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General introduction 

 

1.1.    Necrotic enteritis in broiler chickens 

Necrotic enteritis is an important disease of broiler chickens, caused by the bacterium Clostridium 

perfringens. It is one of the gastrointestinal diseases in poultry that has gained worldwide importance 

during the last decade. Gastrointestinal diseases in broilers, including necrotic enteritis, viral enteritis, 

coccidiosis and syndromes such as dysbiosis and malabsorption, have become increasingly important 

worldwide for multiple reasons. First, high-density floor-housing supports easy spread of excreted gut 

pathogens (Guardia et al., 2011). Secondly, due to improvements in genetics, broilers have become 

incredibly efficient in converting feed into body mass and the gastro-intestinal tract of these animals is 

highly efficient in absorbing nutrients (Havenstein et al., 2003). Gut micro-organisms play an essential 

role in degradation of feed components. There is a complex interplay between gut bacteria and the gastro-

intestinal mucosa, that can be beneficial or harmful for the host, depending on the microbial composition 

(Valeria et al., 2011). Nutritionists are also constantly looking for improving the limits of digestibility. As 

a side effect, gut health problems have arisen, related to shifts in enteric bacterial populations and bacterial 

overgrowth. Excess feed nutrients in the gut are used by facultative pathogenic micro-organisms, such as 

certain Clostridium perfringens (C. perfringens) strains. Shifts in enteric populations also lead to 

dysbacteriosis, a hitherto poorly defined syndrome causing inflammatory reactions in the gut resulting in 

poor performance and an increased feed conversion ratio (Teirlynck et al., 2011). It has also been shown 

that genetics play a role in the development of the intestine, which can affect the microbiota composition 

(Lumpkins et al., 2010). There is thus an interplay between host genetics and feed utilization that is 

important in either preventing or causing gastrointestinal problems. Another issue that is important in this 

context is the public and governmental pressure to reduce the use of antibiotics in broilers. The traditional 

antimicrobial growth promotors (AGP’s), used in the past not only to improve feed conversion ratios and 

body weight gain, but also to prophylactically control diseases such as necrotic enteritis, have been banned 
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in the European Union in 2006. Consumers in other countries are also putting pressure on the poultry 

industry to rear animals without AGP’s. Therapeutic antibiotics are nowadays widely used for preventive 

and curative control of gastro-intestinal pathologies and their preventative use is heavily disputed. All of 

these factors have led to the emergence of necrotic enteritis in broilers, caused by chicken-adapted NetB 

toxin-producing C. perfringens strains that belong to a certain pathogenic clonal lineage (Lepp et al., 

2011). This pathogen clearly benefits from high nutrient diets supporting its fast growth. There is evidence 

that the use of AGP’s in feed protected broilers from disease caused by C. perfringens (Johansson et al., 

2004; Martel et al., 2004; Lanckriet et al., 2010a). Therapeutic antibiotics, such as amoxicillin and tylosin, 

are often used also to prevent and control necrotic enteritis (Hermans & Morgan, 2007). The use of 

antibiotics is no longer considered as a valid and viable strategy for keeping gut health problems under 

control because of issues related to antibiotic resistance. Therefore, better farm management, including 

biosecurity measures and optimization of feed quality have become more relevant. Additionally,  feed 

additives, including organic acids, essential oils and prebiotics, have  been tested in animal models and 

shown to be, at least partially,  efficacious in controlling necrotic enteritis  (Lensing et al., 2010a; 

Timbermont et al., 2010; Jerzsele et al., 2012). For a disease caused by a toxin producing bacterium, 

however, it seems logical, to explore whether vaccines can be developed.  

 

1.2.   Clostridium perfringens, the causative agent  

C. perfringens is the causative bacterium of necrotic enteritis in broiler chickens. It is a Gram-positive, 

rod-shaped, spore-forming, anaerobic bacterium which can be found in the environment and also in the 

gastro-intestinal tract of humans and animals (Songer, 1996; Van Immerseel et al., 2004). C. perfringens 

is less strictly anaerobic than other Clostridia species, and can survive under extreme conditions due to its 

switch from vegetative cells to highly resistant dormant spores (Novak et al., 2003). The bacterium grows 

at an optimal temperature of 43-45°C with generation times often less than 10 minutes. Growth is 

accompanied by abundant gas production (Cato et al., 1986). C. perfringens needs an environment rich in 
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amino acids because the bacterium lacks the genetic machinery to produce 13 essential amino acids 

(Myers et al., 2006). C. perfringens can produce up to 17 different toxins. C. perfringens toxin genes are 

located on the chromosome or on extrachromosomal elements, plasmids. Strains are classified into 5 

different toxin types (Table 1), based on the differential production of the four major toxins (Petit et al., 

1999; Van Immerseel et al., 2009).  

Table 1: Toxinotypes of C. perfringens (Petit et al., 1999) 

Toxinotype Major toxins 

Alpha toxin Beta toxin Epsilon toxin Iota toxin 

A X    

B X X X  

C X X   

D X  X  

E X   X 

Gene  plc cpb1 etx Iap, ibp 

Location chromosome plasmid plasmid plasmid 

 

Toxinotype A strains are commonly found in the normal intestinal microbiota of warm blooded animals 

and in the environment, but are also associated with gas gangrene in humans and enteric diseases in 

humans and animals. Strains of toxinotype B to E are only sporadic found in the normal intestinal 

microbiota of the intestines and most commonly associated with enteric diseases. An overview of the main 

diseases caused by C. perfringens in animals and humans is given in Table 2.  
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Table 2: Diseases produced by toxigenic types of C. perfringens (Songer, 1996) 

Toxinotype Major toxin(s) Diseases 

A α Myonecrosis, food poisoning, 

necrotic enteritis in chickens, 

enterotoxemia in cattle and 

lambs, necrotizing enterocolitis 

in piglets; possibly equine 

colitis, canine hemorrhagic 

gastroenteritis 

 

B α, β, ε Dysentery in newborn lambs, 

chronic enteritis in older lambs 

(pine), hemorrhagic enteritis in 

neonatal calves and foals, 

hemorrhagic enterotoxemia in 

adult sheep 

 

C α, β Enteritis necroticans (pigbel) in 

humans; necrotic enteritis in 

chickens; hemorrhagic or necrotic 

enterotoxemia in neonatal pigs, 

lambs, calves, goats, foals; acute 

enterotoxemia (struck) in adult 

sheep 

 

D α, ε Enterotoxemia in lambs (pulpy 

kidney) and calves, enterocolitis 

in neonatal and adult goats, 

possibly enterotoxemia in adult 

cattle 

 

E α, ι Enterotoxemia likely in calves and 

lambs, enteritis in rabbits; host 

range and disease type unclear 

 

A-E Enterotoxin Canine and porcine enteritis; 

possibly bovine and equine 

enteritis 

 

 

Various strains can also produce other toxins, which are not part of the toxinotyping scheme. 

Perfringolysin O (PFO), enterotoxin (CPE), Toxin perfringens Large (TpeL), β2 toxin and Necrotic 

Enteritis Toxin B-like (NetB) are so-called minor toxins (Uzal et al., 2014). 
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In poultry, necrotic enteritis is caused mainly by toxinotype A strains, producing the NetB toxin. The 

alpha toxin was long believed to be the major virulence factor involved in the disease but it has been 

proven that it is not an essential virulence factor for the development of necrotic enteritis (Keyburn et al., 

2006; 2008). Keyburn et al. (2008) showed that a netB mutant was unable to induce necrotic lesions in the 

intestinal tract of experimentally infected broilers, but complementation with an intact netB gene restored 

virulence. NetB is a secreted pore forming toxin with 38% amino acid sequence similarity to the beta-

toxin from C. perfringens and therefore it was designated Necrotic Enteritis Toxin B-like (NetB). 

1.2.1. Alpha toxin 

The C. perfringens alpha toxin is produced by any C. perfringens strain and is the only major toxin that is 

produced by chickens isolates. It is a zinc-dependent phospholipase C enzyme with lecithinase and 

sphingomyelinase activities (Saint-Joanis et al., 1989). It is located in one of the most stable regions on 

the bacterial chromosome, close to the origin of replication. Nucleotide sequencing revealed a single open 

reading frame with a signal peptide (28 first amino acids) resulting in a mature protein of 370 amino acids. 

The molecular architecture of the alpha toxin reveals a two-domain protein with an amino-terminal 

domain composed from nine tightly packed α-helices (N-domain) (residues 1-246) and a carboxy-terminal 

domain composed of eight-stranded antiparallel β-sheets (C-domain) (residues 256-370) (Figure 1). The 

domains are joined by a central loop domain (residues 247-255) (Titball, 1999; Oda et al., 2015).  
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Figure 1: The structure of the C. perfringens alpha toxin showing the N- and C-domains linked by a 

flexible peptide (Oda et al., 2015).  

The N-domain of alpha toxin is the active site of the toxin and contains the zinc ions which are essential 

for the catalytic activity. The C-domain is a membrane binding domain (Eaton et al, 2002; Oda et al., 

2015). The C-terminal domain shows a strong structural similarity to eukaryotic calcium-binding C2 

domains (Naylor et al., 1998). Calcium-ions play a role in the binding to the membrane phospholipids by 

conferring a positive charge on the polar head groups of the membrane phospholipids. The negatively 

charged toxin domain interacts with the positive charged calcium-ions and the C-domain can bind into the 

bilayer membrane. The binding of alpha toxin to membranes appears to result in the opening of the active 

site allowing hydrolysis of membrane phospholipids (Moreau et al., 1988; Titball et al., 1999 and 2000).  

Alpha toxin has haemolytic, cytotoxic, myotoxic and lethal activities. It causes membrane damage to 

erythrocytes and other cultured mammalian cells (Titball et al., 1999). Alpha toxin causes massive 

degradation of phosphatidylcholine and sphingomyelin, two major components of the eukaryotic cell 

membranes, followed by membrane disruption and cell lysis (Sakurai et al., 2004). The N-domain acts 

against phosphatidylcholine but not against sphingomyelin and is not haemolytic or cytotoxic. The 
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interaction between the N- and C-domain is essential to confer the sphingomyelinase activity (Titball et 

al., 1999).  

1.2.2. NetB  

For years, alpha toxin was believed to be the major virulence factor involved in necrotic enteritis, until 

Keyburn et al. (2008) showed that an alpha toxin deleted mutant was still able to produce necrotic enteritis 

in an experimental model. A new toxin was identified in avian C. perfringens type A strains, a 323 amino 

acid protein including a 30 amino acid secretion signal sequence. Since it has a similarity to beta-toxin 

from C. perfringens (38% amino acid sequence identity) it was designated as NetB (Necrotic Enteritis 

Toxin B-like). The molecular architecture of a NetB monomer consists of 16 β-strands and an α-helix, 

which are arranged into the β-sandwich, latch, rim and prestem domains (Figure 2a). The β-sandwich 

domain contains a five-stranded and a six-stranded anti-parallel β-sheet. The prestem domain (residues 

140 to 186) is formed of three-stranded anti-parallel β-sheets. The rim domain contains a four-stranded 

antiparallel β-sheet and a well-organized loop formed by residues 205 to 242. The rim domain involves a 

number of solvent-exposed aromatic groups (Figure 2) (Yan et al., 2013). The rim region is involved in 

membrane recognition and membrane binding and the aromatic residues of the rim region form direct 

contacts with the outer leaflet of the lipid membrane. Seven NetB monomers form the ring structure. NetB 

is a heptameric β-pore-forming toxin (PFT) that forms single channels in planar phospholipid bilayers 

(Rood et al., 2016). The membrane fluidity is not the sole factor affecting NetB pore formation. The 

activity is also influenced by cholesterol which enhances the oligomerization of NetB and plays an 

important role in pore formation. NetB has a high hemolytic activity against avian red blood cells (Savva 

et al., 2013; Yan et al., 2013).  
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Figure 2: (a, above) The molecular structure of a NetB monomer. The β-sandwich domain is shown in 

blue. The prestem domain is shown in gold. The rim domain is shown in red and the amino latch domain 

is shown in magenta (b, below) Structure of the heptameric NetB toxin that forms a pore in the cell 

membrane (Yan et al., 2013).  
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1.3.   Clinical symptoms and pathogenesis 

Necrotic enteritis can present in an acute clinical and in a subclinical form. Broiler chickens are most 

commonly affected at 2 to 5 weeks of age (Kaldhusdal et al., 2001). The disease develops at an age when 

maternal antibodies have declined and active production of antibodies is still insufficient (Lovland et al., 

2004).  Clinical signs of the acute form include depression, ruffled feathers, diarrhea, huddling and 

anorexia, but more often the disease leads to sudden death, without any premonitory signs. An increased 

mortality of 1 to 5% in the broiler flock for several consecutive days during the last weeks of the rearing 

period is common.  At necropsy an extensive necrosis of the small intestines is found (Figure 3). Also 

liver lesions, consisting of multifocal hepatic necrosis, can occur (Ficken & Wages, 1997; Kaldhusdal, et 

al., 2001). 

 

Figure 3: Severe necrotic lesions in the small intestinal tract of a boiler chicken. 

The subclinical form causes no mortality but the damage to the intestinal mucosa leads to decreased 

absorption, reduced weight gain and an increased feed conversion ratio. At necropsy, focal necrotic 

lesions can be observed (Figure 4). Cholangiohepatitis can occur in the subclinical form (Elwinger et al., 

1992; Kaldhusdal et al., 2001). Affected birds recover and areas of necrosis can heal completely so that 

the infection can go unnoticed. Nevertheless, the subclinical form is economically the most important one. 

Major causes of profit loss are increased feed conversion ratio, reduced live weight of the chickens and an 

increased number of condemnations at the slaughter house (Kaldhusdal et al., 2016). 
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Figure 4: focal necrotic lesions in the intestinal tract of a broiler chicken. 

 

Since the causative bacterium can be found in the normal intestinal microbiota, the disease must be 

triggered by a variety of predisposing factors. The most important predisposing factor is coccidial 

infection (Williams, 2005). Eimeria parasites colonize the small intestine and kill epithelial cells. The 

physical damage to the epithelium yields direct access for C. perfringens toxins to the intestinal mucosa 

and exposes extracellular matrix molecules, such as collagen, to which C. perfringens can adhere 

(Elwinger et al., 1992; Wade et al., 2016). Also plasma proteins are leaking into the gut, acting as a rich 

nutrient source for C. perfringens (Van Immerseel et al., 2004). Eimeria is also resulting in increased 

mucus production, and mucus can also be used as nutrient source (Collier et al., 2008). A second 

predisposing factor is the composition of the diet. Diets with high levels of indigestible, water-soluble 

non-starch polysaccharides, such as wheat and rye, can increase the viscosity and are predisposing (Choct 

et al., 1996). High levels of animal protein in the diet, particularly fishmeal, are also predisposing for 

necrotic enteritis because they can act as substrates for the bacteria (Branton et al., 1987; Riddell & Kong, 

1992; Branton et al., 1997; Gholamiandehkordi et al., 2007; Van Immerseel et al., 2009). Any factor that 

causes stress in broiler chickens can increase the incidence of necrotic enteritis. Infections with viruses 

such as Marek’s disease virus, infectious bursal disease virus and chicken anemia virus can have 

immunosuppressive effects and increase the severity of necrotic enteritis. Other stress factors that are 

associated with necrotic enteritis are overcrowding, programmed alterations in the feeding regime and 

physiological stress (Hoerr, 2010). Some chicken lines have a higher degree of susceptibility so genetics 

also have an influence (Jang et al., 2013). Mycotoxins can also influence intestinal permeability and affect 

the microbiota composition and be predisposing (Antonissen et al., 2015). 
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1.4.   Antibody responses to C. perfringens antigens 

The immune response to C. perfringens infection, including immune recognition of the pathogen and its 

secreted proteins and toxins, is still poorly understood. In this section we only describe antibody responses 

after infection or vaccination. Other host responses in necrotic enteritis are beyond the scope of this thesis. 

In addition, there are uncertainties about the type of antibodies (IgA, IgY) and the antigen(s) to which the 

antibodies are directed, when associated with protection. Infection takes place in the small intestine where 

the pathogen makes contact with the mucosal surface. The enteric immune system of neonatal broilers is 

poorly developed and matures rapidly during the first  4-6 weeks post hatch (Mast & Goddeeris, 1999). 

Generally, adaptive immune defense at the mucosal surface is mediated by initiation of lymphocyte 

activation and local secretion of IgA (Muir et al., 2000; Sharma, 1999). Mucosal IgY may be important in 

protection against necrotic enteritis, since it is the major transferred maternal antibody and plays an 

essential role in the protection of young chickens against other pathogens. Maternal antibodies decline by 

about 3 weeks of age, which may explain why broiler chickens mostly develop necrotic enteritis around 

this time point (Ulmer-Franco et al., 2012).  

It was shown that the level of specific maternal antibodies against alpha toxin is higher in day-old chicks 

from older hens than in the chicks from younger hens.  Broilers with high titers of specific maternal 

antibodies (IgY) against alpha toxin were shown to have lower mortality (Heier et al., 2001). Levels of 

antibodies (IgY) against NetB and alpha toxin are significantly higher in apparently healthy chickens 

compared to chickens with clinical necrotic enteritis. This suggests that these antibodies may play a role in 

the protection against necrotic enteritis (Lee et al., 2012).  

