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Abstract—The increasing adoption of electric vehicles (EVs)
presents both challenges and opportunities for the power grid,
especially for distribution system operators (DSOs). The demand
represented by EVs can be significant, but on the other hand,
sojourn times of EVs could be longer than the time required to
charge their batteries to the desired level (e.g., to cover the next
trip). The latter observation means that the electrical load from
EVs is characterized by a certain level of flexibility, which could
be exploited for example in demand response (DR) approaches
(e.g., to balance generation from renewable energy sources).

This paper analyzes two data sets, one from a charging-at-
home field trial in Flanders (about 8.5k charging sessions) and
another from a large-scale EV public charging pole deployment
in The Netherlands (more than 1M sessions). We rigorously
analyze the collected data and quantify aforementioned flexibility:
(1) we characterize the EV charging behavior by clustering
the arrival and departure time combinations, identifying three
behaviors (charging near home, charging near work, and park
to charge), (2) we fit statistical models for the sojourn time, and
flexibility (i.e., non-charging idle time) for each type of observed
behavior, and (3) quantify the the potential of DR exploitation
as the maximal load that could be achieved by coordinating EV
charging for a given time of day t, continuously until t + ∆.

I. INTRODUCTION

Adoption of electric vehicles (EVs) presents both challenges
and opportunities for the power grid, especially for distribution
system operators (DSOs). On the one hand, the charging power
they need leads to an increase in the electrical demand [1],
[2], since a single full electric vehicle’s energy demand
approximately amounts to that of a single typical residential
household. On the other hand, their batteries could be used as
temporary storage. To assess the expected impact on the power
grid, it is thus of crucial importance to characterize the EV
users in terms of the EV charging behavior: at what times do
users charge their cars, for how long, etc. To fulfill the demand,
one may want to exploit the flexibility that stems from sojourn
times of parked EVs that are longer than the time required
to (fully) charge the battery. A reasonably accurate model
of that flexibility is required to realistically assess, e.g., the
effectiveness of demand response (DR) strategies (for instance
to balance available renewable energy sources with EV load).

This paper presents, to the best of our knowledge, the
first quantitative analysis of the DR potential resulting from

such flexibility, in terms of the maximal load that could be
attained (or avoided) by coordinating EV charging, based on
(relatively) large-scale, real-world data. The contributions of
our work are:
• We present two real-world data sets, the largest of which

logged over 1M actual EV charging sessions from real
users in operational settings (Section III),

• By clustering of the observed charging sessions in terms
of EV arrival/departure times, we derive three different
types of charging behavior (Section IV-A),

• We provide statistical models (e.g., for use in simulation
studies of DR) that characterize for each type of behavior
both the total sojourn time (i.e., from arrival till departure)
as well as the flexibility defined as idle time spent not
charging (i.e., sojourn minus effective charging duration)
(Section IV-B), and finally

• We propose to quantify the potential for DR exploitation
of the observed flexibility in EV charging, as an upper
bound for the load that could be achieved by coordination
through a DR algorithm, and discuss the numerical results
thereof for the real-world data sets (Section V).

Before detailing these contributions, in the next Section II
we outline related work in the area of characterization of EV
charging, as well as the estimation of flexibility. The overall
conclusions of the paper are summarized in Section VI.

II. RELATED WORK

This paper can be positioned in the research on charac-
terization of EV charging behavior. An early line of work
in this area, before a reasonably wide-spread deployment of
EVs had occurred in practice, comprised the development
of models of driving behavior, as to establish arrival and
departure patterns of cars (as well as the distance covered
during the trips in between). Examples of this approach in-
clude [3] (which combines statistical characteristics of driving
behavior to derive EV charging data profiles), [4] (based
on extrapolations of non-EV car usage in Belgium) and [5]
(which derives EV charging behavior models from non-EV
driving behavior in Sweden). For other examples of attempts
to derive EV charging assessments from regular car usage,



we refer to [6]. On the other hand, our work presented here
comprises actual, real-world EV usage data, and rather focuses
on assessing the charging session characteristics (not only
in terms of timing, but also in terms of electrical load) and
especially their flexibility and the resulting demand response
(DR) potential.

