

biblio.ugent.be

The UGent Institutional Repository is the electronic archiving and dissemination platform for all
UGent research publications. Ghent University has implemented a mandate stipulating that all
academic publications of UGent researchers should be deposited and archived in this repository.
Except for items where current copyright restrictions apply, these papers are available in Open
Access.

This item is the archived peer-reviewed author-version of:

Data Analysis of Hierarchical Data for RDF Term Identification

Pieter Heyvaert, Anastasia Dimou, Ruben Verborgh, and Erik Mannens

In: Semantic Technology: 6th Joint International Conference, JIST 2016, Singapore, Singapore,
November 2-4, 2016, Revised Selected Papers, 204–212, 2016.

http://dx.doi.org/10.1007/978-3-319-50112-3_15

To refer to or to cite this work, please use the citation to the published version:

Heyvaert, P., Dimou, A., Verborgh, R., and Mannens, E. (2016). Data Analysis of Hierarchical Data
for RDF Term Identification. Semantic Technology: 6th Joint International Conference, JIST 2016,
Singapore, Singapore, November 2-4, 2016, Revised Selected Papers 204–212. 10.1007/978-3-319-
50112-3_15

Data Analysis of Hierarchical Data
for RDF Term Identification

Pieter Heyvaert(B), Anastasia Dimou, Ruben Verborgh, and Erik Mannens

iMinds – IDLab – Ghent University, Ghent, Belgium
pheyvaer.heyvaert@ugent.be

Abstract. Generating Linked Data based on existing data sources
requires the modeling of their information structure. This modeling needs
the identification of potential entities, their attributes and the relation-
ships between them and among entities. For databases this identification
is not required, because a data schema is always available. However, for
other data formats, such as hierarchical data, this is not always the case.
Therefore, analysis of the data is required to support rdf term and data
type identification. We introduce a tool that performs such an analysis
on hierarchical data. It implements the algorithms, Daro and S-Daro,
proposed in this paper. Based on our evaluation, we conclude that S-
Daro offers a more scalable solution regarding run time, with respect to
the dataset size, and provides more complete results.

1 Introduction

Data often originally resides in (semi-)structured formats. Tools [1,2] and map-
ping languages [3,4] allow to describe how Linked Data, via rdf triples, is gener-
ated based on the original data. Information structure modeling [5] (henceforth
referred to as ‘modeling’) is required during the creation of these descriptions.
This modeling includes the following tasks: (1) identify the candidate entities,
their attributes and the relationships among these entities; (2) generate iris for
the entities; and (3) define the data type of each attribute, if needed. For rdf
these tasks align with rdf term identification. However, they can be fulfilled in
different ways, and not every way results in the desired rdf triples. Additionally,
current tools come short in fulfilling these tasks (semi-)automatically or do not
provide the users with the required information to fulfill them manually. This
information includes the data model, keys and data types. Though, this infor-
mation can be found in the data schema, for hierarchical data the schema is not
always available, nor always complete, as opposed to databases. Tools, such as
XmlGrid1 and FreeFormatter2 for xml data, exist to generate these schemas.

The described research activities were funded by Ghent University, iMinds, the Insti-
tute for the Promotion of Innovation by Science and Technology in Flanders (IWT),
the Fund for Scientific Research Flanders (FWO Flanders), and the European Union.

1 http://xmlgrid.net/xml2xsd.html.
2 http://www.freeformatter.com/xsd-generator.html.