In several vaccination studies a mucosal IgA response against alpha toxin, NetB and other immunogenic 

proteins was reported in chickens that were partially protected against necrotic enteritis (Kulkarni et al., 

2007; Kulkarni et al., 2010; Jang et al., 2012). However, in intestinal washings from experimentally 

infected birds only weak reactivity of mucosal IgA against proteins of C. perfringens was found. This 
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might indicate that a serum IgY response plays a more important role in immunity against necrotic 

enteritis than mucosal IgA. After systemic immunization with recombinant immunogenic proteins, serum 

IgY still reaches the mucosal surface under inflammatory conditions caused by C. perfringens (Williams, 

2005; Kulkarni et al., 2007; Kulkarni et al., 2010). 

 

1.5.   The rise of necrotic enteritis and the consequences 

The development of a global industry of specialized broiler production coincided with the introduction of 

anticoccidials and AGP’s. Both of these improve the growth performance when added in low doses to the 

feed of animals, leading to economic advantages for the farmers (Campbell, 1998; Castanon, 2007). It is 

proven that these in-feed supplementations protected broilers against necrotic enteritis. Concerns about the 

potential risk of transmission of antimicrobial resistance and antibiotic residues in the food chain pushed 

the EU to ban the use of all AGP’s in poultry feed, except for the ionophore antibiotics salinomycin and 

monensin (Regulation No. 1831, 2003). This led to a rise of necrotic enteritis with a high economic 

impact. In some European countries, the proportion of necrotic enteritis affected flocks has risen up to 

40% after the ban of AGP’s (Kaldhusdal and Lovland, 2000; Hermans and Morgan, 2007). Published 

studies on the occurrence of necrotic enteritis in chickens are few and characterized by certain limitations. 

A correct prevalence study has to be based on histological and bacteriological diagnosis whereas diagnosis 

of necrotic enteritis in the field is done simply by autopsy performed by the veterinarian. Since C. 

perfringens is a member of the normal intestinal microbiota, the bacterium is often isolated out of the post 

mortem intestinal tract. Empirical data show a very low prevalence of necrotic enteritis nowadays in 

broiler chickens in Western-Europe. In laying hens 10% of the flock is currently affected. Indirect 

measuring of the occurrence of necrotic enteritis in broiler chickens could be done by measuring the 

frequency of C. perfringens-associated cholangiohepatitis at the slaughterhouse, where all birds can be 

evaluated by competent meat inspection personnel (Kaldhusdal et al., 2016). Nowadays, the peak in 

broiler necrotic enteritis is over, but it should be underlined that anticoccidials of the ionophore type, used 
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in broiler flocks, have antibacterial effects and act prophylactically against necrotic enteritis (Lanckriet et 

al., 2010). The European Union allows the use of anticoccidials as feed additives because of the lack of 

alternatives. Also the use of therapeutic antibiotics is still high (Hermans and Morgan, 2007; Persoons et 

al., 2012). Since the major economic loss is due to the effects of subclinical disease, the economic impact 

of necrotic enteritis is difficult to measure but estimated to be at least 2,5 billion dollars on world scale 

(Wade and Keyburn, 2016). When the ban on AGP’s will become worldwide a new emergence can be 

expected in certain parts of the world. 

 

1.6.   Preventive and curative treatments for necrotic enteritis 

Nowadays, necrotic enteritis is still controlled by therapeutic antibiotics, such as amoxicillin and tylosin 

(Hermans & Morgan, 2007). However, due to antibiotic resistance, the use of antibiotics is no longer 

considered as a viable strategy for keeping gut health problems under control. Therefore, better farm 

management, including biosecurity measures and optimization of feed quality have become more relevant. 

Additionally, feed additives in poultry diets improve digestibility and the absorption of dietary nutrients 

and as a consequence may reduce pathogen colonization. Organic acids, essential oils and prebiotics, all 

have  been tested in in vivo animal models and shown to be, at least partially,  protective against necrotic 

enteritis  (Lensing et al., 2010a; Timbermont et al., 2010; Jerzsele et al., 2012). The concept of 

competitive exclusion, in which whole gut flora is administered to the animals, is also known to be 

effective against necrotic enteritis (Elwinger et al., 1992; Kaldhusdal et al., 2001).  For a disease caused 

by a toxin producing bacterium, it seems logical, however, to explore whether vaccines can be developed, 

which may or may not be based on the causative toxins. Considerable efforts have been made in recent 

years in this area. Proteins and toxins have been tested as vaccine candidates. In addition, the use of live 

vectors is under investigation and studies are being carried out on practical strategies for vaccination in the 

field.  A major question is how birds can be protected by vaccination in the limited time span of 3 to 4 

weeks before the lesions are most likely to develop. The disease develops at an age when maternal 
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antibodies have declined, but preventive vaccination of young broilers is hampered by their immature 

immune system and by practical problems related to vaccination protocols, because mass parental 

vaccination is possible at day 1 but not beyond this point. Solutions are being developed to solve these 

issues. Possibilities are vaccination of breeder hens and the use of live bacterial or viral vectors, so 

antigens can be delivered orally or in ovo.    

 

1.7.  Vaccination against necrotic enteritis in broiler chickens 

1.7.1. An overview of vaccination studies against necrotic enteritis 

There are various ways to deliver antigens to chickens for immunization purposes. Candidate bacterial 

vaccines can be based on live (attenuated) organisms or killed (inactive) organisms.  Live (attenuated) 

vaccine strains may be superior because they often have the ability to induce a stronger and longer lasting 

immune response and can be administered orally, but there may be some safety concerns (Witter & Hunt, 

1994; Plotkin & Plotkin, 2011; Rappuoli et al., 2011). For a toxin secreting bacterium, however, it seems 

logical that culture supernatants or toxin-based formulations are used because the factors that induce 

lesions are present in these solutions. They should be produced in inactivated form while preserving 

antigenicity. Formalin inactivation and genetically engineered inactive toxin variants are an option, as is 

the delivery of immunogenic non-toxin proteins. DNA vaccines that express Clostridium toxins, but not C. 

perfringens toxins, have also been tested as vaccine candidates (Saikh et al., 1998; Gardiner et al., 2009; 

Li et al. 2011; Jin et al., 2013). An overview of studies on vaccination against necrotic enteritis is given in 

Table 3. 

1.7.1.1.  Live attenuated vaccines   

The principle that previous infections with C. perfringens strains induce protection against challenge was 

proven by Thompson et al. (2006). These authors orally administered virulent strains to 15 day old broiler 

chickens during 5 consecutive days, followed by treatment with bacitracin for nine days to clear the 
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virulent strains. An oral challenge with virulent strain C. perfringens CP4 resulted in significantly fewer 

chickens with lesions (mean lesion score 0.13 instead of 2.09 in the non-immunized group). These data 

show the potential of vaccination with live strains, but a major issue with live vaccines is the balance 

between attenuation and protection. Indeed, live strains should be attenuated without losing the ability to 

protect against disease. When an avirulent strain was used for oral immunization using the same 

immunization-infection protocol, no protection was conferred. In contrast, an alpha toxin mutant of the 

challenge strain induced partial protection against infection with an isogenic challenge strain, i.e.  a 

significant decrease in number of birds with necrotic lesions was observed (Thompson et al., 2006). It 

could very well be that residual virulence (which may include NetB production) is essential for a live 

vaccine strain to be protective.  Indeed, an avirulent strain may not provide protective antigens to the gut 

associated lymphoid tissues, and as a consequence not confer protection.  

1.7.1.2.  Protein-based vaccines 

Protein-based vaccines are used because they are safer and better characterized when compared to live 

vaccines, while still providing protection (Unnikrishnan et al., 2012). They include toxoids (inactivated 

bacterial toxins) and subunit vaccines, often based on virulence factors or secreted toxins (Berzofsky et 

al., 2001).   C. perfringens is known to produce many different toxins and proteins. Some studies used 

crude culture supernatants (whether inactivated or not) as vaccines, whilst other vaccination trials were 

carried out using inactivated toxins and highly antigenic proteins.  

1.7.1.2.1.   Crude supernatant vaccines 

Both non-inactivated supernatant and formaldehyde-inactivated supernatant (crude toxoid) of C. 

perfringens have been studied as potential vaccines for the prevention of clinical and subclinical necrotic 

enteritis with variable success. In a study by Saleh et al. (2011), subcutaneous vaccination of broilers at 7 

and 21 days with C. perfringens type A, type C and combined type A and C crude toxoids significantly 

decreased the number of animals developing intestinal lesions. When breeder hens were vaccinated at 14 
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and 18 weeks of age with type A and type C crude toxoids and their progeny was challenge exposed under 

both field conditions and in a disease model, type C crude toxoid was shown to provide better protection 

than type A crude toxoid (Lovland et al., 2004). The safety and efficacy of a C. perfringens type A alpha 

toxoid (Netvax
TM

) was investigated by vaccinating breeder hens intramuscularly at 11 and 18 weeks of 

age. In this field trial, the progeny from vaccinated hens had a reduced mortality compared to the progeny 

from unvaccinated hens (Crouch et al.,  2010). It was, however, unclear whether this mortality was related 

to necrotic enteritis. Lanckriet et al. (2010b) compared the non-inactivated supernatant of 8 C. perfringens 

strains, with different alpha toxin and NetB content, using subcutaneous vaccination at 3 and 12 days. 

They showed important variation in the protective capacity depending on the strain used for supernatant 

preparation. This suggests that protective immunity is probably determined by an effective combination of 

different bacterial immunogens or that the expression levels of one or more antigens drives protection 

conferred by vaccination. The strain used for crude supernatant preparation is thus of crucial importance 

when designing the vaccine type. It is clear that non-inactivated supernatant always contains a risk 

because of the presence of active toxins, and thus crude toxoids are preferred for safety reasons. 

Formaldehyde is generally used for inactivating proteins in vaccines but can reduce the protective capacity 

of the vaccine.  

 

1.7.1.2.2.   Alpha toxin 

The alpha toxin is the most investigated C. perfringens toxin in terms of vaccine-induced protection, 

mainly in mouse gangrene models (Stevens et al., 2004; Titball, 2009). As mentioned before the alpha 

toxin is composed of 2 domains, which are associated with phospholipase C activity (N-domain) and 

membrane recognition (C-domain) (Naylor et al., 1998). Monoclonal antibodies against alpha toxin  

which are capable of neutralizing the phospholipase C activity, are not necessarily effective in protecting 

against alpha toxin induced hemolysis and mortality in gangrene models (Sato et al., 1989, Logan et al., 
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1991). Nevertheless, the immune response against the C-terminal domain provides protection against 

challenge with alpha toxin and also against experimental gas gangrene in mice (Stevens et al., 2004).  

Before the NetB toxin was identified as the major toxin in necrotic enteritis in broilers, alpha toxin was 

believed to be crucial and thus multiple studies used alpha toxin derivatives as vaccine antigen. It has been 

shown that broilers with a history of clinical or sub-clinical necrotic enteritis have a natural serum 

antibody response to alpha toxin (Heier et al., 2001; Lovland et al., 2003). When broilers are vaccinated 

subcutaneously with recombinant alpha toxin at 5 and 15 days of age a decrease in the number of animals 

with necrotic enteritis lesions is found (Cooper et al., 2009). Also Jang et al. (2012) vaccinated broilers 

subcutaneously at day 1 and day 7 with recombinant alpha toxin and could induce protection against 

challenge. Using double and triple intramuscular vaccination regimens (day 7, 14 and 21), Kulkarni et al. 

(2007) showed that a prior vaccination with alpha toxoid and a boost with active toxin protected against 

experimental necrotic enteritis. A triple vaccination of either alpha toxoid or active toxin, however, 

offered no protection.  It was suggested that the failure in protection using the active toxin may have 

resulted from the toxin activity on immune cells and the failure of alpha toxoid may be the consequence of 

loss of conformation of the protein, resulting in loss of epitopes, as mentioned before.  Although alpha 

toxin has been shown to play no primary role in the induction of necrotic enteritis, the antigen can still 

induce a certain level of protection. It has been shown by Zekarias et al. (2008) that anti-alpha toxin 

antibodies bind to the cell wall of the bacterium and suppress its growth in vitro. Secreted proteins and 

toxins of Gram-positive bacteria accumulate within the cytoplasm, and most adhere to the bacterial cell 

membrane (Ton-That et al., 2004; Schneewind and Missiakas, 2012).  Binding of antibodies to the 

membrane-bound preprotein might block protein transport channels and hereby inhibit proliferation of the 

bacterium. It suggests an unusual effect of vaccines, which directly affects the bacterium rather than 

neutralizing the toxin. Alpha toxin can thus be used as a protective antigen to vaccinate broilers, even if 

the toxin does not play a primary role in the pathogenesis of necrotic enteritis. It is possible that other 

antigens will be identified that have similar mechanisms of action when used for immunizing chickens. A 

combination of antigens generating antibodies that inhibit bacterial proliferation and other antigens 
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generating antibodies that inhibit toxin activity could be more efficient than one of the individual 

approaches. 

 

1.7.1.2.3.   NetB toxin 

The discovery of the genetically highly conserved NetB toxin as an essential virulence factor opened new 

perspectives for the development of vaccines for the control of necrotic enteritis (Keyburn et al., 2008; 

Keyburn et al., 2010a; Keyburn et al., 2010b). After the structure and function of the NetB toxin protein 

was analyzed, mutants with reduced cytotoxic activity were designed (Savva et al., 2013; Yan et al., 

2013). The mutation of tryptophan to alanine at position 262 (W262A) resulted in a significant reduction 

in cytotoxicity to LMH cells and hemolytic activity on red blood cells, and thus generated a promising 

vaccine candidate (Savva et al., 2013; Fernandes da Costa et al., 2013). In the present thesis this was 

further investigated.  

1.7.1.2.4.   Other proteins 

In addition to toxin-derived protein vaccines, highly immunodominant proteins can potentially be used to 

protect animals against necrotic enteritis by vaccination. Full protection is probably determined by an 

effective combination of different bacterial immunogens (Lanckriet et al., 2010b). Several purified C. 

perfringens proteins have been evaluated as potential vaccine candidates. Studies have identified antigens 

recognized by post-infection sera from chickens immune to necrotic enteritis. Hypothetical protein (HP), 

pyruvate:ferredoxin oxidoreductase (PFOR), elongation factor G (EF-G), perfringolysin O, 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and a fructose-1,6-biphosphate aldolase (FBA) 

were identified using post-infection serum from chickens immune to virulent C. perfringens challenge in 

infection-immunization experiments (Kulkarni et al., 2006). Jiang et al. (2009) identified the C. 

perfringens large cytotoxin (TpeL), endo-beta-N-acetylglucosaminidase (Naglu) and 

phosphoglyceromutase (Pgm) as dominant antigens using post-infection serum from chickens immune to 

necrotic enteritis. Elongation factor Tu (EF-Tu) and PFO were identified by reaction with immune sera 
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from chickens derived from a clinical outbreak. Kulkarni et al. (2007) immunized chickens 

intramuscularly two (or three) times at an age of 7, 14 (and 21) days with recombinant proteins alpha-

toxin/alpha toxoid, GAPDH, HP, FBA, and PFOR. All the proteins were able to decrease the mean 

intestinal lesion score. The degree of protection depended on the severity of the challenge. Alpha toxin, 

HP, and PFOR protected significantly against heavy challenge. GAPDH and FBA protected only against 

mild challenge. More recently, double subcutaneous vaccination regimens using alpha toxin, NetB toxin, 

PFOR and EF-Tu gave similar protection levels after experimental infection (Jang et al., 2012). 

Immunization with Naglu and Pgm yielded partial protection after challenge with two different strains. 

Again, the protection level decreased when the challenge severity increased (Jiang et al., 2009). All the 

above described data thus show that multiple proteins, including derivatives from alpha and NetB toxin, 

have potential as vaccines, and that defined mixtures of these proteins need investigation. 

 

1.7.1.3.   Attenuated live vectors expressing C. perfringens proteins 

Attenuated or avirulent bacteria can be used as vehicles for the effective delivery of  vaccine candidates 

(Rappuoli et al., 2011). Attenuated Salmonella strains are often used in poultry for the control of 

salmonellosis. They can serve as safe and effective oral carrier vaccines to prevent several poultry 

diseases by expressing heterologous antigens (Hegazy & Hensel, 2012). Because the attenuation is usually 

induced by a deletion mutation in a gene that is essential for the metabolism of the bacterium, the vaccine 

carrier strains can not overgrow the immune system of the animal host (Spreng et al., 2006). Zekarias et 

al.(2008) evaluated the efficacy of a live recombinant attenuated S. enterica serovar Typhimurium vaccine 

strain that delivered the C-terminal domain of the alpha toxin. The vaccine strain was twice administered 

orally at 3 and 17 days of age. Thereafter the birds were challenged by oral inoculation and repeated 

infection through contaminated feed with a virulent C. perfringens strain. A significant reduction in the 

number of birds with necrotic lesions was observed.  Kulkarni et al. (2008) showed that the delivery of 

FBA and HP using an attenuated S. enterica serovar Typhimurium vaccine vector by the oral route 
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induced a significant protective immune response. Broilers immunized with the vaccine strain, expressing 

PFOR, at day 1 and day 14, however, were not significantly protected against necrotic enteritis. The 

authors also tested Salmonella strains expressing truncated nontoxic alpha toxoid and truncated HP (tHP). 

