

biblio.ugent.be

The UGent Institutional Repository is the electronic archiving and dissemination platform for all
UGent research publications. Ghent University has implemented a mandate stipulating that all
academic publications of UGent researchers should be deposited and archived in this repository.
Except for items where current copyright restrictions apply, these papers are available in Open
Access.

This item is the archived peer-reviewed author-version of:

Improving OWL RL reasoning in N3 by using specialized rules

Dörthe Arndt, Ben De Meester, Pieter Bonte, Jeroen Schaballie, Jabran Bhatti, Wim Dereuddre,
Ruben Verborgh, Femke Ongenae, Filip De Turck, Rik Van de Walle, and Erik Mannens

In: Ontology Engineering: 12th International Experiences and Directions Workshop on OWL, 9557,
93–104, 2016.

http://dx.doi.org/10.1007/978-3-319-33245-1_10

To refer to or to cite this work, please use the citation to the published version:

Arndt, D., De Meester, B., Bonte, P., Schaballie, J., Bhatti, J., Dereuddre, W., Verborgh, R.,
Ongenae, F., De Turck, F., Van de Walle, R., and Mannens, E. (2016). Improving OWL RL reasoning
in N3 by using specialized rules. Ontology Engineering: 12th International Experiences and
Directions Workshop on OWL 9557 93–104. 10.1007/978-3-319-33245-1_10

Improving OWL RL reasoning in N3 by using
specialized rules

Dörthe Arndt1, Ben De Meester1, Pieter Bonte2, Jeroen Schaballie2,
Jabran Bhatti3, Wim Dereuddre3, Ruben Verborgh1, Femke Ongenae2,

Filip De Turck2, Rik Van de Walle1, and Erik Mannens1

1 Ghent University – iMinds – Multimedia Lab, Belgium
{doerthe.arndt, ben.demeester, ruben.verborgh}@ugent.be

2 IBCN research group, INTEC, Ghent University – iMinds, Belgium
{pieter.bonte, jeroen.schaballie, femke.ongenae}@intec.ugent.be

3 Televic Healthcare, Belgium
{j.bhatti, w.dereuddre}@televic.com

Abstract. Semantic Web reasoning can be a complex task: depending
on the amount of data and the ontologies involved, traditional OWL DL
reasoners can be too slow to face problems in real time. An alternative
is to use a rule-based reasoner together with the OWL RL/RDF rules
as stated in the specification of the OWL 2 language profiles. In most
cases this approach actually improves reasoning times, but due to the
complexity of the rules, not as much as it could. In this paper we present
an improved strategy: based on the TBoxes of the ontologies involved
in a reasoning task, we create more specific rules which then can be
used for further reasoning. We make use of the EYE reasoner and its
logic Notation3. In this logic, rules can be employed to derive new rules
which makes the rule creation a reasoning step on its own. We evaluate
our implementation on a semantic nurse call system. Our results show
that adding a pre-reasoning step to produce specialized rules improves
reasoning times by around 75%.

Keywords: Notation3, rule-based reasoning, OWL 2 RL

1 Introduction

With the increasing amount of carefully designed ontologies semantic web rea-
soning is becoming more popular for industrial applications: ontologies can be
employed to solve complex problems in domains like medicine, automotive in-
dustry or finance (e.g., [13], [17]). Nevertheless, there are still some obstacles
which hinder semantic web reasoning from being fully established. One of these
is scalability: depending on the amount of data and the ontologies involved, tra-
ditional OWL DL reasoners can be too slow to solve problems in real time. The
different OWL 2 profiles [9] provide a solution: by using less expressive but still
powerful subsets of OWL DL, reasoning times can be significantly improved.

