processing (Witkin, 1983; Bergholm, 1987; Lopez-Molina et al., 2013b). Ad-
ditionally, Canny also considers the use of elongated masks, which would exploit
the fact that edges in an image are usually locally straight. In fact, in Canny (1986)
it is forecast that highly directional operators will give better results than operators

with a circular support.

In Shui and Zhang (2012), Shui and Zhang introduce a class of Gaussian differ-
entiation kernels that support the ideas of Canny. This class of kernels, which
the authors refer to as Anisotropic Gaussian Kernels (AGKs), generalize IGKs, and
embody the improvements proposed by Canny (Shui and Zhang, 2013). The ob-
jective in Shui and Zhang (2012) is to create a class of kernels with non-circular
support and to use their first order derivative to compute gradients in an edge
detection procedure (we refer to the original paper for considerations on the noise
robustness and contiguous edge detection). Two different aspects of the kernel
are customized: the roundness of the kernel and its orientation. Moreover, since
they are based on Gaussian kernels, their size can be controlled by the standard
deviation of the underlying distribution.

A 2D Anisotropic Gaussian Kernel (AGK) in the two-dimensional Euclidean space is
given by:

Ĝ[σ,θ,ρ](, y) =
1

2πσ2
e
− ϕ

2σ2 , (4.1)
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,

where σ is the standard deviation of the Gaussian distribution, θ is the orientation
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of the kernel and ρ is the so-called anisotropy index. Figure 4.4 contains several
examples of such kernels. Although Geusebroek et al. (Geusebroek et al., 2003)
introduced an alternative definition of AGKs by considering different standard de-
viations in two orthonormal directions (e.g. σ and σy), we employ the definition
of Shui and Zhang (Shui and Zhang, 2012). This choice is due to the fact that the
latter authors include an explicit representation of the roundness and orientation
of the kernel, which facilitates its interpretation.

Shui and Zhang proposed to compute the partial derivatives of an image using
First Order AGKs (FOAGKs), i.e. directional derivatives of the kernel in Eq. (4.1). In
this way, the derivative of an image  in the direction θ is computed as

∂

∂θ
(, y) = − ∗

∂Ĝ[σ,θ,ρ]

∂θ
(, y) = − ∗

( cosθ + y sinθ)

ρ−2σ2
Ĝ[σ,θ,ρ](, y) , (4.2)

where ∗ represents the convolution operation and θ represents the unit vector
in direction θ. It should be mentioned that the differentiation in Eq. (4.2) is an
ill-posed problem in the sense of Hadamard, since it depends on external parame-
ters (σ, θ and ρ), and hence is likely not to yield a unique solution. This is a typical
assumption in signal processing for discrete signals (Torre and Poggio, 1984; Pog-
gio et al., 1989). Note also that, for ρ 6= 1, this class of kernels is not steerable,
so that the differentiation in an arbitrary direction θ cannot be computed from the
combination of kernels in fixed orthonormal directions (see Freeman and Adelson
(1991) for further details on the concept of steerability). It is necessary to filter the
image with a set of k kernels oriented in a variety of directions, as such leading to
the characterization of the partial derivatives in k different orientations (asymme-
try makes it unnecessary to apply filters in opposite directions). The most evident
option to produce a single output from that information is to retain the result pro-
duced by the oriented kernel with the maximum absolute value, in contrast to Shui
and Zhang’s proposal to use the arithmetic mean of the derivatives computed with
isotropic and anisotropic kernels (Shui and Zhang, 2012). Figures 4.4 and 4.5 con-
tain several examples of FOAGKs with ρ 6= 1.

Given the applicability of FOAGKs to differentiation for edge detection, we argue
in this paper that higher order AGKs can also be used for other tasks in image
processing. More specifically, we propose the use of Second Order AGKs (SOAGKs)
to produce second order derivative approximations that will subsequently be used
to detect ridges in images. This idea follows the ridge definition by Lindeberg (Lin-
deberg, 1998), and hence identifies ridges from the analysis of the Hessian of the
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images. The second derivative of an image  in the direction θ is computed as

∂2

∂2θ
(, y) = − ∗

∂2Ĝ[σ,θ,ρ]

∂2θ
(, y) = − ∗

ρ2

σ2

�

( cosθ + y sinθ)2

ρ−2σ2
− 1

�

Ĝ[σ,θ,ρ](, y) ,

(4.3)

where the meaning of the parameters is as in Eqs. (4.1) and (4.2). The previous
comments on the non-steerability of the FOAGKs, as well as those related to the
ill-possedness of the problem, also hold for SOAGKs.

Note that some authors have employed Gaussian-based elongated filters for simi-
lar purposes. An example is the class of filters proposed by Poli and Valli (Cornelis
et al., 2013; Poli and Valli, 1997), which are created by overlapping several Gaus-
sian kernels shifted in a fixed direction. However, we believe that AGKs provide
a simpler and more powerful basis for the study of ridge-like structures, avoiding
non-evident parameters (number of filters, granularity of the shifting) and empow-
ering the representativity of the properties of the ridge (orientation, roundness,
size). In fact, if the parameters are meticulously tuned, the discrete kernels gen-
erated with SOAGKs and the filters in Poli and Valli (1997) become fairly similar,
despite being constructed on the basis of different methods and having different
objectives in mind.

Figure 4.6 includes a repetition of the results in Fig. 4.1 using anisotropic kernels
instead of isotropic kernels. It is noticeable how the problems with the charac-
terization of the crossing and the junction are reduced, while the blob produces a
lower response than in Fig. 4.1.
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Horizontal der. () Vertical der. (yy) Max. der.

Figure 4.6: Visualization of the second derivative of the images in Fig. 4.1 () in the horizontal () and
vertical (yy) direction, computed using second order anisotropic Gaussian kernels with σ = 2.0 and ρ = 2.

The rightmost column contains the maximum value in any possible orientation in [0,2π[.

4.4 A multiscale algorithm for line detection
based on AGKs

This section describes a ridge detection algorithm based on second order differ-
entiation. More specifically, it relies on non-steerable kernels as presented in the
previous section. Let  be any scalar-valued (grayscale) image. A ridge candidate
is a pixel (, y) at which the second derivative in the direction ψ is a local maxi-
mum, where the direction ψ corresponds to that of the eigenvector associated with
the largest eigenvalue of the Hessian of the image at that pixel (Lindeberg, 1998).

Hence, three tasks should be performed at pixel level: (a) locating the most likely
direction of a ridge, (b) determining whether the pixel is a ridge center, and conse-
quently a ridge candidate, and (c) estimating a ridge strength. Since we assume
that the final output of a ridge detection algorithm should be a thin, binary map of
ridges, a final phase of thresholding should follow, so that only the most relevant
ridges are selected.
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Let D, S and A be the sets of considered directions, scales and anisotropy indices
for the generation of the SOAGKs, respectively. That is, D = {θ1, . . . , θk}, with
θ ∈ [0, π[, S = {σ1, . . . , σm}, with σ > 0, and A = {ρ1, . . . , ρn}, with ρ > 1. Our
algorithm involves the following steps:

(S1) Filtering the image with each possible kernel created from the combination
of θ, σ and ρ.

(S2) Retaining, for each pixel, the direction of the kernel producing the strongest
response, as well as its value. These values are referred to as the ridge

orientation and ridge intensity at each pixel, respectively.

(S3) Determining which pixels have a local maximum ridge intensity in their ridge
orientation. Suppress all the pixels that have not. This operation is commonly
known as Non-Maxima Suppresion, and is due to Rosenfeld and Thurston
(Rosenfeld and Thurston, 1971).

(S4) Determining two thresholds for binarization using the double threshold de-
termination technique by Liu et al. (Liu et al., 2013), which roughly consists
of a dual, sequential application of the Rosin method (Rosin, 2001). This
technique is preferred over more frequently used alternatives (as Otsu’s
method (Cornelis et al., 2013; Otsu, 1979)) since it is able to deal with
monomodal histograms, instead of bimodal ones.

(S5) Applying hysteresis to generate the binary, thin ridge map.

A critical decision in the design of the algorithm is to retain uniquely the response
and orientation of the filter generating the strongest response. This implies gather-
ing, at each pixel, the result obtained by the filter which best matches a potential
ridge, but at the same time it also maximizes (amplifies) the response to noise and
image imperfections. An alternative consists in the use of an ordered weighted ag-
gregation of the orientations in such a way that filters with stronger responses are
assigned larger weights. Although this operator could be adapted from the reg-
ularization operators introduced by Kass and Witkin (Kass and Witkin, 1987), no
author has tackled the development of such operators. Hence, we decided to stick
to the selection of the result obtained by the filter with the strongest response.

An interesting point in the algorithm above is the fact that the same number of
orientations is used irrespective of ρ, though this might in some cases cause a
computational burden. For instance, if ρ = 1 the SOAGKs are steerable, and so
the results in any orientation can be obtained as a linear combination of those
of any other orthogonal ones. Yet, there is a threefold reason why our algorithm
always uses the same number of orientations. Firstly, although we can intuitively
link the need for more directional filters to the increase of ρ, there is no clear way
of grading steerability with regard to that parameter. Secondly, setting a variable
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number of directions depending on the value of ρ would increase the complexity
of the algorithm. Thirdly, the current formulation simplifies the algorithm as much
as possible, and enables clear options for parallel computing.

Our algorithm has some clear advantages stemming from combining the results of
different filters, which can be configured in terms of size, orientation and anisotropy.
Firstly, it considers a wide variety of ridge widths and curvatures, in an attempt to
adapt to the local conditions of the image. As an example, Fig. 4.7 shows the result
of applying a multiscale fusion procedure to the results of the three kernels used
in Fig. 4.3. We observe that the combination by means of the maximum yields
better results than those obtained by using individual kernels, since each of the
ridges generates a unique maximum in the resulting filtered signal. Moreover, not
requiring a unique kernel for computing the second derivative simplifies the con-
figuration by non-expert users. Secondly, the algorithm is computationally cheap,
since matrix filtering procedures are greatly accelerated by hardware, and can be
easily distributed on parallel machines. Thirdly, it is worth noting that our algo-
rithm generalizes other proposals in the literature. For example, by fixing a single
scale (|S| = 1) and avoiding anisotropic kernels (A = {1}), we recover the proposal
by Chaudhuri (Chaudhuri et al., 1989).

-

+

Figure 4.7: Replication of the results in Fig. 4.3 using a multiscale procedure. In this case the results
using three filters (G′′

2.0
, G′′

4.0
and G′′

6.0
, as in Fig. 4.3(b)-(d)) are combined using the maximum.

4.5 Experimental validation

In this experiment we validate our proposed ridge detection algorithm. More
specifically, we measure the impact of using anisotropic, multiscale Gaussian ker-
nels for ridge detection in real imagery, i.e. whether the use of non-isotropic ker-
nels at different scales leads to significant improvements over established proce-
dures based on monoscale, isotropic Gaussian kernels.

Here, the result of a ridge detection method has to be expressed as thin, binary
lines. Note that other tasks or applications impose different representations of
the results, which might enclose information other than the presence and location
of a ridge. For example, in Benmansour and Cohen (2011); Rouchdy and Cohen
(2013) the width of vessels (or, equivalently, the position of their boundaries) is of
major importance, to the point that their success is measured as the overlapping
of their results with hand-made segmentations. In our case, we focus on line
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detection for tracking the growth of fungi, and the only information of interest is
the position of the centerline (i.e. the presence of the ridge) and the preservation
of the interlacing structure (junctions, crossings, short tips, etc.).

4.5.1 Automated characterization of fungal structure

The automated processing of biological imagery has gained momentum in the
past years (Peng, 2008). The main reason is, as in many other applied fields, the
availability of cheap imaging and processing equipment. One such field is fungal
technology (see the review by Falconer et al. (Falconer et al., 2010)). For instance,
the scale at which fungi grow allows for the extraction of numerous high definition
images using standard flatbed scanners. However, experts often encounter diffi-
culties in selecting or customizing methods to effectively and efficiently process
the imagery obtained in the labs (Obara et al., 2012).

Most fungi are composed of a vegetative body, called the mycelium, formed by a
network of cylindrical thread-like structures, referred to as hyphae. The complex
organization of these networks allows for an efficient internal transport of nutrients
within the fungus. Both the productivity of industrial processes involving fungi and
the decay rate of the different species of fungi depend on the morphology of the
network (Barry et al., 2009b; Fuhr et al., 2011; Grimm et al., 2005; Papagianni,
2004). Consequently, there exists a strong demand for robust methods that are
able to extract these networks without fine-tuning. Some of the techniques cur-
rently in use involve manual labeling of the hyphal network (Heaton et al., 2010;
Trinci, 1974), local techniques (Diéguez-Uribeondo et al., 2004; Bolton and Boddy,
1993) or invasive techniques, which do not allow scientists to follow the evolution
of the entire hyphal network (Barry et al., 2009a). These techniques are also highly
time-consuming and tedious.

For this experiment, we introduce a dataset of 100 images, referred to as Ghent
University Fungal Images 1 (GUFI-1), which were extracted from fungi grown in
vitro. Each of the images has a resolution of 300× 300 pixels, and comes together
with their hand-labeled solution, which is taken as ground truth. Images from five
fungal species at different growth stages were taken. These species include some
of the main organisms responsible for wood decay (Coniophora puteana); plant
pathogens (Phanerochaete velutina, Rhizoctonia solani); and fungi commonly used
in industry (Penicillium chrysogenum) and bioremediation (Trichoderma viride).
From the perspective of ridge detection, these images constitute a challenge since
they contain a diversity of ridges with different widths, different degrees of con-
tamination (often related to the growth stage) and frequent overlaps/junctions.
Moreover, images often include large regions without edges. In Fig. 4.8 we depict
the first 12 images in the dataset, together with their ground truth. In this subset
one can already observe a large variety in ridge width, overlapping, density, etc.
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(a) Image 001 (b) Image 002

(c) Image 003 (d) Image 004

(e) Image 005 (f) Image 006

(g) Image 007 (h) Image 008

(i) Image 009 (j) Image 010

(k) Image 011 (l) Image 012

Figure 4.8: Some of the images in the Ghent University Fungal Images 1 (GUFI-1) dataset, together with
their hand-labelled solutions, which are to be taken as ground truth. The original images are normalized

for better visualization.
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4.5.2 Error quantification

Quality evaluation of binary feature imagery is not an obvious task. Although it
reduces to comparing a given ground truth image (gt) with a candidate image
(cd), the task is strongly dependent on the interpretation of the images (see, e.g.,
the monographs on segmentation (Zhang, 1996) or edge detection (Lopez-Molina
et al., 2013a; Peli and Malah, 1982)). Since no single measure is able to cope with
all the requirements needed to meaningfully measure the quality of this type of
image (see the results in (Lopez-Molina et al., 2013a)), we have opted to combine
two different measures:

(i) Firstly, we use the approach by Martin et al. (Martin et al., 2004), which
is grounded in the fact that any binary feature image can be seen as the
result of a binary classification problem. Hence, the comparison between gt
and cd can be formulated in terms of success and failure in the detection
of ridges. However, the ridges in the automatically generated image might
be slightly displaced from their position, and this should not result in both
a false positive and a false negative. In order to overcome the problem of
displacements, Martin et al. use a stage of pixel-to-pixel correspondence
(with a certain spatial tolerance) between the ridges in the automatically
generated image and the ground truth image3. From this correspondence a
proper binary confusion matrix is computed, from which the precision (Prec)
and recall (Rec) evaluations are computed as

Prec =
TP

TP+ FP
and Rec =

TP

TP+ FN
, (4.4)

where TP, FP and FN are the percentages of true positives, false positives
and false negatives, respectively. The overall quality of a solution can be
expressed in terms of the F-measure (Fα), given by

Fα =
Prec ·Rec

αPrec+(1 − α)Rec
, (4.5)

for which we have considered the common α = 0.5. Other values of α can be
considered when intending to emphasize the penalization of FP or FN.

(ii) Secondly, we use Baddeley’s Delta Metric (BDM) on the space of binary im-
ages. This measure considers the dissimilarity of the subsets of featured

points in the image, which are usually represented by the value 1. As we
assume the ridges to be expressed as binary lines, this measure can be used

3We have used the pseudo-optimal implementation of the Cost Scaling Algorithm (Gold-
berg and Kennedy, 1995) provided within the BSDS (Martin et al., 2004; Arbelaez et al.,
2011).
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for our purposes. Assuming gt and cd have the same dimensions M × N

(with Ω = {1, . . . ,M} × {1, . . . , N}), and given a value 1 < k < ∞, the k-BDM
between gt and cd (denoted Δk(gt , cd)) is given by:

Δk(gt , cd) =





1

|Ω|

∑

p∈Ω

�

�(d(p, gt)) − (d(p, cd))
�

�

k





1
k

, (4.6)

where d(p,X) represents the distance from the position p to the closest fea-

tured point of the image X and  : [0,∞] → [0,∞] is a concave, increas-
ing function used for weighing. In our experiments, we use the Euclidean
distance in the computation of d. Hence, d(p,X) stands for the minimum
Euclidean distance from the position p to a ridge in X. Moreover, we use
() = min(, t), where t is the maximum displacement allowed in a ridge,
and k = 2, as in Medina-Carnicer et al. (2009).

Note that both techniques involve a common parameter: the displacement a ridge
can suffer before it becomes a false detection. In the case of F0.5, this manifests
itself as the maximum distance allowed in the pixel-to-pixel correspondence, while
in BDM it is represented by the parameter t. Here, we have set such distance to
2% of the length of the image diagonal.

4.5.3 Experimental procedure

Any real-world application demands a customization of standard algorithms, such
as the one in Section 4.4. In fact, application-oriented works tend to include
customizations such as problem-aware regularization (Weickert, 1999) to, e.g.,
machinery-dependent brightness correction (Lam et al., 2010) or context-aware
topological considerations for irrelevant feature removal. We have avoided any
treatment other than Gaussian smoothing in order not to obscure the impact of
the differentiation filters. For this experiment we have adapted the procedure in
Section 4.4, giving rise to Algorithm 1. The purpose of this algorithm is threefold.
First, the algorithm must produce a thin, binary ridge image in a fully unsuper-
vised manner. Second, the bright ridges must have prevalence over the dark
ones. Third, the connectedness of the extracted graph must be maximized. Con-
sequently, broken or isolated edges must be avoided. The necessity of this third
step is directly related to the quality of the data, especially to the appearance of
contaminated pixels. Because of the characteristics of the images in the GUFI-1,
we employ a morphological closing operation (to fill one-pixel long discontinuities)
followed by a clean-up of the segments shorter than 10% of the image diagonal.
Despite this clean-up might look drastic, it should be noticed that the appearance
of short or broken branches might hinder the analysis of the overall fungal struc-
ture, and hence are better removed.
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Algorithm 1: Algorithmic representation of the proposed multiscale ridge
detection algorithm.
Data: An image , parameter sets D, S and A, a smoothing parameter ϕ
Result: A binary ridge map B
ridge → Zero-valued image;
ori → Null-valued image;
 ∗Gϕ → s (Smoothed image);
for each combination of θ ∈ D, σ ∈ S and ρ ∈ A do

Compute ∂s
∂θ

as in Eq. (4.2);
for each pixel p do

if | ∂s(p)∂θ
| · s(p) > ridge(p) then

ridge(p)← |
∂s(p)
∂θ
| · s(p);

ori(p)← θ;

Suppress non-local maxima from ridge;
Compute thresholds Thigh, Tlow;
Apply hysteresis on ridge using Thigh, Tlow;
Apply morphological closing with 3 × 3 structuring element;
Delete segments shorter than 10% of the length of the image diagonal;

In this experiment we have compared eight different configurations of Algorithm 1,
featuring various instances of the parameter sets A and S, as shown in Table 4.1.
These configurations include combinations of mono- and multiscale kernels, as
well as isotropic and anisotropic ones. The set of discrete directions is kept the
same for all configurations D = {0, p16 , . . . ,

15π
16 }.

Method Scales Anisotropy indices

SI1 S = {1} A = {1}
SI2 S = {2} A = {1}
SI3 S = {3} A = {1}
SI4 S = {4} A = {1}
MI S = {1, . . . ,4} A = {1}
SA1 S = {1} A = {1.3}
SA2 S = {2} A = {1.3}
SA3 S = {3} A = {1.3}
SA4 S = {4} A = {1.3}
MM1 S = {1, . . . ,4} A = {1.0,1.1, . . . ,1.5}
MM2 S = {2, . . . ,4} A = {1.0,1.1, . . . ,1.5}

Table 4.1: Configurations of Algorithm 1 used in the experimental comparison.
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4.5.4 Analysis of the results

The results of comparing different configurations of the algorithm are shown in Ta-
ble 4.2, organized according to the value of the standard deviation of the smooth-
ing filter (ϕ). For each configuration and ρ, we display the results in terms of
Baddeley’s Delta Metric (Δ2), F-measure (F0.5), precision (P) and recall (R).

There are several conclusions to be drawn from the data in Table 4.2. First, we
observe that monoscale, isotropic methods perform worse than any other possible
configuration of the algorithm, especially for low values of σ. This holds either in
terms of Δ2, which accounts for the location of the ridges in the image, or in terms
of F0.5, which penalizes broken or ragged ridges. This is explained by the facts
discussed in Section 4.2, and also by the relatively low quality of the real imagery.
It is noteworthy that kernels with a low σ, more specifically those based on σ = 1.0,
perform the worst, mostly due to the impact of noise and blurred ridges, which lead
to a significant number of false positives and negatives, respectively.

The incorporation of multiscale kernels into the algorithm has a positive influence,
as can be seen in the results for the configuration MI. The combination of the
isotropic kernels at multiple scales leads to better results than those at any in-
dividual scale, both for Δ2 and F0.5. The only exception to this trend occurs for
large values of ρ, since the combination of heavy smoothing and large isotropic
Gaussian kernels induces a loss of performance. We can observe that the loss of
performance of MI is similar to that of SI4, which indicates that it is caused by the
pernicious influence of such large scale kernels.

The influence of the anisotropy of the kernels is brought out by the comparison
of the results of the SA with their scale-equivalent SI. The anisotropic kernels
greatly improve the results of their corresponding isotropic configurations, which
confirms the fact that anisotropy has a positive effect when filtering images for
ridge detection.

Finally, we have the MM configurations, which combine the results of filters at
different scales with different indices of anisotropy. The quantitative results in Ta-
ble 4.2 illustrate the fact that these configurations lead to very good results, but
not significantly better than other configurations, more specifically SA2 and SA3.
This is due to the fact that the inclusion of a variety of kernels also increases the
possibility of including unfit ones. As happened for the combination of large values
of ρ with multiscale isotropic kernels, certain combinations of parameter values
might not only lead to no improvement in the final results, but also to a decrease
in the performance. The kernels producing such undesired behaviour are, in gen-
eral, those having low values of σ and ρ, since they lead to the interpretation of
noise and contamination as small, non-elongated ridges, often connected to longer
ones. Nevertheless, their inclusion might be unavoidable if small, round ridges ap-
pear in the image. In those cases, more delicate postprocessing procedures are
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recommended.

The problems found for parameter setting indicate that some form of a priori anal-
ysis has to be performed on the images (and the structures to be detected), even
when the algorithm considers a wide variety of kernels. In general, the recommen-
dations for the configuration of the algorithm are straighforward. Firstly, S has to
encompass as many values as possible, with the extreme values determined by
the maximal and minimal width of the ridges to be detected. Secondly, D needs to
be as large as possible, considering the time and computing constraints in the spe-
cific context. Thirdly, A demands a problem-specific setting, a meaningful option
being the use of a unique anisotropy index other than ρ, as in the SA configura-
tions.

Nevertheless, it is worth noting that when setting of A and S, the most impor-
tant decision is on their extreme values, rather than the density of the values be-
tween them. While this density is important for optimally fitting each of the ridge
conditions in the images, it is in fact the extreme values that make a significant
difference in terms of false positive or negative detections.

As a final conclusion, we can enunciate that the inclusion of anisotropic and/or mul-
stiscale kernels improves the results by the monoscale, isotropic ones. Although
the improvement seems subtle, we must consider the context in which it appears.
First, we have that the SI methods already perform quite well (around 0.84 in
terms of F0.5), and consequently the margin for improvement is limited. Secondly,
we note that the performance gain is coherent with the improvements expected
from the use of SOAGKs, which are: (a) the adequate modelling of crossings and
junctions and (b) the avoidance of false positives due to blob-like structures. The
former does have a limited impact in terms of F0.5, since these artefacts account
for a very small number of pixels. The latter does have a significant impact on the
evaluation in terms of Δ2, which heavily penalizes FPs, but its impact on F0.5 is
again reduced due to the limited number of affected pixels. In Fig. 4.9 we display
the results obtained by applying SI2, SA2 and MM2 on the first six images of the
GUFI-1 dataset. We observe that the results by SA2 and MM2 contain small (al-
though relevant) improvements with respect to those by SI2, as expected from the
results in Table 4.2.
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Figure 4.9: Results gathered by three different configurations of the procedure in Algorithm 1 on the
first six images of the GUFI-1.
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4.6 Conclusions

We have proposed the use of anisotropic, multiscale kernels for second order im-
age differentiation. These kernels have already proven useful in zero-th or first
order differentiation, and are also supported by recent trends in local kernel adap-
tation for image processing. We have presented an expression for such kernels,
together with an algorithm for ridge detection based on such second order differ-
entiation. Our algorithm, which allows for the use of multiple scales and anisotropy
indices, has been further customized for a real-world application. Specifically, we
have focused on the extraction of the structure of in vitro fungi in biological im-
agery, for which we have introduced a new dataset with 100 images. The images
have been taken at the Faculty of Bioscience Engineering of Ghent University, and
are publicly available at the KERMIT research unit website4 under the name Ghent
University Fungal Images (GUFI-1). We have run quantitative experiments on this
dataset illustrating the fact that using multiscale filters, as well as anisotropic ones,
has positive effects on the results of the ridge detection algorithm.

4http://www.kermit.ugent.be
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5

5
Automated image-based

analysis of spatio-temporal
fungal dynamics

5.1 Introduction

Fungi are present in and affect most natural, agricultural and urban environments.
In forests, fungi are the primary decomposers of organic matter (Krivtsov et al.,
2006), where they also form mycorrhizal associations with tree roots allowing for
an effective distribution of nutrients across long distances (Boddy et al., 1999;
Dickson and Kolesik, 1999). In addition, pharmaceutical and food industries ben-
efit from fungi considerably, as they are used to create products ranging from

This chapter has been published as: G. Vidal-Diez de Ulzurrun, J.M. Baetens, J. Van den
Bulcke, C. Lopez-Molina, I. De Windt, B. De Baets (2015). Automated image-based analysis
of spatio-temporal fungal dynamics. Fungal Genetics and Biology 84, 12-25.
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alcohol and bread to industrial enzymes and antibiotics (Grimm et al., 2005). Fur-
thermore, fungi are used in biocontrol to fight plant pathogens affecting crops,
such as insects and other fungi (Weinzierl and Henn, 1991; Alvindia and Natsuaki,
2008). Nevertheless, fungi are also responsible for wood decay (Schwarze, 2007);
therefore, wooden material (Wadsö et al., 2013) and plants (Henkel et al., 2012)
are subject to their attack, causing economic losses in construction and agricul-
tural industries.