The alpha toxoid consisted of a region of 162 amino acid residues that included two sections of 

immunodominant epitopes as well as regions of weak reactivity. Broiler chickens immunized orally with a 

Salmonella strain expressing nontoxic alpha toxoid, at days 1 and 10 of age, were significantly protected 

against moderate challenge but not protected against severe challenge, while chickens immunized with 

tHP were protected against both moderate and severe challenge (Jiang et al., 2010; Kulkarni et al., 2010). 

While Salmonella strains are thus potential vaccine carriers for C. perfringens proteins, there are other 

possibilities that, although not yet explored for protection of poultry against necrotic enteritis, can be of 

value. The expression of the C-terminal domain of alpha toxin on the surface of Bacillus subtilis spores 

was described and shown to be immunogenic in mice (Hoang et al., 2008). Lactic acid bacteria can also be 

used as vaccine carriers for Clostridium antigens (Robinson et al., 1997; Robinson et al., 2004). B. subtilis 

and lactic acid bacteria have the advantage of having a GRAS (generally recognized as safe) status. The 

use of live vectors to express C. perfringens proteins in the gut of broilers is thus a promising approach 

and deserves further attention, but will be very complex, because the vector needs to present the antigens 

to the mucosal immune system. The choice of the proteins to be expressed is also an important issue. 
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Table 3: Summary of studies on vaccination against necrotic enteritis in broilers described in the scientific literature. The table shows the route of 

administration, vaccine regimen, antigen, dose, vector (if used), adjuvant, the result of the vaccination study and the literature reference. 

Route of 

Adminis

tration 

Vaccination regime Vector/Adjuvant Antigen and dose Protection Reference 

IM 
Double (breeder hens week 14 

and 18) 

20% Alhydrogel 

and 0.013% 

thiomersal 

- Type A crude toxoid 

(0.25ml of 1TCP*) 

- Type C crude toxoid 

(0.25ml of 30TCP*) 

- Specific antibody response against alpha 

toxin in breeder hens and their progeny 

- Less mortality in progeny 

(Lovland et 

al., 2004) 

Oral 
Infection-immunization for 5 

consecutive days  

Mixed in feed at 

ratio 2:1 (feed:broth 

culture) 

- Avirulent strain CP5 

- Virulent strain CP1 

- Virulent strain CP4 

- Alpha toxin deficient 

mutants (Cpa
-1

,Cpa
-2

,Cpa
-3

 

and Cpa
-4

) 

- Reduction in chickens with lesions that 

were infection-immunized with CP1, 

CP4, Cpa
-2

 and Cpa
-4

 

(Thompson 

et al., 2006) 

IM 
Double or triple (day 7, 14 

(and 21) 
Quil A 

- Alpha toxin 

- Alpha toxoid 

- HP
*
 

- FBA
*
 

- GDP
*
 

- tPFOR
*
 

20µg in triple vaccination, 

40µg in double vaccination 

- Serum and intestinal antibody response 

against immunogens 

- Reduction in chickens with lesions 

depending on the severity of challenge 

(Kulkarni et 

al., 2007) 

Oral Double (day 1 and 14) 

Attenuated S. 

enterica serovar 

Typhimurium 

X9241 

- FBA
*
 

- tPFOR
*
 

- tHP
*
 

100µl containing  10
9
 CFU 

- Serum and intestinal antibody response 

against immunogens 

- Reduction in main lesion score and 

increase in body weight gain (FBA and 

tHP) 

(Kulkarni et 

al., 2008) 

Oral 

SC 

Double (day 3 and 13) 

Double (day 3 and 17) 

Triple (day 3, 13 and 35) 

Attenuated S. 

enterica serovar 

Typhimurium 

X8914 

Complete Freunds 

adjuvant (SC) 

- C-terminal domain of 

alpha toxin (rPLC) 

50µg (SC) 

500µl containing  10
9
 CFU 

(oral) 

- Low serum antibody response  

- Reduction in number of chickens with 

lesions 

- Reduction in lesion score 

(Zekarias et 

al., 2008) 
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Table 3: Summary of studies on vaccination against necrotic enteritis in broilers described in the scientific literature. The table shows the route of 

administration, vaccine regimen, antigen, dose, vector (if used), adjuvant, the result of the vaccination study and the literature reference. 

 

 

SC Double (day 5 and 15) Quil A 
- Alpha toxin 

20µg 

- Specific serum antibody response against 

alpha toxin 

- Reduction in number of chickens with 

lesions 

(Cooper et 

al., 2009) 

IM 
Double (breeder hens week 11 

and 18-19) 
Light mineral oil 

- Type A crude toxoid 

(0.5ml of 3 TCP*) 

- Specific antibody response against alpha 

toxin in breeder hens and their progeny 

- Lower mortality rate in field trial 

(Crouch et 

al., 2010) 

Oral 

IM 

Double (day 1 and 10) 

Triple (day 1, 10 and 17) 

Attenuated S. 

enterica serovar 

Typhimurium 

X9352 

- Alpha toxoid (region of 

162 amino acid residues) 

- tHP 

100µl containing  10
9
 CFU 

- Serum and intestinal antibody response 

against immunogens 

- Reduction in chickens with lesions 

depending on the severity of challenge 

- Increased body weight 

(Kulkarni et 

al., 2010) 

SC Double (day 3 and 12) Quil A 

- Supernatant of 8 type A 

strains (variable NetB and 

alpha toxin content) 

7 and 70µg 

- Reduction in number of chickens with 

necrotic lesions  

(Lanckriet et 

al., 2010b) 

IM 
Double or triple (day 7, 14 

(and 21) 
Quil A 

- Naglu
*
 

- Pgm
*
 

- Serum and intestinal antibody response 

against immunogens 

- Reduction in chickens with lesions 

depending on the severity of challenge 

and challenge strain 

(Jiang et al., 

2009) 

SC Double (day 7 and 21) Unknown 

- Crude toxoid A 

- Crude toxoid C 

- Crude toxoid AC 

- Serum antibody response against 

immunogens 

- Reduction in number of chickens with 

necrotic lesions 

(Saleh et al., 

2011) 

SC Double (day1 and 7) 
Montanide ISA 71 

VG 

- Alpha toxin 

- NetB 

- EF-Tu
*
 

- PFO
*
 

50µg 

- Specific serum antibody response against 

NetB and PFO 

- Reduction in lesion score 

 

(Jang et al., 

2012) 

SC Triple (day 3, 9 and 15) Quil A 

- NetB toxoid 

- NetB (W262A) 

30µg 

- Reduction in number of chickens with 

necrotic lesions 

- Reduction in mean lesion score 

(Fernandes 

da Costa et 

al., 2013) 
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*TCP (total combining power), (t)HP ((truncated)Hypothetical protein),  FBA (fructose-1,6-biphosphate aldolase), GDP (glyceraldehyde-3-phosphate 

dehydrogenase), (t)PFO(R) ((truncated) pyruvate: ferredoxin oxidoreductase), Naglu (endo-beta-N-acetylglucosaminidase), Pgm (phosphoglyceromutase), EF-Tu 

(elongation factor Tu), CFU (colony forming units) 

SC (subcutaneous), IM (intramuscularly) 

 

 

 

 

Table 3: Summary of studies on vaccination against necrotic enteritis in broilers described in the scientific literature. The table shows the route of 

administration, vaccine regimen, antigen, dose, vector (if used), adjuvant, the result of the vaccination study and the literature reference. 

 

SC Double (day 7 and 17) 

60% Montanide 

40% Quil A 

DEAE-dextran 

- NetB 

- Bacterin (50:50 bacterial 

cells and culture 

supernatant) 

- Bacterin + NetB 

50µg 

- Specific serum antibody response against 

NetB 

- Reduction in average lesion score 

depending on the severity of challenge 

(Keyburn et 

al., 2013b) 

SC 
Triple (breeder hens week 22, 

24 and 26) 

60% Montanide 

40% Quil A 

DEAE-dextran 

- rNetB(S254L)  

- Crude toxoid (type A, 

NetB positive)   

- Crude toxoid (type A, 

NetB positive) + 

rNetB(S254L)  

50µg 

- Specific antibody response against NetB 

in breeder hens and progeny 

- Reduction in number of chickens with 

necrotic lesions in experimental infection 

trial in progeny 

 

(Keyburn et 

al., 2013a) 
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Scientific aims 

 

Necrotic enteritis in broilers is caused by Clostridium perfringens type A strains that produce the NetB 

toxin. It is one of the gastrointestinal diseases in poultry that has gained worldwide importance during the 

last decade. Prevention strategies include avoiding predisposing factors, such as coccidiosis, and in-feed 

supplementation of a variety of feed additives. All of these measures can reduce the incidence but 

definitely do not (fully) protect against the disease. Therefore, vaccination seems a logical preventive tool 

for protection against necrotic enteritis. Considering the importance of bacterial toxin production in the 

pathogenesis, vaccination with a modified toxin or other secreted immunogenic proteins appears to be the 

best option. Previous studies in this field have generated promising results, with, however, still some 

major drawbacks in the practical applicability of the vaccine candidates. Therefore, the general aim of this 

thesis was to design novel strategies for practical application of vaccination against necrotic enteritis in 

broilers. Most published studies have used multiple dosage subcutaneous vaccination regimens that are 

not relevant for practical use in the broiler industry. The use of active toxins or crude supernatant is not 

possible in the field for safety reasons. It is essential to either use pure immunogenic non-toxic proteins or 

inactivated proteins. The first specific aim of this thesis was to evaluate the efficacy of subcutaneous 

vaccination with crude formaldehyde toxoids, as compared to crude bacterial supernatant, using 

different vaccination regimens, and to explore whether single shot vaccination at young age yields 

protection. Several studies have been carried out recently to identify the most important immunogenic and 

protective proteins that can be used for vaccination and many proteins and toxins have been tested as 

vaccine candidates in recent years. However, Lanckriet et al. (2010) performed, to our knowledge, the 

only vaccination study which resulted in full protection against necrotic enteritis after challenge with 

virulent strains. The supernatant of C. perfringens strain 23 was clearly shown to be superior to the 

supernatant of 7 other C. perfringens strains. The second specific aim of this work was thus to identify 

unique proteins in the supernatant of C. perfringens strain 23 that contribute to protection of broilers 
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against the development of necrotic enteritis. The NetB toxin is known to be the most important 

virulence factor and acts immunoprotective. Despite the fact that it has been shown that alpha toxin is not 

essential for the development of necrotic enteritis, it can also be used as a protective antigen to vaccinate 

broilers. To study the positive effect of vaccination it is necessary to induce the disease. The method used 

for the experimental reproduction of necrotic enteritis can affect the results. Some antigens are solely 

protective against mild challenge but not against severe challenge, and there is evidence that a 

combination of different antigens is needed to obtain an optimal protection. Therefore, the third specific 

aim of this thesis was to investigate whether a combination of a non-toxic NetB W262A variant and a 

non-toxic fragment of the C-terminal domain of alpha toxin could provide improved protection against 

disease as compared to vaccination with individual antigens. Vaccination was evaluated in two 

experimental infection models (in-feed and oral administration).  
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3.1. Day-of-hatch vaccination is not protective against necrotic 

enteritis in broiler chickens 
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Abstract 

Necrotic enteritis (NE), caused by netB toxin producing Clostridium perfringens type A, is an important 

disease in broiler chickens worldwide. Attempts to prevent necrotic enteritis by vaccination hitherto have 

insufficiently taken into account the practical limitations of broiler vaccination. In most published studies 

on vaccination against necrotic enteritis multiple doses at different ages are administered, which is 

practically impossible for broilers. The aim of this study was to compare the efficacy of subcutaneous 

single vaccination at day 1 or day 3 and double vaccination at day 3 and day 12, using crude supernatant 

containing active toxin or formaldehyde inactivated supernatant (toxoid) of a netB positive C. perfringens 

strain in a subclinical necrotic enteritis model. Double vaccination with crude supernatant resulted in a 

significant decrease in the number of chickens with necrotic enteritis lesions. The efficacy of vaccination 

using toxoid was lower compared to crude supernatant. Single vaccination with crude supernatant at day 3 

resulted in significant protection, while vaccination of one-day old chickens with crude supernatant or 

toxoid, as envisaged for practical field application, did not induce protection. 
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Introduction 

Necrotic enteritis, caused by Clostridium perfringens type A, occurs in broiler chickens and emerged after 

the ban on the use of antimicrobial growth promoters (AGP’s) in the European Union in 2006. C. 

perfringens infections in poultry may present as an acute clinical disease, with high mortality at 2 to 5 

weeks of age, or in a subclinical form leading to reduced weight gain (Kaldhusdal et al., 2001). The 

disease develops when several predisposing factors are present, such as a coccidial co-infection and a high 

protein high non-starch polysaccharide containing diet (Thompson et al., 2006; Gholamiandehkordi et al., 

2007; Van Immerseel et al., 2009). Nowadays, necrotic enteritis is typically controlled using antibiotics 

and anticoccidials (Lanckriet et al., 2010). Due to concerns about the spread of antibiotic resistant bacteria 

and antibiotic residues in the food chain, there is a need for alternative control strategies. The use of feed 

additives, including organic acids, essential oils and prebiotics, can only marginally decrease the incidence 

of necrotic enteritis in broilers. No feed additives are as efficient as antibiotics in controlling the disease 

(Lensing et al., 2010; Thanissery et al., 2010; Timbermont et al., 2010; Jerzsele et al., 2012).  

Vaccination of broilers may be an interesting option for the prevention of necrotic enteritis. In the 

literature, vaccination trials are described using crude supernatant, inactivated supernatant and 

recombinant proteins; the latter either injected or administered using a live bacterial vector. Different 

vaccination approaches have been used in several necrotic enteritis models in the past few years (Lee et 

al., 2011). Vaccination in broiler chickens can be done using oral, subcutaneous or intramuscular 

administration. All previous reports on subcutaneous or intramuscular vaccination experiments are based 

on double or triple vaccination schedules. Both crude supernatant and formaldehyde-inactivated 

supernatant (toxoid) of C. perfringens have been studied as potential vaccines for the prevention of 

clinical and subclinical necrotic enteritis with variable degrees of success (Kulkarni et al., 2007; Cooper et 

al., 2009; Jang et al., 2009; Lanckriet et al., 2010; Saleh et al., 2011; Jang et al., 2012). 

All studies carried out in the past use vaccination regimens that are not applicable in the field for logistical 

reasons. Indeed, subcutaneous or intramuscular injection of broilers is only possible at the hatchery at day 
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of hatch. The use of crude supernatant is not possible for safety reasons and it is thus essential to either use 

pure immunogenic non-toxic proteins or inactivated proteins. In Clostridium vaccines safety is often 

guaranteed using formaldehyde inactivation to produce a so-called toxoid (Jones et al., 2008).  

Therefore, the objective of this study was to compare the efficacy of subcutaneous vaccination with crude 

supernatant and toxoid, using different vaccination regimens. Broilers were either once vaccinated at day 

of hatch or at 3 days of age or twice at days 3 and 12.  

 

 

Materials and Methods 

Clostridium strains and culture conditions. C. perfringens strain 23 was used for preparing crude 

supernatant and toxoid vaccines. This strain is a netB positive toxin type A strain isolated from a broiler 

chicken (Gholamiandehkordi et al., 2006; Lanckriet et al., 2010). The challenge strain used in the in vivo 

trials, C. perfringens strain 56, a netB positive toxin type A strain, was isolated from a broiler chicken 

with necrotic lesions and has been shown to be highly virulent in in vivo trials (Gholamiandehkordi et al., 

2007; Timbermont et al., 2009; Lanckriet et al., 2010). Bacteria were grown at 37°C in Brain Heart 

Infusion (BHI) broth (Oxoid, Basingstoke, UK) supplemented with 0.375% glucose in an anaerobic (84% 

N2, 8% CO2 and 8% H2) workstation (Ruskinn Technology, South Wales, UK). 

 

Vaccines. For all in vivo trials, supernatant derived from an overnight culture of C. perfringens strain 23 

was concentrated using Vivaspin containing a 5,000 MWCO PES membrane (Sartorius Stedim Biotech 

GmbH, Goettingen, Germany). The protein concentration from the supernatant was determined using a 

commercially available BCA Protein Assay Reagent (Thermo Scientific Pierce, Rockford, USA). The 

concentrated supernatant was diluted in PBS to final protein concentrations as described in Table 1. The 

supernatant used for toxoid preparation was inactivated for 16h at 37°C with 1% (trial 1) or for 24h at 

37°C with 0.5% (trial 2 and trial 3) formaldehyde solution (Sigma-Aldrich, Bornem, Belgium) to produce 
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a toxoid. Inactivation of the supernatant was tested by analyzing the inactivation of the alpha toxin and 

theta toxin by loss of double hemolytic zone when plating droplets on Columbia agar containing 5% sheep 

blood (Columbia Blood agar base®, Oxoid, Wesel, Germany). Quil A (Brenntag Biosector, 

Frederikssund, Denmark) was used as adjuvant (10 mg/ml PBS solution) (50 µg/bird/vaccination) in all 

test groups. The total volume administered to each bird was 0.2 ml. The freshly prepared vaccines were 

filter-sterilized (0.2 µm). 

