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The use of power electronics has led to a growing importance of higher time-harmonic content in electrical machines. To gain
insight in phenomena related to these higher harmonics, such as noise and losses, a good understanding of the magnetic field’s
harmonic content is mandatory. Moreover, the development of fast and accurate, harmonic-based, analytical models requires a
qualitative knowledge of the machine’s time- and spatial-harmonic content. Although the harmonic content of electric machines is
an extensively studied topic, previous publications tended to focus on one type of synchronous machines and often didn’t consider
higher time-harmonic orders. This work complements the existing theory by providing a more general approach, thereby covering
machines and operating points that weren’t covered until now. Itconsiders both three-phase and multi-phase machines with an odd
number of phases. The winding distribution can either have an integer or a fractional number of slots per pole and per phase and
higher time-harmonic content is regarded as well. Note that saturation is neglected. Despite its general validity, the work succeeds at
providing one simple equation to determine the machine’s time- and spatial-harmonic content. Moreover, the work also extensively
discusses the physical causes of the harmonic content. The combination of this general validity, the simple result and the insight in
the physics makes that this work is a strong tool to both study harmonic-related phenomena in electric machines and to develop
harmonic-based analytical models.

I. I NTRODUCTION

In modern industry the effect of harmonic content in electri-
cal drives is increasingly important. Indeed, electrical motors
are often controlled using pulse-width modulated voltage-
source inverters, which results in higher time-harmonic orders
in the current signal. The rising importance of these harmonics
has led to a growing interest for harmonic-related phenomena
in electrical machines, such as noise [1], [2] and losses [3],
[4]. To better understand these phenomena, it is mandatory
to have a good understanding of which time- and spatial-
harmonic combinations exist in the machine and what their
physical cause is.
On the other hand, a variety of studies and applications
require fast and accurate simulation of the magnetic field
in an electrical machine. In that light a lot of research on
Fourier-based models has been done lately [5]–[16]. Such
models analytically compute the machine’s magnetic field
by expressing it as a summation of harmonic components.
The computational time of these models can be significantly
reduced if the present time- and spatial-harmonic content is
known in advance.

A. Literature

As follows from the above, a preliminary knowledge of
which time- and spatial-harmonic combinations exist in an
electric machine’s magnetic field is of great interest. Moreover,
it is particularly useful to have physical insight in the origin
of the machine’s harmonic content. This is of course not
new, harmonic analysis has been one the most important tools
to study electrical machines since long before the rise of
power electronics and Fourier-based modeling. It is therefore
not surprising that there are a lot of publications on the

Corresponding author: B. Hannon (email: Bert.Hannon@UGent.be).

topic. However, the great majority of these publications uses
harmonic analysis of the magnetic field as a post-processing
tool, i.e. the machine’s magnetic field is first calculated and
then decomposed in its harmonic content to better understand
the results of the calculation, e.g. [17], [18]. Evidently,these
articles give only little insight in the harmonic content of
electric machines in general, let alone the physical cause for
those harmonics.
Publications that do present a broader discussion on the
harmonic content of electric machines can mainly be classified
according to the type of machines that are studied and to
whether, or not, they consider higher time-harmonic orders.
In the following, some of the most interesting publications
are used to sketch the evolution of the literature on harmonic
content. Evidently, these publications are only a small portion
of the large amount of literature on the topic.
The most basic publications, such as basic textbooks [19],
[20], only consider the spatial-harmonic content of three-
phase machines with an integerq, q being the number of
slots per pole and per phase. Usually, these publications study
the MagnetoMotive Force (MMF) to state that the spatial-
harmonic orders(k) have to satisfy:

k = p (6c+ 1) (1)