Thus, our data can be used to quantitatively assess the load
stemming from EV charging. Several works in literature have
already pursued that goal. For instance, Xydas et al. [2] use
data from about 22k sessions, which they statistically analyze
and cluster, to eventually derive the total energy demand
(in kWh). Similarly in spirit, Khoo et al. [1] study almost
5k sessions from an Australian field trial and establish the
expected impact on the total power demand in 2032-33 for
the state of Victoria. The objective of our analysis presented
here rather was to quantify the flexibility of the EV load, and
quantitatively study user behavior.

User modeling (not focusing on flexibility) has clearly
been the subject of earlier works, including [1], [2], [7], [8].
For example, Helmus et al. [7] characterize different user
types in terms of EV charging session start and end times
(with associated charged energy), as well as the time between
subsequent charging sessions. They distinguish different user
types defined a priori, including ‘residents’, ‘commuters’,
‘taxis’, etc. On the other hand, Xydas et al. [2] use a purely
data-driven approach to cluster observed charging sessions
into distinct types of behavior. They derive aggregate models
for three specific geographic areas, characterized by different
clusters of “typical EV charging demand profiles” (and fur-
ther study predictability of daily peak power from weather
conditions). Our present work uses similar techniques, but
focuses on distinguishing different types of individual user
behavior (on a non-aggregated level), and without making a
priori assumptions (in terms of pre-defined user types as in
[7]). A similar characterization of charging session timing
is presented by Kara et al. [9, Sec. 2], who also define
a “flexibility” metric (i.e., the fraction of total connection
time that is spent charging). Yet, they only present overall
observed histograms of start/end times over all 580k non-
residential charging sessions. We will provide a more in-
depth analysis and identify different types of charging behavior
(with different characteristics in terms of both arrival/departure
times and flexibility). We further note that our data covers
residential charging as well as public charging at roadside
parking spots (hence, our work is complementary to fast
charging station models along highways, e.g., the fluid traffic
model as presented in [10]).

Aside from aforementioned works that study the character-
ization of charging behavior in terms of timing and duration,
other works focus on complementary aspects. For example,
Haidar and Muttaqi [8] zoom in on an individual charger,
which they model in detail from a power engineering per-
spective, i.e., in terms of active/reactive power, voltage, current
evolution over time. For probabilistic powerflow calculations,
[11] presents a methodology of modeling the overall charging
demand of PHEVs. Moving away from such more technical

aspects, Franke and Krems [12] attempt to also give a “ratio-
nale” for observed behavior, i.e., the psychological dynamics
that underly that behavior.

Despite the sizeable body of work on EV user modeling,
we believe the investigation of EV flexibility is rather limited.
Specifically, the quantification of the potential of such EV
flexibility from real-world charging sessions, for exploitation
in demand response (DR) schemes has largely been missing.
Yet, more generally, residential electricity demand has been
studied rather extensively. For instance, De Coninck et al. [13]
use a bottom-up approach to characterize flexibility with cost
functions, and Engels et al. adopt regression analysis based
on a price elasticity matrix. Rather than cost quantification,
we focus on actual kWh that can be shifted in time (which
subsequently can be used to assess whether the resulting DR
potential would be substantial).

In the latter spirit, Wattjes et al. [14] propose a universal
framework to estimate the flexibility of commercial and in-
dustrial customers, using a high level model largely based on
estimates (rather than accurate measurements) of flexibility in
terms of power, duration and speed of activating the flexibility
(mainly from lighting and cooling). Abdisalaam et al. [15]
similarly estimate potential flexibility, and among others assess
the potential benefit of interrupting EV charging — however,
the EV data is a synthetic model based on typical car usage
in The Netherlands from 2007. On the household device side
(rather than EVs), studies based on real-world data include
[16] (washing machines, dryers, heaters, ACs, refrigerators),
[17] (heat pumps) and [18] (wet appliances).