 

In vivo necrotic enteritis model. The in vivo necrotic enteritis model was based on the subclinical in vivo 

model as described previously (Gholamiandehkordi et al., 2007). Groups of a variable number (indicated 

in Table 1) of one-day-old Ross 308 broiler chickens were fed a wheat/rye-based (43%/7.5%) diet, with 

soybean meal as protein source. The feed composition was as described elsewhere (Gholamiandehkordi et 

al., 2007). Briefly, the diet contained high levels of (animal) proteins and non-starch polysaccharides 

which predispose to the development of necrotic enteritis. In all trials, Nobilis Gumboro D 78 vaccine 

(Schering-Plough Animal Health, Brussels, Belgium) was given in the drinking water on day 16 in all 

groups. From day 17 onwards, soy bean meal was replaced by fishmeal (30%) as protein source. All 

groups were orally challenged on day 17, 18, 19 and 20 with approximately 4.10
8
 cfu C. perfringens strain 

56 bacteria per challenge dose (Table 1). On day 18, all groups were orally inoculated with a ten-fold dose 

of Paracox-5 (Schering-Plough Animal Health, Brussels, Belgium).  

In trial 1, 3 control groups were included. Two were left unvaccinated (group 1 and 2). In group 1 all 

animals were inoculated with C. perfringens once a day during 4 consecutive days, while in group 2 three 

inoculations per day were given from day 17 till day 20. The third control group (group 3) was vaccinated 

with PBS and Quil A at day 3 and 12 post-hatch, and C. perfringens inoculations were done 3 times a day 

between day 17 and 20. Five test groups were included. They were vaccinated subcutaneously in the neck 

with a 200 µl dose. Group 4 was vaccinated with crude supernatant containing 7 and 70 µg total protein at 

day 3 and day 12, respectively. Group 5 was vaccinated with 7 µg crude supernatant at day 3. Group 6 
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was vaccinated at day 3 and day 12 with 7 and 70 µg toxoid, respectively. Groups 7 and 8 were vaccinated 

with 7 µg toxoid at day 3 or day 1, respectively (Table 1). On day 22, 23 and 24, each day one-third of the 

birds were euthanized. 

Trial 2 was carried out to clarify whether vaccination at day 3 and 12 with crude supernatant yielded better 

protection as compared to vaccination at day 3 and 12 using toxoid. One control group was left 

unvaccinated (group 1) and another control group was vaccinated with PBS and Quil A at day 3 and day 

12 post-hatch (group 2). Group 3 was vaccinated at day 3 and day 12 with 7 µg and 70 µg crude 

supernatant, respectively, while group 4 was vaccinated at day 3 and day 12 with 7 µg and 70 µg toxoid, 

respectively (Table 1). All birds were euthanized on day 21. 

Trial 3 was carried out to compare the efficacy of vaccination at day 1 with crude supernatant or toxoid at 

different dosages with vaccination at day 3 and 12. One control group was left unvaccinated (group 1) and 

another control group was vaccinated with PBS and Quil A at day 3 and day 12 post-hatch (group 2). 

Group 3 and 4 were vaccinated at day 3 and day 12 with 7 µg and 70 µg crude supernatant or toxoid, 

respectively. The other test groups (group 5 to 12) were vaccinated at day 1 with different doses (35µg, 

70µg, 140µg, 210µg) crude supernatant or toxoid (Table 1). On day 21, 22, 23, each time one-third of the 

birds were euthanized. The bird experiments were carried out according to the recommendations and 

following approval from the Ethical Committee of the Faculty of Veterinary Medicine, Ghent University. 
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Table 1: Description of experimental groups used in this study. 

 

SN, supernatant. 
A
Values with uppercase superscripts differ significantly (P<0.05 for trial 1 and trial 3) from the Quil 

A vaccinated control group; 
B
Values with uppercase superscripts differ significantly (P<0.01 for trial 2) from the 

unvaccinated control group. 

 

 

Macroscopical lesion scoring. Lesion scoring in the small intestine (duodenum, jejunum and ileum) was 

performed as described by Keyburn et al. (2006). Chickens with a lesion score of 2 or more were 

classified as necrotic enteritis positive.  

 

         

Trial Group 
Birds per 

group 
Vaccine 

Vaccination 

dose (µg) 

Vaccination 

day(s) 

Challenges 

per day 

Number of animals with 

lesions/total number 

Percentage of animals 

with necrotic enteritis 
         

         

1 1 23 - - - 1 12/23 52 
 2 26 - - - 3 14/26 54 

 3 26 Quil A + 

PBS - 3, 12 

3 17/26 65 

 4 29 Active SN 7µg, 70µg 3, 12 3 11/29 38A 

 5 26 Active SN 7µg 3 3 9/26 35A 

 6 25 Toxoid 7µg, 70µg 3, 12 3 11/25 44 
 7 26 Toxoid 7µg 3 3 13/26 50 

 8 25 Toxoid 7µg 1 3 11/25 44 

         

2 1 80 - - - 1 72/80 90 

 2 
79 

Quil A + 

PBS 
- 3, 12 

1 66/79 84 

 3 80 Active SN 7µg, 70µg 3, 12 1 59/80 74B 

 4 78 Toxoid 7µg, 70µg 3, 12 1 64/78 82 

         
3 1 29 - - - 1 14/29 48 

 2 
29 

Quil A + 

PBS 
- 3, 12 

1 16/29 55 

 3 27 Active SN 7µg, 70µg 3, 12 1 6/27 22A 

 4 25 Toxoid 7µg, 70µg 3, 12 1 13/25 52 

 5 26 Active SN 35µg 1 1 16/26 62 
 6 26 Active SN 70µg 1 1 17/26 65 

 7 26 Active SN 140µg 1 1 17/26 65 

 8 25 Active SN 210µg 1 1 16/25 64 
 9 26 Toxoid 35µg 1 1 9/26 35 

 10 25 Toxoid 70µg 1 1 17/25 68 

 11 26 Toxoid 140µg 1 1 14/26 54 

 12 26 Toxoid 210µg 1 1 16/26 62 
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Statistical analysis. A two-tailed non-parametric test (Mann-Whitney U) (GraphPad Prism Software, Inc, 

USA (Version 5.00)) was used to determine whether there was a significant difference between the 

percentage positive chickens and the average lesion score in the vaccinated groups and control groups. 

Statistical significance was determined at a P value of <0.05. 

 

Results 

Trial 1. No chickens died during the challenge period. Vaccination with crude supernatant of C. 

perfringens strain 23 at day 3 and 12 resulted in a significant decrease (P<0.05) in the number of chickens 

with necrotic lesions compared to the control group vaccinated with Quil A and PBS. Also single 

vaccination with crude supernatant at day 3 resulted in significant protection (P<0.05) compared to the 

same control group. Vaccination with inactivated supernatant (toxoid) did not yield significant decreases 

in necrotic enteritis positive birds (Table 1). When the average lesion score of each group of vaccinated 

broilers was compared to those of the control groups, no significant decreases were observed between 

control groups and groups vaccinated with active supernatant or toxoid (Figure 1). To confirm the 

protective effects of administration of crude supernatant at day 3 and 12, and the loss of protection when 

using a toxoid, a trial with an increased number of animals per group was performed (trial 2). 
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Figure 1. Lesion scores of individual broiler chickens challenged with C. perfringens in trial 1 are shown. 

The striped bars represent the average lesion score in each group. The standard error of the mean (SEM) is 

represented by the solid bars (GraphPad Prism Software, Inc, USA). A description of the vaccination 

schedule of group 1-8 is shown in table 1. No significant difference was seen between the groups. 

N = number of animals 

+ = individual lesion score 
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Trial 2. Because challenging the chickens once a day during 4 consecutive days with C. perfringens 

resulted in approximately the same average lesion score as challenging three times a day during 4 

consecutive days (Table 1, trial1) in the second and third trial the challenge was only done once a day for 

4 consecutive days. Double vaccination with crude supernatant of C. perfringens strain 23 again resulted 

in a significant decrease (P<0.01) of the number of chickens with necrotic lesions. Twelve chickens, 

originating from different groups, died during the challenge period and 6 moribund chickens were 

euthanized. All those birds were necropsied and had the highest possible necrotic enteritis lesion score. 

The number of chickens with necrotic enteritis lesions was significantly lower in the group vaccinated 

with active supernatant at day 3 and day 12 compared to the untreated control group. When the average 

lesion score from vaccinated groups was compared to those from control groups, significant differences 

were observed between both control groups and the group vaccinated with active supernatant at day 3 and 

day 12 (P<0.001). Also a significant difference was observed between the untreated positive control group 

and the group vaccinated with toxoid at day 3 and day 12 (P<0.05) (Table 1, Figure 2).  
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Figure 2. Lesion scores of individual broiler chickens challenged with C. perfringens in trial 2 are shown. 

The striped bars represent the average lesion score in each group. The standard error of the mean (SEM) is 

represented by the solid bars (GraphPad Prism Software, Inc, USA). A significant decrease was seen 

between both control groups (groups 1 and 2) and the group vaccinated with active supernatant (group 3) 

(P<0.001)(***). A significant difference was observed between the unvaccinated control group (group 1) 

and the group vaccinated with toxoid (group 4) (P<0.05)(*). A description of the vaccination schedule of 

groups 1-4 is shown in table 1.  

N = number of animals  

+ = individual lesion score 
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Trial 3. Trial 3 was performed to analyze whether a single dose vaccination at day of hatch could induce 

protection. In addition, multiple toxoid and crude supernatant vaccines containing different protein 

concentrations were compared. In this trial, repeated dose vaccination with active supernatant of C. 

perfringens strain 23, but not toxoid, protected against necrotic enteritis after challenge (P<0.05). No 

significant difference was seen between both positive control groups (untreated positive control and Quil 

A treated positive control) and the groups that received a one-dose vaccination at day 1 with either crude 

supernatant or toxoid, independent of the protein concentration in the vaccines (Table 1). In the group 

vaccinated with the highest concentration crude supernatant (210µg) 6 chickens died one (4), two (1) and 

three (1) days after vaccination. Histological examination of the vaccination place showed severe necrosis 

of the cutis and subcutis. When the average lesion scores from vaccinated groups were compared to those 

from the control groups, a significant difference was observed between the unvaccinated control group 

and the group vaccinated with active supernatant at day 3 and day 12 (P<0.05). No significant differences 

were observed between both control groups and the groups vaccinated at day 1 (Figure 3).  
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Figure 3. Lesion scores of individual broiler chickens challenged with C. perfringens in trial 3 are shown. 

The dotted bars represent the average lesion score in each group. The standard error of the mean (SEM) is 

represented by the solid bars (GraphPad Prism Software, Inc, USA). A significant decrease was detected 

between the unvaccinated control group to which Quil A was administered (group 2), and the group 

vaccinated with active supernatant at day 3 and day 12 (group 3) (P<0.05) (*). No significant differences 

were detected between the control groups and the groups vaccinated at day 1 with either crude supernatant 

or toxoid at different dosages (groups 5 to 12). The decrease of the number of animals with lesions in 

group 9 was not statistically significant different from the control groups. A description of the 

vaccination schedule of groups 1-12 is shown in table 1.                                                         

N = number of animals  

+ = individual lesion score 
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Discussion 

Vaccination of broiler chickens at day 1 using a vaccine that is safe and does not affect the performance of 

the animals would be of high value as a preventive tool for necrotic enteritis. Formaldehyde inactivation 

has been used to produce Clostridium vaccines ensuring safety for vaccinated humans or animals 

(Thaysen-Andersen et al., 2007; Jones et al., 2008). Although crude supernatant of C. perfringens can 

induce protection against necrotic enteritis, it contains potent toxins and thus can not be regarded as a 

vaccine that is safe for both the animals and the user. Indeed, we showed in our third trial that higher 

dosages induced mortality in the animals. While subcutaneous administration of crude supernatant at day 

3 and day 12 resulted in a significant decrease in the number of chickens with necrotic lesions, 

formaldehyde inactivation affected the efficacy and a toxoid was clearly less protective than the active 

supernatant. Formaldehyde is widely used in the production of inactivated vaccines. Although bacterial 

proteins treated with formaldehyde can be highly immunogenic it often occurs that only low levels of 

neutralizing antibodies are produced. For that reason the protection after vaccination with formaldehyde 

inactivated proteins can be low (Nencioni et al., 1991; Petre et al., 1996; Jones et al., 2008). This is 

believed to be due to the cross-linking capacity of formaldehyde, with major conformational modifications 

of the cross-linked proteins, resulting in loss of immunogenicity of epitopes (Metz et al., 2004; Thaysen-

Andersen et al., 2007; Jones et al., 2008). Our current findings are in agreement with this hypothesis. The 

importance of conformational epitopes in the protection against necrotic enteritis was already suggested 

by Kulkarni et al. (2007), who showed that alpha-toxoid fails to offer protection. 

Single vaccination at day of hatch, even with crude supernatant, is not able to protect against necrotic 

enteritis in the used model, in contrast to repeated vaccination at day 3 and 12 and single vaccination at 

day 3, yielding partial protection. Other reports show that multiple vaccination regimens can significantly 

reduce necrotic lesions in challenged animals (Cooper et al., 2009; Jang et al., 2012; Jiang et al., 2009; 

Kulkarni et al., 2007; Lanckriet et al., 2010; Saleh et al. 2011). The observation in trial 1 that single 

vaccination at day 3 with active supernatant protected partially against the development of lesions is an 
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interesting finding, but in practice administration later than day of hatch is logistically not feasible. It has 

been suggested already that immunization 1 day after hatching does not activate antibody production, 

most likely due to incomplete structural organization of the secondary lymphoid tissues in neonatal 

broilers (Mast & Goddeeris, 1999), what could explain the failure of vaccination at day of hatch. Whether 

the lack of protection of a toxoid vaccine and day-of-hatch vaccine regimes is also valid when using 

vaccine preparations derived from other C. perfringens strains is not clear and should be analyzed in 

future studies. Indeed, the strain used for toxoid and crude supernatant preparation was isolated from a 

healthy chicken, and strains isolated from necrotic lesions could have been more appropriate. However, 

the supernatant of the strain used in the current study was shown to be superior in a comparative study 

using subcutaneous vaccination with supernatant from 8 different strains at day 3 and 12 (Lanckriet et al., 

2010). For this reason the use of the vaccine preparations derived from this particular strain seems to be 

relevant and the data most likely can be extrapolated to the use of vaccine preparations derived from other 

strains.  

 

Since vaccination at day of hatch is not protective, there are 2 other options that are practically possible in 

the field. The first one is immunization of parent flocks. Kulkarni et al. (2007) suggested the importance 

of mucosal IgY, the major transferred maternal antibody, in the immunity to necrotic enteritis (Ulmer-

Franco et al., 2012). Although vaccination can yield maternal antibodies, there is a high chance that these 

antibodies have disappeared already at the time birds usually develop necrotic enteritis (3 to 4 weeks of 

age) (Lovland et al., 2004). Previous reports (Lovland et al., 2004; Crouch et al., 2010) described an 

increase in antibody response in breeder hens and partial passive protection in young chickens. Currently, 

there is one commercial toxoid vaccine for broiler breeder hens (Netvax®, Intervet/Schering-Plough 

Animal Health, Summit, New Jersey, USA) containing C. perfringens type A toxoid. Another option that 

can be envisaged, is the use of bacterial or viral vectors expressing recombinant proteins, provided that the 

strains can be given at day-of-hatch (or in ovo) and persist for a sufficient time to generate a protective 
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immune response. Orally administered live vaccine strains expressing C. perfringens antigens and 

colonizing the intestinal tract of the broilers have been described (Kulkarni et al., 2008, Zekarias et al., 

2008; Kulkarni et al., 2009). The obtained protection depends on the colonization level and persistence of 

the vaccine strains.  

 

In conclusion, the current study shows that subcutaneous administration of crude supernatant or toxoid 

derived from a specific C. perfringens strain, at day of hatch, is not effective in controlling necrotic 

enteritis. Administration of crude supernatant at day 3, or double vaccination with crude supernatant at 

day 3 and day 12 was able to reduce the number of animals having necrotic enteritis lesions. In addition, 

subcutaneous toxoid administration was less efficient in double vaccination regimens as compared to 

crude supernatant.  
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Abstract 

Necrotic enteritis is still an important gastro-intestinal disease that affects broiler chickens at an age of 2 to 

5 weeks. Preventive vaccination can be a valuable approach against the disease but the ideal combination 

of antigens that should be used is still under investigation. In our study we aimed to identify proteins from 

supernatant of C. perfringens strain 23 which showed an increased immunogenicity compared to 

supernatant from other C. perfringens strains by Western blotting. Three strong reacting antigens were 

identified as PFOR (pyruvate:ferredoxin oxidoreductase), Elongation factor G and NetB. C. perfringens 

strain 23 produces the NetB variant A168T and this can be the reason for the strong antigenic reaction of 

the strain 23-immunized chickens towards NetB. Since chickens immunized with virulent strain 56 (with 

the consensus NetB) showed not such a high immune response against NetB. Whether the mutation affects 

immunogenicity is not yet clear and should be investigated in further vaccination studies. 
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Introduction 

Necrotic enteritis in broiler chickens is an important poultry disease worldwide. The disease is caused by 

NetB toxin producing strains of Clostridium perfringens type A, a Gram-positive, anaerobic bacterium. 