2 Dörthe Arndt et al.

In this paper we focus on the OWL RL profile which is designed to enable
rule-based reasoners to draw the right conclusions from ontology data and con-
cepts. The rules for that, as presented in the specification, are complex in the
sense that they rely on rather complicated patterns occurring in both ABox
and TBox which have to be found to draw conclusions. We propose to improve
OWL RL reasoning performance by adding an extra reasoning step. Based on
the ontology’s TBox, specialized rules can be automatically produced to be used
for further reasoning on the ABox. Due to its expressiveness we use Notation3
Logic [6] to perform this task. The highly performant EYE reasoner [19] is used
for reasoning. As our pre-reasoning step has to be executed only once for every
TBox, our approach is especially suitable for situations where the same reasoning
has to be performed on frequently changing data. We tested our implementation
in an event based reasoning set-up: a semantic nurse call system which con-
trols the technical equipment in a hospital and, for example, assigns the most
suitable nurse to a patient’s call. Our tests showed that our pre-reasoning step
reduces reasoning times at about 75% compared to an implementation using the
originally proposed rules.

The remainder of this paper is structured as follows: in Section 2 we give an
overview of related work. After that, in Section 3, we explain our use case, a
semantic nurse call system. Section 4 gives a general introduction to OWL RL
in N3. In Section 5 we describe our system in more detail, focusing in particular
on the improved rules themselves and the steps which are necessary to produce
them. An evaluation of our implementation is given in Section 6. We summarize
our main findings and give an outlook to future work in Section 7.

2 Related Work

Traditionally, reasoning over OWL ontologies was performed by description logic
based reasoners using (variants of) the tableaux algorithm. Prominent examples
of such reasoners are Pellet [16] and HermiT [18]. Both support—as others of
their kind—the full OWL DL profile. The expressiveness of this profile and the
complexity of the related reasoning, make these reasoners perform rather slow in
comparison with, for example, rule-based reasoners. The OWL 2 profiles [9] aim
to overcome this gap by defining less expressive but still powerful subsets of OWL
DL. One of these profiles is OWL RL, which was designed to enable rule-based
reasoners to cope with OWL ontologies. Various implementations make use of the
OWL 2 RL/RDF rules as proposed in the specification, among them OWLim [8]
and Oracle’s RDF Semantic Graph [20]. As most other implementations we
are aware of, these reasoners support their own rule format, and optimizations
are done internally using the underlying programming language. We propose
an optimization which can be done in the logic itself by performing an extra
reasoning step. We are thereby independent of a specific reasoner.

Notation3 Logic (N) was introduced in 2008 by Tim Berners-Lee et al. [6]. It
forms a superset of RDF and extends the RDF data model by formulas (graphs),
functional predicates, universal variables and logical operators, in particular the

Improving OWL RL reasoning in N3 by using specialized rules 3

implication operator. Rules in N can not only be applied to derive new RDF
triples, it is also possible to write and apply rules with new rules in their conse-
quence, and thus to derive new rules. It is exactly this property which made us
opt for using N instead of other rule formats like, e.g., SWRL [14].

There are several reasoners supporting N: FuXi [1] is a forward-chaining pro-
duction system for Notation3 whose reasoning is based on the RETE algorithm.
The forward-chaining cwm [4] reasoner is a general-purpose data processing tool
which can be used for querying, checking, transforming and filtering informa-
tion. EYE [19] is a reasoner which is enhanced with Euler path detection. It
supports backward and forward reasoning and also a user-defined mixture of
both. Amongst its numerous features are the option to skolemize blank nodes
and the possibility to produce and reuse proofs for further reasoning. The rea-
son why we use EYE in our implementation is its high performance. Existing
benchmarks and results are listed in the above-mentioned paper [19] and on the
EYE website [11].

3 Use Case

Our use case is a nurse call system in a hospital. The system is aware of cer-
tain details about personnel and patients represented in an OWL ontology. Such
information can include: personal skills of a staff member, staff competences,
patient information, special patient needs, and/or the personal relationship be-
tween staff members and patients. Furthermore, there is dynamic information
available, for example, the current location of staff members and their status
(busy or free). When a call is made, the nurse call system should be able to
assign the best staff member to answer that call. The definition of this “best”
person varies between hospitals and can be quite complex. The system addition-
ally controls different devices. If for example staff members enter a room with
a patient, a light should be switched on; if they log into the room’s terminal,
they should have access to the medical lockers in the room. The event-driven
reasoning system for this use case has to fulfill certain requirements.