In conclusion, we believe the existing body of work lacks
(i) data-driven modeling of EV users’ charging behavior
including flexibility, and (ii) DR potential assessment from
EVs based on large- scale, real-world data. The remainder of
this paper is a first step in filling those gaps.

III. DATA SETS

The data analyzed in this paper was collected in two
reasonably different settings, as summarized in Table I. The
first data set comprises about 8.5k sessions from the iMove
field trial in Flanders, with charging poles installed at users’
homes. The second was collected by ElaadNL from public
charging infrastructure deployed throughout The Netherlands,
encompassing more than 1M sessions so far (which is a factor
×2 bigger than the largest data set we are aware of [9]). The
next subsections sketch the context of both projects.

A. iMove field trial: Charging-at-home

The iMove project was one of 5 projects in the Living Labs
Electrical Vehicles program1 in Flanders and ran from 2012
until 2014 [19]. Its objective was to encourage EV adoption
by offering a large group of users the experience of using
an EV on a daily basis. In total, the field trial deployed 175
EVs and 180 charging poles. The data for our analysis was
collected from a subset comprising 50 full EVs2, that were

1See http://www.livinglab-ev.be/.
2A mixture of Renault Fluence and Renault Kangoo models.



Table I: Main characteristics of the two (raw) data sets.

iMove ElaadNL∗

Period 03/2012 – 03/2013 01/2011 – 12/2015
# Sessions 8,520 1,141,849
# Users† 134 53k
Car type Full EV Unknown mix
Charge point At home Public
Trip details Yes No
† In iMove, at any point time, up to 50 users were active

(since cars were reused over time). In ElaadNL, recorded
charging sessions are tied to a particular charging card.
∗ The results presented in this paper are based on the sessions

from 1 Jan.–31 Mar. 2015 (N = 90,562).

reused by different users, each time for a contiguous period
of about 2 months, in the period from March 2012 till March
2013. Those cars were equipped with a GPS logger to track the
distance covered during all trips in between charging sessions.
The charging was done at the user’s home, where the project
installed a charging pole equipped to log arrival and departure
times, as well as the charged energy (in kWh).

B. Operational ElaadNL infrastructure: Public charging

ElaadNL, along with EVnetNL, has emerged from the
“Stichting e-laad”3, which established a network of around
3,000 public charging poles for EVs across The Netherlands
between 2009 and 2015. Today, EVnetNL is responsible for
managing the existing charging stations, in coordination with
the relevant municipalities. ElaadNL on the other hand, is
the knowledge and innovation center in the field of charging
infrastructure in The Netherlands, providing coordination for
the connections of public charging stations to the electricity
grid on behalf of 6 participating distribution system operators
(DSOs). ElaadNL also performs technical tests of charging
infrastructure, researches and tests smart charging possibilities
of EVs, and develops communication protocols for managing
EV charging (e.g., as part of energy management systems
that could participate in demand response programs). Data
was collected between 2011 and 2015 from the operational
charging poles scattered across The Netherlands. For the
subsequent analysis, we took the subset of sessions from
January 1 until March 31, 2015 (i.e., 90,562 sessions).

Note that in contrast to iMove, the EVs themselves in this
ElaadNL data set are privately owned cars, and thus comprise
a mixture of various (a priori unknown) types, and we have
no information on the driving behavior.

IV. EV CHARGING BEHAVIOR MODELING

A. Clustering of charging session times

The first question we address is: What typical behaviors
exist in terms of time of arrival and departure? Figure 1 shows
the individual sessions, plotted in terms of (tarr, tdep) (to
have compact graphs, we plot time as time-of-day, i.e., plot t
mod 24 h). To cluster the data in that 2D space, we adopted

3Literally translated to English, this means “foundation e-charge”.
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Fig. 1: Clustering the sessions in terms of EV arrival and
departure times. Both X- and Y -axis denote time-of-day
(i.e., we report times as t mod 24 h): points below the X=Y
diagonal have departures on the day after the arrival or later.
(Note that also some sessions plotted above the diagonal
actually have departures ≥ 24 h after arrival; see below.)