The infection may present as an acute clinical disease, with high mortality, or in a subclinical form leading 

to reduced weight gain, caused by decreased digestion and malabsorption of feed (Kaldhusdal et al., 

2001). Subclinical necrotic enteritis is responsible for a high amount of economic losses as there are no 

symptoms and it often remains untreated (Dahiya et al., 2006). Therapeutic antibiotics are typically used 

to control necrotic enteritis. For a disease caused by a toxin-producing-bacterium vaccination may be an 

interesting option for prevention. Several vaccine studies were already performed with variable degrees of 

success, yielding partial protection in the used challenge models (Kulkarni et al., 2007; Cooper et al., 

2009; Jang et al., 2009; Lanckriet et al., 2010; Saleh et al., 2011; Jang et al., 2012). However, Lanckriet et 

al. (2010) performed a vaccination study which resulted in full protection against necrotic enteritis after 

challenge with virulent strains. In this study, vaccination was performed with supernatants of different 

strains and the supernatant of a particular strain, C. perfringens strain 23, was clearly shown to be superior 

in efficacy when parenteral administered, as compared to the supernatant of 7 other C. perfringens strains. 

It is known that strain 23 is less virulent than C. perfringens strains 56, 37 and 61 (Lanckriet et al., 2010) 

Strain 23 was isolated from a healthy broiler flock and its alpha toxin expression level is rather low 

compared to other strains (Gholamiandehkordi et al., 2006). However, strain 23 possesses the netB gene 

and its supernatant shows a cytotoxic effect towards LMH cells (Lanckriet et al., 2010). The aim of this 

study was to understand why supernatant of this strain was highly protective by identifying 

immunoreactive proteins in the supernatant of strain 23 and comparing this to other strains.  
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Materials and methods 

Clostridium strains, culture conditions and vaccine preparation. C. perfringens strains 7, 23, 43 and 

56 were used for preparing crude supernatant. Strain 7 is a netB negative toxin type A strain isolated from 

a healthy flock. Strain 23 is a netB positive toxin type A strain isolated from a healthy flock 

(Gholamiandehkordi et al., 2006; Lanckriet et al., 2010). Strain 43 is a netB negative toxin type A strain 

isolated from a flock with a necrotic enteritis outbreak. C. perfringens strain 56 is a netB positive toxin 

type A strain and was isolated from a necrotic enteritis outbreak and has been shown to be highly virulent 

in in vivo trials (Gholamiandehkordi et al., 2007; Timbermont et al., 2009; Lanckriet et al., 2010). Bacteria 

were grown overnight at 37°C in Brain Heart Infusion (BHI) broth (Oxoid, Basingstoke, UK) 

supplemented with 0.375% glucose in an anaerobic (84% N2, 8% CO2 and 8% H2) workstation (Ruskinn 

Technology, South Wales, UK). Supernatant was concentrated using Vivaspin containing a 5000 

molecular weight cut-off polyethersulphone membrane (Sartorius Stedim Biotech GmbH, Goettingen, 

Germany). The protein concentration from the supernatant was determined using a commercially available 

BCA protein Assay Reagent (Thermo Scientific Pierce, Rockford, Illinois, USA). The concentrated 

supernatant was diluted in phosphate-buffered saline (PBS) to the final protein concentration. 

C. perfringens immune sera. Five groups of 3 one-day-old Ross 308 broiler chickens were fed a 

wheat/rye-based (43%/7.5%) diet, with soybean meal (24.6% and 25.3% soybean meal in the starter and 

grower diet respectively) as a protein source (Gholamiandehkordi et al., 2006). Each group of 3 chickens 

was immunized with crude supernatant of a C. perfringens strain (respectively strain 7, 23, 43 and 56). 

One group was selected as a negative control group and only vaccinated with the adjuvant Quil A. On 

days 10 and 20 the chickens were immunized with crude supernatant containing 70µg total protein. On 

day 30 the chickens were immunized with crude supernatant containing 140µg total protein. Quil A (50 

μg; Brenntag Biosector, Frederikssund, Denmark) was used as an adjuvant. The mixture was diluted in 

PBS to a total volume of 200 µl, mixed well by pipetting up and down, and filter-sterilized (0.2 µm pore 

size). Birds were vaccinated subcutaneously in the neck with a 200 µl dose.  Blood was collected at days 
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41 and 48 and sera of each group were pooled. This pooled serum was used in the Western Blot 

experiment.  

Characterization of antigenic C. perfringens proteins by Western blotting. Supernatant from strain 56 

was prepared as described above and heated for 5 min at 95°C. The proteins were separated by one-

dimensional SDS-PAGE in an 8% and 15% acrylamide gel. PageRuler Plus Prestained Protein Ladder, 10 

to 250 kDa (Thermo Fisher Scientific, Rockford, USA) was used as protein marker. Proteins were electro 

transferred from unstained acrylamide gels onto 0,45µm Polyvinylidene difluoride (PVDF) membranes 

(Thermo Fisher Scientific, Rockford, USA) following the manufacturer’s instructions (0.8 Ampère during 

60 minutes). After blotting, the membranes were blocked with 100% methanol and dried for 15 minutes at 

room temperature (RT). The membranes were incubated with the primary antibody (C. perfringens 

chicken immune serum derived from chickens immunized with supernatant of respectively C. perfringens 

strain 7, 23, 43 and 56) diluted (1/200) in 5% skimmed milk in phosphate buffered saline (PBS) during 1h 

at RT and overnight (ON) at 4°C. After the first incubation the membranes were washed (3x5min) in PBS 

with 0.1% Tween-20, rinsed (1x5min) in PBS and incubated for 1h with purified rabbit anti-chicken 

immunoglobulin G (IgG), horseradish-peroxidase (HRP)-conjugated (Sigma Aldrich, St-Louis, USA), 

diluted (1/10000) in 5% skimmed milk in PBS. After the wash steps the specific immunoreactive protein 

bands were visualized using CN/DAB substrate kit (Thermo Fisher Scientific, Rockford, USA). 

In-gel protein digestion and identification of C. perfringens proteins by mass spectrometry. 

Simultaneously with Western blotting, proteins in gels were visualized with Coomassie stain reagent, 

Brilliant Blue G-Colloidal concentrate (Sigma Aldrich, Missouri, USA). Protein bands, reflecting proteins 

with identical molecular weight as the ones of interest as detected  by Western blotting, were cut from the 

coomassie stained gels and subjected to in-gel protein digestion with trypsin (Devreese et al., 2002) 

followed by mass spectrometric characterization. After mixing 1 µl of the digestion mixture with 10 µl a-

cyano siniapinic acid (5 mg/ml), one microliter was spotted onto the target plate and analyzed with the 

4800 plus MALDI TOF/TOF Analyzer (Applied Biosystems, Foster City, CA). A NCBI BLAST-search to 
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the corresponding protein sequence was done with the obtained amino acid sequences 

(http://blast.ncbi.nlm.nih.gov/Blast/). 

Sequencing the netB gene of C. perfringens strain 23 and 56. For sequencing of the netB gene, the PCR 

and sequencing primers were JRP3943 (5’TTTTCTTTTAGACATGTCCATAGGC3’), which binds 268 

bp upstream of the netB open reading frame (ORF), and JRP3944 (5’CCATC 

CCTTATTTCATCAGCATTTA3’), which binds 348 bp downstream of the netB ORF. The primers NetB 

sense (5’TGCTGTTCCATTCCCTTGAG3’) and NetB antisense (5’CATGTCCATAGGCGTACCATT3’) 

were used to sequence the amplified PCR products. PCR products were purified using the MSB spin 

PCRapace (B-Bridge International, CA, USA) before sequencing on an Applied Biosystems sequencer. 

 

Results 

Identification of immunoreactive C. perfringens proteins. Multiple immunoreactive proteins were 

identified by Western blot analysis in supernatant of C. perfringens strain 23 using sera derived from 

vaccinated chickens. Three proteins were chosen based on detection by sera from animals vaccinated with 

strain 23 supernatant, and inferior detection with supernatant of other strains. PVDF membranes incubated 

with serum derived from chickens immunized with supernatant of C. perfringens strain 43 did not react at 

all. PVDF membranes incubated with serum derived from chickens immunized with supernatant of C. 

perfringens strain 7 reacted very poorly. The protein bands on Western blots were matched with the 

protein bands that could be seen in the parallel Coomassie blue-stained gel. Several of the Coomassie 

blue-stained bands were excised from the gel for analysis. Three of these bands were identified by 

MALDI TOF/TOF Analysis (Fig. 1). Band 1 was identified as pyruvate:ferredoxin oxidoreductase 

(PFOR) (theoretical molecular mass, 128 kDa) with 62% sequence coverage. Band 2 was identified, based 

on peptide fragmentation spectra, as elongation factor G (theoretical molecular mass, 76 kDa) with protein 
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score 84. Band 3 was identified as NetB (theoretical molecular mass, 33 kDa) with 33% sequence 

coverage.  

 

 

Sequencing the netB gene of C. perfringens strain 23 and 56. A PCR product of the complete netB gene 

was amplified from C. perfringens strain 56 and C. perfringens strain 23 and sequenced to determine the 

deduced amino acid sequence of the encoded 322 amino acid full-length NetB proteins. The netB 

sequence of C. perfringens strain 56 equals the EHE-NE18 consensus sequence (EU143239). A single 

nucleotide polymorphism at position 769 altering Guanine to Adenine (G769A) in strain 23 resulted in a 

NetB amino acid sequence change, altering the alanine residue at position 168 to threonine (A168T). 

GenBank accession numbers for netB sequences are FJ189481-FJ189503.  
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Figure 2. Western Blots of C. perfringens proteins. Supernatant of C. perfringens strain 56 was loaded 

on an 8% (A) and a 15% (B) acrylamide gel in quadruplicate and proteins were transferred onto PVDF 

membranes. Afterwards, the membranes were incubated with chicken serum, derived after immunization 

of chickens with supernatant of respectively C. perfringens strain 7, 23, 43 and 56. Band 1, 2 and 3 

indicate the PFOR, elongation factor G and NetB proteins, respectively. The positions of pre-stained 

protein molecular mass markers are indicated in kilo Daltons (kDa). 
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Discussion 

 

Immunogenicity of proteins derived from C. perfringens supernatants is a key issue in the protection 

conferred by supernatant vaccines. It is logical that ideal C. perfringens vaccines for broilers should 

generate immune responses directed against secreted components of the bacteria, and possibly also to cell 

wall components. The most evident secreted components against which antibody responses should be 

targeted at are toxins and enzymes.  Remarkably, in the current study, we could not induce antibodies 

directed against supernatant proteins of strains 7 and 43. In a previous study by Lanckriet et al. (2010), it 

was shown that immunization with supernatant derived from these strains did not induce any kind of 

protection against challenge with a pathogenic strain.  Supernatant derived from strains 56 and 23 did 

induce partial and full protection, respectively (Lanckriet et al., 2010), and in the current study strong 

antibody responses against supernatant proteins could be detected using Western blot. There is no clear 

explanation why differences between antibody responses would exist when supernatants from different 

strains are used for parenteral vaccination.  Strains 7 and 43 are netB negative, whereas strains 23 and 56 

are netB positive. Maybe the other immunoreactive proteins are also not expressed by strain 7 and 43. This 

should be investigated.  

The identification of immunoreactive proteins of C. perfringens was already performed by different 

research groups. We aimed in our study to identify proteins form supernatant of strain 23 with increased 

immunogenicity compared to supernatant from other strains, and selected 3 possible candidates. PFOR 

and Elongation factor G were already identified as antigenic proteins of C. perfringens (Kulkarni et al., 

2006; Lee et al., 2011). Together with the two major virulence factors of C. perfringens, NetB and alpha 

toxin, these proteins enhance the protective immunity of chickens against necrotic enteritis, when used as 

vaccine antigens (Jang et al., 2012; Kulkarni et al., 2007 and 2008). The reason for the strong antigenic 

reaction of the strain 23-immunized chickens towards NetB can probably be explained by the mutation of 

the netB gene in strain 23. Keyburn et al. (2010) showed that the netB gene is highly conserved in C. 
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perfringens strains that cause necrotic enteritis. In natural occurring strains there are only two variants 

detected, the consensus wild NetB and the natural occurring A168T variant. Only in a minority of the 

strains causing necrotic enteritis, the NetB A168T variant could be detected. This mutation however does 

not lead to decreased cytotoxicity.  The A168T substitution occurs in a region that is expected to be within 

a membrane spanning region (Menestrina et al., 2001). The tertiary structure of the NetB protein was 

expected to be not significantly affected by the substitution and it was shown that the single amino acid 

change at residue 168 of NetB did not affected its cytotoxic activity (Keyburn et al., 2010; Lanckriet et 

al., 2010). Whether the mutation affects immunogenicity is not yet clear. Several vaccination studies with 

the NetB protein were already performed. A substitution NetB variant (S254L) that is unable to 

oligomerize and to hemolyse chicken red blood cells was constructed. Vaccination of breeder hens and 

broilers with formalin treated NetB toxoid and/or NetB variant S254L yielded partial protection (Keyburn 

et al., 2013 a and b). The mutant W262A, the mutation of tryptophan to alanine at position 262, resulted in 

a significant reduction in cytotoxicity towards LMH cells and hemolytic activity on chicken red blood 

cells. Vaccination with this W262A variant was also partially protective (Fernandes da Costa et al., 2013). 

The NetB A168T variant does not show decreased cytotoxicity and thus this protein is not a good vaccine 

candidate. 

In conclusion, the supernatant of C. perfringens strains elicits antibody responses when parenterally 

administered to broilers, correlating with protection seen in vaccination-challenge infections. The actual 

reason why specific supernatants are superior in protecting against disease likely is the cause of antibody 

responses to a mix of supernatant proteins, and choosing the optimal supernatant vaccine or combination 

of proteins can be important. 
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3.3. Variable protection against experimental broiler necrotic 

enteritis after immunization with the C-terminal fragment of 

Clostridium perfringens alpha-toxin and a non-toxic NetB variant 
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Abstract 

Necrotic enteritis toxin B-like (NetB) is a pore-forming toxin produced by Clostridium perfringens and 

has been shown to play a key role in avian necrotic enteritis (NE), a disease causing significant costs to 

the poultry production industry worldwide. The aim of this work was to determine whether immunization 

with a non-toxic variant of NetB (NetB W262A) and the C-terminal fragment of C. perfringens alpha-

toxin (CPA247-370) would provide protection against experimental NE. Immunized animals with either 

antigen or a combination of antigens developed serum antibody levels against NetB and alpha toxin. 

When CPA247-370 and NetB W262A were used in combination as immunogens, an increased protection 

was observed after oral challenge by individual dosing, but not after in-feed challenge.  
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Introduction 

 

Necrotic enteritis (NE) is a severe gastro-intestinal disease causing significant costs to the poultry industry 

worldwide (Parish, 1961; Keyburn et al., 2008; Cooper and Songer, 2009). Disease can occur either as an 

acute clinical or as a mild subclinical form. Acute NE typically leads to high mortality rates during the last 

weeks of the broiler rearing period. Disease can arise without any previous signs and cause mortality in a 

couple of hours (Helmboldt and Bryant, 1971; Wijewanta and Senevirtna, 1971). However, most of the 

NE cases are associated with relatively mild clinical signs (Kaldhusdal and Hofshagen, 1992; Brennan et 

al., 2001a; Brennan et al., 2001b). This subclinical form of NE is chronic and induces intestinal damage. 

Diseased animals show reduced performance parameters such as less feed intake, decreased digestion and 

absorption of feedstuffs and consequently reduced weight gain over time (Elwinger et al., 1992; 

Kaldhusdal et al., 2001). The mild subclinical form is believed to be the most prevalent form of NE and 

mostly responsible for the associated economic losses as it may go undetected and remain untreated 

(Dahiya et al., 2006). 

