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OUTLINE AND AIM OF THESIS 

 

Anti-tumor immune-therapy has gathered major attention in the search for innovative 

strategies to fight cancer in a more specific manner. It merges the field of oncology with 

immunology into immuno-oncology, an exciting path that has the potential to dramatically 

improve treatment efficacy and specificity whilst evoking immunological memory and 

prolonged protection against malignancies. A promising immunotherapeutic strategy is cancer 

vaccination which aims to educate dendritic cells at priming cytotoxic T-cell responses that can 

specifically recognize and eliminate tumor cells.  

 
This thesis focuses on the design of immunogenic vaccine microparticles that encapsulate 

cancer cell lysates in view of personalized anti-cancer vaccination based on tumor-associated 

and tumor-specific antigens. The majority of current vaccine approaches involve tumor-

associated antigens and face several drawbacks such as limited applicability and treatment 

failure due to thymic tolerance, mutation or lack of expression. Personalized cancer vaccines 

that contain cancer cell material collected from biopsy or surgery are therefore an interesting 

approach to circumvent these drawbacks and hold potential to evoke more robust immune 

responses specifically tailored to the patient’s unique mutanome. 

 
In total four different strategies are developed that allow for the formulation of cancer cell 

lysate (Chapter 3 and 4) and whole cancer cells (Chapter 5 and 6) under mild conditions into 

microparticles. In addition, efforts are also devoted to enhance the immunogenicity of the 

microparticles to enable not only efficient internalization by dendritic cells but also activation 

of the latter which is required for optimal priming of robust T-cell responses.  

 
Chapter 1 provides a brief introduction of the innate immune system and the adaptive immune 

system that protect the host against invading pathogens. 

 
Chapter 2 describes the dual and complex role of the immune system in tumor development 

and tumor eradication, thereby raising the potential of immune-therapy in anti-cancer 

treatment. In addition, an overview is given of the current approaches for anti-cancer immune-

therapy. 
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Chapter 3 and Chapter 4 involve the formulation of soluble cancer cell lysates.  

Chapter 3 deals with the design of polymer-protein conjugates formed by disulfide exchange. 

For this purpose, polymers are developed that bear pending pyridyldisulfide moieties on their 

backbone. The latter allows for reversible disulfide bonds with either cysteine moieties or 

synthetically introduced thiols on the protein backbone. Finally, the effect of polymer 

conjugation on the in vitro interaction with dendritic cells is investigated. 

 
Chapter 4 elaborates on the encapsulation of cancer cell lysate into porous calcium carbonate 

(CaCO3) microparticles by a one-step co-precipitation reaction. To enhance the immunogenicity 

of the microparticles polymer-conjugated small molecule TLR7/8-agonists are adsorbed onto 

the microparticle surface. Additionally, the ability of these microparticles to activate dendritic 

cells is investigated in vitro. 

 
Chapter 5 and 6 focus on the formulation of whole cancer cells into microparticles. Whole 

tumor cells comprise cell membrane components, and when translated to whole tumor tissue, 

also offer the possibility to co-encapsulate stromal proteins.  

In Chapter 5 living cancer cells are used as templates for layer-by-layer assembly of hydrogen 

bonding species followed by hypo-osmotic treatment to obtain bio-hybrid capsules loaded with 

cancer cell lysate. Immunogenic properties are engineered into the capsules by pre-treatment 

of the cancer cells with heat shock to induce expression of damage-associated molecular 

patterns.  

 
As the layer-by-layer approach is however labor-intensive and time-consuming, an alternative 

strategy is developed in Chapter 6, which presents a single-step method to encapsulate whole 

cancer cells in matrix microparticles composed of oppositely charged polyelectrolytes. In 

analogy to Chapter 4, the immunogenicity of the microparticles is enhanced by incorporation 

of a polymer-conjugated small molecule TLR7/8-agonist. Finally, the interaction of these 

microparticles with dendritic cells is investigated in vitro. 

 
To conclude, an overview of the broader international context and relevance of this thesis 

alongside future perspectives of anti-cancer immune-therapy is provided in Chapter 7. 
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    CHAPTER 1 

THE IMMUNE SYSTEM 

INNATE AND ADAPTIVE PROTECTION 

AGAINST INFECTION 

 

 

 

 

 

 

 

 

ABSTRACT 

The immune system is the defense mechanism of the body against damage and infiltrating 

pathogens such as viruses and bacteria. In addition, it is also involved in avoiding auto-

immunity, i.e. recognition of self-antigens, by induction of self-tolerance. In this regard, the 

immune system consists out of soldiers that are specifically trained to recognize damage and 

foreign patterns and can distinguish between non-self and self. It comprises different cell 

populations and molecules that are part of the innate immune system – i.e. the initial and non-

specific defense mechanism – or the adaptive immune system – i.e. the slower but specific and 

stronger immune response. 
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THE INNATE IMMUNE SYSTEM 

 
Innate immunity is the first line defense of the body against infectious agents. It acts 

immediately upon recognition of damage or pathogen signals in order to confine any threat to 

the host as fast and efficiently as possible. It is non-specific as it can only recognize patterns 

that are common to many pathogens. Nevertheless, it is a very important first line defense 

mechanism to protect the body against any invading pathogen. This ideally leads to elimination 

of the invader but can also lead to merely dampening of the infection as the innate immune 

system is often not strong enough to immediately eradicate the pathogen. This dampening 

effect is however of high importance as it delays the infection and allows the adaptive system 

to gain specificity and strength to ultimately eradicate the respective pathogen (vide infra – the 

adaptive immune system). The major effector mechanisms involved in innate immunity rely on 

neutrophils, monocytes, natural killer (NK)-cells, the complement system and macrophages. 

These innate components all have the ability to bind or take up and subsequently eliminate 

undesirable material through different mechanisms. In addition, they induce inflammation and 

recruit more immune cells to the infected or damaged site to increase the probability of 

pathogen elimination or repair respectively1. Furthermore, this chapter will devote focus to NK-

cells, the complement system and macrophages due to their importance in the following 

chapters.  

 
Natural killer cells are specialized in clearance of cells that are infected with pathogens, mainly 

viruses, and rely on the balance between activation and inhibition. NK-cells express two 

different type of receptors, i.e. inhibiting receptors and activating receptors. First, NK-cells 

express killer-cell immunoglobulin-like receptors (KIRs) and regulate the killer function upon 

interaction with major histocompatibility complex class I (MHC-I) molecules2-4. MHC class I 

molecules are expressed in nucleated cells and interaction of MHC-I with KIRs on the cell 

surface of NK-cells leads to inhibition of the killer function. In contrast, infected cells or cancer 

cells downregulate MHC-I expression to evade immune recognition by the adaptive immune 

system (vide infra – Chapter 2: Tumor immune-escape). Therefore, they do not provide the 

inhibitory signal necessary to suppress NK-cell mediated elimination resulting in lysis of the 

target cells via secretion of perforin and granzymes5,6. Second, activating receptors on the 

surface of NK-cells activate NK-cell reactivity upon interaction with their ligands. These include 
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receptors that interact with cytokines – i.e. interleukin (IL)-1, IL-2, IL-15 and IL-18 – or cell 

surface molecules such as natural killer group 2 member D (NKG2D) and immuno-receptor 

tyrosine-based activating motifs (ITAMs)4,7,8. Therefore, NK-cells can be activated by two cell 

types: [1] cells that lack MHC-I expression such as cancer cells or infected cells; and [2] cells 

that express MHC-I but also exhibit expression of activating cytokines or molecules due to stress 

or damage. In addition, activated NK-cells also produce pro-inflammatory mediators to further 

enhance inflammation and recruitment of other immune cells.  

 
Another important innate protection strategy of the immune system is associated with the 

complement system. The complement system comprises around 35 different soluble and 

membrane-bound proteins and activation leads to a cascade of proteolytic reactions9. Initiation 

of the complement pathway occurs when foreign material is recognized or upon recognition of 

a foreign antigen-antibody complex (vide infra – B-lymphocytes). This results in opsonization of 

the material followed by cell lysis or removal by phagocytes10-12.  

 
Macrophages on the other hand are very important phagocytes, are resident in many tissues 

and are primarily designed to ingest and eliminate dead or dying cells, cell debris and 

pathogens. Due to the presence, although limited in number, of germline-encoded pathogen 

recognition receptors (PRRs) on the cell surface of macrophages, they recognize conserved 

damage- and pathogen-associated molecular patterns, DAMPs and PAMPs, very efficiently13. 

Macrophages ingest pathogens upon recognition of PAMPs resulting in entrapment of the 

respective pathogen in the phagosome followed by fusion with a lysosome leading to enzymatic 

destruction of the infectious agent. In addition, macrophages are also programmed to avoid 

toxic accumulation of cell debris, dead or dying cells and prevent further cell damage upon 

recognition of endogenous DAMPs14. Besides induction of uptake of foreign and dead cell 

material, activation of these PRRs additionally evokes production of pro-inflammatory 

cytokines, type I interferons (IFN) and chemokines leading to local and systemic inflammation 

which in turn results in recruitment and activation of other immune cells1,15,16. 

 
Altogether, the innate immune system is a very important part of immunity as it protects the 

body against infiltrating pathogens and tissue damage while inducing recruitment of other 

innate immune cells and adaptive immune cells. Protection is based on recognition of highly 

conserved patterns, whether or not of microbial origin, and is non-specific which enables 
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immediate interaction and thus fast elimination of the originator. It is however often not 

sufficient to completely eradicate the cause and relies on the adaptive immune system to fully 

eradicate the infection.  

 

DENDRITIC CELLS: THE LINK BETWEEN INNATE AND ADAPTIVE IMMUNITY 

 
Dendritic cells (DCs) are necessary to direct the adaptive immune system specifically against 

invading pathogens and are therefore the critical factor in the interplay between the innate 

and the adaptive immune response. They are the most potent class of antigen presenting cells 

(APCs) due to their high antigen presentation capacity and high PRR expression number 

compared to other APCs such as macrophages or B-cells of which the primary function is 

phagocytosis of foreign and dead cell material (vide supra – The innate immune system) or 

antibody secretion respectively (vide infra – B-lymphocytes), rather than antigen presentation. 

DCs are highly efficient in pathogen recognition, uptake, processing and antigen presentation 

alongside providing the necessary signals for optimal activation of lymphocytes.  

 
1. ANTIGEN PRESENTATION AND CROSS-PRESENTATION 

 
Two main types of DCs exist, i.e. migratory DCs or resident lymphoid DCs. Migratory DCs 

migrate to the site of infection followed by transport to the draining lymph nodes whereas 

resident lymphoid DCs do not migrate and are stimulated in the lymph nodes upon interaction 

with migratory DCs17. In addition a more accurate classification of DCs is currently accepted, 

involving plasmacytoid DCs, CD11b+ DCs and XCR1 DCs of which the latter can be subdivided 

into CD103+ DCs and CD8+ DCs. Detailed description of these subtypes will, however, not be 

adressed in this chapter as it is out of scope and not relevant for the following chapters. 

 
Naive or immature DCs recognize pathogens immediately due to the presence of a high number 

of PRRs on their surface and are therefore experts in capturing antigens via phagocytosis yet 

are inefficient in antigen processing and presentation. However, stimulation of these highly 

expressed PRRs by PAMPs or DAMPs results in strong maturation of the dendritic cells which 

exhibit much lower phagocytic properties in contrast to naive DCs and redistribute MHC 

molecules to the cell surface accompanied with antigen presentation18-20. Prior to antigen 

presentation, the phagocytosed foreign material is processed in the phagosome of the 
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dendritic cell. This occurs through fusion of the phagosome with lysosomes and subsequent 

acidification (pH 4.5-5) resulting in degradation of the material in the presence of lysosomal 

hydrolases. Depending on the origin of material, i.e. exogenous or endogenous, the obtained 

peptides are loaded onto MHC class II or MHC class I molecules respectively which are 

assembled and provided by the endoplasmic reticulum (ER). They differ in tissue distribution 

and type of peptides that are presented due to different processing pathways.  

Class I molecules are expressed by nucleated cells and are therefore widely abundant, whereas 

MHC-II is primarily expressed by antigen presenting cells of which DCs are the most efficient.  

 
MHC class II loading of exogenous peptides is triggered upon release from class II molecules of 

the invariant chain (Ii), a transmembrane chaperone protein, in response to proteases from the 

MHC-II peptide binding site only leaving a short MHC class II-associated invariant-chain peptide 

(CLIP) behind. Subsequently, exchange of CLIP with exogenous peptides can occur in the 

presence of a catalyst chaperone protein HLA-DM which facilitates CLIP release from the MHC 

class II binding cavity and enhances antigen presentation. Following MHC-II loading of these 

peptides, the MHC-II-antigen complex is transported to the cell membrane and presented to 

the environment21-24. In contrast, MHC class I loading occurs to present cytosolic and nuclear 

derived protein fragments at the cell surface. MHC-I presentation is important for the 

establishment of self-tolerance and eradication of intracellular microorganisms and tumors. 

The proteins are degraded in the cytosol of DCs by the proteasome followed by translocation 

of the resulting peptides to the ER via TAP, a transporter associated with antigen presentation. 

Like MHC class II molecules, the MHC-I molecules are stabilized by chaperone proteins in the 

ER lumen and ensure efficient peptide loading. These chaperone proteins include calreticulin, 

ERp57, tapasin and TAP, also called the peptide-loading complex (PLC). In addition, the 

exchange of endogenous peptides with the PLC is facilitated by tapasin similar to HLA-DM that 

catalyzes the exchange on MHC class II molecules25. Finally, the MHC-I-antigen complex is 

transferred to the cell membrane via the Golgi apparatus for antigen presentation22,26,27.  

 
Because exogenously derived proteins are presented onto MHC class II molecules, this 

implicates pathogens should be primarily presented on MHC-II by APCs. However, this is often 

not the case due to the induction of a process called cross-presentation. This process only 

occurs efficiently in dendritic cells which once again points out the unique ability of DCs in 



THE IMMUNE SYSTEM 

22 
 

priming the immune system. Cross-presentation is favored upon interaction of APCs with 

particulate antigens such as pathogens and is a critical process for the eradication of infectious 

agents via the adaptive immune system (vide infra – T-lymphocytes). It involves two main 

pathways, i.e. the TAP-independent vacuolar pathway and the TAP-dependent cytosolic 

pathway. The latter pathway is similar to the standard MHC-I antigen presentation pathway for 

endogenous peptides and is therefore the most abundant. It comprises transfer to the 

cytoplasm of the engulfed proteins mediated by the ER-derived Sec61 translocation complex 

followed by degradation through the proteasome prior to MHC-I loading in the phagosome or 

the endoplasmic reticulum via TAP. In contrast, MHC-I loading in TAP-independent cross-

presentation occurs in the phagosome vesicles and is also proteasome-independent. After 

uptake, the material is degraded by proteases present in the phagosome followed by 

immediate loading of the peptides onto MHC class I molecules provided by the ER and transport 

to the cell membrane28-33. An overview of the different MHC antigen presentation pathways is 

illustrated in Figure 1.  

 

 

 
Figure 1. MHC antigen presentation pathways in dendritic cells - (Figure adjusted from reference 33). 
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2. DC MATURATION 
 
Upon recognition of a pathogen by naive DCs, redistribution of MHC molecules and increased 

antigen presentation ability occurs alongside maturation of the DCs and upregulation of 

costimulatory molecules and cytokine secretion, providing the second and third signal for 

activation of T-cells (vide infra – T-lymphocytes). Co-stimulatory molecules involve the cluster 

of differentiation (CD) molecules, CD80 and CD86, which provide the second signal for optimal 

T-lymphocyte activation via interaction with the CD28 receptor on the T-cell surface34,35. In 

addition, the third signal for T-cell activation induces, depending on the type of cytokines, 

different T-lymphocyte populations. Taken together, this shows the high potential of dendritic 

cells as they not only very efficiently present pathogenic peptides to the adaptive immune 

system but are also able to optimally prime the immune cells against the respective  

pathogen36-38.  

 
Depending on the type of pathogen, different PRRs are triggered. Several PRRs exist, involving 

toll-like receptors (TLRs), retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), nucleotide-

binding oligomerization domain (NOD)-like receptors (NLRs) and C-type lectin receptors (CLRs) 

of which the TLRs are the most widely explored and well characterized15,39,40. Different types of 

TLRs exist and so far ten toll-like receptors have been identified in humans referred from TLR1 

up to TLR10. Some TLRs are cell membrane bound involving the TLRs 1, 2, 4, 5 and 6, all of 

which primarily recognize bacterial products whereas the TLRs 3, 7, 8 and 9 are confined in 

intracellular compartments and focus on viral material41-44. Cell surface TLRs mainly interact 

with microbial cell membrane components such as lipids, lipoproteins and protein. TLR1 

recognizes lipoproteins and oligosaccharides originating from the cell wall of bacteria and 

involves hydrophobic interactions whereas TLR6 interacts with lipoteichoic acids and is 

characterized by hydrophilic ligand binding. Both TLR1 and TLR6 form heterodimers with TLR2 

and by consequence lead to hydrophobic and hydrophilic interactions respectively45,46. TLR4 is 

the most studied receptor and is targeted by lipopolysaccharide (LPS) and its derivatives such 

as monophosphoryl lipid A (MPLA)47. LPS or endotoxins are a part of the cell membrane of 

Gram-negative bacteria. Note, that TLR2 and TLR4 are also present in intracellular 

compartments of antigen presenting cells48,49. TLR5 recognizes the motility filament of bacteria 

flagellin and flagellin-related peptides50,51. Despite the fact that TLR10 is an orphan receptor 

without defined ligands, it has been shown to recognize specific pathogens such as Listeria, in 
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collaboration with TLR2, and influenza A virus43,52,53. Intracellular TLRs are exclusively found in 

the phagosomal compartments of dendritic cells and macrophages. TLR3 binds specifically to 

double-stranded viral ribonucleic acid (dsRNA)54 whereas TLR7 and TLR8 recognize single-

stranded RNA (ssRNA) 55. The TLR9 receptor on the other hand interacts with foreign 

deoxyribonucleic acid (DNA) and is activated by oligonucleotides such as CpG (unmethylated 

cytosine guanine) sequences41,43,56,57.  

 

ADAPTIVE IMMUNITY 

 
In contrast to the innate immune system, the adaptive immune system requires more time to 

gain reactivity against invading pathogens. Adaptive immunity is specifically primed against 

every new infectious agent that enters the body by antigen presenting cells, in particular by 

dendritic cells (vide supra – Dendritic cells) and is therefore slower but stronger and highly 

specific. It involves B- and T-lymphocytes that, upon optimal activation by dendritic cells, 

differentiate into plasma cells or memory B-cells, CD4+ T-helper (TH) cells and CD8+ effector T-

cells or memory T-cells respectively which all have different functions in combatting infections. 

In general, B-lymphocytes give rise to humoral responses whereas T-lymphocytes induce 

cellular immunity. 

 
1. T-LYMPHOCYTES AND CELLULAR IMMUNITY 

 
Activation of T-lymphocytes results in cell-mediated immune responses as it gives rise to 

effector T-cells such as CD8+ cytotoxic T-lymphocytes (CTLs), CD4+ T-helper cells and memory 

T-cells which are primed upon recognition of antigen by naive T-cells followed by activation and 

clonal expansion upon optimal stimulation. T-cells require three signals provided by antigen 

presenting cells to be fully activated: [1] recognition of peptide-MHC complex by the T-cell 

receptor (TCR); [2] co-stimulation of the CD28 receptor on the T-cell receptor; and [3] cytokines 

that influence the differentiation into the different types of effector cells, i.e. CTLs or T-helper 

cells (vide supra – T-lymphocytes). Inappropriate stimulation of naive T-cells however results in 

functional inactive or anergic T-cells and does not result in an immune response58.  

 
T-helper cells do not directly eradicate infected cells but aid the immune reaction via various 

mechanisms. The major subtypes of TH cells are TH1-, TH2-, TH17-cells and T follicular helper 
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cells or TFH cells and are defined by their different cytokine profile production59,60. TH2-cells are 

involved in allergic responses and immunity against parasites through secretion of IL4 and IL-5 

whereas TFH cells provide direct help to B-cells via CD40 ligand expression (vide infra – B-

lymphocytes). TH17 cells are involved in early adaptive responses against extracellular 

pathogens and fungi and produce IL-17, IL-21 and IL-22. TH1-cells facilitate CTL- and 

macrophage-mediated killing of microorganisms by producing TH1-cytokines such as IFN-γ and 

IL-2 but also enhance the CTL-response by expression of the CD40 ligand58,61-63. IL-2 is a cytokine  

that is also secreted by the T-cell itself to induce rapid proliferation by interaction of the 

interleukin with the IL-2-receptor that is highly expressed on the surface of T-cells. Therefore, 

secretion of IL-2 by TH1-cells acts as a growth factor which further amplifies the CD8+ T-

lymphocyte proliferation. Expression of the CD40 ligand on the other hand has an indirect effect 

on T-cells by increasing the expression of co-stimulatory molecules on antigen presenting cells. 

Upon efficient T-cell priming and clonal expansion, the resulting CTLs very efficiently recognize  

 

 

 
Figure 2. Cellular immunity against infection. 
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and kill their target cells such as intracellular microorganisms or cancer cells upon recognition 

of the foreign antigen presented on the cell surface via MHC class I molecules. The target cells 

are lyzed or killed by apoptosis induction upon binding of the TCR with the MHC-antigen 

complex on the target cell through secretion of cytotoxins such as perforin, granzymes and Fas 

ligand (FasL)64. Figure 2 illustrates cellular immunity to combat infection. 

 

2. B-LYMPHOCYTES AND HUMORAL IMMUNITY 
 
In contrast to T-cell mediated immunity, B-lymphocytes evoke a humoral immune response via 

secretion of antibodies. B-lymphocytes are triggered by antigens and T-helper cells and 

differentiate into antibody-producing plasma cells and memory B-cells. Following uptake of an 

antigen by B-cells, the antigen is processed and presented via MHC class II on their surface65-67. 

Recognition and binding of the peptide-MHC-II complex to the TCR of CD4+ TFH cells, stimulated 

by the same antigen, offers additional stimulation of B-cells via interaction of the CD40 receptor 

with the CD40 ligand and cytokines leading to proliferation and differentiation into plasma cells 

and B memory cells68-71. Plasma cells secrete antibodies directed to the respective antigen and 

practice immunity through three mechanisms. The first pathway involves neutralization prior 

to the invasion of the target in healthy cells. Second, antibody binding gives rise to opsonization 

as it facilitates uptake by phagocytes such as macrophages and leads to antibody-dependent 

cellular cytotoxicity (ADCC). Macrophages express the Fc-receptor on their surface which 

recognizes the constant and invariable region of antibodies, i.e. the Fc-region, very efficiently.  

 

 

 
Figure 3. Humoral immunity against infection. 
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Thirdly, the antigen-antibody complex can also trigger removal by the complement system 

through Fc-region recognition followed by complement-dependent cytotoxicity (CDC)58. 

Activation of B-cells and humoral immune mediated fight against infection is illustrated in 

Figure 3. 

 

CONCLUSION 

 
To conclude, the immune system is a complex network of innate and adaptive immune cells 

that work together to eradicate invading pathogens through unspecific and specific pathways 

respectively. There is an important interplay between the innate and the adaptive immune 

response which allows the adaptive immune system to gain specificity and power against the 

infection that is initially attacked and restrained by the innate immune system. The essential 

immune cells linking the innate and adaptive immunity are the dendritic cells that prime the 

adaptive immune system specifically against every new pathogen leading to effector  

T-lymphocytes and antibodies that target and kill the invader directly or indirectly while 

establishing immunological memory that protects the host upon encounter of the same 

infection in the future.  



THE IMMUNE SYSTEM 

28 
 

REFERENCES 

 
1. Takeuchi O, Akira S. Pattern Recognition Receptors and Inflammation. Cell;140:805-820. 

 
2. Purdy AK, Campbell KS. Natural killer cells and cancer: Regulation by the killer cell Ig-like 
receptors (KIR). Cancer Biology & Therapy.2009;8:2209-2218. 
 
3. Jost S, Altfeld M. Control of human viral infections by natural killer cells. Annual review of 
immunology.2013;31:163-194. 
 
4. Pegram HJ, Andrews DM, Smyth MJ, Darcy PK, Kershaw MH. Activating and inhibitory receptors 
of natural killer cells. Immunol Cell Biol.2011;89:216-224. 
 
5. Moretta A, Marcenaro E, Parolini S, Ferlazzo G, Moretta L. NK-cells at the interface between 
innate and adaptive immunity. Cell death and differentiation.2007;15:226-233. 
 
6. Rak GD, Mace EM, Banerjee PP, Svitkina T, Orange JS. Natural killer cell lytic granule secretion 
occurs through a pervasive actin network at the immune synapse. PLoS biology.2011;9:e1001151. 
 
7. Vivier E, et al. Innate or adaptive immunity? The example of natural killer cells. 
Science.2011;331:44-49. 
 
8. Lanier LL. Up on the tightrope: natural killer cell activation and inhibition. Nat 
Immunol.2008;9:495-502. 
 
9. Degn SE, Thiel S. Humoral Pattern Recognition and the Complement System. Scandinavian 
journal of immunology.2013;78:181-193. 
 
10. Sarma JV, Ward PA. The complement system. Cell and Tissue Research.2011;343:227-235. 
 
11. Trouw LA, Daha MR. Role of complement in innate immunity and host defense. Immunology 
Letters.2011;138:35-37. 
 
12. Pangburn MK, Ferreira VP, Cortes C. Discrimination between host and pathogens by the 
complement system. Vaccine.2008;26, Supplement 8:I15-I21. 
 
13. Akira S, Uematsu S, Takeuchi O. Pathogen Recognition and Innate Immunity. Cell;124:783-801. 
 
14. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev 
Immunol.2011;11:723-737. 
 
15. Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition ARTICLE. International 
Immunology.2009;21:317-337. 
 
16. Medzhitov R. Recognition of microorganisms and activation of the immune response. 
Nature.2007;449:819-826. 
 
17. Segura E, Villadangos JA. Antigen presentation by dendritic cells in vivo. Curr Opin 
Immunol.2009;21:105-110. 



CHAPTER 1 

29 
 

18. Shin J-S, Ebersold M, Pypaert M, Delamarre L, Hartley A, Mellman I. Surface expression of MHC 
class II in dendritic cells is controlled by regulated ubiquitination. Nature.2006;444:115-118. 
 
19. Villadangos JA, Schnorrer P, Wilson NS. Control of MHC class II antigen presentation in dendritic 
cells: a balance between creative and destructive forces. Immunol Rev.2005;207:191-205. 
 
20. Wilson NS, El-Sukkari D, Villadangos JA. Dendritic cells constitutively present self antigens in 
their immature state in vivo and regulate antigen presentation by controlling the rates of MHC class II 
synthesis and endocytosis. Blood.2004;103:2187-2195. 
 
21. Roche PA, Furuta K. The ins and outs of MHC class II-mediated antigen processing and 
presentation. Nat Rev Immunol.2015;15:203-216. 
 
22. Jensen PE. Recent advances in antigen processing and presentation. Nat Immunol.2007;8:1041-
1048. 
 
23. Robinson JH, Delvig AA. Diversity in MHC class II antigen presentation. 
Immunology.2002;105:252-262. 
 
24. ten Broeke T, Wubbolts R, Stoorvogel W. MHC class II antigen presentation by dendritic cells 
regulated through endosomal sorting. Cold Spring Harbor perspectives in biology.2013;5:a016873. 
 
25. Sadegh-Nasseri S, Chen M, Narayan K, Bouvier M. The convergent roles of tapasin and HLA-DM 
in antigen presentation. Trends Immunol.2008;29:141-147. 
 
26. Neefjes J, Jongsma ML, Paul P, Bakke O. Towards a systems understanding of MHC class I and 
MHC class II antigen presentation. Nat Rev Immunol.2011;11:823-836. 
 
27. Hulpke S, Tampe R. The MHC I loading complex: a multitasking machinery in adaptive immunity. 
Trends in biochemical sciences.2013;38:412-420. 
 
28. Jutras I, Desjardins M. Phagocytosis: at the crossroads of innate and adaptive immunity. Annual 
review of cell and developmental biology.2005;21:511-527. 
 
29. Houde M, et al. Phagosomes are competent organelles for antigen cross-presentation. 
Nature.2003;425:402-406. 
 
30. Guermonprez P, Saveanu L, Kleijmeer M, Davoust J, van Endert P, Amigorena S. ER-phagosome 
fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature.2003;425:397-
402. 
 
31. Ramachandra L, Simmons D, Harding CV. MHC molecules and microbial antigen processing in 
phagosomes. Curr Opin Immunol.2009;21:98-104. 
 
32. Adiko AC, Babdor J, Gutiérrez-Martínez E, Guermonprez P, Saveanu L. Intracellular Transport 
Routes for MHC I and Their Relevance for Antigen Cross-Presentation. Frontiers in immunology.2015;6. 
 
33. Villadangos JA., Schnorrer P. Intrinsic and cooperative antigen-presenting functions of dendritic-
cell subset in vivo. Nat Rev Immunol.2007;7:543-555. 
 
34. Beyersdorf N, Kerkau T, Hunig T. CD28 co-stimulation in T-cell homeostasis: a recent 
perspective. Immunotargets Ther.2015;4:111-122. 



THE IMMUNE SYSTEM 

30 
 

35. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev 
Immunol.2013;13:227-242. 
 
36. Bousso P. T-cell activation by dendritic cells in the lymph node: lessons from the movies. Nat 
Rev Immunol.2008;8:675-684. 
 
37. Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature.2007;449:419-426. 
 
38. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature.1998;392:245-
252. 
 
39. Bowie AG, Unterholzner L. Viral evasion and subversion of pattern-recognition receptor 
signalling. Nat Rev Immunol.2008;8:911-922. 
 
40. Sellge G, Kufer TA. PRR-signaling pathways: Learning from microbial tactics. Seminars in 
Immunology.2015;27:75-84. 
 
41. Mancini RJ, Stutts L, Ryu KA, Tom JK, Esser-Kahn AP. Directing the Immune System with Chemical 
Compounds. ACS Chemical Biology.2014;9:1075-1085. 
 
42. Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat 
Immunol.2004;5:987-995. 
 
43. Kawasaki T, Kawai T. Toll-Like Receptor Signaling Pathways. Frontiers in 
immunology.2014;5:461. 
 
44. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-
like receptors. Nat Immunol.2010;11:373-384. 
 
45. Motoi Y, et al. Lipopeptides are signaled by Toll-like receptor 1, 2 and 6 in endolysosomes. Int 
Immunol.2014;26:563-573. 
 
46. Kang JY, et al. Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 
heterodimer. Immunity.2009;31:873-884. 
 
47. Ireton GC, Reed SG. Adjuvants containing natural and synthetic Toll-like receptor 4 ligands. 
Expert Rev Vaccines.2013;12:793-807. 
 
48. Leifer CA, Medvedev AE. Molecular mechanisms of regulation of Toll-like receptor signaling. 
Journal of Leukocyte Biology.2016. 
 
49. Brubaker SW, Bonham KS, Zanoni I, Kagan JC. Innate Immune Pattern Recognition: A Cell 
Biological Perspective. Annual review of immunology.2015;33:257-290. 
 
50. Botos I, Segal DM, Davies DR. The structural biology of Toll-like receptors. Structure (London, 
England : 1993).2011;19:447-459. 
 
51. Smith KD, Ozinsky A. Toll-like receptor-5 and the innate immune response to bacterial flagellin. 
Current topics in microbiology and immunology.2002;270:93-108. 
 



CHAPTER 1 

31 
 

52. Lee SM, et al. Toll-like receptor 10 is involved in induction of innate immune responses to 
influenza virus infection. Proceedings of the National Academy of Sciences of the United States of 
America.2014;111:3793-3798. 
 
53. Regan T, et al. Identification of TLR10 as a key mediator of the inflammatory response to Listeria 
monocytogenes in intestinal epithelial cells and macrophages. Journal of immunology (Baltimore, Md : 
1950).2013;191:6084-6092. 
 
54. Botos I, Liu L, Wang Y, Segal DM, Davies DR. The toll-like receptor 3:dsRNA signaling complex. 
Biochimica et biophysica acta.2009;1789:667-674. 
 
55. Vasilakos JP, Tomai MA. The use of Toll-like receptor 7/8 agonists as vaccine adjuvants. Expert 
Rev Vaccines.2013;12:809-819. 
 
56. Bauer S. Toll-like receptor 9 processing: the key event in Toll-like receptor 9 activation? Immunol 
Lett.2013;149:85-87. 
 
57. Kindrachuk J, Potter J, Wilson HL, Griebel P, Babiuk LA, Napper S. Activation and regulation of 
toll-like receptor 9: CpGs and beyond. Mini reviews in medicinal chemistry.2008;8:590-600. 
 
58. Murphy K, Travers P, Walport M, Janeway C. Janeway's immunobiology.  New York: Garland 
Science, 2012. 
 
59. Zhu J, Yamane H, Paul WE. Differentiation of Effector CD4+ T Cell Populations. Annual review of 
immunology.2010;28:445-489. 
 
60. Luckheeram RV, Zhou R, Verma AD, Xia B. CD4+(+)T cells: differentiation and functions. Clin Dev 
Immunol.2012;2012:925135. 
 
61. Romagnani S. T-cell subsets (TH1 versus TH2). Annals of allergy, asthma & immunology : official 
publication of the American College of Allergy, Asthma, & Immunology.2000;85:9-18; quiz 18, 21. 
 
62. Cosmi L, Maggi L, Santarlasci V, Liotta F, Annunziato F. T-helper cells plasticity in inflammation. 
Cytometry Part A : the journal of the International Society for Analytical Cytology.2014;85:36-42. 
 
63. Zhu J, Paul WE. Heterogeneity and plasticity of T-helper cells. Cell research.2010;20:4-12. 
 
64. Andersen MH, Schrama D, Thor Straten P, Becker JC. Cytotoxic T cells. The Journal of 
investigative dermatology.2006;126:32-41. 
 
65. Zhang Y, Garcia‐Ibanez L, Toellner KM. Regulation of germinal center B‐cell differentiation. 
Immunological Reviews.2016;270:8-19. 
 
66. Tarlinton D, Radbruch A, Hiepe F, Dörner T. Plasma cell differentiation and survival. Current 
Opinion in Immunology.2008;20:162-169. 
 
67. Xu W, Banchereau J. The Antigen Presenting Cells Instruct Plasma Cell Differentiation. Frontiers 
in immunology.2013;4:504. 
 
68. Crotty S. Follicular helper CD4+ T cells (TFH). Annual review of immunology.2011;29:621-663. 
 



THE IMMUNE SYSTEM 

32 
 

69. Ma CS, Deenick EK, Batten M, Tangye SG. The origins, function, and regulation of T follicular 
helper cells. J Exp Med.2012;209:1241-1253. 
 
70. Vinuesa CG, Linterman MA, Yu D, MacLennan IC. Follicular Helper T Cells. Annual review of 
immunology.2016;34:335-368. 
 
71. Fazilleau N, McHeyzer-Williams LJ, McHeyzer-Williams MG. Local development of effector and 
memory T-helper cells. Current Opinion in Immunology.2007;19:259-267.



 

33 
 



 

34 
 

  



 

35 
 

CHAPTER 2 
 

ONCOLOGY MEETS IMMUNOLOGY 

SHIFTING THE BALANCE OF IMMUNE-

SUPPRESSION TOWARDS IMMUNE-ACTIVATION 

VIA ANTI-TUMOR IMMUNE-THERAPY 
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INTRODUCTION 

 
Cancer remains one of the leading causes of death worldwide and it is stated by the WHO that, in 

the next 20 years, the number of new cancer patient cases will almost double. It is predicted that  

40 % of men and women will be diagnosed with cancer in their life. Despite this increase in 

incidence, the mortality rate is decreasing which can be attributed to the extensive research that 

has been performed the past years resulting in new strategies to tackle malignancies more 

efficiently. Conventional therapies for cancer treatment involve hormone therapy, radiotherapy 

and chemotherapy. Hormone therapy is only applicable to malignancies that rely on hormones to 

grow such as breast and prostate cancer, therefore the range of application is narrow. The two 

most conventional treatments are radiotherapy and chemotherapy, which aim to destroy rapidly 

dividing cancer cells by respectively X-ray radiation – to evoke DNA-damage – or by drugs – to 

affect cancer cells at different stages of cell division. Both techniques however are prone to serious 

side effects due to lack of specificity. Moreover, these therapies do not seem to evoke a prolonged 

protection of the patient against relapse and metastasis. One of the most exciting developments 

in this regard lies in the interface of oncology and immunology and prompted the emergence of 

the immuno-oncology field. The rationale is based on a term named ‘cancer immunoediting’1. This 

states that the immune system protects the host against tumor development 

(immunosurveillance) but interestingly also can promote tumor growth (tumor-immune-escape)2-

4. Intensive research has been done to elucidate this dual role and the complex relationship 

between the immune system and cancer in order to find similarities in cancer pathogenesis to 

potentially enable targeting of the foundation of malignancies in general and induce a prolonged 

protective effect against cancer.  