with p the number of pole pairs andc an integer.
However, as early as the 1950’s, several authors published
on spatial-harmonic content of machines with an arbitrary
number of phases and higher time-harmonic orders. Both Kron
[21] and White [22] considered such multi-phase machines,
Kron also considered higher time-harmonic orders. However,
neither Kron nor White presented clear equations to determine
which harmonic orders are present in the electric machine.
Such equations can be found in some textbooks on electric
machines, such as Pyrhönen’s book on the design of electric
machines [23] and Boldea’s work on induction machines [24].
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None of the latter publications regarded the harmonic content
in machines with a fractionalq.
In 1983 Klingshirn presented a relation between the MMF’s
spatial-harmonic orders and what he calls orders of sequence
sets [25]. The latter are similar to time-harmonic orders.
Although Klingshirn does account for machines with more
than three phases, his work is restricted to diametrically
wound machines. Later Toliyat presented a paper that does
consider machines with concentrated windings [26]. However,
his study is restricted to three specific cases and he doesn’t
give a preliminary discussion of the present harmonic orders.
Neither Klingshirn nor Toliyat discussed the harmonic orders
other than those originating from the machine’s stator-current
density. Moreover, none of both papers extensively discusses
the physical cause of the harmonic orders.
In 2000, Atallah described the current density on the statorus-
ing a Fourier series in his paper on rotor losses [27]. Although
he only considers the fundamental time-harmonic order, he
presents a clear equation for the spatial-harmonic orders.The
equation is valid for machines with integer-slot windings and
for machines with fractional-slot windings. However, it will be
shown in Section IV that Atallah’s findings can be made more
strict for machines with an even number of slots per period,
i.e. for machines withNs

τ
even. Atallah does not discuss the

physical causes for the present harmonic orders, neither does
he discuss the harmonic content under no-load conditions.
Similar to Atallah, Zhu described the stator’s current density
in 2004 [28]. He does account for higher time-harmonic
content, but he only considers machines with three phases.
Moreove, his formula are not generally valid for machines
with Fractional-Slot Windings (FSW).
In 2006, Bianchi discussed machines with fractional-slot wind-
ings [29], [30]. He is the first to differentiate between machines
with Ns

τ
even andNs

τ
odd, he also regards fractional-slot

single-layer windings. However, the equations he proposes
for spatial-harmonic orders can be made more strict. Bianchi
doesn’t consider higher time-harmonic content.
As recent as 2014 and 2015, Wei [31], Wang [32] and
Zhang [33] have presented interesting insights on the harmonic
content of electric machines. Wei does consider a preliminary
study of the time- and spatial-harmonic content. However, his
discussion is limited to machines with an integer number of
slots per pole and per phase.
As can be seen from the above, the existing literature does
not give a complete overview of the harmonic content in
electric machines. Moreover, in most articles the focus is
not on the harmonic content as such but on describing the
MMF or analyzing the magnetic field. Therefore, this work
aims at complementing the existing literature by discussing
the entire harmonic spectrum of machines with fractional slots
and by differentiating between machines with an even number
of slots per period and machines with an odd number of slots
per period. Moreover, these equations have to be as gener-
ally valid as possible. Specifically, all synchronous machines
that are wound using the Star-Of-Slots (SOS) technique, i.e.
both machines with integer- and fractional-slot windings,are
considered. The work is limited to unsaturated synchronous
machines that operate in steady-state, but can be extended to

account for saturation and/or asynchronous operation. Apart
from providing equations that are very generally valid, this
work also aims at giving a clear physical explanation for those
equations.

B. Assumptions

In order to perform the following study a number of
assumptions are made. As one of the main goals of this work
is to reduce the computational time of Fourier-based models,
the following assumptions are limited to those in the majority
of publications on analytical models [5]–[16].
A first, and very important, assumption is that the effect of
the end windings can be neglected. This is of course only true
for machines with a relatively high length to diameter ratio. It
is however an assumption that is used by most authors when
constructing analytical models.
A second assumption is made with regard to the stator-current
density. Only balanced current systems with an odd number of
phases are considered. Note that some systems with an even
number of phases are eligible as well. Indeed, if the reduced
version of such a system is radially symmetrical, the phases
can be grouped in an odd number of neighboring phases [23].
The system is then similar to a system with an odd number
of phases.
Thirdly, it is assumed that the winding distribution is defined
by the SOS. Although some machines are wound using other
techniques, the large majority of winding topologies is con-
structed using this technique.
The effect of saturation on the harmonic content is not
regarded in this work. Although saturation occurs in a lot
of machines, it is disregarded in most analytical modeling
techniques. Finally, it was assumed that the rotor of the studied
machine is rotating at synchronous speed. This reduces the
validity of this study to synchronous machines that are in a
steady state.
The above assumptions are listed as:

• No end-effects
• Balanced system with an odd number of phases
• Winding distribution according to SOS
• No saturation
• Synchronous operation

C. Paper outline

The discussion is structured as follows. In Section II the
applied reference system is introduced and a basic introduction
on the time and spatial dependency of the magnetic field
is presented. Sections III-V discus the three aspects that
determine the harmonic content of the magnetic field in a
PMSM: the permanent magnets, the stator-current density and
the machine’s geometry. The findings from these sections
are summarized in Section VI and general rules for the
harmonic combinations under no-load, armature-reaction and
load conditions are presented. Section VI also discusses a
simple example of how the obtained knowledge can be used.
The validity of the presented study for general synchronous
machines is discussed in Section VII. Section VIII concludes
the paper. Finally, an introduction to the star-of-slots technique
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and its slot groups is given in the Appendices.
Note that Sections III and IV-A present some basic informa-
tion. However this information is required for the discussion
in later sections.