c© Springer International Publishing AG 2016
Y.-F. Li et al. (Eds.): JIST 2016, LNCS 10055, pp. 204–212, 2016.
DOI: 10.1007/978-3-319-50112-3 15

http://xmlgrid.net/xml2xsd.html
http://www.freeformatter.com/xsd-generator.html

Data Analysis of Hierarchical Data for RDF Term Identification 205

However, they do not give all the aforementioned information, such as keys, and
the data type information is not fine-grained enough when working with dirty
data. Additionally, manually extracting this information is error-prone and time
consuming, as the complete data source needs to be analyzed. In this paper,
we introduce a tool3 to obtain the required information of hierarchical data to
address the three tasks. The tool implements two algorithms, Daro and S-Daro,
to conduct the data analysis in a scalable way, as the dataset can become large.
Based on theoretical analysis, the key discovery of Daro is not always complete,
while for S-Daro it is. From our evaluation, we conclude that S-Daro has a better
run time when the dataset size increases. The remainder of the paper is struc-
tured as follows. In Sect. 2, we discuss the related work. In Sect. 3, we explain,
using an example, how the data analysis information can be used to fulfill the
modeling tasks. In Sect. 4, we explain the two algorithms. In Sect. 5, we elabo-
rate on the evaluation of the two algorithms. Finally, in Sect. 6, we conclude the
paper.

2 Related Work

For xml the data model, keys and data types can be described via the xml
schema. However, not in all cases is the schema available, nor complete. Tools
exist that allow to generate a schema based on an xml file, such as XmlGrid and
FreeFormatter. The same is applicable for json and the json schema [6]. The
tool at http://jsonschema.net can be used to generate a json schema given a
json input. These tools provide data model and data type information. However,
the latter lacks detail as a single data type is given when certain data fractions
might have different data types. Furthermore, these tools lack key discovery.

3 Example: RDF Term Identification Using Data
Analysis

In most cases Linked Data is interpreted as a graph structure, as done by rdf,
where the nodes (representing the entities and their attributes) are linked using
edges (representing the relationships). Using the xml example in Listing 1.1, we
execute the three aforementioned tasks (see Sect. 1) of the modeling process to
identify the rdf terms, taking into account which information from the data
analysis is used to fulfill each task. We aim to give one possible set of declara-
tive statements of how these terms are generated, using the mapping language
rml [4], based on the data model, keys and data types. Subsequently, these
statements are used to generate rdf triples.

3 https://github.com/RMLio/data-analysis-cli; available under the MIT license.

http://jsonschema.net
https://github.com/RMLio/data-analysis-cli

206 P. Heyvaert et al.

1 <person>
2 <firstName>John</firstName>
3 <lastName>Doe</lastName>
4 <car id="0695-77968-33844">
5 <brand>Peugeot</brand>
6 <purchDate>12-01-2015</purchDate>
7 </car>
8 </person>
9 <person>

10 <firstName>Jane</firstName>

11 <lastName>Doe</lastName>
12 <car id="0695-77968-33897">
13 <brand>Peugeot</brand>
14 <purchDate>16-01-2015</purchDate>
15 </car>
16 </person>
17 </persons>

Listing 1.1. xml example with person
metadata (http://ex.com/persons.xml)

Task 1: Identify Entities, Attributes and Relationships Using Data
Model. rdf term identification is required to find the appropriate iris, blank
nodes, and literals. It is supported by using the data model. The tree structure
of these data sources allows determining possible entities, their literals and rela-
tionships by looking at the xml elements and xml attributes: parent elements
(i.e., elements with child elements) are identified as entities (iris or blank nodes),
and leaf elements (i.e., elements with no child elements) and attributes as the
entities corresponding iris’ or blank nodes’ literals. Additionally, if a parent ele-
ment has a parent element as a child, there exists a relationship between the
corresponding entities. In the example, the parent elements are <person> and
<car>. This leads to:

1 @prefix rr: <http://www.w3.org/ns/r2rml#> . @prefix rml:
2 <http://semweb.mmlab.be/ns/rml#> . @prefix xsd:
3 <http://www.w3.org/2001/XMLSchema#> .
4
5 <#PersonMapping>
6 rml:logicalSource [
7 rml:source "http://ex.com/persons.xml";
8 rml:referenceFormulation ql:XPath;
9 rml:iterator "/persons/person"] .