 
Cancer immunoediting consists out of three E’s: elimination, equilibrium and escape and explains 

the link between cancer pathogenesis and immunology as a dynamic bidirectional cross-talk3,5. The 

elimination phase comprises the immunosurveillance stage where malignant cells are successfully 

eradicated by a competent immune system. Innate cells are alarmed by inflammation or by 

malignant cellular transformation and lead to immune cell recruitment (NK-cells, macrophages, 

dendritic cells) via local production of IFN-γ and chemokines (vide supra – Chapter I: The innate 
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immune system). Immature dendritic cells are activated after which they mature and migrate to 

the draining lymph node where CD4+ TH1 T-cell activation and CD8+ CTL proliferation occurs 

followed by T-cell homing to the tumor site and tumor-specific eradication of the cancer cells3,4,6. 

Unfortunately, some tumor cells are able to avoid immune-destruction by entering a dynamic 

equilibrium also called the tumor dormant state, the longest of the three phases, which can persist 

for several years in the host. This equilibrium encompasses a balance between promotion of 

elimination versus persistence and relies mainly on CTL-mediated immunity7,8. In this phase cancer 

immunoediting occurs, yielding potential resistance to an immune attack which arises from the 

enormous plasticity of the cancer cell genome as a result of the heterogeneity and multiple types 

of genetic instability9-11. The resulting resistant variants enter the escape phase via a combination 

of three mechanisms involving lower immunogenicity, increased survival and an immune-

suppressive tumor microenvironment (TME) allowing cell expansion.  

 

TUMOR IMMUNE-ESCAPE 

 
The first escape mechanism leads to lower immunogenicity of the tumor evoking a decreased 

recognition of the cancer cells by the adaptive immune system. One of the major effectors of this 

escape strategy implies the modification of the antigen presentation machinery12. This process is 

altered through loss of MHC class I molecules or downregulation in more than 50 % of all tumors 

but can also include antigenic drift, lack of co-stimulation, TAP-defects and low-molecular-weight 

protein (LMP)-2 and LMP-7 deficiencies13-15. Another important cause of obtained lower 

immunogenicity and growth facilitation involves the absence or abnormal function of the IFN-γ 

receptor pathway. As described above, IFN-γ plays a role in increasing tumor immunogenicity via 

promotion of tumor cell recognition and elimination. Thus, by lowering their IFN-γ sensitivity 

tumors can escape these events6,16,17.  

 
Second, tumor cells can avoid immune-destruction via survival strategies and thus CTL-induced 

apoptosis resistance. This is obtained through over-expression of anti-apoptotic molecules  

(such as B-cell lymphoma-2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xL), Fas-associated death 

domain (FADD)-like interleukin (IL)-1β-converting enzyme (FLICE)-inhibitory protein (FLIP) and 
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survivin), signal transducer and activator of transcription (STAT)-3 activation and/or through lysis 

resistance acquired by expression of mutated death receptors2,18-21.  

 
And finally, the third tumor-escape mechanism comprises the immune-suppressive 

microenvironment enclosing and protecting the tumor cells by counterattacking the immune 

response. The tumor microenvironment ensures that cancer cells cannot be reached or eliminated 

by anti-tumor effector cells via different routes. Several cell populations play a vital role in tumor 

cell development, survival, growth and metastasis, all giving rise to multiple immune-escape or 

immune-suppressive actions forming a complex network that very efficiently evades or influences 

the immune system. One of the most critical cell types involved in immune-suppression are 

myeloid-derived suppressor cells (MDSCs). They accumulate preferably in peripheral lymphoid 

organs or in tumor tissue, depending on their main function. Recruitment of MDSCs is regulated 

by a variety of chemokines produced by the tumor such as CC chemokine ligand (CCL)-2, CCL5, 

CCL7, CXC chemokine ligand (CXCL)-1, CXCL5 and CXCL822. Following chemoattraction, production 

of chronic inflammation factors by the malignant tissue finally drives the MDSCs into their immune-

suppressive function. It is known that the tumor environment is chronically inflamed which 

maintains tumorigenesis23 and evokes MDSC recruitment via production of pro-inflammatory 

growth factors such as vascular endothelial growth factor (VEGF), granulocyte(-macrophage) 

colony-stimulating factor (G(M)-CSF) and pro-inflammatory mediators such as prostaglandin E2 

(PGE-2), IL-1β and IL-1722,24.  

 
MDSCs can influence the immune system via multiple mechanisms and suppress the cytotoxic 

activity of CD8+ T-cells in various ways involving expression arginase (Arg1) and indoleamine  

2,3-dioxygenase (IDO) giving rise to depletion of L-arginine (L-Arg) and L-tryptophan (L-Trp) 

respectively22,25-27. Arginase is an enzyme that degrades L-Arg and leads to anergic T-cells unable 

to proliferate as L-Arg is essential for expression of CD3, which is necessary for signal transduction 

of the T-cell receptor (TCR). IDO, on the other hand, degrades the essential amino acid L-Trp for  

T-cell survival and expansion28-30. In addition to depletion of L-Arg and L-Trp, the availability of  

L-cysteine (L-Cys) is also lowered by MDSCs. Naive T-cells rely on APCs to acquire L-Cys as they are 

unable to take up or to de novo synthesize this amino acid. MDSCs are also unable to synthesize  
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L-Cys independently and consequently take up high amounts of L-Cys thereby quickly limiting the 

availability of L-Cys for T-cells in their proximity22,27,31,32. Summarized, by limiting several amino 

acids, T-cell activation is halted by MDSCs as metabolic changes are essential for T-cell 

proliferation22,24.  

 
Next to deprivation of nutrients, MDSCs develop several other immune-suppressive strategies to 

evade the anti-tumor immune attack force. On one hand, MDSCs produce NAPDH oxidase (Nox-2) 

and nitric oxide synthase 2 (Nos-2) yielding hyper-production of reactive oxygen species (ROS) and 

nitric oxide (NO)22,33. ROS evoke cellular damage, thereby enhancing inflammation and apoptosis 

of T-cells whereas NO can react with different compounds yielding toxicity. The latter prevents  

IL-2 signaling which negatively regulates effector and memory T-cell proliferation and also 

synergistically enhances the activity of Arg1. On the other hand, MDSCs also inhibit T-cell migration 

and induce T-cell exhaustion by downregulation of selectins and expression of the programmed 

death-ligand 1 (PDL1) respectively22,31,34. T-cell migration is impaired as selectins are required for 

naive T-cells to adhere to and enter the tumor draining lymph nodes or the tumor 

microenvironment35,36. T-cell exhaustion achieved by PDL1-expression on the surface of MDSCs 

will be discussed in detail further on in this section. 

 
MDSCs alongside tumor cells also recruit regulatory T-cells (Treg cells) to the TME which are, just 

as MDSCs, crucial cells involved in immune-escape. Treg cells are a subpopulation of CD4+ T-cells 

that, under normal conditions, suppress the activation of self-antigen effector immune cells to limit 

autoimmunity and inflammation. However, in cancer tissue, natural residing Treg cells are 

recruited alongside induction of Treg cells arising from naive CD4+ T-cells in order to avoid cancer 

cell elimination by anti-tumor specific T-cells and to escape immune-destruction. Treg cells 

suppress the immune system via various ways one of which is secretion of immune-suppressive 

cytokines such as IL-10 and TGF-β to evoke inhibition of expansion and function of CD8+ effector 

T-cells and dendritic cell maturation26,37. In addition, Treg cells secrete VEGF which positively 

influences angiogenesis, the formation of new blood vessels, and granzymes for cytolysis of 

effector immune cells37,38. Treg can also cause local IL-2 depletion and starve effector cells leading 

to apoptosis24,39-41. Next to cytokine production and IL-2 deprivation, Treg cells can very efficiently 
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promote tolerogenic dendritic cells (tol-DCs) through inhibition of costimulatory molecules37. In 

healthy individuals tolerogenic dendritic cells maintain peripheral tolerance against self-antigens, 

however, in a tumor setting tol-DCs induce T-cell anergy, T-cell deletion and/or T-cell suppression. 

T-cell anergy is induced when one of the three crucial signals are not provided to the T-cells by the 

dendritic cells (vide supra – Chapter 1). Tolerogenic DCs often lack co-stimulatory molecule 

stimulation by CD80 or CD86 and downregulate pro-inflammatory cytokines while upregulating 

anti-inflammatory cytokines such as TGF-β and IL-1026,42-44. In addition, Treg cells directly impair 

the cytotoxic activity and proliferation of CD8+ T-cells via immune checkpoint molecules 

programmed death ligand-1 (PDL1) and cytotoxic T-lymphocyte-associated antigen (CTLA-4) 

through interaction with the programmed death 1 (PD-1) and CD28 receptors respectively45-48. 

Expression of CTLA-4 on the surface of the Treg cells results in downregulation of costimulatory 

molecules and thus T-cell anergy alongside increased induction of IDO secretion by DCs. CTLA-4 is 

a CD28 homolog and has a much higher affinity for CD80 and CD86 compared to the CD28-receptor 

present on the surface of T-cells. Unlike CD80/CD86, co-stimulation of naive T-cells upon CD28-

receptor interaction with CTLA-4 does not evoke a stimulatory signal which in turn inhibits optimal 

T-cell activation48-50. Whereas CTLA-4 is confined to T-cells, PD-1 is more broadly expressed on 

activated T-cells, B-cells and myeloid cells. Expression of the programmed death ligand 1 (PDL1) by 

Treg cells induces a co-inhibitory signal that is correlated with activation-induced apoptosis and 

anergy47,48,51. Note that PDL1 can also be expressed by the tumor cells themselves as well as 

MDSCs, macrophages and dendritic cells. 

 
Finally, in addition to T-lymphocyte reprogramming, MDSCs also account for reprogramming of 

other immune cells such as macrophages, natural killer cells and dendritic cells, further fortifying 

the unfavorable atmosphere for anti-tumor immune cells near the TME22,52. These three immune 

cell populations are all attracted by the tumor tissue itself through production of pro-inflammatory 

mediators such as chemokines, cytokines and eicosanoids evoked by chronic inflammation of the 

tumor site. First, macrophages are part of the initial barrier of the innate immune system against 

intracellular pathogens. They differentiate under influence of IFN-γ and/or LPS into  

M1-macrophages and promote TH1-polarization of CD4+ lymphocytes by IL-12 production. In turn, 

MDSCs can subvert macrophages to the M2-phenotype via production of IL-10. This phenotype is 
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also described as tumor-associated macrophages (TAMs) which are tumor-promoting instead of 

tumoricidal53-58. TAMs promote tumor growth and angiogenesis and suppress anti-tumor immune 

responses through production of activation factors such as VEGF and epidermal growth factor 

(EGF) or through expression of type-2 inflammatory cytokines like IL-10 and TGF-β respectively. 

The second population involves NK-cells which are the cytotoxic innate equivalent of CTLs in the 

adaptive system. They can very efficiently kill tumor cells that lack or downregulate MHC-I 

expression and therefore can’t be recognized anymore by cytotoxic CD8+ T-cells59,60. In proximity 

to the TME and MDSCs however, the cell-mediated cytotoxicity of NK-cells is damaged as MDSCs 

inhibit the production of perforins by the cells which is essential for apoptosis induction via cell 

lysis22,61. Thirdly, DCs can also be reprogrammed by MDSCs, just as Treg cells. Subversion towards 

the type-2 tolerogenic phenotype favoring tumor outgrowth and immune tolerance by locally 

releasing factors as IDO, TGF-β and IL-1022,24,43,62. On the other hand, T-cell deletion is achieved by 

the tol-DCs through production of the Fas ligand which interacts with the Fas receptor present on 

the T-cell membrane triggering a cascade of intracellular signaling for induction of programmed 

cell death or apoptosis63,64. Additionally, suppression of T-cell mediated anti-tumor immunity is 

obtained by a defective antigen presentation function of the DCs. Finally, tol-DCs can also influence 

T-cell proliferation via expression of PDL1 like MDSCs and Treg cells42,65,66. 

 
Altogether, the tumor microenvironment, whether directly or indirectly, recruits immune cells via 

secretion of chemokines and reprograms immune cells in pro-inflammatory and pro-tumoral 

phenotypes via release of cytokines and co-inhibitory signals. In turn, these immune-suppressive 

immune cells recruit more immune cells enabling a vicious circle of a strong unfavorable 

atmosphere for anti-tumor immune cells. The recruitment and activation of this complex network 

of immune-suppressive cells and the applied strategies to lower the immunogenicity and increase 

apoptosis resistance by cancer cells, are summarized and illustrated in Figure 1.  

 
Importantly, immune-suppressive cells are part of a strong network surrounding the tumor, called 

the tumor stroma, involving stromal cells, blood vessels, cancer-associated fibroblasts (CAFs) and 

the extracellular matrix (ECM). The tumor stroma provides three essential pro-tumoral strategies: 

[1] an immune-suppressive environment for anti-tumor immune cells near the TME via various 
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mechanisms that are described above in detail by immune-suppressive cells; [2] a physical barrier 

for immune cells to enter the microenvironment; and [3] the supply of the necessary high amount 

of nutrients67. The invasion of the tumor tissue with anti-tumor immune cells is physically blocked 

due to stiffening of the ECM caused by crosslinking of structural proteins such as collagen and 

elastin catalyzed by lysyl oxidase (LOX) produced by CAFs68,69. Due to rapid proliferation, cancer 

cells quickly exhaust nutrients and oxygen which limits tumor progression and triggers the release 

of pro-angiogenic factors such as VEGF, EGF and fibroblast growth factor (FGF) by tumor cells, 

immune cells, stromal cells as well as CAFs to promote angiogenesis69-72. However, the synthesis 

of new blood vessels results in immature vessels leading to irregular blood flow, vascular leakiness, 

chaotic architecture and thus fails to provide the required amount of oxygen to the cancer cells. 

The tumor microenvironment stays therefore always hypoxic which was initially thought to be a 

limiting factor for tumor growth. However, it has been elucidated that the TME can adapt itself to 

prolonged hypoxic states and the latter promotes malignant progression (invasion, metastasis) and 

increases resistance to conventional therapies73-75. In addition, cancer cells upregulate glycolysis 

upon nutrient shortage to support cell viability and proliferation resulting in increased conversion 

of glucose into lactate73,76-79. The latter evokes acidosis, acts as metabolic fuel for aerobic tumor 

regions, induces angiogenesis and suppresses immune cells. This further contributes to tumor 

growth and immune evasion.  

 
In conclusion: tumor immune-escape is a very complex strategy of cancer cells to evade eradication 

by the immune system comprising lower immunogenicity of the tumor cells, apoptosis resistance, 

recruitment of immune-suppressive MDSCs and Treg cells, damaged CTL and NK-cell activity, 

impaired functionality of dendritic cells, shift from TH1 to TH2 immune responses, physical barrier 

formation preventing tumor infiltration of immune cells, angiogenesis and hypoxia. The combined 

immune-suppressive functions of the different cell populations along with the pro-tumoral 

influence of the chronically inflamed tumor tissue clearly show the complexity of the paradoxical 

role of the immune system in cancer progression and points out the evident need for a multistep 

approach in the battle against cancer. 
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Figure 1. Tumor immune-escape mechanisms.
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CANCER IMMUNE-THERAPY 

 
Extensive research over the past two decades yielded better insight in how the immune system 

can positively or negatively influence malignant transformation and it is clear that subtle 

differences in the immune cell population can drastically change the impact of the immune 

system. The interplay of oncology with immunology is therefore a very important key, if not the 

most important, in the fight against cancer. Taking this into account, it is evident that trying to 

alter the immune response in order to shift the balance of a pro-tumoral environment towards 

an unfavorable setting for cancer cells is one of the most promising strategies to battle cancer. 

This approach is recognized as cancer immune-therapy and aims to manipulate the immune-

suppressive immune cells and tumor microenvironment via different routes. In comparison to 

conventional therapies that are unspecific and evoke severe adverse events (alopecia, 

gastrointestinal symptoms, myelosuppression, immune-suppression), cancer immune-therapy 

has great potential as the side effects of immune-therapy are less severe which improves 

patient outcome, adherence and compliance. In general, cancer immune-therapy involves both 

passive or active therapies and can be specific or non-specific. 

 
Passive immune-therapy does not rely on the immune system of the patient to attack cancer 

cells but employs immune cells or other components that are, prior to administration into the 

patient, synthesized outside the body (ex vivo). This aids and strengthens the immune system 

of the patient to fight tumor growth by providing an immediate and stronger immune cell force. 

Passive immune-therapy bypasses the necessity to activate endogenous immunity and can be 

advantageous when the immune system of the patient is strongly weakened80,81.  

 
In contrast to passive immune-therapy, active immune-therapy re-activates the suppressed 

and/or weakened immune system of the patient and shifts the balance from immune-

suppression towards immune-activation by increasing the amount of anti-tumoral specific 

immune cells. It relies on the ability of the patient’s immune system to recover from prolonged 

immune-suppression and induces an endogenous immune reaction against the malignancy80,82. 

Because of the patient´s own immune system is activated and induces proliferation of 

lymphocytes, active immune-therapy does not have an immediate positive effect opposed to 

passive immune-therapy but it does produce a strong memory response which is an advantage 

for long-term survival of the patient. Conventional therapies for cancer treatment often result 
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in significant reduction of the tumor or complete remission, however, the prognosis for 

advanced tumors is not optimistic. In addition, the majority of cancer-related deaths is not 

caused by the primary tumor but by metastasis and relapse. The induction of immunological 

memory provides the patient with prolonged protection contrary to conventional applied 

therapies, even after treatment, whilst decreasing the possibility of tumor relapse that leads to 

more resistant and more aggressive malignancies, which are often harder to treat and more 

prone to metastasis83.  

 
An overview of the different cancer immune-therapies will be discussed in detail below thereby 

highlighting the most promising strategies regarding personalized medicine for cancer 

treatment. 

 
1. MONOCLONAL ANTIBODY THERAPY 

 
Monoclonal antibody (mAb) therapy involves selective targeting of a specific protein that is 

overexpressed, mutated or selectively expressed on tumor cells involved in cancer initiation 

and/or progression. It is a passive immune-therapy that, upon binding of the mAb with the 

respective target, leads to blocking of receptor binding sites such as grow factor receptors or 

to elimination of the cancer cell mediated by antibody-dependent cellular cytotoxicity (ADCC) 

and complement-dependent cytotoxicity (CDC) 80,84,85. Elimination of the malignant cells can 

additionally evoke release of cancer antigens within the tumor proximity which can in turn 

result in uptake by DCs and possibly an anti-tumor directed adaptive response.  

 
Many antibodies have received approval from the FDA for the treatment of various solid tumors 

and hematological malignancies85,86. Although mAb therapy has shown promise, resistance due 

to immune-escape via downregulation or loss of the expression of the target antigen is one of 

the main reasons responsible for low response rates.  

 
2. ADOPTIVE CELL TRANSFER 
 

Adoptive cell transfer (ACT) involves isolation of lymphocytes from the patient’s peripheral 

blood, draining lymph nodes or tumor tissue followed by ex vivo priming into tumor-specific 

CD8+ CTLs, prior to administration back into the patient and is illustrated in Figure 2.  
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Priming of the CTLs is achieved by co-incubation with dendritic cells that are pulsed with tumor-

associated antigen(s) or by cytokine (Il-2, IFN-γ) activation. After generating large numbers of 

analogous tumor-reactive CTLs, the T-cells are reinfused back into the patient often in 

combination with IL-2 administration to boost the T-cell proliferation87,88. In this way, the 

balance is shifted from T-cell anergy and tolerance to a superior amount of high avidity effector 

T-cells that exert cytotoxic effects against malignant cells.  

 

 

 
Figure 2. Adoptive autologuous T-cell transfer of either tumor-infiltrating T-cells (TIL) or peripheral blood 

cells requiring respectively non-specific or specific expansion via antigen-specific expansion (TCR T-cells) 

or genetic engineering (CAR-T-cells) - (Figure adjusted from reference 88). 

 

An increased amount of effector T-cells is however not sufficient for tumor eradication as the 

T-cells need to be able to infiltrate the tumor tissue in order to perform their function. The 

dense tumor stroma serves as a physical barrier withholding tumoricidal immune cells entrance 

to the tumor alongside the immune-suppressive environment created by MDSCs and Treg cells, 

thereby limiting the efficacy of adoptive transfer of cytokine-induced T-lymphocytes. To 

overcome functional impairment of the T-cells adoptive transfer with tumor-infiltrating 
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lymphocytes (TILs) directly isolated from tumor mass and boosted with IL-2, is a promising 

alternative provided that administration of the non-specifically expanded TILs is preceded by 

lymphodepletion. Lymphodepletion encloses deletion of immune-suppressive Treg cells and 

MDSCs through chemotherapy alone or in combination with radiation and alleviates the 

immune-suppressive pressure near the tumor microenvironment leading to a more durable 

response89-92. This approach faces unfortunately several disadvantages: [1] lymphodepletion 

can be very dangerous and is life-threatening for immune-comprised patients or patients with 

an impaired immune system; [2] the expansion of a large amount of TILs is costly, time-

consuming and requires highly specialized personnel; [3] administration in conjunction with IL-

2 can stimulate expansion of Treg cells; and [4] isolation of reactive TILs from tumor tissue is 

only possible for melanoma (in 50 % of the cases) while other cancer types rarely contain 

sufficient tumor-reactive lymphocytes90,93.  

 
An exciting new approach that aims to improve and broaden TIL adoptive transfer therapy 

involves adoptive transfer of genetically engineered autologous normal peripheral blood cells 

with receptors capable of recognizing cancer-specific antigens in combination with 

preconditioning of the patient with lymphodepletion. There is no need for surgical resection of 

tumor tissue and other cancer types besides melanoma are also feasible for T-cell engineered 

recognition of tumor antigens, in contrast to ACT with TILs, providing tumor-associated 

antigens are identifiable. Genetically modified T-cells involve expression of naturally occurring 

T-cell receptors (TCRs) or chimeric antigen receptors (CARs). TCRs, on one hand, recognize 

antigens presented via MHC molecules whereas CARs can identify antigens independent from 

MHC-presentation. Modification of the T-cells is obtained via transduction with viral vectors 

containing TCR genes that specifically recognize tumor-associated antigens. TCR T-cell 

recognition of antigens is however restricted to MHC-presentation and downregulation of MHC 

by the tumor to evade cytolysis is a major obstacle88,90,94. CAR T-cells, on the other hand, are T-

cells transfected with a viral construct encoding an extracellular single-chain antibody variable 

fragment against tumor surface antigens fused to the T-cell signaling domains. The antibody 

targets the respective target antigens in a MHC-independent manner and thereby avoids 

immune-escape by downregulation of MHC expression. Clinical studies showed that part of the 

adoptively transferred CAR T-cells develop into memory T-cells who can survive for years and 

offer prolonged and possibly lifelong lasting protection against relapse95-98.   
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A great challenge for both TCR and CAR engineered T-cells is the selection of appropriate 

antigens to refine the affinity and specificity in order to avoid toxicity that results in immune-

mediated destruction of normal tissues and treatment failure due to mutation of the target 

antigen or absence of its expression. In addition, CAR T-cells also face another disadvantage 

called the cytokine release syndrome (CRS). Toxic quantities of cytokines can be produced by 

large numbers of activated CAR T-cells and evoke fever, hypotension and neurologic symptoms 

which can sometimes be life-threatening87,96,97,99. Therefore, the off-target side effects due to 

immune-destruction of healthy cells, the lymphodepletion related adverse effects and 

limitations alongside the high cost and time consuming synthesis indicate that additional 

research is required to optimize the adoptive transfer therapy as a broadly applicable anti-

cancer immune-therapy. 

 
3. CYTOKINE THERAPY 

 
Cytokines are the messengers of the immune system and regulate both the innate and the 

adaptive immune cells mediated by receptors. They play a crucial part in homeostasis and 

function of lymphocytes. Since cytokines function in cascade, the administration of a single 

cytokine is unlikely to be sufficient and is the reason for the modest therapeutic effect in the 

clinic80. In addition, systemic administration of an effective dosage of cytokines is often 

associated with severe toxicities. In this regard, fusion with targeting antibodies appears to be 

an attractive option that is currently explored to overcome these limitations. Moreover, 

combining several cytokines or combination with other immunotherapies may potentially lead 

to a more optimal response that better covers the cytokine cascade while reducing adverse 

events as lower concentrations can be used opposed to monotherapy.  

 
Three cytokines have been already approved by the FDA involving IL-2 for lymphoma, leukemia, 

metastatic renal cell carcinoma and melanoma, IFN-α which is additionally used in various types 

of leukemia and Kaposi’s sarcoma and G(M)-CSF to stimulate hematopoiesis following 

chemotherapy84,100. IL-2 is a T-cell growth factor that is involved in the regulation of tolerance 

and proliferation of Treg cells and effector lymphocytes respectively. In detail, IL-2 influences 

the ratio of effector T-cells to Treg cells depending on its concentration. At low levels (during 

homeostasis or steady-state), Treg cells are superior as they express high affinity receptors 

whereas in higher concentrations the lower affinity receptors present on effector T-cells and 
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other immune cells are also activated. Due to this contradictory function, IL-2 therapy suffers 

from the disadvantage that Treg cells are simultaneously stimulated which dampens the anti-

tumor immunity. In addition, severe dose-dependent adverse events are reported involving 

vascular leak syndrome (VLS) – related to septic shock – and activation-induced cell death 

(AICD) of T-lymphocytes101-103.  

 
IFN-α acts directly on tumor cells via: [1] growth inhibition through down-regulation of 

oncogene expression and induction of tumor-suppressor genes; and [2] immune recognition 

promotion through induction of MHC class I molecules expression. It can promote 

differentiation of monocytes to highly active dendritic cells and proliferation of NK-cells and T-

cells. Systemic infusion of IFN-α however evokes severe hypotension103-105. Although IL-2 and 

IFN-α both are potent cytokines and have shown significant positive results in cancer patients, 

additional research is needed in order to obtain formulations that are less toxic and more 

specific to ameliorate the efficacy of other anti-tumor immunotherapies.  

 
At last, G-CSF and GM-CSF are involved in differentiation of hematopoietic stem cells and are 

used to help patients to recover from leucopenia or, in combination with adoptive immune cell 

transfer, to aid stimulation of a strong immune response106,107. 

 
4. ONCOLYTIC VIROTHERAPY 

 
Oncolytic viruses are self-replicating and can be naturally occurring or genetically modified to 

provide tumor selectivity. Naturally occurring viruses enter both normal and cancer cells but, 

due to the immediate recognition and rapid clearance, the virus is eliminated in normal cells 

whereas in cancer cells the virus is not cleared108. Therefore, many viruses preferentially infect 

cancer cells as they have a selective advantage for viral replication because they suppress 

normal immune recognition/destruction and resist apoptosis. On the other hand, oncolytic 

viruses can be genetically modified to exert more tumor selectivity through e.g. targeting a 

specific protein that is overexpressed on the cancer cell surface. Once the oncolytic virus has 

infected the cancer cell, it destroys the cancer cell through oncolytic lysis, thereby enhancing 

the immunogenicity of the tumor microenvironment due to production of endogenous danger 

signals (DAMPs) and release of tumor-derived cytokines (Type I IFNs), viral PAMPs and cancer 

antigens within the vicinity of the tumor109,110. Due to this change in the tumor 
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microenvironment, systemic immunity is activated specifically against the malignancy of the 

patient. In addition, the induced cancer cell lysis also gives rise to release of the virus, enabling 

spreading of the latter in neighboring cancer cells. Figure 3 provides an overview of the anti-

tumor mechanisms induced by oncolytic virotherapy.  

 

 

 
Figure 3. Oncolytic virotherapy exerts its function through a combination of direct cancer cell lysis (viral 

oncolysis) and indirect activation of anti-tumor immune responses – (Figure adjusted from reference 

110). 

 

In most cases oncolytic virotherapy is injected intra-tumoral to avoid low efficacy due to the 

presence of the physical, dense ECM barrier109,110. This however limits its applicability to 

malignancies that are physically accessible through palpation or imaging and is consequently 

unlikely to infect and eliminate distant metastases. If oncolytic viruses could be delivered 

intravenously rather than directly into the tumor, the range of targetable cancer types would 

dramatically increase and oncolytic virotherapy would also potentially be an option to treat 

metastasis. Another challenge using oncolytic viruses is the risk of being cleared by the patient’s 

immune system through neutralizing viral antibodies or cytotoxic CD8+ T-cells110. In this regard, 
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it is important to consider the pre-existence of antibodies or memory T-cells prior to therapy 

decisions. Strategies circumventing this initial response of the immune system involve 

PEGylation and polymer coating which prevents antibody binding and neutralization or 

modification of the viral genome to express products that inhibit antigen presentation and thus 

avoids recognition by the patient’s immune system111. Additionally, careful patient selection is 

necessary to avoid immunocompromised patients due to the risk of infection and biosafety 

issues need to be taken into account during production, handling and administration. Another 

risk of oncolytic virotherapy is that the virus can mutate to regain its pathogenic potential110. 

 
Recently oncolytic virotherapy has gained a lot of interest due Talimogene laherparepvec (T-

VEC) or Imlygic® for treatment of unresectable and recurrent melanoma, the first FDA approved 

virotherapy. T-VEC consists out of a herpes simplex virus type I that is genetically modified to 

attenuate the virus, to increase tumor selectivity and to secrete granulocyte macrophage-

colony stimulating factor (GM-CSF). Through deletion of two non-essential viral genes, i.e. a 

neuro-virulence gene and an inhibiting gene for antigen presentation, the pathogenesis of the 

HSV is reduced and the tumor selectivity is increased respectively. Secretion of GM-CSF 

additionally recruits and activates antigen presenting cells to evoke a more potent anti-tumor 

response110,113. Phase III clinical trials indicate that T-VEC virotherapy improves durable 

response rates, defined as partial or complete response lasting continuously for a minimum of 

six months, in patients with advanced melanoma. However, no significant difference in overall 

survival was reported and no effect was seen for the metastatic lesions of the melanoma spread 

in internal organs. Common side effects that have been reported involve flu-like symptoms 

(fever, fatigue, chills), pain at the injection site and/or herpetic infections114. Overall clinical 

tolerability of oncolytic viruses and safety is very good, even at the highest feasible doses and 

clinical results are encouraging and promising for the future. The recent FDA approval of the 

first oncolytic virotherapy will further boost research aiming to increase the clinical efficacy, 

feasibility and applicability115,116. 

 
5. IMMUNE CHECKPOINT INHIBITORS 

 
One of the most important tumor escape mechanisms involves immune-suppression by cancer 

cells and immune cells such as MDSCs, tolerogenic DCs, TAMs and regulatory T-cells through 

immune checkpoint activation of tumor-infiltrated T-cells resulting in loss of CTL function (vide 
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infra – Tumor immune escape). Inhibition of these pathways has been extensively studied, in 

particular the PD-1 and the CTLA-4 pathway, which has led to the development the most 

promising immune-therapy strategy so far comprising immune checkpoint inhibitors. Recent 

FDA-approval in 2011 of the CTLA-4 inhibitor Ipilimumab (Yervoy®)117,118 and two PD1-inhibitors 

Nivolumab (Opdivo®)119 and Pembrolizumab (Keytruda®)120,121 in 2014 for the treatment of 

renal cell carcinoma and for the treatment of melanoma and non-small cell lung cancer 

respectively has dramatically boosted the field of immuno-oncology. Opposed to the rapid 

response obtained with chemotherapy and other more traditional therapeutic strategies within 

a few weeks after initiation, the responses to immune-checkpoint blockers is a lot slower and 

can take up to six months. In some cases this is even preceded by size increase of metastatic 

lesions before regression occurs.  

 
6. INTRATUMORAL INJECTION OF PRR-AGONISTS 

 
Intratumoral injection of pathogen recognition receptor (PRR)-agonists aims to re-activate 

tolerogenic DCs through induction of maturation. Tolerogenic DCs are unable to boost the 

immune system against the malignancy and attribute to tumor immune escape (vide supra – 

Tumor immune escape). Mature DCs, on the other hand, can prime T-cells via co-stimulation 

and cytokine signaling to proliferate and expand into effector or helper T-cells depending on 

the cytokine spectrum rather than induction of T-cell anergy. DCs highly express pathogen-

recognition receptors on their cellular membranes and cytoplasm. Stimulation of the latter 

leads to maturation of DCs and by consequence efficient priming of an anti-tumor immune 

response. In this regard, triggering of PRRs is explored to redirect the immune system against 

the malignancy. Toll-like receptor (TLR) agonists in particular have shown promise as potent 

activators of tolerogenic DCs following intratumoral injection leading to tumor regression122-

124.  

 
7. CANCER VACCINATION 

 
Cancer vaccination fights cancer by re-activating the suppressed and/or weakened immune 

system. It aims at the generation of a tumor-specific immune response by the host's immune 

system and evokes relatively mild side effects (local erythema, flu-like symptoms) compared to 

the harsh side effects seen with chemotherapy125. Different from preventive vaccination, that 

aims to provide protection against a possible future infection or disease, cancer vaccination 
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induces a therapeutic effect in patients that have already developed a malignancy and aims at 

boosting the malfunctioning immune system of the patient to recognize and kill off the cancer 

cells specifically126,127. Immunization for prevention of diseases has dramatically changed the 

burden of infectious diseases worldwide as many of them are dramatically reduced or 

eliminated. Therapeutic cancer vaccination has however not yet met the high expectations 

which can be attributed to the immune-suppressive microenvironment that was not well 

understood up to a few years ago. The recent gain in knowledge about how the TME influences 

the immune balance in the patient and how tumor-escape occurs, has revolutionized the 

cancer immune-therapy field and will aid in the design of more potent vaccines with increased 

efficacy in the near future.  

 
Cancer vaccination involves dendritic cells, the most potent class of antigen presenting cells in 

recognition, uptake, processing and presentation of foreign material and are a critical factor in 

the interplay between the innate and the adaptive immune response. Dendritic cells can very 

efficiently process exogenous and endogenous antigens followed by presentation onto MHC-I 

or MHC-II respectively. Recognition of the MHC-I or MHC-II epitope complex by CD8+ T-cells or 

CD4+ T-cells respectively subsequently evokes activation and expansion of the lymphocytes128-

131. In order to obtain tumor eradication, cancer vaccines need to very efficiently induce a 

strong CD8+ cytotoxic T-cell response as CTLs can specifically recognize the target cells for 

which they are primed and eliminate them via cell lysis or apoptosis induction. In addition, CD4+ 

TH1 helper T-cells are required for optimal priming of the CTLs and for expansion of memory 

cells. Thus, cancer vaccination aims to target and activate dendritic cells to induce CD8+ 

cytotoxic and CD4+ TH1-cells that specifically eliminate the malignant cells and induce 

expansion of memory T-cells127,132-134.  

 
An important factor in vaccine design is the choice of an immunogenic antigen. The idea of ‘one 

size fits all’ is a false premise due to inter-tumoral heterogeneity, diversity between tumor in 

different patients, or intra-tumoral heterogeneity which involves the complexity of individual 

tumors11,135,136. Further, immune-escape through mutation as well as downregulation or lack 

of expression of the vaccine antigen also need to be taken into account. Two main approaches 

for antigen selection are currently implemented either comprising vaccines containing defined 

synthetic antigens or patient-derived cancer tissue. 
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7.1.1 Defined synthetic antigen vaccines 
 

Antigen vaccines involve tumor-associated non-mutated antigens (TAAs) that are over-

expressed by cancer cells but can also be present on normal cells. The requirements that the 

antigens need to meet in order to be attractive targets are: [1] tumor-specificity: no or highly 

restricted expression in normal tissue; [2] immunogenicity: constitutive expression during 

oncogenesis; and [3] oncogenicity: expression is essential for cell survival137. If those conditions 

are not met, the T-cells that recognize the respective antigen will have poor reactivity which 

will not lead to tumor regression. Vaccines containing TAAs are not universal because they are 

unlikely to be relevant for every single patient, they can be ineffective due to immune-escape 

(mutation, downregulation) and they can also potentially encounter lower efficiency due to 

inhibition of the immune response caused by thymic tolerance. This can partly be circumvented 

by using multiple cancer antigens which will give rise to a broader immune response directed 

to a variety of antigens and loss of activity due to mutation or the lack of expression of one 

specific antigen is a less detrimental factor. However, relevance for every single patient, thymic 

tolerance and the fact that specific antigens still need to be identified for numerous cancer 

types are still issues encountered by TAA-vaccines138-140. 