II. T IME- AND SPATIAL-HARMONIC ORDERS

To study the time- and spatial-harmonic content of syn-
chronous electrical machines, radial-flux synchronous ma-
chines with surface-mounted permanent magnets are con-
sidered. In Section VII the presented study is extended to
synchronous machines in general.
Figure 1 shows an example of the studied machines. The
topology of these machines lends itself to using a cylindrical
coordinate system(r, φ, z) to describe their magnetic field.
In the following the spatial coordinate system is fixed to the
stator; (r, φ, z) is thus a stator reference system. However,
apart from a spatial dependency, the magnetic field in the
machine also has a time(t) dependency.
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Fig. 1: Geometry of a machine with 12 slots and 5 pole pairs

Obviously the machine’s geometry implies a spatial periodicity
over 2π mechanical radians in theφ-direction. This period is
called the basic spatial period. If the machine is operated in
steady state, it also has a periodicity over time. This period
is called the mechanical time period or the basic time period
(Tm), it is the time the rotor needs to perform one revolution.
Usually the magnetic field is expressed using auxiliary quan-
tities such as the magnetic scalar potential(ψ) [5]–[7] or
the magnetic vector potential(A) [8]–[16]. If the end effects
are neglected,ψ and A are independent ofz. Moreover, the
magnetic vector potential will then only have az-component
and thus:

A = Az · ez = A · ez (2)

Because of the above mentioned periodicities,ψ and A can
be expressed using the following Fourier series over time and

space:

ψ(r, φ, t) =

∞
∑

n=0

∞
∑

k=0

ψcos
n,k(r) cos (kφ− nωmt) (3a)

+ ψsin
n,k(r) sin (kφ− nωmt)

A(r, φ, t) =

∞
∑

n=0

∞
∑

k=0

Acos
n,k(r) cos (kφ− nωmt) (3b)

+Asin
n,k(r) sin (kφ− nωmt)

or in the exponential notation:

ψ(r, φ, t) =
∞
∑

n=−∞

∞
∑

k=−∞

ψn,k(r)e
j(kφ−nωmt) (4a)

A(r, φ, t) =

∞
∑

n=−∞

∞
∑

k=−∞

An,k(r)e
j(kφ−nωmt) (4b)

In equations (3) and (4),n is the time-harmonic order and
k is the spatial-harmonic order. The machine’s mechanical
rotational speed is denoted asωm.

ωm =
2π

Tm
(5)

In the rest of this work the magnetic vector potential will
be regarded, although a completely similar approach could
be used for the magnetic scalar potential. The exponential
notation (4b) will be used to reduce the length of the equations.
Since the magnetic field can be written as a Fourier series over
time and space, every Fourier coefficient(An,k(r)) depends
on both the time-harmonic ordern and the spatial-harmonic
orderk. Thereforen andk should always be regarded together,
such time- and spatial-harmonic combination is referred toas
(n, k).
The part of the field related to harmonic combination(n, k)
is referred to as the(n, k)-component of the magnetic field. If
kφ − nωmt is assumed constant, the rotational speed of this
component can be calculated as:

dφ

dt
=
n

k
ωm (6)

This means that the rotational speed depends on then to k

ratio. Considering (4), it can easily be seen that both positive
and negative rotational speeds are possible.
Although (4) regards every possible harmonic combination
(n, k), the magnetic field in a PMSM does not necessarily
contain all these combinations. The machine’s field, and
thereby its harmonic content, is defined by three aspects; the
permanent magnets, the distribution of the current density
and the machine’s geometry. In order to predict the harmonic
content of the magnetic field, a good understanding of these
aspects is required. Therefore the following sections discuss
each of the aforementioned aspects and their impact on the
harmonic content of the machine.