10 <#CarMapping>
11 rml:logicalSource [
12 rml:source "http://ex.com/persons.xml";
13 rml:referenceFormulation ql:XPath;
14 rml:iterator "/persons/person/car"] .

For each parent elements there is a triples map (lines 5 and 10). Each map
requires a logical source, which includes the path to the parent element (lines
9 and 14). The leaf elements of <person> are <firstName> and <lastName>.
Consequently, they can be identified as literals of the parent element’s iri or
blank node, resulting in:

1 <#PersonMapping> rr:predicateObjectMap <#PreObjMapFirstName> .
2 <#PreObjMapFirstName> rr:objectMap [rml:reference "firstName"] .
3 <#PersonMapping> rr:predicateObjectMap <#PreObjMapLastName> .
4 <#PreObjMapLastName> rr:objectMap [rml:reference "lastName"] .

A predicate object map, with an object map, is added to the triples map for
the <firstName> (lines 1 and 2) and <lastName> (lines 3 and 4). The same is the
case for the parent element <car> and its leaf elements <brand>, <purchDate>,
and the attribute @id, resulting in:

Data Analysis of Hierarchical Data for RDF Term Identification 207

1 <#CarMapping> rr:predicateObjectMap <#PreObjMapBrand> .
2 <#PreObjMapBrand> rr:objectMap [rml:reference "brand"] .
3 <#CarMapping> rr:predicateObjectMap <#PreObjMapID> .
4 <#PreObjMapID> rr:objectMap [rml:reference "@id"] .
5 <#CarMapping> rr:predicateObjectMap <#PreObjMapPurchaseDate> .
6 <#PreObjMapPurchaseDate> rr:objectMap <#ObjMapPurchaseDate> .
7 <#ObjMapPurchaseDate> rml:reference "purchDate" .

Furthermore, we conclude that there is a relationship between these two
entities, because <car> is a child element of <person>. This is done by adding
a new predicate object map to the triples map for <person>, together with a
parent triples map that refers to the triples map for <car>. This results in:

1 <#PersonMapping> rr:predicateObjectMap <#PreObjMapCar> .
2 <#PreObjMapCar> rr:objectMap [rr:parentTriplesMap <#CarMapping>]] .

Task 2: Generate IRIs Using Keys. In most cases the iris have a specific
structure, and certain elements of this structure are depended on the data. Addi-
tionally, each iri has to represent at most one entity. This can be accomplished
by using keys as part of the iris. Keys are data fractions that have a unique
value for each entity in the original data. In the example, a key identified for the
persons is firstName. A key identified for the cars is @id. This results in:

1 <#PersonMapping> rr:subjectMap [rr:template "http://ex.com/person/{firstName}] .
2 <#CarMapping> rr:subjectMap [rr:template"http://ex.com/car/{@id}] .

A subject map is added to the triples map of each element together with a
possible template to generate iris using the specified keys.

Task 3: Define Data Types. The data types of all values are string with
exception of the purchase date (<purchDate>; lines 7 and 15), which is a date.
This results in the following statement, where date data type is added to the
object map corresponding with <purchDate>.

1 <#ObjMapPurchaseDate> rr:datatype xsd:date .

Subsequently, these statements can be used directly or via a tool, e.g., the
RMLEditor [1], to provide the predicates to generate the desired triples.

4 Algorithms

Preliminaries. We structure hierarchical data using a tree, in which each node
has a set of properties, regardless of the data format, e.g., xml or json. Each
property points to one or more children or data values. For the example in Listing
1.1, the properties of <person> are given by the paths firstName, lastName and
car. N is the set of all nodes in the tree. P is the set of all multi-level properties of
a node. Multi-level properties are the properties of a node including all properties
of that node’s childnode trees. For the example in Listing 1.1, the multi-level
properties of <person> are given by the paths firstName, lastName, car/brand,
car/id, car/purchaseDate. P is used for a set of properties where P ⊆ P. The