 

In contrast, antigen vaccines that include tumor-specific mutated antigens (TSAs), also known 

as neo-antigens, do not face these challenges. Neo-antigen vaccines involve formulation of 

proteins that are absent from the normal human genome, recognized as ‘foreign antigens’, and 

are created by tumor-specific mutations yielding tumor antigens, different from shared non-

specific TAAs141,142. Identification of neo-antigens is performed by parallel genomic analysis of 

patient-derived tumor tissue compared to normal tissue of the patient followed by filtering for 

gene expression and prediction of proteasomal processing and human leucocyte antigen (HLA) 

class I binding affinity. The peptides with the highest HLA-affinity are selected and subsequently 

synthesized to allow analysis of TIL-reactivity against the epitopes via in vitro T-cell assays 

132,143,144. Unfortunately this analysis procedure, illustrated in Figure 4, can be costly, labor 

intensive and complex. In addition, neo-antigen identification requires a solid tumor that can 

be surgically resected. 
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Figure 4. Overview of the genome screening procedure of patient-derived tumor tissue to identify 

immunogenic neo-antigens – (Figure adjusted from reference 144). 

 

Interestingly, the immunogenicity of neo-antigens is not hampered due to thymic tolerance, 

contrary to non-mutated self-proteins, because they are patient- and tumor-specific and 

potentially evoke a more powerful T-cell response with affinity that is only restricted to tumor 

cells of the patient137,142,145. Therefore, this is a very attractive approach in the search for more 

personalized immunotherapies and is currently widely explored for its potency as cancer 

vaccine. The ongoing clinical studies suggest neo-antigen vaccination is feasible and holds 

promise as a personalized cancer immune-therapy.  

 
In general, antigen vaccines can involve vaccination with synthetic peptides, recombinant 

proteins or RNA/DNA-encoding proteins derived from TAAs or neo-antigens. Peptide-based 

cancer vaccines rely on the ability of T-lymphocytes to recognize antigen-derived epitope 

peptides. The short amino acid sequences of single MHC-bound peptides highly expressed on 

cancer cells or DCs loaded with cancer cell lysate are identified using proteomic technologies 

and subsequently synthesized for vaccination137. Although short peptides have shown to elicit 

anti-tumor immune responses, they rarely had effect on the tumor growth. This can likely be 

attributed to induction of T-cell tolerance or anergy due to the absence of co-stimulation as 
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short peptides can directly bind to MHC-molecules on every MHC-expressing cell without the 

need of be processed. As consequence no DC-targeting and no memory induction occurs141.  

 
Long peptide vaccines, on the other hand, consist out of one epitope with flanking amino acids 

or out of several epitopes. Both require processing prior to MHC-presentation and are more 

likely to be recognized by both CD8+ and CD4+ T-cells, of which the latter are required for 

memory T-cell induction. Normally only endogenous proteins can be presented onto MHC-I 

molecules, however longer peptide vaccines can also be presented via MHC-I after processing 

through a process called cross-presentation. This makes long-peptide vaccines superior for 

anti-tumor immune-therapy opposed to short-peptide vaccines as both CTLs as CD4+ TH1-cells 

are induced137,146. Despite this, complete recombinant protein vaccination is often favored as 

peptide vaccines may not contain all important epitopes and experience higher elimination 

rates99.  

 
Another approach implements RNA or DNA-encoding proteins which allows easy delivery of 

multiple antigens and is not restricted to the patient’s HLA-type unlike peptide- and protein 

based proteins. The main advantage of nucleic acid vaccines is the possibility of large-scale 

production and storage as they can be amplified yielding unlimited supply of antigen. DNA-

based vaccines require the DNA plasmids to cross both the cellular and the nuclear membrane 

of the dendritic cells and subsequent transcription and translation into the respective cancer 

antigen followed by presentation of the processed peptides onto MHC147. In contrast, RNA-

based vaccines only require cell membrane crossing to enter the cytosol for translation and has 

no oncogenic potential as it cannot integrate into the host genome. This way, RNA-based 

vaccines are considered to be superior to DNA-based vaccines. However, RNA degradation due 

to extracellular exonucleases remains a significant stability concern for RNA-based 

vaccines148,149. 

 
Summarized, antigen vaccines are gaining more and more potency due to more personalized 

approaches that are emerging, involving the formulation of multiple TAAs or identification of 

neo-antigens. In particular, the neo-antigen screening to develop vaccines specifically tailored 

for every individual patient has shown great promise and strengthens the importance of the 

concept of personalized cancer immune-therapy. 
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7.1.2 Patient-derived cancer tissue vaccines 
 

Another attractive approach to obtain a personalized vaccine comprises the incorporation of 

patient-derived antigens isolated from the patient´s own tumor tissue. This method includes all 

potentially relevant antigens, both TAAs and TSAs and contains the entire spectrum of antigenic 

targets149,150 unlike other techniques (vide supra – Defined synthetic antigen vaccines). In 

addition, vaccines derived from patient-derived cancer tissue circumvent MHC-restriction141 

and the need for epitope identification of which the latter is a major advantage in comparison 

to neo-antigen vaccines in terms of cost, labor burden and complexity.  

 
Autologous cancer tissue vaccines contain cancer cell lysate or whole tumor cells including cell 

membrane and possibly stroma151. The latter can potentially be interesting to evoke a broad, 

all-embracing cytotoxic T-cell response that attacks not only the tumor cells but also the 

immune-suppressive surrounding stroma. The induction of a potent anti-tumor immune 

response following cancer vaccination involving autologous tumor cell material has already 

been reported152,153. One should consider that autologous cancer tissue vaccines require 

sufficient amount of tumor and thus are only applicable for solid tumors that can be surgically 

resected which is also true for neo-antigen vaccines. To overcome this, allogenic cancer tissue 

vaccines based on two or three human tumor cell lines are a potential alternative that enables 

large-scale production and standardization of quality and composition141,149,154. This can 

however evoke an anti-MHC immune response which can interfere with the anti-tumor 

response155. 

 
7.1.3 Ex vivo vs in vivo targeting 

 
Dendritic cell cancer vaccination can be achieved by two strategies: [1] adoptive transfer of 

autologous dendritic cells stimulated with cancer antigens and adjuvants ex vivo; and [2] in vivo 

targeting of dendritic cells. Ex vivo dendritic cell-based vaccines involve electroporation of 

autologous DCs derived from the cancer patient’s own blood monocytes ex vivo with cancer 

antigens and an adjuvant prior to reinfusion in the patient156. The culturing of autologous DCs 

with antigens will provide immunity against the respective antigens and the immune-

stimulating adjuvant is crucial to obtain mature DCs that are able to induce activation and 

expansion of T-lymphocytes. In 2010, the FDA approved the first DC-based vaccine  

Sipuleucel-T (Provenge®) for men with metastatic castration-resistant prostate cancer. 
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Sipuleucel-T involves autologous APCs and blood monocytes exposed ex vivo to PA2402,  

a recombinant fusion protein composed of prostatic acid phosphatase (PAP) and GM-CSF157-

159. Despite the proven survival benefit, many other clinical studies of ex vivo DC-based vaccines 

have failed to demonstrate clinical benefits. In addition, ex vivo DC vaccination is a highly costly, 

labor-intensive procedure and does not take advantage of the physiological stimuli that occur 

in direct in vivo DC targeting149,156.  

 
Optimal targeting and activation of DCs in vivo to induce a strong anti-tumor immune response 

however requires the design of a vaccine to resemble pathogens. This involves encapsulation 

of cancer antigens into particulate carriers co-formulated with pathogen-recognition receptor 

agonists to mimic a pathogenic infection160-164. First, it is known that particulate-based antigens 

have a dramatic advantage over soluble antigens in terms of recognition and uptake efficiency 

by dendritic cells160. Particle-based vaccines, in the size range of 50 nm to 10 µm, resemble 

viruses and bacteria and are therefore immediately recognized by dendritic cells and 

processed. Peripheral migratory DCs recognize and take up particles at the injection site 

followed by transportation via the lymphatic system to the draining lymph nodes and antigen 

presentation to lymphocytes. In addition, only small particles (sub 200 nm range) can target 

lymph-node resident DCs through drainage to the lymph nodes via passive diffusion into the 

lymphatics from the injection site. Therefore, nanoparticles are preferred over microparticles 

due to their higher tissue mobility and their ability to target different DC-subsets160,162,166,167.  

 
Second, a process called cross-presentation is favored in dendritic cells when particulate 

material is taken up comprising presentation of the processed peptides onto MHC-I instead 

MHC-II, which is normally the case for exogenously derived proteins. In this way, dendritic cell 

can prime a cytotoxic T-cell response against exogenously acquired proteins, which is essential 

to elicit an anti-tumor effect165,167,168.  
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Figure 5. Optimal targeting of dendritic cells for inducing a strong CTL-induced anti-tumor response 

requires the formulation of immunogenic antigens in pathogen-like vaccine particles. 

 

Third, whereas formulation of cancer antigens into particulate carriers yields in efficient 

targeting of dendritic cells and favors cross-presentation, it is not sufficient for optimal 

activation of dendritic cells. Triggering of DC maturation is essential for optimal priming of the 

T-cells via co-formulation of the cancer vaccine with agonists that trigger pathogen recognition 

receptors that skew TH1 and CTL immune responses163,169,170. Upon triggering of PRRs, the 

dendritic cell undergoes maturation and is able to deliver the three signals necessary for 

optimal priming of T-cells. In this regard, it is essential to co-formulate cancer antigens vaccine 

particles with pathogen-recognition receptor agonists to mimic a pathogenic infection42,171-174. 

Figure 5 illustrates the anti-tumor immune response mechanism that is generated by dendritic 
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cells upon recognition of a particulate vaccine containing both cancer antigens and TH1-

inducing adjuvants. 

 

VACCINE-RELATED IMMUNOGENICITY: COUNTERING T-CELL ANERGY 

 
Optimal priming of T-cells is essential to induce a strong anti-tumor immune response. Lack of 

vaccine immunogenicity is however a major limitation of DC-based vaccines due to suboptimal 

adjuvants. The induction of peripheral tolerance due to T-cell anergy (unresponsive T-cells) is 

one of the main reasons why therapeutic vaccines have failed to elicit a strong anti-tumor 

immune response with clinical benefit for the patient. Dendritic cells require certain activation 

stimuli to transform from naive DCs into mature DCs in order to prime T-cells rather than 

tolerogenic DCs that induce T-cell anergy.  

 
Currently, adjuvants licensed for use in human vaccines only involve a few possibilities including 

aluminum salts, oil-in-water emulsions (MF59, AS03, AF03), virosomes and monophosphoryl 

lipid A (MPLA). Alum is the most widely explored adjuvant used in numerous vaccines, however 

it can only induce a strong TH2-type immune response which is unfavorable for cancer 

vaccination as it does not promote CTL-activation175. Oil-in-water emulsions are licensed for flu 

vaccines and induce both TH1- and TH2-type immunity and are thus also less suited for cancer 

vaccine purposes176-179. In contrast, virosomes – spherical lipid vesicles that contain functional 

viral influenza glycoproteins180,181 – and MPLA – derived from the natural adjuvant 

lipopolysaccharide (LPS)182,183 – both induce strong TH1-type immune responses. They differ 

from the other licensed adjuvantia in their mechanism of action. Both virosomes and MPLA are 

adjuvants derived from pathogens, in other words PAMPs, and trigger PPRs on dendritic cells 

very efficiently. PAMP-related adjuvants are therefore interesting to increase the 

immunogenicity of cancer vaccines. 

 
1. PAMP-BASED ADJUVANTS 

 
One of the most effective vaccines is a live attenuated vaccine, the yellow fever vaccine, that 

induces DC-maturation via signaling through TLR2, TLR7, TLR8 and TLR9 and appears to evoke 

lifelong immunity after only one vaccination. Despite the high efficacy of the yellow fever 

vaccine, the vaccine is contraindicated in immune-suppressed patients, infants (younger than 
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6 months), elderly and pregnant women due to infection risk184-186. For adjuvants derived from 

pathogens in general, in addition to infection risk, these natural products experience variability 

and sometimes difficulties to be extracted in sufficient quantities. Due to the discovery of TLRs 

as key sensors in pathogen recognition, TLR-agonists hold promise as potent adjuvants for 

cancer vaccines as the PAMP motifs are immediately recognized by the immune system and 

elicit a strong and broad immune response. In this regard, the design of synthetic potent TLR-

agonist analogues that exhibit maximal immunogenicity without compromising on tolerability 

and safety is extensively studied and has shown promise. Surprisingly, despite the wide use of 

TLR-agonists as adjuvants, the complex mechanisms of action are not well characterized and 

therefore there is still room for improvement regarding optimizing the immunogenicity of 

therapeutic cancer vaccines.  

 
In order to determine the optimal conditions for immune stimulation, some fundamental 

questions still need to be answered about the immune system. Current cancer vaccine research 

mainly aims at co-formulation of synthetic TLR-agonists with cancer antigens without detailed 

knowledge about how the adjuvant structure and combined signals interact with their 

receptors and how this results in different immune responses. Therefore, there is a need for a 

multidisciplinary approach in order to define the parameters that need to be met by a cancer 

vaccine and to maximize the immunogenicity without compromising on tolerability, which will 

require close collaboration of chemists, biologists, immunologists and pharmacists.  

 
Four factors can potentially fine-tune the immunogenicity of cancer vaccines involving more 

detailed knowledge about: [1] structure requirements; [2] concentration range; [3] spacing; 

and [4] synergism of adjuvants. Better understanding of the chemical structure holds promise 

for designing more immunogenic and more effective vaccines and requires specific knowledge 

about how and which chemical structures interact with immune cell receptors and are 

recognized as non-self187-190. Aside from chemical structure of adjuvants, the concentration can 

be another important factor in optimizing vaccine immunogenicity. Hyper- or hypo-activation 

of immune cell receptors results in incomplete activation of dendritic cells causing T-cell 

anergy188,191. It is therefore of high interest to pay attention to the amount of adjuvant that is 

co-delivered with the cancer antigens upon vaccination. Third, influencing immunogenicity 

involves spacing of the TLR-agonist, i.e. the distance between the TLR-agonist molecules. It is 
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hypothesized that understanding of the spacing of PRRs on antigen presenting cells can 

potentially increase activation of DCs via simultaneous association of the agonist molecules 

with the receptors192-194. Lastly, this hypothesis also holds true for the combination of different 

adjuvants because inter-agonist proximity, taking into account the spacing of the different 

PRRs, will evoke confined and optimal interaction of the different adjuvants with their 

respective receptors. The reasoning for combining two or more TLR-agonists is based on the 

fact that one TLR-agonist stimulates only one receptor leading to a partial response whereas 

two or more simultaneously interact with multiple receptors which amplifies the immune 

response and is also called synergism195-199. Exploring different spacing lengths and 

combinations of agonists will further ameliorate the design of immunogenic vaccines. 

Altogether, fine-tuning of the immunogenicity of vaccines can significantly enhance DC 

activation efficiency leading to a stronger and broader immune response lowering the risk of 

induction of T-cell anergy. 

 

Importantly, optimized adjuvant structure properties, concentration, spacing and synergism 

combinations will not only lead to optimal activation of the immune system but will also result 

in reduction of the side effects related to adjuvants. Indeed, optimal efficacy of adjuvants could 

be obtained if the inflammation induced immune response is more tightly controlled. However, 

this will not be sufficient to avoid side effects as systemic dissemination of adjuvants is often 

the cause of the severe adverse events. In this regard, it is of high interest to fine-tune the 

physicochemical properties of synthetic TLR-agonists in order to localize the inflammation at 

the site of injection and limit systemic exposure and generalized inflammation.  

 
A new and promising generation of TLR-agonists involves small molecule immune potentiators 

(SMIPs). Low molecular weight molecules allow easy and inexpensive synthesis which can be 

optimized to increase specificity and potency while avoiding toxic effects. In addition, they can 

be relatively easily modified and combined for efficient formulation in vaccine particulates and 

delivery200-204. The latter is an appealing feature of SMIPs as this can reduce systemic exposure 

and by consequence systemic adverse events. This requires research collaborations combining 

formulation chemistry with immunology and pharmacology and is currently investigated by 

several groups showing that the potency in vivo of several TLR-agonists can be enhanced while 

reducing the systemic side effects through adaption of the physicochemical properties of the 
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adjuvantia. Several studies have shown lipid-, polymer-, polysaccharide- and nanoparticle-

conjugation of small molecule ligands strongly reduce systemic inflammation and yield potent 

lymph node localized responses that enhance the adaptive immune response against co-

delivered antigens205-207. 

 
2. DAMP-BASED ADJUVANTS 

 
Aside from PAMPs, DC maturation can also be achieved by damage-associated molecular 

patterns (DAMPs). DAMPs are, unlike PAMPs, endogenous factors of non-microbial origin that 

are produced by the cells of the host. DAMPs are secreted or exposed on the cell membrane of 

cells and can be a variety of molecules such as adenosine triphosphate (ATP), high mobility 

group box 1 (HMGB1), calreticulin (CRT) and heat shock proteins (HSPs)208. Dead or dying cells 

release or expose DAMPs on their surface which are recognized by the immune system that is 

programmed to remove the respective cells through phagocytosis to avoid toxic 

accumulation209. In contrast, when DAMPs are secreted as consequence of severe tissue 

damage by stressed, injured or dying cells, they act as danger signals and adjuvants to mobilize 

an immune defense mechanism to protect the host from further damage. DAMPs can bind PRRs 

on dendritic cells and evoke subsequent maturation and activation of an immune response 

against the originator of the tissue damage210-212.  

 
A process related to this phenomenon is called immunogenic cell death (ICD) and has gained a 

lot of interest recently for its potential adjuvant properties in anti-cancer immune-therapy due 

strong induction of a broad range of DAMPs. This leads to release of these DAMPs alongside 

cancer antigens upon cell death. The process of ICD underlines again the role of the immune 

system in the efficacy of cancer therapy and suggests that the type of tumor cell death 

mechanism can be a key factor in initiating an anti-tumor response. This knowledge widens the 

potency of patient-derived cancer tissue vaccines as the immunogenicity can be strongly 

augmented through induction of ICD prior to vaccine design. In this way, the released cancer 

antigens and DAMPs will simultaneously interact with the PRRs resulting in a stronger anti-

tumor immune response213-215. Interestingly, ICD can be induced by existing anti-cancer 

therapies, i.e. low dose chemotherapeutic drugs and radiotherapy (vide infra – Chapter 7), 

broadening the application field of these conventional therapies.  
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Other strategies to increase the immunogenicity of patient-derived cancer tissue vaccines, 

which are not endorsed by the immunogenic cell death theory but merely increase the 

immunogenicity of cells, can involve heat shock treatment, oxidative treatment or UV 

irradiation of the cells prior to vaccine design216-221. Subjection of cells to these immunogenic 

treatments induces production of specific DAMPs and release of cancer antigens which will, 

upon DC targeting, support and strengthen the immunogenicity of the vaccine in eliciting a 

stronger anti-tumor immune response. The mechanisms of ICD-based vaccines and 

immunogenic DC vaccines are illustrated in Figure 6. 

 

 

 
Figure 6. Illustration of the induction of anti-tumor immune responses evoked by cell-based vaccines 

killed by immunogenic treatment compared to ICD – (Figure adjusted from reference 221). 

 

Although much progress has been made in the development of potent vaccines, there is still a 

lot of room for improvement in determining the optimal conditions for TLR immune 

stimulation, i.e. taking structure characteristics, concentration and spacing into account 

without compromising on tolerability and safety. Moreover, evidence of synergistic effects of 
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combining adjuvants alongside the potential of synthetic small molecule TLR-agonists can also 

contribute to optimization of cancer vaccine design. This will hopefully lead to licensed use of 

small molecule TLR-agonists and to more potent formulations with limited systemic toxicity 

profiles. Of note, the other innate immune receptors such as NOD-like receptors (NLRs), RIG-I-

like receptors (RLRs) and C-type lectin receptors (CLRs) can also potentially broaden the 

adjuvant synergistic possibilities. However, further research is required to assess their potency. 

Altogether, fine-tuning and combining these strategies holds promise to significantly increase 

vaccine immunogenicity and decrease the risk of T-cell anergy through the induction of a more 

potent and focused immune response against malignancies. 
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ABSTRACT  

Although the field of cancer immune-therapy is intensively investigated, there is still a need for 

generic strategies that allow easy, mild and efficient formulation of vaccine antigens. Here we 

report on a polymer-protein ligation strategy to formulate protein antigens into reversible 

polymeric conjugates for enhanced uptake by dendritic cells and presentation to CD8+ T-cells. 

A N-hydroxypropyl methacrylamide (HPMA) based co-polymer was synthesized via RAFT 

polymerization followed by introduction of pyridyldisulfide moieties. To enhance ligation 

efficiency to ovalbumin, which is used as model protein antigen, protected thiols were 

introduced onto lysine residues and deprotected in situ in presence of the polymer. The ligation 

efficiency was compared for both the thiol-modified versus unmodified ovalbumin and the 

reversibility was confirmed. Furthermore, the obtained nano-conjugates were tested in vitro 

for their interaction and association with dendritic cells, showing enhanced cellular uptake and 

antigen cross-presentation to CD8+ T-cells. 
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INTRODUCTION 

 
Dendritic cells (DCs) were first described by Ralph Steinman and co-workers as heterogeneous, 

large stellate cells that are potent stimulators of the immune system with a much higher 

antigen presentation capacity compared to other cell subclasses such as macrophages and B-

lymphocytes1,2. This discovery has led to major insights in how the immune system interacts 

with foreign material, revealing dendritic cells as the critical factor in the interplay between the 

innate and the adaptive immune response3-14. Therefore cancer immune-therapy, focusing on 

stimulating DCs with cancer antigens15-18, is a promising strategy that aims for harnessing the 

patient´s immune system without facing the ubiquitous side effects of chemo- and 

radiotherapy3,12. 

 
In this regard, formulating protein antigens into particulate carriers is highly attractive as this 

dramatically promotes cross-presentation relative to soluble antigens15,19-22. Sub-micron 

particles are preferred over bigger ones due to their higher tissue mobility and by consequence 

ability to target different DC subsets. On the one hand, peripheral migratory DCs can recognize 

and take up particles at their injection site followed by lymphatic transport to the lymph nodes 

and antigen-presentation to T-cells. On the other hand, only small nanoparticles, in the sub 200 

nm range, will additionally drain to the lymph nodes via passive diffusion into the lymphatics 

and also target lymph-node resident DCs23-26. 

 
This chapter reports on a generic strategy for the formulation of antigens into nano-scaled 

polymeric conjugates based on co-polymers of N-hydroxypropyl methacrylamide (HPMA) with 

3-aminopropyl methacrylamide (APMA). The neutral hydrophilic HPMA moieties provide water 

solubility and biocompatibility27-29. Additionally, the APMA units will be used to introduce 

pyridyldisulfide moieties for reversible protein conjugation via disulfide formation and 

enhancement of cell uptake by interaction with exofacial thiols30,31. Figure 1 shows a schematic 

representation of the concept.    
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Figure 1. Schematic illustration of a polymer-protein ligation strategy based on reversible disulfide 

formation between free thiols on a protein and pyridyldisulfide moieties on a polymer backbone. A 

mixture is obtained composed of multiple polymers per protein and/or multiple proteins per polymer. 

 

RESULTS AND DISCUSSION 

 
1. Synthesis and modification of poly(HPMA-co-APMA) 

 
Co-polymerization of HPMA and APMA was performed by reversible addition-fragmentation 

transfer (RAFT) polymerization according to Zhu Qin et al32 for a targeted degree of 

polymerization (DP) of 100 repeating units (corresponding to a target molecular weight of  

14 kDa) composed of 80 HPMA repeating units and 20 APMA repeating units. Being a controlled 

radical polymerization technique, RAFT yields access to polymers with a well-defined chain 

length and a low dispersity36,37, which is of interest to obtain polymers with a molecular weight 

below the renal clearance threshold to allow elimination from the body. 

 

 
 
Figure 2. (A1) 1H-NMR spectrum of poly(HPMA-co-APMA) and (A2) 1H-NMR spectrum of poly(HPMA-

PDS). (B) In vitro MTT cytotoxicity assay of poly(HPMA-co-APMA) on DC2.4 cells. 
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1H NMR analysis indicated a conversion of 76 % and a composition of 80 % HPMA and 20 % 

APMA, which is in good accordance to the monomer composition (Figure 2A). A low dispersity 

of 1.08 and a Mn of 16 kDa was obtained via size exclusion chromatography (SEC) in 

dimethylacetamide.  

 
Subsequently we engineered antigen-binding properties onto the polymers (Figure 3A). First, 

we synthesized 3-(2-pyridyldithio)-propanoic acid (PDPA) by thiol-disulfide exchange of 2,2-

dipyridyldisulfide and 3-mercapto propionic acid in the presence of acetic acid, based on Hugh 

et al.33. Secondly, the APMA moieties were substituted with PDPA using 4-(4,6-dimethoxy-

1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as amidation reagent to 

introduce pending pyridyldisulfide moieties onto the poly(HPMA) backbone. 1H-NMR 

spectroscopy revealed a degree of substitution of 20 % of the primary amine moieties. This 

polymer will be further denoted as poly(HPMA-PDS) (Figure 2B). Higher substitution 

percentages were also obtained (results not shown) but were not of interest as sufficiently high 

conjugation efficiencies were achieved by 20 % substitution of the APMA moieties with PDS 

(vide infra – Antigen conjugation). The latter can undergo disulfide exchange with free thiols 

present on cysteine residues of proteins and pyridyldisulfide based protein conjugation 

strategies have been widely explored in combination with RAFT polymerization38-42. Indeed, 

disulfides are attractive moieties for designing drug delivery systems. Firstly, they are readily 

formed with free thiols of cysteine residues. Secondly, disulfides are stable under (oxidative) 

extracellular conditions but can be reduced to free thiols in the cytoplasm of cells. Thirdly, 

disulfide exchange with cell surface thiols can enhance cellular uptake and can also trigger 

dissociation of disulfides30,31. The potential cytotoxicity of the residual amine groups on the 

poly(HPMA-PDS) was assessed by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) cell viability assay on the immortalized DC2.4 cell line for 

increasing concentrations of poly(HPMA-co-APMA). As shown in Figure 2B, up to a polymer 

concentration of 0.2 mg/mL no cytotoxicity is observed, evinced by a cell viability above 70%. 

Note, that the MTT assay measures the activity of mitochondrial enzymes (dehydrogenases) 

rather then cell death. Therefore it can not be excluded that poly(HPMA-co-APMA) partially 

inhibits these enzymes rather then induces cell death above 0.2 mg/mL. Nevertheless, polymer 

concentrations well below this threshold were used in further experiments (concentration 

https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Thiazole
https://en.wikipedia.org/wiki/Phenyl
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range between 0.0011 mg/mL-0.017 mg/mL) to ensure optimal cell viability during these 

experiments. 

 

 
Figure 3. (A) Modification of poly(HPMA-co-APMA) with PDPA. (B) Substitution of lysine residues with 

SATP and subsequent deprotection to free thiols. (C) Determination of the extent of OVA modification 

with SATP determined by TNBSA assay.  

 

2.  Antigen modification with protected thiols 
 

Antigen conjugation to poly(HPMA-PDS) requires the presence of free thiols on the protein 

backbone for thiol-disulfide exchange with the PDS moieties. As the composition of every 

protein differs, variable conjugation efficiency is likely for every other antigen. In addition, it is 

possible that the amount of thiols per protein will not be sufficient to afford efficient 

formulation of the respective antigen into nano-conjugates. Therefore, we opted to generalize 

the conjugation strategy. In this regard, we introduced protected thiols onto lysine residues 

that are more abundantly present on proteins than cysteines. As a model protein antigen we 

used ovalbumin (OVA) because it contains peptide sequences that are recognized by the 

murine immune system as CD4+ and CD8+ epitopes. Moreover, a wide variety of in vitro and in 

vivo tools are available for immunological assessment of OVA based vaccine formulations. OVA 

was incubated with a molar ratio of OVA to S-acetylthiopropionate N-succinimidyl ester (SATP) 

of 1 to 15. This compound substitutes primary amines on lysine residues with acetylated thiols 

that can be deprotected in situ in presence of hydroxylamine (Figure 3B), and subsequently 

undergo disulfide exchange with poly(HPMA-PDS). The decrease in free amines was quantified 
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by spectrophotometry using the (2,4,6-trinitrobenzene sulfonic acid) assay (TNBSA), thereby 

indicating 78 % of all available lysines to be substituted (Figure 3C). 

 

3. Antigen conjugation 
 

In a first series of experiments, the polymer-conjugation efficiency of OVA-SATP was compared 

versus unsubstituted OVA. SDS-PAGE was used to assess protein conjugation of poly(HPMA-

PDS) to OVA and OVA-SATP. For unsubstituted OVA, no difference could be observed upon 

incubation of the protein with the polymer. In contrast, as shown in Figure 4, the free OVA band 

disappears almost completely when OVA-SATP is used. This confirms that SATP substitution 

strongly increases the polymer-protein conjugation efficiency. Interestingly, three distinct 

bands appear that correspond either to OVA that is ligated to several polymer strands or vice 

versa, along with a broad spread of higher molecular weight bands. These data suggest that 

besides polymers being grafted onto the protein, also polymeric crosslinking among different 

proteins occur.  

 

 

 
Figure 4.  (A) SDS-PAGE analysis of OVA and OVA-SATP ligated to poly(HPMA-PDS) in a 1:1 molar ratio. 

(B) DLS data of soluble OVA, poly(HPMA-PDS) and the OVA:poly(HPMA-PDS).  
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Dynamic light scattering (DLS; Figure 4B) revealed the presence of small conjugates without 

extensive inter-particle crosslinking, as evidenced by both the size distribution and the 

correlation curves. This property is of importance with regard to tissue mobility in vivo.  

 
The required ratio of polymer to OVA-SATP to yield optimal conjugation was determined by 

visualization of the conjugation efficiency of different molar ratios of OVA-SATP to poly(HPMA-

PDS), by SDS-PAGE. Figure 5 indicates that approximately 100 % conjugation can be already 

obtained at an equimolar ratio of OVA-SATP to poly(HPMA-PDS). Therefore, we decided to use 

a ratio of OVA to polymer of 1:1 in further experiments. To assess the reversible nature of the 

disulfide bonds formed between OVA-SATP and the poly(HPMA-PDS), SDS-PAGE was 

performed in presence and absence of 2-mercaptoethanol as a reducing agent. As shown in 

Figure 5, in presence of 2-mercaptoethanol, the band corresponding to OVA-SATP reappears 

again as a single protein band confirming the reversibility of the conjugation.  

 

 

Figure 5. SDS-PAGE analysis of OVA-SATP to poly(HPMA-PDS) conjugation for varying protein to polymer 

ratios. Gel electrophoresis was performed under non-reducing and reducing (presence of 2-

mercaptoethanol) conditions to investigate the reversibility of the conjugation. 

 

4. In vitro characterization 
 

Next we aimed at investigating the effect of polymer conjugation on the uptake of OVA by DCs. 

First, poly(HPMA-PDS) was fluorescently labeled with Atto647 NHS ester and conjugated to 

AlexaFluor488-labeled OVA (OVA-AF488) to allow analysis of the uptake of both OVA and the 

respective polymer. The resulting conjugates were incubated in different concentrations 

overnight at 37 °C with DC2.4 cells (an immortalized murine dendritic cell line)36. Flow 
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cytometry analysis of the mean AF488 fluorescence per cell (Figure 6A1), showed a dose-

dependent cellular association of the antigen and indicates that poly(HPMA-PDS) conjugation 

leads, relative to soluble OVA, to higher uptake efficiency of OVA. A similar dose-dependent 

trend was observed for the mean Atto647 fluorescence per cell for poly(HPMA-PDS) (Figure 

6A2). This data indicates that both OVA and the polymer associate with the dendritic cells.  

 
To investigate whether the conjugates are internalized by the DCs or merely bound to the cell 

surface, confocal microscopy was performed. Figure 6B reveals that the conjugates are indeed 

internalized by the DCs. The co-localizing signals of OVA-AF488 and of the polymer-Atto647 

inside the cells also confirms that, upon uptake of the conjugates, the polymers are trafficked 

within the same intracellular vesicles as OVA and the conjugates are not cleaved at the cell 

surface. 

 

 
Figure 6. In vitro interaction of dendritic cells with OVA and OVA:poly(HPMA-PDS): (A) Flow cytometry 

analysis of the interaction of DCs with OVA (A1) and with poly(HPMA-PDS) (A2), as function of OVA 

concentration. (B) Confocal microscopy images. Cell membrane is stained with AF555-labeled cholera 

toxin B (CTB-AF555). Cell nuclei are stained with Hoechst. Scale bar represents 15 µm. 
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To identify the reason because of which polymer-conjugated OVA shows higher uptake than 

soluble OVA, we pulsed DCs with soluble OVA and poly(HPMA-PDS) separately at 4 °C. Under 

these conditions, energy dependent uptake mechanisms are blocked. As shown in Figure 7A, 

soluble OVA is not associated with the DCs at 4 °C, opposed to poly(HPMA-PDS) which does 

show dose-dependent cellular association. Confocal microscopy (Figure 7B; overlaying the DIC 

and the Atto647 channel) confirmed that at 4 °C, poly(HPMA-PDS) is indeed bound to the cell 

membrane.  

 
Taken together, we hypothesize that remaining pyridyldisulfide moieties on the conjugates 

promote interaction with cysteine residues of cell surface proteins and thereby bind to the cell 

membrane29, 30. 

 

 
Figure 7. Investigation of energy independent cellular association of DCs pulsed with soluble OVA and 

poly(HPMA-PDS) at 4 °C: (A) Flow cytometry analysis. (B) Confocal microscopy images. Scale bar is  

15 µm. 
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5. Immuno-biological evaluation. 
 

Taking into account the high efficiency of OVA conjugation to poly(HPMA-PDS) together with 

the high uptake efficiency by DCs and the reversibility of the conjugation, we found the 

poly(HPMA-PDS) based system to have potential for the formulation of protein vaccine 

antigens. 

 
To assess the immunological potential of the conjugates, we determined whether or not 

poly(HPMA-PDS) conjugation enhances cross-presentation by DCs to CD8+ T-cells via an in vitro 

CD8+ T-cell proliferation assay. Mouse bone marrow derived dendritic cells (bmDCs) were 

isolated, pulsed with soluble OVA and OVA:poly(HPMA-PDS) in three different OVA 

concentrations (0.2, 2 and 5 mg/mL) followed by co-culture with OT-I cells. OT-I cells are CD8+ 

T-cells that express the transgenic T-cell receptor that specifically recognizes the CD8+ epitope 

of OVA (i.e. SIINFEKL) presented via MHC-I. These OT-I cells were labeled with the fluorescent 

label CFSE in order to allow monitoring of the CD8+ T-cell proliferation via flow cytometry 

analysis. Upon division of the OT-I cells, the fluorescent CFSE marker will be equally divided into 

the daughter cells leading to a decrease of the fluorescent signal.  

 
Figure 8A demonstrates that the OVA:poly(HPMA-PDS) conjugates enhance CD8+ T-cell 

proliferation over soluble OVA as evinced by a more pronounced decrease of the CFSE signal. 

Additionally, ELISA was performed to determine the amount of IFN-γ that is produced by the 

CD8+ T-cells. IFN-γ is a pro-inflammatory cytokine that is highly upregulated upon activation of 

the OT-I cells and drives the effector T-cell response. As depicted in Figure 8B the IFN-γ 

production is indeed higher when CD8+ T-cells are co-cultured with bmDCs that are pulsed with 

the OVA:poly(HPMA-PDS) conjugates compared to soluble OVA confirming the data obtained 

by the T-cell proliferation assay.  
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Figure 8. In vitro immuno-biological evaluation: (A1) Flow cytometry histograms of CFSE labeled 

transgenic OT-I OVA-specific CD8+ T-cells co-cultured with bmDCs pulsed with different concentrations 

of OVA and OVA:poly(HPMA-PDS) respectively. BmDC to T-cell ratios of 1/5 and 1/20 were used (A2) 

Corresponding quantification of T-cell proliferation expressed as the percentage of divided labeled 

transgenic OT-I OVA-specific CD8+ T-cells. (B) IFN-γ secretion in the supernatant of the bmDC/T-cell co-

cultures measured by ELISA.  