For all these reasons, fungi have been studied extensively over the years (Boswell
et al., 2003; Gadd et al., 2007; Schwarze, 2007). They are characterized by a
unique structure, which allows for an efficient internal transportation of nutrients
and a rapid expansion in a multitude of different environments, even in extreme
conditions (Magan, 2007). Fungi are composed of a vegetative body, called the
mycelium, formed by a network of cylindrical thread-like structures, referred to as
hyphae. Through these hyphae, nutrients are absorbed and distributed. Fungal
growth takes place at the tips of the hyphae (Edelstein, 1982), which are referred
to as apices. This gain in biomass can be observed when existing hyphae elongate
or when new tips emerge along an existing hypha, a process known as branch-
ing (Edelstein, 1982). As hyphae grow and explore their surroundings, they may
encounter other hyphae, which sometimes leads to fusion of hyphae, called anas-
tomosis, thereby increasing the efficiency of the nutrient cycle and altering the
shape of the network (Simonin et al., 2012).

There have been many efforts spent to understand the dynamics of fungal growth.
Some researchers focus on local features, like the diffusion of nutrients within the
mycelium (Tlalka et al., 2007) or the way fungal tips extend (Bartnicki-Garcia et al.,
1995). Others consider the mycelium as a single entity and study its macroscopic
characteristics, such as its density and the total area it covers (Davidson, 1998;
Falconer et al., 2005). Alternatively, a third group of researchers focuses on the
individual hyphae (Boswell, 2008; Carver and Boswell, 2008; Hopkins and Boswell,
2012), as such studying the fungi from a mesoscopic perspective.

A major concern with these different approaches is the evaluation of the results.
Laboratory experiments are expensive and time consuming (Fricker et al., 2009),
and typically lead to results that depend on the specific experimental conditions
and that make it difficult to compare with other experimental set-ups (Jacobs et al.,
2002). Furthermore, some of the in vitro methods are destructive and do not allow
for tracking the growth process through time (Wadsö, 1997), implying that exper-
iments have to be repeated in order to account for the natural variability among
individuals. As a consequence of these limitations, many researchers use data
from literature to evaluate their experiments (Meškauskas et al., 2004a; Boswell,
2008; Fuhr et al., 2012), mostly in a qualitative way. Unfortunately, the availability
of this kind of data is limited and it is usually decades old (Trinci, 1974; Hutchinson
et al., 1980), as such constraining studies to a few growth scenarios, environmen-
tal conditions and/or fungal species.
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Given the increasing availability of image-capturing techniques (see (Falconer et al.,
2010)), an interesting alternative is the use of image analysis. Capturing images is
easy and does not require expensive equipment. Image analysis has already been
used for the study of fungal growth, but most studies involve manual labelling of
the hyphal network (Trinci, 1974; Heaton et al., 2010), tracking of individual hy-
phae (Bolton and Boddy, 1993; Diéguez-Uribeondo et al., 2004) or invasive tech-
niques (Barry et al., 2009a), which do not allow for tracking the network through
time. These techniques are also time consuming and tedious.

In response, this work presents an automated procedure combining image anal-
ysis and graph theory to track fungal growth through space and time. The only
experimental input needed is a time series of images of a developing mycelium.
Hence, direct interaction with samples during the growth phase is not necessary
and deterioration of the samples is therefore avoided. The images are automati-
cally processed and transformed into simpler binary representations of the entire
mycelium, rather than restricting to a relatively small, unrepresentative part of the
network. In this way, the issues of manual labelling, restriction to local scales, and
destructive techniques are overcome by this method.

These binary images are composed of thin connected lines and can therefore be
easily mapped to mathematical graphs. Using properties of these graphs, we are
able to track some of the most relevant mesoscopic fungal growth characteristics
through time. In order to study the growth efficiency of fungi, we track measures
such as the evolution of the number of tips, the total length of the mycelium (Trinci,
1974; Prosser and Trinci, 1979; Boswell, 2008) and the fractal dimension, which
indicates the ability of the fungus to fill the space available (Bolton and Boddy,
1993; Boddy et al., 1999; Blackledge and Barry, 2011). Since the morphology
of hyphal networks is crucial for the productivity of industrial processes involving
fungi (Barry et al., 2009a), we also quantify some morphological characteristics,
such as the growth angle and the mean internodal length. Hence, the output of
the proposed method includes the most commonly studied topological measures
of mycelia. In addition, an innovative experimental set-up is presented in order to
test the image analysis procedure. These experiments result in time series of five
different fungal species from five different genera, as such allowing for a mutual
comparison of their growth dynamics.

5.2 Materials and Methods

5.2.1 Selected organisms

In this study, we aim at analyzing the dynamics of fungal growth. For this purpose,
five different fungal species were selected based on their growth characteristics
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and their impact on human health and industrial processes. Mother cultures of
Coniophora puteana (Basidiomycota causing brown rot commonly found on tim-
bers and other wood construction materials (Green III and Highley, 1997; Viitanen
et al., 2010a)), Phanerochaete velutina (plant pathogen often used in image anal-
ysis studies (Heaton et al., 2010; Obara et al., 2012) from the Basidiomycota), Tri-

choderma viride ( Ascomycota used in commercial production (Barry and Williams,
2011) and bioremedation (Joshi et al., 2011)), Rhizoctonia solani, Basidiomycota
recently renamed as Thanatephorus cucmeris (plant pathogen with a vast num-
ber of hosts worldwide (Bailey et al., 2000; Jacobs et al., 2002; Boswell et al.,
2003)) and Penicillium lilacinum also known as Purpureocillium lilacinum (Ascomy-
cota used in the pharmaceutical industries as a source of antibiotics (Geng and
Yuan, 2010)) were maintained on 4% malt agar (2% agar Bacteriological No. 1
(Oxoid), 4% malt extract) for one week at 23◦C ±2◦C and 65% ± 5% relative hu-
midity in a temperature-controlled room.

5.2.2 Experimental microcosms

Since we attempt to replicate a scenario for fungal growth with a limited number of
external factors, the substrate was limited to a maximum of 0.3g malt agar in the
entire Petri dish with a diameter of 90mm. In order to maintain the environmental
conditions needed for sustaining fungal growth, we added a droplet of substrate in
the centre of a Petri dish and some additional droplets along the edge of the disk,
as shown in Figure 5.1. An inoculum of size 6mm by 3mm, cut from the periphery
of the mother culture, was placed on top of the central droplet. Since images
obtained with classical devices are two-dimensional, we must limit the space inside
the Petri dish in such a way that its vertical dimension may be neglected. This was
achieved by placing the sample on the Petri dish lid and then sealing it with the
bottom half of the Petri dish (Figure 5.1). In this way, the surface of the lid and
the bottom were almost in contact, thereby limiting the maximal growing height
to approximately 0.6mm.

The samples were kept during 24 hours in a conditioned cabinet, after which they
were transported to another dark cabinet with similar environmental conditions
(23◦C ±2◦C and 65% ± 5% relative humidity) and positioned on a flatbed scanner
(Epson Perfection V750-M Pro Scanner). Images were captured automatically using
VueScan (VueScan 9.4, Hamrick Software, USA) every 30 minutes for 75 hours, as
such producing a total of 150 images per sample.

The images have a resolution of 1,200 dpi. A maximum of six samples could be
scanned simultaneously, resulting in images of 10,000 × 14,040 pixels. These
images were cropped automatically to focus on the growth area of interest. The
final images have dimensions of 2,125 × 2,125 pixels per sample, corresponding
to approximately 4cm × 4cm and representing the central area of the Petri dish
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containing the initial inoculum.

Figure 5.1: Scheme of the experimental set-up. First an inoculum is taken from the periphery of the
mother culture. The inoculum is then placed on a Petri dish, where 13 agar droplets were previously

arranged in a circular configuration. Finally, the Petri dishes are transported to the flatbed scanner where
images are captured every 30 minutes.

In order to prevent the presence of possible erroneous information, the droplets
of agar and the initial inoculum were removed from the images. Consequently,
a mask of the initial configuration (before any growth had taken place) was sub-
tracted from the other images in the time series.

5.2.3 Image processing

Image processing demands a careful consideration of the conditions in which im-
agery is acquired, since some factors can have a negative impact on extracting
relevant information. In the case of fungal images, the tracking of hyphae is com-
plicated by contamination such as dust particles or spores. Problems also arise
due to the poor image quality of some areas and as a consequence of contextual
light which might heterogeneously illuminate the background. In addition, fungal
growth is not fully two-dimensional and therefore some areas are out of focus due
to overlapping hyphae and the varying distance to the scanner plate. In order to
overcome these issues, we developed an image processing algorithm that can be
adapted to the local conditions of the fungal images in terms of visibility, contam-
ination and the structural properties of hyphae.

We used the algorithm proposed in Chapter 4 to process the raw images. The al-
gorithm is a generic ridge detection algorithm, but can be tuned to meet research-
specific needs. It was designed for excelling at junction detection, which is crucial
when studying hyphal networks, and it performs a hysteresis-based ridge tracking,
instead of a pixel-based discrimination. This algorithm is outlined below.

First, the images are filtered using zero-th order isotropic Gaussian kernels in order
to attenuate noise, without creating any new artefacts (Lindeberg, 1994). Then,
the second partial derivatives of the images are computed by filtering them with
a range of second order anisotropic Gaussian kernels, whose responses are then
combined. These derivatives are analyzed to determine the most likely orientation



5

5 AUTOMATED IMAGE-BASED ANALYSIS OF SPATIO-TEMPORAL FUNGAL
DYNAMICS 88

and visibility of a ridge at each pixel. All the previous information is combined
to produce a preliminary binary ridge map in which only the most salient ridges
are visible. This step involves non-maxima suppression (Rosenfeld and Thurston,
1971), hysteresis (Canny, 1986) and double-threshold determination (Liu et al.,
2013). Finally, ridge cleaning is used to minimize the impact of spurious responses.
An example of the results obtained using this workflow for four of the studied
fungal species can be found in Figure 5.2 and for the fifth species in Figure 5.3.

(a) Coniophora puteana (b) Phanerochaete velutina

(c) Trichoderma viride (d) Penicillium lilacinum

Figure 5.2: In vitro images and extracted binary ridge maps of the mycelia of different fungal species
after a period of 62.5 hours.

Graph theory is commonly used to study networks of line segments. A graph is
a mathematical structure that represents a set of objects and their associations.
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More specifically, a graph consists of a set of vertices (also known as nodes) and
a set of edges. Usually, the vertices represent the studied objects and the edges
formalize the relationships between them (Gibbons, 1985). To facilitate the study
of the relationships between objects, each vertex is assigned a degree that re-
flects the number of edges connected to it. In the case of mycelia, the vertices of
the corresponding fungal network graph may be envisaged as the junctions and
apices of the mycelium (Obara et al., 2012). Consequently, the edges indicate the
presence of a geometrical connection between the vertices, i.e. a hyphal segment.

The MorphologicalGraph function of Mathematica (Version 10.0, Wolfram Re-
search Inc., USA) enables the translation of images into graphs. This function
converts an image into a set of intersections (vertices) and a set of line segments
(edges). An example of a fungal network graph obtained using this function, to-
gether with the original fungal image and the binary ridge map, is shown in Fig-
ure 5.3 for a sample of Rhizoctonia solani that was grown for 25 hours.

Figure 5.3: Rhizoctonia solani growing in vitro (left), extracted binary ridge map of the mycelium (right)
and corresponding graph (bottom) after a period of 25 hours of growth.

After applying the same process to each of the 150 images per sample, we obtain
a time series of fungal network graphs. Since the images were captured every 30
minutes, the resulting time series captures the spatio-temporal dynamics of the
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mycelium over a period of 75 hours.

5.2.4 Extraction of fungal growth features

In this section we describe in detail how certain graph characteristics are trans-
lated into quantifiers of fungal growth. The different measures are divided in three
groups. The first group consists of those that quantify fungal growth and expan-
sion, such as the total length of the mycelium, the area covered by the mycelium
and the fractal dimension. The second group encloses measures such as the num-
ber of tips, the evolution of the node degree and the node density that give insight
into the compactness of the mycelium. Finally, the average internodal length and
the growth angle capture the structure of the mycelium. Other features commonly
used to describe mycelia are listed in Table 5.2 (Section 5.3).

5.2.4.1 Growth

An edge contains information about its vertices and their coordinates. Since we
know the coordinates of the endpoints of the edges, we can calculate the Euclidean
distance between them, i.e. the length of the hypha connecting the corresponding
points in two-dimensional space. Using the definition of total hyphal length given
in (Trinci, 1974), the total length is computed as the sum of the lengths of all the
edges composing the graph, which can easily be obtained from the graph.

The coordinates of the vertices are also used to calculate the area covered by
the mycelium. The area is computed as the convex hull of the node set, i.e. the
smallest convex set that contains all the nodes of the fungal network graph. This
measure accounts for the spatial coverage of the fungus and can be combined
with other topological measures, such as the number of nodes or the total length,
to gain insight into the density of the network.

The last growth feature that is extracted from the graph is the fractal dimension,
which is motivated by the fact that fungi have been reported to give rise to fractal
structures (Barry et al., 2009a). Fractals are geometric patterns that are repeated
at ever smaller scales; the fractal dimension quantifies how often a pattern is
repeated. Essentially, it constitutes a space-filling measure. Here, we use the box
counting method, where the two-dimensional space is first divided using a non-
overlapping grid of squares of increasingly smaller size. Then, for every box size
the number of boxes containing a part of the original image is computed (Barry
et al., 2009a). The fractal dimension D follows from:

D = lim
s→0

logn

log1/s
,
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where n represents the number of boxes containing a section of the fungus and s

the box side length. The algorithm was initialized with a box of side length equal
to the length of the image (S0). At each time step  the side length of the boxes
used to create the non-overlapping grid was set to S0/  and D was calculated
by considering boxes as small as 10 × 10 pixels, since we assume this to be the
minimum box size that can contain a significant part of hyphae. Therefore the
fractal dimension was calculated using 200 different box sizes.

5.2.4.2 Compactness

For each vertex of the fungal network graph, we know its degree, its location
in the two-dimensional space, its vertex-vertex adjacencies (i.e. all the vertices
connected to it by edges), and the edges incident to it. Since tips are the endpoints
of hyphae, these are vertices connected only to a single edge. Consequently, the
number of tips in the mycelium is easily calculated by determining all vertices
of degree one. A possible issue, although rare, could be the presence of cycles,
which are edges starting and ending at the same vertex. However, since the image
processing algorithm recognizes such vertices as being of degree two, cycles do
not affect the accuracy of the method. The accuracy of this tip detection method
can be seen in Figure 5.4 where the tips of Rhizoctonia solani are superimposed
both on the original image and on the extracted mycelium shown in Figure 5.3.

(a) Tips on top of the original image (b) Tips on top of the binary ridge map

Figure 5.4: Detail of the detected tips in part of the mycelium of Rhizoctonia solani presented in
Figure 5.3.

The number of nodes is computed immediately from the output of the Morpholo-

gicalGraph function (Mathematica, Version 10.0, Wolfram Research Inc., USA),
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while the node density is computed as the ratio of the number of nodes to the
area covered by the mycelium (previously explained in Section 5.2.4.1).

5.2.4.3 Morphology

The structure of a mycelium is the main factor determining the efficiency of the
internal nutrient translocation. In order to capture this structure, we extract two
more features also relying on the graph obtained with the MorphologicalGraph

function (Mathematica, Version 10.0, Wolfram Research Inc., USA), namely the
average growth angle and the average internodal length (fusions, branches and
extensions). The growth angle is defined as the difference between the angle of a
segment and the angle of its preceding segment. Since a segment can have mul-
tiple predecessors, we assume that the predecessor is the one with the smallest
angle. This value is obtained for each tip in the fungal network graph, since apical
growth and branching occur at the tips present both in the interior and the periph-
ery of the colony. A low value of this measure indicates that there are almost no
changes in the growth direction, while larger values possibly imply a complex net-
work full of branches. The average internodal length is computed as the average
length of the edges in the fungal network graph. This measure is also related to
the complexity of the mycelium, in the sense that large internodal lengths indi-
cate a simple network without much activity other than linear growth, while short
lengths imply an active network with many branches and fusions.

The complete source code for the image processing and fungal growth feature
extraction algorithms can be found at www.kermit.ugent.be.

5.3 Results

The growth of five fungal species was tracked for 75 hours by capturing images
every 30 minutes. All together, seven cultures of every species were tracked, as
such yielding seven time series per fungal species to derive the results presented
in this section. More cultures were initially prepared, but those that were con-
taminated or showed excessive condensation in the Petri dish were discarded for
further analysis.

5.3.1 Intra species variability

As for most living organisms, fungi present a large variability of growth behaviours,
even among individuals of the same species that are growing under the same en-
vironmental conditions. This variability is shown in Figure 5.5 for the total length
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per species. In order to enable a convincing comparison among the fungal species,
we generated a mean curve for each species by averaging the tracked measures
over the seven cultures. These curves were generated by averaging the corre-
sponding time-stamped measure across the cultures of a given species. However,
it should be noted that the natural intra-species variability of the selected fungi,
the presence of outliers and the limited number of samples impact the amount of
noise present in the curves.

(a) Coniophora puteana (b) Phanerochaete velutina

(c) Trichoderma viride (d) Rhizoctonia solani

(e) Penicilium lilacinum

Figure 5.5: For each fungal species, evolution of the total length of each sample (dotted lines) and the
corresponding mean curves (solid line).
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5.3.2 Topological measures quantifying fungal dynam-
ics

In this subsection some of the most relevant topological measures quantifying
fungal dynamics are presented. The different measures are classified using the
three categories introduced in Section 5.2.4.

5.3.2.1 Growth

The total mycelium length is one of the most important measures when study-
ing fungal growth since it provides insight into the extension of the fungus under
study. Figure 5.6a shows the mean evolution of this topological measure over time
for the different species. All species show positive growth curves, which is rea-
sonable since decay of biomass was not observed in the time period covered by
the experiments. Note that the growth rate varies across species, with especially
Rhizoctonia solani clearly differing from the other species. The growth of Rhizoc-

tonia saturates as soon as the fungus fills the surface of the analysed region. In
contrast, the growth curves of other fungal species increase monotonically and at
a slower pace, in particular at the beginning of the experiments. Such behaviour
in early stages agrees with studies on Mucor spinosus presented by Indermitte
(1994), while the exponential behaviour of Rhizoctonia at early stages agrees with
the dynamics observed in other fungal species (Trinci, 1974; Prosser and Trinci,
1979).

The area covered by the mycelium (Figure 5.6b) is calculated as the convex hull
of all nodes present in the fungal network graph (Indermitte et al., 1994; Fricker
et al., 2007; Boddy et al., 2010). The average area covered by Rhizoctionia solani

evolves rapidly, because it covers almost the total analysed surface during its first
phase of growth. The area covered by the other species also increases over time,
yet more slowly; most species are not able to double their initial area by the end of
the growth period and all of them cover less than half of the total analysed surface.
This measure is especially sensitive to the specificities of the experimental set-up,
since not only the environmental conditions, but also the distribution of nutrients
plays a significant role. Consequently, it is not possible to fully compare our results
with those obtained in other studies.

The fractal dimension of the different species can be found in Figure 5.6c. For
all five species the fractal dimension increases over time, a behaviour that has
been reported previously (Barry et al., 2009a). This measure has been studied by
many researchers (Barry et al., 2009a; Crawford et al., 1993; Lejeune and Baron,
1997), since it reflects the efficiency of occupying space by the fungus. Even
though there are many ways to compute this measure, which have a direct effect
on the final value, our results are within the same range as those obtained in other
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(a) Total mycelium length (b) Area of the mycelium

(c) Fractal dimension

Figure 5.6: Mean curves of the topological measures quantifying growth over time, computed from
seven time series per species capturing 75 hours of growth.

studies using the box counting method and similar experimental inputs (Boddy
et al., 1999; Boswell et al., 2007).

5.3.2.2 Compactness

The evolution of the total number of tips is presented in Figure 5.7a. As has been
postulated before, the total number of tips is strongly correlated with the total
length (Trinci, 1974; Prosser and Trinci, 1979), which is confirmed in this figure
where we can distinguish the same types of behaviour as observed for the total
length in Figure 5.6a. For Rhizoctonia solani, the total number of tips initially in-
creases exponentially, after which its growth slows down and the number of tips
remains almost constant. For all other species the number of tips increases more
slowly during the course of the experiment. It should be mentioned that tips grow-
ing beyond the borders of the studied region are not taken into account when com-
puting the total number of tips. Even though most species did not extend beyond
this region, this might however impact the steady state observed for Rhizoctonia

solani, since all samples of this species reached the borders of the studied region.
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(a) Number of total tips (b) Average node degree

(c) Node density

Figure 5.7: Mean curves of density-related topological measures over time, computed from seven time
series per species capturing 75 hours of growth.

The evolution of the average node degree is presented in Figure 5.7b. This mea-
sure is often used to represent the connectivity of networks and can be related to
hyphal fusions. A high node degree reflects the presence of several fusion points of
multiple hyphae, while a low node degree implies the presence of a tip or a change
of direction of an individual hypha. All species studied in this experiment, except
Rhizoctonia solani, show an increase in the average node degree over time, con-
verging to values of about 2.70 connections per node. A similar value has already
been found by other researchers (Fricker et al., 2009). However, in the case of Rhi-

zoctonia solani, a small decrease can be observed. The latter can be explained by
the fact that the growth was tracked starting only after 24 hours of initial growth,
during which Rhizoctonia was already able to develop a complex mycelium. As
such, the mean node degree for this species is already higher from the beginning
of the tracking period than for the other fungi.

The node density increases for all the species except Rhizoctonia solani (see Fig-
ure 5.7c). The increase of this measure indicates that the mycelium produces new
nodes, by branching or extending its apices, faster than it colonizes space. On
the other hand, a decrease denotes either a rapid colonization of space or a ces-
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sation of growth events. Both facts play a role during the growth of Rhizoctonia

solani. This measure is usually computed in later growth stages and over longer
time scales (Fricker et al., 2007; Boddy et al., 2010), and the time series depicted
in Figure 5.7c can therefore not easily be compared with results presented in liter-
ature.

5.3.2.3 Morphology

The average growth angle over time, shown in radians in Figure 5.8a, incorporates
the angle of apical growth and the branching angle. This angle does not differ
significantly between the different species and does not manifest a strong time
dependency. Rhizoctonia solani is of special interest, as it is characterized by
the 90◦ angle formed by its branches (Kamel et al., 2009), which can be seen in
Figure 5.3. However, it is observed that its average growth angle does not reach
this extreme value although it is still larger than for all other species. Apical growth
has been reported to be almost linear with few changes of direction (Reynaga-Peña
et al., 1997; Riquelme et al., 1998), therefore we have also computed the value
of the branching angle in order to test this hypothesis. This value can be found in
Table 5.2, and concurs with those found in literature for other species (Hutchinson
et al., 1980). The low value of the growth angle as compared to the branching
angle suggests that most of the biomass originates from apical growth.

(a) Average growth angle (b) Average hyphal segment

Figure 5.8: Mean curves of morphological measures of fungal networks over time (computed from
seven time series per species capturing 75 hours of growth).

The average internodal length over time is shown in Figure 5.8b. The average in-
ternodal length decreases for most species, increases for Rhizoctonia solani and
stays constant for Phanerochaete velutina. When a fusion event occurs, a new
node is created, as such dividing the intersected edge into two smaller ones.
Therefore the decrease of the average internodal length could be the result of
an increase in the number of fusions, as was hinted by the average node degree
in Figure 5.7b. Conversely, the increase of the internodal length of Rhizoctonia
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solani could be related to the initial state of its mycelium, already full of fusions,
and to the saturation point. From this point on most apical growth occurs outside
the study area and therefore mainly fusions are recorded. Moreover, the steady
state of Phanerochaete velutina also agrees with the results obtained for the node
degree, yet with a much lower variation. The average internodal length is one of
the main parameters in many spatially explicit models (see the review by Boswell
and Hopkins (2008)). Even though the values of this measure do not differ con-
siderably among the different species, the chart shows a clear time dependency.
However, this time-dependent behaviour is usually neglected by modellers (Fricker
et al., 2007; Boswell and Hopkins, 2008).

5.3.3 Functional description of fungal growth dynam-
ics

The experiments presented in this work were performed on a time series of im-
ages, therefore we can report on how the quantifiers of mycelia change over time.
We use the data obtained for each topological measure to fit one of the classical
sigmoidal growth functions shown in Table 5.1. Such functions have been used
historically to model the growth of both populations (Zwietering et al., 1990) and
individuals of different species (Zullinger et al., 1984; Weiner and Thomas, 2001),
including fungi (Adan, 2011; Barry and Williams, 2011).

Name Equation

Weibull model  − be−c td

MMF model
b + ctd

b + td

Gompertz model e−e
b−c t

Richards model 
�

eb−c t + 1
�−1/d

Logistic model


be−c t + 1

Table 5.1: Sigmoidal growth functions with parameters , b, c and d.

Most of the tracked topological measures fit one of these growth curves, as can be
observed in Table 5.2, which includes a summary of the topological measures, the
best fitting sigmoidal function with its corresponding parameter values and corre-
lation coefficient. Yet, as mentioned in Section 5.3.2, there are some measures,
such as the average growth angle, that do not show a clear time dependency
and, therefore do not match any of the sigmoidal curves. Since their evolution
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over time is not meaningful, their distributions are shown in the table as the mean
value plus/minus the standard deviation of the observations.

For each species and measure, we look for the sigmoidal function and parameter
values that best fit the observations obtained from the seven cultures. For this
purpose, we performed for each sigmoidal function a weighted least squares re-
gression, which searches for the parameter values that minimize a weighted sum
of squared residuals (where each weight is equal to the reciprocal of the variance).
For this purpose, we used the NonLinearModelFit function of Mathematica (Ver-
sion 10.0, Wolfram Research Inc., USA). Table 5.2 presents the best fitting function
for each species and measure.

In most cases, when a sigmoidal function could be fitted, the correlation coeffi-
cients are higher than 70%, which can be considered a good fit (Saltelli et al.,
2004). This is the case for the number of nodes (junctions and endpoints of the
network), the number of edges (hyphal segments) and the total length. In contrast,
measures such as the node density or the volume density cannot be described very
accurately by means of a sigmoidal function, since they are not directly related to
growth.

Surprisingly, the average area covered by the mycelium presents a poor fit for
most species. It has been reported that this measure follows a logistic curve at
larger time scales (Adan, 2011), but at the time scale and growth phases covered
in this paper, it seems to exhibit a different behaviour. This could also be caused
by the use of the convex hull, which is extremely sensitive to false positives in the
identification of fungal material.