Clostridium perfringens, a commensal of the intestinal microbiota, has been shown to be the causative 

agent of NE. A number of predisposing factors have been identified which influence the gut environment 

of the host organism and favour the growth of NE-inducing C. perfringens strains. The nature of the 

feedstuff is the key predisposing factor for NE. Poor digestible diets, such as non-starch polysaccharides 

and protein-rich feed, lead to ideal growth conditions for C. perfringens in the gut (Branton et al., 1987; 

Riddell and Kong, 1992; Palliyeguru et al., 2010). Sudden diet changes, high-density animal housing 

conditions or extreme environmental temperatures are other important factors that predispose to NE 

(McDevitt et al., 2006; Burkholder et al., 2008). Mucosal damage of the gut, caused by organisms such as 

Eimeria species, has often been reported before or during outbreaks of NE in the field (Helmboldt and 

Bryant, 1971; Broussard et al., 1986; Williams, 2005). Co-infection of C. perfringens with Eimeria 

species has been shown to synergistically induce NE (Alsheikhly and Alsaieg, 1980; Williams et al., 
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2003; Gholamiandehkordi et al., 2007; Park et al., 2008). The molecular makeup of C. perfringens strains 

present in the gut is another essential factor (Shojadoost et al., 2012). Most of C. perfringens isolates from 

cases of NE possess the netB gene (Chalmers et al., 2008; Cooper and Songer, 2009; Martin and Smyth, 

2009), encoding the necrotic enteritis toxin B (NetB), a member of the Staphylococcus aureus α-

hemolysin-like β-pore-forming toxin family (Keyburn et al., 2008; Savva et al., 2013). This toxin has a 

proven role in NE development (Keyburn et al., 2008). 

Vaccine trials against NE initially focused on the use of C. perfringens alpha-toxin as an antigen. 

Immunization studies with alpha toxin have been shown to partially protect chickens from developing NE 

(Kulkarni et al., 2007; Cooper et al., 2009; Kulkarni et al., 2010). It has been shown that animals with 

high alpha toxin titres showed lower mortality rates during the production period than those with low titres 

(Heier et al., 2001). Immunization with either C. perfringens crude toxoids or culture supernatants can 

also provide significant protection against experimental NE (Lanckriet et al., 2010; Saleh et al., 2011). In 

addition, a number of immunogenic proteins from C. perfringens have been evaluated as sub-unit vaccines 

providing partial protection against experimental NE. Although a variety of antigens have been tested as 

vaccine candidates against NE so far, complete protection against disease has not been reported yet. In a 

previous study, we showed that a non-toxic variant of NetB (NetB W262A) was able to induce partial 

protection against experimental NE in poultry (Fernandes da Costa et al., 2013). In this study we 

investigated whether a combination of NetB W262A and a fragment of the C-terminal domain of alpha 

toxin (CPA247-370) (Williamson and Titball, 1993) could provide improved protection against disease as 

compared to vaccination with the individual antigens. Protection was evaluated using an in-feed and oral 

gavage administration infection model. 
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Material and methods 

 

Expression and purification of NetB W262A and CPA247-370. Expression and purification of NetB 

W262A or CPA247-370 was carried out as described previously (Titball et al., 1993; Williamson and Titball, 

1993; Fernandes da Costa et al., 2013; Savva et al., 2013). In short, recombinant Escherichia coli (E. coli) 

expressing the toxin variants were grown in terrific broth (TB) supplemented with ampicillin (100 μg/ml) 

at 37°C and shaken at 300 rpm. For NetB W262A expression, cultures were induced at an optical density 

(OD595nm) of 0.5 for 6 h by adding arabinose at a final concentration of 0.02% (w/v). Expression of 

CPA247-370 was induced at an OD595nm of 0.5 for 6 h by the addition of IPTG (1mM final concentration). In 

both cases, bacterial cells were harvested by centrifugation, lysed enzymatically using BugBuster 

(Invitrogen, Paisley, UK) and NetB or CPA247-370 were purified with Ni-NTA or GST GraviTrap 

chromatography columns (GE Healthcare Life Sciences, Little Chalfont, UK), respectively, according to 

the manufacturer’s instructions. Buffer was exchanged by size-exclusion chromatography using PD-10 

desalting columns (GE Healthcare) equilibrated with Tris-buffered saline (TBS; 20 mM Tris pH 7.5, 150 

mM NaCl) and protein concentrations were measured with a UV-Vis spectrophotometer (Thermo 

Scientific, Cramlington, UK).  

 

Animals and housing conditions. Ross 308 broiler chickens were obtained as one-day-old chickens 

(Vervaeke-Belavi Hatchery, Tielt, Belgium) and the parent flock had not been vaccinated with the 

commercial Netvax
TM

 or any other C. perfringens vaccine. All animals were housed in the same room. 

The birds were reared in pens at a density of 26-30 animals per 1.5 m
2
 on wood shavings. All pens were 

separated by solid walls to prevent contact between birds from different treatment groups. Before the 

trials, housing rooms were decontaminated with Metatectyl HQ (Clim’oMedic
®
, Metatecta, Belgium) and 

a commercial anticoccidial disinfectant (OOCIDE, DuPont Animal Health Solutions, Wilmington, USA). 

The chickens received ad libitum drinking water and feed. Animal experiments were carried out according 
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to the recommendations and following approval of the Ethical Committee of the Faculty of Veterinary 

Medicine, Ghent University, Belgium. 

 

Strains and culture conditions. C. perfringens strain 56, a netB positive toxin type A strain, was grown 

during 18 h at 37 °C in Brain Heart Infusion (BHI) broth (Oxoid, Basingstoke, United Kingdom) with 

0.375% glucose in an anaerobic (84% N2, 8% CO2 and 8% H2) cabinet (Ruskinn Technology, Bridgend, 

UK) and used as such. 

 

Vaccine preparation and delivery. On days 3, 9 and 15, chickens were immunized with 30 μg of NetB 

W262A, CPA247-370 or a combination of both. In each case, Quil-A (50 μg; Brenntag Biosector, 

Frederikssund, Denmark) was used as an adjuvant. The mixture was diluted in PBS to a total volume of 

200 µl per bird, mixed by vortexing and filter-sterilised (0.2 µm pore size). Birds were vaccinated 

subcutaneously in the neck with a 200 µl dose. Controls consisted of an untreated group and a group 

receiving only the Quil-A adjuvant diluted in PBS. 

 

In vivo necrotic enteritis model. For each trial, five groups of 26 to 30 (indicated in Table 1) one-day-old 

Ross 308 broiler chickens were fed a wheat/rye-based (43%/7.5%) diet, with soybean meal as protein 

source. The feed composition was as described elsewhere (Gholamiandehkordi et al., 2007). Briefly, the 

diet contained high levels of (animal) proteins and non-starch polysaccharides which predispose to the 

development of necrotic enteritis.  Nobilis Gumboro D 78 vaccine (Schering-Plough Animal Health, 

Brussels, Belgium) was given in the drinking water on day 16. From day 17 onwards, soy bean meal was 

replaced by fishmeal (30%) as a protein source.  
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Table 1: Description of experimental groups used in this study  

A
 Values with uppercase superscripts differ significantly (P<0.01 for trial 1)  

B
 Values with uppercase superscripts differ significantly (P<0.05 for trial 2)  

 

Trial 1 was carried out to compare the efficacy of vaccination of individual antigens with a combination of 

antigens using an infection model causing mild disease. The NE model of the first trial was based on a 

subclinical in vivo model described previously (Mot et al., 2012). The birds were challenged orally, using 

a plastic tube inserted in the crop, on days 17, 18, 19 and 20 with a single dose of approximately 4 x 10
8
 

cfu of C. perfringens strain 56. On day 18, all animals were orally inoculated with a 10–fold dose of 

Paracox-5 (Schering-Plough Animal Health). On days 21, 22, and 23, one-third of the birds in each group 

were euthanized and necropsied. 

Trial 2 was carried out to clarify whether vaccination yielded the same protection when a more severe 

challenge model was used. In the second trial an in feed-challenge was performed based on the model by 

Keyburn et al. (2006). High level protein feed (30% fishmeal) and BHI broth culture were manually 

mixed in a ratio of 3:4 (v/w). The mixture was then placed into feed trays. Birds were fed the culture/feed 

mixture twice a day, on days 19, 20, 21 and 22. The feed trays were cleaned and the remaining feed 

          

Trial Group 
Animals 
/group 

Vaccine 
Vaccination 

dose 
Vaccination 

day(s) 

Serum 

collecting 
day 

Challenge Number of 

animals with 
lesions/Total 

Number 

Percentage of 

animals with 
necrotic enteritis 

          

          

1 1 27 - - - 16 Orally on 

days 17, 18, 
19 and 20 

10/27 37 
 2 28 Quil A + PBS - 3, 9, 15 16 9/28 32 
 3 28 NetB W262A 30µg 3, 9, 15 16 5/28 18 
 4 26 CPA (247-

370) 30µg 3, 9, 15 

16 3/26 12A 

 5 28 NetB W262A 

+ CPA (247-

370) 

30µg + 

30µg 3, 9, 15 

 

16 

0/28 0A 

          

          

2 1 26 - - - 17 Culture/feed 
mixture 

(3:4) twice 

a day on 
days 19, 20, 

21, 22 

11/26 42 
 2 27 Quil A + PBS - 3, 9, 15 17 14/27 52 
 3 29 NetB W262A 30µg 3, 9, 15 17 8/29 27 
 4 

30 
CPA (247-

370) 
30µg 3, 9, 15 

17 6/30 20B 

 5 

30 

NetB W262A 

+ CPA (247-
370) 

30µg + 

30µg 
3, 9, 15 

17 9/30 30 

          

          



Chapter 3.3 

92 
 

discarded prior to each subsequent feeding. On day 20, all animals were orally inoculated with a 10 x dose 

of Paracox-5 (Schering-Plough Animal Health). The birds were euthanized and necropsied on day 23. 

 

Measurement of antibodies to NetB and alpha toxin using ELISA. Antibody responses to NetB 

W262A and CPA247-370 immunization were determined using an enzyme-linked immunosorbent assay 

(ELISA). Serum from 10 chickens was collected individually in all groups, on day 16 (first trial) or day 17 

(second trial), and pooled. For NetB, ELISA was performed as described previously (Fernandes da Costa 

et al., 2013). First, 96-well microtitre plates (Nunc-Immuno Plates, MaxiSorp, Thermo Scientific, 

Cramlington, UK) were coated with 0.5 µg/well of recombinant wild-type NetB with N-terminal His tag 

and incubated overnight at 4°C. Plates were then washed three times with TBS-T (TBS, Tween 0.5% v/v) 

and blocked with TBS-3% skimmed milk for 1 h at 37°C. Following incubation, plates were rinsed three 

times with TBS-T and incubated with 100 µl/well of pooled sera (1:20) in TBS-1% skimmed milk for 1 h 

at 37°C. Wells were then rinsed three times with TBS-T and incubated with a HRP-conjugated goat anti-

chicken IgY (H+L) secondary antibody (Abcam, Cambridge, UK) at a dilution of 1:10,000 in TBS-1% 

skimmed milk. For detection, 100 μl of tetramethylbenzidine (TMB) substrate solution was added to each 

well and plates were incubated for 30 min at room temperature. The reaction was stopped by the addition 

of 100 μl of 3 M H2SO4 and absorbance was measured at 450 nm using a Model 680 Microplate Reader 

(Bio-Rad Laboratories Ltd., Hemel Hempstead, UK). For alpha toxin detection, the Bio-X CPA ELISA kit 

(Bio-X Diagnostics, Jemelle, Belgium) was used according to the manufacturer’s instructions. In brief, 

pooled sera samples (1:2) were added to a recombinant alpha toxin sensitised 96-well microtitre plate and 

incubated for 2 h at 37°C. Wells were then rinsed three times with washing buffer, HRP-conjugated anti-

CPA antibodies added and plates incubated for 30 minutes at 37°C. Antibody detection was performed 

using TMB as described above. Each ELISA was performed in triplicate. 
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Assessment of protection. NE severity was assessed by scoring lesions within the small intestine of each 

animal (duodenum to ileum) as described by Keyburn et al. (2006) as follows: 0 = no gross lesions; 1 = 

congested intestinal mucosa; 2 = focal necrosis or ulceration (1-5 foci); 3 = focal necrosis or ulceration (6-

15 foci); 4 = focal necrosis or ulceration (≥16 foci); 5 = patches of necrosis 2-3 cm long; 6 = diffuse 

necrosis typical of field cases. Animals showing lesion scores of 2 or higher were classified as NE 

positive. 

 

Statistical analyses. To compare the mean values of antibody levels for the ELISA, 1-way ANOVA 

analysis was carried out followed by Dunnett’s multiple comparisons test using GraphPad Prism 5.01 

software (GraphPad Software, La Jolla, USA). For the in vivo NE model, differences between groups in 

the occurrence of NE-positive animals were evaluated by binary logistic regression analysis with the SPSS 

Statistics software 22.0 (SPSS Inc., Chicago, USA). In both analyses, a p-value of less than 0.05 was 

considered as significant. 

 

 

Results 

 

Immune response to NetB W262A and CPA247-370. An ELISA was used to measure serum antibody 

responses to NetB or alpha toxin in the immunized birds. Blood samples were taken on day 16 or 17, one 

day before the first C. perfringens challenge. In the first trial chickens immunized with NetB W262A, 

CPA247-370 or a combination of both increased antibody responses to the immunizing antigen relative to the 

Quil-A immunized control group (Figure 1A). In particular, a statistically significant increase (p<0.001) 

was detected for NetB antibody levels in the NetB W262A immunized group and when a combination of 

NetB W262A and CPA247-370 was used. The second trial confirmed these results (Figure 1B). A significant 
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increase (p<0.05) was detected for NetB antibody levels in the NetB W262A immunized group and when 

the combination NetB W262A and CPA247-370 was used. A significant increase was detected for alpha 

toxin antibody levels in the CPA247-370 immunized group (p<0.001) and when the combination NetB 

W262A and CPA247-370 was used (p<0.05).  
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Figure 1: Antibody responses to NetB and alpha toxin using ELISA. Chickens were immunized with 

NetB W262A, CPA247-370 or a combination of both, on days 3, 9 and 15. Sera were taken on day 16 prior to 

C. perfringens challenge. Each bar represents mean ± SEM. Asterisks indicate a statistically significant 

difference relative to the Quil-A immunized control (*: p<0.05, **: p<0.01 and ***: p<0.001). (A). First 

trial (B) Second trial 

 

Protection against experimental NE after immunization with genetic toxoids.  

Trial 1. The chickens were challenged orally once a day at days 17, 18, 19 and 20. Immunization with 

NetB W262A, CPA247-370 or a combination of both reduced lesion scores and the occurrence of NE-

positive animals relative to the control groups. While mean lesion scores were 0.74 and 0.75 in the control 

groups of untreated chickens  and those dosed with adjuvant only, respectively, animals immunized with 

either NetB W262A or CPA247-370 showed reduced mean lesion scores of 0.39 and 0.23, respectively 

(Figure 2A). No lesions were observed after immunization with a combination of NetB W262A and 

CPA247-370. In the untreated chickens or chickens dosed with adjuvant only, 37% and 32% were NE-
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positive, respectively, whereas only 18% of the animals immunized with NetB W262A and 12% of the 

animals immunized with CPA247-370 were NE-positive. This was a significant decrease (Figure 2B). 

Animals immunized with a combination of NetB W262A and CPA247-370 showed no signs of NE. 
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Figure 2: Data from the in vivo NE model of the first trial. Chickens were challenged orally once a day at 

days 17, 18, 19 and 20. (A) Lesion scores of individual chickens. According to severity, lesions in the 

small intestine were scored from 0 (no gross lesions) to 6 (diffuse necrosis). The striped bars represent the 

average lesion score in each group. The standard error of the mean (SEM) is represented by the solid bars. 

Individual chickens are marked as (+). n = number of animals. (B) Percentage NE-positive chickens. 

Animals with lesion scores of 2 or higher were classified as NE-positive. Black bars represent SEM. 

Groups not sharing the indicated letters are significantly different (p<0.01). 

 

Trial 2. Chickens were challenged in-feed at days 19, 20, 21 and 22. Again, immunization with NetB 

W262A, CPA247-370 or a combination of both reduced lesion scores and the occurrence of NE-positive 

animals relative to the control groups. Mean lesion scores were 1.23 and 1.70 in the control groups of 

untreated chickens and those dosed with adjuvant only, respectively. Chickens immunized with NetB 

W262A showed a mean lesion score of 0.79. The group immunized with CPA247-370 showed a mean lesion 

score of 0.56. After immunization with the combination of NetB W262A and CPA247-370 a mean lesion 

score of 0.93 was observed (Figure 3A). In the untreated chickens or chickens dosed with adjuvant only, 

42% and 52% were NE-positive, respectively, whereas only 27% of the animals immunized with NetB 
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W262A and 20% of the animals immunized with CPA247-370 were NE-positive (Figure 3B). In the group 

immunized with the combination of NetB W262A and CPA247-370 30% of the chickens were NE-positive. 
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Figure 3: In vivo NE model of the second trial. Chickens were challenged in-feed at days 19, 20, 21 and 

22. (A) Lesion scores of individual chickens. According to severity, lesions in the small intestine were 

scored from 0 (no gross lesions) to 6 (diffuse necrosis). The striped bars represent the average lesion score 

in each group. The standard error of the mean (SEM) is represented by the solid bars. Individual chickens 

are marked as (+). n = number of animals. (B) Percentage NE-positive chickens. Animals with lesion 

scores of 2 or higher were classified as NE-positive. Black bars represent SEM. Groups not sharing the 

indicated letters are significantly different (p<0.05). 