  



POLYMER-PROTEIN LIGATED NANO-CONJUGATES 

94 
 

CONCLUSION 

 

To summarize, we show in this chapter that water-soluble HPMA-based RAFT polymers with 

multiple pending pyridyldisulfide moieties are well suited for protein conjugation, on the 

condition that these proteins are modified with protected thiols that can be deprotected in 

situ. The obtained conjugates are stable in aqueous medium and can be disassembled in 

response to reducing conditions. In vitro experiments on dendritic cells show that the polymer 

conjugation of a model antigen resulted in an increased cellular uptake, relative to 

unconjugated protein, which we attribute to thiol-disulfide exchange between remaining 

pyridyldisulfide moieties and exofacial thiols present on the cell surface. Furthermore, we 

demonstrate that polymer conjugation increases antigen presentation by bmDCs to CD8+ T-

cells in vitro. In future research, the effect of polymer conjugation on lymphatic antigen 

transportation and in vivo immune-activation will be studied as well as conjugation of molecular 

adjuvants to these polymers. 
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EXPERIMENTAL SECTION 

 
Materials. Hydroxypropyl methacrylamide (HPMA) and aminopropyl methacrylamide (APMA) 

were obtained from Polysciences. Anhydrous acetic acid was purchased from Biosolve 

chemicals. Dimethylsulfoxide (DMSO), mercapto-propanoic acid, 4-cyanovaleric acid 

dithiobenzoate (CTP), 4,4’-azobis(4-cyanovaleric acid) (ACVA), basic alumina, 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reagent, sodium dodecyl sulfate 

(SDS), ethanol, dichloromethane, Na2EDTA, hydroxylamine Atto 647N NHS ester, NaHCO3, 

paraformaldehyde and PD10 desalting columns were obtained from Sigma Aldrich. Phosphate 

buffered saline pH 7,2 (PBS), RPMI-glutamax 1640 medium, fetal bovine serum EU qualified 

(FBS), penicillin/streptomycin (5000 U/mL), sodium pyruvate (100mM), cell dissociation buffer 

(PBS based), Hoechst and cholera toxine B conjugates to AlexaFluor555 (CTB-AF555) were 

purchased from Invitrogen. Dipyridyldisulfide (DPDS) and 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-

4-methylmorpholinium Chloride (DMTMM) were obtained from TCI America. 2-

Mercaptoethanol, Laemli sample buffer (4x), Coomassie blue stain (G-250) and the 4-20 % mini-

protean TGX gels were purchased from Bio-rad. S-acetylthiopropionate N-succinimidyl ester 

(SATP), TNBSA solution and hydrochloric acid (HCl) 37% v/v were obtained from Thermo 

Scientific whereas the pre-treated Spectra/Por 7 dialysis membranes were purchased from 

Spectrumlabs. 

 
Instrumentation.  
 
1H-Nuclear magnetic resonance (NMR). NMR spectra were recorded on a Bruker 300 MHz FT 

NMR in D2O and d6-DMSO. Chemical shifts (δ) are provided in ppm relative to TMS.  

 
Size exclusion chromatography (SEC). SEC elugrams were recorded on a Shimadzu 20A system 

in dimethylacetaminde (DMAc) as solvent containing 50 mM LiBr. The system was equipped 

with a 20A ISO-pump and a 20A refractive index detector (RID). Measurements were recorded 

at 50 °C with a flow rate of 0.7 mL/min. Calibration of the 2 PL 5 μm Mixed-D columns was done 

with polymethylmethacrylate (PMMA) standards obtained from PSS (Mainz, Germany). 

 
Electron spray ionization-mass spectroscopy (ESI-MS). ESI-MS was carried out on a Waters LCT 

Premier XETM TOF mass spectrometer with a ZsprayTM source, ESI and modular LocksprayTM 

interface, coupled to a Waters alliance HPLC system. 
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UV-VIS spectrophotometry. UV-VIS spectra were recorded on a Shimadzu UV-1650PC 

spectrophotometer in 1 cm x 1 cm quartz cells.  

 
Dynamic light scattering (DLS). DLS analyses were performed on a Zetasizer Nano S (Malvern 

Instruments Ltd., Malvern, U.K.) with a HeNe laser (λ = 633 nm) at a scattering angle of 173 °.  

 
Synthesis of poly(HPMA-co-APMA). Based on Qin et al.32 a copolymer composed of 

hydroxypropyl methacrylamide and aminopropyl methacrylamide (HPMA-co-APMA) was 

synthesized via aqueous reversible addition-fragmentation chain transfer (RAFT) 

polymerization using 4,4’-azobis(4-cyanovaleric acid) as the initiator and 4-cyanovaleric acid 

dithiobenzoate  as the RAFT agent. The RAFT polymerization was set for a HPMA/APMA ratio 

of 80/20 and a target degree of polymerization (DP) of 100. After dissolution of HPMA (34.91 

M), APMA (8.73 M) and ACVA (0.218 M) in deionized water, CTP was dissolved in 1,4-dioxane 

and added in a final concentration of 0.436 M. Subsequently, oxygen was removed via four 

cycles of freeze-pump-thaw. The polymerization was initiated by heating the mixture to 70 °C 

in an oil bath for 24 h. Purification of the co-polymer was achieved by precipitation in acetone 

followed by removal of residual solvent via vacuum pump (24 h). Confirmation of the co-

polymerization was assessed by 1H NMR analysis and the DP was determined by GPC analysis. 

Conversion rate of the RAFT polymerization was achieved by 1H NMR analysis of the reaction 

mixture at different time points. 1H NMR peak assignment (300 MHz, D2O): δ (ppm) 0.99-1.20 

(CH2CH(OH)CH3, CH2C(CH3)CO), 1.80-1.92 (CH2C(CH3)-CO, CH2CH2CH2NH2), 3.08 

(CH2CH2CH2NH2), 3.24 (CONHCH2CH(OH)CH3, CONHCH2CH2CH2NH2), 3.94 (CH2CH-(OH)CH3). 

 
Synthesis of PDPA. Based on Hugh et al. 3-(2-pyridyldithio)-propanoic acid (PDPA) was 

synthesized33. In brief, 3-mercapto-propanoic acid (0.0249 mmol) was added to a 0.623 M 

solution of 2,2’-dipyridyldisulfide (DPDS) in anhydrous ethanol in the presence of acetic acid. 

The solution was subsequently stirred for 2 hours at room temperature. Purification of PDPA 

was assessed by basic alumina column chromatography using a 3:2 mixture of dichloromethane 

and ethanol followed by elution of PDPA via addition of 4 % of acetic acid to the eluent mixture. 

Traces of acetic acid were removed under high vacuum for 48 h. The synthesis and purity of 

the product was confirmed by 1H NMR analysis and LC-MS (ESI+) analysis. 1H NMR peak 

assignment (300 MHz; d6-DMSO): δ (ppm) 2.59 (2H, t, J = 7.0), 2.98 (2H, t, J = 7.0), 7.23 (1H, 

ddd, J = 7.1, 4.8, 1.2), 7.75 (1H, d, J = 8.0), 7.8 (1H, td, J = 7.9, 1.4), 8.4 (1H, d, J = 4.9), 12.43 
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(1H, broad s). Theoretical mass of PDPA: 215.01 and experimental mass: ESI+ m/z in MeOH – 

216.0 (MH+). 

                                                                                 
Synthesis of poly(HPMA-PDS). To a 5 mg/mL solution of poly(HPMA-co-APMA) in a phosphate 

buffered saline (PBS) 1.5 M excess of DMTMM was added followed by an equimolar amount of 

PDPA dissolved in DMSO. The reaction was stirred overnight at room temperature followed by 

purification via dialysis against deionized water (MWCO 3.5 kDa) for 24 h and lyophilization. 

The synthesis was confirmed via 1H NMR analysis.   

            
Cell lines. The DC2.4 cell line was a kind gift from Dr. Kenneth Rock (University of Massachusetts, 

Boston, US).34 DC2.4 cells were cultured in RPMI-glutamax medium supplemented with 10 % 

fetal bovine serum, 1 % penicillin/streptomycin and 1 mM sodium pyruvate and incubated at 

37 °C with 5 % CO2 saturation. Isolation of the cells for experiments was performed by 

incubation of the cells in a PBS-based dissociation buffer for 10 minutes. 

 
MTT assay. Cell toxicity was measured by seeding DC2.4 in 96 well plates at a density of 50000 

cells/mL in complete RPMI medium (total volume 100 μL) 1 day prior to addition of increasing 

concentrations of poly(HPMA-co-APMA) in PBS. Subsequently the cells were cultured for 24 h 

followed by addition of 40 μL of the MTT reagent (1 mg/mL). After an incubation period of  

2-3 h the formed formazan crystals were dissolved in 100 μL of a 10 % m/v SDS/0.01 M HCl 

solution overnight protected from light. The absorbance was measured by a microplate reader 

at 570 nm. As a negative and positive control PBS buffer and DMSO respectively were added to 

the wells.  

 
Synthesis of OVA-SATP. Protected thiol groups were introduced via interaction with SATP. First 

a 120 µM solution of ovalbumin (OVA) was prepared in PBS pH 7,2. Second, SATP dissolved in 

dry DMSO was added in different molar ratios of SATP to OVA, i.e. 1:5, 1:10, 1:20, 1:50. After 

incubation of 45 min at room temperature the unreacted fraction was eliminated via a 

disposable PD10 column. The pure fractions of protein were distinguished from the waste 

fractions by UV spectrophotometry followed by lyophilization. Quantification of the introduced 

thiol percentage was assessed by the trinitrobenzene sulfonic acid assay (TNBSA) through 

measurement of the residual amine content.                                                                               
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TNBSA assay. The residual amine content of OVA after SATP substitution was determined by 

the (2,4,6-trinitrobenzene sulfonic acid assay (TNBSA) according to the manufacturer’s 

instructions. First OVA and OVA-SATP were dissolved in a 0.1 M sodium bicarbonate buffer pH 

8.5 at 50 μg/mL followed by addition of 0.25 mL of a 0.01 % TNBSA solution to 0.5 mL of each 

sample. After incubation of 2 hours at 37 °C 0.25 mL 10 % SDS and 0.125 mL 1 N HCl were 

added. Subsequently, absorbance was measured at 335 nm. 

 
Polymer-protein conjugation. To a 0.465 M OVA solution in deacetylation buffer different molar 

polymer:OVA ratios were added to a final volume of 1 mL in PBS. The molar ratios used were 

1:1, 2:1, 2.5:1, 3:1 and 4:1. The reaction was incubated for 2 hours at room temperature 

followed by visualization of the conjugation efficiency via SDS-PAGE and semi-quantitative 

analysis of the encapsulation via Image J.     

                                                                              
Gel electrophoresis (SDS-PAGE). To analyze protein conjugation or to determine the reversibility 

of the synthesized particles, gel electrophoresis was performed. The samples were diluted with 

respectively Laemli sample buffer solution (4x) or with a 1:9 2-mercaptoethanol:Laemli sample 

buffer solution (4x), incubated for 5 minutes at 95 °C and loaded on 4-20 % precast gels. After 

the run (150 kV), visualization of the protein bands was achieved by incubation of the gels into 

Coomassie blue stain.       

              
Fluorescent labeling. The remaining unsubstituted APMA units of poly(HPMA-PDS) were labeled 

with the Atto647-NHS ester according to the manufacturers’ instructions. In brief, the 

fluorescent dye was dissolved in dry DMSO (2.3 mM) and added to a 5 mg/mL polymer solution 

in 0.1 M NaHCO3 buffer (pH 8.3) aiming a target degree of 2.5 %. After incubation of 30 to 60 

minutes protected from light at room temperature the excess was removed via PD10 column 

purification followed by lyophilization. Second, the fluorescent conjugates were synthesized as 

described above using the fluorescently labeled poly(HPMA-PDS) and a molar ratio of 

OVA:OVA-AF488 49:1. After 2 h incubation the particles were dialyzed against deionized water 

for 48 h (MWCO 100 kDa).                   

                                                     
In vitro DC2.4 uptake assay. DC 2.4 cells were seeded at a density of 0.4 x 106 cells/mL in a 24 

well plate one day prior to the addition of the fluorescent particles at different concentrations. 

After 24 h incubation the cells were dissociated using cell dissociation buffer followed by 
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centrifugation for 5 min at 200 G at 0 °C. After resuspension, the samples were stored on ice 

and measured by the BD Accuri C6 flow cytometer. The data was analyzed using FlowJo.      

  
Confocal microscopy imaging. DC2.4 cells were seeded at a density of 0.2 x 106 cells/mL in a 

glass bottom Will-co dish and incubated overnight. Next, the fluorescent particles were added, 

incubated for 24 h and fixated in a 2 % paraformaldehyde solution for 10-15 minutes. The cells 

were subsequently washed and simultaneously stained by CTB-AF555 and Hoechst for 1 h at 

room temperature. Finally, the samples were washed with PBS and visualized by confocal 

microscopy. This was carried out on a Leica DMI6000 B inverted microscope equipped with an 

oil immersion objective (Zeiss, 63×, NA 1.40) and attached to an Andor DSD2 confocal scanner. 

Images were processed with Image J.       

                                                                                       
In vitro OT-I proliferation assay and ELISA. Mouse bone marrow derived DCs (bmDCs) were 

isolated by flushing femurs of C57BL/6 mice with complete RPMI with a 26 G needle. The cell 

suspension was filtered through a 100 µm cell strainer and incubated for 3-5 minutes in red 

blood cell lysis buffer on ice. The cells were subsequently seeded into a 24 well plate at a density 

of 3 x 105 cells/mL in complete RPMI containing 20 ng/mL of GM-CSF and incubated at  

37 °C/5 % CO2 for 7 days. To ensure optimal bmDC growth, fresh medium containing 20 ng/mL 

GM-CSF was added on day 3 and on day 6 the medium was refreshed. On day 7 the bmDCs 

were isolated and pulsed with the test compounds containing 0.2, 2 and 5 mg/mL OVA followed 

by co-culture with CFSE-labeled OVA specific transgenic CD8+ T-cells, according to previously 

described protocols.35 
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ABSTRACT 

Personalized anti-tumor immune-therapy has recently gained major interest in the fight against 

metastatic cancer. Here we report on a two-step strategy to encapsulate patient-derived cell 

lysate into immune-modulating microparticles as a general personalized vaccine formulation 

approach. In a first step, cell lysate produced from cancer cells was entrapped into stable 

porous calcium carbonate (CaCO3) microparticles by a co-precipitation reaction. Second, the 

surface of these microparticles was adsorbed with a polymer substituted with a small molecule 

TLR7-agonist to enhance the immunogenicity. Relative to soluble cell lysate, microparticle-

encapsulation yielded higher uptake of cell lysate by dendritic cells in vitro. Also, microparticle-

adsorbed polymeric TLR7-agonists retained their TLR-triggering capacity resulting in 

immunogenic vaccine particles. We anticipate this strategy might hold potential to turn patient-

derived tumor tissue – comprising the patient’s own mutanome – into potent personalized anti-

cancer vaccines.
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INTRODUCTION 

 
One of the main reasons why DC targeting and anti-tumor immune-therapy in general has great 

potential1-5, is the lack of unfavorable and unspecific side effects caused by conventional 

therapies6-8. In addition, and perhaps even more important, is the induction of immunological 

memory which provides the patient with prolonged protection, even after treatment, whilst 

decreasing the possibility of tumor relapse that leads to more resistant and more aggressive 

malignancies, often harder to treat and more prone to metastasis.  

 
Recently, personalized medicine has gained major interest in the field of anti-cancer immune-

therapy and involves a patient-specific approach that can potentially give rise to a more 

efficient, more specific and more potent immune-activation9. Personalized medicine 

encompasses different approaches such as the use of more than one tumor-associated antigen 

to increase the potency of the vaccine, the implementation of neo-antigens or the 

incorporation of patient-derived cancer tissue.  

 
In the case of using multiple tumor-associated antigens, a broader immune response is directed 

against a variety of known non-mutated antigens. In this way, loss of activity due to mutation 

or the lack of expression of one specific antigen10,11 is a less detrimental factor as multiple 

antigens are formulated together. Despite these advantages, this approach is not universal 

because tumor-associated non-mutated antigens are unlikely to be relevant for every single 

patient and can also potentially encounter lower efficiency due to inhibition of the immune 

response caused by thymic tolerance.  

 
Implementation of neo-antigens, on the other hand, involves formulation of proteins that are 

absent from the normal human genome and are created by tumor-specific mutations yielding 

patient-specific tumor antigens, different from shared non-specific cancer antigens12, 13. Neo-

antigens are not subjected to thymic tolerance, in contrast to non-mutated self-proteins, 

because they are patient- and tumor specific and potentially evoke a more powerful T-cell 

response that is only restricted to tumor cells of the patient. Identification of neo-antigens 

however requires genomic analysis of patient derived tumor cells which is nowadays still costly, 

labor intensive and complex.  
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In contrast, incorporation of patient-derived cancer tissue is more straightforward, less 

complicated and preferentially induces a broad immune response against non-mutated cancer 

antigens as well as neo-antigens leading to a more robust, a more powerful and all-embracing 

cytotoxic T-cell response compared to the other personalized treatment strategies14-16. 

 
To induce a strong anti-tumor response, cross-presentation of cancer antigens by DCs to T-cells 

is required. Second, DCs need to be activated by the correct stimuli to further engage with 

CD4+ and CD8+ T-cells to skew TH1-driven and CTL-responses2, 3, 17. With regard to DC 

activation, this is achieved when pathogen-recognition receptors (PRRs) – present on cellular 

membranes and cytoplasm – are triggered by pathogen-associated molecular patterns (PAMPs) 

and damage-associated molecular patterns (DAMPs). The latter are endogenous factors of non-

microbial origin, including heat shock proteins (HSPs), which originate from necrotic or stressed 

cells18-20. Therefore, strategies that can co-deliver tumor-associated antigens and activation 

stimuli to DCs in vivo are attractive in view of anti-cancer vaccination. 

 
This chapter reports on a generic approach to encapsulate cancer cell lysates into calcium 

carbonate (CaCO3) microparticles that are subsequently engineered with immune-stimulating 

cues to improve their immunogenicity as depicted in Figure 1. Calcium carbonate microparticles 

are known in a wide field of different applications and are used as templates for encapsulating 

of protein and peptide antigens21-27. CaCO3 particles have a high loading capacity for 

macromolecules, are inexpensive, and easy to produce and exhibit high porosity, 

biocompatibility alongside with biodegradability28-30.  Therefore, they are an appealing platform 

for vaccine formulation. Moreover, the synthesis is very mild and can fully be performed in 

aqueous medium without the need of any organic solvents, reactive chemistry or high energy 

input and only requires CaCl2 and Na2CO3 which spontaneously form CaCO3 microparticles. 

Performing the synthesis in the presence of macromolecules allows for the encapsulation of 

biomacromolecules into the porous interior of the microparticles while the surface of the 

microparticles can also be functionalized through adsorption of cationic polymers equipped 

e.g. with immune-activating cues. 
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Figure 1. Schematic illustration of the vaccine approach for patient-specific antigen formulation into 

immune-modulating microparticles. 

 

RESULTS AND DISCUSSION 

 
1. Synthesis of antigen-loaded CaCO3 microparticles 

 
CaCO3 microparticles were synthesized based on a procedure reported by Volodkin et al.28 

Initially we used ovalbumin (OVA) as model antigen. The latter was encapsulated by co-

precipitation of Na2CO3 and NaCl2 as reported earlier by De Koker et al.21-23, 31. Interestingly, we 

found that non-aggregated spherically shaped vaterite CaCO3 microparticles (Figure 2B-D) 

could be reproducibly obtained when the mixing of the respective reaction components was 

performed on ice whereas at room temperature aggregate formation was commonly observed 

(Figure 2A). An OVA concentration of up to 1 mg/mL could be used while avoiding aggregation. 

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) gave further 

proof of successful microparticle formation. Interestingly, SEM imaging showed a clearly visible 

porous structure of the obtained microparticles. The loading efficiency of OVA into the CaCO3 
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microparticles was determined by measuring the free (i.e. non-encapsulated) protein 

concentration in the supernatant by UV-VIS spectrophotometry to be 85 % (+/- 4.14).  

 

 

 
Figure 2. Optical microscopy imaging of CaCO3 particles: (A1) aggregated particles (A2) non-aggregated 

particles – Electron microscopy (EM) imaging of the CaCO3 microparticles: (B) Scanning EM images and 

(C) Tranmission EM images. 
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2. Polymer adsorption on antigen-loaded CaCO3 microparticles  
 

To engineer the CaCO3 microparticle surface with molecular adjuvants – and thus allow for co-

delivery of antigen and immune-stimulatory cues – we used a copolymer of N-(hydroxypropyl) 

methacrylamide (HPMA) and N-(3-aminopropyl) methacrylamide (APMA) composed of              

80 HPMA and 20 APMA repeating units, synthesized by RAFT polymerization as earlier 

reported32. Further on in this chapter (vide infra – Synthesis of a polymeric TLR7/8-agonist), this 

polymer will be substituted with a small molecule TLR-agonist.  

 
CaCO3 microparticles were dispersed in deionized water at a concentration of 13 mg/mL and 

incubated with different concentrations of polymer (i.e. 0.5 – 50 mg/mL). Subsequently the 

microparticles were centrifuged and the amount of adsorbed polymer was determined by 

measuring the concentration of free polymer in the supernatant. As shown in Figure 3A, which 

expresses the percentage of polymer that is adsorbed onto the CaCO3 microparticles, an 

increasing amount of polymer can be deposited up to 0.285 mg polymer (+/- 0.605) per 1 mg 

CaCO3. Based on these results a 10 mg/mL polymer concentration was used for further 

experiments.  

 

      

 
Figure 3. Adsorption of poly(HPMA-APMA) on antigen-loaded CaCO3 particles: (A) Efficiency of 

deposition determined by UV-VIS. (B) Confocal image of the absorbed polymer layer (in red) on antigen-

loaded (in green) particles. Scale bar represents 10 µm. 

 

Zeta-potential measurements before and after polymer deposition indicated a charge reversal 

from -23.73 mV (+/-0.416) to 3.52 mV (+/- 0.586). The negative value of the OVA-loaded CaCO3 

microparticles can likely be attributed to the isoelectric point of 4.3 of OVA, meaning that it will 
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bear a net negative charge at neutral pH. Protonation of the primary amine groups of 

poly(HPMA-APMA) will confer a cationic charge and thus accounts for charge reversal upon 

polymer adsorption based on a combination of electrostatic interaction and physisorption. 

Polymer localization was visualized by confocal microscopy using poly(HPMA-APMA) that was 

labeled with rhodamine (Figure 3B). This clearly shows the presence of the adsorbed polymer 

layer on the surface of the CaCO3 microparticles.  

 
3. In vitro screening 

 
Next, in a series of experiments, we investigated the interaction between the microparticles 

and DCs in vitro. For this purpose, we used bone marrow derived murine DCs and pulsed with 

microparticles loaded with AlexaFluor488-labeled OVA (1:50 ratio to unlabeled OVA) to allow 

for detection by flow cytometry and confocal microscopy. In these experiments we compared 

OVA-loaded microparticles with and without polymer coating with free soluble OVA. A dose-

dependent increase in mean cellular fluorescence is observed (Figure 4), with a dramatic 

difference between soluble OVA and CaCO3-encapsulated OVA. Furthermore, no significant 

influence of the polymer coating on mean cellular fluorescence was observed.  

 

 
 

Figure 4. (A) In vitro uptake characterization of OVA-AF488 loaded CaCO3 particles: (A1) Flow cytometry 

analysis and (A2-A3) confocal imaging: the cell membrane was stained with AF555-labeled cholera toxin 

B (CTB-AF555) and the cell nuclei were stained with Hoechst. Scale bar represents 10 µm (A2) shows 

one z-plane plus corresponding cross-sections (A3) shows the maximum intensity projection of the full 

z-stack.  (B) Cell viability measured by MTT assay of DC2.4 cells pulsed with different concentrations of 

CaCO3 microparticles, with and without polymer coating. 
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Both findings indicate that the particulate nature of the CaCO3-encapsulated OVA and likely the 

fact that microparticles tend to sediment account for a better association of encapsulated 

relative to soluble OVA by DCs. Confocal microscopy gave further proof that the microparticles 

were internalized by DCs and were not merely bound to the cell membrane. MTT cytotoxicity 

assay showed only a moderate decrease in cell viability at higher particle concentrations up to             

40 µg/mL OVA (corresponding to 0.3 mg/mL of CaCO3), again with no influence of the polymer 

coating. 

 
4. Synthesis of a polymeric TLR7/8-agonist 

 
Microparticulate formulation of antigens is known to enhance CD8+ T-cell presentation but is 

insufficient to promote the induction of robust CTL-responses. Co-delivery with TLR-ligands has 

proven a viable approach to enhance immunogenicity of vaccine formulations with 

combination of multiple ligands to work synergistically5, 18, 21, 33.  

 
In this work we conjugated (2-(4-((6-amino-2-(butylamino)-8-hydroxy-9H_purin_9-

yl)methyl)benzamido)acetic acid), further denoted as CL264, to poly(HPMA-APMA). CL264 is a 

small molecule TLR7/8-agonist that is the synthetic analogue of single stranded RNA which is 

the natural ligand of TLR7/8. TLR7/8-agonists are known to induce expression of type I 

interferons which are potent activators of a TH1-type immune response, known to be crucial 

for the induction of strong anti-tumor immune responses. Interestingly, we and others have 

recently shown that lipid-, polymer- and nanoparticle-conjugation of small molecule ligands 

strongly reduces systemic inflammation and yields potent lymph node localized responses that 

enhance the adaptive immune response against co-delivered antigens34-36. 

 
CL264 was conjugated to the primary amine moieties of poly(HPMA-APMA) via standard 

amidation chemistry using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholin-4-ium 

chloride (DMTMM) as coupling reagent (Figure 5). 1H NMR and SEC analysis of the resulting 

polymer is shown in Supporting Information (Figure S1) and confirmed successful substitution 

of the polymer. The extent of conjugation calculated from 1H NMR analysis was estimated at 

14 %. This was confirmed via quantitative UV-VIS spectroscopy, indicating that 12.5 % of the 

free amine groups originating from APMA were substituted with CL264. This polymer will 

further be denoted as CL264-poly(HPMA-APMA).  
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Figure 5. Synthesis of poly(HPMA-APMA) via RAFT polymerization and subsequent substitution of part 

of the APMA repeating units with the TLR7/8-agonist CL264. 

 

Next, we investigated the influence of polymer-conjugation on the ability of the TLR-agonists 

to trigger receptor activation. For this purpose, we made use of RAW Blue TLR reporter cell line. 

The latter is derived from the murine RAW 264.7 cells with chromosomal integration of a 

secreted embryonic alkaline phosphatase (SEAP) reporter construct inducible by NF-κB and AP-

1. Upon activation of the TLR-receptors, activation of NF-κB and AP-1 occurs leading to 

production of SEAP. The levels of SEAP can be easily monitored by spectrophotometry.  

RAW Blue cells were pulsed with increasing concentrations of soluble and polymer-conjugated 

TLR-agonist alongside unmodified polymer as control. 

 
As shown in Figure 6A, the soluble TLR7/8-agonist CL264 and polymer-conjugated TLR7/8-

agonist were potent activators of RAW Blue cells. A similar extent of activation was witnessed 

for both forms at concentrations starting from 0.5 µM, indicating that the polymer conjugation 

does not impair the binding of the TLR-agonist to its receptor above these concentrations. In 

contrast, no NF-kB activation could be observed for the polymer-conjugated TLR-agonist in 

concentrations below 0.5 µM. Note that blank polymer did not induce any activation.  
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To further support these findings, we investigated the effect of the soluble and polymer-

conjugated TLR-agonists on the maturation of bone marrow derived DCs. For this purpose, DCs 

were pulsed overnight with a concentration range of the respective samples, followed by 

antibody staining against CD80 and analysis via flow cytometry. CD80 stimulates the CD28 

receptor on T-cells, providing co-stimulatory signals for T-cell activation and skewing of TH1-

immunity. The data obtained in these experiments (Figure 6B) followed the same general 

trends as observed in the RAW Blue activation studies. Whereas the blank polymers did not 

exceed the basal DC maturation level, both soluble and polymer-conjugated TLR7/8-agonist 

induced DC activation. 

 

 
 
Figure 6. Screening of TLR-activation potency of CL264-poly(HPMA-APMA) on: (A) RAW Blue 

macrophages. (B) bone marrow derived DCs. 

 

5. TLR-agonist engineering of antigen-loaded CaCO3 microparticles  
 
First we tested whether the presence of the TLR7/8-agonist on the polymer backbone 

influenced the adsorption behavior of the polymer onto OVA-loaded CaCO3 microparticles. To 

do so, we repeated the experiment outlined in one of the previous sections (vide supra – 

Polymer adsorption on antigen-loaded CaCO3 microparticles) and found no significant influence 

of the substitution of the primary amino groups of poly(HPMA-APMA) with the TLR7/8-agonist 

CL264. Data is summarized in Figure S2 in Supporting Information. Interestingly, these findings 

point at the importance of electrostatic contributions due to the remaining cationic APMA 

moieties alongside non-electrostatic contributions, such as van der Waals interactions, on the 

adsorption behavior of the polymer onto CaCO3 microparticles (vide supra – Synthesis of a 

polymeric TLR7/8-agonist).  
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Figure 7. Screening of the potency of CL264-poly(HPMA-APMA) whether or not co-formulated with 

antigen-loaded CaCO3 particles compared to the soluble TLR7/8-ligand via the RAW Blue assay. 

 

Prior to determiniation of TLR-activation by polymeric TLR7/8-agonists adsorbed on CaCO3 

microparticles, we confirmed the absence of LPS contamination by a LAL assay (Supporting 

information, Figure S3). TLR-activation was then subsequently assessed via the RAW Blue 

reporter cell line. RAW blue cells were incubated with increasing concentrations of CaCO3 

microparticles engineered on their surface with polymeric TLR7/8-agonist up to a non-toxic 

particle concentration of 0.3 mg/mL. As shown in Figure 7 the polymeric TLR-agonist could still 

trigger its receptor when adsorbed onto CaCO3 microparticles. Interestingly, the TLR-ligand was 

more potent when adsorbed onto CaCO3 microparticles than unbound. The increase in potency 

can be explained by the more efficient uptake by the RAW Blue cells of the TLR-ligand when 

adsorbed onto microparticles, which leads to enhanced interaction of the TLR-ligand with the 

receptor upon cell uptake. Note that as a control uncoated CaCO3 particles were included which 

resulted in no TLR-activation.  

 

6. Formulation of cancer cell lysate 
 

As a model for patient-derived tumor cell lysate we used the Lewis Lung cancer cell line 

expressing ovalbumin (LLC.OVA). First, we compared the two most widespread techniques to 

induce cell lysis, i.e. osmotic shock in deionized water and repeated freeze-thaw cycles, in terms 

of efficiency with respect to the yield of free protein in solution. Bradford assay revealed that 

repeated freeze-thaw cycles yield a higher protein concentration which can likely be attributed 
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to the harsher circumstances the cells were exposed to compared to osmotic shock (Figure 

8A1).  

 

 

 
Figure 8. (A) Cell lysis protocol optimization by assessment of the extent of protein recovery in the final 

lysate measured via Bradford assay: (A1) osmosis compared to freeze thaw cycles and (A2) comparison 

of additional steps to increase protein recovery e.g. sonication (sample A) or not (sample B); followed 

by centrifugation (sample C); whether or not followed by filtration over a 100 µm filter (sample D).  

(B) In vitro uptake of lysate-loaded CaCO3 particles by: (B1) flow cytometry analysis and (B2) confocal 

imaging. The cell membrane is stained with AF555-labeled cholera toxin B (CTB-AF555) and the cell 

nuclei are stained with Hoechst. Scale bar represents 15 µm. 

 

Second, we assessed the influence of sonication and filtration on the amount of protein that 

can be recovered. After cell lysis by freeze-thaw, the samples were subsequently: sonicated 

(sample A); or not (sample B); followed by centrifugation (sample C); whether or not followed 

by filtration over a 100 µm filter (sample D). As shown in Figure 8A2, this revealed that 

sonication yields higher protein recovery potentially due to increased release of cellular 

contents caused by disruption of the cell membranes. Filtration after centrifugation did not 

have an additive value over centrifugation alone. Overall, we concluded six repetitive freeze 
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thaw cycles followed by sonication and centrifugation to be an optimal protocol for the 

preparation of cell lysate.  

 
In a next step, the encapsulation efficiency of LLC.OVA lysate – prepared via the above outlined 

method – in CaCO3 microparticles was assessed. UV-VIS analysis of the supernatant revealed 

an encapsulation efficiency of 77 % (+/-0.6), which was similar to the encapsulation efficiency 

obtained for soluble OVA (vide supra – Synthesis of antigen-loaded CaCO3 microparticles). The 

presence of eGFP lysate inside the microparticles was visualized via confocal microscopy, 

shown in Figure 3B. 

 

To investigate the influence of microencapsulation on the uptake efficiency of cell lysate by 

DCs, we prepared cell lysate of the enhanced green fluorescent protein (eGFP) expressing colon 

tumor-derived cell line (CT5.3-eGFP) to obtain fluorescent microparticles that can be tracked 

by fluorescence-based techniques. Flow cytometry demonstrated a clear dose-dependent 

uptake of cell lysate and importantly showed a dramatic increase in uptake efficiency of CaCO3-

encapsulated cell lysate compared to cell lysate in solution. Furthermore, confocal microscopy 

confirmed the presence of the fluorescent cell lysate loaded microparticles inside the DCs and 

not merely bound the cell membrane (Figure 8B).  

 
To further explore the potential of the lysate-loaded CaCO3 microparticles as vaccine carriers, 

we investigated whether the model tumor-associated antigen OVA can still be processed and 

cross-presented by DCs when the cell lysate is encapsulated in CaCO3 microparticles. For this 

purpose, DCs (note that the DC2.4 cell line was used for this assay) were pulsed with a 

concentration range of respectively soluble and encapsulated LLC.OVA cell lysate. 

Subsequently, the DCs were stained with an antibody recognizing SIINFEKL, the OVA-CD8+ 

epitope, complexed to MHC class I H-2Kb molecules and analyzed by flow cytometry. As 

depicted in Figure S4, LLC.OVA lysate was not subjected to cross-presentation. In contrast, the 

results obtained for encapsulated lysate into CaCO3 microparticles indicated enhanced cross-

presentation. Further in vivo proof is however needed to investigate the therapeutic potential 

of this strategy. 
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CONCLUSION 

 

In summary, we demonstrated that CaCO3 microparticles hold potential as vaccine carriers for 

cancer cell lysates. CaCO3 particles exhibited lower cytotoxicity and strongly enhanced cellular 

uptake of the cell lysate by DCs, leading to an improvement of the cross-presentation efficiency. 

In addition, the microparticles could be engineered with polymer-ligated TLR7/8-agonists to 

increase their immunogenicity. Future studies will focus to unravel the cytokine spectra that 

are induced by the TLR7/8-agonist and in vivo studies will need to be undertaken to assess the 

potential of our strategy to evoke tumor-specific immune responses. 
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SUPPORTING INFORMATION 

 

 

Figure S1. Characterization of the substitution of poly(HPMA-APMA) with the TLR7 agonist CL264 

yielding TLR7-poly(HPMA-APMA): (A) Reaction scheme. (B) Size exclusion chromatography in DMA. (C) 
1H NMR analysis in D2O. 
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Figure S2. Coating deposition efficiency of poly(HPMA-APMA) on CaCO3 particles substituted with the 

TLR7-agonist CL264 compared to unsubstituted poly(HPMA-APMA) determined by UV-VIS 

spectroscopy. 
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Figure S3. Endotoxin LAL assay result of the CaCO3 particles and the separate components used for the 

synthesis. 

 

 

Figure S4. MHC-I presentation in vitro by dendritic cells of the lysate-loaded CaCO3 particles. 
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EXPERIMENTAL SECTION 
 
Materials. Calcium chloride (CaCl2), sodium carbonate (Na2CO3), 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide (MTT) reagent, sodium dodecyl sulfate (SDS), dimethyl 

sulfoxide (DMSO), bovine serum albumin (BSA), 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-

methylmorpholin-4-ium chloride (DMTMM), succinic anhydride, NaOH, DMF, NaHCO3 and 

paraformaldehyde (PFA) were obtained from Sigma Aldrich. Ovalbumin (OVA) was obtained 

from Worthington. Hydrochloric acid (HCl) 37 % v/v, rhodamine-isothiocyanate were 

purchased from Fischer Scientific. Dulbecco’s Modified Eagle Medium (DMEM), RPMI 1640 

medium, fetal bovine serum (EU qualified), penicillin/streptomycin (5000 U/mL), sodium 

pyruvate (100 mM), L-glutamine (200 mM), red blood cell lysis buffer, cell dissociation buffer 

(PBS based), PBS buffer (pH 7.2), Hoechst, cholera toxine B conjugates to AlexaFluor555 (CTB-

AF555) and Zeocin were obtained from Invitrogen. Bradford reagent was obtained from Biorad 

whereas the pretreated Spectra/Por 7 dialysis membrane were purchased from Spectrumlabs. 

The anti-Mouse OVA257-264 (SIINFEKL) peptide bound to H-2Kb PE antibody and the anti-

Mouse CD80 PE antibody were purchased from eBioscience and Quanti blue stain was obtained 

from Invivogen. Deuterated H2O (D2O) and d6-DMSO were purchased from Deutero. The 

ToxinSensorTM Chromogenic LAL Endotoxin Assay Kit was obtained from Genscript whereas the 

TLR7-agonist was purchased from Invivogen. 