DBSCAN [20].4 Note that DBSCAN will mark some points as
“noise”, and leave them unassigned to any cluster. Therefore,
in a post-processing step we assigned these “noise” points to
the closest of the DBSCAN clusters.

Figure 1 shows the clustering results. We find three ma-
jor clusters for ElaadNL, and two for iMove. We named
these clusters according to our interpretation of the observed
behavior. The charge near home cluster (59.1% of iMove
sessions, 29.1% of ElaadNL) has departure times mostly in
the morning, with arrivals the afternoon/evening before. This
amounts to mostly nighttime charging. For the public ElaadNL
data, we hypothesize these are people that live nearby the
(public) charging pole, and park there car until they leave for
work in the morning. The charge near work cluster (9.4% of
ElaadNL sessions) is characterized by arrivals in the morning,
and departures in the evening. We assume these are people that
either work near the charging pole, or at least take their car to
the pole on their way to work (e.g., as part of their commute,
near a train station) and leave their car there while at work.
This type of behavior is absent in the iMove data set, which
concerns charging at home. The park to charge cluster (40.9%
of iMove sessions, 61.5% of ElaadNL) has arrival/departure
times scattered during the day, and exhibit sojourns that last
not much longer than the time required to charge the battery.
We hypothesize these are people that park specifically with the
aim to charge the EV battery. Comparing ELaadNL to iMove,
we note that the clusters seem more compact and more cleanly
separated for iMove, but this is largely due to the difference in
data set sizes (only 8.5k sessions vs. over 90k for ElaadNL).

B. Statistical modeling of sojourn and idle times

We will now further analyze the sessions within each of the
behavioral clusters in terms of the durations of the sessions,
and the fraction thereof that is effectively spent on charging

4We used the following parameter settings: (i) ElaadNL: Eps = 0.5 and
MinPts = 440, and (ii) iMove: Eps = 0.7 and MinPts = 50.
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Fig. 2: Empirical distributions of total sojourn times and idle
times.

the car. More formally, we define:

Sojourn time , δsojourn = tdepart − tarrive, (1)

Charging time , δcharging = tend charging − tstart charging, (2)

Idle time , δidle = δsojourn − δcharging. (3)

Looking at each behavioral cluster individually, we note that
a minority of sessions have sojourn times of more than 24 h
(see Table II). We find that for such clusters, the sojourn time
distribution is multimodal, where the modes correspond to
subsequent days, and are well separated. We thus further divide
the data into sub-clusters, based on the departure time (i.e.,
depending on whether it is within the first, second, etc., period
of 24 h following the arrival). The empirical distributions of
total sojourn and idle times per sub-cluster are shown in Fig. 2.
For the charge near home sub-clusters, we find that the idle
times lag behind with about 3 h 42 min (i.e., avg δcharging =
3.70 h) consistently over all sub-clusters. For the park to
charge cluster, the same-day departure sub-cluster dominates
(98.9% of the entire cluster), and the sojourn is indeed not
much longer than the time required for charging: avg δidle ≈
23 min. For the charge near work cluster, nearly all sessions
(99.6%) have same-day departures, and have mean idle times
of 5 h 18 min of their mean sojourn of 8 h 53 min.

We next fit statistical distributions to the observed sojourn
and idle times per sub-cluster, as reported in Table II. We first
identify candidate distributions sub-cluster using a Cullen and
Frey graph [21], which essentially verifies whether the kurtosis
and skewness plot as observed in the empirical distributions
is consistent with given distribution types. For the identified
candidate distributions, we estimate their parameters using
the method of matching moments. The main reason to resort
to method of matching moments for parameter estimation is
the existence of zeros in our data, which limits the use of
maximum likelihood estimation for some distributions (e.g.,
Gamma). For the comparison of the fit, we compare: the
empirical vs. estimated PDF plot, the empirical vs. estimated
CDF plot, theoretical vs. empirical probabilities plot and
theoretical vs. empirical quantiles plots. The best fit is chosen
based on the smallest distance between the empirical and
theoretical values in the aforementioned plots.
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Fig. 3: Weekdays vs. weekends.