 

Discussion 

 

In recent years, a number of studies have been carried out on the development of a potential 

vaccine against NE. Significant protection has been shown by immunization with crude or 

inactivated C. perfringens supernatant (Lanckriet et al., 2010). However, the antigens responsible 
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for the induction of protective immunity have not been identified. A range of recombinant 

proteins from C. perfringens has been evaluated as vaccines, including glyceraldehyde-3-

phosphate dehydrogenase, pyruvate-ferredoxin oxidoreductase, fructose-1,6-biphosphate-aldolase 

and a hypothetical protein (Kulkarni et al., 2007). Immunization with any of these proteins 

provided partial protection against experimental NE. Oral immunization with an attenuated 

Salmonella enterica serovar Typhimurium vaccine vector expressing fructose-1,6-biphosphate-

aldolase, the carboxy-terminal domain of alpha toxin or a hypothetical protein induced protective 

responses against NE in chickens (Kulkarni et al., 2008; Zekarias et al., 2008). Partial protection 

against NE has also been reported after immunization with C. perfringens large cytotoxin TpeL, 

endo-beta-N-acetylglucosaminidase or phosphoglyceromutase (Jiang et al., 2009). A more recent 

study in which alpha toxin, NetB, pyruvate-ferredoxin oxidoreductase and elongation factor-Tu 

were compared as protective antigens concluded that NetB and pyruvate-ferredoxin 

oxidoreductase given with ISA71 adjuvant provided the best protective immunity (Jang et al., 

2012). In an attempt to improve the level of protection afforded by these vaccine antigens, some 

of these have been expressed in attenuated mutants of Salmonella enterica (Zekarias et al., 2008; 

Kulkarni et al., 2008; Kulkarni et al., 2010). Whilst these recombinant Salmonella are well suited 

for oral delivery, these vaccines also failed to confer complete protection against disease. 

In a previous study, we have shown that immunization of poultry with a formaldehyde NetB 

toxoid or NetB W262A resulted in the induction of antibody responses against NetB and 

provided partial protection against experimental NE (Fernandes da Costa et al., 2013). The 

current study was conducted to test if a combination of NetB W262A with CPA247-370, which 

individually have been shown to provide partial protection against disease, provided enhanced 

protection relative to single protein immunization. Immunization led in both trials to increased 

antibody responses to NetB and alpha toxin and to protection against experimental NE. However, 
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the enhanced protection by immunization with a combination of NetB W262A and CPA247-370 

depended on the severity of challenge in the in vivo trials. In the first trial, in which an oral 

challenge was performed resulting in mild subclinical disease, the protection in the group 

vaccinated with the combination of NetB W262A and CPA247-370 was complete. In the second 

trial, in which a more severe in-feed model was used, the protection was partial.  

The importance of the challenge method used in an in vivo NE-model was already mentioned by 

Shojadoost et al. (2012). The severity of the disease, and also the protection against the disease, 

depends strongly on the challenge method used.  

Our data show that vaccination with the combination of both antigens enhances the protection 

against a mild challenge but is not sufficient enough against a severe challenge. Also, the 

vaccination scheme used would not be practical in the field since the vaccine was parenteral 

administered three times. An alternative route may lie in breeder hen vaccination, but the 

antibody decline in the progeny may decrease efficacy (Keyburn et al., 2013). Expression of 

NetB W262A and CPA247-370 in a bacterial vector could allow this vaccine to be given by an oral 

route, such as in drinking water or feed. Suitable vectors would include attenuated mutants of 

bacteria, such as attenuated strains of S. enterica. Alternatively, it may be possible to express 

NetB W262A and CPA247-370 in a bacterium that is normally a member of the poultry gut 

microbiota, such as Bacillus species. The use of a live bacterial vector for expressing antigens, 

however, would mean the vaccines would be classified as genetically modified organisms 

(GMO). In contrast to other vaccines they require special attention concerning their impact on the 

environment. The regulatory restrictions of GMO products are significantly larger in many 

countries than those for the release of conventional live vaccines (Frey, 2007). 

In conclusion, the present study shows the potential of CPA247-370 and NetB W262A to be used as 

a combination vaccine to provide protection against mild NE. Further studies are required to 
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determine a suitable delivery route for practical immunization in the poultry industry, and to 

enhance protection. 
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General discussion 

Necrotic enteritis is one of the gastrointestinal diseases in poultry that have become important during the 

last decade. The acute clinical form causes sudden death in the broiler flock with an increased mortality 

rate up to 5% (Ficken & Wages, 1997; Kaldhusdal, et al., 2001). The sublicinal form of necrotic enteritis 

is economically the most important one because broilers are incredibly efficient in converting food into 

body mass. It causes reduced weight gain and an increased feed conversion ratio (Kaldhusdal, et al., 

2001). The use of AGP’s in broiler feed protected against the disease in the past. Antibiotics such as 

amoxicillin and tylosin are still used to prevent and controle necrotic enteritis but this should be 

considered as a temporary solution while other preventive strategies are being developed. 

Since the occurrence of the disease depends on predisposing factors an efficient poultry farm management 

can help to reduce the occurrence of the disease. Diet-related strategies and nutriceutical alternatives (pro- 

and prebiotics, herbs, organic acids and essential oils) have become important in the poultry industry 

(Lensing et al., 2010a; Timbermont et al., 2010; Jerzsele et al., 2012), and should be applied in 

combination with good biosecurity measures. Until now, although vaccines exist to control C. perfringens 

related disease in other animal species (e.g. sheep), no good vaccine against necrotic enteritis in birds is 

used in practice.     

4.1. Potential vaccine candidates 

As already suggested in the introduction, multiple proteins, with derivates from alpha toxin and NetB 

toxin as the important ones, have potential as vaccine candidates. There is still need to investigate the 

value of other immunogenic proteins and develop perfect mixture of the proteins. In this thesis we aimed 

to identify proteins from supernatant of strain 23 with increased immunogenicity compared to supernatant 

from other strains (Chapter 3.2). PFOR and Elongation factor G were already identified as antigenic 

proteins of C. perfringens (Kulkarni et al., 2006; Lee et al., 2012). Together with the two major virulence 

factors of C. perfringens, NetB and alpha toxin, these proteins induce protective immunity of chickens 
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against necrotic enteritis, when used as vaccine antigens (Jang et al., 2012; Kulkarni et al., 2007 and 

2008).  

The netB gene is highly conserved in C. perfringens strains that cause necrotic enteritis (Keyburn et al., 

2010).  Only in a minority of the strains causing necrotic enteritis, the NetB A168T variant, present in 

strain 23 supernatant and part of a highly protective supernatant vaccine, could be detected. This mutation 

however does not lead to decreased cytotoxicity. The A168T substitution occurs in a region that is 

expected to be within a membrane spanning region (Menestrina et al., 2001). The tertiary structure of the 

NetB protein was expected to be not significantly affected by the substitution and it was shown that the 

single amino acid change at residue 168 of NetB did not affected its cytotoxic activity (Keyburn et al., 

2010 and Lanckriet et al., 2010). Whether the specific mutation affects immunogenicity is not yet clear. 

This should be tested in an in vivo necrotic enteritis trial.  

NetB has been shown to have considerable potential for the development of vaccines against necrotic 

enteritis. Several vaccination studies with recombinant native NetB, NetB variant S254L and NetB variant 

W262A were already performed (Fernandes da Costa et al., 2013 and 2016; Jang et al., 2012; Keyburn et 

al., 2013 a and b). The best protection was observed when birds were vaccinated with the crude toxoid or 

bacterin supplemented with rNetB (Keyburn et al., 2013b). The study of Keyburn et al. (2013b) confirmed 

that NetB alone is not yielding full protection and that supplementation with other antigens increases the 

protective response. Keyburn et al. (2013a) also used a non-toxic NetB variant (S254L) for vaccinating 

breeder hens. Neither single NetB nor alpha toxin were capable of inducing full protection against the 

development of lesions after experimental infection. Our study (Chapter 3.3) showed that the combination 

of both antigens enhances the protection against a mild challenge but is not sufficient enough against a 

severe challenge (Fernandes da Costa et al., 2016).  

Vaccines using recombinant alpha toxin in toxoid and active form and live delivery of a non-toxic C-

terminal domain of alpha toxin have been tested in different models (Kulkarni et al., 2007, Zekarias et al., 

2008, Cooper et al., 2009).  It was suggested that alpha toxin can be used as an protective antigen. Binding 

of antibodies to the membrane-bound preprotein might block protein transport channels and as a 
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consequence, inhibit proliferation of the bacterium (Zekarias et al., 2008). The use of the C-terminal 

domain of alpha toxin (CPA247-370) as an antigen in this thesis can confirm this previously findings. It is 

likely that a combined alpha and NetB-toxin based vaccine can induce protection in the field, where 

challenge conditions are possibly less severe than in experimental models. 

 

4.2. Reproduction of necrotic enteritis in experimental models 

The evalaution of potential vaccine candidates depends strongly on challenge method used in an in vivo 

NE-model (Shojadoost et al., 2012). The severity of the disease, and also the protection against the 

disease, depends strongly on the challenge method used. As mentioned in the general introduction, 

reproducing necrotic enteritis is not straightforward. Since necrotic enteritis is a complex and 

multifactorial disease researchers need to decide which infectious agents, which route of administration 

for C. perfringens and which dietary manipulations they will use as predisposing triggers. It was already 

mentioned that the challenge strain absolutely needs to possess the netB gene to reproduce necrotic 

enteritis. Strains that also possess the tPeL gene appear to cause more severe disease (Coursodon et al., 

2012). Challenge strains cultured in several different culture media and incubation times were used in 

experimental models and these factors have an influence. Challenge can occur through supplementation of 

large volumes of culture broth in-feed (severe challenge) or by oral crop gavage (mild challenge) 

(Shojadoost et al., 2012).Of the other predisposing factors affecting the reproduction of necrotic enteritis 

that can be manipulated, coccidiosis co-infection is the most important one. Different types of attenuated 

Eimeria vaccines are used in different models and also the time of administration and the dose plays an 

important role. Necrotic lesions produced by C. perfringens combined with coccidia are usually more 

severe (Williams et al., 2003). Some researchers use methods to induce immunosuppression with antiviral 

vaccines, such as IBD and Gumboro vaccines, but also the mycotoxin fumonisin can be used (Antonissen 

et al., 2015). A dietary factor that is often used as predisposing factor is the addition of fish meal 

(Shojadoost et al., 2012). It is described that breed, sex and age of the chickens can also play a role (Jang 
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et al., 2013). The reason for reproducing the disease will have an impact on the design of studies. 

Production of severe experimental disease will mask some beneficial effects of preventive strategies such 

as vaccination. Indeed, in chapter 3.3 we confirmed this idea and the vaccination protocol was more 

effective when a mild as compared to a severe challenge model was applied. For all these reasons it is not 

possible to compare the positive effects of studied vaccines performed by different researchers and/or in 

different models. Moreover, it is impossible to compare studies that use different scoring systems. Scales 

in systems for scoring necrotic enteritis lesions can vary from 0-3 (Gholamiandehkordi et al., 2007; 

Lovland et al., 2004), 0-4 (Cooper et al., 2009) to 0-6 (Keyburn et al., 2013a and b; Lanckriet et al., 

2010b). Shojadoost et al. (2012) recommends that an ideal scoring system should cover the severity of the 

disease with a wide range for purpose of statistical analysis. The six-point scoring system designed by 

Keyburn et al. (2006) approximates best to this criterium and we used this scoring system in our studies. 

To measure performance parameters like weight gain, feed intake and feed conversion ratio, replicated test 

groups with a sufficiently large number of animals are essential for statistical purposes (Shojadoost et al., 

2012).Most of the studies performed to test vaccine candidates against necrotic enteritis do not use 

replicates in groups. We did not do that either (except for trial 2 in chapter 3.1) because these studies are 

orientating and for animal welfare reasons. Promising results need to be replicated however and even 

compared to each other in the same experiment. 

  

 

4.3. Practical application of vaccine candidates 

As mentioned in the introduction there are various ways to deliver antigens to chickens for immunization 

purposes. Live (attenuated) vaccines can be administered orally and induce a stronger immune response 

(Witter & Hunt, 1994; Plotkin & Plotkin, 2011; Rappuoli et al., 2011). Toxin-based formulations must be 

produced in inactivated form while still preserving antigenicity. Formalin inactivation and genetically 

engineered inactive toxin variants are an option, as is the delivery of immunogenic non-toxin proteins. 
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Formalin inactivation showed to be not successful in the use of C. perfringens-based vaccines in our study 

done in Chapter 3.1 (Mot et al., 2014). This is believed to be due to the cross-linking capacity of 

formaldehyde, with major conformational modifications of the cross-linked proteins, resulting in loss of 

immunogenicity of epitopes (Metz et al., 2004; Thaysen-Andersen et al., 2007; Jones et al., 2008). The 

importance of conformational epitopes in the protection against necrotic enteritis was also suggested by 

Kulkarni et al. (2007), who showed that alpha-toxoid fails to offer protection. The impact of other 

inactivation methods such as heat-inactivation and alkalization was investigated (unpublished data) but 

showed no significant differences.  

Our study in Chapter 3.1 showed that one parenteral single vaccination, at day of hatch, which is the only 

practical feasible way in the field, offers no protection. Whether the lack of protection of a formalin-based 

toxoid vaccine and day-of-hatch vaccine regimes is also valid when using vaccine preparations derived 

from other C. perfringens strains (and not the one used in our study) is not clear and should be analyzed in 

future studies. Because it was shown that formalin-based toxoid has detrimental effects on the ability of 

the toxins to protect against necrotic enteritis when used as vaccine antigens, non-toxic protein fragments 

may be the antigens of choice. 

Since vaccination at day of hatch is not protective, there are only a few options left. These are breeder hen 

vaccination and the use of live bacterial or viral vectors that can deliver antigens in ovo or during rearing 

(eg. as feed or drinking water additive, thus oral vaccination), therefore presenting the antigens for a 

longer period as compared to parenteral administration of antigens at day-of-hatch. 

 

4.4. Vaccine delivery and immunization methods for necrotic enteritis 

Ease of administration of a vaccine is important for making vaccines acceptable for the poultry industry. 

Because large populations of animals must be vaccinated, the most widely accepted vaccines are those 

that can be delivered simultaneously to large numbers of birds with minimum amount of labor (Sharma, 

1999). For practical reasons, vaccines are mostly given in the hatchery. Parenteral vaccination 
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(intramuscularly or subcutaneously) of broiler chickens is theoretically possible at day-of-hatch, but 

vaccination using live vaccines by spray methods or drinking water application is easier to apply. 

Parenteral booster vaccinations are practically impossible for broilers in the field. Other options are 

breeder hen vaccination and the use of live bacterial or viral vectors that can deliver antigens in ovo or 

during rearing (eg. as feed or drinking water additive, thus oral vaccination), thereby presenting the 

antigens for a longer period as compared to parenteral administration of antigens at day-of-hatch. 

4.4.1. Breeder hen vaccination 

Vaccination of breeder hens is often preferred in the poultry industry. Due to the generation of large 

numbers of protected progeny per vaccinated hen, the vaccine cost per chicken is lower as compared to 

post-hatch vaccination (Schijns et al., 2008). Passive protection by maternal antibodies in broiler chickens 

by breeder hen vaccination could have some limitations with regard to necrotic enteritis. Indeed, outbreaks 

of necrotic enteritis mostly occur at the age of 3-4 weeks. The immune system of broiler chickens is still 

developing at that age and maternal antibodies have declined already (Lovland et al., 2004). Until now, 

three studies have reported data on maternal vaccination against necrotic enteritis, two of them using 

crude supernatant toxoids and one using rNetB (S254L) either in combination or not with crude toxoid 

(Lovland et al., 2004, Crouch et al., 2010, Keyburn et al., 2013a). When breeder hens were vaccinated 

intramuscularly at 14 and 18 weeks of age with C. perfringens type A or type C crude toxoid, an increase 

in antibody response to alpha toxin in serum samples of parent hens was shown. In a field trial under 

predisposing conditions a partial protection against necrotic enteritis in their progeny was shown (Lovland 

et al., 2004). The safety and efficacy of a commercial C. perfringens type A alpha toxoid (Netvax
TM

) was 

analyzed by immunizing breeder hens intramuscularly at 11 and 18/19 weeks of age. An increase in 

specific alpha toxin IgY antibody response was shown in serum from hens, in the egg yolk from eggs 

collected from these hens and in serum from 7-day-old chicks hatched from these eggs (Crouch et al., 

2010). In a field trial, the progeny (from eggs collected at 27 and 32 weeks) from a group of NetVax
TM

-

vaccinated hens had a reduced overall mortality as compared to the progeny from an unvaccinated group, 
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especially at those time points at which necrotic lesions were observed in the progeny from the 

unvaccinated group  (Crouch et al., 2010). Recently, a recombinant non-toxic NetB variant (S254L) was 

tested in breeder hens, singly or combined with crude toxoid (Keyburn et al., 2013a). Hens were 

vaccinated subcutaneously at 22, 24 and 26 weeks of age. A significant IgY antibody response against 

NetB was detected in serum samples from hens, in the egg yolk of their eggs and in serum from hatched 

chicks from vaccinated hens. When the progeny (from eggs collected at 30 weeks) of vaccinated hens was 

infected with in-feed C. perfringens at 26 and 27 days of age, only chickens derived from hens vaccinated 

with rNetB (S254L) combined with crude toxoid had a significantly lower lesion score. When the C. 

perfringens infection was performed at 14 days of age, chickens derived from hens vaccinated with single 

rNetB (S254L) or single crude toxoid were also protected partially (Keyburn et al., 2013a). The authors 

hypothesized that a higher level of specific antibodies at the time of challenge is responsible for the 

protection against challenge at the earlier age. 