 
Immortalized cell lines 
 
DC2.4 cell line. The DC2.4 cell line was a kind gift from Dr. Kenneth Rock (University of 

Massachusetts, Boston, US). The cells were cultured in RPMI medium supplemented with 10 % 

fetal bovine serum, 1 % penicillin/streptomycin, 2 mM L-glutamine and 1 mM sodium pyruvate 

and incubated at 37 °C with 5 % CO2 saturation.  

 
RAW Blue cell line. The RAW Blue cell line was purchased from Invivogen. The cells were 

cultured in DMEM medium supplemented with 10 % heat-inactivated fetal bovine serum, 1 % 

penicillin/streptomycin, 2 mM L-glutamine, 1 mM sodium pyruvate and 0.01 % Zeocin and 

incubated at 37 °C with 5 % CO2 saturation. 

LLC. OVA cell line. The LLC.OVA cell line was a kind gift from Prof. Karim Vermaelen (University 

of Ghent, Belgium). The cells were cultured in RPMI medium supplemented with 10 % fetal 
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bovine serum, 1 % penicillin/streptomycin, 2 mM L-glutamine and 1 mM sodium pyruvate and 

incubated at 37 °C with 5 % CO2 saturation. 

 
CT5.3-eGFP cell line. The CT5.3-eGFP cell line37 was cultured in DMEM medium supplemented 

with 10 % fetal bovine serum, 1 % penicillin/streptomycin, 2 mM L-glutamine and 1 mM sodium 

pyruvate and incubated at 37 °C with 5 % CO2 saturation. 

 
Electron microscopy 
 
Scanning electron microscopy. Scanning electron microscopy (SEM) was performed on a 

Quanta 200 FEG FEI instrument. Samples were deposited onto a silicon wafer and dried under 

a gentle nitrogen stream at ambient temperature. Prior to imaging, the samples were sputtered 

with a palladium/gold coating. 

 
Transmission electron microscopy. Transmission electron microscopy (TEM) was performed on 

a JEOL 1010 instrument. Prior to imaging, samples were subjected to series of fixation (0.1 M 

Na cacodylate buffer (pH 7.2) containing 4 % paraformaldehyde and 2.5 % glutaraldehyde) and 

dehydration steps, embedded in epoxy resin and cut into ultrathin section using an 

ultramicrotome. 

 
Synthesis CaCO3 particles. The synthesis of calcium carbonate particles was based on Volodkin 

et al. In brief, 650 µL of a 1 M CaCl2 solution and subsequently 650 µL of a 1 M Na2CO3 solution 

is added to 5 mL of a 1 mg/mL solution of ovalbumin (OVA) or a 1 mg/mL solution of cancer cell 

lysate under vigorous stirring for 30 seconds on ice. The resulting suspension is centrifuged at 

300 G for 5 minutes at 4 °C followed by removal of the supernatant and two washing steps with 

deionized water. Samples were visualized on a Leica DM2500P microscope equipped with a 

40X (NA 0.75) objective, DIC filters and a DFC360FX camera. 

 
Encapsulation efficiency. Encapsulation efficiency of both OVA and LLC.OVA lysate was 

performed by UV−VIS spectrophotometry. The absorbance of the supernatant after synthesis 

of the particles was compared to a standard curve of OVA and LLC.OVA lysate respectively. The 

UV−VIS spectra were recorded on a spectrophotometer (Shimadzu UV-1650PC) in 1 cm × 1 cm 

quartz cells. 
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Conjugation of TLR7-ligand CL264 to poly(HPMA-APMA) 
 
Synthesis CL264-poly(HPMA-APMA). Poly(HPMA-APMA), dissolved in LPS free water, was 

incubated with an equimolar amount of TLR7-ligand CL264 to APMA units overnight under 

continuous stirring at room temperature in the presence of 1.5 M excess of DMTMM. After 24 

h incubation the reaction mixture was dialyzed against LPS free water (MWCO 3.5 kDa) for 1 

day and lyophilized. 

 
1H-NMR and SEC analysis. The obtained polymers were all analyzed by 1H-Nuclear Magnetic 

Resonance (NMR) and Size Exclusion Chromatography (SEC). NMR spectra were recorded on a 

Bruker 300 MHz FT NMR in D2O. Chemical shifts (δ) are provided in ppm relative to TMS. SEC 

elugrams were recorded on a Shimadzu 20A system in dimethylacetamide (DMAc) as solvent 

containing 50 mM LiBr. The system was equipped with a 20A ISO-pump and a 20A refractive 

index detector (RID). Measurements were recorded at 50 °C with a flow rate of 0.7 mL/min. 

Calibration of the 2 PL 5 μm Mixed-D columns was done with poly(methyl methacrylate) 

(PMMA) standards obtained from PSS (Mainz, Germany). 

 
Polymer deposition efficiency. After synthesis and two washing steps the particles were 

incubated with different concentrations of polymer for 5 minutes under continuous shaking to 

ensure optimal interaction. The particles were centrifuged at 300 G for 5 min. followed by 

measurement of UV absorbance of the supernatant compared to a standard curve of the 

respective polymer. The zeta potential was measured after two washing steps on a Zetasizer 

Nano S (Malvern Instruments Ltd., Malvern, U.K.) with a HeNe laser (λ = 633 nm) at a scattering 

angle of 173 °. 

 
Fluorescent labeling of poly(HPMA-APMA). Poly(HPMA-APMA) was incubated with an equimolar 

amount of rhodamine-isothiocyanate in 0.1 M NaHCO3 buffer overnight under continuous 

stirring. Subsequently the obtained mixture was dialyzed against deionized water for 3 days 

(MWCO 3.5 kDa) and lyophilized. 

 
Isolation of bone marrow derived dendritic cells. Mouse bone marrow-derived DCs (bmDCs) 

were isolated by flushing femurs of C57BL/6 mice with complete RPMI with a 26 G needle. The 

cell suspension was filtered through a 100 μm cell strainer and incubated for 3−5 min in red 

blood cell lysis buffer on ice. The cells were subsequently seeded into a 24 well plate at a density 
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of 1.5 × 105 cells/ mL in complete RPMI containing 20 ng/mL of GM-CSF and incubated at  

37 °C/5 % CO2 for 7 days. To ensure optimal bmDC growth, fresh medium containing 20 ng/mL 

GM-CSF (provided by the VIB Protein Service Facility, Ghent, Belgium) was added on day 3, and 

on day 6 the medium was refreshed. On day 6 or 7, depending on the experiment, the bmDCs 

were isolated, seeded and pulsed with the test compounds. 

 
MTT assay. Cell viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl 

tetrazolium bromide (MTT) assay. Bone marrow derive dendritic cells were seeded in 96 well 

plates at a density of 50000 cells/mL (total volume 100 μL) in six-fold on day 6. Subsequently, 

the cells were incubated with different concentrations of CaCO3 particles and cultured for 24 h 

and for 48 h followed by addition of 40 μL of the MTT reagent (1 mg/mL). After an incubation 

period of 2–3 h the formed formazan crystals were dissolved in 100 μL of a 10 % m/v SDS/0.01 

M HCl solution overnight protected from light. The absorbance was measured by a microplate 

reader at 570 nm. As a negative and positive control PBS buffer and DMSO respectively were 

added to the wells. 

 
In vitro uptake assay. Bone marrow derived dendritic cells were pulsed at day 7 with fluorescent 

particles at different concentrations. After 24 h of incubation, the cells were dissociated using 

cell dissociation buffer followed by centrifugation for 5 min at 200 G at 0 °C. After resuspension, 

the samples were stored on ice and measured on a BD Accuri C6 flow cytometer. The data was 

analyzed using FlowJo. 

 
Confocal microscopy imaging. DC2.4 cells were seeded at a density of 0.4 × 106 cells/mL in a 

glass bottom Will-co dish and incubated overnight. Next, the fluorescent particles were added, 

incubated for 24 h, and fixated in a 2 % paraformaldehyde solution for 10−15 min. The cells 

were subsequently washed and simultaneously stained by CTB-AF555 and Hoechst for 1 h at 

room temperature. Finally the samples were washed with PBS and imaging on a confocal 

microscope (Leica DMI6000 B inverted 241 microscope) equipped with an oil immersion 

objective (Zeiss, 63 ×, 242 NA 1.40) and attached to an Andor DSD2 confocal scanner. 

 
In vitro MHC-I presentation assay. DC2.4 cells were seeded at a density of 0.2 × 106 cells/mL in 

a 24 well culture plate and incubated overnight followed by incubation with different 

concentrations of the samples. After 48 h at 37 °C the positive control (SIINFEKL) was added in 
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triplicate in a concentration of 1 µg/mL, 1 hour prior to staining with SIINFEKL-MHC-I PE-labeled 

antibody for 30 minutes on ice protected from light. Subsequently the samples were 

centrifuged for 5 minutes at 200 G at 4 °C, resuspended in PBS and analyzed with flow 

cytometry. 

 
In vitro RAW Blue assay. RAW Blue macrophages are seeded in a 96 well round bottom plate at 

a density of 0.5 x 106 cells/mL and immediately pulsed with the desired concentrations of the 

test compounds in six-fold. As a negative control PBS is added. After 24 h incubation, 50 µL of 

the supernatant is transferred into a 96 well flat bottom plate and incubated with 150 µL of 

Quanti blue solution. After 3 to 6 h incubation at 37 °C the color change absorbance is measured 

with a plate reader at 620-655 nm. 

 
In vitro BM-DC maturation assay. The bone marrow derived dendritic cells are pulsed on day 6 

with different concentrations of the test compounds in triplicate and PBS or DMSO as negative 

control. After 24 h incubation the cells are dissociated with cell dissociation buffer followed by 

centrifugation for 5 minutes at 200 G at 4 °C and resuspension in 50 µL of antibody cocktail. 

After 30 minutes of incubation on ice protected from light, the samples were centrifuged (5 

minutes, 200 G) at 4 °C, resuspended in PBS and subsequently measured by flow cytometry. 

 
LAL test. A Limulus Amebocyte Lysate (LAL) assay was performed to verify that samples were 

not contaminated with endotoxins. The Toxinsensor Chromogenic LAL Endotoxin Assay Kit is 

performed according to the manufacturer’s instructions. In brief, the samples are diluted based 

on the maximum valid dilution (MVD) in order to overcome interference of the test compounds 

while still allowing detection of the endotoxin limit. A standard curve is prepared by dissolving 

the lyophilized endotoxin standard in LAL reagent water and diluting the resulting stock in 5 

concentrations ranging from 0.01 to 0.1 endotoxin unit per mL. Further on, all samples and 

standard are incubated with the LAL lysate for 40 to 60 minutes at 37 °C, followed by addition 

of the chromogenic substrate and incubation for 6 minutes at 37 °C. Next, the reaction is 

stopped by addition of the color stabilizers #1, #2 and #3. Finally the samples are measured at 

545 nm by UV-VIS spectrophotometry. 

 
Lysate preparation. First, the cells are suspended in deionized water at a density of 20 x 106 

cells/mL and sequentially lyzed via different methods. On the one hand, the cell suspension is 
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frozen in liquid nitrogen and thawed in a warm water bath at 37 °C in six fold or incubated for 

60 minutes on ice to allow osmotic lysis, on the other. Then, the samples are sonicated for 10 

seconds followed by 50 seconds rest on ice in six fold, centrifuged for 5 minutes at 2000 G at  

4 °C. The supernatant was subsequently isolated and lyophilized. 

 
Bradford assay. The efficiency of the lysate preparation protocols is determined via measuring 

the protein content in the supernatant after cell lysis. Therefore, serial dilutions were prepared 

of a Bovine Serum Albumin (BSA) standard solution (2 mg/mL). The Bradford reagent was 

prepared following the manufacturer’s instructions. In brief, the reagent was diluted 1 to 5 with 

deionized water followed by filtration over a Whatmann #1 filter. Next, 10 µL of the standards 

and the test samples were transferred in a 96 well plate and incubated with 200 µL of the 

Bradford reagent for 10 minutes on ice and measured at 590 nm with a multiplate reader. 
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ABSTRACT 

For the development of effective anti-cancer vaccines, tumor-associated antigens need to be 

internalized by antigen presenting cells alongside specific co-stimulatory signals. Interestingly, 

relative to soluble antigens, nano- and micro-particulate antigens are much better presented 

to CD8+ T-cells, a crucial step in the induction of cytotoxic T-cells that can eliminate malignant 

cells. In this regard, a strategy to encapsulate cancer cell-derived proteins into a particulate 

delivery system would be of high interest. Here we present a versatile approach to incorporate 

cancer cell proteins into polymeric capsules using the cells themselves as templates for Layer-

by-Layer assembly of complimentary interacting species. After coating, the cells are killed by 

hypo-osmotic treatment leading to bio-hybrid capsules loaded with cell lysate. Particular focus 

is devoted in this chapter on choosing the optimal coating components and conditions to 

maximize cell membrane integrity during the coating process, to minimize pre-mature protein 

release and to achieve optimal encapsulation of cell lysate upon lysis of the cells. To further 

underline the potential of our approach, we demonstrate that heat shock proteins, important 

immune-activators, can be induced and encapsulated into the bio-hybrid capsules.
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INTRODUCTION 

 
Despite major effort in cancer research, there remains a great need for more specific and 

targeted therapies to combat metastatic disease and to reduce the need for traditional chemo- 

and radiotherapies that are both prone to serious side effects1-3. Anti-cancer immune-therapy 

involves priming the patient’s own immune system to recognize and eliminate malignant cells4. 

To achieve targeted treatment, cancer antigens have to be internalized by dendritic cells and 

presented to CD8+ T-cells in combination with the appropriate cytokine spectrum and co-

stimulatory signals1,2,5-10. Recent advances at the interface between immunology and materials 

chemistry have elucidated that formulating protein-based antigens into particulate carriers in 

the range of 50 nm – 10 µm strongly promote cross-presentation by DCs to CD8+ T-cells9-15. 

These findings provide a clear rationale to design strategies for the delivery of antigens in 

particulate form to DCs.   

 
Unfortunately, encapsulation strategies for tumor-associated antigens are limited as antigens 

of many cancer types are still unidentified on the one hand and are also prone to continuous 

mutation on the other16,17. To overcome these limitations, we detail an approach to 

encapsulate tumor-associated antigens by templating a synthetic membrane onto the surface 

of cancer cells followed by lysis of the cancer cells retaining cell lysate within the hollow void of 

the obtained capsules (Figure 1A). Cell encapsulation has not yet been used for anti-cancer 

immune-therapy but has found applications in several biomedical applications including tissue 

engineering and diabetes treatment18-21. Current progress on implementing whole cell lysates 

as anti-cancer vaccine is mostly based on ex vivo DC therapy, involving electroporation of DCs 

derived from the cancer patient’s own blood monocytes22,23. This is a highly costly, labor-

intensive procedure and does not take advantage of the physiological stimuli that occur in 

direct in vivo vaccination and therefore urges towards viable alternatives4,24. 

 
By employing in vivo targeting of autologous tumor cell lysate, the patient’s individual tumor-

specific and/or tumor-associated antigens can be delivered to the immune system in an 

immunogenic fashion, which should enable the induction of broader immune responses 

specifically tailored to the patient’s unique tumor mutanome16,17. However, one might argue 

that immunization of cancer patients with a vaccine containing autologous tumor cell lysate 

could lead to induction of autoimmunity against cellular proteins that are shared with normal 
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cells. However, this has, at least to our knowledge, not yet been reported in both preclinical 

and clinical studies25-28. 

 
Layer-by-Layer (LbL) assembly of complementary interacting components is an attractive 

technique to deposit a semi-permeable membrane on the surface of non-planar substrates29. 

It allows an easy, all-aqueous mild encapsulation of a wide variety of species, mostly polymeric 

or inorganic template particles that are used to design hollow capsules. Several studies have 

already been reported on LbL coating of cells mainly focusing on encapsulation of living yeast 

cells or bacteria20,30-32. However these microbial cells are more robust due to their rigid cellular 

wall whereas mammalian cells are more fragile33. Here we present the LbL encapsulation of 

murine melanoma B16.F10 cells, as model cancer cell line, aiming at high preservation of the 

cell membrane integrity and good protein retention contained within the deposited multilayer 

coating. 

 

RESULTS AND DISCUSSION 

 
1. Screening the interaction between cells and oppositely interacting species 

 
Due to the overall negative charge of the cell membrane, we attempted at first to coat B16.F10 

melanoma cells based on electrostatic interaction of the oppositely charged polyelectrolytes 

poly-L-arginine (PLARG) (Figure 1B1; polycation) and dextran sulfate (DEXS) (Figure 1B2; 

polyanion). This choice is based on our previous work where we showed multilayer capsules 

composed of these polyelectrolytes are biocompatible, degradable in vitro34 and in vivo35 and 

induce broad cellular and humoral immune responses against encapsulated antigen36-38. 

However, whereas in the form of a polyelectrolyte complex poly-L-arginine is not inducing 

acute cytotoxicity39, we observed that incubation of live cells in a poly-L-arginine solution at a 

relevant concentration for Layer-by-Layer assembly (i.e. 0.1 to 1 mg/mL in isotonic HEPES 

buffer) induces instantaneous aggregation, cell lysis and cell death (vide infra – Figure 2 and 

Figure 3).  

 
Therefore, we were prompted at investigating an alternative for electrostatic assembly to 

assure a better preservation of cell viability during cell coating. In this regard, hydrogen bonding 

is attractive because it involves non-ionic species and particularly hydrogen bonded thin films 
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composed of neutral charged hydrophilic polymers such as e.g. poly(vinylpyrrolidone) (PVP, 

Figure 1B3) and tannic acid (TA; Figure 1B4) which have recently attracted interest31,32,40. 

Although PVP and TA form strong complexes, PVP/TA multilayers have been reported to 

gradually disassemble over time, likely due to oxidation, and are therefore an attractive system 

for delivery purposes41,42. Additionally we have recently reported the design of porous 

microparticles based on TA/PVP via spray drying43. These particles were used to encapsulate 

protein antigens and we successfully demonstrated that the antigens, after cellular uptake, 

could still be processed together with a dramatic increase in cross-presentation. This suggests 

that in intracellular conditions, proteases are still granted access to the payload that is firmly 

entrapped within the particles under extracellular conditions. Tannic acid is a safe food-grade 

compound that is applied in biomedical applications including hemostatic coatings, nano-

capsules and cell encapsulation. Besides via hydrogen-bonding, tannic acid has also shown its 

capability to form thin films via multiple mechanisms44,45. PVP is a non-ionic polymer that is 

approved by the FDA for pharmaceutical applications.  

 

 

 
Figure 1. Schematic representation: (A) of the design of LbL-coated bio-hybrid cancer cell-templated 

capsules with alternating layers (step a-c) of either the electrostatically interacting polyelectrolytes 

dextran sulfate (B1) and poly-L-arginine (B2) or poly(N-vinylpyrrolidone) (B3) and (B4) tannic acid that 

interact via hydrogen bonding followed by lysis of the cells upon hypo-osmotic treatment (step d). 
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As the aim of our work is to encapsulate whole cancer cells, it is important to preserve cell 

integrity as much as possible while affecting cell viability as little as possible in order to retain a 

maximum amount of cellular proteins within the LbL coating. Therefore, in a first series of 

experiments, we investigated the effect of incubating cells in isotonic aqueous solution of 

respectively DEXS, PLARG, TA and PVP on cell integrity and cell viability. For this purpose 

B16.F10 cells were incubated in 1 mg/mL HEPES-buffered solutions of either PLARG or DEXS 

while on the other hand the B16.F10 cells were incubated in PBS buffered 1 mg/mL solutions 

of either TA or PVP. HEPES buffer is used to solubilize DEXS and PLARG as the latter is not soluble 

in PBS due to ionic crosslinking of the cationic guanidinium moieties of the PLARG by the 

trivalent phosphate anions of the PBS buffer. To avoid active phagocytosis of these components 

during the coating process, all handlings were performed on ice to block energy-dependent 

internalization pathways.  

The effect of the respective test components on cell viability and membrane integrity was 

subsequently assessed by inline flow cytometry (FACS) in presence of a live/dead stain  

(Figure 2). This technique comprises continuous sampling/measuring of a cell suspension while 

adding the test component of choice at a certain point to probe for the effect on cell viability. 

In addition, the flow cytometry observations were supported by visualization of the cytotoxicity 

by staining the B16.F10 cells with calcein-AM (C-AM) and propidium iodide (PI). C-AM is a cell-

permeable dye that is converted by esterases into a non-cell-permeable state upon cellular 

uptake. As such, it strongly stains live cells. PI intercalates with double-stranded DNA, as found 

in the cell nucleus, but is cell impermeable. PI will thus only stain the nuclei of cells that have a 

damaged cell membrane and is therefore used as a probe for cell membrane integrity.  

 
The gating strategy applied to analyze the inline flow cytometry experiments is shown in Figure 

2A. Here we deliberately did not gate out (by plotting FSC-A vs. FSC-H and SSC-A vs SSC-H) 

doublets or multiplets (i.e. clusters of multiple cells instead of single cells) thus allowing us to 

probe possible induction of cell aggregation upon addition of the test component to the cells 

during the flow cytometry measurements. The first gate (forward scatter versus side scatter)  
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Figure 2. (A) Flow cytometry gating strategy for determination of B16.F10 cell viability offline and inline. 

(B) Inline flow cytometry data representing the response to the addition of the respective test 

components in the FL-3 fluorescence channel (live/dead staining and the forward (FSC), respectively 

side (SSC) scatter channels. The dashed red line indicates the time points at which the test components 

were added. (C) Fluorescence microscopy images of B16.F10 cells staining with C-AM/PI after 10 min. 

incubation with the respective test components on ice. Overlay of the DIC, green and red fluorescence 

channels. Scale bar is 50 µm. 
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serves to select both live and dead cells and to exclude cell debris. These two populations are 

marked by respectively a green (live cells) and a red (dead cells) dashed rectangle. In this regard, 

as shown in the second gate, it is important to realize that when performing in vitro cell culture 

experiments, there is always a small amount of dead cells present. The next step in the gating 

strategy is plotting the fluorescence channel used for the detection of live/dead staining (i.e. 

FL-3) in function of time. To gather additional information on the cellular response to the 

addition of the respective test components, we also plotted the forward (FSC) and the side 

(SSC) scatter channel as function of time. The panels B in Figure 2 represent the evolution over 

time of the live/dead signal of cells present in the gate that contains both live and dead cells. 

The measurement was started at time point zero and the test components were added after 2 

minutes. To validate the set-up, we used PBS and Triton-X (i.e. a detergent that solubilizes the 

cell membrane) as controls. PBS is expected to not affect the cell viability, while Triton-X should 

immediately kill the cells. Indeed, the inline flow cytometry plots in Figure 2B, do not indicate 

any alternation in the signal in function of time when PBS is added. By contrast, Triton-X 

dramatically changes the response in FL-3, FSC and SSC channels combined with a strong 

decrease in numbers of events immediately after addition of Triton-X, indicating massive cell 

death and cell lysis. 

 
Subsequently, we evaluated the influence on cell membrane integrity upon addition of the 

components that are of interest for Layer-by-Layer coating. DEXS did not influence the 

fluorescence signal. This is also confirmed by the corresponding fluorescence microscopy 

images in Figure 2C, recorded from an identically treated cell suspension as for the inline flow 

cytometry. Clearly, the majority of the cells exhibit strong green fluorescence by C-AM staining 

and only a few are stained red by PI. By contrast, addition of PLARG causes an immediate 

distortion of the fluorescence and scattering signals. Observation of clogging of the tubing due 

to aggregating cells (evidenced by the sharp decrease in FSC and increase in SSC signal), forced 

us to abort the measurements. The corresponding fluorescence microscopy images (Figure 2C) 

confirmed the aggregation and the nuclear staining with PI suggests that the majority of the 

cells have indeed lost their membrane integrity. When the inline flow cytometry experiments 

were performed with TA or PVP, no loss of cell viability/integrity was observed by either flow 

cytometry or microscopy. These data point out the superior performance of TA and PVP, 

compared to polyelectrolytes, to encapsulate cells in a polymeric multilayer coating while 
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maintaining membrane integrity as much as possible and affecting cell viability as little as 

possible. Remarkably, in case of TA, a slight increase in the fluorescence signal from the live cell 

population was noted whereas the dead cell population slightly decreased in signal upon 

addition of this component. Moreover, the FSC and SSC signals appear slightly altered. Although 

it is most likely that tannic acid interacts via hydrogen bonding with cell surface proteins or the 

live/dead stain, the exact reason for this subtle shift in fluorescence remains unclear.  

 
Next, we also assessed the cellular viability/integrity with (common offline) flow cytometry 

(Figure 2A) comprising live/dead measurements after deposition of the test components and 

two washing steps to remove non-adsorbed material (Figure 2A). However, one might argue 

that in case cells completely lose their integrity or in case cells are lost during the multiple steps 

of pipetting, washing and centrifugation, they can no longer be stained by any of the dyes used 

in the previous experiments (i.e. live/dead, C-AM and PI). By consequence, these would neither 

be included in the amount of dead cells nor in the total cell number, and thus give rise to an 

overestimation of the cell viability. In order to address this issue we performed a MTT cell 

viability assay on B16.F10 cells that were incubated for 10 min on ice with the respective test 

components. MTT assay probes for the metabolic activity of cells by measuring the enzymatic 

conversion (which can only by performed by viable cells) of the substrate 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide into the purple-colored formazan. As 

such, relative to a blank control, this assay quantifies the percentage of live cells taking into 

account the possible lost cells due to induced lysis by the test component or the multiple 

washing/centrifugation steps the cells are exposed to. Figure 3 summarizes these 

measurements and compares the values obtained by live/dead staining and MTT assay. Clearly, 

the observed trends correspond well for both techniques, with only a slightly lower cell 

viability/integrity measured by MTT assay. Besides being independent of fully disintegrated 

cells and a small amount of cells that were aspirated when pipetting during washing and 

centrifugation, another difference between the live/dead measurement and the MTT assay is 

that the the latter requires, after pulsing and removal of the test component, an additional 2 h 

incubation period of the cells with the MTT substrate. As such, the cell viability/integrity 

measured by MTT assay probes for longer-term effect than the online FACS live/dead assay 

that depicts the immediate cellular response to the respective test compounds. Deeper 

investigation into this phenomenon is beyond the scope of this work. However, generally we 
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can conclude that the inline flow cytometry set-up is a straightforward method to assess the 

instantaneous cellular response to a specific test component. 
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Figure 3. Cell viability/integrity, measured via MTT and FACS live/dead assay, measured after 10 min 

incubation of B16.F10 cells on ice with the respective test components. n=6.  

***: p < 0.001. §: FACS live/dead analysis was not possible due to massive cell aggregation. 

 

2. Characterization of the LbL coating  

 
Based on our initial flow cytometry and microscopy findings, we next attempted to coat the 

B16.F10 cells with a multilayer film by alternated assembly of TA and PVP. For this purpose, 

cells were sequentially incubated in 1 mg/mL solutions of respectively TA or PVP in PBS buffer. 

Also in these experiments, all handlings were performed on ice to block energy-dependent 

internalization pathways. After deposition of each layer, the cells were centrifuged and washed 

two times with PBS buffer to remove non-absorbed material. An important aim in this chapter 

is to measure the effect of these handlings on cell viability and more importantly on cellular 

integrity. Therefore, before dispersion of the cells in the respective coating solutions, cell 

viability/integrity was monitored by optical microscopy (C-AM/PI staining), FACS (live/dead 

staining) and MTT assay.  

 
As repeated incubation on ice, pipetting, washing and centrifugation steps might have an effect, 

we also performed control experiments by subjecting cells to the same regime of handlings, 

but fully in PBS instead of using the respective coating components. The evolution of the 

cellular integrity/viability (monitored by either MTT or FACS live/dead) of these control groups 
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is represented by the dashed curves in Figure 4A. FACS live/dead assay does not point out any 

significant cell death during repeated washing/centrifugation, whereas MTT assay does indicate 

a significant loss. Again, as discussed in the previous paragraph, this can likely be attributed to 

the longer time that is required to perform the MTT assay, to the small fraction of cells that is 

aspirated during the centrifugation/washing cycles and to possible induced cell lysis by the test 

component. In view of these findings future research will focus on novel strategies, thereby 

reducing loss of cell viability and membrane integrity, that allow one-step coating of cells based 

on novel concepts that were recently introduced into the field of colloidal engineering44,46. 

 

 
 

Figure 4. (A) Cell viability, measured via MTT and FACS live/dead assay, measured after each deposition 

cycle during LbL coating of B16.F10 cells. The images are an overlay of the DIC, green and red 

fluorescence channels. N=3. (B) Fluorescence microscopy images of B16.F10 cells staining with C-AM/PI 

after each deposition cycle during LbL coating of B16.F10 cells. The images are an overlay of the DIC, 

green and red fluorescence channels. Scale bar is 50 µm.  

 

The non-dashed curves in Figure 4A, represent the evolution of cell viability/integrity during LbL 

coating of the B16.F10 cells and indicate a gradual decrease as function of time. MTT and FACS 



CHAPTER 5 

141 

live/dead assay show a similar trend that is confirmed by the microscopy images, as shown in 

Figure 4B, indicating increasing amounts of dead cells when depositing more layers. 

Importantly, no massive cell lysis or aggregation is observed during LbL coating of the cells. 

Figure 4A also represents the effect of a hypo-osmotic treatment on the cell viability/integrity. 

Previous studies on LbL coating of living cells describe cell survival of approximately 80 % up to 

95%.32, 47. Our results show however, a dramatic reduction in cellular viability/integrity after 

deposition of 2 bilayers. We assume this can be attributed to the different approach we 

elaborated on in our present work to assess the effect of LbL coating on cell integrity. So far in 

literature either yeast cells or bacteria, both having a rigid cell wall, have been used for LbL 

coating or cell viability/cell membrane integrity has been monitored solely after deposition of 

the entire LbL coating32, 47, 48. The latter thus excludes the extent of cell death or lysis that occurs 

during the coating process itself, which appears, at least in our findings, to play an important 

role. 

 
3. Assessing the influence of the starting layer on cellular integrity 

 
Next, we also aimed at investigating the effect of the starting layer (i.e. TA or PVP) on cellular 

integrity. Interestingly, when the Layer-by-Layer coating was initiated from PVP rather than TA, 

maintenance of the membrane integrity was improved as measured both by flow cytometry 

and MTT assay (Figure 5A). This suggests that using TA as starting material for cell-templated 

LbL assembly gives rise to an increased cytotoxicity upon further LbL coating. Although PVP is 

known for its non-fouling behavior, exhibiting only very low interaction with the cell surface, 

we observed that starting Layer-by-Layer assembly with PVP afforded a better preservation of 

the membrane integrity during the coating process. The possibility of decreased penetration of 

the MTT dye should however be considered due to increasing thickness and strength of the 

polymer coating that is deposited on the cells. In this respect, we were interested in gaining 

further insight in how the cell surface is affected by incubation of the cells with a bilayer coating 

either initiated with PVP or TA, by transmission electron microscopy (TEM). For this purpose, 

cells were coated with a (PVP/TA)2 or a (TA/PVP)2 coating, fixated and embedded in epoxy resin. 

Figure 5B shows the TEM images recorded from ultrathin sections cut from the epoxy-

embedded cells. These images clearly demonstrate the formation of an electron dense layer 

surrounding the cells and thereby confirm successful deposition of the coating on the cell 

surface. Interestingly, when comparing cells coated with a (PVP/TA)2 versus a (TA/PVP)2 
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membrane, a dramatic difference in morphology of the resulting cell-templated capsules is 

observed. In case of (PVP/TA)2 coated cells, the electron dense coating was confined to the 

surface of the cells, whereas in case of a (TA/PVP)2 coating, electron dense material was found 

to be spread throughout the interior of the capsules as well (indicated by the red arrows).  

 

 
Figure 5. (A) Cell viability, measured by a FACS live/dead assay, after each deposition cycle during LbL 

coating of B16.F10 cells. LbL coating was started with either TA (red curves) or PVP (blue curves). N=3. 

(B) TEM images of B16.F10 cells coated with 2 bilayers initiated with either TA or PVP compared with 

uncoated cells. The dashed rectangles show a zoomed area. Scale bar is 2 µm. The red arrows indicate 

the LbL coating. 
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These findings corroborate the MTT data and the live/dead flow cytometry data, suggesting 

that TA partially crosses the cell membrane thereby creating pores in the cell membrane and 

thus enabling the uptake of the live/dead dye PI. In contrast, when cells are first incubated with 

PVP, only a coating on the cell surface is deposited, suggesting that adsorption of PVP onto the 

cell surface in a first step prevents cellular infiltration of TA in subsequent steps of the cell-

coating process.  

 
To gain further high resolution morphological insight into the cellular response to TA and PVP 

during Layer-by-Layer coating of the B16.F10 cells, TEM images (Figure 6) were recorded after 

deposition of each layer, either starting LbL assembly with PVP or TA. When LbL coating is 

started with TA, the morphology of the cells changes already after addition of the first TA layer, 

witnessed by the presence of an abnormal amount of vesicles (orange arrows). This indicates 

immediate cellular toxicity, likely attributed to tannic acid that crosses the cell membrane. In 

addition, the extent of swollen ER (blue) and mitochondria (yellow arrows) gradually increases 

as function of the number of deposited layers. Finally, after two TA/PVP bilayers, the cells 

exhibit a high amount of lysosomes (green arrows), i.e. degeneration remnants of the 

mitochondria, along with a high extent of degeneration of the cytoplasm and the cell nucleus 

(purple arrows). This can probably be attributed by the presence of additional pores in the 

plasma- and nuclear membranes together with the presence of the electron dense PVP/TA 

material (red arrows) on the cell surface and inside the cell.  

 
In contrast, when the LbL coating is started with PVP, the cells exhibit a normal morphology 

after deposition of the first (i.e. (PVP/TA)1) bilayer as the morphology of the cells appears to be 

unchanged compared to uncoated cells. However, during the position of the third layer (i.e. 

(PVP/TA)1.5) the cell morphology starts to change, witnessed by the presence of swollen 

endoplasmic reticulum (ER), swollen mitochondria and lysosomes, indicated by respectively 

blue, yellow and green arrows. After deposition of two PVP/TA bilayers, the cellular 

degeneration process appears less pronounced than when LbL coating was started from TA and 

no PVP/TA complexes are observed inside the cells. However, also in this case, an increased 

amount of abnormal cell structures together with initial degeneration of the cytoplasm and the 

cell nucleus (depicted by the purple arrows) are observed. These findings support our previous 
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observations on membrane integrity (Figure 5A), where we observed a gradual increase of PI 

uptake in function of the alternating deposition cycles.  

 

 

Figure 6. TEM images of B16.F10 cells coated with 1 to 4 alternating layers of PVP and TA, either started 

with PVP (left panels) or TA (right panels). The dashed rectangles show a zoomed area. Scale bar is 3 

µm. The arrows indicate different cell structures: Orange = vesicles, Yellow = swollen mitochondria, Blue 

= swollen ER, Green = lysosomes, Purple = cell degeneration. The red arrows indicate the LbL coating. 
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4. Determination of the optimal amount of layers for maximum protein retention 
 

After establishing the feasibility of coating B16.F10 cells with a PVP/TA coating, starting with 

PVP as a first layer, we aimed at investigating the number of layers that is required to minimize 

protein release from the bio-hybrid capsules after lysis of the coated cells. For this purpose, 

after deposition of each layer, we exposed the cells to a hypo-osmotic medium by incubating 

them in deionized water. This treatment is intended to induce cell death in a facile and elegant 

way without addition of specific chemicals. As shown in Figure 4A, both MTT and FACS live/dead 

assay prove that the hypo-osmotic treatment effectively kills the cancer cells as no viable cells 

were detected anymore by both techniques. The effect of this treatment on cell integrity (i.e. 

by C-AM/PI staining) and on the morphology of the bio-hybrid capsules was subsequently 

evaluated by fluorescence microscopy (Figure 7A). In addition, the diffusion of cellular proteins 

through the multilayer membrane upon exposure to hypo-osmotic treatment was measured 

by gel electrophoresis (SDS-PAGE) (Figure 7B). The latter was performed by centrifuging the 

coated cells after each deposition cycle followed by analysis of the supernatant by gel 

electrophoresis. In general, the optimal amount of layers is considered as the number of layers 

that provide a stable capsular structure upon cell lysis, accompanied by minimal release of the 

cell lysate through the multilayer membrane. 

 
From the fact that all cells became stained by PI, shown in Figure 7A, one can conclude that the 

cells are efficiently killed and lose their plasma membrane integrity upon hypo-osmotic 

treatment, independent of the number of deposited layers. However, only if the multilayer 

coating was composed of at least 3 layers (i.e. (PVP/TA)1.5), the cells retained their spherical 

morphology after hypo-osmotic treatment. SDS-PAGE (Figure 7B, middle panel) performed on 

the supernatant of centrifuged hypo-osmotic treated cells revealed that a two bilayer coating 

(i.e. (PVP/TA)2) allows maximum retention of cellular proteins within the capsules without 

further improvement when additional layers were deposited. The encapsulation efficiency 

obtained with two bilayers of PVP/TA was considered to be high compared to the initial amount 

of cellular proteins before coating (results not shown).  