scalability It should cope with data sets ranging from 1000 to 100,000 relevant
triples (i.e., triples necessary to be included for the reasoning to be correct).
Especially in bigger hospitals the number of staff members and patients
and thereby also the amount of available information about those can be
quite big. It is not always possible to divide this knowledge into smaller
independent chunks as this data is normally full of mutual dependencies.

functional complexity It should implement deterministic decision trees with
varying complexities. The reasons to assign a nurse to a certain patient can
be as manifold as the data. Previous work has shown that this complexity is
not only theoretically possible but also desired by the parties interested in
such a semantic system [15].

configuration It should support the ability to change these decision trees at
configuration time. Different hospitals have different requirements and even
in one single hospital those requirements can easily change due to e.g., an

4 Dörthe Arndt et al.

1 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
2 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
3
4 {?C rdfs:subClassOf ?D. ?X a ?C} => {?X a ?D}.

Listing 1: OWL RL rule for rdfs:subClassOf class axiom in N3.

increase of available information or a simple change in the hospital’s organi-
zational concepts or philosophy.

real-time It should return a response within 5 seconds to any given event.
Especially in such a delicate sector as patient care, seconds can make a
difference. Even though a semantic nurse call system will not typically be
employed to assign urgent emergency calls through complex decision trees, a
patient should not wait too long till his possibly pressing request is answered.

The functional complexity requirement together with the configuration con-
straint motivate the choice of a reasoning system which supports rules as these
can be seen as the most natural way to express decision trees. Even though a
numerous amount of OWL DL reasoners support at least one rule format, their
reasoning is too slow to meet the scalability and the real-time constraint [2].
Therefore, we chose a rule-based solution.

4 OWL RL in N

In a first attempt to solve the above-mentioned problem we used a direct transla-
tion of OWL 2 RL/RDF rules as listed on the corresponding website [9]. Where
possible, we made use of existing N3-translations of these rules as provided by
EYE [12]. Missing concepts were added. The data was represented using the
ACCIO ontology [15] which will be further described in section 6.1. The re-
sults of this implementation were already promising [2], but for larger data sets
the reasoning took multiple minutes and, thus, did not meet the requirements
claimed above.

We explain the idea behind these OWL RL rules in N and how they can
be improved using an example: Listing 1 shows the class axiom rule4 which is
needed to deal with the rdfs concept subclassOf. For convenience we omit the
prefixes in the formulas below. The empty prefix refers to the ACCIO ontology,
rdf and rdfs have the same meaning as in Listing 1. Consider that we have
the following TBox triple stating that the class :Call is a subclass of the class
:Task:

:Call rdfs:subClassOf :Task. (1)

If the ABox contains an individual which is member of the class :Call

:call1 a :Call. (2)
4 The rule is the N3 version of the cax-sco rule in Table 7 on the OWL 2 Profiles
website [9].

Improving OWL RL reasoning in N3 by using specialized rules 5

an OWL DL reasoner would make the conclusion that the individual also belongs
to the class Task:

:call1 a :Task. (3)

Our rule in Listing 1 does exactly the same: as Formula 1 and Formula 2 can be
unified with the antecedent of the rule, a reasoner derives the triple in Formula 3.
But this unification is rather expensive: if we take a closer look to the antecedent
we see that it contains three different variables occurring in two different triples
which have to be instantiated with the data of the ontology. In our use case
information as stated in Formula 2 can change—patients will make new calls—
but statements as Formula 1 can be considered as fixed: the terminology does
not change during the reasoning process, calls are tasks for our ontology. Our
solution makes use of this observation: what is valid for the triple in Formula 1
also counts for other TBox-triples. We consider the TBox as static knowledge
which can be used for pre-processing. The idea of our solution is to do as much
unification as possible before dealing with (possibly) dynamic data. We produce
more specialized rules, in the case mentioned above, for example the rule

{?X a :Call.} => {?X a :Task.}. (4)

which will derive for every new call, that it is also a task, just as the rule in
Listing 1 does.