4.4.2. In ovo vaccination and oral immunization using viral or 

bacterial vector vaccines  

Chickens can be vaccinated using vector vaccines in ovo or during rearing. Benefits of in ovo vaccination 

compared to post-hatch vaccination include earlier immunity, reduction in bird stress, precise and uniform 

injection and reduced labor costs (Ricks et al., 1999; Schijns et al., 2008). The vaccine is injected in eggs 

during the late embryonation stage, usually at 17-18 days of incubation (Muir et al., 2000). Recombinant 

fowl poxvirus (FPV) and herpesvirus of turkey (HVT) replicating viruses are examples of vector vaccines 

for in ovo application (Schijns et al., 2008). When a non-replicative vector for C. perfringens antigens is 

injected in ovo, it is possible that protective antibodies would already be in decline at the time the disease 

occurs. Furthermore the choice of the adjuvant is important as some adjuvants are known for inducing 

embryotoxic side effects (Asif et al., 2004). To the best of our knowledge there are no studies reporting 

efficacy of in ovo vaccine against necrotic enteritis. 
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Oral immunization of broilers can be done through the feed or drinking water or by spraying the vaccine 

onto the chickens (Sharma, 1999). These delivery systems are labor- and time-saving and practically 

feasible for the broiler industry. Chickens do not always drink regularly in the first days after hatching. In 

contrast, (coarse) spray application may increase the vaccine uptake and lead to a more consistent level of 

protection against the pathogen (Atterbury et al., 2010). Orally administered live vaccine strains 

expressing C. perfringens antigens and colonizing the intestinal tract of the broilers have been described 

(Kulkarni et al., 2008, Zekarias et al., 2008; Kulkarni et al., 2010). The protection obtained depends on 

the colonization level and persistence of the vaccine strains. Kulkarni et al. (2008, 2009) immunized 

broilers orally at day of hatch and at day 14 with a recombinant S. enterica serovar Typhimurium strain 

expressing truncated proteins of the alpha toxin, FBA, PFOR or HP. They induced a significant protective 

immune response but the degree of protection was lower than observed when these proteins were 

administered intramuscularly in multiple dosages (Kulkarni et al., 2006). Zekarias et al. (2008) inoculated 

chickens orally with a S. enterica serovar Typhimurium strain expressing a nontoxic fragment of alpha 

toxin at day 3 and 13. The antibody response was low, but the immunized chickens had a reduced number 

of necrotic lesions after challenge. The above mentioned studies, however, used oral gavage of the vaccine 

strains. Practical delivery methods, such as in-feed, drinking water or spray application have not been 

tested yet. Recombinant B. subtilis endospores that express the C-terminal domain of alpha toxin have 

been used to vaccinate mice against C. perfringens infection (Hoang et al., 2008). The endospores appear 

to provide an adjuvant effect, boosting the immune response to the antigens. The use of these heat-stable 

endospores as vaccine delivery agents is a promising idea because they could be incorporated into feed. 

This type of bacterial vector has not been evaluated for necrotic enteritis in broilers yet. 

 

4.5. Concluding remarks and future perspectives  

Before the identification of the toxin NetB and important immunogenic proteins, formalin-inactivated 

crude supernatants were tested as experimental vaccines. During the last few years vaccination studies 
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have been carried out with purified proteins or combinations of proteins, mostly by parenteral 

immunization. The impact of these studies has been important to identify proteins as vaccine candidates 

(such as the NetB toxin), and it has become clear that combinations of immunogenic proteins are yielding 

better protection compared to single protein immunization (Keyburn et al., 2013a). To determine relevant 

vaccine candidates it is necessary to understand completely the pathogenesis and know exactly which 

proteins are expressed by C. perfringens at a necrotic lesion in the small intestine. It is known that the 

NetB toxin is crucial for the development of necrotic enteritis but knowing which factors are produced at 

the lesions and contribute to lesion severity can help to understand the pathogenesis and will enhance the 

vaccine development (Prescott et al., 2016). Our studies were focused on practical application and the 

search of an ideal combination of antigens. Most researchers used multiple dosage parenteral 

immunization regimes which suffer from lack of practical value for broilers. Single dosing at day-of-

hatch, a possible method that can be used in the field, results in total loss of protection compared to 

multiple dosage vaccination. Breeder hen vaccination is an option and several studies have shown 

promising results, but the antibody decline in the progeny will decrease the efficacy at later ages, which 

may be important for necrotic enteritis which typically occurs at 3 to 4 weeks of age. In ovo vaccination 

could be a valuable method, but no data have been reported so far on this strategy. Since immunogenic 

proteins need to be presented to the immune system for a more prolonged period of time using a single 

dosage, live attenuated bacterial (or viral or parasitic) vectors are a potential strategy for the future. The 

protection depends on the colonization level and persistence of the live vaccine strains and the 

combination and levels of the expressed antigens. It is observed that the severity of the challenge, feed and 

housing conditions of the animals, the strain used for infection, and many more factors affect the 

protection conferred by a vaccine under experimental conditions. In this regard, a universal infection 

model that can be used to test the efficacy of vaccines could be of value, as suggested by Shojadoost et al. 

(2012), but this will be difficult to establish. The ideal vaccine strain would be one that, apart from 

inducing immunity and protection, can be added to the feed or drinking water, or sprayed on the day-old 

chicks in the hatchery. As is the case for many other bacterial diseases in livestock, active immunization 
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will only be effective when it is part of an approach that takes into account appropriate management and 

sanitation measures, feed quality optimization and preventive measures that focus on limiting the presence 

of predisposing factors. Since subclinical necrotic enteritis has an impact on broiler performance, with 

high economical loss as a consequence vaccination, against C. perfringens induced necrotic enteritis, is 

still a promising preventive control method. 
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Summary 

 

Necrotic enteritis is an important gastrointestinal disease broiler chickens. It is caused by Clostridium 

perfringens type A strains that produce the NetB toxin. It is an anaerobic bacterium which can be found in 

the environment and also in the normal gastro-intestinal microbiota of humans and animals. The disease, 

necrotic enteritis, can occur as an acute clinical disease, with high mortality at 2 to 5 weeks of age, or in a 

subclinical form leading to reduced weight gain and an increased feed conversion ratio. The disease can 

go unnoticed but increased feed conversion ratio makes the subclinical form economically the most 

important one. Necrotic enteritis develops when several predisposing factors are present, such as coccidial 

co-infection leading to damage of the intestinal mucosa and high protein high non-starch polysaccharide 

containing diet.  After the ban of antimicrobial growth promotors, which acted prophylactic against 

necrotic enteritis, the proportion of necrotic enteritis affected flocks has risen. Nowadays, the disease is 

prophylactically controlled by the use of anticoccidials of the ionophore type, which have antibacterial 

effects, and therapeutically by the use of antibiotics. But their use is no longer considered as viable due to 

resistance problems. There is a focus on prevention strategies like avoiding predisposing factors and in-

feed supplementation of a variety of feed additives. However, vaccination of broilers may be an 

interesting option for the prevention of necrotic enteritis since it seems a logical tool for protection against 

a toxin-producing bacterium. In recent years, several studies have been done in this area. Vaccination in 

broiler chickens can be done using oral, subcutaneous or intramuscular administration. Live attenuated C. 

perfringens vaccine strains were tested but protein-based vaccines should be safer and better 

characterized. Several proteins and toxins have been tested as vaccine candidates. The use of attenuated or 

avirulent live vectors is a promising approach and deserves further investigation. The choice of the 

proteins that are expressed by the vector strains is an important issue.  

During in vivo trials, we tested whether subcutaneous vaccination is practical applicable in the field 

(Chapter 3.1). Since crude supernatant of C. perfringens contains potent toxins it is not safe for the 
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animals. Formaldehyde inactivation was used ensuring safety but this affected the efficacy. A 

formaldehyde toxoid was clearly less protective against necrotic enteritis than the active supernatant. The 

reason for the loss of protection can be found in the cross-linking capacity of formaldehyde, with major 

conformational modifications of the cross-linked proteins, resulting in loss of immunogenicity of epitopes. 

The results showed also that single vaccination at day of hatch, which is practical feasible in the field, 

even with crude supernatant, failed to offer protection against experimental necrotic enteritis, in contrast 

to double vaccination at day 3 and 12 and single vaccination at day 3 with crude supernatant.  

The ideal combination of antigens in the protection against necrotic enteritis is still under investigation. In 

our second study (Chapter 3.2), we aimed to identify proteins from supernatant of C. perfringens strain 

23 with increased immunogenicity compared to supernatant from other strains by Western blotting. Three 

strong reacting antigens were identified as PFOR (pyruvate:ferredoxin oxidoreductase), Elongation factor 

G and NetB. The NetB variant A168T was detected in C. perfringens strain 23 and this could be the 

reason for the strong antigenic reaction of the strain 23-immunized chickens towards. Since chickens 

immunized with virulent strain 56 (with the consensus NetB) showed not such a high immune response. 

The mutation A168T in the NetB toxin does not lead to decreased cytotoxicity and the tertiary structure of 

the NetB protein was expected to be not significantly affected by the substitution. Whether the mutation 

affects immunogenicity is not yet clear and should be investigated in further vaccination studies. 

The combination of protective antigens is a crucial factor in the development of a vaccine against necrotic 

enteritis. Despite the fact that is has been shown that alpha toxin is not an essential virulence factor in the 

disease it can be used as a protective antigen against necrotic enteritis. NetB, identified as the responsible 

toxin in the development of the disease, can be considered as an important antigen against necrotic 

enteritis. Since it was shown that formaldehyde inactivation of toxins has negative effects on the ability of 

toxins to protect animals, the non-toxic protein fragments CPA247-370 and NetB W262A were used 

(Chapter 3.3). The combination of these antigens was tested in different experimental models to 

reproduce the disease since it is known the severity of challenge can affect the results. Our data show that 



Summary 

131 
 

that the combination of  CPA247-370 and NetB W262A resulted in complete protection in a mild subclinical 

disease, however in a severe in-feed model the protection was only partial. Since the vaccination scheme, 

three times subcutaneous administration, is not practical in the field there is a need for alternative routes of 

delivery.  

In conclusion, this thesis offers new insights in the development of an optimal vaccine against necrotic 

enteritis in broiler chickens. It was shown that the ideal vaccine strain, consisting of an optimal 

combination of proteins, should be tested in an universal infection model in a way that is practical feasible 

in the field. This means adding to the feed or drinking water, or sprayed on the day-old chicks in the 

hatchery. 
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Samenvatting 

 

Necrotische enteritis is wereldwijd een belangrijke gastro-intestinale aandoening bij vleeskuikens. De 

ziekte wordt veroorzaakt door de grampositieve bacterie Clostridium perfringens en meer bepaald de 

toxinotype A stammen die het NetB toxine produceren. Deze anaerobe bacterie komt, dankzij zijn 

vermogen om resistente sporen te vormen, wijdverspreid voor in de omgeving. De kiem kan ook deel 

uitmaken van de normale gastro-intestinale flora van mens en dier. Onder bepaalde predisponerende 

factoren kan C. perfringens echter exponentieel gaan vermeerderen en ziekte veroorzaken. Deze ziekte, 

necrotische enteritis, kan voorkomen in een acute klinische vorm die gekenmerkt wordt door een 

verhoogde mortaliteit, op een leeftijd van 2 tot 5 weken, in de pluimveetoom, of in een mildere 

subklinische vorm die leidt tot een verminderde gewichtstoename en dus een toegenomen 

voederconversie. Een kippentoom kan onopgemerkt de subklinische vorm doormaken maar de gestegen 

voederconversie veroorzaakt grote financiële verliezen in de pluimvee industrie. Door het ontstaan van 

intensieve pluimveehouderijen heeft de ziekte in belang gewonnen. Na het verbod op antimicrobiële 

groeipromotoren door de Europese Unie kende het voorkomen van necrotische enteritis een enorme piek. 

Momenteel wordt de ziekte in de praktijk onder controle gehouden door het preventief gebruik van 

coccidiostatica en het curatieve gebruik van antibiotica maar omwille van de gekende 

resistentieproblematiek is de nood aan alternatieven groot. Een optimaal management van de 

pluimveetoom en bepaalde voedingssupplementen zijn een gedeeltelijk succes, maar vaccinatie zou de 

ideale preventiestrategie tegen necrotische enteritis zijn. Vaccins kunnen oraal, intramusculair of 

subcutaan toegediend worden maar omwille van praktische redenen kunnen de twee laatste enkel 

toegediend worden in de broeierij. Het gebruik van een oraal vaccin met verzwakte of niet-virulente 

vectoren lijkt de beste optie waarbij de combinatie van de C. perfringens proteïnen die tot expressie 

gebracht worden een cruciale rol spelen.  
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In het eerste hoofdstuk van deze thesis werd nagegaan of subcutane vaccinatie tegen necrotische enteritis 

zou kunnen toegepast worden in de praktijk (Chapter 3.1). Omdat natief supernatans van C. perfringens 

potentieel toxisch kan zijn voor het gevaccineerde dier werd formaldehyde inactivatie toegepast. Er werd 

aangetoond dat dit de efficaciteit benadeelt, met andere woorden, de bescherming van het vaccin tegen het 

ontstaan van necrotische enteritis ging verloren. Deze resultaten suggereren dat het gebruik van 

formaldehyde voor detoxificatie grote structurele veranderingen aan de C. perfringens proteïnes 

veroorzaakt zodanig dat het onmogelijk is om beschermende antilichamen op te wekken. De resultaten 

tonen ook aan dat een eenmalige toediening van het vaccin, op de dag van uitkippen, de manier waarop in 

de praktijk gevaccineerd wordt, geen bescherming biedt. Dit in tegenstelling tot de dubbele vaccinatie met 

natief supernatans op dag 3 en 12 na uitkippen. Ook een eenmalige vaccinatie op dag 3 was gedeeltelijk 

protectief.  

De combinatie van antigenen die gebruikt moeten worden speelt een cruciale rol in de ontwikkeling van 

een vaccin tegen necrotische enteritis en onderzoek hiernaar is nog steeds lopende, onder meer ook omdat 

de pathogenese nog steeds niet volledig gekend is. In onze tweede studie (Chapter 3.2) gingen we op 

zoek naar proteïnen die een verhoogde immunogeniciteit vertoonden in supernatans van C. perfringens 

stam 23 aangezien uit voorgaande studies reeds bleek dat vaccinatie met het supernatans van deze stam 

volledige bescherming bood. Door gebruik te maken van Western Blots konden drie sterk reagerende 

antigenen geïdentificeerd worden, PFOR (pyruvate:ferredoxin oxidoreductase), Elongation factor G en 

NetB. C. perfringens stam 23 is drager van de NetB variant A168T wat de oorzaak kan zijn van de sterk 

antigene reactie want serum van kippen die geïmmuniseerd werden met de virulente stam 56 (drager van 

het consensus NetB toxine) vertoonden een minder sterke antigene reactie. De A168T mutatie in het NetB 

toxine tast de cytotoxiciteit en de tertiaire structuur van het toxine niet aan. Of deze mutatie gevolgen 

heeft voor de immunogeniciteit zou moeten onderwerp uitmaken van verder onderzoek. Ondanks het feit 

dat aangetoond werd dat het C. perfringens alpha toxine geen essentiële virulentiefactor is in de 

pathogenese, werd in het verleden reeds aangetoond dat het gebruik van het toxine in een vaccin wel 
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bescherming induceert. Het NetB toxine, verantwoordelijk voor het ontstaan van de ziekte, is 

vanzelfsprekend een belangrijk antigen. Omdat in het eerste hoofdstuk aangetoond werd dat formaldehyde 

inactivatie nadelige gevolgen had voor de efficaciteit werd in het derde hoofdstuk gebruik gemaakt van de 

niet-toxische proteïne fragmenten CPA247-370 en NetB W262A (Chapter 3.3). Een combinatievaccin van 

deze twee antigenen werd getest in twee experimentele proeven met vleeskuikens met een verschillende 

infectiegraad. Er werd aangetoond dat het combinatievaccin met CPA247-370 en NetB W262A volledige 

bescherming bood tegen een milde subklinische infectie maar slechts gedeeltelijke bescherming bood in 

een zwaar infectiemodel.  

De resultaten van deze thesis hebben geleid tot nieuwe inzichten in de ontwikkeling van een doeltreffend 

vaccin tegen necrotische enteritis bij vleeskuikens. Er werd aangetoond dat het ideale vaccin, bestaande 

uit een optimale combinatie van proteïnen, getest dient te worden in een universeel infectiemodel op een 

manier die toe te passen is in de praktijk.  
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