208 P. Heyvaert et al.

value v of a node n for a certain (multi-level) property p is defined as (n, p, v) ∈
N × P × V , where V represents all values. Two nodes are distinguishable from
each other given a set of properties if for at least one property the values of both
nodes are not the same. This is formally given in Eq. 1.

dist(n, n′, P) = ∃p ∈ P ∧ ∃(n, p, v) ∈ N × P × V ∧
∃(n′, p, v′) ∈ N × P × V : v �= v′ (1)

Daro. The first algorithm is based on the rocker algorithm, which uses a
refinement operator for the discovery of keys, proposed by Soru et al. [7]. The
operator refines which keys are worth checking, opposed to checking all pos-
sible keys. Originally, it was applied for key discovery on rdf datasets. Our
version supports hierarchical data sources, and is called ‘Data Analysis using
the rocker Operator’ (Daro). It uses a scoring function that gives the ratio of
the number of nodes that is distinguishable given a set of properties over the
total number of nodes (score(P) in Eq. 2). P is a key if score(P) = 1, because
that means that all nodes are uniquely identifiable using P . Additionally, the
function sortByScore(P) returns the properties of P ascendantly ordered using
their score, i.e., ∀pi, pj ∈ P : i ≤ j =⇒ score(pi) ≥ score(pj).

score(P) =
|{n ∈ N | ∀n′ ∈ N : n �= n′ ⇒ dist(n, n′, P)}|

|N | (2)

The refinement operator (ρ(P) in Eq. 3) defines which sets of properties need
to be checked next given a set of (previously checked) properties. It requires the
properties of P to be ordered using sortByScore(P).

ρ(P) =

⎧
⎪⎨

⎪⎩

P if P = ∅,

{P ∪ {p1}, . . . , P ∪ {pi}} : p′
0 ∈ sortByScore(P) ∧

(∃pj ∈ P : p′
0 = pj) ∧ (pi ∈ P : i < j)

(3)

∅

{brand}

{purchDate, brand}

{@id, purchDate, brand}

{@id, brand}

{purchDate}

{@id, purchDate}

{@id}

Fig. 1. Complete refinement operator tree for <car> of Listing 1.1

We explain the operator using <car> from Listing 1.1. In Fig. 1 you can see
the complete refinement tree for the child elements and attributes of <car>, i.e.,

Data Analysis of Hierarchical Data for RDF Term Identification 209

P = {@id,purchDate,brand}. First, we start with an empty set of sets (= ∅),
because we do not have a set of properties. Applying the operator on the empty
set (= ρ(∅)) results in the following sets of properties: {@id}, {purchDate} and
{brand}. This is visualized in the second level of the tree. The sets on the third
and fourth level of the tree are generated by applying refinement operator on
each element on the second and third level, respectively. The theorems and
proofs regarding the operator are given in the original work by Soru et al. [7].
Additionally, we created a function to generate the data model and a method
that analyzes the values of the properties in order to provide the data types.

Algorithm 1. Daro
1: nodes ← xml.query(nodePath)
2: foundKeys ← []
3: if ¬nodes.isEmpty() then
4: paths ← getPaths(nodes)
5: buildTreeAndIndex(nodes,paths)
6: model ← getModel(paths)
7: paths ← sortByScore(paths)
8: if score(paths) = 1 then
9: q ← new PriorityQueue()
10: q.add(∅, 0)
11: while ¬q.isEmpty() do
12: P ← q.pop()
13: P’ ← ρ(P)
14: for p in P ′ do
15: s ← score(p)
16: if s = 1 then
17: foundKeys.add(p)
18: else
19: q.add(p, s)
20: end if
21: end for
22: end while
23: end if
24: end if