Finally, for some combinations of species and measures, it is not even possible to
fit a sigmoidal curve, which is the case for Rhizoctonia solani. As mentioned before,
this fungus started its growth before the other species, which implies that its initial
growth phase is not reflected in this work. Since sigmoidal functions describe the
entire growth cycle, neglecting the initial phase might lead to a mismatch between
the sigmoidal curve and the observed time series.

5.4 Discussion

5.4.1 Experimental set-up

We have presented an innovative experimental set-up to track fungal growth in
two dimensions over time, which can be reproduced in most laboratories. It is
quite versatile since it can be used for various fungal species without any tuning
required. This set-up neither requires expensive machinery nor complicated pro-
cedures, and permits the tracking of different samples simultaneously, as such
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producing a large amount of data. Even though this set-up presents a valid al-
ternative to established procedures for generating data on fungal dynamics, the
number of growth scenarios is still rather limited. This follows from the fact that
growth should be restricted to two dimensions as much as possible and the need
for high contrast between the hyphae and the background. Therefore, growth
in more complex environments, such as soil (Morgan et al., 1993; Boddy et al.,
1999; Pajor et al., 2010), in three dimensions or within opaque structures such
as wood (Hale and Eaton, 1986; Fackler et al., 2007), cannot be captured using
such a set-up. Some possibilities for studying such scenarios are X-ray computed
tomography (Van den Bulcke et al., 2009) and confocal microscopy (Dickson and
Kolesik, 1999; Bago et al., 2002; Fricker et al., 2008). These techniques deliver
three-dimensional representations of the interior of opaque structures, while the
latter even allows to follow the processes occurring within the fungi (Fricker et al.,
2008).

Despite the shortcomings of our set-up to track fungi in complex environments, it
can easily be extended to larger surfaces, up to the surface of the entire flatbed
scanner. This would allow the study of fungal growth across large areas and longer
periods. The results shown in this study are inferred from a small region in order
to minimize the impact of the substrate droplets and the computational cost. This
was sufficient for most fungal species, but in the case of Rhizoctonia solani also
a larger region was studied. The results obtained in this way are similar to those
reported for Rhizoctonia solani in Section 5.3. However, in this case the saturation
point is reached later in time. The results obtained for the extended region provide
only a minor improvement in the representation of Rhizoctonia solani. Therefore
they were not included in order to make a consistent comparison between the
species. Since the growth process of the other fungal species differs greatly from
the one observed for Rhizoctonia solani, we think that fixing the tracking duration
of the experiment to be equal to the saturation time of Rhizoctionia would imply
a neglection of the growth of the other species. On the other hand, decreasing
only the tracking duration of Rhizoctonia solani implies that the different species
would be tracked over periods of different length, thereby a comparison across the
species would no longer be possible on an equal footing. Therefore we believe that
this mismatch should be addressed by changing the experimental set-up rather
than treating the data differently.

Even though seven cultures can be considered a representative data set size for
the purposes of this work, especially compared to those previously used in the
same field (Wadsö, 1997; Heaton et al., 2010; Obara et al., 2012), it is still limited
from a statistical point of view. In addition, the techniques used to derive the re-
sults shown in this work are quite simple, and with such a small sample size the
results might be affected by outliers. Fitting sigmoidal curves to the experimen-
tal data is indeed sensitive to outliers (Hastie et al., 2009). This was verified by
deleting for each species the culture displaying the most extreme behaviour. In
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this way the correlation coefficients improved in most cases, for some species ob-
taining an improvement of 0.20. This demonstrates the sensitivity of the method
to outliers, which could be addressed by changing the regression technique to one
which better fits the specific problem setting (Hastie et al., 2009).

5.4.2 Image acquisition

One of the main advantages of the image analysis method presented in this chap-
ter is that it is completely automated. Therefore, this method does not require di-
rect interaction with the samples, allowing to follow the entire growth of a fungus.
It is also possible to study interactions with other organisms and/or substances
widely studied in this field, such as plants (Schubert et al., 2008), building ma-
terials (Pasanen et al., 1992; Nielsen et al., 2004; Fackler et al., 2006) and other
fungal species (Falconer et al., 2008; Boswell, 2012). Yet, it should be emphasized
that the image analysis method is extremely sensitive in detecting as many hyphal
segments as possible. This might affect the resulting images, since the algorithm
can also interpret scratches or condensation as being part of the mycelium. This
kind of contamination is almost impossible to recognize at a local level during the
image analysis stage and should therefore be avoided during the experimental
stage.

The quality of the images can be improved by using higher resolution imaging
devices. The main issue relates to the blurry regions occurring in the images of the
mycelium. This blurriness is caused by the hyphal growth not occurring exactly at
the scanner’s glass surface. Even though this distance can be extremely small, this
causes out-of-focus areas, which could be overcome by using auto-focus scanners.
Although using them should not require major changes in the experimental set-
up, it could result in an improvement of the image quality. Alternatively, a digital
camera in combination with a microscope (Boddy et al., 1999; Barry and Williams,
2011; Blackledge and Barry, 2011) could be used, resulting in high-quality images,
with the disadvantage that such a set-up does not easily allow for the tracking of
the whole mycelium, or of several samples at once. The translation from the ridge
map to the graph would also benefit from a better image quality. The algorithm
searches first for junctions and endpoints, and then generates straight lines that
connect them, which may not accurately represent the rounded nature of some
hyphae. Even though results could be improved by using higher resolution images,
the current errors do not appear to differ considerably between the cultures and
species in this study. Therefore any bias is consistent across species, allowing for
a valid mutual comparison.

Clearly, there exists some correlation between the consecutive images in the time
series, since new biomass is generated at the tips of that which was present be-
fore (Prosser and Trinci, 1979; Diéguez-Uribeondo et al., 2004; Grimm et al., 2005;
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Mouriño Pérez et al., 2006). This fact has been neglected so far. Taking it into
account could result in an improvement of the overall results, but this would also
require assumptions regarding the correlation between consecutive images, which
could in turn affect the objectivity of the procedure.

5.4.3 Scope

The results in this chapter present, to our knowledge, one of the most complete
comparisons between fungal species over time reported in literature, and the first
achieved in a completely automated way. Although improvements are ongoing, it
is already objective and able to capture the dynamics of various fungi. By relying
on such an approach, we have shown the time-dependent nature of certain topo-
logical measures, in contrast to previous studies (Fricker et al., 2007; Boswell and
Hopkins, 2008).

The application shown here is only one example of a large variety of possibili-
ties and extensions. For example, by using proper masks on the original images,
it could be possible to study local behaviour within the colony, such as the differ-
ence in growth behaviour and morphology between the central region (where more
branching and anastomosis occur) and the peripheral region (where hyphae avoid
contact and generate less branches and fusions), a behaviour already observed
in several studies (de Bekker et al., 2011; Hickey et al., 2002). Our algorithm
could be also of use to study other organisms and systems that develop a thin
network, such as algae (Kaestner et al., 2006), leaf veins (Fu and Chi, 2003; Li
et al., 2006) and plant roots (Kaestner et al., 2006; Perret et al., 2007). The only
necessary experimental input is a high contrast picture of the organism or sys-
tem. The same procedure can be applied to images obtained with devices other
than flatbed scanners, if the quality and contrast criteria are fulfilled, and even to
the output produced by mathematical models (Boswell, 2008; Carver and Boswell,
2008; Hopkins and Boswell, 2012).

Finally, it should be stressed that similar comparisons are also possible for other
species, topological measures and growth scenarios. By using the workflow pre-
sented in this chapter, it would be possible to update the data in literature and
to make customizable comparisons depending on researchers’ needs. However,
our approach aims at a general quantification of fungal dynamics and is there-
fore complementary to other techniques that study certain growth processes in
more detail, such as the studies of the Spitzenkörper in order to determine the tip
extension (Zhuang et al., 2009) and the growth direction (Riquelme et al., 1998).
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5.5 Conclusions

This chapter presents a procedure to quantify fungal dynamics, using image anal-
ysis and graph theory. This procedure is entirely automated and addresses the
main disadvantages of previous procedures, such as the destructive nature of ex-
periments, the high cost and the need for manual labelling. In order to evaluate
the performance of the procedure, we have developed a new experimental set-up
that does not require expensive or complex equipment. Despite its simplicity, this
set-up allows for the measurement of growth kinetics for various fungal species.
Here, we have tracked the growth of five fungal species over time, leading to a
quantitative comparison of different growth behaviours. This comparison concurs
with key fungal growth assumptions and suggests a good performance of our me-
thod, since it was able to capture a variety of different behaviours. In addition,
the versatility of this procedure allows for the study of other organisms and phe-
nomena, without the need for significant tuning. Overall, this method offers an
updated and broader alternative to classical and narrowly focused studies, thus
opening new avenues of investigation in the field of fungal growth research.
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6
Evaluation of the effect

of environmental conditions
on the growth of

Coniophora puteana

6.1 Introduction

Fungi grow in most environments including those with extreme conditions. Their
nutritional needs can be met by most substrates and materials present in both hu-
man and natural environments. Under similar nutritional conditions, their growth
is determined by the environmental conditions (Bonner and Fergus, 1960). Each
fungal species grows under a certain range of environmental conditions and most
species achieve their maximal growth rate under very specific environmental cir-
cumstances only (Mislivec and Tuite, 1970), referred to as the optimal growth
conditions. Defining these ranges has been frequently done, since they allow
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to optimize industrial processes (Valík et al., 1999) and study climate change
trends (Kauserud et al., 2010).

Fungal growth results in damage or spoilage of materials and its effects can be
reinforced by humidity and temperature, the most relevant environmental factors
determining fungal growth which unfortunately cannot always be controlled. For
example, outdoor materials are constantly exposed to changing environmental
conditions making them vulnerable to fungal attack (Brischke and Thelandersson,
2014). In response, new building and construction materials and coating products
are developed in order to improve the resistance. This is especially important in
the case of building materials since they insulate the interior of buildings, as such
protecting them from weathering, and consequently from fungal attack. Fungi are
also responsible for food spoilage. Furthermore, some fungi produce toxic spores
that can lead to severe health problems, so preventing their growth is crucial.

For these reasons, several researchers have studied the relationship between fun-
gal growth and environmental conditions. This can be done from two different
points of view. Studies in experimental mycology investigate these effects on the
mycelium by tracking the changes of the fungal dynamics in response to chang-
ing environmental conditions. On the other hand, building mycology focuses on
the host, i.e. the substrate (Pardo et al., 2005; Ibrahim et al., 2011) or mate-
rial (Brischke and Thelandersson, 2014), hence monitoring the properties of the
material in order to assess its resistance to fungal attack under different environ-
mental conditions.

The resistance of materials is often measured in terms of the total biomass loss
(Meyer and Brischke, 2015; Brischke and Rapp, 2008; Osono, 2015), or the change
in its moisture content (Brischke and Lampen, 2014). This requires drying of the
sample, which is a destructive method. In contrast, isothermal calorimetry is
able to track the thermal activity of fungi, i.e. the heat produced by the fungal
metabolism over time without destroying the fungus (Li and Wadsö, 2013; Bjur-
man and Wadsö, 2000). However, its results are difficult to interpret and not trivial
to correlate to growth rates (Bjurman and Wadsö, 2000). Other techniques assess
decay by visual inspection of the samples, computing the area covered by the
fungus at the end of the experiment (Nielsen et al., 2004) or counting the fungal
spores on the sample (Pasanen et al., 2000). Most of them use standard decay
scales (Brischke et al., 2013), like EN252 (1989) or EN350-1 (1994), which allow to
assign levels of degradation depending on the appearance of the studied sample
as assessed by a field expert. So, the current visual methods are subjective, and
only allow to track decay on the surface of the studied materials.

The effects of the environmental conditions on fungal growth can also be studied
directly by considering changes of the mycelium. These studies rely on simple
experimental set-ups where all but one environmental condition are fixed. The
techniques used in these assessments often involve microscopes and/or imaging
devices to capture images or videos of the growing fungi (Bonner and Fergus,
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1960; Pasanen et al., 1991; Ayerst, 1969; Gock et al., 2003; Magan and Lacey,
1984; Boddy, 1983; Huang et al., 2001; Etheridge, 1957). Topological measures,
such as the colony radius (Pasanen et al., 1991; Boddy, 1983; Etheridge, 1957), the
growth rate (Bonner and Fergus, 1960; Ayerst, 1969; Gock et al., 2003; Magan and
Lacey, 1984) or the number of germinated spores (Tommerup, 1983; Huang et al.,
2001) can be directly derived from such images. Unfortunately, up to this day the
analysis of such data is done manually rendering it impossible to account for more
detailed topological measures, such as the total length, the inter-nodal length of
the mycelium or the number of tips, even though the latter measures provide
crucial information about fungal growth. Furthermore, the resources needed to
conduct such analyses hinder the repetition of experiments, such that the natural
variability of fungi is typically neglected. Besides, most relevant studies often only
focus on small growth areas (Ramakrishna et al., 1993; Laarhoven et al., 2015;
Siripatrawan and Makino, 2015; Gougouli and Koutsoumanis, 2013), following the
growth of only a few hyphae whose dynamics cannot be considered representative
of the entire mycelium.

The method presented here has already been used to extract and compare growth
features of different fungal species over time (see Chapter 5). It is completely au-
tomated and allows to extract most studied fungal growth features by analysing
the whole mycelium without destroying the samples or requiring any human inter-
pretation. By repeating this workflow for several combinations of temperature and
relative humidity (RH), it is possible to track their effect on the fungal dynamics.
For this purpose, an experimental set-up is designed to study the effect of the en-
vironmental conditions on fungal growth. This set-up can be reproduced in most
laboratories and produces time series of images representing the evolution of the
mycelium over time. These time series can then be used as input for the algorithm
described in Chapter 4, resulting in a complete characterization of fungal growth
over time.

This chapter is organized as follows. In Sections 6.2.1 the experimental set-up is
introduced. The resulting time series of images are then turned into binary ridge
maps, using the algorithm described in Chapter 4, and subsequently translated
into graphs from which topological measures can be extracted (Section 6.2.2 and
Section 6.2.3, respectively). The effect of the environmental conditions on the
extracted topological measures is studied by inspecting growth curves of Conio-

phora puteana in Section 6.3.1. In Section 6.3.2, several predictive models are
developed, computed from the observed data, in order to study the effects of tem-
perature and relative humidity on different growth parameters. Finally, the main
findings and conclusions are presented and discussed in Sections 6.4 and 6.5, re-
spectively.
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6.2 Materials and Methods

6.2.1 Experimental microcosms

We have chosen one of the most frequently studied fungal species, namely Conio-

phora puteana. It is a common brown rot fungus responsible for the degradation
of wood and building materials. Cultures of this fungus were maintained on 8%
malt extract agar (2% agar Bacteriological No. 1 (Oxoid), 8% malt extract) for
three days before the start of the actual experiment at 23◦C ±2◦C and an RH of
65% ± 5% in a climate cabinet (CTS Pharma climatic test chamber Series CP, CTS
GmbH, Germany).

In order to study the effect of the environmental conditions on the mycelium by
means of image analysis, specific criteria have to be met. For instance, they need
to have a high contrast, in order to translate them into meaningful binary ridge
maps. In addition, vertical growth has to be limited to ensure a proper representa-
tion of fungal growth. Finally, the environmental conditions need to be controlled
and the effects of other external factors should be reduced as much as possible.
For this purpose, we have developed a new experimental set-up meeting these
criteria which is based on the experimental set-up described in Chapter 5.

In order to ensure growth, we have used 8% malt extract agar as substrate in Petri
dishes of 9 cm diameter and 0.6 mm height. These disks were used to cultivate
mother cultures from the ones described above. After three days of growth, a
disk-shaped inoculum of about 1 cm diameter was cut from the periphery of the
mother culture. So, the inoculum had the same height as the original agar disk, i.e.
0.6 mm. Then, the inoculum was placed at the centre of the bottom lid of a Petri
dish, surrounded by 12 substrate disks (0.5 cm diameter and 0.6 mm height). This
allows to keep the environmental conditions inside the Petri dish constant. Finally,
the top lid of the Petri dish was placed on top of the bottom lid, as such restricting
the height between the lids to 0.6 mm. Using thin agar disks instead of droplets
(as in Chapter 5) leads to better images since the former keep their shape and
position even after closing the Petri dish, in contrast to the droplets where the
substrate can get displaced after closing the Petri dish. Each disk contains the
same amount of substrate and since they are placed at the same positions on the
lid, we may conclude that the substrate was spatially distributed in the same way
in each sample. In addition, the agar disks also maintain their shape during the
course of the experiments and these shapes can be easily detected by dedicated
image analysis algorithms, as such allowing for the automatic generation of masks.

Images of the growing fungi were captured using a flat bed scanner on top of which
the Petri dishes were mounted. The samples were placed on the scanner right after
they were prepared, in order to capture early growth, and growth was tracked for



6

6.2 MATERIALS AND METHODS 109

72 hours. During this period, images were scanned automatically every 15 min.
The images have a resolution of 1200 dpi and were automatically cropped to the
Petri dish, leading to images of 9 cm × 9 cm.

In order to assess the effects of the environmental conditions on fungal growth,
we placed the flat bed scanner in a climate chamber where temperature and RH
values could be adjusted. The specific values for our experiments were selected in
order to cover those used in similar experiments (e.g. Meyer and Brischke (2015);
Brischke and Rapp (2008); Tommerup (1983); Magan and Lacey (1984); Boddy
(1983); Trinci (1969); Bjurman and Wadsö (2000); Ekesi et al. (1999)). Temperature
was varied from 15◦ to 30◦ C in steps of 5◦ C, while RH was varied between 65%
to 80%, with steps of 5% as in Bonner and Fergus (1960); Pasanen et al. (1991);
Pardo et al. (2005); Bonner (1948). Although studies often investigate scenarios
with RH close to 100%, this was not possible with our set-up because the scanner
cannot operate at an RH higher than 80%.

In summary, four different temperatures and four different relative humidities were
considered giving a total of 16 environmental conditions. The growth of four repli-
cates was followed during a period of 72 hours, resulting in 269 images per sam-
ple, i.e. a total of 17,216 images.

6.2.2 Image processing and quantification of fungal
growth

First, the inoculum and the substrate were subtracted from the images since
growth within these regions cannot be captured. For this purpose, masks were
constructed automatically and subtracted from each image using Mathematica
(Version 10.0, Wolfram Research Inc., USA). We used the algorithm introduced in
Chapter 4 on the aforementioned images in order to obtain binary ridge maps of
the growing fungus. Then, the binary ridge maps were translated into graphs as
described in Chapter 5. Different graph characteristics can be obtained from these
graphs in order to investigate fungal growth. For instance, measures quantifying
fungal growth and expansion, such as the total length of the mycelium and the
area covered by the mycelium can be easily computed from them. In addition,
measures such as the number of tips and the node density that give insight into
the compactness of the mycelium can be calculated. Finally, other measures ac-
counting for the morphology of the fungi can also be obtained including the aver-
age internodal length and the growth angle. For more details, we refer the reader
to Chapter 5.

These topological measures were tracked during 72 hours for each environmen-
tal condition and replicated four times, resulting in 64 curves per measure. In
the remainder of this chapter, the topological measures are those computed from
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mean curves that were generated by averaging the corresponding time-stamped
measure over the four replicates of each condition.

6.2.3 Mathematical and statistical analysis

Clearly, varying temperature and RH might also have an interactive effect on the
different topological measures. In order to account explicitly for the impact of
temperature, RH and their combined effect on the different topological measures,
we constructed several predictive models. The models were constructed using
mean curves in two stages, referred to as primary and secondary modelling.

6.2.3.1 Primary modelling

In this modelling stage, a growth function depending only on time is fitted to the
growth data. At the end of this stage, a growth function representing the growth
data with fitted parameters is obtained.

Here, we fitted both the Gompertz function (Gompertz, 1825; Zwietering et al.,
1990) and the growth function of Baranyi (Baranyi and Roberts, 1994) to the val-
ues obtained for each of the topological measures. The former function belongs to
the family of sigmoidal curves widely used to model biomass growth (Adan, 2011;
Barry and Williams, 2011). Besides, Chapter 5 concluded that this function is ca-
pable of representing the evolution of several fungal growth features over time.
The Gompertz function is given by:

y(t) = y0 + (ym − y0)e−e
1+ge (λ−t)

(ym−y0 ) , (6.1)

where y(t) typically represents the biomass, y0 and ym represent the initial and
the maximum biomass, respectively, g represents the maximum growth rate and
λ the duration of the lag phase.

The growth function of Baranyi and Roberts (1994) was originally developed to de-
scribe bacterial growth in food as the evolution over time of the cell concentration
of a given bacteria. However, it has been widely used to predict the expansion of
fungal colonies under different environmental conditions (Samapundo et al., 2005,
2007; Mousa et al., 2016). Moreover, this function has been used to describe the
evolution of the diameter of fungal colonies and is given by:

y(t) = y0 + gA(t) − ln

�

1 +
egA(t) − 1

eym−y0

�

, (6.2)

where

A(t) = t +

�

1

g

�

ln
�

e−g t + egλ − e−g t−gλ
�

, (6.3)
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and y(t) represents the colony diameter, g the maximum growth rate, y0 the initial
diameter of the fungal colony at time t = 0, ym the maximum colony diameter
and λ the duration of the lag phase. In the remainder of this chapter, y(t) will be
used to denote any of the topological measures introduced in Section 6.2.2.

6.2.3.2 Secondary modelling

In this stage, the parameters obtained from Eqs. (6.2) and (6.1) fitted to the ob-
tained data (6.2.3.1) are modelled as functions of temperature, RH or both. Here,
we will focus on the maximum growth rate and the duration of the lag phase since
these parameters appear in both the Gompertz and the Baranyi growth function.

In order to assess the effect of the environmental conditions on the aforemen-
tioned growth parameters, we use a polynomial of second degree (see Eq. (6.4))
since it has been shown that such a construct allows to describe the effect of tem-
perature, humidity and their combination (Samapundo et al., 2005, 2007; Mousa
et al., 2016). Consequently, in order to assess the effects of either temperature or
RH on the maximum growth rate g, we use:

ln(g) = C0 + C1 T + C2 T2, (6.4)

ln(g) = C0 + C1H + C2H2, (6.5)

and similarly for the lag phase duration λ. T (◦ C) represents temperature and H

(%) represents RH. The combined effect of temperature and RH is studied using
the following second-order polynomial function:

ln(g) = C0 + C1H + C2H2 + C3 T + C4 T2 + C5 T H, (6.6)

and similarly for the lag phase duration λ. The coefficients of Eqs. (6.4), (6.5) and
(6.6) were determined by fitting them to estimated maximum growth rates and lag
phase durations, as obtained in the primary modelling stage (Section 6.2.3.1). For
that purpose, the Nonlinearmodelfit function, based on the Quasi-Newton method,
was used in Mathematica.

6.3 Results

6.3.1 Fungal growth curves

Several measures can be used to track the growth and evolution of fungi (see
Chapter 5), but in the remainder we focus on four measures summarizing the
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extension and the compactness of the mycelium, namely the total length, the
area covered by the mycelium, the total number of tips, and the node density. In
addition, two measures summarizing the morphology of the mycelium (the growth
angle and the mean hyphal length) are also computed, but due to the lack of
correlation with either temperature or RH, they will be only briefly discussed.

The evolution of the total length of the mycelium over time for each of the envi-
ronmental conditions (Section 6.2.1) is shown in Figure 6.1. Two different types
of behaviour can be observed. For most environmental conditions, growth starts
almost immediately and increase is always monotone until a plateau is reached, af-
ter which it levels off, a behaviour observed for several other fungal species (Trinci,
1974; Prosser and Trinci, 1979; Pasanen et al., 1991). In contrast, for some environ-
mental conditions, mainly those with low temperature, the total length increases
during the entire period. This behaviour has been also reported for the total length
of Mucor spinosus (Indermitte et al., 1994) and is consistent with our previous find-
ings (Chapter 5). The maximum total length of Coniophora puteana is reached at
an RH of 75% and a temperature of 20◦ C, which agrees with the optimal growth
conditions for this species, defined as 22◦ C and 70− 80% RH (Adan and Samson,
2011). The minimum total length is observed at 75% RH, and 25◦ C. Figures 6.2(a)
and 6.2(b) show the total length grouped by temperature and RH, averaged over
the different temperatures and RH, respectively. The maximum total length as a
function of temperature shows that, generally speaking, lower temperatures re-
sult in higher total length of the mycelium (Figure 6.2(a)). In the case of RH, most
observed hyphae are created at an RH of 75%, followed by 80%, 70% and 65%
(Figure 6.2(b)).

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
▲ ▲

▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲ ▲
▲

▲ ▲ ▲ ▲ ▲

▲ ▲ ▲ ▲
▲

▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

■ ■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■ ■ ■ ■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■ ■ ■
■

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

 









                  

     
                    

      































                          

◆ ◆
◆

◆
◆

◆
◆

◆
◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

◆ ◆ ◆ ◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

◆ ◆
◆

◆
◆

◆
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

0 10 20 30 40 50 60 70
0

100

200

300

400

Time (hours)

L
en
g
th

(c
m
)

Figure 6.1: Average total length over time for different environmental conditions.

In Figure 6.2(c) the evolution of the total number of tips over time per tempera-
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ture is shown. The same growth trends as for the total length (Figure 6.2(a)) can
be discerned. Indeed, the number of tips levels off after a few hours when tem-
perature is higher than 25◦ C, while cultures growing at lower temperatures grow
continuously and produce a higher numbers of tips. In Figure 6.2(d), as in the case
of the total length, an RH of 75% leads to more tips. Moreover, the greater the
difference in RH with the optimum of 75%, the lower the number of tips.

The evolution of the area covered by the mycelium as a function of temperature
and RH can be found in Figure 6.2(e) and 6.2(f), respectively. The maximum area
is obtained in the scenarios with a temperature of 20◦ C, where the area increases
linearly over time during the entire period. Although a similar growth behaviour
can be observed at 15◦ C, the remaining two temperatures exhibit an almost ex-
ponential growth only at the beginning of the experiment after which a plateau is
reached and growth stabilizes. This measure is an extension of the colony diam-
eter, a widely studied measure for which similar behaviour has been reported in
literature (Pasanen et al., 1991; Samapundo et al., 2005). In view of Figure 6.2(f),
we may conclude that the lowest area corresponds to the lowest RH. The samples
grown at 80% and 70% lead to similar areas at the end of the experiment, which
are almost the double of the ones grown at 65% RH. Finally, the largest mycelium,
with an area of approximately 5.5cm2, is obtained at an RH of 75%. These find-
ings suggest that the maximum area covered by Coniophora puteana is obtained
for temperatures between 15◦ C and 20◦ C and an RH of 75%.