5 Producing TBox-rules

In order to achieve the goal explained in the last section, producing specialized
rules based on the concepts present in the ontology’s TBox, we use the EYE
reasoner. Reasoning in EYE can be considered as a single process, having as input
all necessary files representing the knowledge (i.e., the necessary ontologies, data,
and rule-files), and a query-file that filters the output of the reasoning result.
We have to perform two steps:

1. Produce a grounded copy of the TBox.
2. Use rules to translate the grounded TBox into specialized rules.

The need of the first step has to do with the fact that an ontology can contain
anonymous classes represented by blank nodes. Used in rules, these blank node
class names have, due to the semantics of N, a limited scope. It is therefore
difficult to use them to reference the same class in different rules. We will give a
more elaborate explanation in the next section. After that we will describe the
translation step in more detail.

5.1 Grounding the Ontology

Before translating the TBox into rules we have to replace all blank nodes by
URIs or literals. To understand the reason for this skolemization step, consider
the example in Listing 2. The example contains triples which further describe

6 Dörthe Arndt et al.

1 @prefix : <http://ontology/Accio.owl#>.
2 @prefix owl: <http://www.w3.org/2002/07/owl#>.
3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
4 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
5
6 :Call rdfs:subClassOf [
7 rdf:type owl:Class ;
8 owl:intersectionOf (
9 :PatientTask

10 :UnplannedTask
11)
12].

Listing 2: ACCIO example: a call is both, a patient task and an unplanned
task.

the class :Call from Formula 2. A call is a patient task and an unplanned task,
or to be more specific: the class :Call is subclass of an anonymous class which is
the intersection of the classes :PatientTask and :UnplannedTask. Even though
N supports rules which contain blank nodes, it is exactly this anonymous class
which causes problems. Being unlabeled, the blank node can be referred by an
arbitrary new blank node name. A translation as done in Formula 4 would result
in a rule like:

{ ?X a :Call. } => { ?X a _:newblank.}. (5)

This rule means, that every instance of the class :Call is also instance of some
other class. This knowledge can already be gained by Formula 4 and does not
have much influence on further reasoning. And even if the blank node in Listing 2
would be labeled by, for example, _:intersection1 a new rule

{ ?X a :Call. } => { ?X a _:intersection1.}. (6)

would have no other meaning than Formula 4 as in N the scope of a blank node
is always only the graph, i.e. the curly brackets { }, in which it occurs [3, 5].
The consequence of the rule would not refer to our intersection of patient tasks
and unplanned tasks.

We perform the grounding step by using the EYE reasoner. The reasoner
provides the option to obtain a skolemized version of any input N file(s). The
switch --no-qvars replaces every blank node by a unique skolem IRI following
the naming convention as described in the RDF specification [10]. It additionally
makes sure that equally named blank nodes only get assigned the same skolem
IRI if they actually refer to the same thing. Producing a grounded version of
the ontology enables us in further reasoning steps to use the new identifiers for
(formally) anonymous classes in different rules.

Improving OWL RL reasoning in N3 by using specialized rules 7

1 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
2 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
3
4 {?C rdfs:subClassOf ?D.} => {{?X a ?C.}=>{?X a ?D.}.}.

Listing 3: Rule producing new rule for every occurrence of
rdfs:subClassOf; based on the rdfs:subClassOf class axiom of Listing 1.

5.2 Translation Step

As explained above, the next step after having produced a grounded version of
the ontology’s TBox is to produce the new specialized rules. Here, we make use
of a property of Notation3: rules can not only be applied to derive new triples
but also to derive new rules. To illustrate that we consider a simple rule:

{ :Call rdfs:subClassOf :Task.︸ ︷︷ ︸
satisfied ontology triple(s)

}=>{ {?X a :Call}=>{?X a :Task.}.︸ ︷︷ ︸
produced new rule(s)

}.

Just as simple rules enable the reasoner to derive new triples from the fact that
its antecedent is fulfilled, the rule above, applied on Formula 1, derives a new
rule, namely Formula 4. Nevertheless, the rule as stated above is too specific
to be used for our purpose: if we already knew that the ontology contained the
triple in Formula 1 we could also write the rule in Formula 4 directly instead of
writing a rule which will surely produce it. Our rule needs to be more general
as we want to handle all owl:subclassOf triples in that same way and always
produce a rule similar to the rule expressed in Formula 4. This more general
rule can be found in Listing 3. Applied on Formula 1 the variable ?C gets unified
with the URI :Call and the variable ?D gets unified with :Task, thus, Rule 4
can be derived. Similarly, an application of the rule in Listing 3 on triple

:UnplannedTask rdfs:subClassOf :Task.

results in a new rule

{?X a :UnplannedTask.} => {?X a :Task.}.