Algorithm 2. S-Daro
1: nodes ← xml.query(nodePath)
2: trees ← []
3: if ¬nodes.isEmpty() then
4: paths ← getPaths(nodes)
5: model ← getModel(paths)
6: possibleKeys ← generateKeys(paths)
7: for node in nodes do
8: for key in possibleKeys do
9: if ¬key.parent.valid() then
10: groups ← []
11: for path in key do
12: value ← node.query(path)
13: analyze(value)
14: tree ← trees.search(path)
15: group ← tree.search(value)
16: groups.add(group)
17: end for
18: if groups.hasDupNode() then
19: key.valid(false)
20: end if
21: end if
22: end for
23: end for
24: end if

The pseudo-code4 of the algorithm can be found in Algorithm 1. The prop-
erties and the nodes are used to build a search tree of the nodes and an index
over the values, during which also the data types are determined (line 5). The
data model is generated using the properties (line 6). If the score of the set of all
properties is 1, then all nodes are unique when taking into account all properties
(line 8). Only when this is true, we continue the key discovery.

Keys that are supersets of already found keys will not be returned, because
the algorithm only adds set of properties to the queue again when they are
not keys. Therefore, the number of found keys might be smaller than the total
number of keys. It depends on the data which keys will be found and which keys
not, as the refinement operator is based on the scores of the properties. These
scores are based on the actual values of the data. However, the algorithm always
returns all keys consisting of one property, together with all the keys that contain

4 For brevity, we did not include the code that allows users to determine the data
model, keys, and data types separately.

210 P. Heyvaert et al.

a property that on itself is not a key. The reason is that the empty set (added
on line 10) results in checking all possible keys consisting of one property, and
properties that are not a key are used to generate new possible keys using the
operator (line 19) until a key is found or none can be found.

Key discovery is the most expensive part of the analysis, because the differ-
ent elements of the data have to be compared. The other elements of the data
analysis only require a single pass over the data. However, they are done during
the key discovery, because it is needed to iterate over the data in any case.

S-Daro. The second algorithm is called ‘Scalable Data Analysis using the
rocker Operator’ (S-Daro). While building upon the rocker algorithm, it
builds up an index for each property containing all possible values present in that
dataset together with the nodes that have this value. Additionally, it does not
use the scoring function to lower the run time. Algorithm 2 contains the pseudo
code. Using the refinement operator of the previous algorithm, we determine all
the possible sets of properties (line 6). They are all possible keys. Additionally,
for each set we remember on which other set it was based, if applicable. In the
refinement operator tree, this is the set on the lower level to which it connects.
We call this set the parent set. A set is only evaluated if the parent set is not
valid (i.e., not a key; line 9). If the parent set is valid than the current set stays
valid, because the properties of the current set are a superset of the properties of
the parent set [8]. If for all properties with those values there is one node (besides
the current node) that is present (line 18), than the set is not a key. The current
node and that specific node are indistinguishable using these properties.

As opposed to Daro, this algorithm returns all keys, because, besides the keys
that were marked valid during checking, also the keys that have a valid parent
key are valid keys. Like for Daro, key discovery is the most expensive part of the
analysis, because the different elements of the data have to be compared.

5 Evaluation

In this section, we elaborate on the evaluation conducted on Daro and S-Daro.
The criterion of the evaluation is the run time, because the algorithms are only
useful for practical purposes if they finish within a reasonable amount of time.
We have evaluated5 both algorithms using 4 sets of 240 artificially generated
files6. These files have between 100 and 30,000 nodes, and have between 6 and
13 properties. Their data is about people and their jobs. In Fig. 2a and b plots
of the fitted functions of the run times for both algorithms can be found for 6
and 13 properties, respectively. We see that S-Daro outperforms Daro, when the
number of nodes becomes larger. The functions are polynomial of the second

5 All experiments were conducted on a 64-bit Ubuntu 14.04 machine with 128 GB of
RAM and a 24-core 2.40 GHz CPU. Each algorithm was run in a Docker container
and was able to use at any moment a maximum of 8 GB of RAM and 1 CPU core.