 
Next, we performed SDS-PAGE on the pellet of centrifuged LbL-coated cells that were exposed 

to hypo-osmotic treatment in order to determine to which extend proteins are encapsulated 

in the bio-hybrid cell-templated capsules. In this regard, we verified that (PVP/TA)2 cell- 
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Figure 7. (A) Fluorescence microscopy images of B16.F10 cells stained with C-AM/PI upon hypo-osmotic 

treated after Layer-by-Layer deposition of PVP/TA. The images, shown at different magnification, are an 

overlay of the DIC, green and red fluorescence channels. The dashed rectangles show a zoomed area. 

Scale bar is 20 µm. (B) SDS-PAGE recorded from the supernatant and the cell pellet after hypo-osmotic 

treatment of the PVP/TA Layer-by-Layer coated B16.F10 cells. (C) Transmission (left panel) and scanning 

(right panel) electron microscopy images of bio-hybrid cell-templated capsules obtained by hypo-

osmotic treatment of (PVP/TA)2 coated B16.F10 cells. Scale bar is 3 µm. 
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templated capsules disintegrate upon exposure to the combination of SDS, electric field and 

the convective flow (data not shown). Figure 7B (right panel) shows a high amount of cellular 

proteins in the pellet from the deposition of 1 PVP/TA bilayer onwards. Overall, one can 

conclude that 2 bilayers of PVP/TA the best solution when aiming for optimal retention, after 

cell lysis, of the cellular protein content into stable bio-hybrid cell-templated capsules. Figure 

7D depicts electron microscopy (TEM and SEM) of these capsules, showing the presence of a 

continuous (PVP/TA)2 membrane surrounding remnants of the cellular cytoplasm and the cell 

nucleus that appeared to have retained at least in parts its morphology. SEM was performed 

under high vacuum and further underlines the physical stability of these capsules. 

 
5. Proof of concept: Modulating the immunogenicity via heat shock 

 
Although demonstrated for inducing cell death by hypo-osmotic shock, our approach for 

encapsulating cell lysate can be broadly applied and also offers the opportunity to induce cell 

death via a number of different ways which can be attractive to modulate the immune-

stimulatory properties of the cell lysate. Indeed, compelling evidence has emerged that the 

initiation of tumor-specific immune responses depends on how tumor cells are killed prior to 

uptake by antigen presenting cells49-51. In particular, a process called immunogenic cell death 

has been reported to strongly boost anti-tumor immunity52,53. Immunogenic cell death is 

evoked by strong cellular stress responses and causing the dying cells to emit so-called Damage-

Associated Molecular Patterns (DAMPs). As a proof of concept, we aimed at exploring whether 

our cell encapsulation strategy also allows to modulate cell death and to induce DAMPS. To 

address this, we exposed the cells prior to coating to a heat shock by incubating them during  

1 h at 42 °C. Exposing cells to such heat treatment should lead to the induction of so-called 

heat shock proteins (HSP) that can be sensed by the immune system as a danger signal. 

Subsequently, the cells were cultured for an additional 24 h and then coated with a (PVP/TA)2 

membrane. To determine the presence of HSPs within the capsules, SDS-PAGE was performed 

on the capsule suspension followed by western blot analysis. As depicted in Figure 8, HSP 90 is 

detected both in control cells and heat shock treated cells suggesting HSP 90 is basally present 

in B16.F10 cells and expression is not increased upon exposure to heat shock. In contrast,  

HSP 70 was found only in the case of pre-treated cells indicating that pre-treatment of the cells 

with heat shock allows us to up-regulate certain heat shock proteins and to encapsulate the 

induced DAMPs within the capsules. 
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Figure 8. Western blot result of LbL coated B16.F10 cells either untreated or treated with 1 h heat shock 

at 42 °C prior to coating. Presence of HSP within the capsules is determined by using antibodies against 

HSP 70 and HSP 90. Tubulin staining is included as a loading control. 

 

CONCLUSION 

 
To summarize, we have demonstrated in this chapter that live cancer cells can be encapsulated 

within a synthetic membrane composed of PVP and TA via hydrogen bonding. Fine-tuning of 

the assembly conditions allowed us to obtain cell-templated bio-hybrid capsules containing a 

high amount of encapsulated proteins. We also demonstrated, in a proof of concept study, that 

heat shock prior to cellular encapsulation can be employed to potentially modulate the 

immunogenic properties of the capsules. In our ongoing research, we are currently aiming for 

modification of the cell-templated capsules via exposure to salt54 or high temperature55 in order 

to induce shrinkage of the capsules and to allow more efficient uptake by immune cells. 

Additionally, we plan to engineer the capsule surface with immune-stimulating cues and to 

investigate the potential of these capsules and other cell lysate formulation strategies as 

delivery system for cancer antigens in view of anti-cancer immune-therapy.  
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EXPERIMENTAL SECTION 

 
Materials. Dulbecco’s Modified Eagle Medium (DMEM), fetal bovine serum (EU qualified), 

penicillin/streptomycin (5000 U/mL), sodium pyruvate (100 mM), L- glutamine (200 mM), cell 

dissociation buffer (PBS based), PBS buffer (pH 7.2), Calcein-AM (CAM) and Propidium Iodide 

(PI) were purchased from Invitrogen. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) reagent, sodium dodecyl sulfate (SDS), bovine serum albumin (BSA), Poly-L-

arginine hydrochloride (Mw > 70 kDa), dextran sulfate (10 kDa) and DMSO were obtained from 

Sigma Aldrich. Poly(vinylpyrrolidone) (PVP) K16-18 and hydrochloric acid (HCl) 37% v/v was 

obtained from Fischer Scientific. Tannic acid (TA) was purchased from Fluka. 2-

Mercaptoethanol, laemli sample buffer (4x), Coomassie blue stain (G-250) were purchased 

from Bio-rad. For western blot staining the monoclonal antibodies HSP 70 and HSP 90α/β were 

respectively obtained from Enzo Life Sciences and Santa Cruz Biotechnology. 

 
Cell lines. B16.F10 cells (ATCC CRL-6475) were cultured in Dulbecco’s Modified Eagle Medium 

(DMEM) supplemented with 10 % fetal bovine serum, 1 % penicillin/streptomycin, 1 mM 

sodium pyruvate and 2mM L-glutamine and incubated at 37 °C with 5 % CO2 saturation. 

Isolation of the cells for experiments was performed by incubation of the cells in a PBS-based 

dissociation buffer for 10 minutes. 

 
Fabrication of bio-hybrid cell-templated capsules. B16.F10 cells were harvested and diluted to a 

concentration of 20 x 106 cells/mL. Cells were coated at 0°C in a isotonic phosphate buffered 

saline (PBS) buffer or HEPES buffer depending on the coating components. The cell suspension 

was incubated during 10 min with either one of the coating components (dextran sulfate and 

poly-L-arginine or tannic acid and poly(vinylpyrrolidone)) dissolved in PBS or HEPES respectively 

at 1 mg/mL. The cells were subsequently centrifuged at 200 G for 5 minutes and washed two 

times with PBS or HEPES buffer. Subsequently, the complimentary interacting component was 

added and again incubated for 10 min followed by centrifugation and washing. This was 

repeated until the desired amount of layers was assembled. After coating, the live cells were 

incubated for 30 min in deionized water at room temperature in order to kill the cells.  

 
MTT assay. Cell viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay. Coated B16.F10 cells were seeded in 96 well plates 
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at a density of 50000 cells/mL in complete DMEM medium (total volume 100 µL) in six-fold. 

Subsequently the cells were cultured for 24 h followed by addition of 40 µL of the MTT reagent 

(1 mg/mL). After an incubation period of 2-3 h, the formed formazan crystals were dissolved in 

100 µL of a 10 % m/v SDS/0.01 M HCl solution overnight protected from light. The absorbance 

was measured by a microplate reader at 570 nm. As a negative and positive control PBS or 

HEPES buffer and DMSO respectively were added to the wells. 

 
Online flow cytometry. Online flow cytometry was performed on a BD Accuri C6 flow cytometer 

using the Live/dead fixable far red dead cell stain kit purchased from Invitrogen. For assessing 

the cell membrane integrity, cells were suspended at a density of 1 x 106 cells/mL followed by 

the addition of 1 µL live/dead reagent. Subsequently, the cells were placed under continuous 

gentle agitation on ice and the sip of the flow cytometer was immersed into the cell suspension. 

Next, flow cytometry was started by measuring the cells for 2 min followed by addition of the 

respective test components. Data were collected over 12 min on ice and processed via FlowJo. 

 
Live/dead assay (offline). Cells were suspended in a concentration of 1 x 106 cells per mL in PBS 

and incubated with 1 µL of live/dead reagent (purchased from Invitrogen) for 30 minutes on 

ice. The particles were collected by centrifugation and residual reagent was removed by 

washing once with 1 % BSA in PBS. The percentage live versus dead cells was determined by 

flow cytometry.  

 
Fluorescence microscopy analysis of cell viability. A double staining with calcein-AM (C-AM; live 

cell staining) and propidium iodide (PI; dead cell staining) was performed. Cells, at a density of 

1 x 106 cells/mL, were incubated for 30 minutes with a mixture of C-AM and PI at a 

concentration of respectively 3 µM and 0.25 nM. After removal of the excess reagent, the cells 

were visualized by fluorescence microscopy using a Leica DM2500P equipped with a 40X (NA 

0.75) objective, DIC filters and a DFC360FX camera. 

 
Electron microscopy 

Transmission electron microscopy (TEM) was performed on a JEOL 1010 instrument. Prior to 

imaging, samples were subjected to series of fixation (0.1 M Na cacodylate buffer (pH 7.2) 

containing 4 % paraformaldehyde and 2,5 % glutaraldehyde) and dehydration steps, embedded 

in epoxy resin and cut into ultrathin section using an ultramicrotome. 
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Scanning electron microscopy (SEM) was performed on a Quanta 200 FEG FEI instrument. 

Samples were deposited onto a silicon wafer and dried under a gentle nitrogen stream at 

ambient temperature. Prior to imaging, the samples were sputtered with a palladium/gold 

coating. 

 
Gel electrophoresis (SDS-PAGE). To visualize potential protein release during the LbL coating 

and after lysis or to evaluate the presence of proteins within the final bio-hybrid cell-templated 

capsules, gel electrophoresis was performed respectively on the supernatant or on the cell 

suspension. The samples were diluted with a 1:9 β-mercaptoethanol:laemli sample buffer 

solution (4x), incubated for 5 minutes at 95 °C and loaded on 4-20 % precast gels. After the run 

(150 kV), visualization of the protein bands was obtained by incubation of the gels into 

Coomassie blue stain. 

 
Western Blot. To visualize expression of heat shock protein 70 (HSP 70) and heat shock protein 

90 (HSP 90), the samples were separated by gel electrophoresis as described above. After the 

run, the gels were transferred to nitrocellulose membranes and quenching was performed by 

incubation for 30 minutes in a blocking solution containing 5 % non-fat milk and 0.5 % Tween 

20 in PBS. The membranes were stained with primary antibody anti-HSP90α or anti-HSP70 and 

anti-α-tubulin antibody as a loading control for at least 1 hour. After rinsing the membranes 

three times with the blocking solution the membrane was incubated with horseradish 

peroxidase-conjugated anti-mouse secondary antibody for 1 hour. The membranes were 

subsequently rinsed three times with the blocking solution followed by rinsing three times with 

a 0.5 % tween-20 solution in PBS. The proteins were visualized by the enhanced 

chemiluminescence (ECL) procedure. 
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CHAPTER 6 

 

POLYELECTROLYTE-ENROBED 

CANCER CELLS 
 

 

 

 

ABSTRACT 

Targeting the immune system with a personalized vaccine containing cues derived from the 

patient’s malignancy might be a promising approach in the fight against cancer. It includes neo-

antigens as well as non-mutated tumor antigens, preferentially leading to an immune response 

that is directed to a broader range of epitopes compared to strategies involving a single antigen. 

Here, we report on an elegant method to encapsulate whole cancer cells into polyelectrolyte 

particles. Porous and non-aggregated microparticles containing dead cancer cells were 

obtained by admixing mannitol and live cancer cells with oppositely charged polyelectrolytes, 

dextran sulfate (anionic polysaccharide) and poly-L-arginine (cationic polypeptide) prior to 

atomization into a hot air stream. We showed that the polyelectrolyte-enrobed cancer cells, 

upon redispersion in PBS buffer, are stable and do not release cell proteins in the supernatant. 

In vitro experiments revealed that the particles are non-toxic and strongly increase uptake of 

cell lysate by dendritic cells. In vitro assessment of antigen presentation by dendritic cells 

revealed the potential of the polyelectrolyte-enrobed cancer cells as promotors of antigen 

cross-presentation. Finally, we demonstrated that the immunogenicity could be enhanced by 

surface adsorption of a polymer-substituted TLR7-agonist.
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INTRODUCTION 

 
Anti-tumor therapy that involves dendritic cells (DCs) to evoke a tumor-specific immune 

response is an attractive alternative to classic chemo- and irradiation therapy as it avoids the 

side-effects associated to the latter therapies1-5. Unfortunately, several hurdles remain 

between laboratory practice and successful clinical translation. One approach – termed 

personalized anti-tumor immune-therapy – involves the formulation of patient’s own tumor-

derived components into an anti-cancer vaccine6,7.  

 
Personalized immune-therapy implementing patient’s own tumor tissue of the patient, 

collected from a biopsy or from surgery, might hold promise to raise the potency and tumor-

specific immunity of cancer vaccines. The design of patient-derived cancer cell vaccines can 

involve three different methods, i.e. identification of neo-antigens, preparation of tumor cell 

lysate or the use of intact cancer cells. The first approach requires analysis of the genome of 

patient-derived cells to identify proteins that are absent from the normal human genome and 

exclusively rise from tumor-specific mutations8,9. This method however is complex, labor 

intensive and costly. In contrast to this first approach, preparation of cancer cell lysate from 

the cancer tissue of the patient is less complex and includes neo-antigens as well as non-

mutated tumor antigens, preferentially leading to a broader immune response7,10. Third, 

incorporation of intact tumor cells can be an interesting approach as in this case all cell 

components such as cell membrane proteins are also involved and when translated to whole 

tumor tissue, also offer the possibility to co-encapsulate stromal proteins. Vaccines comprising 

autologous cell material can be an alternative for exisiting vaccines based on allogenic tumor 

cell lines involving GVAX encountering human leucocyte antigen (HLA) mismatch resulting in an 

anti-HLA reponse rather than a tumor antigen-directed reponse11. 

 
In this chapter we describe a simple, yet efficient, strategy to formulate whole cancer cell lysate 

into microparticles and demonstrate that this process enhances antigen cross-presentation by 

DCs. By admixing live cells in aqueous medium with oppositely charged polypeptides and 

polysaccharides followed by atomization into a hot air stream, a complex coacervate is formed 

surrounding the cells through spray drying. Evaporation of the water phase during the 

atomization process yields a dry powder composed of polyelectrolyte-enrobed cancer cells. 

This approach is schematically illustrated in Figure 1. Our method generates a whole cell-based 
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lysate within a single polyelectrolyte complex coacervate microparticle, and ensures – owing to 

the atomization/drying step – all cells to be dead in the final formulation. The latter avoids, 

upon administration, regrowth of new tumors due to residual living cells, as often the case with 

whole cell based lysates. In addition, our spray drying approach yields a dry particle formulation 

which can easily be stored over prolonged times and is highly attractive if one envisions multiple 

administrations over longer periods of time12-14. 

 

 

 
Figure 1. Schematic illustration of the production of polyelectrolyte-enrobed whole cell microparticles. 

Live cells are mixed in aqueous solution with dextran sulfate (negatively charged polysaccharide) and 

poly-L-arginine (positively charged polypeptide). Atomization of this suspension in a heated air flow 

produces dry microparticles composed of single dead cells enrobed with a polyelectrolyte matrix. 

 

RESULTS AND DISCUSSION 

 
As a model cancer cell line we used the murine Lewis lung carcinoma cell line (LLC.OVA) that is 

stably transfected with a non-secreted, truncated form of ovalbumin (tOVA). The latter will act 

as tumor-associated model antigen and allows a straightforward read-out of the immunological 

response by OVA-based assays.  

 
1. Preparation of polyelectrolyte-enrobed cancer cells 

 
In a first series of experiments we examined whether spray drying of living cancer cells was 

feasible applying similar conditions as previously determined in our laboratories for spray-

drying of soluble proteins and polymers15-18. An LLC-OVA cell suspension, at a density of  
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60 x 106 cells per 10 mL deionized water, was stirred on ice to minimize cell lysis and 

aggregation. Subsequently mannitol, dextran sulfate (DEXS) and poly-L-arginine (PLARG) were 

added in a 40:4:5 (w/w) ratio. The role of mannitol is to enhance the microparticle recovery 

yield after the atomization step, to reduce protein denaturation and to generate porosity in the 

polyelectrolyte coacervate matrix which enhances protease influx and degradation of the 

matrix upon uptake by dendritic cells as shown in our earlier work16. As control, microparticles 

were prepared without cells. Both formulations comprised a dry powder with an average 

recovery yield (calculated from the initial solid mixture amount) of approximately 50 %. 

Scanning electron microscopy (SEM) imaging (Figure 2 – panel 1) revealed that the cell-

containing particles exhibited a slightly more irregularly shape compared to the empty control 

particles. Redispersion of the microparticles in phosphate buffered saline (PBS; pH 7.4, 150 mM 

NaCl) results both in case of cell-containing microparticles and the empty control microparticles 

in the formation of a non-aggregated suspension, as confirmed by optical microscopy (Figure 2 

– panel 2).  

 

 

 
Figure 2. Optical (1), scanning electron (2) and (3) transmission electron microscopy images of (A) empty 

microparticles and (B) LLC.OVA containing microparticles. Scale bar is 20 micron in (1) and (2) and 2 

micron in (3). 

 



CHAPTER 6 

161 

Transmission electron microscopy (TEM) imaging (Figure 2 – panel 3) revealed that the control 

particles had a relatively homogenous porous interior. In contrast, microparticles produced 

from LLC.OVA cells exhibit a more complex internal structure, which can likely be attributed to 

the presence of cellular components that yield high contrast on TEM, such as lipid-rich domains, 

ER, and the nuclear envelope. 

 
To assess whether each component in the formulation is required to obtain a stable 

microparticle suspension in PBS, we prepared control samples containing only cells, cells mixed 

with mannitol but no polyelectrolytes, and cells mixed with mannitol and only DEXS or PLARG. 

As illustrated in Figure 3, none of these conditions was successful. Spray drying of cells only 

resulted in an extremely low yield, similar to what we previously observed for spray drying of 

proteins and polymers in absence of mannitol16. Moreover, the recovered amount of material 

could not properly be redispersed again in PBS. Samples containing mannitol but no 

polyelectrolytes and samples containing mannitol and either one of both polyelectrolytes had 

decent yield (i.e. approximately 50 %), but only resulted in microparticles upon redispersion in 

PBS in case of cells/mannitol/PLARG. However, the latter was highly aggregated, which we 

attribute to ionic gelation of the PLARG by the divalent phosphate anions in PBS. When 

redispersion was performed in deionized water, again no microparticles were found. These 

findings clearly demonstrate the need for mannitol, DEXS and PLARG to prepare microparticles 

at a sufficient recovery yield and with the ability to be properly redispersed in PBS. 

 

 

 
Figure 3. Microscopic imaging of spray dried control samples containing. (A) only cell material. (B) cell 

material and mannitol. (C) cell material, mannitol and dextran sulfate. (D) cell material, mannitol and 

poly-L-arginine. Scale bar is 10 µm. 

 

Next, SDS-PAGE was used to analyze, whether upon redispersion in PBS, protein release from 

the microparticles occurred. We monitored the particle suspension itself and the supernatant 

comparing the cell-containing microspheres with a lyophilized cell suspension containing the 
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same amount of cells as used for the preparation of the microparticles. As shown in Figure 4A, 

relative to the lyophilized cell control sample, no protein release was detected in the 

supernatant of the centrifuged microparticle suspension and very little protein was detected 

when the microparticle suspension itself was loaded onto the SDS-PAGE gel. As control, we also 

included empty microparticles (i.e. without cells) to exclude interference of the microparticle 

components. As shown in lane 1 of Figure 4A, these microparticles indeed cannot be detected 

on the SDS-PAGE gel. Further visual proof of successful encapsulation of cellular proteins into 

polyelectrolyte coacervate microparticles was gained by using the fluorescent eGFP expressing 

cell line CT5.3, a murine colon tumor-derived cell line. A microparticle suspension prepared 

from this cell line exhibited a homogeneous green fluorescence throughout the microparticle 

volume (Figure 4B), without the presence of fluorescence in the surrounding medium. This was 

confirmed by fluorimetry and indicated an encapsulation efficiency of nearly 100 %. 

 

 

 
Figure 4. (A) Assessment of the encapsulation efficiency upon redispersion in PBS via SDS-PAGE recorded 

from the supernatant and suspension of: (1) empty microparticles; (2) LLC.OVA containing 

microparticles; (3) lyophilized LLC.OVA cells. (B) Fluorescence microscopy image of a microparticle 

produced from the eGFP expressing CT5.3 cells. 

 

2. In vitro evaluation of polyelectrolyte-enrobed cancer cells 
 

Firstly, cytotoxicity of the microparticles was evaluated by MTT assay. This revealed the 

particles to be non-toxic up to a concentration of 0.5 mg/mL as depicted in Figure 5A. Next, we 

assessed the in vitro uptake of the microparticles by the murine dendritic cell line DC2.4. For 

this purpose, microparticles produced from eGFP-positive CT5.3 cells were used to allow for 

straightforward detection by fluorescence based methods. Flow cytometry was used to 

B A 
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compare microparticle formulated cells with lyophilized cells. Note that both samples 

contained the same concentration of cell-based material. From these data (Figure 5B) it was 

clear that formulated microparticles resulted in a more efficient cellular association of cell 

lysate in a dose-dependent manner. Subsequently, confocal microscopy (Figure 5C) on similarly 

treated DC2.4 cells verified that the microparticles were indeed internalized by the DCs and 

were not merely bound to the cell membrane. 

 

 
Figure 5. In vitro evaluation of spray dried cell-derived polyelectrolyte microspheres on DC2.4 cells: (A) 

MTT assay (n-6). (B) Flow cytometry analysis of uptake efficiency (n-3). (C) Confocal microscopy imaging 

of the interaction of the cell-containing microspheres compared to lyophilized cells with DCs. The cell 

membrane is stained with AF555-labeled cholera toxin B (CTB-AF555) and the cell nuclei are stained 

with Hoechst. Scale bar represents 15 µm. 

 

Whereas soluble antigens are predominantly presented via MHC-II peptide complexes by DCs 

to CD4+ T-cells, formulation of soluble antigens into microparticles is known to enhance cross-

presentation via MHC-I by DCs. The latter is essential for the priming of cytotoxic CD8+ T-cells 
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that hold the capacity to recognize tumor cells and eliminate these via secretion of perforin and 

granzymes17-19. Here we investigated whether encapsulation of cell lysate into polyelectrolyte 

microparticles also promoted antigen presentation via MHC-I. In this experiment, 

microparticles containing LLC-OVA cells were used. Successful processing and MHC-I 

presentation of the ovalbumin, as model tumor-associated antigen, in the cell lysate would 

enable a flow cytometric detection of the SIINFEKL OVA-CD8+ epitope presented by MHC  

class I H-2Kb molecules via antibody staining. After 48 h of incubation with different particle 

concentrations, DC2.4 cells were stained and analyzed by flow cytometry. Figure 6 clearly shows 

a dose-dependent increase of the cross-presentation efficiency when LLC-OVA cells were 

encapsulated in microparticles, whereas control experiments with lyophilized LLC.OVA cells did 

not show any significant cross-presentation. Neither was this the case for empty microparticles.  

0 .0 1 0 .0 2 5 0 .0 5 0 .1 0 .5

0 .0

0 .5

1 .0

1 .5

2 .0

ly o p h il iz e d  L L C .O V A

e m p ty  m ic ro p a rtic le s

L L C .O V A  m ic ro p a rtic le s

C o n c e n tra t io n  (m g /m L )

R
e

la
ti

v
e

 M
H

C
-I

-S
II

N
F

E
K

L

p
o

s
it

iv
e

 c
e

ll
s

 (
%

)

 

Figure 6. In vitro assessment of the MHC-I cross-presentation efficiency by DC2.4 cells. 

 

3. Co-formulation of polyelectrolyte-enrobed cancer cells with immune-stimulating cues 

 

After formulation of tumor antigens into particles to augment cross-presentation, a potent 

cancer vaccine additionally requires co-formulation of particulate antigens with immune-

stimulating cues to enhance the immunogenicity of the vaccine formulation20-24. This is 

necessary because particle-based formulation alone is insufficient for potent CTL-induction as 

this process requires three signals: [1] interaction between the T-cell receptor and the MHC-I 

presented antigen on the DC surface; [2] interaction between the CD28 T-cell receptor and 

CD80 or CD86 on the DC surface; and [3] cytokine stimulation of T-cells by DCs. The latter two 

signals can be mounted by triggering pathogen recognition receptors (PRRs) present at 
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different location in DC, including cell surface and endosomal membranes and the cytoplasm. 

Amongst the multiple PRRs, Toll-like receptors (TLRs) have been widely explored as target for 

molecular adjuvants to skew TH1-driven immune responses and augment their amplitude and 

persistency. TLR7/8-triggering is in particular attractive in the context of tumor vaccination as 

these receptors are present on the cell endosomal membrane in a wide range of both human 

and murine DC subsets. Triggering leads to elevated levels of type I IFN and IL-12, which are key 

cytokines to promote TH1- and CTL-responses required for potent anti-tumor immune 

responses25-27. Interestingly, small molecule agonists of TLR7/8 based on guanosine analogues 

and imidazoquinolines have been identified and polymer-conjugation of these molecules has 

recently been shown by us and others28-30 as an ideal strategy to reduce their systemic 

dissemination, thereby greatly enhancing their toxicity profile, and to enhance their 

adjuvanticity towards co-administered antigens.  

 
Here we used a polymer backbone composed of N-(hydroxypropyl) methacrylamide (HPMA) 

and N-(3-aminopropyl) methacrylamide (APMA). Poly(HPMA-APMA)) containing 80 HPMA and 

20 APMA repeating units was synthesized via RAFT polymerization as earlier reported31. The 

primary amine moieties of this polymer were substituted with the TLR7/8-agonist 2-(4-((6-

amino-2-(butylamino)-8-hydroxy-9H_purin_9-yl)methyl)benzamido)acetic acid yielding TLR7-

poly(HPMA-APMA) (vide supra – Figure 5: Chapter 4).  

 
The ability to co-formulate this polymer with cell lysate into microparticles was tested using 

CT5.3-eGFP cells and rhodamine labeled polymers that were synthesized by converting a small 

fraction of the poly(HPMA-APMA) amino groups with rhodamine-isothiocyanate. Confocal 

microscopy of the redispersed microparticles in PBS (Figure 8A) clearly demonstrated the 

presence of the polymer, predominantly in a dotted pattern, likely due to complexation with 

the polyelectrolytes, whereas the eGFP signal was clearly visible throughout the whole 

microparticle volume. Subsequently, microparticles were produced containing TLR-

poly(HPMA-APMA). A TLR-reporter cell assay (i.e. RAW Blue) was performed to determine  

whether upon formulation into microparticles TLR-triggering is still possible. Note that RAW 

Blue cells are engineered RAW 264.7 macrophages that express a broad range of PRRs and 

upon stimulation of these receptors produce secreted embryonic alkaline phosphatase (SEAP) 

which can easily be detected by UV-VIS spectrophotometry. As shown in Figure 8B, LLC.OVA 
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containing particles as well as poly(HPMA-APMA) did not evoke any activation evidenced by 

the lack of increase in absorbance relative to the negative PBS control. This suggested that the 

microparticles and the polymer on their own are poorly immunogenic. 

 

 

Figure 8. (A) Confocal microscopy images of spray dried microspheres containing CT5.3-eGFP cell 

material and rhodamine-labeled poly(HPMA-APMA). Scale bar represents 10 µm. (B) RAW blue assay 

comparison of the soluble TLR7-agonist, the polymer-ligated TLR7-agonist and the polyelectrolyte 

microspheres whether or not co-formulated with TLR7-poly(HPMA-APMA).  

 

In addition, TLR-poly(HPMA-APMA) only induced strong maturation above molar 

concentrations of 0.44 µM in contrast to soluble TLR7/8-agonist which evokes maturation at 

significantly lower concentrations. This decrease in efficiency of the polymer-linked TLR7/8-

agonist can be attributed to steric hindrance of the polymer upon binding with the TLR-receptor 

and/or partial shielding of the active site of the TLR7/8-agonist. However, the latter is unlikely 

as both CL264 as well as other imidazoquinoline analogues have been conjugated at a similar 

position without fully abrogating their potency28,29,32. Most interestingly, microparticles 

containing TLR-poly(HPMA-APMA) strongly promoted TLR-activation almost equally efficiently 

as the soluble TLR7/8-agonist. This clearly shows the beneficial effect of particulate formulation 

of antigens together with TLR-agonists as attractive vaccine carriers. The increase in potency 

A – LPS 
free water 
G – empty 
particles 
H – 
LLC.OVA 
particles 
I – dextran 
sulfate 
J – poly-L-
arginine 
K - 
mannitol 
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can be attributed to more efficient uptake of the particulate vaccine formulation opposed to 

soluble vaccine which enables enhanced interaction of the TLR-ligand with its receptor upon 

cell uptake. 

 

CONCLUSION 
 
In this chapter we have reported on the formulation of whole cancer cells into solid 

polyelectrolyte-based coacervate microparticles formed by the oppositely charged biologically-

inspired polyelectrolytes. Relative to cell lysate produced by lyophilization, microparticle-

formulated cells were internalized by DCs to a much larger extent. Using a cancer cell line that 

stably expresses OVA as model tumor-associated antigen, we found that the antigen cross-

presentation efficiency by DCs was significantly enhanced in case of microencapsulated cells. 

We further demonstrated the ability to co-encapsulate TLR7-agonist-ligated polymers into the 

microparticles and verified that TLR-triggering can still occur. These findings pave the road for 

the development of whole cell based cancer vaccines that avoid the issue of tumor regrowth 

observed when using conditioned cancer cells and are more potent than soluble cell lysate 

based vaccines. In addition, since dry polyelectrolyte-enrobed cancer cells were obtained via 

spray drying, this formulation is highly stable and does not require cold chain preservation prior 

to administration into the patient unlike current liquid vaccine formulations. Further 

experiments will involve in vivo assessment of the potency of the vaccine particles in triggering 

a robust anti-tumor immune response.
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EXPERIMENTAL SECTION 

 
Materials. Mannitol, dextran sulfate (10 kDa), poly-L-arginine hydrochloride (Mw > 70 kDa), 3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reagent, sodium dodecyl 

sulfate (SDS), ethanol, dimethyl sulfoxide (DMSO), NaHCO3 and paraformaldehyde (PFA) were 

obtained from Sigma Aldrich. Hydrochloric acid (HCl) 37 % v/v, rhodamine-isothiocyanate were 

purchased from Fischer Scientific. Dulbecco’s Modified Eagle Medium (DMEM), RPMI 1640 

medium, fetal bovine serum (EU qualified), penicillin/streptomycin (5000 U/mL), sodium 

pyruvate (100 mM), L-glutamine (200 mM), cell dissociation buffer (PBS based), PBS buffer (pH 

7.2), Hoechst, cholera toxine B conjugates to AlexaFluor555 (CTB-AF555) and Zeocin were 

obtained from Invitrogen. Laemli buffer (4x), 2-Mercaptoethanol, Coomassie blue stain (G-250) 

and 4−90 20 % mini-protean TGX gels were purchased from Bio-rad whereas the pretreated 

Spectra/Por 7 dialysis membrane were purchased from Spectrumlabs. Quanti blue stain was 

obtained from Invivogen and anti-Mouse OVA257-264 (SIINFEKL) peptide bound to H-2Kb PE 

antibody was purchased from eBioscience. 

 
Cell lines. 
 
LLC. OVA cell line. The LLC.OVA  cell line was a kind gift from Prof. Karim Vermaelen (University 

of Ghent, Belgium). The cells were cultured in RPMI medium supplemented with 10 % fetal 

bovine serum, 1 % penicillin/streptomycin, 2 mM L-glutamine and 1 mM sodium pyruvate and 

incubated at 37 °C with 5 % CO2 saturation.  

 
CT5.3-eGFP cell line. The CT5.3-eGFP cell line33 was cultured in DMEM medium supplemented 

with 10 % fetal bovine serum, 1 % penicillin/streptomycin, 2 mM L-glutamine and 1 mM sodium 

pyruvate and incubated at 37 °C with 5 % CO2 saturation. 

 
DC2.4 cell line. The DC2.4 cell line was a kind gift from Dr. Kenneth Rock (University of 

Massachusetts, Boston, US). The cells were cultured in RPMI medium supplemented with 10 % 

fetal bovine serum, 1 % penicillin/streptomycin, 2 mM L-glutamine and 1 mM sodium pyruvate 

and incubated at 37 °C with 5 % CO2 saturation.  

 
RAW Blue cell line. The RAW Blue cell line was purchased from Invivogen. The cells were 

cultured in DMEM medium supplemented with 10 % heat-inactivated fetal bovine serum, 1 % 
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penicillin/streptomycin, 2 mM L-glutamine, 1 mM sodium pyruvate and 0.01 % Zeocin and 

incubated at 37 °C with 5 % CO2 saturation. 

 
Synthesis of cancer cell polyelectrolyte microspheres. Prior to cell count, mannitol and dextran 

sulfate (DEXS) were dissolved in 10 mL of LPS free water to a concentration of 20 mg/mL or 2 

mg/mL respectively and a 5 mg/mL solution of poly-L-arginine (PLARG) was prepared in LPS free 

water. Next 60 x 106 LLC.OVA cells were suspended in 15 mL of LPS free water and added to 

the mannitol-DEXS solution under stirring on ice. All handlings were performed in sterile 

conditions in a biohood to avoid endotoxin contamination. Subsequently 5 mL of the poly-L-

arginine solution was added dropwise under stirring to the cell suspension on ice prior to spray 

drying. Spray drying of the mixtures was performed on a lab-scale Buchi B2902 spray-dryer 

under sterile conditions. The latter involved pre-sterilization of the spray dryer with ethanol 

and LPS free water prior to spray drying of the test samples. The spray-dryer operated in co-

current air flow at drying air temperature of 130 °C. After spray drying the yield was determined 

and the obtained powder was stored at -20 °C. The samples were visualized on a Leica 

DM2500P microscope equipped with a 40X (NA 0.75) objective, DIC filter and a DFC360FX 

camera after reconstitution in water. The initial weight of the LLC.OVA cell suspension was 

determined after lyophilization to calculate the yield after spray drying and of the amount of 

lyophilized cells needed as control. 

 
Electron microscopy.  

Scanning electron microscopy. Scanning electron microscopy (SEM) was performed on a 

Quanta 200 FEG FEI instrument. Samples were deposited onto a silicon wafer and dried under 

a gentle nitrogen stream at ambient temperature. Prior to imaging, the samples were sputtered 

with a palladium/gold coating. 

 
Transmission electron microscopy. Transmission electron microscopy (TEM) was performed on 

a JEOL 1010 instrument. Prior to imaging, samples were subjected to series of fixation (0.1 M 

Na cacodylate buffer (pH 7.2) containing 4 % paraformaldehyde and 2.5 % glutaraldehyde) and 

dehydration steps, embedded in epoxy resin and cut into ultrathin section using an 

ultramicrotome. 

Gel electrophoresis (SDS-PAGE). To analyze cell lysate encapsulation efficiency upon 

reconstitution of the particles after spray drying in LPS free water, gel electrophoresis was 
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performed. The samples were diluted with a 1:9 2-mercaptoethanol:Laemli sample buffer 

solution (4x), incubated for 5 minutes at 95 °C and loaded on 4-20 % precast gels. After the run 

(150 kV), visualization of the protein bands was achieved by incubation of the gels into 

Coomassie blue stain. 

 
MTT assay. Cell viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay. DC2.4 cells were seeded in 96 well plates at a density 

of 5.104 cells/mL (total volume 100 μL) in six-fold. Subsequently the cells were incubated with 

different concentrations of microspheres and lyophilized LLC.OVA cells and cultured for 24 h 

followed by addition of 40 μL of the MTT reagent (1 mg/mL). After an incubation period of 2–3 

h the formed formazan crystals were dissolved in 100 μL of a 10 % m/v SDS/0.01 M HCl solution 

overnight protected from light. The absorbance was measured by a microplate reader at  

570 nm. As a negative and positive control PBS buffer and DMSO respectively were added to 

the wells. 