III. PERMANENT MAGNETS

The remanent magnetic induction of the permanent magnets
(Brem) has ar- and aφ-component. If expressed in a stator
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reference system,Brem depends on both space and time and
can therefore be written as an exponential Fourier series over
space and time:

Brem =Brem,r(r, φ, t) · er +Brem,φ(r, φ, t) · eφ

=

∞
∑

n=−∞

∞
∑

k=−∞

Brem,r,n,k(r)e
j(kφ−nωmt) · er

+

∞
∑

n=−∞

∞
∑

k=−∞

Brem,φ,n,k(r)e
j(kφ−nωmt) · eφ

(7)

As a source of magnetic flux, the magnets can, evidently,
introduce time- and spatial-harmonic combinations in the
machine’s magnetic field. They can, however, only introduce
combinations that are present inBrem, i.e. Brem,r,n,k 6= 0 or
Brem,φ,n,k 6= 0. For that reason it is important to understand
which harmonic combinations are available in the distribution
of the remanent magnetic induction. Note that the fact that the
magnets can only introduce harmonic combinations that are
present inBrem doesn’t imply that only these combinations will
be present in a no-load situation. As discussed later, the ma-
chine’s geometry can also introduce harmonic combinations.
As mentioned above, it is assumed that the magnets rotate
at the mechanical speed(ωm), evidently the magnets as such
do not change in time. The remanent magnetic induction will
thus only contain harmonic combinations that rotate atωm

mechanical radians per second. Referring to (6), this implies
that only harmonic combinations withn = k are eligible.
Secondly, as can be seen in Figure 1, the magnet distribution
containsp identical parts along theφ-direction. Wherep is
the number of pole pairs. These repetitions imply that the
spatial period in theφ-direction is p times smaller than the
basic spatial period. This smaller period is referred to as
the fundamental spatial period and it equals2π

p
mechanical

radians, which in turn equals2π electrical radians. To comply
with the fundamental spatial period,Brem can only contain
harmonic orders that are a multiple ofp. Note that this demand
requiresp identical repetitions of the magnet distribution. If
for example one of the magnets is demagnetised, it is no longer
valid.
Finally, in most machines the spatial distribution of the re-
manent magnetic induction is symmetrical in theφ-direction
over half a fundamental period. This symmetry can only be
maintained if, when referred to the fundamental spatial period,
there are no even harmonic orders, i.ek

p
is odd. Indeed, as

illustrated in Figure 2, even harmonic orders do not show
symmetry with respect to the middle of half a period. Note
that the demand for odd spatial-harmonic orders is common
but not absolute, one could build a machine with asymmetrical
magnets.
As a conclusion it can be stated that the magnets will only
introduce time-harmonic orders,n, whereforen ∈ hm. With
hm the set of time-harmonic orders for whichBrem,r,n,k 6= 0
or Brem,φ,n,k 6= 0. In a healthy machinehm will only contain
multiples ofp. Due to the assumption of synchronous opera-
tion the magnets will only introduce harmonic combinations
for which k = n. If the magnets are symmetrical over half a
period, an extra constraint can be imposed:k

p
should then be

odd.
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Fig. 2: Illustration of symmetry in the magnet distribution

IV. STATOR-CURRENT DENSITY

Like the magnets, the current density introduces harmonic
combinations. But again, restrictions can be imposed as to
which harmonic combinations are induced. In order to study
these restrictions, the applied current and the spatial distribu-
tion of the windings through which these currents flow are
regarded separately.
The time-dependent current will determine which time-
harmonic orders are introduced by the current density. The
distribution of the windings, in contrast, has a spatial depen-
dency and will determine which spatial-harmonic orders are
present.

A. Current system

The applied current system is a balanced system with an odd
number of evenly distributed phases(m). This means that the
rotation between neighboring phases is2π

m
electrical radians,

as illustrated in Figure 3 for a five-phase system.