The node density (Figures 6.2(g) and 6.2(h)) is often used to assess the compact-
ness of mycelia. An increase of this measure indicates that the mycelium pro-
duces new nodes, by branching or extending its apices, faster than it colonizes
space, while a decrease denotes either a rapid colonization of space or a cessation
of growth. As can be observed in Figure 6.2(g), the node density increases over
time, irrespective of the temperature reaching values within the range of those
observed for other species (see Chapter 5). Yet, while it increases rapidly for most
temperatures until a plateau is reached, at 15◦ C it increases during the entire
period, as such resulting in a denser network. In Figure 6.2(h), showing the node
density for different RH values, similar trends can be observed. In this case, the
densest networks are obtained at an RH of 75%.

In addition to the aforementioned measures, we also studied the morphology of
the mycelium in terms of the growth angle and the average hyphal length. These
measures show a significant variability over time irrespective of the temperature
and RH, and no correlation with either temperature or RH was observed. The av-
erages computed over time lead to average hyphal length values of around 200
microns and 0.75 radians for the growth angle, which agrees with the findings re-
ported in Chapter 5, as such suggesting that these morphological features depend
on the fungal species and to a much lesser extent on the environmental conditions.
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Figure 6.2: Topological measures averaged over temperature or RH. The graphs show the evolution
over time of the total length (a-b), the number of tips (c-d), the area covered by the mycelium (e-f) and

the node density (g-h) grouped by temperature and RH, respectively.
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6.3.2 Effects of temperature and relative humidity on
fungal growth

6.3.2.1 Modelling stages

In the primary modelling stage, the log of the average data over the four replicates
for each studied environmental condition was used to fit the functions described in
Eqs. (6.1) and (6.2), as such resulting in two sets of parameters for each condition
and measure. This allows us to study the effect of the environmental conditions on
the parameters of the fitted functions. Here, we focus on two growth parameters,
namely the lag phase duration λ and the maximum growth rate g.

As an example, Figure 6.3 shows the fitted Gompertz and Baranyi functions for
the total length for four environmental conditions together with the corresponding
data. The average coefficients of determination (R2) of the fitted functions can
be found in Table 6.1 for all considered topological measures. As can be observed
in this table, for most conditions both functions yield R2 that are higher than 0.9,
indicating a good fit (Saltelli et al., 2004). Therefore, we may conclude that the
Gompertz and Baranyi functions properly represent the data obtained for each
topological measure.
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Figure 6.3: Average measured total length for four temperatures at 70% RH over time (dot) and the
corresponding fitted (a) Gompertz and (b) Baranyi functions (solid lines).

Table 6.1: Average coefficient of determination (R2) for the Gopertz and Baranyi functions fitted to the
average data obtained for each topological measure.

Topological measure Gompertz Baranyi

Total length 0.999166 0.999426
Tips 0.997813 0.999495
Area 0.993473 0.977230
Node density 0.997999 0.891336

As a preliminary step, we conduct a correlation analysis between the growth pa-
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rameters of the fitted functions (g and λ) and the environmental conditions (Ta-
ble 6.2) in order to get some insight about their underlying association. Most
correlation coefficients are low, indicating a lack of correlation between the fitted
parameters and the environmental conditions. However, the correlation values
are higher for the maximum growth rate g, especially for the parameters obtained
for the Gompertz function. While temperature exhibits a positive association with
most of the studied topological measures indicating that most measures increase
as a function of temperature, the linear association between the RH and the topo-
logical measures varies significantly and therefore it is not possible to depict a
general trend. This correlation analysis suggests that a linear association is not
able to capture the existent relation between the primary modelling parameters
and the environmental conditions and therefore other types of association should
be studied.

Table 6.2: Correlation coefficients between the fitted parameters, maximum growth rate g and lag
phase duration λ, and the environmental conditions, temperature and RH.

Measure Total length Number of tips Area Node density

Function Gompertz Baranyi Gompertz Baranyi Gompertz Baranyi Gompertz Baranyi

Temperature and g 0.6516 0.5979 -0.3460 0.2117 0.1225 0.1202 0.4572 0.1407
Temperature and λ 0.0753 0.0778 0.2487 0.1672 0.1071 -0.2461 -0.3015 0.1017
RH and g -0.1014 -0.0769 0.1152 -0.3751 -0.1144 0.3294 -0.1360 -0.0228
RH and λ 0.0747 -0.0089 0.0245 -0.0002 -0.1122 0.3206 0.1673 -0.0115

In the secondary modelling stage, the dependency of the growth parameters on
temperature and RH is further investigated. These parameters are used to fit one
of Eqs. (6.4), (6.5) and (6.6). In order to better represent the effects of the environ-
mental conditions and to be consistent with previous studies, we use transformed
values ln(g) and 1/λ of the growth parameters to fit the aforementioned models,
a common practice in similar studies (Samapundo et al., 2005, 2007; Zhou et al.,
2012; Mousa et al., 2016).

6.3.2.2 Temperature and fungal growth

In order to study the individual effect of temperature on the selected topologi-
cal measures, we fit Eq. (6.4) to model parameters g and λ obtained during the
primary modelling stage. The coefficients of Eq. (6.4) fitted to ln(g) and 1/λ are
shown in Tables 6.3 and 6.4, respectively. For what concerns the total length, the
polynomial shows a good fit for the maximum growth rate (see Table 6.3). Even
though the coefficients of the two fitted polynomials have opposite signs within
the range of interest, the maximum growth rate increases as a function of tem-
perature for both the Gompertz and the Baranyi functions (see Figure 6.4). This
behaviour has been observed by others (Fuhr et al., 2012; Ekesi et al., 1999).
As can be observed in this figure, the values obtained for the parameters of the
Gompertz and the Baranyi functions differ somewhat, which could be due to their
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dependence on the specific functional form (Baty and Delignette-Muller, 2004). In
addition, a few of the values lie further from the rest of the data-set. This could be
caused by the differences in growth behaviour shown in Figure 6.1. The maximum
growth rate of the number of tips obtained using the Gompertz function cannot
be properly expressed as a polynomial depending only on temperature given the
low R2 (0.4894). On the other hand, the maximum growth rates obtained using
the Baranyi function increase as a function of temperature. The maximum growth
rate of the area and the node density obtained with the Baranyi function cannot be
fitted by a polynomial, as opposed to those obtained with the Gompertz function.
The maximum growth rate of the mycelium area shows an increase until a maxi-
mum after which it decreases, a similar behaviour to that reported for the colony
radius for other fungal species (Ekesi et al., 1999; Boddy, 1983; Kim et al., 2005).
While the maximum growth rate of the node density shows a similar trend as the
one observed for the total length and the number of tips,

Table 6.3: Fitted parameters of ln(g) = C0 + C1 T + C2 T2 using the maximum growth rates g obtained
from the primary modelling stage.

Measure Total length Number of tips Area Node density

Function Gompertz Baranyi Gompertz Baranyi Gompertz Baranyi Gompertz Baranyi

C0 -4.8614 -2.0012 8.3317 -3.9469 -12.5767 N/A -2.5049 N/A
C1 0.1191 -0.1641 -0.8936 -0.0563 0.7019 N/A 0.1143 N/A
C2 -0.0015 0.0049 0.0184 0.0037 -0.0138 N/A -0.0018 NA
R2 0.9784 0.9821 0.4894 0.8129 0.9272 N/A 0.7048 N/A
MSE 0.3196 0.2762 6.3182 3.9369 2.2572 N/A 0.6038 N/A

For the lag phase duration λ, only the one for the total length with the Gompertz
function could be fitted by the polynomial (Table 6.4). Apparently the lag phase
duration increases as a function of temperature (Figure 6.4) in contrast to the dy-
namics observed in previous studies (Samapundo et al., 2005, 2007; Boddy, 1983).
We should note that even though the effects of the environmental conditions are
discussed on the lag phase duration directly, the graphs and tables in the remain-
der of this chapter show its reciprocal. Therefore, an increase of the lag phase
duration is reflected as a decrease of its reciprocal and vice versa. For the other
parameters we cannot draw any conclusions due to the lack of correlation between
the data and the fitted curves.

Table 6.4: Fitted parameters of 1
λ = C0 + C1 T + C2 T

2 using the lag phase duration values λ obtained
from the primary modelling stage.

Measure Total length Number of tips Area Node density

Function Gompertz Baranyi Gompertz Baranyi Gompertz Baranyi Gompertz Baranyi

C0 -0.0231 -0.4817 1.4725 0.0464 1.4942 -0.1444 1.4725 0.0464
C1 0.004 0.0415 -0.1262 -0.0040 -0.1504 0.0115 -0.1262 -0.0040
C2 -0.00006 -0.0008 0.0027 0.00008 0.0035 -0.0001 0.0027 0.00008
R2 0.8174 0.1159 0.2071 0.2190 0.1851 0.2281 0.2071 0.2190
MSE 0.0009 0.0139 0.1202 0.00004 0.0862 0.0028 0.1202 0.00004
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Figure 6.4: Plot of the maximum growth rate (a-b) and the lag phase duration (c-d) obtained for the
total length given by Eq. (6.4). The dots represent the model parameters of the Gompertz and the

Baranyi functions determined in the primary modelling stage.

6.3.2.3 RH and fungal growth

A similar analysis was performed for the RH using Eq. (6.5) in order to assess the
effect of RH on the growth parameters of the Gompertz and Baranyi functions.
The fitted parameters are shown in Tables 6.5 and 6.6 for g and λ, respectively.
Both the Gompertz and Baranyi parameters obtained for the total length behave
similarly: the maximum growth decreases, reaches a minimum around 70% RH
and then increases again (see Figure 6.5). In order to study the impact of the RH
on the maximum growth rate of the number of tips, we must turn to the Baranyi
function since the Gompertz shows a suboptimal fit with a R2 below 0.70. The
maximum growth rate of this measure reaches a minimum between 70 and 75%
RH and then grows again. The parameters obtained for the maximum growth rate
of the area and the node density take significantly low values, as such suggesting
that these measures are not strongly influenced by RH. Even though growth rates
have been widely studied using the water potential and the moisture content (Gock
et al., 2003; Samapundo et al., 2007; Boddy, 1983; Pardo et al., 2004), the values
studied cover a different range than our study and therefore are difficult to relate
to our data as such hindering an accurate validation of the maximum growth rates
obtained. For instance, one of the few studies investigating the effect of RH on
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fungal growth in a similar range of interest (Pasanen et al., 1991) shows very
similar growth rates of the colony diameter for RH between 75 and 92% as such
agreeing with our findings.

Table 6.5: Fitted parameters of ln(g) = C0 + C1 H + C2 H2 using the maximum growth rates g obtained
from the primary modelling stage.

Measure Total length Number of tips Area Node density

Function Gompertz Baranyi Gompertz Baranyi Gompertz Baranyi Gompertz Baranyi

C0 34.2995 55.3757 -96.3801 152.568 -35.8295 N/A 37.9888 N/A
C1 -1.0332 -1.6195 2.5975 -4.2456 0.8931 N/A -1.0727 N/A
C2 0.0071 0.0111 -0.0177 0.0287 -0.0062 N/A 0.0073 NA
R2 0.9731 0.9783 0.4737 0.8358 0.9122 N/A 0.7080 N/A
MSE 0.3986 0.3345 6.5120 3.455 2.7226 N/A 0.5973 N/A

As in the case of temperature, the dependence between λ and RH cannot be de-
scribed adequately using Eq. (6.5). The only valid fit is obtained for the maxi-
mum growth rate computed from the Gompertz function, which suggests that the
lag phase duration decreases as the RH increases (see Figure 6.5) agreeing with
the behaviour observed in similar studies (Samapundo et al., 2007; Boddy, 1983).
However, this growth parameter shows low curvature and slope, indicating a weak
effect of RH.

Table 6.6: Fitted parameters of 1
λ = C0 + C1 H + C2 H

2 using the lag phase duration values λ obtained
from the primary modelling stage.

Measure Total length Number of tips Area Node density

Function Gompertz Baranyi Gompertz Baranyi Gompertz Baranyi Gompertz Baranyi

C0 -2.3161 9.2678 4.4818 16.2212 -3.0474 -0.6150 23.5676 -0.1969
C1 0.0618 -0.2565 -0.1247 -0.4541 0.0909 0.0188 -0.6591 0.0052
C2 -0.0004 0.0017 0.0008 0.0031 -0.0006 -0.0001 0.0046 -0.00003
R2 0.7991 0.2593 0.3145 0.3479 0.0321 0.1191 0.3188 0.1361
MSE 0.0010 0.0116 0.0120 0.0533 0.1024 0.0032 0.1033 0.00004
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Figure 6.5: Plot of the maximum growth rate (a-b) and the lag phase duration (c-d) obtained for the
total length given by Eq. (6.5). The dots represent the model parameters of the Gompertz and the

Baranyi functions determined in the primary modelling stage.

6.3.2.4 Combined effect of temperature and RH on fungal growth

In order to assess the interactive effect of temperature and RH on the topologi-
cal measures, we fit Eq. (6.6) to the model parameters obtained in the primary
modelling stage. Tables 6.7 and 6.8 show the coefficients of Eq. (6.6) for g and λ,
respectively. It can be observed that the R2 are not substantially higher and the
mean squared errors are only slightly lower with the incorporation of the combined
effects. In addition, the order of magnitude of the combined effect coefficient, C5,
is much lower than those of the others. This suggests a weak interaction between
the two environmental factors.

In order to further compare the models constructed in this section we use the
Akaike information criterion (AIC) (Posada and Buckley, 2004). Consequently, we
compute the AIC value of each of the models as listed in Table 6.9. The minimum
AIC value is always obtained with the polynomial of Eq. (6.6), as such indicating
that this is the best model to represent the parameters of the primary modelling
functions. For most measures and parameters, there is a significant difference
between the AIC values obtained with Eq. (6.4) and (6.5) and the minimum AIC
value obtained with Eq. (6.6) which implies an improvement by the addition of the
interactive effect of both environmental conditions. However, for some measures
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Table 6.7: Fitted parameters of ln(g) = C0 + C1 H + C2 H2 + C3 T + C4 T2 + C5 T H using the maximum
growth rates g obtained from the primary modelling stage.

Measure Total length Number of tips Area Node density

Function Gompertz Baranyi Gompertz Baranyi Gompertz Baranyi Gompertz Baranyi

C0 31.3395 57.8492 -105.961 146.958 -50.555 N/A 29.5582 N/A
C1 -1.0180 -1.6390 2.8702 -4.1784 0.9807 N/A -0.9781 N/A
C2 0.0071 0.0111 -0.0177 0.0287 -0.0062 N/A 0.0073 N/A
C3 0.1680 -0.2270 -0.0150 0.1601 0.9842 N/A 0.4191 N/A
C4 -0.0015 0.0049 0.0184 0.0037 -0.0138 N/A -0.0018 N/A
C5 -0.0006 0.0008 -0.0121 -0.0029 -0.0038 N/A -0.0042 N/A
R2 0.9819 0.9902 0.535966 0.8667 0.9296 N/A 0.7460 N/A
MSE 0.2682 0.1504 5.7421 2.8044 2.1826 N/A 0.5195 N/A

Table 6.8: Fitted parameters of 1
λ = C0 + C1 H+ C2 H

2 + C3 T + C4 T2 + C5 T H using the lag phase duration
values λ obtained from the primary modelling stage.

Measure Total length Number of tips Area Node density

Function Gompertz Baranyi Gompertz Baranyi Gompertz Baranyi Gompertz Baranyi

C0 -1.9394 8.3847 4.86722 15.5051 -1.5355 0.3217 30.6773 -0.1114
C1 0.0570 -0.2507 -0.1364 -0.4553 0.0902 0.0037 -0.7386 0.0046
C2 -0.0004 0.0017 0.0008 0.0031 -0.0006 -0.0001 0.0046 -0.00003
C3 -0.0151 0.0604 0.0022 0.0776 -0.1525 -0.0371 -0.3822 -0.0058
C4 -0.00006 -0.0008 -0.0008 -0.0019 0.0035 -0.0001 0.0027 0.00008
C5 0.0002 -0.0002 0.0005 0.00005 0.00002 0.0006 0.0035 0.00002
R2 0.8774 0.3240 0.4137 0.4071 0.2034 0.4517 0.4986 0.3102
MSE 0.0006 0.0106 0.0102 0.0484 0.0843 0.0020 0.0760 0.00003

and parameters (e.g. the maximum growth rate and the lag phase of the mycelium
area) the AIC values are very close to each other, denoting poor improvement, as
such it is impossible to decide which model is better to represent them.

Table 6.9: Akaike information criterion (AIC) value obtained for the fit of Eq.(6.4), 6.5 and 6.6 to the
parameters of the Baranyi and the Gompertz function.

Measure Total length Number of tips Area Node density

Function Gompertz Baranyi Gompertz Baranyi Gompertz Baranyi Gompertz Baranyi

ln(g) = C0 + C1 T + C2 T2 33.6389 31.3052 81.381 73.8124 64.9125 N/A 43.8144 N/A
ln(g) = C0 + C1H + C2H2 37.1692 34.3686 81.8645 71.7231 67.9115 N/A 43.6424 N/A
ln(g) = C0 + C1H + C2H2 + C3 T + C4 T2 + C5 T H 30.8296 21.5821 79.8513 68.3854 64.3748 N/A 41.4096 N/A
1
λ = C0 + C1 T + C2 T

2 -59.981 -16.454 -19.568 7.09022 12.6858 -41.954 17.9947 -108.31
1
λ = C0 + C1H + C2H

2 -58.456 -19.285 -18.861 4.98271 15.4384 -39.841 15.566 -106.69
1
λ = C0 + C1H + C2H

2 + C3 T + C4 T2 + C5 T H -66.362 -20.749 -21.362 3.46084 12.3216 -47.429 10.6616 -110.30

As an example, the growth parameters obtained in the primary modelling stage
and the response surface obtained with Eq. (6.6) are shown in Figure 6.6 for the
total length. The graphs suggest that the effect of RH is slightly stronger than the
effect of temperature, in agreement with other studies (Samapundo et al., 2007,
2005). Even though the synergistic interaction between the two environmental
factors can be observed, it is much less pronounced than reported for other fun-
gal species and growth scenarios (Samapundo et al., 2007; Zhou et al., 2012).
As can be observed in Figure 6.6, the effects of the environmental conditions are
more pronounced for the Baranyi function than for the Gompertz function. As was
already observed in Section 6.3.2.2, the maximum growth increases with temper-
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ature. In contrast, it decreases until it reaches a minimum and then grows again
as RH increases. The effect of the environmental conditions is even more evident
for the lag phase. However, only the polynomial fitted to the parameters of the
Gompertz function showed a sufficiently good fit. The lag phase duration λ of the
total length for the Gompertz parameters increases as a function of temperature
and decreases as a function of RH. The surface plots of the other measures show
a similar behaviour, i.e. mainly the combination of the effects obtained from the
individual effects without much interaction and therefore will not be further dis-
cussed.

(a) Maximum growth rate g of the Gom-
pertz function

(b) Maximum growth rate g of the
Baranyi function

(c) Lag phase duration λ of the Gompertz
function

(d) Lag phase duration λ of the Baranyi
function

Figure 6.6: Response surfaces of the maximum growth rate (a-b) and the lag phase duration (c-d) given
by Eq. (6.6). The dots represent the model parameters of the Gompertz and the Baranyi functions

determined in the primary modelling stage.

6.4 Discussion

The experimental set-up presented in Chapter 5 was adjusted in this chapter in
order to assess the effect of temperature and RH on fungal growth by using agar
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disks, allowing us to capture better images and to build masks automatically. The
images were acquired in a climate cabinet with control of the environmental con-
ditions could be changed.

Images were used here to compute different topological measures accounting for
different aspects of fungal growth, instead of focussing on a single measure as in
most studies (Samapundo et al., 2007; Pardo et al., 2004; Boddy, 1983; Kim et al.,
2005; Zhou et al., 2012). Topological measures such as the total length provide
more accurate information on the development of fungi since they track all hyphae
of the mycelium instead of relying on macroscopic measures such as the colony
radius (Samapundo et al., 2007; Boddy, 1983) or limiting to a few hyphae (Ra-
makrishna et al., 1993; Laarhoven et al., 2015; Siripatrawan and Makino, 2015;
Gougouli and Koutsoumanis, 2013). Also the morphology and the compactness of
the fungus can be followed over time, as well as the impact of temperature and RH
thereon. In addition, these measures can be obtained from the same sample over
time since image analysis is non destructive. Essentially, our method provides
an alternative to destructive techniques often use to study the effect of the en-
vironment on fungi (Meyer and Brischke, 2015; Brischke and Rapp, 2008; Osono,
2015). Furthermore, the image acquisition and the computation of the topological
measures is done automatically, as such avoiding the use of manual techniques.
Even though our technique presents a valid alternative to established techniques,
there is still room for improvement in both the experimental set-up and the image
processing as discussed in Chapter 5.

The main results presented in this chapter agree with those obtained in different
studies, as such demonstrating the validity of our method to assess the effects of
temperature and RH on fungal growth. For instance, two distinct types of growth
behaviour were observed: uniform growth (Indermitte et al., 1994) and exponen-
tial growth (Trinci, 1974; Prosser and Trinci, 1979; Pasanen et al., 1991). The opti-
mal growth conditions of Coniophora puteana observed at 70% RH and 25◦ C also
agree with those reported in other studies (Adan and Samson, 2011; Etheridge,
1957). The data obtained from the time series of images allows for fitting a Gom-
pertz and Baranyi functions to the extracted topological measures. The involved
model parameters can subsequently be studied as functions of temperature and
RH. We note here that the value of these parameters are dependent on the form
of the fitted function (Baty and Delignette-Muller, 2004) and are thus different for
the Gompertz compared to the Baranyi, as can be observed in Figures 6.4, 6.5 and
6.6.

These growth parameters can be compared with those obtained in similar stud-
ies (Samapundo et al., 2007; Pardo et al., 2004; Zhou et al., 2012). The effect of
temperature on the maximum growth rate seems to agree with previous findings
irrespective of the topological measures considered. However, the relation of λ
and the temperature and RH cannot be properly considered using this approach
since the values obtained for λ yielded poor fits for most measures. This might
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be a consequence of the experimental design, as in our experiments growth starts
almost immediately since an active mycelium is present from the beginning of the
experiment, so that a lag phase is not captured. One of the most striking observa-
tions from this analysis is the effect of temperature on the maximum growth rate
of the total length. The maximum growth rate increases as a function of tempera-
ture for this measure even though the maximum total length values are observed
at lower temperatures. This actually suggests that growth occurs in an exponential
way at high temperatures, after which a plateau is reached, while lower temper-
atures lead to mycelium that grows continuously during the entire period and as
such results in a much higher total hyphal length. A similar behaviour can be ob-
served for the number of tips, which is strongly correlated with the latter measure,
a correlation that seems to persist even under changing environmental conditions.
When studying the effect of the RH, we also observed that higher growth rates re-
sult in smaller mycelia. However, in this case the correlation is not that clear since
the growth rate as a function of RH shows a change of behaviour after a minimum
is reached. Even though the interactive effect of both environmental factors plays
a role in fungal growth, it is not significant for any of the topological measures
within the range studied.

Even though similar results have already been observed for different fungal species
and conditions, this work presents the first characterization relying on images of
growing fungi. In addition, we were able to study measures by considering the
entire mycelium, resulting in a comprehensive characterization of fungal dynam-
ics under different environmental conditions, as opposed to other studies. For
instance, this method could be used in the assessment of decay, as an alternative
to the visual inspection of the samples, thereby yielding more objective results
and avoiding manual work (Pasanen et al., 2000; Nielsen et al., 2004). In addition,
models such as the ones introduced in Chapter 3 often neglect the effects of the
environmental conditions but using the methods described in this chapter some
of the model parameters could be replaced by a relationship characterising their
dependence on temperature and RH.

6.5 Conclusions

In this chapter an automated method based on image analysis was used to mea-
sure the effects of two environmental conditions on fungal growth. For this pur-
pose, we employed an adapted version of the method presented in Chapter 5,
allowing us to study fungal images captured under different temperatures and RH.
This method overcomes some of the problems of most currently used approaches,
yielding a complete characterization of the effects of temperature and RH on fun-
gal growth. The main results of this study are in line with similar studies found
in literature as such suggesting that our approach is suitable for studying these
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factors. Finally, due to the simplicity of the techniques used in this work, similar
characterizations could be easily achieved for several growth species and environ-
mental conditions, as such allowing researches to address further open questions
regarding the effect of environmental conditions on fungal growth.
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7
Modelling three-dimensional
fungal growth in response to

environmental stimuli

7.1 Introduction

Fungi develop complex networks that function as efficient transport structures
along which nutrients can be translocated over large distances, as such cover-
ing local needs (Boddy et al., 1999; Dickson and Kolesik, 1999). Thanks to these
structures, fungi are able to grow and survive even in the most extreme condi-
tions (Magan, 2007), which explains why these organisms are present in most
natural and man-made ecosystems. Fungi are decomposers of organic material,

This chapter has been published as: Vidal-Diez de Ulzurrun, J.M. Baetens, J. Van den
Bulcke, B. De Baets (2017). Modelling three-dimensional fungal growth in response to envi-
ronmental stimuli. Journal of Theoretical Biology 414, 35-49.
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making them essential for the proper functioning of nutrient cycles in natural
ecosystems (Krivtsov et al., 2006). In human ecosystems, fungi cause damage
and economic losses since building materials (Adan and Samson, 2011), food
products (Panagou et al., 2007) and plants (Henkel et al., 2012) are prone to
their attack. Fungi are also used to produce food products and medicines (Grimm
et al., 2005), and some are used as biological agents against nematodes or in-
sects (Weinzierl and Henn, 1991; Alvindia and Natsuaki, 2008).

For all of these reasons, fungi have been extensively studied, especially through
laboratory experiments. The latter are generally expensive, tedious or of a limited
scope (Fricker et al., 2009), thus comprehensive studies of fungal dynamics in vitro

or in situ are rare. Moreover, fungi grow in environments and under environmen-
tal circumstances that cannot always be mimicked easily in laboratories (Boswell
et al., 2007). Finally, even though it might be possible to mimic certain environ-
mental conditions, it is practically impossible to account for intra species variabil-
ity. In silico, however, there are no such limitations.

Different disciplines benefit from mathematical models to complement laboratory
experiments and verify theoretical hypotheses (Edelstein-Keshet, 1988; Larsen
et al., 2012; Davidson, 2007), as is the case in mycology. Such models allow
researchers to study fungal growth across larger areas and in more diverse envi-
ronmental conditions than ever possible in the laboratory, and in more detail than
most experimental devices are able to capture. Additionally, in silico simulations
are inexpensive and can be repeated several times, as such making it possible to
capture the natural variability in fungal growth dynamics.