The same principle can be applied for other OWL concepts. Listing 4 shows a
rule5 which handles the concept owl:intersectionOf. Note that this rule uses
a built-in predicate of Notation3, list:in. A triple using list:in as a predicate
is true if and only if the object is a list and the subject is an entry of that list.
If we apply this rule to the (now skolemized) intersection expressed in Listing 2

:InterClass1 owl:intersectionOf (:PatientTask :UnplannedTask).

two rules will be produced by that:

{?x a :InterClass1} => {?x a :PatientTask.}.
5 The rule is motivated by the cls-int2 rule in Table 6 on [9].

8 Dörthe Arndt et al.

1 @prefix list: <http://www.w3.org/2000/10/swap/list#>.
2 @prefix owl: <http://www.w3.org/2002/07/owl#>.
3
4 {?C owl:intersectionOf ?L. ?D list:in ?L} =>
5 {{?X a ?C.}=>{?X a ?D}}.

Listing 4: Rule-producing rule for owl:intersectionOf.

and

{?x a :InterClass1} => {?x a :UnplannedTask.}.

The above example illustrates another useful property of Notation3: Nota-
tion3 treats lists themselves, not only their reified version, as elements of the
language. There are many built-in predicates which enable the user to write
clear rules regarding lists and to refer to all elements of a given list. For working
with OWL ontologies this is a real advantage as lists are normally used together
with many OWL concepts like the above owl:intersectionOf or for example
owl:unionOf.

To produce new rules by applying the rules described above, the rule produc-
ing rules have to be applied as filter rules for the reasoner. Notation3 reasoners
normally take one ore more input files—consisting of rules and facts—and a
query file containing rules into account. Based in the input files the reasoner
outputs the logical consequences of the filter rules. In our present case these
are the specialized rules. The rules produced by the two described steps do now
replace the TBox of the ontology and can be used for further reasoning.

6 Evaluation

The aforementioned methodology replaces generic and complex constructs in the
TBox by specialized rules that provide the same functionality. To test how much
performance we gain by using this pre-processing step we tested a scenario of our
use case with two rule sets: the first traditional rule set [11] processes the triples
of the original TBox while reasoning and acts on top of those together with
the actual ABox data, the second precomputed rule set contains the specialized
rules which already take all TBox triples into account, therefore in this case the
original TBox is not needed for further reasoning. All experiments were run on
the same technology stack6.

6.1 Ontology and Data

To represent the data as described above we make use of the ACCIO ontology
which was designed to represent all aspects of patient care in a hospital. The
6 Hardware: Intel(R) Xeon(R) E5620@2.40GHz CPU with 12 GB RAM. Software:
Debian “Wheezy”, EYE-Autumn15 09261046Z and SWI-Prolog 6.6.6

Improving OWL RL reasoning in N3 by using specialized rules 9

ontology contains ca. 3,500 triples (414 named classes, 157 object properties, 38
data type properties). A full description is given by Ongenae et al. [15].

This ontology was filled with data describing wards in a hospital. This data
was simulated, based on real-life situations, as deducted from user studies [15].
The data was scaled by increasing the amount of wards from 1 to 10 to fill the
ABox with more data. The description of such a ward contains approximately
1,000 static triples. Additionally, there was dynamic data such as for example
the location of nurses or the status of calls taken into account.

6.2 Test scenario

We compared the reasoning times of the two rule sets by running a scenario,
based on a real-life situation. This scenario consists of a sequence of events,
which we list below, where the expected outcome of the reasoning is indicated
in brackets.