 
In vitro cell uptake assay. DC2.4 cells were seeded in a 24 well plate at a density of 0.15 x 106 

cells/mL one day before the cells are pulsed with fluorescent particles at different 

concentrations. After 24 h of incubation, the cells were dissociated using cell dissociation buffer 

followed by centrifugation for 5 min at 200 G at 0 °C. After resuspension, the samples were 

stored on ice and measured on a BD Accuri C6 flow cytometer. The data was analyzed using 

FlowJo. 

 
Confocal microscopy. DC2.4 cells were seeded at a density of 0.4 × 106 cells/mL in a glass bottom 

Will-co dish and incubated overnight. Next, the fluorescent particles were added, incubated for 

24 h, and fixated in a 2 % paraformaldehyde solution for 10−15 min. The cells were 

subsequently washed and simultaneously stained by CTB-AF555 and Hoechst for 1 h at room 

temperature. Finally the samples were washed with PBS and imaging on a confocal microscope 

(Leica DMI6000 B inverted 241 microscope) equipped with an oil immersion objective (Zeiss, 

63 ×, 242 NA 1.40) and attached to an Andor DSD2 confocal scanner. 

 
In vitro MHC-I presentation assay. DC2.4 cells were seeded at a density of 0.2 × 106 cells/mL in 

a 24 well culture plate and incubated overnight followed by incubation with different 

concentrations of the samples. After 48 h at 37 °C the positive control (SIINFEKL) was added in 



CHAPTER 6 

171 

triplicate in a concentration of 1 µg/mL, 1 hour prior to staining with SIINFEKL-MHC-I PE-labeled 

antibody for 30 minutes on ice protected from light. Subsequently the samples were 

centrifuged for 5 minutes at 200 G at 4 °C, resuspended in PBS and analyzed with flow 

cytometry. 

 
Fluorescent labeling of poly(HPMA-APMA). Poly(HPMA-APMA) was incubated with an equimolar 

amount of rhodamine-isothiocyanate in 0.1 M NaHCO3 buffer overnight under continuous 

stirring. Subsequently the obtained mixture was dialyzed against deionized water for 3 days 

(MWCO 3.5 kDa) and lyophilized. 

 
Polymer synthesis and conjugation of CL264. Poly(HPMA-APMA), dissolved in LPS free water, 

was incubated with an equimolar amount of TLR7-ligand CL264 to APMA units overnight under 

continuous stirring at room temperature in the presence of 1.5 M excess of DMTMM. After  

24 h incubation the reaction mixture was dialyzed against LPS free water (MWCO 3.5 kDa) for 

1 day and lyophilized. 

 
In vitro RAW Blue assay. RAW Blue macrophages were seeded in a 96 well round bottom plate 

at a density of 0.5 x 106 cells/mL and immediately pulsed with the desired concentrations of 

the test compounds in six-fold. As a negative control PBS was added. After 24 h incubation, 50 

µL of the supernatant was transferred into a 96 well flat bottom plate and incubated with 150 

µL of Quanti blue solution. After 3 to 6 h incubation at 37 °C the color change absorbance was 

measured with a plate reader at 620-655 nm. 
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INTRODUCTION 

 
Active anti-tumor immune-therapy has emerged as one of the most promising strategies in the 

fight against cancer as it primes the patient’s own immune system to recognize and ultimately 

destroy the malignancy. Since active anti-tumor immune-therapy relies on the patient’s 

immune system, it takes advantage of the natural defense mechanism of the patient thereby 

enabling the development of immunological memory1-3. Induction of immunological memory 

is essential for prolonged protection against relapse and/or metastasis, which are often more 

aggressive and resistant and thus harder to treat. This is the reason why immune-therapy has 

dramatically changed the oncology field and is nowadays extensively studied in the search for 

more efficient and specific therapies. Cancer vaccination targeting dendritic cells in vivo is, to 

our opinion, a very appealing strategy to tackle cancer4-7. The reason why in vivo therapeutic 

vaccination holds promise is fourfold: [1] the cancer vaccine can be personalized, in other 

words specifically tailored to the patient’s mutanome containing neo-antigens or patient-

derived cancer tissue; [2] cancer vaccination targets dendritic cells which are the most potent 

class of antigen presenting cells, the crucial link between the innate and the adaptive immunity 

and are able to induce a strong anti-tumor CTL- and TH1-response; [3] in vivo targeting takes 

advantage of the physiological stimuli that occur upon vaccination leading to a more broad and 

profound anti-tumor response alongside immunological memory; and [4] relatively mild side 

effects occur such as local erythema and flu-like symptoms.  

 
Despite extensive research, in vivo cancer vaccination has not lived up to its expectations yet. 

This can likely be attributed to the immune-suppressive tumor microenvironment and tumor 

stroma, which physiologically and physically protect the malignancy against attack by the 

immune system. The dual role and the complex relationship between the immune system and 

cancer has been more and more elucidated over the past decade evincing similarities in cancer 

pathogenesis and immune-escape, thereby unraveling the paradoxical role of the immune 

system in cancer progression8-10. The combination of all the different immune-suppressive 

strategies cancer cells use in order to evade the immune system together with the inter-

tumoral and intra-tumoral heterogeneity of malignancies11,12 points out the evident need for a 

multistep approach that should likely be tailored and personalized for every single patient. We 
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detail three parameters, that need to be optimized in order to obtain the ideal anti-tumor 

immune-therapy: immunogenicity, efficacy and personalized medicine.   

 

TUMOR-RELATED IMMUNOGENICITY ISSUES 

 
Tumor cells themselves can be low or non-immunogenic which forms one of the biggest 

challenges in cancer immune-therapy in general. Cancer cells with altered immunogenicity 

have adapted their antigen presentation machinery which involves in 50 % of the cases 

downregulation or lack of immunogenic antigen expression. In this way, the cancer cells cannot 

be recognized anymore by the adaptive immune system and escape immune-destruction13-15. 

In addition, an immunogenic tumor can revert to a non-immunogenic malignancy through 

immune-selection and escape from the immune system over time16,17. This involves the initial 

strong immune selection process by a TH1-type anti-tumor response in primary tumors, often 

highly MHC-I positive, which leads to immune-escape of the remaining MHC-I negative clones 

through immunoediting18,19. This leads to low or non-immunogenic variants with high capability 

of progressing into metastatic lesions. On one hand, non-immunogenic tumors comprise cells 

with total MHC class I loss and are therefore susceptible to NK-cell-mediated lysis. However, 

the immune-suppressive TME often induces tolerogenic or anergic NK-cells resulting into 

failure of cytotoxic eradication. Low-immunogenic tumors, on the other, have only partial loss 

of MHC class I expression which allows the tumor cells to escape cytotoxic attacks for both CTLs 

and NK-cells18,20. Tumor cells exhibiting downregulation of MHC class I expression (low-

immunogenic) are considered to be soft reversible lesions in contrast to malignancies that lack 

MHC-I expression (non-immunogenic) which are hard irreversible lesions and are present in 30-

40 % of human cancers18,21,22. As active cancer immune-therapy relies on the immunogenicity 

of the tumor to elicit anti-tumor immune responses, non- and low-immunogenic malignancies 

form a major hurdle. 

 
Non- or low-immunogenic tumors can however be reverted into immunogenic tumors via low 

dose immunogenic chemo- or radiotherapy and sensitize anti-tumor immunity. As described 

earlier, chemo- and radiotherapy can be used to evoke immunogenic cell death (ICD) in patient 

derived cancer cells prior to vaccine design (vide supra – Chapter 2: DAMP-based adjuvants). 

This can also be used to evoke ICD in vivo in the tumor mass of the patient suggesting that 
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chemo- and radiotherapy can improve the efficacy of cancer immune-therapy via enabling 

uptake of antigens by DCs and providing the necessary co-stimulatory signals to activate T-cell 

expansion through DAMPs23,24. For conventional radio- and chemotherapies the maximum 

tolerated dose is administrated to reduce tumor growth leading to severe adverse events such 

as myelosuppression, neutropenia and thrombocytopenia. In contrast, immunogenic radio- 

and chemotherapy requires low doses thereby drastically reducing the side effects25,26. This 

indicates that the role of conventional antitumor therapies needs to be revisited and re-

evaluated as a key factor in clinical efficacy of cancer immune-therapy through reestablishment 

of the tumor immunogenicity. Another strategy known to enhance tumor immunogenicity of 

low immunogenic tumors, via upregulation of MHC-I antigen presentation, involves IFN-γ 

therapy27,28. However, some tumors lack or have an abnormal functioning IFN-γ receptor 

pathway signaling and escape the immune system 29,30. An overview of strategies that can be 

used to increase the tumor immunogenicity is illustrated in Figure 1.  

 

 

 
Figure 1. Strategies to enhance tumor immunogenicity. 
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Taken together, the immunogenicity of the cancer itself is an important factor in the balance 

between immune-evasion and immune-destruction by anti-tumor immunotherapies. Recent 

discovery of the potential of immunogenic radio- and chemotherapy is an important step in 

developing more potent anti-tumor immunotherapies through enhancing the immunogenicity 

of tumors. 

 
EFFICACY: COUNTERING T-CELL EXHAUSTION AND T-CELL EXCLUSION  

 
Besides issues regarding immunogenicity, the biggest hurdle for anti-tumor therapeutic 

vaccination comprises the lack of efficacy due to the high immune-suppressive burden 

surrounding the target tissue. Tumor cells suppress the immune system in order to avoid CTL-

mediated eradication through two mechanisms involving T-cell exhaustion and T-cell exclusion 

in T-cell inflamed or non-T-cell inflamed cancer tissue respectively31. 

 
1. T-cell inflamed tumor: avoid T-cell exhaustion 

 
T-cell inflamed tumors involve tumors that are invaded by tumor-infiltrated T-cells (TILs). In 

response, cancer cells and tolerogenic immune cells apply different strategies in order to 

paralyze T-cells resulting in T-cell exhaustion32,33. These tumors, immunogenic or not, are non-

responding and resistant to immune-destruction. T-cell exhaustion was originally identified 

during chronic infections as a natural defense mechanism of the host to avoid cell damage due 

to prolonged inflammation inherent to increased cytotoxicity through CTL overstimulation34-37. 

This immune-intrinsic feedback loop is however overstimulated in cancer. T-cell exhaustion is 

a result of: [1] chronic and continuous stimulation of cancer antigens38; [2] immune-suppressive 

cytokines (IL-10, TGF-β); [3] depletion of nutrients; and [4] impaired CD4+ TH1-cell function. 

Exhausted T-cells are hypo-responsive and over-express inhibitory receptors (immune 

checkpoints) resulting in downregulation of cytokine production (IL-2, TNF-α, IFN-γ), defective 

proliferative and cytolytic capacity and increased apoptosis34,39-42. Exhausted T-cells are 

however reversible and can be reactivated through different strategies that recently have 

gained a lot of interest as potent inducers of the efficacy of therapeutic vaccines. Strategies to 

reverse the hypo-responsive state of exhausted T-cells aim to eliminate the direct cause of  

T-cell exhaustion, i.e. physiological changes and immune-suppressive cells, or counteract the 

inherent result of T-cell exhaustion, i.e. immune checkpoint up regulation41,43. 
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1.1 Reversing nutrient depletion and hypoxia 
 

One of the mechanisms responsible for T-cell exhaustion relies on physiological changes in the 

tumor microenvironment regarding depletion of tryptophan and glucose or hypoxia. 

Tryptophan depletion is related to expression of IDO, a naturally induced enzyme by IL-10,  

TGF- β, PGE-2 and type I IFN in chronic viral exposure to protect the host against tissue damage 

as a result of prolonged inflammation. Expression of IDO results in metabolization of tryptophan 

into kynurenine and depletes the local environment from tryptophan which is essential for  

T-cell proliferation. Moreover, kynurenine primes naive CD4+ T-cells to differentiate into Treg 

cells44,45. This immune-suppressive mechanism is abused by immune-suppressive immune cells 

(such as MDSCs and tol-DCs), stromal cells as well as the cancer cells themselves to avoid CTL-

mediated destruction. By consequence inhibition of IDO-mediated metabolism of tryptophan 

is proposed as a promising strategy to enhance to efficacy of anti-cancer immunotherapeutics. 

Currently several IDO-inhibitors are explored in clinical trials of which Indoximod® or 1-methyl-

D,L-tryptophan (1-MT) is the most extensively studied and acts as a competitive inhibitor of the 

IDO enzyme alongside newer IDO inhibitors including INCB024360 and Ebselen46-51.  

 
Some tumor areas are hypoxic due to incomplete angiogenesis which impairs oxidative 

phosphorylation by T-cells for energy supply and thereby evokes T-cell exhaustion. Moreover, 

to sustain exponential growth, cancer cells consume glucose in large quantities to fuel their 

energy needs. The latter leads to hypoglycemia in the tumor environment which also alters the 

nutrient availability for TILs negatively. In addition, hypoglycemia and hypoxia both induce 

expression of immune checkpoint programmed-death 1 protein (PD-1) on the T-cell surface 

resulting in suppression of activated CTLs in the tumor microenvironment (vide infra – Immune 

checkpoint inhibition)52. As a result of hypoxia, several genes involved in oxygen signaling 

pathways are activated or altered in cancer cells among which hypoxia inducible factor 1α (HIF-

1α) or mammalian target of rapamycin (mTOR) and unfolded protein response (UPR). 

Activation of the HIF-1 pathway results in induction of new blood vessels, glucose metabolism 

and invasion. In contrast the mTOR and UPR pathways, critical factors in basic cellular functions 

and cell survival respectively, are altered to allow tumor progression and evoke hypoxic 

tolerance53. It is therefore of interest to target these pathways in order to control the 

expression of the genes and contain tumor growth. Current research is focused on intervening 
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these pathways in order to control the expression of these genes to potentially contain tumor 

growth and further enhance the efficacy of cancer immune-therapy54-56. 

 
1.2 Elimination or redirection of immune-suppressive cells 

 
In addition to physiological changes in the TME, another direct cause of T-cell exhaustion is the 

immune-suppressive environment created by MDSCs, tolerogenic DCs, TAMs and regulatory  

T-cells, driving tumor-infiltrating CTLs into hypo-responsive T-cells. Therapeutic targeting of 

these tolerogenic cells that aims to eliminate, deactivate or re-educate cells towards 

immunogenic cells holds promise to increase efficacy of current immunotherapeutics. 

  
Among the immune-suppressive cells, MDSCs are one the most critical factors in T-cell 

exhaustion due to their multifaceted influence on the immune system enclosing nutrient 

deprivation, cellular toxicity induced by ROS and NO, recruitment of Treg cells and 

reprogramming of DCs and macrophages towards their tolerogenic phenotype. Therefore, 

targeting MDSCs is one of the most promising strategies to increase vaccine efficacy as their 

immune-suppressive function is extensive and diverse. Approaches that involve MDSC-

targeting are threefold and aim: [1] to eliminate MDSCs; [2] to deactivate MDSCs; and [3] to 

lower MDSC levels57-59.  

 
Elimination of MDSCs can be achieved by low dose chemotherapy whereas inactivation is 

accomplished by inhibition of certain immune-suppressive mechanisms applied by MDSCs. This 

involves inhibition of ROS or NO production through up regulation of the Nf-E2-related factor 

2 (NRF-2) which influences the secretion of antioxidant enzymes58,60 or through 

phosphodiesterase-5 (PDE-5) inhibition by interfering with arginase1 and NO synthase 

expression61,62. Next to elimination and deactivation of MDSCs, approaches that aim to lower 

MDSC levels are also explored which comprise inhibition of the synthesis of MDSCs or induction 

of differentiation of the latter into immunogenic DCs or macrophages. On one hand, MDSC-

synthesis can be blocked through bisphosphonate treatment63,64 or STAT-3-inhibitors65-67 which 

inhibit MDSC mobilization from bone marrow or inhibit MDSC proliferation respectively. 

Differentiation of MDSC into dendritic cells on the other hand can be obtained via all-trans 

retinoic acid (ATRA) treatment which activates genes that lead to maturation and 

differentiation68,69. Many of these approaches show potential and are currently tested in 
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clinical trials70-72, however there is still a need for more detailed knowledge about the MDSC 

function and physiology to result in more targeted and effective therapies. 

 
Two other populations of immune-suppressive cells that can be targeted to avoid T-cell 

exhaustion are DCs and macrophages which both are polarized into their tumor-promoting 

phenotype due to immune-suppressive stimuli in the tumor microenvironment. Therefore, 

immunogenic reprogramming is a potential interesting strategy to target tol-DCs and TAMs. 

Immune-activation can be achieved by TLR-agonists which induces maturation and secretion of 

pro-inflammatory cytokines and leads to reprogramming of the tumor-promoting into the 

tumoricidal phenotype73,74. Another approach for re-education involves STING-agonists. The 

STING or stimulator of IFN genes pathway is a very important signaling pathway in triggering 

type I IFN production which is essential for cross-priming and thus a strong anti-tumor CTL-

mediated immune response75-77. In this regard, other approaches to enhance type I IFN in the 

TME via reprogramming of DCs and TAMs also show potential such as direct delivery of type I 

IFN78-80 or induction of type I IFN production via local radiotherapy81,82.  

 
In addition to reprogramming, other strategies to target TAMs are explored, similar to those 

applied for MDSC-targeting, that aim to block the pro-tumoral function and limit 

recruitment83,84. The pro-tumoral function can be blocked by apoptosis induction of TAMs or 

bone marrow mobilization using chemical or synthetic drugs such as Trabectedin or 

bisphosphonates. Recruitment prevention, on the other hand, can be acquired by blocking 

chemokines involved in recruitment through antibodies or genetic depletion83,85. However, 

these efforts are still at an early stage and further investigation is essential to further define the 

mechanisms involved in regulating tolerogenic DCs and TAMs to allow more specific targeting 

and avoid adverse events. 

 
Regulatory T-cells are, next to MDSCs, another major influencing factor in T-cell exhaustion and 

lowering the levels or suppression of the functional activity of Treg cells is an absolute must in 

the attempt to increase the efficacy of therapeutic vaccines. Treg cell depletion can be obtained 

via unspecific and specific methods of which the latter are preferred for obvious reasons. 

Unspecific targeting of Treg cells can involve low dose chemotherapeutics such as 

cyclophosphamide, fludarabine and gemcitabine which favor regulatory T-cells over other  

T-cells potentially due their higher proliferative state86,87. In contrast, specific targeting 
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comprises targeting of specific receptors that are overexpressed on the cell surface. A few 

interesting targets are currently tested in the clinic including the high affinity IL2-receptor 

CD25, the glucocorticoid-induced tumor necrosis factor receptor (GITR), a member of the 

tumor necrosis factor receptor OX40 and chemokine receptors86-93. Although these targets all 

show potential and are tested in clinical trials, it is of interest to more finely tune the targeting 

through receptors that are exclusively expressed on Treg cells to increase the efficacy without 

compromising on adverse events due to lack of specificity94. 

 
1.3 Immune checkpoint inhibition 

 
Exhausted T-cells express a variety of different immune checkpoints, such as programmed-

death 1 (PD-1), lymphocyte activation gene 3 protein (LAG3), CD160, 2B4, cytotoxic  

T-lymphocyte-associated protein 4 (CTLA-4), T-cell immunoglobulin domain and mucin-

containing protein 3 (TIM-3) and B-and T-lymphocyte attenuator protein (BTLA) among many 

others42,95-97. Extensive research has led to FDA-approval in 2011 of the CTLA-4 inhibitor 

Ipilimumab (Yervoy®)98,99 and two PD1-inhibitors Nivolumab (Opdivo®)100 and Pembrolizumab 

(Keytruda®)101,102 in 2014 for the treatment of renal cell carcinoma and for the treatment of 

melanoma and non-small cell lung cancer respectively  

 
1.3.1 Anti-CTLA-4  

 
As described earlier CTLA-4 exhibits much higher overall affinity for CD80 and CD86, expressed 

on the surface of T-cells, compared to the CD28 receptor on the dendritic cell surface. The 

interaction of the latter with CD80 or CD86 on the T-cell surface provides a co-stimulatory signal 

necessary for optimal priming of T-cells. CTLA-4 on the other hand does not provide the naive 

T-cell with the required signal and counteracts the CD28 activity which leads to inhibition of  

T-cell activation, T-cell proliferation, T-cell survival and production of type I IFN and IL-2 in the 

initial stage of the immune response103,104. This immune control mechanism is a natural defense 

against overactive T-cells or prolonged T-cell activation to avoid autoimmunity105,106. However, 

cancer cells exploit this phenomenon through recruitment and polarization of CD4+ T-cells into 

Treg cells that highly express CTLA-4 in order to evade immune eradication.  

 
Blocking CTLA-4 on Treg cells is therefore a highly attractive target to avoid T-cell suppression 

by Treg cells and has led to FDA-approval. The first FDA-approved immune checkpoint blockade 
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is the CTLA-4-inhibitor Ipilimumab which offers terminal stage melanoma patients with 

metastasis clinical significant survival benefits107-109. Although these results are very promising, 

Ipilimumab evokes in 70 to 85 % of the patients any grade of adverse events (AE) and in 20 to 

35 % grade 3 to 5 immune-related adverse events which can be attributed to the lack of tumor 

specificity110,111. The most common AEs are low grade, endurable and reversible, however in a 

minority of patients these can be severe and sometimes irreversible and life-threatening112-114. 

In this regard, many research endeavors for new strategies that are more selective are ongoing 

to potentially achieve more efficient Treg suppression and decreased AE frequencies. 

 
1.3.2 Anti-PD1 

 
The PD1 inhibitory receptor is another attractive immune checkpoint receptor target as it is 

expressed on T-cells which, upon interaction with its ligand PDL1, leads to T-cell apoptosis and 

exhaustion. In contrast to CTLA-4, PDL1 is not exclusively expressed on the surface of regulatory 

T-cells but can also be present on the cancer cells themselves as well as tol-DCs, TAMs and 

MDSCs. In addition, the PD-1 pathway limits the activity of previously activated effector T-cells 

in response to infection or to limit autoimmunity and only interferes in later stages of the 

immune response opposed to the CTLA-4 pathway. This can potentially explain the lower 

toxicity profiles of FDA-approved Pembrolizumab en Nivolumab where the majority of the anti-

PD-1 treated patients only suffer from low grade AEs87,115. Moreover, they have shown 

dramatic responses in clinical benefit for up to 35 % with advanced and terminal disease116.  

 
Summarized, immune checkpoint blockade is the most promising strategy that has been 

developed in the last decade and has significantly boosted the efficacy of cancer immune-

therapy and cancer treatment in general. Although this field is expanding, there is still a lot 

more to discover involving other potential immune checkpoint targets that are currently 

investigated alongside improvement of toxicity profiles and management. An overview of the 

different strategies to avoid T-cell exhaustion is shown in Figure 2.
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Figure 2. Overview of the main strategies to avoid T-cell exhaustion.
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2. Non-T-cell inflamed tumor 
 

Although many promising strategies have emerged to increase the efficacy of cancer immune-

therapy through reversal of T-cell exhaustion in T-cell inflamed tumors, some tumors do not 

respond to these therapies due to T-cell exclusion. Escape through T-cell exclusion is mediated 

by impaired recruitment of dendritic cells and other innate immune cells and/or deficient T-cell 

recruitment. These malignancies are described as T-cell non-inflamed, lack inhibitory factors 

such as PD-1 and CTLA-4 and pose perhaps an even bigger hurdle to current cancer 

immunotherapeutics117,118.  

 
One of the main strategies of malignancies to exclude T-cells from the tumor microenvironment 

is related to DC-recruitment and the β-catenin pathway. In non-T-cell inflamed metastatic 

melanoma 48 % of the patients showed activation of the β-catenin pathway119,120. This clearly 

revealed an inverse correlation of the latter with recruitment of dendritic cells resulting in 

decreased chemokine expression and by consequence impaired T-cell recruitment. Next to the 

β-catenin pathway, additional molecular altered pathways in the TME contribute the non-T-cell 

inflamed environment of malignancies via reduced recruitment of DCs and T-cells including the 

PI3K-PTEN-AKT pathway, the STAT-3 signaling pathway and the p53 pathway95,121-123.  

 
Another point to consider, is the potential influence of the often dense architecture of stroma 

surrounding the tumor which can act as a physical barrier and potentially confining the T-cells 

in the stroma. The density and orientation of the stromal extracellular matrix has the ability to 

positively or negatively influence T-cell migration towards the tumor124,125. In addition, the 

abnormal vasculature due to incomplete angiogenesis can be another limiting factor for T-cell 

trafficking and by consequence the therapeutic potential of immunotherapies126,127. Therefore, 

targeting these T-cell exclusion strategies in order to reverse non-T-cell inflamed into T-cell 

inflamed tumors shows potential to enhance the efficacy of immunotherapeutics128.  
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PERSONALIZED ANTI-TUMOR IMMUNE-THERAPY 

 
Failure of anti-tumor immunotherapies is often related to lack of immunogenicity or efficacy 

due to the influence of a combination of different immune-suppressive strategies as discussed 

above. However, there is another important factor that can have a dramatic effect on therapy 

response involving personalized medicine. In general, one of the biggest hurdles faced by 

personalized anti-cancer medicine is affordability. However, the increasing use of personalized 

strategies in more and more tumor types and its proven potential will aid the cost reduction 

and implementation in the current practice. Personalized anti-tumor immune-therapy 

comprises the design of immunotherapeutics that are specifically tailored to the patient’s 

mutanome and/or taking into account the patient’s unique immunoscore to increase the 

probability to induce a durable response. 

 
1. Patient specificity: unique mutanome  

 
Every antigen pool of a certain type of cancer in different patients varies and is referred to as 

inter-tumoral heterogeneity. In addition, there is also intra-tumoral heterogeneity which 

involves the diversity in every individual tumor in the same patient. By consequence, traditional 

antigen vaccines that target one or more known tumor-associated non-mutated antigens 

(TAAs) often do not have the desired effect as these antigens are unlikely to be expressed in 

every patient due to mutation or downregulation of the respective antigen and immune-

suppression as a result of thymic tolerance. In this regard, patient-derived cancer tissue 

vaccines and neo-antigen vaccines hold promise as they mind the patient’s unique mutanome. 

Neo-antigen vaccines enclose only tumor-specific mutated antigens (TSAs) which are patient- 

and tumor-specific whereas patient-derived cancer tissue vaccines involve both TSAs and TAAs.  

 
Strikingly, it has recently been elucidated that neo-antigens not always induce a strong anti-

tumor immune response as a high neo-antigen burden does not always correlate with a clinical 

response due to neo-antigen intra-tumoral heterogeneity. This results in two different subsets 

of neo-antigens, i.e. clonal and subclonal neo-antigens, that are present in the majority of 

cancer cells or in only a subset respectively129. It is therefore not the quantity of the mutational 

burden (the total amount of neoantigens, i.e. clonal and subclonal neo-antigens) but the quality 

(the clonal antigen percentage) that is associated to increased prognosis and survival116,130. 
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Interestingly, it has been shown that immunogenic active neo-antigens share peptide 

sequences that show similarities with pathogen sequences and subsequently can more 

efficiently prime a strong immune response131-134.  

 
Although the efficacy of TAA-based vaccines and of TSA- or neo-antigen-based vaccines has not 

been compared (yet), neo-antigen vaccines are likely to be more potent due to lack of thymic 

tolerance and the recent findings linking response rates of immune checkpoint inhibitors with 

clonal neo-antigen burden129 and neo-antigen specific T-cells132,135. By consequence, strategies 

to specifically define immunogenic clonal neo-antigens show promise to increase the efficacy 

and immunogenicity of neo-antigen vaccines.  

 
2. Patient selection: biomarkers 

 
Despite the progress that has been made in optimizing the immunogenicity and efficacy of anti-

tumor immunotherapeutics, it is imperative to decrease the efficacy variability and increase 

the probability of developing a durable response to avoid ineffective treatment accompanied 

with unnecessary toxicities and costs1. Screening of patients prior to treatment in order to 

determine which therapy is suitable and most likely to evoke a durable clinical response, is 

extensively studied and holds promise in improving response. Conventional screening involves 

determination of the tumor stage based on standard histopathological evaluation criteria, i.e. 

tumor burden (T), presence of cancer cells in lymph nodes (N) and evidence of metastasis (M) 

or the TNM classification136. Although TNM classification of a tumor estimates the response to 

therapy, it is inadequate to predict the clinical outcome of patients as clinical outcome can vary 

among the same TNM category137,138. Moreover, the TNM classification is incomplete as it is 

only focused on tumor cells and does not take the immune profile of the host into account135.  

 
Based on the important role of the immune system in tumorigenesis and tumor suppression, 

implementing immune-screening is essential to fully predict the clinical outcome of patients. 

Many different immune biomarkers are suggested as a valuable prognostic factor to help guide 

treatment choice and patient selection comprising the immune contexture, PDL1 and 

mutational load139,140. Due to the complexity of immune cells and their often contradictory 

effects on the immune response alongside patient variability, establishing an all-embracing 

screening platform that allows to completely predict the clinical outcome is still far from reality. 
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2.1 The immune contexture: Immunoscore 
 

The immune contexture involves the type, location, density and functional orientation of the 

immune cell populations in the tumor, unique for every cancer and patient141,142. Analysis of 

the immune contexture or the determination of the ‘immunoscore’ of the patient’s tumor 

contributes to characterize the tumor microenvironment and is a very strong prognostic 

factor143-145. On one hand, infiltration of lymphocytes in the tumor is a very important factor as 

it is related to T-cell exhaustion and non-T-cell inflamed tumors (vide supra – Efficacy: 

countering T-cell exhaustion and T-cell exclusion). Logically, high effector T-cell, TH1-helper cell 

and memory T-cell infiltration is strongly associated with improved outcome146-152. In addition, 

gene signatures involved in TH1-type responses (IFN-γ, IL-12) are also correlated with good 

prognosis as they are associated with increased effector and memory T-cell levels153-156. 

Infiltration of Treg cells, on the other, is correlated with poor prognosis due to their immune-

suppressive function157-159. However, contradictory studies have shown the inverse 

correlation160-162. The same holds true for other potential biomarker immune cell populations, 

i.e. NK-cells, TH2-helper T-cells and B-cells141. This discrepancy requires further detailed 

analysis of the tumor microenvironment and the dual role of these immune cells alongside 

synthesis of more specific markers and assays for optimal phenotyping163. 

 
2.1.1 PDL1 

 
PDL1-positive tumors were related to poor prognosis due to suppression of active T-

lymphocytes through the immune checkpoint PD-1 pathway164-168. Due to the FDA-approval of 

PD1-inhibitors such as Nivolumab and Pembrolizumab, PDL1-positive tumors are now 

considered to have good clinical outcome as expression of PDL1 on tumor cells and immune 

infiltrates is found to be a potential biomarker for efficacy of immune checkpoint 

inhibitors163,169-171. Although the majority of the studies have shown good clinical outcome of 

immune checkpoint inhibitors in PDL1-positive patients, some reveal reverse correlation, i.e. 

PDL1-negative malignancies have shown good response or no response was observed for PDL1-

positive phenotypes172,173. It is thereby important to consider that PDL1-expression can be 

induced and can have region-specific intensities which complicates screening116. 
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2.1.2 Mutational load: neo-antigen load 
 

Malignancies exhibiting high mutation rates are known to be more aggressive and tend to 

metastasize easier. However, higher frequency of DNA alterations increases the chance of 

inducing tumor-specific antigen mutations resulting in neo-antigens and thus recognition by 

the immune system. Indeed, a high mutational load is strongly correlated with neo-antigen 

expression and by consequence good clinical outcome132,174-175. This needs to be expanded, 

however, as a high neo-antigen load does not always results in favorable prognosis. It has been 

shown that only high clonal neo-antigen load will lead to response in contrast to subclonal neo-

antigen burden176.  

 
2.1.3 Other biomarkers 

 
In this regard, many other factors are currently investigated as potential biomarkers for tumor 

screening among which the most important are related to physiological tumor-specific 

parameters. These comprise serum prognostic markers such as IDO, C-reactive protein, hypoxia 

and MHC-I. IDO or indoleamine-2,3-dioxygenase metabolizes tryptophan into kynurenine 

which primes naive CD4+ T-cells to differentiate into Treg cells and depletes the local 

environment from tryptophan, essential for T-cell proliferation (vide supra – Chapter 2: Tumor 

immune-escape). IDO is correlated with poor prognosis, however, further research is needed 

to establish whether IDO can be used as an independent biomarker177-180. C-reactive protein is 

induced by cytokines in response to tumor inflammation and is associated with poor clinical 

outcome181-183 just like intra-tumoral hypoxia184-186 which impairs oxidative phosphorylation by 

T-cells for its energy supply. Another interesting biomarker involves expression of MHC-I which 

is positively correlated with good clinical outcome187-189. As earlier stated, downregulation or 

lack of expression of MHC-I by tumors results in immune-escape because the cancer cells 

cannot be recognized anymore by the immune system (vide supra – Chapter 2: Tumor immune-

escape). However, this correlation can also be reversed in tumors that completely lack MHC-I 

expression probably due to more efficient NK-cell mediated lysis190,191. 

 
Although progress had been made in defining biomarkers to aid patient and treatment 

selection, it is clear that further optimization of the parameters is needed and more detailed 

knowledge needs to be gained about the tumor microenvironment to fully understand the 

mechanisms. Moreover, inter-tumoral and intra-tumoral heterogeneity further complicates 
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the search for independent biomarkers. Nevertheless, the use of biomarkers has dramatically 

improved the efficacy of anti-tumor immunotherapies and will undoubtedly continue this in 

the future. 

 

TOWARDS THE IDEAL THERAPEUTIC VACCINE? 

 
Anti-tumor immune-therapy has gained more and more interest in the last decade and has 

shown it can be an added value as anti-tumor strategy due to the importance of the immune 

system in tumorigenesis. The FDA approval of the first therapeutic DC-based vaccine 

Sipuleucel-T (Provenge®) for metastatic castration-resistant prostate cancer in 2010 and the 

checkpoint inhibitors Ipilimumab (Yervoy®) in 2011 for renal cell carcinoma, Nivolumab 

(Opdivo®) and Pembrolizumab (Keytruda®) in 2014 for melanoma and non-small cell lung 

cancer, has boosted the field of anti-tumor immune-therapy drastically.  

 
Cancer vaccines targeting dendritic cells in vivo is an attractive strategy as it can be personalized 

and tailored to the patient’s mutanome containing neo-antigens or patient-derived cancer 

tissue and it can induce immunological memory while inducing relatively mild side effects (vide 

supra – Chapter 2: Defined synthetic antigen vaccines). The paradoxical role of the immune 

system in promotion and prevention of tumor growth is now more and more unraveled and 

has improved and boosted the development of more immunogenic, specific, more efficient 

therapeutic vaccines. Moreover, it is evident that optimal treatment of patients requires a 

personalized and multistep approach specifically tailored to every single patient in order to fully 

eradicate the malignancy and induce a prolonged protective effect. Combining different 

strategies to attack the malignancy holds promise due to the induction of synergistic effects 

that will weaken the malignancy on different levels more efficiently. In addition, implementing 

a personalized approach will evoke patient-specific immune reactions and will consider tumor-

specific biomarkers as well to further increase the efficacy and potency of the vaccine. 

Personalized cancer vaccination involves primarily formulation of the patient’s mutanome to 

avoid lack of efficacy due to mutation, MHC-I downregulation or lack of expression and thymic 

tolerance. Moreover, the incorporation of multiple antigens (neo-antigens, cancer cell lysate 

or cells) into vaccine particles in combination with multiple PAMPs and DAMPs will increase the 

probability of evoking a broader and all-embracing cytotoxic and memory T-cell response.  
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Nevertheless, therapeutic cancer vaccination has not lived up to its expectations yet which can 

be likely attributed to the immune-suppressive tumor microenvironment and stroma, 

physiologically and physically protecting the malignancy against attacks from the immune 

system. In this regard, it is necessary to combine cancer vaccination with strategies that tackle 

these immune-suppressive mechanisms. Therefore, personalized cancer vaccination also 

requires consideration of tumor-specific biomarkers to select the most optimal combination of 

treatments. The latter ensures better efficacy and avoids unnecessary costs and toxicity.  

 
Involving the immunoscore, in case of low infiltration of lymphocytes or T-cell exclusion, it is 

advisable to proceed the treatment with a strategy that reverses non-T-cell inflamed tumors 

into T-cell inflamed tumors. In contrast, tumors that exhibit high infiltration of immune-

suppressive cells such as Treg cells192-196, MDSCs197-200, TAMs and tol-DCs201 and are vaccinated 

with cancer vaccines combined with additional strategies that will block, eliminate or 

reprogram the respective cells to lower the probability of T-cell exhaustion show promise. Next 

to the immunoscore, other interesting biomarkers such as PDL1, IDO and lack of MHC-I 

expression can be implemented to enhance the efficacy of cancer vaccines involving immune 

checkpoint inhibitors, IDO-inhibitors and low dose chemotherapy or IFN-γ therapy respectively. 