Several mathematical models have been proposed to mimic fungal growth by rely-
ing on different hypotheses, methods and modelling paradigms (Davidson, 2007;
Boswell and Hopkins, 2008). Fungal growth models can be classified according to
the scale they are operating at. Microscopic models study the evolution of fungal
cells (Regalado and Sleeman, 1999), mesoscopic models aim at studying the ex-
tension of hyphae (Boswell, 2008; Carver and Boswell, 2008; Hopkins and Boswell,
2012; Meškauskas et al., 2004a), while macroscopic models focus on biomass
change (Edelstein, 1982; Davidson, 1998; Falconer et al., 2005). Some of these
models acknowledge the three-dimensional structure of the mycelium (Fuhr et al.,
2011; Meškauskas et al., 2004a; Boswell, 2008), whereas others restrict growth to
two dimensions (Carver and Boswell, 2008; Hopkins and Boswell, 2012; Edelstein,
1982; Davidson, 1998; Falconer et al., 2005). While some modellers use differen-
tial equations to formalize the governing physical and biological processes (Edel-
stein, 1982; Davidson, 1998; Falconer et al., 2008; Boswell et al., 2002), others
shift from the continuum to spatially explicit models (SEM) that allow for tracking
the fungal structure over time in detail (Boswell, 2008; Carver and Boswell, 2008;
Hopkins and Boswell, 2012). Such models typically mimic biological processes us-
ing sets of simple rules rather than forcing biological processes into the mold of
differential equations. Spatially explicit models have proven their usefulness in
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different disciplines (see Grimm (1999)) and are increasingly acknowledged as a
powerful alternative to classical models. There are two possible approaches for
the representation of physical space in such models: either space is discretized by
using a lattice or grid, as such restricting the degrees of freedom tied up with the
fungal growth processes (Boswell, 2008; Fuhr et al., 2011; Boswell et al., 2002),
or alternatively, no discretization is imposed at all and the in silico fungus can
grow freely. The latter lattice-free models can capture the complex nature of
mycelia (Carver and Boswell, 2008; Hopkins and Boswell, 2012; Meškauskas et al.,
2004a).

Although macroscopic models are able to represent fungal expansion, they cannot
offer a complete understanding of the processes leading to the complex struc-
ture of typical mycelia (Edelstein, 1982; Davidson, 1998; Falconer et al., 2005).
On the other hand, microscopic models are difficult to upscale, so they are not
able to provide information about the overall evolution of the fungal colony. In
contrast, mesoscopic models capture both the complexity of the network and
the biomass evolution. Moreover, imaging devices nowadays enable the collec-
tion of data needed for the calibration of mesoscopic models (e.g. Falconer et al.
(2010)). Unfortunately, most of these models study fungal growth in only two di-
mensions (Boswell et al., 2007; Carver and Boswell, 2008; Hopkins and Boswell,
2012), which is a simplification as fungal growth is known to occur in three di-
mensions, and many phenomena can only become fully appreciated in the three-
dimensional space. Even though some mesoscopic studies investigate hyphal
growth in three dimensions, most of them confine the growth to a lattice resulting
in unrealistic in silico mycelia (Boswell, 2008; Fuhr et al., 2011). Finally, only a few
models are lattice free, thus leading to more realistic in silico results, but they still
neglect the interactions between the in silico fungi and their environment (Carver
and Boswell, 2008; Meškauskas et al., 2004a).

In response to the shortcomings of current fungal growth models, this chapter
presents a lattice-free three-dimensional fungal growth model that accounts for
the interactions between the in silico fungus and its environment. The model sim-
ulates both the biological processes driving fungal growth and the hyphal response
to external stimuli. It is discrete in both time and space and it tracks the structure
of the entire mycelium as it evolves over time. This model is highly versatile since
it is able to represent the reaction of fungi to different materials. The outcome
of the model comprises all details on the shape and position of the individual hy-
phae in the in silico mycelium, the evolution over time of substrate both inside
and outside the fungus and the connections emerging between hyphae within the
mycelium. On the basis of these outputs, it is possible to track the evolution of
different growth features that can then be compared to those obtained in vitro or
in situ (Chapter 5).
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7.2 Materials and methods

The model described here is a SEM that tracks the hyphae individually as they
evolve in discrete time steps. It is biologically based, since in silico hyphal growth
is mimicked by relying on sound mathematical representations of the governing
processes, namely uptake and translocation of nutrients, apical growth, branching,
and anastomosis (see Section 7.2.1). The model is implemented in Mathematica
(Version 10.0, Wolfram Research Inc., USA) and it can simulate growth in three di-
mensions without imposing any kind of lattice, therefore allowing hyphae to grow
freely in the environment. In addition, the in silico fungus is able to interact with
different compounds and stimuli in its environment, such as substrate, inert ma-
terials or physical forces, which allows to simulate fungal growth in a variety of
scenarios.

7.2.1 Model assumptions

In nature, fungal growth occurs as the combined result of various biological pro-
cesses. Therefore, in order to obtain realistic in silico simulations of fungal growth,
each of these processes is incorporated in our model. In this subsection, the key
processes steering fungal growth are discussed in detail to motivate the model
formulation described in Section 7.2.2.

Fungi can be divided into two main categories according to the structure of their
vegetative body, namely yeast-like and filamentous fungi (Wendland, 2001). While
the former typically give rise to unicellular bodies, the latter develop multicellular
filaments, called hyphae. The ensemble of hyphae makes up a complex connected
network that is considered to be a single organism, and is referred to as a fungal
colony or mycelium. Nutrients are taken up by the filamentous network and are
subsequently transformed into internal substrate. Usually, the nutritional require-
ments of fungi are minimal and can be met by most materials (Adan and Samson,
2011). Substrate is translocated in the mycelium in order to cover its local needs.
Translocation of nutrients is extremely effective (Tlalka et al., 2007; Fricker et al.,
2008), which is one of the reasons why fungi succeed in surviving and expanding
even in harsh environmental conditions, radiation or extreme temperatures (Ma-
gan, 2007). For the same reason, infections spread rapidly within the mycelium,
even when they are initially very localized, which demonstrates that different parts
of a fungal colony are able to communicate with one another (Dijksterhuis, 2011).

The shape of the mycelium results from two main processes, being apical growth
and branching (Edelstein, 1982). The former occurs when a hyphal tip or apex gen-
erates new biomass by extending. Hyphal tips represent the most dynamic areas
of the mycelium, where different cell organelles, e.g. Spitzenkörper, cooperate in
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order to ensure extension (Riquelme et al., 1998). The position of the Spitzenkör-
per in the hyphal tip determines the growth direction, i.e. the direction along which
a filament extends and creates new biomass (Riquelme et al., 1998; Reynaga-Peña
et al., 1997). Even though this direction usually does not change dramatically, it
has been proven that small changes occur during the growth process (Riquelme
et al., 1998). New biomass can also be created when new hyphae emerge from the
existing filamentous mycelium, just like branches on a tree. There are two different
types of branching, called lateral and dichotomous branching (Edelstein, 1982),
with the latter one being the most common (Reynaga-Peña et al., 1997; Mouriño
Pérez et al., 2006). While lateral branching can occur in any part of the mycelium,
apical branching is restricted to the hyphal tips. The angle at which a new hypha
branches relative to the existing one depends on the species, as such constituting
a characteristic feature to recognize fungal species (Kamel et al., 2009).

While growing and exploring, a hypha can encounter another hypha and fuse
with it (anastomosis), as such changing the shape of the hyphal network and
increasing the efficiency of the nutrient cycle (Simonin et al., 2012). Some re-
searchers hypothesize that hyphae can sense and avoid each other, a behaviour
referred to as negative autotropism (Hickey et al., 2002), which would result from
an aerotropism towards oxygen, (away from oxygen-depleted zones) or a nega-
tive chemotropism (away from depleted products). Yet, proof of either mechanism
remains elusive (Brand and Gow, 2009). Similarly, it has been hypothesized that
hyphae sense the environmental conditions in their surroundings, and can adapt
their dynamics depending on the local conditions, ultimately leading to changes
in the shape of the mycelium (Papagianni, 2004; Fomina et al., 2000; Watts et al.,
1998). For example, it has been reported that fungi can sense and adapt to the
presence of toxic metals (Fomina et al., 2000) or surface contours (Watts et al.,
1998). The clearest example of how fungal growth is influenced by the environ-
mental conditions is the effect of gravity on aerial hyphae (hyphae growing in the
air), i.e. a gravitropic tropism (Moore, 1991).

Many fungi can penetrate plant, animal or human tissue, but there are man-made
materials, such as plastic or glass, that are practically impenetrable, as such re-
stricting fungal growth (Samson, 2011). When encountering such inert materials,
the fungal organisms adapt their dynamics, which typically results in filaments
crawling over the surface of these materials. In addition, fungicides and fungal
growth inhibitors are usually present in natural and human environments limiting
the growth of fungal organisms (Mauch et al., 1988), thus altering the shape of the
mycelium.
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7.2.2 Modelling the growing fungus

In order to mimic the evolution of the mycelium over time, the in silico fungus
at time step t is encoded as an array Ft containing the description of all hyphae
present in the mycelium at that time step. Each row  of the array represents an
in silico hypha. The hyphae are divided into connected hyphal segments and the
description St,j of a segment S,j at time step t is located in the row of the hy-
pha to which it belongs () and the column corresponding to the time step when
it emerged (j). Hence, we have Ft,j=S

t
,j for any t ¾ j, and the convention Ft,j=∅

for any t < j. In turn, any hyphal segment S,j is encoded as an array containing
data on its individual features at time step t, such as its location, growth direc-
tion, amount of internal substrate and its current state. The hyphal segment is the
fundamental entity of our SEM, as such allowing to mimic the spatio-temporal dy-
namics of an individual hypha from the evolution of its hyphal segments (Boswell,
2008; Carver and Boswell, 2008; Hopkins and Boswell, 2012).

Every segment S,j is assigned a certain state that may change over time, denoted
as Tt,j. In line with an established classification of hyphal segments (Boswell and
Hopkins, 2008), we distinguish four states: active (s1), passive (s2), branched (s3),
or involved in anastomosis (s4). The state of a segment is used to determine its
role in the mycelium, and whether or not it is able to grow, i.e. generate new
hyphal segments.

Each hyphal segment has two endpoints. Since segments from the same hypha
are connected, two adjacent segments always share an endpoint. Therefore the
location in space of segment S,j is determined by the Cartesian coordinates of its
two endpoints, i.e. X,k = (,k , y,k , z,k) and X,j = (,j, y,j, z,j), with k < j. The end-
point X,k is shared with the preceding segment S,k, therefore only the coordinates
of the endpoint X,j and the position (, k) of the preceding segment are stored for
each segment S,j. In this way, the length of segment S,j is conveniently given by

h(S,j) = d(X,k , X,j) , (7.1)

where d is the Euclidean distance.

All the nutrients within the fungus are grouped into an imaginary substrate re-
ferred to as internal substrate. Consequently, the translocation of nutrients within
the network is mimicked as the flow of the internal substrate. The internal sub-
strate can be absorbed by the hyphal segments and subsequently used by the
fungus to generate new biomass. This substrate can also be retained by seg-
ments, irrespective of their state and the amount of substrate in segment S,j at
time step t is denoted by t,j [mol]. Each segment can retain substrate up to a
maximum determined by the segment length and a maximum concentration Mcp

[mol mm−1] (Hopkins and Boswell, 2012). Consequently, the maximum capacity
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of segment S,j is given by h(S,j)Mcp mol. Substrate is displaced through con-
nected segments (also known as neighbouring segments) through translocation,
as such covering the needs of the whole mycelium (see Section 7.2.1). A segment
is not only connected to its adjacent segments, i.e. predecessor and successor
segments, but it can also be connected to other segments as the result of anas-
tomosis or branching. Translocation is often described as the consequence of an
active and a passive term (see the review of Boswell and Hopkins (2008)). While
the passive term is defined as substrate diffusion, the active term is described as
metabolically driven, i.e. it depends on the local demands of the fungus. For the
sake of simplicity, our SEM mimics translocation using a single term, similar to the
principle described in Boswell (2008), Carver and Boswell (2008) and Davidson
(1998). Computing the change of substrate in this way, it is possible to mimic the
internal substrate translocation from those parts of the mycelium with a relatively
high substrate concentration to those parts with a relatively low substrate con-
centration (Carver and Boswell, 2008), as such accounting for both diffusion and
active translocation. Firstly, the amount of substrate to be transferred is calculated
and secondly the transferred substrate is corrected if the governing biological con-
straints happen to be violated.

Explicitly, the amount of internal substrate transferred between two neighbouring
segments Sk, and S,j, where k ¶ ,  ¶ j and {, j} 6= {k, }, at time step t + 1, is
computed as follows. First, the maximal amount of internal substrate that can be
physically transferred between Sk, and S,j is calculated as:

δk,,j = Δt D
tk, − 

t
,j

�

h(Sk,) + h(S,j)
�

/2
, (7.2)

where D [mm d−1] is the internal substrate diffusion coefficient, Δt [d] is the time
step duration and the denominator is the average length of the involved segments.
Second, we have to account for the fact that the amount of internal substrate in
any segment must always be non-negative and must not exceed its capacity, i.e.
0 ¶ t,j ¶ h(S,j)Mcp, and similarly for Sk,. Therefore, the amount of substrate
obtained from Eq. (7.2), which can be either positive or negative, is added to
t,j and subtracted from tk, at time step t + 1, only if the resulting amounts of
internal substrate of the involved segments lie inside their permitted ranges. More
specifically, this condition is given by:

δk,,j ∈
�

mx(−t
,j
, t
k,
− h (Sk,)Mcp),min(tk,, h (S,j)Mcp − t,j)

�

. (7.3)

If this condition is not met, then δk,,j is changed into the nearest endpoint of this in-

terval, resulting in δ̃k,,j . Finally, δ̃k,,j is added to t,j and subtracted from tk,, as such
overwriting their original values. At every time step, an exchange of substrate is
simulated between every pair of neighbouring segments, according to the proce-
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dure above. Even though the in vivo substrate updates may occur in parallel for all
segments, the exchange of substrate between a segment S,j and its neighbours is
executed following the order imposed by their position in the array F, i.e. first by
column and then by row. In this way, we ensure the stability of the translocation
algorithm. Moreover, each segment exchanges substrate only with its preceding
segments, as such making sure every connection is taken into account only once.
The total amount of substrate that is exchanged between segment S,j and its n

neighbouring segments is calculated in iterative steps. Each step represents the
exchange of substrate between segment S,j and a single neighbour Skτ ,τ . The
total substrate in S,j after a single exchange with Skτ ,τ is denoted by τ t,j and is
computed as follows:

τ t
,j
= τ−1t

,j
+ τ−1δ̃

kτ ,τ
,j , (7.4)

where

τ−1δ̃
kτ ,τ
,j =

(

δ̃
kτ ,τ
,j , if Skτ ,τ is a predecessor of S,j, so kτ ≤  and τ < j,

− δ̃,jkτ ,τ , else,
(7.5)

with τ ∈ {1, ..., n} referring to the neighbour Skτ ,τ , following the order imposed
by the array F. Furthermore, 0t,j = t,j, and τ−1t,j is used when evaluating the

right-hand side of Eq. (7.5). Finally, t,j is assigned a new value, namely nt,j which
therefore represents the total amount of substrate in S,j after translocation with
its n neighbours, i.e. t,j =

nt,j.

In order to grow, active segments can generate new biomass and the amount of
internal substrate needed to generate this biomass is given by cg [mol mm−1]. The
new biomass comes in the form of new hyphal segments that are appended at the
end of the growing segment as the result of one of two growth processes, apical
growth and branching. While the former results in the generation of an additional
hyphal segment, the latter generates two additional hyphal segments. The new
segments have a length denoted by h0 [mm], hence the amount of substrate
needed to create a new segment is given by cg h0 [mol]. Still, it should be pointed
out that new segments can be shortened, i.e. h(S,j) ¶ h0, due to anastomosis or
interactions with the environment.

Apical growth is modelled as follows. An in silico tip can extend apically as long as
its substrate content is sufficiently high to cover this cost. The segment emerging
from S,j at time step j∗ as a consequence of apical growth is appended to the
-th row of the array F in the column j∗ (Table 7.1). It should be noted that apical
growth does not necessarily occur at each time step and therefore there may be a
delay of several time steps before a new segment emerges from its predecessor.
The new segment S,j∗ grows according to the growth direction imposed at the

endpoint of its predecessor S,j and its state is initialized as active, i.e. T j
∗

,j∗ = s1.
This growth direction is denoted by Θ,j = (θ,j, φ,j), where θ,j [−] refers to the polar
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angle of a unitary vector aligned with the growth direction, and φ,j [−] refers to its
azimuthal angle (Figure 7.1(a)). This definition constitutes an extension to three
dimensions of the angular representation defined in Carver and Boswell (2008).
Then, the position of segment S,j∗ is computed from this growth direction and the
coordinates of the endpoint of its predecessor S,j as follows:

X,j∗ = (,j + h0 sin(θ,j) cos(φ,j), y,j + h0 sin(θ,j) sin(φ,j), z,j + h0 cos(θ,j)) .

(7.6)
The growth direction at the endpoint of the new segment S,j∗ is then determined
as the one of its predecessor plus a vector of noise terms ζ = (ζ1, ζ2), drawn
uniformly from [−ω/2, ω/2]2 (Figure 7.1), where ω [−] is the maximum variation
in radians of the polar and azimuthal angles. This approach is similar to the one
outlined in Carver and Boswell (2008) for a two-dimensional model.

Z 

X 

Y 𝑆𝑖,𝑗 

𝜃𝑖,𝑗 

𝜑𝑖,𝑗 

(a) Growth direction angles

𝑆𝑖,𝑗∗  𝜃𝑖,𝑗 

𝜑𝑖,𝑗 

𝜑𝑖,𝑗∗ = 𝜑𝑖,𝑗 + 2 

 

𝜃𝑖,𝑗∗ = 𝜃𝑖,𝑗+1 

𝑆𝑖,𝑗 

(b) Update of the growth direction

Figure 7.1: Definition of the polar (θ) and azimuthal (φ) angles defining the growth direction at the
endpoint of segment S,j (a) and growth direction of new segments after extension (b), where ζ is drawn

uniformly from [−ω/2, ω/2]2.

Once a new segment S,j∗ emerges, the preceding segment S,j cannot extend any
further apically but it is still able to translocate nutrients and therefore its state is
updated to passive. In the last step of an in silico apical growth event, the internal
substrate of the preceding segment S,j is reduced by the cost cg h0 of growing
one new segment, while the internal substrate of the new segment S,j∗ is initially

considered to be zero, i.e.  j
∗

,j∗ = 0. It is worth mentioning that hyphal death is not
reflected in the model since the time frame we aim to capture is shorter than the
natural life span of the hyphae.

The branching process resulting in two additional segments is simulated in this
model in the following way. In order to branch at time step t, a segment S,j
must contain at least the amount of substrate that is needed to cover the cost
of growing two new segments (Boswell, 2008; Carver and Boswell, 2008; Hopkins
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and Boswell, 2012). However, even when a segment contains enough substrate,
it does not automatically branch, as apical growth is still the dominant growing
process (Riquelme et al., 1998). Therefore, a branching probability P [−] is intro-
duced (Boswell, 2008). The result of a branching event is equivalent to two apical
extensions, where one of the new segments S,j∗ actually extends the parent hy-
pha, while the other is the first element of a new hypha k, i.e. Sk,j∗ . The latter
is encoded in the array F by extending it with a new row k that has as its first
non-empty element Sk,j∗ (see Table 7.1). Both the coordinates of the endpoint of
Sk,j∗ and its growth direction are computed using the growth direction of the par-
ent segment S,j plus a noise vector ζ drawn uniformly from [−ω/2, ω/2]2. This
new segment is connected to the parent segment S,j and this connection is taken
into account when translocating internal substrate. The presence of branches in
the network is tracked by means of a branching matrix Rt. The former matrix is
an adjacency matrix, where every element Rt,j corresponds to the row number k
in the array Ft of the new hypha that emerged from segment S,j.

Table 7.1: Evolution of an in silico fungus and the corresponding array Ft .

Time In silico mycelium Array Ft

t = 0

𝑆1,0 𝑆1,0

𝑆1,1
𝑆2,1 𝑆1,0

𝑆1,1
𝑆2,1 𝑆2,2

𝑆3,2

𝑆1,2

𝑆1,0

𝑆1,1
𝑆2,1

𝑆3,2

𝑆1,2
𝑆2,2

𝑆2,3

𝑆4,3

𝑆3,3

𝑆1,3

 (𝑆1,0
0 )F0 = 

𝑆1,0
2 𝑆1,1

2 𝑆1,2
2

𝑆2,2
2

− 

− 

𝑆3,2
2− 

F2 = 𝑆2,1
2

F1 = 
𝑆1,0

1 𝑆1,1
1

𝑆2,1
1− 

𝑆1,3
3

𝑆3,3
3

𝑆2,3
3

𝑆4,3
3

𝑆1,0
3 𝑆1,1

3 𝑆1,2
3

𝑆2,2
3

𝑆3,2
3

F3 =
− 

− 

− 

− 

− 

𝑆2,1
3

− 

t = 1

𝑆1,0 𝑆1,0 

𝑆1,1 
𝑆2,1 𝑆1,0

𝑆1,1
𝑆2,1 𝑆2,2

𝑆3,2

𝑆1,2

𝑆1,0

𝑆1,1
𝑆2,1

𝑆3,2

𝑆1,2
𝑆2,2

𝑆2,3

𝑆4,3

𝑆3,3

𝑆1,3
(𝑆1,0

0 )F0 =

𝑆1,0
2 𝑆1,1

2 𝑆1,2
2

𝑆2,2
2

− 

− 

𝑆3,2
2− 

F2 = 𝑆2,1
2

F1 = 
𝑆1,0

1 𝑆1,1
1

𝑆2,1
1  − 

𝑆1,3
3

𝑆3,3
3

𝑆2,3
3

𝑆4,3
3

𝑆1,0
3 𝑆1,1

3 𝑆1,2
3

𝑆2,2
3

𝑆3,2
3

F3 =
− 

− 

− 

− 

− 

𝑆2,1
3

− 

t = 2

𝑆1,0 𝑆1,0

𝑆1,1
𝑆2,1 𝑆1,0 

𝑆1,1 
𝑆2,1 𝑆2,2 

𝑆3,2 

𝑆1,2 

𝑆1,0

𝑆1,1
𝑆2,1

𝑆3,2

𝑆1,2
𝑆2,2

𝑆2,3

𝑆4,3

𝑆3,3

𝑆1,3

(𝑆1,0
0 )F0 =

𝑆1,0
2 𝑆1,1

2 𝑆1,2
2

𝑆2,2
2

− 

− 

𝑆3,2
2  − 

F2 = 𝑆2,1
2

F1 = 
𝑆1,0

1 𝑆1,1
1

𝑆2,1
1− 

𝑆1,3
3

𝑆3,3
3

𝑆2,3
3

𝑆4,3
3

𝑆1,0
3 𝑆1,1

3 𝑆1,2
3

𝑆2,2
3

𝑆3,2
3

F3 =
− 

− 

− 

− 

− 

𝑆2,1
3

− 

t = 3

𝑆1,0 𝑆1,0

𝑆1,1
𝑆2,1 𝑆1,0

𝑆1,1
𝑆2,1 𝑆2,2

𝑆3,2

𝑆1,2

𝑆1,0 

𝑆1,1 

𝑆2,1 

𝑆3,2 

𝑆1,2 

𝑆2,2 
𝑆2,3 

𝑆4,3 

𝑆3,3 

𝑆1,3 

(𝑆1,0
0 )F0 =

𝑆1,0
2 𝑆1,1

2 𝑆1,2
2

𝑆2,2
2

− 

− 

𝑆3,2
2− 

F2 = 𝑆2,1
2

F1 = 
𝑆1,0

1 𝑆1,1
1

𝑆2,1
1− 

𝑆1,3
3

𝑆3,3
3

𝑆2,3
3

𝑆4,3
3

𝑆1,0
3 𝑆1,1

3 𝑆1,2
3

𝑆2,2
3

𝑆3,2
3

F3 =
− 

− 

− 

− 

− 

𝑆2,1
3

− 

In vivo, intersecting hyphae might fuse and give rise to an anastomosis event, a
process simulated in silico as follows. As the segments extend either by apical
growth or branching, they may encounter other hyphae (see Section 7.2.1), lead-
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ing to anastomosis. Intersections between new and existing hyphal segments are
identified at every consecutive time step t. In the case of an intersection between
two segments, the endpoint coordinates of the intersecting segment (the newest)
are replaced by those of the intersection point and its state is updated to anas-
tomosis (Table 7.2). Segments in this state cannot grow any further, but are able
to translocate substrate to their neighbours, including the intersected hyphal seg-
ment. In order to model translocation between neighbouring segments that are
linked as the consequence of an anastomosis event, the intersections of segments
are recorded in an auxiliary anastomosis matrix At (Table 7.2). The element Atk,j∗ in
this matrix is the position (, j) in F of the segment S,j that has been intersected by
segment Sk,j∗ at time step j∗. Therefore, Atk,j∗ = (, j) for any t ≥ j∗, and Atk,j∗ = ∅
for any t < j∗.

Table 7.2: Possible intersections between in silico hyphal segments. Dark green segments represent
existing segments and light green segments represent segments that emerged during time step j∗ > j.