1. A patient launches a call (assign nurse and update call status)
2. The assigned nurse indicates that she is busy (assign other nurse)
3. The newly assigned nurse accepts the call task (update call status)
4. The nurse moves to the corridor (update location)
5. The nurse arrives at the patients’ room (update location, turn on lights and

update nurse status)
6. The nurse logs into the room’s terminal (update status call and nurse, open

lockers)
7. The nurse logs out again (update status call and nurse, close lockers)
8. The nurse leaves the room (update location and nurse status and turn off

lights)

6.3 Results

The aforementioned scenario was run 35 times, consisting of 3 warm-up runs and
2 cool-down runs, for 1 ward and 10 wards, for both rule sets. By averaging the
30 remaining reasoning times per amount of wards and per rule set, we provide
the results as shown as a table in Figure 1, and depicted in Figure 2.

wards 1 ward 10 wards
event 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
traditional 2.1 2.1 2.4 2.1 2.1 2.2 2.4 2.1 30.7 30.7 34.9 30.6 30.6 30.7 35.0 30.5
preprocessed 0.4 0.6 0.7 0.4 0.4 0.4 0.5 0.4 6.8 10.7 12.2 8.1 8.0 6.7 9.3 8.1

Fig. 1: Reasoning times using traditional rules and preprocessed rules in seconds.
Preprocessing significantly reduces reasoning times.

10 Dörthe Arndt et al.

1 2 3 4 5 6 7 8

preprocessed

traditional

step number

tim
e

in
 s

ec
.

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

(a) 1 ward, reasoning time per event.

1 2 3 4 5 6 7 8

preprocessed

traditional

step number

tim
e

in
 s

ec
.

0
10

20
30

40
50

(b) 10 wards, reasoning time per event.

Fig. 2: Comparison of reasoning times using preprocessed and traditional rules.
The preprocessing step improves reasoning times.

The figures show how preprocessing the rules improves reasoning times signif-
icantly, consistently requiring only a quarter of the reasoning time. This trend
manifests itself regardless of the amount of dynamic data involved. Whereas
the traditional rule set can no longer be used in a hospital with 10 wards the
preprocessed rule set still provides reasonable reasoning times.

7 Conclusion and Future Work

In this paper we have shown that precomputing and using specialized rules
based on the ontology’s TBox improve reasoning times of OWL RL reasoning
by about 75%. The main cause for that is that the newly computed rules are less
complex—in terms of the variables which have to be unified during reasoning—
than the original version of the rules taken from the OWL RL profile description.
Another aspect which makes reasoning faster in our set up is the fact that
rules for concepts which are not even present in the ontology’s TBox will not
get produced by the preprocessing step. If for example the rather expensive
concept owl:sameAs does not occur in any triple of the considered ontology, no
specialized rules will be produced for this concept.

The presented preprocessing step consists of two simple reasoning runs which
can be performed before dealing with additional input data. Using the EYE
reasoner this preprocessing normally takes only a few seconds. In set ups where
the TBox does not change during run time the produced rules can be used
whenever the ABox data to reason on changes as in the example introduced in
this paper. Our approach is independent of the reasoning done on top of the
TBox by additional rules. This makes the rule version of the ontology’s TBox
even more suitable for reuse.

Improving OWL RL reasoning in N3 by using specialized rules 11

Our approach makes use of the special properties of Notation3 Logic. By
providing the option of using rules to produce new rules this logic is particularly
suitable for our purposes. Furthermore Notation3 offers multiple predicates to
act on lists as for example the function list:in. This eases the implementa-
tion of rule producing rules based on OWL predicates as there are many OWL
constructs which are normally stated with lists in their object position.

Notation3 Logic posses other interesting properties which we are planning
to apply in future work: in N, rules can have existential variables in their
consequence. Using this particular property it will be possible to also cover OWL
EL concepts which are not present in OWL RL. Similarly as done in for example
OWLim [7] we are planning to include OWL EL in our implementation. We
furthermore want to investigate the actual costs of processing the different OWL
concepts by our newly produced rules. This will enable us to recommend the
exclusion of particular concepts if not really needed.

Acknowledgements The research activities described in this paper were funded
by Ghent University, iMinds, the IWT Flanders, the FWO-Flanders, and the
European Union, in the context of the project “ORCA”, which is a collaboration
of Televic Healthcare, Internet-Based Communication Networks and Services
(IBCN), and Multimedia Lab (MMLab).