C. Differences between weekdays and weekends

Analyzing the data according to the day-of-the-week, we
observe significantly different behavior between weekdays and
weekend days for some of the behavioral clusters.

First, we discuss arrival times, shown in Fig. 3a. For park
to charge sessions, we find that on weekdays we have peaks of
arrivals in the morning, around lunch time and in the evening.
In weekends, we see a smooth, unimodal distribution that
peaks around noon. For charge near home, we find that arrivals
are more evenly spread across the late afternoon until late at
night in weekends. For charge near work, we observe a shift
of arrivals with about 2 h to later times in weekends.

Also in terms of total sojourn time, as well as the idle
portion thereof, we observe noticeable differences between
weekdays and weekends, except for the park to charge be-
havior. For charge near home, we note longer sojourns and
higher variability in weekends as opposed to weekdays (also
idle times follow the same shift, implying that charging times
in both cases are similar, averaging around 3.7 h). For charge
near work on the other hand, weekend sessions (and idle
times) are on average slightly shorter, while effective charging
times are a bit longer (the average charging duration increases
from 3.3 h on weekdays to 3.6 h in weekends).

V. FLEXIBILITY AND DR POTENTIAL OF EV CHARGING

One of our main objectives at the outset this study was
to quantify the demand response (DR) potential from the
flexibility in the load that stems from aggregated EV charging:
How much can we increase (or reduce) the power consumption
at a given point in time, and for how long? That overall DR
potential has two main contributing factors: the number of
connected EVs, and their flexibility in terms of how much
their charging can be shifted in time. The latter amounts to
the flexibility present in EV charging sessions, or thus the idle
times, for which we already have fit a statistical model (see
Fig. 2). The first, i.e., the number of EVs that are present



Table II: Fitted distributions for total sojourn and idle times

Sojourn time (δsojourn) Idle time (δidle)

Cluster Sub-cluster
departures

Fraction Distr. Normalized distr.
parameters∗

[min,max]
(hours)

Distr. Normalized distr.
parameters∗

[min,max]
(hours)

Park to
charge

(61.5%)

in 1st 24 h 98.9% Beta α = 1.91, β = 14.22 [0.02, 23.91] Beta α = 0.31, β = 10.04 [0, 23.66]
in 2nd 24 h 0.9% Gamma α = 1.24, β = 6.40 [24.00, 36.11] Logistic µ = 0.64, s = 0.06 [5.05, 32.35]
in 3rd 24 h 0.1% Gamma α = 1.40, β = 5.01 [48.01, 59.93] Logistic µ = 0.62, s = 0.08 [34.21, 55.11]

Charge
near home

(29.1%)

in 1st 24 h 95.4% Logistic µ = 0.56, s = 0.08 [0.02, 23.99] Normal µ = 0.42, σ2 = 0.17 [0, 23.53]
in 2nd 24 h 3.3% Beta α = 2.59, β = 1.95 [28.13, 47.95] Normal µ = 0.57, σ2 = 0.16 [19.37, 47.86]
in 3rd 24 h 0.8% Beta α = 2.44, β = 1.61 [52.84, 72.00] Normal µ = 0.57, σ = 0.21 [47.25, 70.00]
in 4th 24 h 0.3% Beta α = 2.91, β = 1.39 [74.75, 95.86] Normal µ = 0.64, σ2 = 0.20 [69.05, 93.73]

Charge
near work

(9.4%)
in 1st 24 h 99.6% Logistic µ = 0.27, s = 0.06 [5.00, 18.52] Logistic µ = 0.35, s = 0.07 [0, 15.54]

∗ The parameters of distributions are the following: (i) Normal: mean µ and variance σ2, (ii) Beta: shape parameters α and β, (iii) Gamma: shape α
and rate β, (iv) Logistic: location parameter µ and scale parameter s. Note that the parameter values are reported for fits of normalized data, i.e.,
durations are rescaled per sub-cluster as δnormalized = δ−min

max−min
.

at a given time, straightforwardly follows from the arrival and
departure times (which are summarized in Fig. 1). We combine
these factors and quantitatively define the DR potential as
follows:
PFLEX (t,∆) , the maximal amount of power that a DR

algorithm can trigger to either (i) consume for
the complete time interval [t, t+∆], or (ii) avoid
using at all, by shifting it to another time (en-
tirely outside of [t, t+ ∆]).