Anastomosis type
Before
anastomosis

After
anastomosis Changes in At

New segment with
existing segment

𝑆𝑖,𝑗∗  

𝑆𝑖,𝑗  

𝑆𝑖,𝑗  

𝑆𝑖,𝑗
𝑡  

𝑆𝑚,𝑛 

𝑆𝑖,𝑗  

𝑆𝑖,𝑗
𝑡  

𝑆𝑖,𝑗  

𝑆𝑘,𝑗∗  

𝑆𝑖,𝑗∗  

𝑆𝑘,𝑗∗  

𝑆𝑘,𝑗∗  

𝑆𝑘,𝑙
𝑡  

𝑆𝑘,𝑗∗  

𝑆𝑘,𝑗∗  

𝑆𝑘,𝑗∗  

𝑆𝑘,𝑙
𝑡  

𝑆𝑚,𝑛 

𝑆𝑖,𝑗∗

𝑆𝑖,𝑗  

𝑆𝑖,𝑗

𝑆𝑖,𝑗
𝑡

𝑆𝑚,𝑛

𝑆𝑖,𝑗

𝑆𝑖,𝑗
𝑡

𝑆𝑖,𝑗

𝑆𝑘,𝑗∗

𝑆𝑖,𝑗∗

𝑆𝑘,𝑗∗

𝑆𝑘,𝑗∗

𝑆𝑘,𝑙
𝑡

𝑆𝑘,𝑗∗

𝑆𝑘,𝑗∗

𝑆𝑘,𝑗∗

𝑆𝑘,𝑙
𝑡

𝑆𝑚,𝑛

A
j∗

k,j∗ = (, j)

New segment with
new segment ( < k) 𝑆𝑖,𝑗∗  

𝑆𝑖,𝑗  

𝑆𝑖,𝑗  

𝑆𝑖,𝑗
𝑡  

𝑆𝑚,𝑛 

𝑆𝑖,𝑗  

𝑆𝑖,𝑗
𝑡  

𝑆𝑖,𝑗  

𝑆𝑘,𝑗∗  

𝑆𝑖,𝑗∗  

𝑆𝑘,𝑗∗  

𝑆𝑘,𝑗∗  

𝑆𝑘,𝑙
𝑡  

𝑆𝑘,𝑗∗  

𝑆𝑘,𝑗∗  

𝑆𝑘,𝑗∗  

𝑆𝑘,𝑙
𝑡  

𝑆𝑚,𝑛 

𝑆𝑖,𝑗∗  

𝑆𝑖,𝑗

𝑆𝑖,𝑗

𝑆𝑖,𝑗
𝑡

𝑆𝑚,𝑛

𝑆𝑖,𝑗

𝑆𝑖,𝑗
𝑡

𝑆𝑖,𝑗

𝑆𝑘,𝑗∗

𝑆𝑖,𝑗∗

𝑆𝑘,𝑗∗

𝑆𝑘,𝑗∗

𝑆𝑘,𝑙
𝑡

𝑆𝑘,𝑗∗ 

𝑆𝑘,𝑗∗  

𝑆𝑘,𝑗∗

𝑆𝑘,𝑙
𝑡

𝑆𝑚,𝑛

A
j∗

k,j∗ = (, j
∗)

New segment with
two existing segments

𝑆𝑖,𝑗∗  

𝑆𝑖,𝑗  

𝑆𝑖,𝑗  

𝑆𝑖,𝑗
𝑡  

𝑆𝑚,𝑛 

𝑆𝑖,𝑗  

𝑆𝑖,𝑗
𝑡  

𝑆𝑖,𝑗  

𝑆𝑘,𝑗∗  

𝑆𝑖,𝑗∗  

𝑆𝑘,𝑗∗  

𝑆𝑘,𝑗∗  

𝑆𝑘,𝑙
𝑡  

𝑆𝑘,𝑗∗  

𝑆𝑘,𝑗∗  

𝑆𝑘,𝑗∗  

𝑆𝑘,𝑙
𝑡  

𝑆𝑚,𝑛 

𝑆𝑖,𝑗∗

𝑆𝑖,𝑗

𝑆𝑖,𝑗  

𝑆𝑖,𝑗
𝑡

𝑆𝑚,𝑛 

𝑆𝑖,𝑗

𝑆𝑖,𝑗
𝑡

𝑆𝑖,𝑗

𝑆𝑘,𝑗∗

𝑆𝑖,𝑗∗

𝑆𝑘,𝑗∗

𝑆𝑘,𝑗∗

𝑆𝑘,𝑙
𝑡

𝑆𝑘,𝑗∗ 

𝑆𝑘,𝑗∗

𝑆𝑘,𝑗∗  

𝑆𝑘,𝑙
𝑡

𝑆𝑚,𝑛

A
j∗

k,j∗ = (m,n)

7.2.3 Interaction between the in silico fungus and its
environment

The environment of the in silico mycelium is represented by means of a collection
of cuboids Ck whose properties evolve over time. Essentially, these cuboids em-
body boundary conditions that are tied up with the governing environmental con-
straints. Fungal growth often occurs in heterogeneous environments where differ-
ent materials and substances are present, which can be easily represented by such
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cuboids. This kind of representation has been used by others, but most of them
restricting to a single type of environment, such as substrate (Boswell et al., 2007;
Boswell, 2008; Hopkins and Boswell, 2012; Davidson, 1998), inert material (Fuhr
et al., 2012) or tropisms (Meškauskas et al., 2004a), and rarely allowing to combine
different types, consequently hindering a realistic representation of a natural en-
vironment. The cuboids can be located anywhere in the three-dimensional space
and their size and position can be chosen in order to represent the environmen-
tal constraints in question. The array Ctk representing the k-th cuboid contains its
position, given by the Cartesian coordinates of its centre Xk = (k , yk , zk), and its
dimensions Lk = (k ,k , hk), where k [mm], k [mm] and hk [mm] denote its side
length, width and height, at time step t, respectively. In this chapter, we consider
penetrable, impenetrable, inhibiting, repelling and attracting boundary conditions.

The penetrable boundary condition might reflect porous materials that can be pen-
etrated by growing fungi, such as solid agar or oatmeal, and subsequently serve
as a source of substrate (see Figure 7.2(a)). The external substrate that these
materials contain, can be absorbed by penetrating hyphae, after which it gets re-
distributed across the entire mycelium through translocation (Eq. (7.4)). In silico,
the penetrable cuboids contain a certain amount of external substrate at time step
t, denoted Etk [mol], that can be absorbed by the fungus and transformed into in-
ternal substrate. This uptake process is simulated as a flow of substrate from the
cuboid to the hyphal segments intersecting it. This process has proven to be auto-
catalytic and it is usually modelled using the Michaelis-Menten formula (Hopkins
and Boswell, 2012; Davidson, 1998). For the sake of simplicity, we use a lineariza-
tion of the Michaelis-Menten equation (Boswell et al., 2003; Boswell, 2008), which
states that the amount of substrate taken up is proportional to the external sub-
strate in the nutrient source, in our case a cuboid Ck, and the internal substrate
of segment S,j. As in the case of translocation of internal substrate, the flow
of substrate must fall within a biologically meaningful range, assuring that the
amount of substrate in the intersecting segment S,j after uptake is positive and
not greater than its maximum capacity h(S,j)Mcp, while the amount of substrate
in the cuboid should only take non-negative values. Therefore, the amount of ex-
ternal substrate flowing from the cube to the intersecting segment is calculated
in a similar way as in Eq. (7.2). The maximal amount of external substrate that
can be physically exchanged between cuboid Ck and an intersecting segment S,j
is given by:

ϑk
,j
= Δt μk Etk 

t
,j
, (7.7)

where μk [mol−1 d−1] denotes the uptake coefficient of cuboid Ck, a parameter
reflecting how easily the external substrate can be extracted from the cuboid by
the fungus. The corrected value of ϑk,j in light of the biologically meaningful range
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�

0,min(Etk , h(S,j)Mcp − t,j)
�

is then given by:

ϑ̃k
,j
=min(ϑk

,j
, Et

k
, h(S,j)Mcp − t,j) . (7.8)

This amount of substrate ϑ̃k,j is subtracted from the external substrate of cuboid Ck
and added to the internal substrate of the intersecting segment S,j. Analogously to
Eqs. (7.4) and (7.5), the total amount of substrate subtracted from Ck is calculated
iteratively. Let νEtk represent the amount of substrate left in Ck after uptake by a
single intersecting segment Sν ,jν , then:

νEt
k
= ν−1Et

k
−ν−1 ϑ̃k

ν ,jν
, (7.9)

where
ν−1ϑ̃k

ν ,jν
= ϑ̃k

ν ,jν
, (7.10)

for ν ∈ {1, ..., n}, following the order imposed by the array F, and 0Etk = Etk. Fur-
thermore, the right-hand side of Eq. (7.10) is computed using the values of Etk and
tν ,jν at the ν-th interaction. The amount of substrate Etk left in Ck after uptake with

its n intersecting segments is then given by nEtk, i.e. Etk =
nEtk. Consequently, the

amount of substrate in each of the intersecting segments tν ,jν is also updated to
account for the effect of the uptake from cuboid Ck.

Impenetrable cuboids represent inert materials, such as glass or plastic, which
cannot be penetrated by the fungus such that it is forced to grow along their sur-
face (Samson, 2011) (see Figure 7.2(b)). A preliminary approach to model this
kind of behaviour can be found in several papers (Boswell et al., 2007; Boswell,
2008; Fuhr et al., 2011), where the growth of an in silico fungus is restricted to
the water surface, the pores of a soil sample or the pits of a wooden block, re-
spectively. These approaches mimic the corresponding behaviour by not allowing
fungal growth in certain regions, rather than updating the fungal growth dynam-
ics. When a hyphal segment S,j intersects such an impenetrable cuboid Ck in
our model, the coordinates of the endpoint of this segment are set to those of
the intersection point between the cuboid’s surface and the segment S,j. Further-
more, the growth direction of this segment is updated to be consistent with its
new location. In nature some materials are initially impenetrable, yet prolonged
exposure results in damage to the material, which can then be penetrated by the
fungus (Adan and Samson, 2011). In order to simulate this kind of erosion, in our
model the cuboid remains impenetrable for a certain number of interaction events
with the in silico fungus, during which period the fungus can only grow along the
cuboid’s surface. After reaching this interaction limit, which is characterized by
the resistance τk [−] of cuboid Ck, the hyphal segments are able to penetrate the
material. This parameter is defined as the maximum number of interactions be-
tween the cuboid and the fungus, i.e. the maximum number of segments capable
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of intersecting the cube, beyond which the cuboid becomes penetrable.

The effect of fungicides and other fungal growth inhibitors on fungal dynamics can
also be mimicked by our model (Figure 7.2(c)). The inhibitory effects of the corre-
sponding cuboids might be limited in time, denoted by the durability δk [d]. When
an in silico tip intersects one of these cuboids, the segment becomes passive,
i.e. Tt,j = s2, so that it can no longer grow, but it can still translocate or absorb
substrate.

The last type of boundary condition mimics different tropisms, i.e. responses to ex-
ternal stimuli, which can have either negative (repulsion, Figure 7.2(d)) or positive
(attraction, shown in Figure 7.2(e)) effects on the hyphal growth. Different mod-
elling approaches have been proposed for such tropisms (Hopkins and Boswell,
2012; Meškauskas et al., 2004a). As proposed in Meškauskas et al. (2004a), the
tropisms in our model have a certain area of influence beyond which their effect
becomes negligible; this area is represented by the corresponding cuboid’s vol-
ume. Once a hyphal segment enters the area of influence of the tropism, i.e. once
it intersects the cuboid Ck, it is repelled from or attracted towards its centre Xk.
The effect of the tropisms is mimicked by changing the growth direction of the in-
tersecting hyphal segments in such a way that the closer a segment is located to
the cuboid’s centre, the stronger the tropism affects its growth direction. In order
to mimic both repulsion and attraction, tropisms have a certain strength γk [−] and
durability δk [d]. The sign of the former determines the nature of the tropism, while
its magnitude, taking a value in the range of [−1,1], determines its strength. A
tropism alters the growth direction of the in silico hyphal segments within its area
of influence, as follows:

Θ̃,j = αjkΨ−1
�

̂jk
�

+
�

1 − αjk
�

Θ,j , (7.11)

where ̂jk =
jk
‖jk‖ , with jk the vector connecting the endpoint of segment S,j

and the centre of cuboid Ck, and Ψ−1 indicating a transformation from Cartesian
to spherical coordinates. As such, the final growth direction Θ̃,j is a weighted
average of the original direction and the direction defined by jk. The vector
jk points towards the centre of the cuboid Ck in the case of a positive tropism,
whereas it is pointing outwards otherwise, i.e.

jk =

(−−−→
X,jXk , if γk > 0,
−−−→
XkX,j , if γk ≤ 0.

(7.12)

The coefficient αjk in Eq. (7.11) is given by:

αjk = |γk |
Mdst −



jk




Mdst
, (7.13)
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where Mdst denotes the maximum distance between the centre of Ck and any of
the points it encloses. In this way, the effect of the tropism is maximal at the
centre and zero at the cuboid’s vertices, i.e. the points of the cuboid farthest from
the centre. The effect of the different boundary conditions on the dynamics of the
in silico fungus is summarized in Figure 7.2.

        (a) (b) (c) (d) (e)

Figure 7.2: Possible interactions between in silico hyphae and their environment: substrate (a), inert
material (b), inhibitor (c), negative tropism (d) and positive tropism (e).

The list of model parameters together with their dimensions is given in Table 7.3.

Table 7.3: Model parameters, corresponding notation, descriptions and units.

Parameter Notation Description Dimensions

Number of steps T
Number of time steps
in the simulation −

Hyphal segment length h0 Length of a hyphal segment mm

Time step Δt Time step duration d

Variation of growth
direction ω

Maximum deviation of the
growth direction rad

Branching probability P Probability of branching −

Cost of growth cg
Cost of growing a hyphal
segment mol mm−1

Diffusion coefficient D
Coefficient of internal
substrate diffusion mm d−1

Maximum concentration Mcp
Maximum concentration
of internal substrate mol mm−1

Uptake coefficient μk Uptake coefficient for Ck mol−1 d−1

Tropism strength γk
Strength of the tropisms
represented by Ck

−

Resistance τk
Resistance of the inert
material imposed by Ck

−

Durability δk
Durability of the tropism
imposed by Ck

d
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7.2.4 Initialization and update procedure

At the beginning of an in silico experiment, the number of initial segments H0 [−]
and the initial amount of internal substrate in the in silico segments Ω0 [mol] have
to be specified. The initial array F0 contains as many rows as there are initially seg-
ments in the in silico inoculum. The initial segments are in state active and located
at the origin, i.e. X,0 = (0,0,0), for  = 1, . . . , H0. The amount of internal substrate
in the in silico mycelium is equally distributed among the initial segments, which
means that each of them initially contains exactly Ω0

H0
mol of internal substrate

at the beginning of an in silico experiment. Finally, the initial growth direction of
these segments, Θ,0 = (θ,0, ϕ,0),  = 1, . . . , H0, is drawn uniformly from [0,2π]2.
In summary, an initial segment S,0 is encoded as follows:

S0
,0 = (0,0,0, θ,0, ϕ,0,

Ω0

H0
,Active,0) , (7.14)

where the last entry refers to the age of the segment, which is defined as the time
step at which the segment was created.

In addition to the initial inoculum, also the growth environment needs to be de-
fined at the beginning of an in silico experiment by constructing a matrix 0 that
encodes the cuboids imposing the governing boundary conditions (Section 7.2.3):

0 = (C01, C
0
2, ..., C

0
n−1, C

0
n
),

where
C0
k
= (Xk , Lk , E0k , Tk , A

0
k
).

Here, Tk represents the type of boundary condition (penetrable, impenetrable, in-
hibiting or tropism) and A0k represents the specific attributes (resistance τk, dura-
bility δk and γk) that come along with the boundary condition defined by cuboid
Ck.

Once the inoculum and environment have been initialized, the in silico mycelium is
evolved in discrete time steps. In one simulation step all the fungal processes are
mimicked in the order shown in Figure 7.3. Even though these fungal processes
occur simultaneously in nature, such an order needs to be imposed to model in

silico fungal growth. This order was chosen taking into account the relationships
between the different fungal processes. The internal substrate values are com-
puted and updated after each fungal process, i.e. the internal substrate values
obtained after translocation are used to determine and calculate growth, which
are then used to compute uptake values, and so on. Therefore t+1,j , the value of
the internal substrate in segment S,j after time step t, is given by the amount of
substrate after all fungal processes have been carried out.
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Figure 7.3: Fungal growth processes mimicked in one simulation step.

The result of multiple time steps is an array containing all the information about
the shape and evolution of the mycelium over time. This array can then be used
to compute different growth features or visual representations of growing in silico

fungi (Figure 7.4).

(a) t = 1 (b) t = 5 (c) t = 10 (d) t = 15 (e) t = 20

Figure 7.4: In silico fungus at time step 1 to 20 (0.01 to 0.2 days), obtained using the parameters and
initial conditions given in Table 7.5 and without environmental constraints.

7.3 Results and discussion

7.3.1 Model Analysis

7.3.1.1 Topological measures

In order to summarize and compare the simulation results across several in silico

experiments, we extract topological measures of the in silico network as it evolves.
This is done by computing measures reflecting the growth and compactness of the
in silico mycelium, and the internal and external substrate depletion. These mea-
sures can also be computed from fungal images (see Chapters 5 and 6), enabling
a future model calibration. Essentially, a mycelium may be conceived as a set
of nodes (intersections and apices) and edges (hyphal segments) (Obara et al.,
2012), which eases the analysis of the mycelium.
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To track the evolution of the in silico mycelium we calculate the amount of internal
substrate in the network, the extent of the mycelium, the total number of tips
and the total hyphal length. The extent of the mycelium is given by the Euclidean
distance from the centre of the inoculum to the tip at the largest distance from this
centre, and it allows to study the expansion of the in silico fungus. The number
of tips gives an insight into the compactness of the mycelium and is computed as
the number of nodes with degree 1. Finally, the total hyphal length is given by the
sum of the lengths of all hyphal segments in the mycelium (Trinci, 1974).

7.3.1.2 Sensitivity analysis

A global sensitivity analysis (SA) was carried out to assess the impact of the model
parameters (Section 7.2.2) on the topological measures described above, and to
gain insight in their order of importance. More precisely, Sobol indices (Lilburne
and Tarantola, 2009) were used. Sobol indices decompose the total variance of the
model output, as such indicating what proportion of the variance is related to each
parameter. In our case, the studied parameters are the variation of the growth
direction ω, branching probability P, cost of growth cg, diffusion coefficient of in-
ternal substrate D and maximum concentration Mcp. Their values were selected
using Latin Hypercube Sampling from the ranges shown in Table 7.4, and the re-
maining parameters were fixed as shown in the same table. The range of each
parameter was determined by the minimum and the maximum values assuring
fungal growth and stability of the solutions of each equation in Section 7.2.2. For
some but not all parameters, these meaningful ranges are sensitive to changes in
the initial conditions. For instance, the maximum value for the cost of growth and
maximum concentration ranges are computed as a function of the initial amount
of substrate in order to ensure fungal growth. In order to minimize the effect of
the environment on the outcome of the SA, the simulations were performed in
a scenario without sources of external substrate or cuboids imposing boundary
conditions.

In order to decompose the variance, we define two matrices Q and R, whose
columns are random samples of the studied parameters (Sobol, 2001). These
two matrices have dimensions N × M, where N is the total number of model runs
and M the number of parameters. Then, an auxiliary matrix Q is created by taking
the -th column of Q and all other columns of R. The model is initiated using the
parameter values specified in the matrices Q, R and Q resulting in several in silico

fungi. These in silico fungi are then used to compute each of the topological mea-
sures presented in Section 7.3.1.1, as such yielding for each topological measure
ƒ three output vectors:

yQ = ƒ (Q), yR = ƒ (R), yQ
= ƒ (Q).
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Table 7.4: Parameter values and ranges used to perform a global SA of the SEM presented in
Section 7.2.

Parameter Notation Value Dimensions

Number of steps T 150 −

Hyphal segment length h0 0.05 mm

Time step Δt 0.01 d

Initial tips H0 25 −

Initial substrate Ω0 5 × 10−6 mol

Variation of growth direction ω [0, π] rad

Branching probability P [0,1] −

Cost of growth cg
�

0, Ω0H0

�

mol mm−1

Diffusion coefficient D [0,5] mm d−1

Maximum concentration Mcp

�

0, Ω0 ·hH0

�

mol mm−1

The Sobol index bS for each parameter  is estimated from these outputs using the
following formula (Lilburne and Tarantola, 2009):
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where y
(j)
Q is the j-th element of the vector yQ.

The benchmark scenario we used to perform the SA was a survival growth sce-
nario, where none of the boundary conditions described in Section 7.2.3 were
imposed, as a means to study the in silico fungus independently from its envi-
ronment. Therefore, all available substrate, Ω0 = 5 × 10−6 mol, is placed inside
the inoculum at the beginning of the simulation after which it was gradually de-
pleted. This results in a high concentration of substrate in the segments near
the inoculum, particularly at the beginning of the simulation. The number of runs
N used to compute the matrices Q, R and Q was 500 and each simulation was
run for 150 time steps (1.5 days). The resulting Sobol indices over time for the
considered topological measures can be found in Figure 7.5.

As can be seen in Figure 7.5(a), the main factors influencing the total amount of
internal substrate are the branching probability P and the internal substrate diffu-
sion coefficient D. We can distinguish two different phases. Firstly, an exponential
growth phase when most of the growth occurs, which is possible through the high
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Figure 7.5: Sobol indices of the topological measures over time, computed from 500 simulations
covering 150 time steps (1.5 days).

initial concentration of internal substrate in the inoculum, and secondly, a steady
state phase were the amount of internal substrate at the tips is lower, a behaviour
already reported for different fungal species (Trinci, 1974; Prosser and Trinci, 1979).
During the exponential phase, the branching probability P is the main parameter
driving the depletion of internal substrate. Once the growth stabilizes, the sub-
strate diffusion coefficient D starts driving the internal substrate depletion. This
finding can be explained by the fact that growth happens only at the tips, so that
the substrate needs to reach the tips before it can be used to create new biomass.
Hence, the faster the substrate diffuses, the sooner it will be depleted. The Sobol
indices of the other three parameters are negligibly small, which indicates that
they do not play an important role in the evolution of the internal substrate, com-
pared to the substrate diffusion coefficient D and branching probability P.

The Sobol indices for the extent of the mycelium (Figure 7.5(b)) indicate that this
measure is governed also by the internal substrate diffusion coefficient D and
the branching probability P. The internal substrate diffusion coefficient D is the
most relevant parameter at the beginning of the simulations due to the concen-
tration of substrate in the inoculum. In a mycelium full of substrate, an efficient
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internal substrate diffusion ensures fast growth, resulting in a faster expansion
of the mycelium (Cunniffe and Gilligan, 2008). Once the substrate starts to be
depleted the branching probability P takes the lead. The length of a hypha is
maximized when its growth is predominantly apical, therefore networks having a
limited branching probability P result in mycelia with a larger extent (Molin et al.,
1992). The variation of the growth direction ω is also significant for the extent
of the mycelium since fungi with a low growth angle variation are able to extent
farther than those presenting high variation of their growth angle. Finally, the cost
of growth cg and the maximum concentration Mcp also influence the extent of the
colony, but to a much lesser extent than the other parameters.

Figure 7.5(c), showing the Sobol indices for the number of tips, also reflects the
exponential growth phase. The branching probability P is the most relevant pa-
rameter during this initial phase, while its Sobol index decreases once the growth
stabilizes. After the exponential growth phase, the substrate diffusion coefficient D
is the dominating factor followed by the cost of growth cg. The Sobol indices of the
maximum concentration Mcp and the growth direction variation ω are negligible
throughout almost the entire simulation.

Figure 7.5(d) summarizes the Sobol indices of the different parameters over time
for the total length of the mycelium. Once again, the branching probability P

proves to be the most influential during the exponential growth phase, after which
the cost of growth cg and the substrate diffusion coefficient D take over. In the case
of the latter, it is clear that the growth of the network is related to the amount of
substrate in the tips and therefore the substrate diffusion coefficient D. On the
other hand, the cost of growth cg determines how many fungal segments can be
generated from one unit of substrate, and therefore governs the total number of
segments of the network.

In summary, the in silico growth process is characterized by two phases. Firstly,
an exponential growth phase, when the network is saturated with substrate and
therefore able to rapidly generate new hyphae, and secondly a stable growth
phase, during which the initial substrate is slowly depleted, as such decreasing
the frequency of growth events (Trinci, 1974; Prosser and Trinci, 1979). During the
former phase, the most important parameter is the branching probability P. The
second growth phase is influenced by several parameters and their relative impor-
tance depends on the topological measure in question, but the substrate diffusion
coefficient D appears influential for all of them. The reasoning is clear, the sub-
strate diffusion coefficient D determines how fast the substrate can move to the
tips, where growth takes place. The number of tips and the total length are also
influenced by the cost of growth cg, which determines the number of segments
that can be created from one unit of substrate. The growth direction variation ω

is only relevant for the extent of the mycelium. Still, it is of particular interest
from a morphological point of view since it is often used to characterize fungal
species (Kamel et al., 2009). Since the entire meaningful parameter range was
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used in this sensitivity analysis, these results provide useful information for future
model calibration. Finally, when it comes to experimental design guidelines for
achieving this, we can conclude that most efforts should focus on an accurate as-
sessment of the substrate diffusion coefficient D, the branching probability P and
the cost of growth cg.

7.3.2 Scenario analysis

In this section, we study some of the most common scenarios described in lit-
erature. In order to mimic the different growth scenarios, we use the cuboids
introduced in Section 7.2. Every in silico experiment covers 1.5 days (i.e. 150 time
steps), and is repeated 200 times in order to account for the involved stochas-
ticity. In silico fungal growth is quantified using the measures introduced in Sec-
tion 7.3.1.1. For the sake of comparability, the model parameters are the same
across the scenarios and their values are given in Table 7.5.

Table 7.5: Parameters, corresponding notation, values and references used for the scenario analysis.

Parameter Notation hline Value Source

Number of steps T 150 time steps −

Hyphal segment
length h0 0.05 mm Hopkins and Boswell (2012)

Time step Δt 0.01 d Hopkins and Boswell (2012)

Initial tips H0 25 tips −

Initial substrate Ω0 5 × 10−6 mol Computed from Boswell (2008)

Variation of
growth direction ω 

6 rad Hopkins and Boswell (2012)

Branching
probability P 0.5 Carver and Boswell (2008)

Cost of growth cg 10−7 mol mm−1 Boswell (2008)

Diffusion
coefficient D 3.456 mm d−1

Boswell (2008) and
Carver and Boswell (2008)

Maximum
concentration Mcp 2 × 10−6 mol mm−1 Assumed

7.3.2.1 Description of scenarios

In order to have a reference for the effect of the different boundary conditions
on the simulated fungal growth, we first considered a benchmark scenario (see
Table 7.6). This benchmark scenario is similar to the one used in Section 7.3.1.1
to perform the SA, where the fungus grows freely in the three-dimensional space.
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Fungal growth experiments are typically conducted to test the durability of ma-
terials (Adan, 2011), study the network of hyphae (Papagianni, 2004) or compare
features across different fungal species (Fricker et al., 2007). In these experiments,
the environmental conditions (temperature and relative humidity) are usually fixed
and the samples are grown in Petri dishes to confine and control the accessible
growth area. To conduct these experiments, only a substrate source and an in-
oculum are needed. Scenario 1 (see Table 7.6) mimics fungal growth in such a
Petri dish, represented by two parallel impenetrable cuboids of size 10 × 10 × 0.1
mm3 that are separated by 0.2 mm with permanent resistance, and 12 droplets of
solid substrate, on the bottom lid. In silico, we restrict to solid substrate (such as
malt extract agar) in order to avoid external substrate diffusion. The substrate
droplets are represented as cuboids of size 8 × 10−3 mm3 and are positioned
equidistantly on a circle with radius 0.5 mm centred at the centre of the Petri
dish. Each cuboid contains enough substrate to generate 150 new hyphal seg-
ments, i.e. 10−7mol. The uptake coefficient μk is set to 108 mol−1 d−1, based on
the value given in Boswell (2008).

Scenario 2 (see Table 7.6) is similar to the first one, since it also mimics fungal
growth within a Petri dish, yet more droplets are added. It includes 36 substrate
cuboids of 8 × 10−3 mm3 with different external substrate concentrations that are
positioned equidistantly on three concentric circles with radii of 0.5 mm (6 cuboids
with 10−7 mol), 1 mm (12 cuboids with 10−7

2 mol) and 1.5 mm (18 cuboids with
10−7
4 mol), respectively. A similar in vitro configuration is reported in Davidson

(1998) and Jacobs et al. (2002).