6 http://rml.io/data/ISWC16/ph/files.

http://rml.io/data/ISWC16/ph/files

Data Analysis of Hierarchical Data for RDF Term Identification 211

100 30,000
79.5

2,013.1
Daro

S-Daro

|N |

run time (s)

(a) 6 properties/node

100 30,000

1,872.7

23,569.4
Daro

S-Daro

|N |

run time (s)

(b) 13 properties/node

Fig. 2. Daro vs S-Daro

degree for both algorithms. Nevertheless, the function for S-Daro rises slower
than for Daro, because the coefficient of the quadratic number of nodes of S-
Daro remains small when compared to the coefficient for Daro. However, the
coefficient for S-Daro can still be fitted to an exponential function. The reason
for this is the exponential growth of possible keys in function of the total number
of properties [7]. Therefore, when the number of properties becomes too large
even S-Daro might not be able to provide a result within a desired time frame.

6 Conclusion

Our tool implements the two algorithms Daro and S-Daro with support for xml
data sources. However, they are applicable to other formats of hierarchical data,
such as json. Although both algorithms benefit from the refinement operator
regarding their run times, the evaluation showed that S-Daro outperforms Daro
when the number of nodes becomes larger. Furthermore, the incompleteness of
the key discovery of Daro drives the choice towards S-Daro when all keys are
required. However, certain use cases might find the results of Daro sufficient.

References

1. Heyvaert, P., Dimou, A., Herregodts, A.-L., Verborgh, R., Schuurman, D., Mannens,
E., Walle, R.: RMLEditor: a graph-based mapping editor for linked data mappings.
In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C.
(eds.) ESWC 2016. LNCS, vol. 9678, pp. 709–723. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-34129-3 43

2. Pinkel, C., Schwarte, A., Trame, J., Nikolov, A., Bastinos, A.S., Zeuch, T.: DataOps:
seamless end-to-end anything-to-RDF data integration. In: Gandon, F., Guéret,
C., Villata, S., Breslin, J., Faron-Zucker, C., Zimmermann, A. (eds.) ESWC
2015. LNCS, vol. 9341, pp. 123–127. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-25639-9 24

3. Das, S., Sundara, S., Cyganiak, R., R2RML: RDB to RDF mapping language. Work-
ing group recommendation, W3C. http://www.w3.org/TR/r2rml/

4. Dimou, A., Sande, M.V., Colpaert, P., Verborgh, R., Mannens, E., Rik Van de Walle,
R.M.L.: A generic language for integrated rdf mappings of heterogeneous data. In:
Workshop on Linked Data on the Web (2014)

http://dx.doi.org/10.1007/978-3-319-34129-3_43
http://dx.doi.org/10.1007/978-3-319-25639-9_24
http://dx.doi.org/10.1007/978-3-319-25639-9_24
http://www.w3.org/TR/r2rml/

212 P. Heyvaert et al.

5. Chen, P.P.-S.: The entity-relationship model - toward a unified view of data. ACM
Trans. Database Syst. (TODS) 1(1), 9–36 (1976)

6. Galiegue, F., Zyp, K., Json schema: core definitions and terminology. In: Internet
Engineering Task Force (IETF) (2013)

7. Soru, T., Marx, E., Ngonga Ngomo, A.-C.: ROCKER - a refinement operator for key
discovery. In: Proceedings of the 24th International Conference on World Wide Web,
pp. 1025–1033. International World Wide Web Conferences Steering Committee
(2015)

8. Pernelle, N., Säıs, F., Symeonidou, D.: An automatic key discovery approach for
data linking. Web Semant. Sci. Serv. Agents WWW 23, 16–30 (2013)

	Data Analysis of Hierarchical Data for RDF Term Identification
	1 Introduction
	2 Related Work
	3 Example: RDF Term Identification Using Data Analysis
	4 Algorithms
	5 Evaluation
	6 Conclusion
	References