Adopting the δ··· symbols introduced earlier in eq. (1)–(3), and
denoting sessions s ∈ S, with charging power Ps, this leads
to the following more formal definition:

PFLEX (t,∆) =
∑

s∈SFLEX(t,∆)

Ps (4)

where

SFLEX(t,∆) =

{s ∈ S : [t, t+ ∆] ⊂ [tarrive
s , tdepart

s ]

∧ δcharging
s ≥ ∆ ∧ δidle

s ≥ ∆}. (5)

Indeed, (5) expresses that the sessions to account for in the
FLEX power (i) completely overlap the interval [t, t + ∆],
(ii) have a charging duration of at least ∆ (so we can
sustainably consume Ps for the entire [t, t+∆]), and (iii) their
idle time is at least ∆ (so we can move away the power
consumption entirely outside of [t, t+ ∆] if the DR algorithm
wants to).

Figure 4 plots the results of this DR potential assessment,
for weekdays and weekend days separately, and for values
of ∆ ranging from 15 min to 4 h (= 240 min). To illustrate
how to read this graph: consider the PFLEX result for charge
near home, at t = 7 am on a weekend day, for ∆ = 15 min,
where we see that PFLEX(7 am, 15 min) ≈ 750 kW. This means
that at 7 am on a weekend morning, a DR algorithm could
potentially achieve an additional load of 750 kW (on top of,
e.g., the residential base load stemming from all household
consumption except the EV) by appropriately scheduling the
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Fig. 4: Demand response potential: The power PFLEX (t,∆) that
we can choose to either fully consume, or not at all, during the
complete time interval [t, t+∆], by coordinating EV charging.

charge near home EVs, and maintain that extra load until at
least 7:15 am. (Note that effectively exploiting this particular
flexibility would likely impact the remaining potential at later
times, e.g., at 7:30 am — yet, the PFLEX curves do not consider
this, and hence are upper bounds for the DR potential.)

Comparing the three behavior clusters, we note that the
charge near home cluster mainly provides flexibility at night
time — as expected — although it spreads out over a larger
portion of the day during weekends. The charge near work
is complementary and provides flexibility during daytime, but
mostly on weekdays. The smaller park to charge cluster also
exhibits daytime flexibility, which is fairly uniformly spread



over the day during the week, and more peaked around early
afternoon in the weekends; we also note its shorter flexibility
duration (with more distinctly lower PFLEX when ∆ is higher).

VI. CONCLUSIONS

We collected data from real-world EV charging sessions,
for which we (i) provided a comprehensive data analysis, and
(ii) quantified the DR potential in terms of the sustained power
consumption that we can achieve by coordinating EV charging.
We found three distinct behaviors through clustering, and
provided an intuitive rationale for each of them. The charge
near home behavior concerns arrivals mostly in the late after-
noon and evening, with departures mostly in the morning and
hence long sojourn times (averaging over 15 h and sometimes
spanning multiple days). This leads to night-time flexibility
mostly, which spreads out a bit in the weekend. The charge
near work cluster likely has people parking their car at work,
or at commute points (e.g., near a train station), with arrivals
in the early morning, and departures in the late afternoon.
Sojourns are fairly long (average around 9 h), and resulting
flexibility occurs during daytime and mostly on weekdays.
The last park to charge behavior exhibits shorter sojourns
(slightly more than 3 h) and limited flexibility per session. The
aggregated flexibility occurs throughout the day on weekends,
and is more peaked around early afternoon on weekends. In
terms of statistical models, we found that total sojourn times
in our data set can be accurately modeled by Beta, Logistic or
Gamma distributions (depending on the cluster) and the idle
times by Beta, Logistic or Normal distributions. Next steps
include constructing generative models (e.g., for simulation
studies), following an approach similar to [22].
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