In Scenario 3 (Figure 7.8 and Table 7.6), the substrate is arranged according to
the scaled coordinates of the main cities in Belgium (Brussels, Ghent, Antwerp,
Ostend, Kortrijk, Leuven, Mons, Charleroi, Namur, Liège and Bastogne). This kind
of experiment is common in literature, using oatmeal or agar as nutrient source,
in order to test the ability of the fungi to find the shortest or most efficient path
between different points in space (Adamatzky et al., 2012). The substrate cuboids
have the same size and characteristics as in Scenario 1.

The following two scenarios (Scenarios 4 and 5) involve tropisms, since many re-
searchers reported the ability of fungi to sense and react to external stimuli (see
Section 7.2.3). Scenario 4 (see Table 7.6) comprises two forces repelling the fun-
gus and no additional external substrate. Both of them have a negative effect with
relative strength γk = −1, and it is assumed that their effect lasts throughout the
entire simulation. The two forces are represented by cuboids of size 27 mm3 with
their centre located 1.6 mm apart from either side of the inoculum. Motivated
by Meškauskas et al. (2004a), Scenario 5 (see Table 7.6) includes both positive
and negative tropisms, such that the fungus gets attracted and repelled by differ-
ent forces at the same time. This scenario consists of ten positive tropisms with
strength γk = 0.8 and duration δk = 0.2 d, and two negative tropisms with strength
γk = −1 that are affecting the fungus for the entire simulation period. The positive
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forces are placed on a circle of radius 0.5 mm and have a size of 8 × 10−3 mm3.
The two negative tropisms have a size of 27 mm3 and are separated by 0.6 mm,
with the positive forces in between them.

Scenario 6 (see Table 7.6) involves a wood block using a similar approach as Fuhr
et al. (2011) for Norway spruce (Picea abies). Fungi are able to degrade lignin (Krivtsov
et al., 2006; Schwarze, 2007), a substance present in plants. Consequently, they
are essential for maintaining nutrient cycles in forests, while their effects can be
adverse in human environments. For the latter issue, it is important to be able to
simulate fungal growth within woody structures (Henkel et al., 2012; Wadsö et al.,
2013). The wood structure is simplified as a bundle of tracheids with 95% of their
cell walls consisting of solid material and 5% consisting of pits, penetrable and
full of substrate. The dimensions of the wood block are 0.4 mm3 and the wood
cells are arranged in a cuboid grid, a grid consisting of cuboids with unit length
0.04 mm, height 0.04 mm and width 1 mm. Fungi are not able to grow through
these walls, but they can penetrate them through the pits, which are randomly dis-
tributed along the centreline of the walls. In total, there are 237 pits, represented
by cuboids of length 0.01 mm containing enough substrate to generate 150 new
hyphal segments each (i.e. 10−7 mol).

7.3.2.2 Scenario analysis results

The dynamics of the in silico fungus under the different scenarios is studied by con-
sidering the following topological measures: total amount of internal substrate,
extent, total number of tips and total length (Section 7.3.1.1). As an example,
the variability of the scenarios is illustrated in Figure 7.6 showing the total length
obtained for 200 runs per scenario over a period of 150 time steps (1.5 d). The
scenarios without additional external substrate sources and without spatial restric-
tions (Scenarios 0, 4 and 5) result in values of total length that are very similar for
all simulations. In contrast, the other scenarios (Scenarios 1, 2, 3 and 6) show
more variability, as such illustrating the importance of external stimuli on fungal
growth. Per scenario, mean curves for every topological measure were obtained
from 200 simulations (Figure 7.7).

Figure 7.7(a) shows how the internal substrate within the mycelium evolves over
time. The three scenarios without additional external substrate (Scenarios 0, 4 and
5) result in a depletion of internal substrate until a minimum amount is reached,
beyond which growth and branching are not longer possible. In contrast, in the
scenarios with additional substrate this can be used during the course of the sim-
ulation. The replenishment of substrate in these scenarios allows more internal
substrate to reach the tips where it is consumed to create new biomass, as such
resulting in lower final values of the total amount of internal substrate despite this
replenishment. Scenario 2 evolves in a similar manner as the other scenarios with
additional substrate, but in this scenario the impact of the substrate replenishment
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Figure 7.6: For each scenario in Section 7.3.2, the evolution of the total length during 1.5 days of
growth for 200 simulations is given.

is even more pronounced. The position of the substrate cuboids in this scenario
enables the mycelium to reach most of them and, therefore, to absorb more ex-
ternal substrate than in the other scenarios resulting in higher values of internal
substrate.

The evolution of the extent of the mycelium under the different scenarios is shown
in Figure 7.7(b). In Scenario 2, the mycelium becomes the largest. Again, this
might be explained by the relatively high concentration of internal substrate during
the entire simulation, which ultimately results in more branches and apical growth
events. Scenarios 4 and 5 result in in silico fungi with a limited spatial extent, which
is caused by the fact that the position of the hyphae is governed by the tropisms.
The remaining scenarios present similar values for this measure, proving that the
lack of internal substrate is as significant as the spatial confinement when it comes
to the extent of the mycelium. Even in Scenario 6, where the fungus is confined
to the long cavities of a wood block, which makes the fungus follow an almost
straight line, its extent is close to the ones observed for the other scenarios.
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Figure 7.7: Mean curves of the topological measures for the different scenarios outlined in
Section 7.3.2, computed from 200 simulations covering 1.5 days of growth.

Two different phenomena can be observed for what concerns the evolution of the
number of tips over time (Figure 7.7(c)). In Scenarios 0, 4 and 5 the number of tips
increases rapidly until it reaches a maximum. This behaviour is similar to the one
observed for the internal substrate (Figure 7.7(a)) and it is related to the limited
amount of substrate in these scenarios. The initial rapid generation of biomass
implies an equally rapid depletion of internal substrate, after which the substrate
availability within the fungus is no longer sufficient to create new branches. In the
other scenarios (Scenarios 1, 2, 3 and 6) the number of tips increases during the
entire simulation, though two phases can be distinguished: an exponential growth
phase where the number of tips increases rapidly followed by a linear growth phase
where the number of tips increases much slower. During the former, the in silico

fungus generates new tips rapidly and consumes substrate faster than it is replen-
ished, resulting in a mycelium full of segments with a limited amount of internal
substrate left. Hence, the amount of substrate per segment at the linear growth
phase is not enough to continue with this exponential branching and new tips are
slowly generated as a consequence of the replenishment of substrate.

The mean curves obtained for the total length (Figure 7.7(d)) prove that the con-
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finement of the area available for growth limits fungal growth. As can be observed
in this graph, the scenarios without inert boundary conditions (Scenarios 0, 4 and
5) lead to a faster growth during the exponential growth phase, resulting in a
higher total length than some of those confined by such conditions. We note a
clear difference between Scenario 2 and the other scenarios representing growth
in a Petri dish (Scenarios 1 and 3), which can only be explained by the available
amount of external substrate. In Scenario 6, an in silico fungus grows inside a
wood block full of substrate cubes placed in the wood walls where they can be
reached but not as easily as in the other scenarios. In addition, the dimensions
of the wood block allow the fungus to grow beyond the limits of the wood block
in most simulations, and to grow without further restrictions from boundary condi-
tions. The high substrate concentration together with the confined and free growth
phases result in the high values of total length observed in Figure 7.7(d).

Even though the results of the scenario analysis are of a qualitative nature, some
of the most striking characteristics of fungal growth can already be observed. For
instance, the benchmark scenario produces similar growth patterns (Figure 7.4) as
those obtained with other models that mimic survival scenarios (Boswell, 2008;
Carver and Boswell, 2008). Scenario 1 can be compared with experimental set-
ups, where most substrate is placed close to the mycelium (Vidal-Diez de Ulzurrun
et al., 2015). The topological measures quantifying the in silico dynamics of this
scenario resemble those observed for Rhizoctonia Solani, but on a different scale
due to the initial conditions of the experimental set-up, where the initial shape of
the mycelium is not known. The amount of external substrate and its spatial distri-
bution are key when modelling fungal growth, as should be clear from Scenario 2.
The topological measures for this scenario take values significantly different from
those obtained for the other scenarios. The main reason for this is the replenish-
ment of substrate in Scenario 2, which has been also observed in similar growth
scenarios (Jacobs et al., 2002) and further investigated in Boswell et al. (2003).
Unfortunately, our in silico results for Scenario 3 (Figure 7.8) are not easy to com-
pare to those of similar experimental set-ups (Adamatzky et al., 2012), especially
without a proper calibration.

In contrast, the effects of single droplets of agar on the shape of the in silico

mycelium agree with the ones presented in Hopkins and Boswell (2012) for a
growth scenario where nutrient sources are placed randomly in space. The scenar-
ios involving tropisms (Scenarios 4 and 5) lead to in silico mycelial structures that
are similar to those shown in Meškauskas et al. (2004a), in particular those ob-
tained for the scenarios including attracting substrate forces and horizontal plane
tropisms (Figure 7.9).

Our last scenario was designed according to the set-up of Fuhr et al. (2011). The
latter considers fungal growth from a substrate point of view, while the model pre-
sented in this manuscript is based on the biological processes of the fungi, which
makes the output of the models fundamentally different. Still, growth patterns pro-
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(a) t = 25 (b) t = 50

(c) t = 75 (d) t = 100

Figure 7.8: In silico mycelium at 25 to 100 time steps (0.25 to 1 day) with indication of the internal
substrate concentration, using h0 = 0.1 mm, cgr = 5 × 10−8 mol mm−1 and the other parameters as

shown in Table 7.5.

duced by both models show some similarities, which once more proves the ability
of our model to replicate growth behaviour driven by different environmental con-
ditions.

Overall, the model presented in this chapter is able to reproduce different types
of fungal behaviour that have been previously presented in literature. The studied
topological measures show that the amount of substrate, as well as the confine-
ment of space, are two key factors determining the overall growth and shape of
the in silico mycelium.
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(a) Scenario 4 Top view (b) Scenario 5 Top view

(c) Scenario 4 Side view (d) Scenario 5 Side view

Figure 7.9: Example of different tropisms on the in silico fungus shape, top and side view. These in
silico mycelia correspond to the visual representations of Scenario 4 (7.9(a) and 7.9(c)) and Scenario 5

(7.9(b) and 7.9(d)) using the parameters given in Table 7.5 after 150 time steps.

7.3.3 Discussion

In this chapter we have presented a new SEM able to mimic fungal growth in
three dimensions. It focuses on the evolution of the hyphae as the result of bio-
logical processes and effects of different external stimuli. The in silico mycelium
and the environment are designed as independent entities that interact with each
other. Our model is based on established fungal growth models (Boswell, 2008;
Carver and Boswell, 2008; Hopkins and Boswell, 2012; Meškauskas et al., 2004a).
However, fungal growth is here not confined to a lattice and growth is replicated in
three dimensions, as such leading to more realistic representations of the mycelium.
Since most of the underlying assumptions have been advocated by other studies,
we believe it is capable of mimicking fungal growth in a realistic way. However,
processes like hyphal degradation (Gadd et al., 2007) or lateral branching (Edel-
stein, 1982; Mouriño Pérez et al., 2006) are still to be incorporated. In addition,
some processes already incorporated in the model, such as translocation and up-
take, are not yet well understood and even less so in the three-dimensional space.
On the other hand, even though the values of most model parameters can be
found in literature (see Table 7.5), these data originate from a few species and en-
vironmental conditions, hindering a more detailed study of specific fungal species
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and conditions. Furthermore, current experimental set-ups and techniques are
usually narrow in scope (Fricker et al., 2009), not allowing for the calibration of
the parameters involved in most fungal growth models. In response, several tech-
niques based on image analysis (Obara et al., 2012; Lopez-Molina et al., 2015;
Vidal-Diez de Ulzurrun et al., 2015) have been developed for the purpose of ex-
tracting the data needed to calibrate SEMs. Yet, parameters related to internal
substrate diffusion or maximum concentration have to be identified using different
techniques, since they cannot be visually assessed. For instance, X-ray computed
tomography (Van den Bulcke et al., 2009) and confocal microscopy (Dickson and
Kolesik, 1999; Bago et al., 2002; Fricker et al., 2008) could offer a way out. The
substrate diffusion has turned out to be the most important parameter (see Sec-
tion 7.3.1.1), and therefore efforts should be made in order to carefully determine
this parameter.

In our model, the environment is discretized using cuboids representing differ-
ent boundary conditions (see Section 7.3.2). Even though some of these condi-
tions have been studied before (Boswell et al., 2007; Boswell, 2008; Hopkins and
Boswell, 2012; Fuhr et al., 2012; Meškauskas et al., 2004a), this chapter reports on
the first attempt to mimic so many of them and combinations thereof. The bound-
ary conditions presented in this chapter allow to mimic most real-world situations,
and combining them makes it possible to design complex and realistic scenarios.
The scenarios presented in Section 7.3.2 illustrate the scope of our model. It is
able to replicate the environments and conditions of some of the most common
experiments found in literature. Moreover, complex scenarios such as growth in
soils (Morgan et al., 1993; Boddy et al., 1999; Pajor et al., 2010) could be studied
with this approach by discretizing the soil according to its actual structure. An-
other possible extension would be to study the resistance of different materials
to fungi (Gobakken and Westin, 2008), where each of these materials could be
encoded easily using appropriate boundary conditions. The boundary conditions
mainly affect the direction and the internal substrate of the hyphae, while param-
eters like the cost of growth or the hyphal length are not affected. Nevertheless,
the values of the latter parameters may depend on other environmental conditions
not yet included in our model, such as relative humidity and temperature, since
these have proven to affect the growth dynamics independently from the growth
scenarios (Ayerst, 1969; Magan and Lacey, 1984) and therefore should be taken
into account in further work.

The interactions between fungi and their environment are not yet completely un-
derstood and the available knowledge is often based upon hypotheses and as-
sumptions (Gadd et al., 2007). Even though fungal growth models can help to
clarify the nature of such interactions, they need to be properly calibrated in order
to provide valid results. Therefore, further experimental studies of the interactions
between the fungus and its environment are needed for the calibration of fungal
growth models incorporating both fungi and environment. Furthermore, these ex-
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periments should be designed to complement the theoretical models that they aim
to calibrate. For these reasons, future extensions of this research must include the
generation of experimental data which can be incorporated into the current model,
as such increasing its reliability and applicability.

In summary, we have developed the first three-dimensional lattice-free model able
to replicate fungal growth in different environments. The model is based on biologi-
cal processes and theories, as such ensuring a realistic representation of the fungal
dynamics. In addition, the growth environment is reduced to a set of cuboids, rep-
resenting different boundary conditions, allowing for the representation of a vast
number of in silico growth scenarios. A global SA was performed in order to study
the impact of the different parameters on a set of topological measures commonly
used to track fungal growth. The SA has shown that the internal substrate coeffi-
cient, the branching probability and the cost of growth are crucial to our model. A
scenario analysis was conducted to study the effect on the overall fungal growth
of different growth scenarios. These scenarios included some of the most studied
experimental set-ups described in literature, as such illustrating the capability of
the model to replicate in situ growth scenarios.

Table 7.6: Summary of different in silico fungal growth scenarios: description and visual representation.

Scenario Description Representation

Benchmark
Three-dimensional space without
spatial restrictions.

Scenario 1
Petri dish inoculated with substrate droplets
2 x Impenetrable cuboids
12 x Substrate cuboids

Continued on next page
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Table 7.6 – Continued from previous page

Scenario Description Representation

Scenario 2

Petri dish inoculated with substrate droplets
of different concentrations.
2 x Impenetrable cuboids
36 x Substrate cuboids

Scenario 3

Petri dish inoculated with substrate droplets
placed on a scaled map of Belgium.
2 x Impenetrable cuboids
11 x Substrate cuboids

Scenario 4
Two parallel negative tropisms (repulsion).
2 x Tropism cuboids

Scenario 5

Two parallel negative tropisms and six
temporal positive tropisms
(repulsion and attraction)
8 x Tropism cuboids

Continued on next page
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Table 7.6 – Continued from previous page

Scenario Description Representation

Scenario 6
Wood block.
10 x Impenetrable cuboids
237 x Substrate cuboids
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CONCLUSIONS AND

PERSPECTIVES
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8
Conclusions

Fungi have been widely studied to gain a better understanding of their unique
characteristics, to improve production processes and develop new products, and
to limit their growth in order to protect organic materials (Chapter 2). Their growth
is their most remarkable characteristic. For instance, most fungi are able to gain
biomass only by extending and branching existing hyphae, resulting in complex
networks that allow them to colonize and survive in different habitats. Different
processes are involved in the generation of new fungal biomass, some of which
occur in distant regions of the fungal network. Even though fungal growth has
been the subject of many studies, some of the underlying processes driving it are
still unknown. In addition, external factors also play an important role in the de-
velopment of fungal networks, since each fungal species grows only under certain
environmental and nutritional conditions that differ significantly among different
species. Therefore, fungal growth is a challenging topic that is not yet fully under-
stood.

One of the main factors hindering the study of fungal growth is the nature of the
established experimental techniques that are not able to produce quality data. Ex-
periments have to be performed repeatedly to account for the natural variability of
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fungi, even when considering the same fungal species, and to account for the wide
range of possible substrate sources, habitats and environmental conditions. Unfor-
tunately, most of the current techniques involve manual steps, and in some cases
even the destruction of the sample, which makes it impossible to track growth
over time on a single individual fungus. In addition, other techniques focus on
extremely small regions of the network, so that the corresponding findings do not
explain the behaviour of the whole fungal network. For these reasons, techniques
able to produce large high-quality data sets in an efficient way are needed in order
to advance the study of fungal growth.

The increase in computing power and the rise of new data acquisition techniques
open new avenues of study which can help to overcome these limitations. For
instance, the automated processing of biological imagery has gained momentum
in the past years due to the availability of cheap imaging and processing equip-
ment, and the development of dedicated image analysis algorithms. The scale at
which fungi grow allows for the extraction of numerous images using basic ma-
chinery, making them the perfect subjects to study with such techniques. Further-
more, images can be captured in an automated and non-destructive way, as such
overcoming the limitations of some existing techniques. Consequently, we inves-
tigated the possibilities that image analysis has to offer to the study of fungi in
Chapter 4. For this purpose, we built an image analysis algorithm able to extract
ridges from raw images of different fungi taken at different scales. This algorithm
is based on anisotropic multiscale kernels for second order image differentiation,
as such allowing for the use of multiple scales and anisotropy indices. In addition,
the algorithm was tested on a new data set of images featuring different fungal
species, thereby proving that it produces better results than those obtained with
other ridge extraction algorithms.

Motivated by the results obtained with the ridge detection algorithm, we devel-
oped a new method able to automatically capture images of growing fungi. On the
basis of the resulting binary ridge maps, we were able to compute different topo-
logical measures for the studied fungi, as such synthesizing their growth dynamics
(Chapter 5). For this purpose, we designed an innovative experimental set-up that
does not require expensive or complex equipment, as such permitting its repro-
ducibility in most laboratories. The resulting time series of images are processed
using the ridge extraction algorithm and subsequently transformed into graphs,
from which several topological measures accounting for different aspects of the
fungal dynamics can be computed. In addition, this method can be used to study
the growth kinetics of various fungal species. In order to illustrate and test the
versatility of this method, the dynamics of five fungal species were mutually com-
pared. The results of this comparison concurs with key fungal growth assumptions
and studies, as such supporting the efficiency and applicability of our method.

Assessing the effect of the prevailing environmental conditions on fungal growth
is still an important topic for the research community. New materials and preser-
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vative products used in construction to protect buildings from fungal decay need
to be tested under different environmental conditions. Unfortunately, not all of the
tests used are able to efficiently assess their effect in sufficient detail. In addition,
climate change has altered the habitats of fungi, thereby affecting their growth
dynamics and having a strong impact on their ecosystems. For these reasons we
decided to quantify the effects of the environmental conditions on fungal growth
using the aforementioned method in Chapter 6.

The original experimental set-up was adjusted to assess the effect of different
temperatures and relative humidities on the growth of Coniophora puteana. Be-
sides, the preparation of samples was slightly improved, as such resulting in im-
ages of higher quality. These images were used to perform a detailed analysis of
16 environmental conditions by studying their effects on several topological mea-
sures. The obtained results are in line with similar studies found in literature, as
such suggesting that our approach is suitable for studying the effect of these fac-
tors. Essentially, our method constitutes an alternative to overcome some of the
problems of other approaches studying the effects of environmental conditions on
fungal growth.

However, the method presented in Part II also has some limitations since proces-
ses occurring inside the fungal network cannot be studied by means of images.
Still, these processes have proven to be crucial for the development of fungi. In
addition, growth scenarios involving opaque structures cannot be studied easily
by our method since simple imaging devices are not able to capture fungal growth
occurring inside these structures. Finally, even though the method here proposed
is able to produce accurate data faster and more efficiently than most experimen-
tal techniques, it is subject to the space and time restrictions of laboratories. In
order to overcome the aforementioned limitations and to better understand the
processes driving fungal growth, we turned to mathematical modelling.

Several mathematical models have already been proposed to mimic fungal growth
by relying on different hypotheses, methods, scales and modelling paradigms. The
most relevant fungal growth models were reviewed and compared in Chapter 3. In
the light of this review, we formulated a spatially explicit model representing fungal
growth at mesoscopic scale (Chapter 7). It takes biological processes into account
and relies on established theories, as such ensuring a realistic representation of
the fungal dynamics. In addition, this model mimics growth in three dimensions
without any restriction on the spatial degrees of freedom and takes into account
the effects of different external stimuli that are often neglected by modellers.

This three-dimensional lattice-free approach allows us to simulate fungal growth
in a more realistic way than most models working at the same scale. Further-
more, the external stimuli interacting with the in silico fungus can be combined to
represent various boundary conditions, allowing for the representation of a vast
number of in silico growth scenarios, including some of the most commonly used
experimental set-ups and even wood degradation scenarios. Therefore, a scenario
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analysis was conducted illustrating the capability of the model to replicate in situ

growth scenarios. In addition, a sensitivity analysis was conducted in order to de-
termine the model parameters that should be further investigated. Even though
further calibration of the model parameters is still needed on the basis of more
extended data sets, this model is already able to mimic different observed growth
behaviours.

In conclusion, the methods presented in this thesis offer an updated and broader
alternative to classical and narrowly focused studies, thus opening new avenues
of investigation in the field of fungal growth research. This dissertation therefore
provides powerful instruments useful for the advancement of the study of fungal
growth.



9

9
Future perspectives

The methods and results described in this dissertation are a significant progress
for the assessment and modelling of fungal growth. First, an image analysis tech-
nique was described in Part II. This technique is able to generate detailed data
on the development and growth of different filamentous fungal species, and this
under different environmental and nutritional conditions, as such allowing for a
better understanding of fungal growth. In addition, a mathematical model was
formulated in Part III. This model combines different models and includes the inter-
actions between fungi and different external stimuli occurring in three dimensions.
Still, both the image analysis technique and the mathematical modelling can be
further extended and employed, targeting at several different applications and
studies. In the remainder of this chapter, we will discuss different growth scenar-
ios that could benefit from the use of the image analysis technique here presented
and how to improve and adapt this technique to other scales and features. Possible
extensions of the current mathematical model, including necessary adaptations to
model more complex and diverse growth scenarios and to simulate the growth of
other filamentous organisms will be examined as well.
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9.1 Extending our image analysis technique

The image analysis technique described in Section 5 comprises three consecutive
stages: sample preparation and image extraction, image processing and extrac-
tion of fungal growth features. The results obtained using the aforementioned
technique represent a significant advance compared to most traditional methods
used for the same purposes. However, there is still room for improvement; there-
fore, we will discuss some limitations and possible extensions of our image analysis
technique in this section.

9.1.1 Sample preparation and image extraction

Fungi are able to grow on many different substrates, even those containing a lim-
ited amount of nutrients only (Pasanen et al., 1991) and therefore almost any ma-
terial is prone to their attack. For example, new designs and treatments are being
developed to protect building materials against the action of fungi. Each mate-
rial and treatment have to be tested under different environmental conditions and
against different fungal species in order to study its efficiency. However, most
standard tests are subjective and do not take growth patterns into account (Adan,
2011). For these reasons, alternative testing methods able to assess fungal growth
in a more objective and detailed manner are needed. We believe the image anal-
ysis approach discussed in this dissertation could be adapted to test fungal resis-
tance of different materials under different environmental conditions. However,
this image analysis approach requires certain quality criteria that could impose a
problem when studying the growth of fungi on different materials.

In order to use our technique, images need to present certain contrast levels ensur-
ing that hyphal material can be distinguished from the background. In scenarios
involving limited substrate sources, i.e. fungal growth in the empty space, the con-
trast level required can be easily obtained. Fungal growth on agar, on wood or wall
paper could have limited contrast and require further analysis. These scenarios
are crucial when studying the aesthetic performance of materials and to test the
efficiency of fungicides and therefore need to be tackled. A possible solution is
the use of dyes (Card et al., 2013), radioactive labelling (Riquelme et al., 2011)
or immunofluorescence labelling (Xiao et al., 1999) in order to achieve a higher
contrast. However, the effect of these treatments on fungal growth needs to be
taken into account.

Another criterion of the image analysis technique is that vertical growth needs to
be limited to a few millimetres. This limitation is not a problem when studying
growth scenarios involving agar, however, other materials cannot be constrained
to these dimensions. For instance, some engineered wood materials are composed
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of several different materials and therefore a small sample would not be able to
represent their overall characteristics. A possible solution for this problem would
be to reduce the studied material to a basic physical state by removing its spatial
structure, for example, by grinding. Even though further analysis has to be con-
ducted, we believe this small change would be sufficient to assess fungal growth
on different materials objectively and in extensive detail.

Internal processes and mainly translocation of nutrients are crucial to understand
fungal growth, unfortunately, processes occurring within the mycelium cannot yet
be tracked using our current experimental set-up. These processes can be fol-
lowed using techniques relying on fluorescent labels or chemical markers, such as
confocal microscopy (Bartnicki-García, 2002) and multiphoton microscopy (Bago
et al., 2002). Our image analysis technique should be easily adaptable to study
images obtained using the aforementioned techniques. In addition, a better un-
derstanding of nutrient translocation and uptake is needed in order to improve
mathematical models such as the one presented in Part III of this dissertation.
Since the parameters driving translocation in Coniophora puteana have not yet
been calibrated, the adaptation of the current image analysis technique to study
the processes occurring within the mycelium constitutes a priority in order to fully
calibrate our model.