Indeed, combination of immune checkpoint inhibitors with cancer vaccines have shown 

enhanced clinical outcome without increase of adverse events202-207. Furthermore, promising 

results have also been reported revealing the additive effect of combining IDO inhibitors with 

therapeutic vaccines208,209. Of note is the combination with low dose chemo-and radiotherapy 

or IFN-γ therapy where caution is needed as in some cases lack of MHC-I can also be correlated 

with good prognosis due to increased susceptibility to NK-cell recognition (vide infra –  

Chapter 1: The innate immune system). Nevertheless, promising data is obtained in several 

cancer types, demonstrating the advantage over monotherapy210-214. 

 
Summarized, the future of anti-cancer immune-therapy is bright and will further contribute to 

the fight against cancer. Personalized therapeutic vaccination combined with other anti-tumor 

immunotherapies, taking into account patient- and tumor specific markers, holds major 

promise. However, further research and more clinical studies are necessary to confirm and 

corroborate these findings indicating it is better to invade the tumor microenvironment with 

an army of highly specialized ‘soldiers’ instead of only one.  
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CHAPTER 8 
 

SUMMARY AND  

GENERAL CONCLUSIONS 

 

 

 

 

 

 

 

 

Today cancer remains one of the main causes of death worldwide and it is predicted that the 

incidence rate of men and women diagnosed with cancer in their lifespan will increase up to 40 

percent. Fortunately, extensive research has dramatically reduced the mortality rate due to 

improvement of the existing therapies together with the emergence of new therapeutic 

strategies in the immuno-oncology field. As stated in Chapter 1, the immune system is designed 

to recognize and eliminate infections through a smart, combined attack of immune cells of the 

innate and adaptive immune system. Interestingly, it has been elucidated that the immune 

system plays a dual role in cancer development through protection of the host against 

tumorigenesis (immunosurveillance) and, in contrast, promotion of tumor growth (tumor 

immune-escape).  

 
This complex relationship is discussed in detail in Chapter 2 and unravels the immune-

suppressive strategies used by cancer cells in order to evade immune recognition and 

eradication. In this regard, it is clear that subtle differences in immune cell populations can 

drastically change the action of the immune system from immunosurveillance to immune-

escape. This points out the potential of cancer immune-therapy to shift the balance of a pro-
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tumoral environment towards an unfavorable setting for cancer cells via manipulation of the 

immune-suppressive cells and the tumor microenvironment.  

 
This work aims to contribute to the development of cell-lysate based anti-cancer vaccines. The 

potential advantage over conventional or other immunotherapeutic strategies are the less 

severe side effects and the induction of immunological memory to provide prolonged 

protection against metastasis or relapse. Although cancer vaccination is a promising 

immunotherapeutic strategy in the battle against cancer and despite extensive research in this 

field, it has not lived up to the expectations. There is still an unmet need for formulation 

strategies that allow easy, mild and efficient incorporation of cancer antigens into 

immunogenic vaccines.  

 
In Chapter 2, the requirements for vaccines to efficiently target and activate dendritic cells in 

vivo are described and the hypothesis is raised that cancer vaccines need to resemble to 

pathogens in order to evoke a strong anti-tumor response. This involves formulation of cancer 

antigens into particulate carriers, to enhance uptake efficiency by dendritic cells, engineered 

with pathogen- and/or damage-associated molecular patterns (DAMPs and/or PAMPs), to 

evoke DC maturation via stimulation of pathogen recognition receptors (PRRs). PRR-stimulation 

is essential for the priming of cytotoxic CD8+ T-cells that hold the capacity to recognize and 

eliminate tumor cells. In addition, another important hurdle in cancer vaccine design is the lack 

of efficacy and the low applicability of many of the current approaches. This can be attributed 

to the use of single or multiple tumor-associated antigens that are limited in use as antigens of 

many types of cancer are still unidentified and are more prone to treatment failure due to 

mutation or lack of expression. This can be circumvented with personalized cancer vaccination 

that primes the patient’s immune system not only against tumor-associated antigens but also 

against the patient’s individual tumor-specific antigens potentially leading to more potent 

immune responses tailored to the patient’s unique tumor mutanome. Note that personalized 

cancer vaccines contain cancer antigens obtained from patient-derived tissue and requires 

sufficient amount of tumor and thus is only applicable for solid tumors that can be surgically 

resected. On one hand, neo-antigen vaccines involve individual tumor-specific antigens 

identified via genomic analysis which is costly, labor intensive and complex. Patient-derived 
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cancer cells or cell lysate containing vaccines, on the other, could have an important advantage 

in terms of cost and labor burden.  

 
In this regard, in this thesis four different strategies are developed that allow for the 

formulation of potent personalized cell-derived cancer vaccines as illustrated in Figure 1. 

Chapter 3 and Chapter 4 deal with the formulation of soluble cancer cell lysates whereas Chapter 

5 and 6 focus on the formulation of intact cancer cells into microparticles which additionally 

comprise cell membrane components, and when translated to whole tumor tissue, also offer 

the possibility to co-encapsulate stromal proteins.  

 

 

Figure 1. Overview of the formulation strategies that are developed in this thesis, divided into two cell 

lysate-based vaccines (green) and two intact cell-based vaccines (blue). 

 

In general, extensive focus is devoted in this work to obtain simple, efficient and potent vaccine 

formulation strategies of cell-derived antigens into pathogen-like particles regarding size and 

immunogenicity. The latter is either obtained by introduction of TLR-agonists (PAMPs) or 

immunogenic pre-treatment of the cells considering heat shock protein (DAMPs) expression. 
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Chapter 3, deals with the design of polymer-protein conjugates formed by disulfide exchange. 

This concept was grounded on three attractive properties: [1] disulfides can be readily formed 

with antigens via reaction with free thiols on cysteine residues; [2] disulfides are stable under 

extracellular conditions but are reduced to free thiols in the cytoplasm of cells; and [3] disulfide 

exchange. For this purpose, a co-polymer of HPMA and APMA (poly(HPMA-co-APMA)) was 

synthesized that bears pending pyridyldisulfide moieties (further denoted as poly(HPMA-PDS)) 

followed by assessment of the conjugation efficiency of the polymer to a model antigen 

ovalbumin (OVA) whether or not substituted with additional thiols. It was found that 

poly(HPMA-PDS) is well suited for efficient reversible conjugation of OVA, providing that the 

protein is modified with protected thiols. In vitro analysis revealed that the polymer-protein 

conjugates show increased cellular uptake, relative to unconjugated protein. This is attributed 

to disulfide exchange between remaining pyridyldisulfide moieties and exofacial thiols present 

on the cell surface. Furthermore, the formulation demonstrated to increase antigen 

presentation by bone-marrow derived DCs (bmDCs) to CD8+ T-cells in vitro.  

 
Following characterization of this formulation with OVA, attempts to conjugate cancer cell 

lysate unfortunately failed. It was not possible to introduce protected thiols to cancer cell lysate 

due to aggregate formation. Nevertheless, this formulation strategy has potential as a 

formulation platform for the design of vaccines containing tumor-associated antigens or neo-

antigens. Therefore, it would be interesting to conjugate TAAs or neo-antigens to poly(HPMA-

PDS) together with further optimization of the formulation regarding the amount of introduced 

protected thiols. In detail, lowering the percentage of introduced protected thiols on cancer 

antigens in conjunction with increasing the pending pyridyldisulfide moietes on the polymer is 

of interest to obtain similar conjugation efficiencies with a minimum risk of epitope loss. 

Furthermore, assessment of the effect of polymer conjugation on lymphatic antigen 

transportation as well as conjugation of molecular adjuvants such as TLR-agonists to increase 

immunogenicity should be performed in future research. 

 
As this work aims to develop, however, cell-derived cancer vaccines, Chapter 4 elaborates on 

an alternative strategy to encapsulate cancer cell lysate as such, without the need for 

functionalization of the proteins and thus avoiding epitope loss and aggregation issues. For this 

purpose, porous calcium carbonate (CaCO3) microparticles obtained by a one-step 
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precipitation reaction, in the presence of cancer cell lysate, were explored. This approach was 

chosen based on multiple attractive properties such as its widespread use in protein 

encapsulation, its high loading capacity for macromolecules, its ease of production and its low 

cost. In addition, the synthesis can be performed under very mild conditions in aqueous 

medium without the need of any organic solvents, reactive chemistry or high energy input. 

Indeed, this approach resulted in the efficient incorporation of cancer cell lysate into non-

aggregated spherically shaped CaCO3 microparticles that strongly enhanced uptake efficiency 

leading to an improvement of cross-presentation by dendritic cells in vitro opposed to non-

particulate cell lysate. To increase the potency of CaCO3 microparticles as vaccine carriers, 

immunogenicity was introduced via adsorption of a small molecule toll like receptor 7/8-agonist 

CL264 conjugated to poly(HPMA-APMA) (further denoted as CL264-poly(HPMA-APMA)) to the 

microparticle surface. This is essential in order to enable efficient priming of a robust anti-

tumor immune response via the induction of DC maturation through TLR-activation. TLR7/8-

triggering in particular is attractive in the context of tumor vaccination as this leads to elevated 

levels of type I IFN and IL-12, which are key cytokines to promote TH1- and cytotoxic T-cell 

responses required for potent anti-tumor immune responses. The TLR7/8-ligand was 

conjugated to the polymer backbone as it has been shown previously that lipid-, polymer- and 

nanoparticle-conjugation of small molecule ligands strongly reduces systemic inflammation 

and yields potent lymph node localized responses that enhance the adaptive immune response 

against co-delivered antigens. In vitro activation of bmDCs and RAW blue macrophages 

revealed that the polymer-conjugation of the TLR7/8-agonist did not reduce the activity of the 

ligand. Moreover, the agonist was more potent when adsorbed onto the microparticle surface 

which can be explained by the more efficient uptake which leads to enhanced interaction of 

the TLR-ligand with the receptor upon cell uptake.  

 
Regarding these results, formulation of cancer cell lysate into immunogenic CaCO3 

microparticles shows promise as a mild and efficient strategy to encapsulate cancer lysates. 

Further assessment of the potency of the vaccine can include introduction of one or more 

additional TLR-agonists alongside follow-up experiments to unravel the induced cytokine 

spectrum. 
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The encapsulation of cancer cell lysate, however, does not include cell membrane proteins and 

stromal proteins, when translated to whole tumor tissue. Thererfore, this work also devoted 

focus to vaccin formulations involving intact cancer cells. In Chapter 5, live cancer cells were 

used as templates for layer-by-layer (LbL) assembly of complementary interacting components 

followed by hypo-osmotic treatment to obtain bio-hybrid capsules loaded with cancer cell 

lysate within the hollow void of the obtained capsules. The LbL assembly technique, to design 

a synthetic semi-permeable membrane onto non-planar substrates, is an appealing strategy as 

it allows easy, all-aqueous and mild encapsulation of a wide variety of species. Initial 

experiments were performed using the oppositely charged polyelectrolytes, poly-L-arginine 

(PLARG) and dextran sulfate (DEXS) based on previous work that showed multilayer capsules 

composed of these polyelectrolytes are biocompatible, degradable in vitro and in vivo and 

induce broad cellular and humoral immune responses against the encapsulated antigen.  This 

led, however, to instantaneous aggregation, cell lysis and cell death upon incubation of the 

living cells with poly-L-arginine. Less harsh complementary interacting components were 

therefore chosen to coat the cancer cells. This strategy was based on the use of 

poly(vinylpyrrolidone) (PVP) and tannic acid (TA) that form hydrogen-bonded complexes. As 

the aim of our work is to encapsulate whole cancer cells, it is important to preserve cell integrity 

as much as possible while affecting cell viability as little as possible to retain a maximum amount 

of cellular proteins within the LbL coating. In this regard, particular focus was devoted to 

elucidate the optimal coating components and conditions. It was found that deposition of two 

PVP/TA bilayers followed by hypo-osmotic lysis yielded cell-templated bio-hybrid capsules 

containing a high amount of encapsulated proteins. Furthermore, it was confirmed that, upon 

hypo-osmotic lysis, the cancer cells were dead which is of interest as, upon administration, 

regrowth of new tumors due to residual living cells often occurs in case of whole cell-based 

lysates. Further, immunogenic properties were engineered into the capsules, in a proof of 

concept study, by pre-treatment of the cancer cells with heat shock to induce expression of 

DAMPs, important endogenous immune-activators.  

 
To assess the potential of the bio-hybrid cell-templated capsules, preliminary in vitro uptake 

experiments were performed which revealed only 5% of the capsules to be taken up. We 

hypothesized that this could be attributed to the large size (above 10 µm) of the cell-templated 

capsules for efficient uptake by dendritic cells. Several attempts were subsequently made to 
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decrease the cell-templated capsules in size through exposure to salt or high temperature. This 

resulted, however, in degradation or aggregation of the particles. 

 
In this regard, an alternative strategy was developed in Chapter 6 to formulate intact cancer 

cells into vaccine particles by a single-step method which is substantially less labor-intensive 

and time-consuming and thus avoids unnecessary cell loss opposed to the layer-by-layer 

coating of cancer cells. A simple, yet efficient single-step method was characterized that 

encapsulates whole cancer cells in polyelectrolyte microparticles by spray drying. Porous and 

non-aggregated polyelectrolyte-enrobed microparticles loaded with dead cancer cells were 

obtained by admixing mannitol and live cancer cells with the oppositely charged 

polyelectrolytes, DEXS and PLARG in aqueous medium prior to spray drying. Similar to the cell-

templated bio-hybrid capsules (Chapter 5), the polyelectrolyte-enrobed cancer cells were dead 

which could avoid tumor regrowth upon administration. The polyelectrolyte-enrobed cancer 

cells, upon redispersion in PBS buffer, were stable as the microparticles did not release cell 

proteins in the supernatant. In vitro evaluation revealed that the microparticles were 

internalized to a much larger extent by dendritic cells and significantly enhanced antigen cross-

presentation, relative to cell lysate. In analogy to the cancer cell lysate-containing CaCO3 

microparticles described in Chapter 4, immune-stimulating cues were introduced by co-spray 

drying of the vaccine components with CL264-poly(HPMA-APMA) yielding immunogenic 

microparticles that strongly promoted TLR-activation.  

 
These results show the potential of the polyelectrolyte-enrobed cancer cells as immunogenic 

antigen carriers. Introduction of multiple TLR-ligands and subsequent assessment of the 

optimal conditions for T-cell priming, as proposed for the lysate-containing CaCO3 

microparticles, is thereby also of interest to further increase the potency of this formulation. 

Furthermore, immunogenic treatment or induction of immunogenic cell death of the cancer 

cells, prior to spray drying, to induce DAMP-production could be an additional approach to 

increase the potency of DC activation and CTL-mediated anti-tumor responses. 

 
In conclusion, regarding the cell lysate-based vaccines, the polymeric CaCO3 microparticles 

appeared to be more promising opposed to the polymer-protein ligated nano-conjugates in 

terms of applicability. CaCO3 microparticles allowed for efficient encapsulation of cell lysate, 

without the need of functionalization, into immunogenic particles that efficiently activate 
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dendritic cells in vitro. The cell-based vaccines, on the other, revealed the polyelectrolyte-

enrobed cancer cells to be superior compared to the bio-hybrid tumor cell-templated capsules 

as this method allowed for one-step formulation of cancer cells into polyelectrolyte particles 

that show promising results in vitro in terms of uptake efficiency, MHC-I cross presentation 

induction and immunogenicity.  

 
For future experiments, it would be of interest to assess the potency of these two promising 

vaccines in vivo, investigating the induction of anti-tumor immunity. Initial in vivo experiments 

could be performed using an immunogenic murine cancer cell line that stably expresses OVA 

as this enables thorough screening with readily available assays. In addition, it would be 

particularly interesting to compare the formulation that appears to be the most promising in 

vivo with a neo-antigen containing vaccine.  

 
Overall, this thesis explored four different strategies to efficiently encapsulate cancer cell lysate 

or cancer cells into immunogenic personalized vaccine particles. This thesis shows the 

beneficial effect of antigen formulation into pathogen-like particles engineered with immune-

stimulating cues, in this case TLR-agonists, with the respect to antigen uptake and activation of 

dendritic cells.  
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CHAPTER 9 

 

SAMENVATTING EN  

ALGEMENE CONCLUSIES 

 

 

 

 

 

 

Kanker blijft op dit moment nog steeds één van de grootste doodsoorzaken werelwijd. 

Daarnaast is het voorspeld dat de incidentie van mannen en vrouwen die worden 

gediagnosticeerd met kanker in hun leven, zal stijgen tot 40 procent. Gelukkig heeft uitgebreid 

onderzoek het sterfte percentage drastisch doen dalen door het verbeteren van de huidige 

therapieën samen met de opkomst van nieuwe therapeutische strategieën in immuno-

oncologie. Zoals besproken in hoofdstuk 1, is het immuun systeem in staat om infecties te 

herkennen en te verwijderen via een slimme en gecombineerde aanval door immuun cellen 

van het aangeboren en het verworven immuun systeem. Daarnaast blijkt dat het immuun 

systeem een tegenstrijdige rol heeft in de ontwikkeling van kanker aangezien deze zijn gastheer 

kan beschermen (immuun-beschermende rol) maar ook kankergroei kan promoten (immuun-

ontwijkende rol). 

 
Deze complexe relatie wordt in detail bediscussieerd in hoofdstuk 2. De strategieën van 

immuun-onderdrukking die door de tumor cellen worden toegepast, om herkenning en 

eliminatie door het immuun systeem te ontwijken, worden ontrafeld. Daarbij wordt het 

duidelijk dat subtiele verschillen in immuun celpopulaties de functie van het immuun systeem 
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drastisch kunnen beïnvloeden van de immuun-beschermende naar de immuun-ontwijkende 

rol. Dit toont het potentieel aan van kanker immunotherapieën om de balans te verschuiven 

van een tumor-gunstige naar een tumor-ongunstige omgeving voor kanker cellen via 

manipulatie van immuun-onderdrukkende cellen en tumor micro-omgeving. 

 
Deze thesis doelt bij te dragen aan de ontwikkeling van anti-kanker vaccins die gebaseerd zijn 

op cel-lysaat, afgeleid van de tumor van de patient. Het potentieel voordeel hiervan, in 

vergelijking met de standaard en andere immunotherapeutische strategieën, is het feit dat bij 

kanker vaccinatie minder sterke bijwerkingen worden gerapporteerd samen met het feit dat 

immunologisch geheugen wordt opgebouwd die een verlengde bescherming kan bieden tegen 

uitzaaiingen en herval. Ondanks dat kanker vaccinatie een veelbelovende 

immunotherapeutische strategie is in het gevecht tegen kanker en ondanks uitvoerig 

onderzoek, heeft dit nog niet de hoge verwachtingen ingevuld. Er is nog steeds een onvervulde 

nood aan formulatie strategieën die eenvoudige, milde en efficiënte encapsulatie toelaten van 

kanker antigenen in immunogene vaccins. 

 
In hoofdstuk 2, worden de voorwaarden voor het efficiënt targeten and activeren van 

dendritische cellen (DCs) in vivo beschreven en wordt de hypothese gesteld dat kanker vaccins 

moeten lijken op pathogenen om een sterke anti-tumor respons te kunnen vervoorzaken. Dit 

houdt de formulatie in van kanker antigenen in partikels, om opname efficiëntie te verhogen 

door DCs, samen met pathogeen- en/of schade-geassocieerde moleculaire patronen (PAMPs 

en/of DAMPs), om maturatie van DCs te veroorzaken via de stimulatie van receptoren die 

pathogenen kunnen herkennen. Stimulatie van deze receptoren is essentieel voor het 

stimuleren van cytotoxische CD8 T-cellen die tumor cellen specifiek kunnen herkennen en 

vervolgens elimineren. Daarnaast is er nog een belangrijk probleem in het maken van vaccins 

namelijk het ontbreken van effectiviteit en de lage toepasbaarheid van vele van de huidige 

strategieën. Dit kan worden toegewezen aan het gebruik van een enkel of meerdere tumor-

geassocieerde antigenen die gelimiteerd zijn in gebruik omwille van twee redenen: [1] bij vele 

types kanker zijn er nog steeds geen antigenen geïdentificeerd; en [2] omdat deze antigenen 

hogere kans hebben op het mislukken van de behandeling wegens mutatie of het ontbreken 

van expressie van het antigen door de tumor. Persoonlijke kanker vaccinatie kan deze limitatie 

omzeilen omdat het immuun systeem niet enkel wordt geactiveerd tegen tumor-geassocieerde 
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antigenen maar ook tegen tumor-specifieke antigenen van de patiënt zelf waardoor dit 

potentieel kan leiden tot een potente immuunrespons die uniek is voor de patiënt. Noteer 

hierbij dat persoonlijke kanker vaccins antigenen bevatten die worden opgezuiverd van 

kankerweefsel van de patient en er voldoende hoeveelheid kankerweefsel nodig is waardoor 

dit enkel kan toegepast worden bij vaste tumoren die chirurgisch kunnen worden verwijderd. 

Enerzijds, houden neo-antigen of nieuw-antigen vaccins individuele tumor-specifieke 

antigenen in die worden bepaald via genoom-analyse wat bijzonder duur, arbeidsintensief en 

complex is. Vaccins die anderzijds volwaardige kanker cellen bevatten of kanker cel-lysaat van 

de patiënt, kunnen hierbij een belangrijk voordeel bieden qua kost en werklast.  

 

 
 
Figuur 1. Overzicht van de formulatie strategieën die ontwikkeld zijn in deze thesis, opgedeeld in twee 

cel-lysaat-gebaseerde vaccins (groen) en twee intacte cel-gebaseerde vaccins (blauw). 

 

Hierop gebaseerd, werden in deze thesis vier verschillende strategieën ontwikkeld die het 

mogelijk maken om vaccins te maken, afgeleid van de kankercellen van de patient. Een 

overzicht van deze strategieën wordt geïllustreerd in Figuur 1. Hoofdstuk 3 en hoofdstuk 4 
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behandelen de formulatie van oplosbare kanker cellysaten terwijl hoofdstuk 5 en hoofdstuk 6 

focussen op de formulatie van volledige kankercellen in micropartikels. Deze laatste bevatten 

daardoor additioneel componenten van het membraan van cellen en, in geval van volledig 

tumorweefsel, proteïnen afkomstig van tumor stroma. 

 
Samengevat, werd in dit werk zeer uitgebreid de focus gelegd op het verkrijgen van 

eenvoudige, efficiënte en potente vaccin formulatie strategieën, bestaande uit antigenen 

afgeleid van kankercellen, in partikels die lijken op pathogenen wat betreft grootte en 

immunogeniciteit. Deze laatste werd verkregen door introductie van TLR-agonisten (PAMPs) of 

door immunogene voorbehandeling van de cellen met het oog op heat shock proteïne (DAMPs) 

epxressie. 

 
Hoofdstuk 3 houdt het design in van polymeer-proteïne conjugaten gevormd door uitwisseling 

van disulfiden. Dit concept werd gebaseerd op drie attractieve eigenschappen: [1] disulfiden 

kunnen direct worden gevormd met antigenen via reactie met vrije thiolen op de cysteïne-

residu’s; [2] disulfiden zijn stabiel in extracellulaire condities maar worden gereduceerd tot vrije 

thiolen in het cytoplasma van cellen; en [3] disulfide-uitwisseling. Hiervoor werd een co-

polymeer gesynthetiseerd bestaande uit HPMA en APMA (poly(HPMA-APMA)) die 

pyridyldisulfide groepen bevat (wordt verder beschreven als poly(HPMA-PDS)) gevolgd door 

het bepalen van conjugatie-efficiëntie van het polymeer met een voorbeeld-antigen. Het werd 

bevonden dat poly(HPMA-PDS) geschikt is voor efficiënte reversiebele conjugatie van 

ovabumine (OVA), op voorwaarde dat het proteïne werd gemodificeerd met beschermde thiol-

groepen. In vitro analyse toonde aan dat de polymer-proteïne conjugaten verhoogde opname 

vertoonden, in vergelijking met niet-geconjugeerd proteïnen. Dit kan worden toegewezen aan 

disulfide uitwisseling van resterende pyridyldisulfide groepen en thiolen die aanwezig zijn op 

het oppervlak van cellen. Daarbijkomend, werd er aangetoond dat de formulatie leidde tot 

verhoogde antigen-presentatie door DCs, afgeleid van beenmerg, aan CD8+ T-cellen in vitro.  

 
Na karakterisatie van de formulatie met het voorbeeld-antigen OVA werden er verschillende 

pogingen gedaan om kanker cel-lysaat te conjugeren, die echter faalden. Het was namelijk niet 

mogelijk om beschermde thiol groepen te introduceren op de kanker cel-lysaat proteïnen 

wegens problemen met aggregatie. Desondanks heeft deze formulatie strategie potentieel als 

platform voor het aanmaken van vaccins die tumor-geassocieerde antigenen of neo-antigenen 
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bevatten. Daarom zou het interessant kunnen zijn om tumor-geassocieerde antigenen of neo-

antigenen te conjugeren met poly(HPMA-PDS) samen met verdere optimalisatie van de 

formulatie aangaande de hoeveelheid geïntroduceerde beschermde thiolen. In detail wordt 

hiermee het verlagen van het percentage aan geïntroduceerde beschermde thiolen op de 

kanker antigenen samen met het verhogen van de hoeveelheid pyridyldisulfide groepen op het 

polymeer beoogd. Dit met het doel om gelijkende conjugatie efficiënties te bekomen met een 

minimaal risico op verlies van epitopen. Daarnaast, kan het effect van de polymeer-conjugatie 

op het lymfatisch transport van het antigen worden bestudeerd net als conugatie met 

moleculaire adjuvantia, zoals TLR-agonisten in de toekomst. 

 
Aangezien deze thesis doelt op de ontwikkeling van kanker vaccins die materiaal van kanker 

cellen bevatten van de patient, wordt er in hoofdstuk 4 een alternatieve strategie voorgesteld 

om kanker cel-lysaat te encapsuleren, zonder verdere functionalisatie en dus met vermijden 

van verlies van epitopen en aggregatie problemen. Hiervoor werden poreuze calcium 

carbonaat (CaCO3) micropartikels onderzocht d.m.v. een 1-staps precipitatie reactie in de 

aanwezigheid van kanker cel-lysaat. CaCO3 microparticles werden aangehaald wegens hun 

interessante eigenschappen zoals het veelzijdig gebruik ervan voor eiwit-encapsulatie, de hoge 

ladingscapaciteit voor macromoleculen, het gebruiksgemak en de lage kost. Daarnaast, kan de 

synthese worden uitgevoerd in zeer milde omstandigheden in waterig medium zonder gebruik 

van organische solventen, reactieve chemie of hoge energie toevoer. Deze aanpak resulteerde 

in efficiënte encapsulatie van kanker cel-lysaat in niet-geaggregeerde sferische CaCO3 

microparticles die sterk verhoogde opname efficiëntie vertoonden samen met verbeterde 

cross-presentatie door DCs in vitro, in tegenstelling tot opgelost kanker cel-lysaat. Om het 

potentieel te verhogen van de CaCO3 microparticles als vaccins, werd een toll-like receptor-7/8 

agonist CL264, geconjugeerd met poly(HPMA-APMA) (verder vermeld als CL264-poly(HPMA-

APMA)), geïntroduceerd via adsorptie op het oppervlak van de micropartikels. Het 

introduceren van immunogeniciteit is essentieel voor het efficiënt induceren van een robuuste 

anti-tumor immuunrespons via het induceren van DC-maturatie d.m.v. TLR-activatie. TLR7/8 

triggering is in het bijzonder interessant in de context van tumor vaccinatie omdat dit leidt tot 

verhoogde concentraties van type I IFN en IL-12, die TH1- en cytotoxische T-cell responsen 

promoten die nodig zijn voor potente anti-tumor immuniteit. Het TLR7/8-ligand werd 

geconjugeerd met een polymeer aangezien het reeds werd aangetoond dat lipide-, polymeer, 
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en nanopartikel-conjugatie van TLR-liganden zeer sterk de systemische inflammatie reduceert. 

Dit rendeert in potente responsen gelocaliseerd ter hoogte van de lymfeknopen leidend tot 

verhoogde adaptieve immuun responsen gericht tegen de antigenen. In vitro activatie van DCs, 

geïsoleerd uit beenmerg, en RAW blue macrofagen toonde aan dat polymeer-conjugatie van 

de TLR7/8-agonist de activiteit ervan niet benadeelde. Bovendien was de agonist potenter 

wanneer deze was geadsobeerd op het oppervlak van de micropartikels. Dit kan worden 

verklaard door de efficiënte opname van micropartikels waardoor de interactie van het TLR-

ligand met zijn receptor werd verhoogd.  

 

Aangaande deze resultaten, blijkt de formulatie van kanker cel-lysaat in immunogene CaCO3 

micropartikels veelbelovend als milde en efficiënte strategie om kanker cel-lysaten te 

encapsuleren. Verdere optimilisatie kunnen experimenten inhouden die 1 of meerdere TLR-

agonisteren introduceren, gevolgd door het bepalen van het geïnduceerde cytokine spectrum.  

 
Het encapsuleren van kanker cel-lysaat, includeert echter geen celmembraan proteïnen en 

stroma proteïnen, in geval van compleet tumorweefsel. Daarom werd er in dit werk ook focus 

gelegd op het formuleren van intacte kanker cellen in vaccins. In hoofdstuk 5, werden levende 

kanker cellen gebruikt als basis voor layer-by-layer (LbL) coating van complementair 

interagerende componenten, gevolg door hypo-osmose om bio-hybride capsules te bekomen 

die kanker cel-lysaat bevatten in de holle ruimte van de partikels. De LbL techniek die wordt 

gebruikt om een synthetisch halfdoorlatend membraan aan te maken op niet-planaire 

substraten, is een attractieve techniek omdat het eenvoudige, milde encapsulatie toelaat van 

een brede waaier aan componenten in waterig medium. Initiële experimenten werden 

uitgevoerd gebruik makend van tegengesteld geladen polyelektrolieten, poly-L-arginine 

(PLARG) en dextraan sulfaat (DEXS). Dit is gebaseerd op eerder onderzoek die resulteerde in 

biocompatibele, in vitro en in vivo degradeerbare en meerlagige capsules bestaande uit deze 

polyelektrolieten die brede cellulaire en humorale immuun responsen induceerden tegen het 

geëncapsuleerde antigen. Deze aanpak resulteerde echter in onmiddellijke aggregatie, cellyse 

en celdood van de levende kanker cellen tijdens incubatie met PLARG. Daarom werden minder 

sterke complementair interagerende componenten geselecteerd om de kanker cellen te 

coaten. Deze strategie werd gebaseerd op het gebruik van poly(vinylpyrrolidone) (PVP) en 

tanninezuur (TA) die waterstofbruggen vormen. Aangezien het doel van deze thesis de 
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encapsulatie van volledige kanker cellen inhoudt, is het belangrijk om de intergriteit van de 

cellen zoveel als mogelijk te behouden tijdens de coating. In dit opzicht, werd er bijzondere 

aandacht geschonken aan het bepalen van de optimale coating componenten en condities. Er 

werd bevestigd dat, na lyse door hypo-osmose, de kankercellen dood waren wat belangrijk is 

om hergroei van nieuwe tumoren te vermijden na vaccinatie o.w.v. residuele levende cellen. 

Dit laatste is vaak het geval in de huidige vaccins van volledige kanker cellysaten. Immunogene 

eigenschappen werden geïntroduceerd in de capsules, via een proof of concept studie, door 

het voorbehandelen van de kanker cellen met warmte (heat shock) om expressie van DAMPs, 

belangrijke endogene immuun activators, te induceren.  

 

Om het potentieel te bepalen van de bio-hybride cel-gebaseerde capsules, werden preliminaire 

in vitro opname experimenten uitgevoerd, waaruit bleek dat slechts 5 % van de partikels 

worden opgenomen. We wijzen dit toe aan de omvang van de partikels die te groot zijn om 

efficiënte opname te induceren door dendritische cellen (boven 10 µm). Verschillende 

pogingen werden uitgevoerd om efficiënte opname door immuun cellen mogelijk te maken. 

Hiervoor werden de capsules blootgesteld aan zout of hoge temperaturen met het oog op het 

krimpen van de partikels. Dit resulteerde echter in degradatie of aggregatie van de partikels  

 
Aangezien het niet mogelijk bleek te zijn om efficiënte opname te verkrijgen met de LbL-

gecoate kanker cellen, werd een alternatieve strategie ontwikkeld in hoofdstuk 6 voor het 

formuleren van kanker cellen in vaccin partikels via een één-staps methode. Deze is  aanzienlijk 

minder arbeidsintensief en tijdsrovend en vermijdt bijgevolg onnodig verlies van cellen in 

tegenstelling tot de layer-by-layer coating van kanker cellen. Dit heeft geleid tot een 

eenvoudige, maar efficiënte methode om kanker cellen in hun geheel te encapsuleren in 

polyelektroliet micropartikels via sproeidrogen. Poreuze, niet-geaggregeerde polyelektroliet-

omhulde micropartikels, die dode kanker cellen bevatten, werden bekomen via het mengen 

van mannitol met levende kanker cellen samen met de tegengesteld geladen polyelektrolieten, 

PLARG en DEXS in waterig medium net voor het sproeidrogen. Net zoals de bio-hybride capsules 

(hoofdstuk 5), bevatten de polyelektroliet-omhulde micropartikels enkel dode kanker cellen 

wat hergroei van tumoren na vaccinatie kan vermijden. De polyelektroliet-omhulde kanker 

cellen waren stabiel als micropartikels, na resuspensie in PBS buffer, en stelden geen proteïnen 

vrij in het supernatans. In vitro evaluatie toonde aan dat de micropartikels veel meer werden 
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opgenomen door dendritische cellen en significant de cross-presentatie van antigenen 

verhoogden, ten op zichte van cel-lysaat. Analoog met de kanker cel-lysaat-bevattende CaCO3 

micropartikels, beschreven in hoofdstuk 4, werden immuun-stimulerende eigenschappen 

geïntrodudeerd via het sproeidrogen van de vaccin componenten in aanwezigheid van  

CL264-poly(HPMA-APMA). Dit resulteerde in immunogene micropartikels die sterk  

TLR-activatie induceerden.  

 
Deze resultaten tonen het potentieel aan van de polyelektroliet-omhulde kanker cellen als 

immunogene antigen vaccins. Introductie van meerdere TLR-liganden gevolgd door het 

bepaling van de optimale condities voor T-cel activatie, zoals ook voorgesteld voor de lysaat-

bevattende CaCO3 micropartikels, zou daarom een interessant vervolg kunnen zijn om het 

potentieel van deze formulatie te verhogen. Daarnaast, kan immunogene behandeling of 

inductie van immunogene celdood van de kankercellen, voor het sproeidrogen, ook een 

meerwaarde betekenen in het verhogen van het potentieel van de formulatie in activatie van 

DCs en CTL-gedreven anti-tumor responsen. 

 
In conclusie, aangaande de cel-lysaat-gebaseerde vaccins, bleken de CaCO3 polymeer 

micropartikels meer veelbelovend dan de polymeer-proteïne geligeerde nano-conjugaten qua 

toepasbaarheid. CaCO3 micropartikels laten namelijk toe om cel-lysaat efficiënt te 

encapsuleren, zonder functionalisatie ervan, in immunogene partikels die efficiënt dendritische 

cellen activeren in vitro. Voor de cel-gebaseerde vaccins, aan de andere kant, werd aangetoond 

dat de polyelektroliet-omhulde kanker cellen superieur zijn vergeleken met de bio-hybride cel-

gebaseerde partikels. Deze methode maakt het mogelijk om kanker cellen via één stap te 

formuleren in polyelektroliet partikels die veelbelovende resultaten vertoonden in vitro 

aangaande opname efficiëntie, MHC-I kruispresentatie inductie en immunogeniciteit. 

 
Wat betreft toekomstige experimenten, zou het interessant kunnen zijn om het potentieel te 

beoordelen van deze twee veelbelovende vaccins in vivo, via het bepalen van de inductie van 

anti-tumor immuniteit. De initiële in vivo experimenten kunnen worden uitgevoerd gebruik 

makende van een immunogene kanker muis cellijn die OVA stabiel tot expressie brengt om 

grondige screening toe te laten met verkrijgbare assays. Daarnaast, zou het bijzonder 

interessant zijn om de meest veelbelovende formulatie in vivo te vergelijken met het zelfde 

vaccin dat neo-antigenen bevat.  
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In het algemeen heeft deze thesis vier verschillende strategieën onderzocht om kanker cel-

lysaat of kanker cellen te encapsuleren in immunogene en gepersonaliseerde vaccin partikels. 

Deze thesis toonde het gunstige effect aan van antigen formulatie in partikels, lijkend op 

pathogenen, die immuun-stimulerende componenten bevatten (in dit geval TLR-agonisten) 

met betrekking tot antigen opname en activatie van dendritische cellen.
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