References

1. FuXi 1.4: A Python-based, bi-directional logical reasoning system for the semantic
web, http://code.google.com/p/fuxi/

2. Arndt, D., De Meester, B., Bonte, P., Schaballie, J., Bhatti, J., Dereuddre, W.,
Verborgh, R., Ongenae, F., De Turck, F., Van de Walle, R., Mannens, E.: Ontology
reasoning using rules in an ehealth context. In: Proceedings of the 9th International
Web Rule Symposium: Industry Track (Aug 2015)

3. Arndt, D., Verborgh, R., De Roo, J., Sun, H., Mannens, E., Van de Walle, R.:
Semantics of Notation3 logic: A solution for implicit quantification. In: Proceedings
of the 9th International Web Rule Symposium (Aug 2015)

4. Berners-Lee, T.: cwm (2000–2009), http://www.w3.org/2000/10/swap/doc/cwm.
html

5. Berners-Lee, T., Connolly, D.: Notation3 (n): A readable rdf syntax. wc Team
Submission (Mar 2011), http://www.w3.org/TeamSubmission/n3/

6. Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., Hendler, J.: NLogic: A logical
framework for the World Wide Web. Theory and Practice of Logic Programming
8(3), 249–269 (2008)

7. Bishop, B., Bojanov, S.: Implementing owl 2 rl and owl 2 ql rule-sets for owlim.
In: OWLED. vol. 796 (2011)

8. Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., Velkov, R.: Owlim:
A family of scalable semantic repositories. Semantic Web 2(1), 33–42 (2011)

9. Calvanese, D., Carroll, J., Di Giacomo, G., Hendler, J., Herman, I., Parsia, B.,
Patel-Schneider, P.F., Ruttenberg, A., Sattler, U., Schneider, M.: owl 2 Web
Ontology Language Profiles (second edition). wc Recommendation (Dec 2012),
www.w3.org/TR/owl2-profiles/

12 Dörthe Arndt et al.

10. Cyganiak, R., Wood, D., Lanthaler, M.: rdf 1.1: Concepts and Ab-
stract Syntax. wc Recommendation (Feb 2014), http://www.w3.org/TR/2014/
REC-rdf11-concepts-20140225/

11. De Roo, J.: Euler yet another proof engine (1999–2015), http://eulersharp.
sourceforge.net/

12. De Roo, J.: EYE and OWL 2 (1999–2015), http://eulersharp.sourceforge.net/
2003/03swap/eye-owl2.html

13. Declerck, T., Krieger, H.U.: Translating xbrl into description logic. An approach
using Protege, Sesame & OWL. In: BIS. pp. 455–467 (2006)

14. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A semantic web rule language combining OWL and RuleML. W3CMember
Submission (21 May 2004), http://www.w3.org/Submission/SWRL/, available at
http://www.w3.org/Submission/SWRL/

15. Ongenae, F., Bleumes, L., Sulmon, N., Verstraete, M., Van Gils, M., Jacobs, A.,
De Zutter, S., Verhoeve, P., Ackaert, A., De Turck, F.: Participatory design of a
continuous care ontology: towards a user-driven ontology engineering methodology.
In: Knowledge Engineering and Ontology, Proceedings. pp. 81–90 (2011)

16. Parsia, B., Sirin, E.: Pellet: An OWL DL reasoner. In: Proceedings of the Third
International Semantic Web Conference (2004)

17. Patel, C., Cimino, J., Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Ma,
L., Schonberg, E., Srinivas, K.: Matching patient records to clinical trials using
ontologies. Springer (2007)

18. Shearer, R., Motik, B., Horrocks, I.: Hermit: A highly-efficient OWL reasoner. In:
OWLED. vol. 432, p. 91 (2008)

19. Verborgh, R., De Roo, J.: Drawing conclusions from linked data on the
web. IEEE Software 32(5) (May 2015), http://online.qmags.com/ISW0515?cid=
3244717&eid=19361&pg=25

20. Wu, Z., Eadon, G., Das, S., Chong, E.I., Kolovski, V., Annamalai, M., Srinivasan,
J.: Implementing an inference engine for RDFS/OWL constructs and user-defined
rules in Oracle. In: Data Engineering, 2008. ICDE 2008. IEEE 24th International
Conference on. pp. 1239–1248. IEEE (2008)