In addition, the experimental set-up here discussed does not allow for the tracking
of hyphal growth inside opaque substrates. Such scenarios are important since
processes such as material degradation or food spoilage mainly occur within host
organisms. Current imaging techniques, including scanning electron microscopy
(Sherif et al., 2016), X-ray computed tomography (Van den Bulcke et al., 2009) and
optical fluorescence microscopy (OFM) (Romão-Dumaresq et al., 2016), are able to
track hyphae in the interior of opaque structures (see Figure 9.1). Even though the
use of such imaging devices defeats the purpose of our image analysis technique,
i.e. providing an easy and cheap alternative to current experimental methods,
images obtained with such devices could also be studied using an adapted version
of our image analysis technique.

The image analysis technique presented in Part II of this dissertation is only able
to study two-dimensional images of fungi. However, different devices are able to
capture three-dimensional images of fungi, such as laser scanning confocal mi-
croscopes (CLSM) (Du et al., 2016) and X-ray computed tomography (CT) scan-
ners (Van den Bulcke et al., 2009). For instance, CLSM constructs three-dimensional
images by assembling several two-dimensional images representing different sec-
tions of the studied entity. In addition, several images can be captured over time,
as such allowing to track the evolution of fungi in three dimensions. Even though
time series of fungi growing in 3D can be obtained, classical image analysis tech-
niques, including the one described here, are not yet able to deal with these kind
of data. Therefore, in order to deal with three-dimensional images, all the tech-
niques here described should be revisited. This poses a significant challenge, but
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(a) X-ray computed tomography

(b) Optical fluorescence mi-
croscopy (c) Scanning electron microscopy

Figure 9.1: Images of growing hyphae in the interior of wood obtained with: (a) X-ray computed
tomography, (b) optical fluorescence microscopy and (c) scanning electron microscopy. (Sources:
(a) Van den Bulcke et al. (2009), (b) Romão-Dumaresq et al. (2016) and (c) (Sherif et al., 2016))

the possible results are worth the effort and therefore we plan to work further in
this direction.

9.1.2 Image processing

The image analysis algorithm used to extract ridge maps from fungal images was
presented in Chapter 4. This algorithm is able to simplify the information con-
tained in raw images representing mycelia. This is achieved by relying on the
individual characteristics of each image. For instance, the binarization thresholds
are computed using only the image histogram. Consequently, we can conclude
that the current technique does not take into account correlation between consec-
utive images. In contrast, the output of our experimental set-up consists of time
series of correlated images representing the evolution of the mycelium instead of
individual unrelated images. In addition, small variations in a single image have a
high impact on the results of the whole series. For example, dust particles or slight
light changes may change the image histogram and subsequently the binariza-
tion thresholds affecting the amount of hyphal material detected by the algorithm
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contrasting with those detected in previous or subsequent images. Unfortunately,
this contamination during the image capturing stage is almost impossible to avoid.
Therefore, the incorporation of time into the image analysis algorithm could be
beneficial for the overall results.

The time series of images could be studied as a whole instead of as a collection of
individual images. For instance, computing binarization thresholds using a global
histogram (composed of the histograms of all images in the time series) should
significantly minimize the impact of small perturbations. In addition, some impor-
tant features, such as branching and anastomosis of fungi, cannot be explicitly
assessed using the current technique due to their time dependency. For this pur-
pose, nodes and edges should be explicitly tracked over time, which requires a
significant amount of computing power and a proper characterization of all graph
elements. Even though this adaptation is quite challenging, the adapted tech-
niques would rely on graphs similar to those obtained with our current experimen-
tal set-up. We believe the inclusion of time would result in relevant improvements.

9.2 Model calibration and validation: combin-
ing image analysis and mathematical mod-
elling

Mathematical models can be used to describe many natural phenomena. However,
this can only be achieved by calibrating the models and validating their results
using experimental data. During the calibration stage, the model parameters are
determined using experimental data in such a way that the agreement between
the model outputs and the data is maximized. Then, the accuracy of the model
results needs to be tested to determine if the model is able to realistically describe
the modelled phenomena. The validation needs to be objective and therefore it
needs to be performed using an independent data-set. In the remainder of this
section we will discuss how the techniques described in Part II could be used in
order to calibrate and validate the model proposed in Part III.

The image analysis technique captures images of the whole mycelium growing at
a centimetre scale, hence producing data at mesoscopic scale, the same scale the
model works at. Additionally, the model is able to simulate different growth scenar-
ios including in silico counterparts of the elements employed in the experimental
set-up, such as Petri dishes and agar droplets. Therefore, the model and the image
analysis technique can be combined in order to both determine the values of the
model parameters and to assess the accuracy of the model results.

For instance, several model parameters can be computed directly from topological
measures obtained using the image analysis technique. For example, the hyphal
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length h0 and the growth angle ω can be computed directly using the mean ob-
served hyphal length and the growth angle, respectively, or even their correspond-
ing experimental distributions. Even the initial number of tips or the distribution of
additional nutrients sources can be incorporated into the model using the imagery
data obtained.

In contrast, the calibration of other parameters requires more consideration. For
instance, the cost of growth, cg, cannot be computed using a single growth sce-
nario since different substrate concentrations need to be compared in order to
determine their value. Actually, the set-up described in Chapters 5 and 6 should
be repeated several times starting from different substrate concentrations. Con-
sequently, the total hyphal length obtained for each of these experiments could
be used to determine the amount of substrate that is needed to growth a single
hyphal segment. Such growth scenarios would also give an insight in how the nu-
trients concentration and distribution affect other parameters, namely the branch-
ing probability P which is strongly correlated in the model to the internal substrate.
However, further investigation is needed to determine the latter parameter since
the current image analysis technique does not allow to track branching and anas-
tomosis explicitly (see Section 9.1.2).

Unfortunately, a third group of parameters cannot be determined by means of
the techniques described in Part II of this dissertation since they occur inside the
mycelium and cannot be captured by the imaging devices employed. Therefore,
parameters accounting for the substrate translocation, such as the diffusion coef-
ficient D and the maximum hyphal capacity Mcp would require a different kind
of experiments. A possibility to study the latter parameters resides in the use of
fluorescent and chemical markers as discussed in Section 9.1.1.

Once the model is properly calibrated a new growth scenario needs to be imple-
mented, both in silico and in vivo in order to quantify the accuracy of the model.
Then, some distance measure, such as the bias or the accuracy factor can be used
to assess the agreement between the experiments and the model results (Zhou
et al., 2012; Samapundo et al., 2005). The main advantage of our image anal-
ysis technique in this stage is that it leads to several topological measures over
time. This allows to test how accurate the model represents different aspects of
the growing fungus, including its morphology, compactness and its overall growth
dynamics.

Due to the versatility of the image analysis technique we argue that it would be
of use also for the calibration and validation of other mathematical models. Even
though the nature of the model parameters varies widely depending on the scale
and modelling approach, the image analysis technique can be tuned in order to de-
termine different parameters. In addition, the results of most models consist of in

silicorepresentations of the mycelium (see Chapter 3), which can be characterized
by the topological measures introduce in Chapters 4 and 6, as such allowing for
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their comparison with those extracted from the in vivo fungal images and there-
fore, for the validation of the models.

9.3 Model extensions

In Part III a new mathematical model representing fungal growth was described.
This model represents the hyphae of an in silico fungus growing and interacting
in three dimensions. This model opens new avenues of investigation due to its
versatility. However, it constitutes only a first version on the basis of which we
plan to build several improved models yet to come. Consequently, some of the
possible model extensions will be discussed here.

9.3.1 Dynamical fungal growth parameters

One of the main assumptions of most fungal growth models is that growth param-
eters are constant through time. Hence, concepts such as hyphal segment length,
substrate diffusion coefficient, cost of growth or branching probability are vastly
used by the fungal growth modelling community. The use of these constants re-
sults in simple and robust models. In addition, these constants have been studied
in literature for several fungal species and can be derived from direct observations
of in vivo fungi. However, even basic experiments show that most fungal growth
parameters depend on different factors including environmental conditions (Pasa-
nen et al., 1991), time (Gadd et al., 2007) and the position of a hypha within the
fungal colony (de Bekker et al., 2011; Hickey et al., 2002).

The impact of temperature and relative humidity was studied in Chapter 6. As
reported by other researchers, these two environmental factors play an impor-
tant role in the development of mycelia. This means that for each fixed environ-
mental condition the model aims at mimicking, recalibration of its parameters is
required. Furthermore, in vivo, environmental conditions change over time and
space and therefore the restriction of fixed environmental conditions is a signif-
icant constraint. Therefore, we believe that growth parameters could be better
represented as functions of, for example, temperature and relative humidity than
as simple constants. Even though this extension may seem easy to implement,
recognizing which fungal growth parameters are affected and the exact effect of
the external conditions requires further investigation. However, a model able to
predict fungal growth under changing environmental conditions would be of rele-
vance for several sectors and industries, principally for the building sector.

On the other hand, other factors such as the position of a hyphal tip further or
closer to the center of the colony has also an impact on its growth features. For
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instance, lateral branching occurs mainly at the center of the colony, while apical
branching is mainly observed at the periphery (Hickey et al., 2002). Therefore, in
our model, the distance of a hyphal segment to the center of the colony could be
used to compute its branching probability or its growth angle. By using dynamic
parameters, other fungal processes such as fungal autolysis could be included
in the model. Hyphae become inactive over time and during this inactivation pro-
cess their ability to take up and translocate substrate decreases gradually (Boswell
et al., 2003). Therefore, the age of a hyphal segment could be used to determine
the amount and velocity of the substrate diffused through it. All these extensions
would result in a more realistic model, yet substantial work has to be done in order
to achieve this.

9.3.2 Revision of substrate uptake and translocation

Substrate plays a central role in our fungal growth model. As suggested in previous
studies (Boswell et al., 2003; Carver and Boswell, 2008), substrate is not only used
to create new biomass, but also to determine whether or not a branching event
occurs or to determine the amount of substrate that can be incorporated into the
mycelium. In our model, substrate reaches hyphal segments through one of two
processes: uptake of external substrate, where external substrate is absorbed,
converted into internal substrate and incorporated into the hyphal segment, or by
translocation of internal substrate, where internal substrate is provided by neigh-
bouring hyphal segments. Different theories have been formulated over the years
about these two processes (Fricker et al., 2008; Tlalka et al., 2007) and due to
the difficulties to study them at larger scale, they are not yet completely under-
stood (Fricker et al., 2008). Due to the importance of these processes in the model,
we believe further effort has to be made in this direction.

For example, our model mimics translocation as the effect of diffusion. Even
though a similar approach has been used by several modellers (Boswell, 2008;
Carver and Boswell, 2008; Davidson, 1998), most theories suggest that transloca-
tion may be the result of an active and a diffusive process (Boswell and Hopkins,
2008). For instance the diffusion of external substrate in the environment is not
taken into account and the conversion of external substrate happens immediately
and without the use of an explicit conversion rate. Although these assumptions do
not interfere with the purpose of the current model, further versions of the model
would need a revisited version of these substrate-related processes.

9.3.3 A realistic wood decay scenario

Fungi are the main organisms degrading wood and wood-based materials (Schwarze,
2007) and the building sector is especially affected by their degrading action (Adan
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and Samson, 2011). Therefore, Chapter 7 includes a growth scenario representing
a simplified version of a wood block within which an in silico fungus is growing. The
wood block is represented as a collection of wood tracheids arranged in a square
lattice in three dimensions. It is composed of two different materials: impenetrable
and substrate cubes representing wood walls and pits, respectively. Even though
this basic representation allows to simulate the physical restrictions imposed by
the wood structure on the growing fungus, it cannot fully grasp the complexity of
the wood degradation process.

In order to develop a more realistic wood degradation scenario, several additional
features should be incorporated into the model. For instance, fungi degrade wood
by releasing enzymes targeting different chemical wood components, resulting in
different types of wood degradation, which are referred to as brown rot, white
rot and soft rot (Schwarze, 2007). Hence, the secretion of enzymes needs to be
included in the model in order to represent any of the aforementioned rotting pro-
cesses. Secretion of enzymes by in silico hyphae has been successfully modelled
for different purposes (Hopkins and Boswell, 2012). Therefore, we believe that the
incorporation of the secretion of enzymes in the current model, in a similar man-
ner, should be feasible. However, the effect of the in silico enzymes would require
further analysis.

Additionally, the representation of the wood block structure could be better repre-
sented using real three-dimensional images such as the ones obtained using X-ray
computed tomography (Van den Bulcke et al., 2009) (see Figure 9.2). Such three
dimensional images could serve as templates to develop in silico growth scenar-
ios, where the structure of the wood block would be represented by using different
cubes. Furthermore, the evolution of the mycelium and the structural changes
of wood could be tracked in three-dimensions using the image-based technique
suggested in Section 9.1.1, enabling a 3D calibration of the model.

Figure 9.2: Three-dimensional reconstructions of a pine wood block and cross-sectional view obtained
using X-ray computed tomography. (Source: Van den Bulcke et al. (2009))
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9.3.4 Modelling other filamentous organisms

The most interesting characteristic of filamentous fungi is their growth as struc-
tured networks. However, fungi are not the only organisms presenting this kind
of growth. For instance, neurons (Osório et al., 2013) or arteries (Burrowes and
Tawhai, 2006) extend in a similar manner to that observed for fungi. The roots of
plants are another example of apical growth and branching (Dupuy et al., 2010).
Physical phenomena such as rock cracking (Ghazvinian et al., 2014) or lightning
(Reed and Wyvill, 1994) can also be envisioned as a collection of segments ex-
tending and branching.

In the framework of this research we had the opportunity to collaborate with the
Earth and Life Institute of the Université Catholique de Louvain (Belgium) in or-
der to study the growth of the red seaweed Agardhiella subulata. This organ-
ism presents a similar growth behaviour and physical structure as fungi (see Fig-
ure 9.3(a)). This seaweed inhabits the coastal regions of ocean waters and it
possesses potential pharmaceutical properties (Rorrer and Cheney, 2004). Agard-

hiella subulata consists of branched shoots and grows by dichotomous branch-
ing and elongation occurring at the end of these branches, i.e. at the tips. The
growth of this seaweed is symmetrical throughout the colony, thereby resulting in
ball-like shapes reaching maximally about 10 mm in diameter. During the growth
process, small fragments often detach from the mother seaweed and become sub-
cultures able to grow independently. In contrast with fungi, these seaweeds are
photolithotropic and therefore they need light in order to produce new biomass.
Finally, the growth environment of the seaweeds differs from that of most fungi.
Seaweeds are submerged in water where they are exposed to currents with a di-
rect impact on their growth and development.

(a) Agardhiella subulata (b) Laboratory culture of algae

Figure 9.3: Individuals of Agardhiella subulata outside (a) and inside (b) a spinner flask containing all
the nutrients needed for biomass production and surrounded by artificial light sources.

Replicating the growth conditions of seaweeds in the laboratory is not straight-
forward. For this purpose, seaweeds are cultivated in cultures with nutrients and
surrounded by artificial light sources (see Figure 9.3(a)). Water currents are sim-
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ulated using shakers which make the seaweeds revolve as such assuring that the
entire surface of the algae gets sufficient light. Therefore, these laboratory condi-
tions allow to control the different factors affecting the growth of this red seaweed
accurately. For instance, the number of photons impacting on the surface of the
seaweeds or the speed at which seaweeds revolve in the media can be tuned in or-
der to mimic different growth conditions. Since nutrients are sufficiently available
in the culture, light becomes the main limiting factor of growth.

The original fungal growth model was modified in order to simulate the growth
of Agardhiella subulata. The seaweed can be seen as a collection of branches di-
vided in segments similar to hyphal segments. Contrary to hyphal segments these
branches are cylindrical and have a constant diameter. While for fungal growth
substrate was the limiting factor, in the case of seaweeds the limiting factor is
light. Therefore, each branch segment stores photons that are used to produce
new biomass, either by apical branching or apical growth. Only active tips can
produce new biomass and tips inactivate once their photon concentrations reach
a minimum value. As external substrate can be taken up by the hyphal segments,
the seaweed branches are capable of capturing light. However, this uptake pro-
cess is modelled in a significantly different way. The number of photons a branch
segment can absorb is determined using the Lambert-Beer law. In addition, this
number depends on the distance between the segment and the center of the sea-
weed. Segments further from the center receive more photons than segments
closer to the center since the latter are closer to the light source. In order to ac-
count for a more realistic uptake of photons, the area of the branches is also taken
into account when simulating this process. Finally, photons are transformed into
energy that travels within the seaweed branches in a process similar to nutrient
translocation in fungi.

(a) Front view (b) Top view (c) Fresh biomass evolution

Figure 9.4: (a) Front and (b) top view of the final configuration of an in silico seaweed and (c) its
biomass evolution over time. This simulation was performed using the following parameter values: Light
intensity = 100 μphotons s−1m−2, initial inoculum density = 0.21cm3, initial tips= 500, minimum amount
of light at an active tip= 0.8cost of growth, growth angle = π/4 radians, branching probability= 0.05 and

cost of growth obtained from the relation given by 2.6 mol photons generates 5cm3 of fresh biomass.
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The aforementioned assumptions were used to build upon our fungal growth mo-
del in order to develop a seaweed growth model. Consequently, all parameters
were changed in order to account for seaweed growth processes. Growth scale
and time step were also adapted to simulate the growth of the new organism. In
addition, different growth scenarios and parameters were studied yielding differ-
ent biomass densities and shapes consistent with experiments (see Figure 9.4).
Unfortunately, the lack of data and techniques able to track the dynamics of indi-
vidual seaweeds makes it impossible to further calibrate this model. Despite the
simplicity and basic assumptions of this model, the versatility of the modelling
approach employed for fungi illustrated. Therefore we believe that small changes
in our current model, such as the ones here discussed, could result in the simu-
lation of diverse phenomena. In conclusion, the results presented in this section
demonstrates the versatility of our model that could be used not only to advance
the research in the field of mycology but also in several different fields of study.
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samenvatting

Schimmels ontwikkelen complexe netwerken van hyfen die fungeren als snelwe-
gen waarover nutriënten over grote afstanden worden getransporteerd. Dankzij
deze structuren zijn schimmels in staat om zich voort te planten en te overleven in
de meeste extreme omstandigheden. Vandaar dat zij aanwezig zijn in de meeste
natuurlijke en door de mens gecreëerde ecosystemen. Zij kunnen op talrijke sub-
straten groeien, zelfs nutriëntarme, en zij veroorzaken schade aan bouwmateri-
alen, voedsel, planten en dieren.

Schimmels bieden evenwel ook voordelen. Zo zijn ze de voornaamste ontbinders
van organisch materiaal in bossen, waar ze aggregaties vormen met boomwor-
tels en hierdoor een efficiënte nutriëntenopname en -verdeling mogelijk maken in
bosecosystemen. Daarenboven gebruiken de farmaceutische en voedingssector
schimmels voor de productie van onder meer alcohol, brood, industriële enzymen
en antibiotica. Ten slotte worden schimmels gebruikt voor bioremediatie.

Bovenstaande redenen verklaren waarom schimmels vaak onderzocht worden,
voornamelijk aan de hand van laboratoriumexperimenten.
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Zulke experimenten zijn meestal duur, tijdrovend en van beperkte omvang; uitge-
breide studies van in vitro of in situ schimmeldynamiek zijn bijgevolg zeldzaam. De
meeste technieken bieden niet de mogelijkheid om de evolutie van het volledige
schimmelnetwerk doorheen de tijd te volgen. Bovendien groeien schimmels in mi-
lieuomstandigheden die moeilijk nagebootst kunnen worden in laboratoria. Geau-
tomatiseerde niet-destructieve technieken zijn derhalve nodig om een beter inzicht
te verkrijgen in de groei van schimmels.

Om de tekortkomingen van de bestaande technieken te overwinnen, worden in
dit werk innovatieve technieken en methodes ontwikkeld waarmee bijvoorbeeld
de spatio-temporele dynamiek van een zich ontwikkelend mycelium kan gevolgd
worden. Deel I geeft de biologische en wiskundige context die nodig is voor een
goed begrip van dit werk.

Hoofdstuk 2 geeft naast de biologische achtergrond van schimmels tevens een
overzicht van hun industriële waarde, hun belang voor natuurlijke ecosystemen en
hun invloed op de mens en andere levende wezens. De morfologie en diversiteit
van schimmels wordt eveneens in dit hoofdstuk besproken, alsook wordt er een
gedetailleerd overzicht gegeven van de processen die schimmelgroei drijven.

Hoofdstuk 3 bevat een gedetailleerde analyse en vergelijking van de bestaande
wiskundige schimmelgroeimodellen. Enkele van de meest gebruikte wiskundige
modelleerparadigma’s worden in dit hoofdstuk besproken volgens de schaal waarop
ze werken.

In Deel II leggen we ons toe op de ontwikkeling van nieuwe technieken die het
mogelijk maken om schimmelgroeikenmerken af te leiden uit beeldmateriaal. Een
beeldverwerkingsalgoritme dat ruwe beelden van schimmelnetwerken omzet in
beelden die slechts de informatie bevatten over de structuur van het mycelium
wordt in Hoofdstuk 4 voorgesteld en uitgetest.

In Hoofdstuk 5 beschrijven we een innovatieve experimentele opstelling die toe-
laat om schimmelgroei te volgen doorheen tijd en ruimte dankzij eenvoudige beel-
dapparatuur en het in Hoofdstuk 4 voorgestelde algoritme. Tevens wordt het
groeigedrag van meerdere soorten vergeleken.

Hoofdstuk 6 gebruikt dezelfde technieken om de effecten van temperatuur en
relatieve luchtvochtigheid op schimmelgroei te kwantificeren.

Niet enkel kunnen de technieken beschreven in Deel II gebruikt worden voor een
analyse van de schimmelgroeidynamiek, tevens kunnen ze de ontwikkeling van
schimmelgroeimodellen ondersteunen. Immers, toenemende rekenkracht en afne-
mende kosten hebben ervoor gezorgd dat zulke modellen meer en meer hun in-
gang vinden. Zij worden gebruikt als aanvulling op laboratoriumexperimenten of
om bepaalde hypotheses te bevestigen of ontkrachten.

In die optiek stelt Deel III een ruimtelijk expliciet model voor waarmee schimmel-
groei in drie dimensies en onder verschillende groeiscenario’s kan gesimuleerd
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worden.

In Hoofdstuk 7 wordt de ontwikkeling van het model voorgesteld, alsook de daaraan
gekoppelde gevoeligheidsanalyse. Om het belang van de omgeving op de schim-
melgroei te benadrukken worden er tot slot verscheidene scenario’s nagebootst.

De belangrijkste conclusies van dit werk worden in Hoofdstuk 8 samengevat, ter-
wijl Hoofdstuk 9 suggesties voor verder onderzoek aanreikt.

De voornaamste resultaten van dit werk zijn 1) een veelzijdige beeldverwerkings-
techniek die toelaat om schimmelgroei op te volgen doorheen tijd en ruimte en dit
voor verschillende soorten onder een brede waaier aan milieuomstandigheden, en
2) een driedimensionaal ruimtelijk expliciet schimmelgroeimodel. Deze resultaten
vormen een substantiële bijdrage tot de mycologie en dragen bij tot een beter
begrip van schimmels, in het bijzonder hun groeiprocessen.
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English summary

Fungi develop complex networks that function as efficient transport structures
along which nutrients can be translocated over large distances, as such covering
local needs. Thanks to these structures, fungi are able to grow and survive even in
the most extreme conditions, as such being present in most natural and man-made
ecosystems. In addition, fungi are able to grow on many different substrates, even
those containing a limited amount of nutrients. This ultimately results in damage
of building materials, food products, plants and animals. On the other hand, the
action of fungi can be beneficial. In forests, fungi are the primary decomposers
of organic matter, where they also form mycorrhizal associations with tree roots
allowing for an effective distribution of nutrients within the whole forest. In addi-
tion, pharmaceutical and food industries benefit from fungi considerably, as they
are used to create products ranging from alcohol and bread to industrial enzymes
and antibiotics. Furthermore, fungi are used in biocontrol to fight plant pathogens
affecting crops, such as insects and other fungi.

For all of these reasons, fungi have been extensively studied, more in particular
through laboratory experiments. Laboratory experiments are generally expensive,
tedious or of a limited scope, which explains why comprehensive studies of fungal
dynamics in vitro or in situ are scarce. Moreover, most of the employed techniques
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do not allow for tracking the entire mycelium through time. In addition, fungi grow
in environments and under environmental circumstances that cannot always be
mimicked easily in laboratories. Therefore, automated non-destructive techniques
are needed to generate updated data on fungi and fungal growth.

In order to overcome these limitations, this dissertation investigates the possibili-
ties that mathematics has to offer to the study of fungi. For this purposes, Part I of
this dissertation introduces the biological and mathematical context in which our
research has been developed.

Chapter 2 gives the biological background on fungi and summarizes their most
relevant uses in industry, their importance in natural ecosystems and their impact
on human and other living organisms. In addition, the morphology and diversity of
fungi is briefly discussed, followed by a detailed overview of the processes driving
the growth of filamentous fungi.

Chapter 3 consists of a detailed discussion and comparison of different mathe-
matical models encoding fungal growth. Some of the most common mathematical
paradigms and different modelling approaches are explained in this chapter. In
addition, the most relevant fungal growth models are presented according to the
scale they work at.

Part II focuses on new techniques able to extract fugal growth features from im-
ages. For this purpose, an image analysis algorithm able to transform fungal im-
ages into simplified binary images is introduced and tested in Chapter 4. In addi-
tion, it is able to remove redundant information from the original images, as such
allowing for a better analysis of the fungal images.

In Chapter 5, an innovative experimental set-up to track fungal growth using basic
imaging devices and the mathematical techniques used to extract fungal growth
features from the binary images obtained using the algorithm introduced in Chap-
ter 4, are described. Several fungal growth features are then extracted for different
fungal species allowing for a mutual comparison of their growth behaviour and a
detailed study of their evolution. Chapter 6 uses similar techniques to assess the
effect of temperature and relative humidity on fungal growth.

The techniques presented in Part II can also be used to support the development
of fungal growth models. The increase of computing power and the decrease of
computing cost have led to advances in the mathematical modelling of different
biological phenomena, including fungal growth. Models are used to complement
laboratory experiments and verify different theoretical hypotheses, as such arising
as an alternative to classical experiments.

Therefore, Part III presents an innovative spatially explicit model able to simulate
fungal growth in three dimensions occurring under a variety of growth scenarios.
Chapter 7 explains the development of the model after which a sensitivity analysis
is preferred. In addition, different scenarios are simulated showing the importance
of the environment on the growth of fungi.
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In Chapter 8 the most important conclusions of this dissertation are summarized,
while Chapter 9 presents avenues for future research.

The main findings of this research include a versatile and innovative image analy-
sis technique able to track fungal growth of different species under varying growth
conditions, and a three-dimensional spatially explicit model simulating fungal growth
as the result of the interactions between the fungus and different elements in its
environment. These findings represent significant contributions to mycology that
helped to move forward the study of fungi, and particularly provide a better un-
derstanding of fungal growth and its underlying processes.
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