2π

m

I
(1)

I
(2)

I
(3)

I
(4)

I
(5)

Fig. 3: Balanced five-phase current system

The current, related to an arbitrary phase with numberim ∈

[1,m], can be written as a Fourier series over time:

I(im) =

∞
∑

n=−∞

Ine
−jn(ωmt−(im−1) 2π

m ) (8)

The current density in the machine can only introduce com-
ponents of the magnetic field whose time-harmonic order
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n corresponds to a non-zeroI(i)n . The following general
consideration on the time-harmonic content ofI(i) can be
made.
For the sake of uniformity, the mechanical pulsation has been
used in (8). However, the base pulsation of currentI(i) is the
electrical pulsationωe = pωm. This implies that only multiples
of p are eligible forn. Similar as the fundamental spatial
period, the fundamental time period(Te) can be defined as
the base time periodTm divided byp.
The assumption that the applied system is balanced implies
that the sum of the current phasors should always equal zero.
When referred to the fundamental time period, this means that
the current does not contain time-harmonic orders that are a
multiple of m. This consideration results inn

p
6= cm, with c

an integer.
Often the current waveform is assumed to be symmetrical
over half a fundamental time period. If that is the case no
even harmonic orders, when referred to the fundamental time
period, are present, i.e.n

p
is odd.

The above considerations allow stating that the current den-
sity will only introduce harmonic combinations with time-
harmonic orders that are multiples ofp and whereforen

p
is

no multiple of m. If the current waveform is symmetrical
over half a fundamental time period,n

p
has to be odd. More

generally it can be stated that, ifhc contains the time-harmonic
orders that are present inI(i), the current density will only
introduce time-harmonic orders, whereforen ∈ hc.

B. Winding distribution

As mentioned, the distribution of the windings will de-
termine which spatial-harmonic orders are present in the
machine’s magnetic field. There are a great number of pos-
sibilities to distribute the windings around the stator surface.
However, mostly the so called star-of-slots technique is used
to assign the slots to one or more phases [23], [30], [34],
this technique is introduced in Appendix A. Both integer
and fractional slot windings can be constructed using this
technique. In an attempt to be as general as possible, this work
regards all the winding topologies that are feasible using the
SOS.
As mentioned, the basics of the SOS theory are discussed in
Appendix A. An important parameter related to the SOS is
the machine’s period(τ), calculated as the greatest common
divider of the amount of pole pairs(p) and the number of
slots (Ns).
In Appendix B the termslot grouphas been defined as a set
of adjacent stator slots so that, at synchronous operation,the
mechanical shift between similar slots of different slot groups
corresponds to the time shift of the current densities linked to
these slots. These slot groups are illustrated in Figure 4.
It was shown in Appendix B that, depending on whetherNs

τ

is odd or even, the magnetic field will be identical but rotated
over 2π

mτ
or π

mτ
mechanical radians afterTm

mτ
or Tm

2mτ
seconds.

This can be written mathematically for the magnetic vector
potential:

A(r, φ, t0) = A

(

r, φ+
2π

ςmτ
, t0 +

Tm

ςmτ

)

(9)

Group 1
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2π

mτ
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Group 1

π

mτ
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W
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(b) Machine withNs

τ
even (Ns = 12, p = 5, τ = 1)

Fig. 4: Slot groups in electrical machines

whereς is 1 if Ns

τ
is odd and2 if Ns

τ
is even.

This time periodicity is not only valid for the complete
function, it is also valid for every separate(n, k)-component of
the magnetic field. Indeed, according to (6) another harmonic
component of the magnetic field can only have the same
rotational speed if it has both a different time and a different
spatial-harmonic order. This, in turn, would imply a different
source term,I(i)n′ .
It can thus be written that:

An,k(r)e
j(kφ−nωmt0) = An,k(r)e

j(k(φ+ 2π

ςmτ )−nωm(t0+ Tm
ςmτ ))

(10)
Knowing thatωmTm = 2π, the above can be simplified:

1 = ej(k−n) 2π

ςmτ (11)

With c an integer, this results in:

k − n = cςmτ (12)

Equation (12) imposes a relation between the time- and spatial-
harmonic orders. Note that (1) indeed corresponds with (12).
More specifically, (1) is the special case wherem = 3 and
the machine has an integer amount of slots per pole and per
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phase, which impliesς = 2 and τ = p. Equation (1) only
considers the fundamental time-harmonic order, i.e.n = p.
As a conclusion it can be stated that the current density will
only introduce time-harmonic orders that are present in the
applied currents(n ∈ hc). Due to the distribution of the
windings, the induced spatial-harmonic orders have to satisfy
(12).

V. M ACHINE GEOMETRY

The third aspect that determines the magnetic field’s har-
monic spectrum is the geometry. At no-load for example,
harmonic combinations, different from the synchronous ones
found in Section III, are present in the magnetic field.
The source of these extra harmonic orders is a variation
alongφ of the magnetic permeance. This effect is best known
as the slotting effect and is mostly associated with slotted
machine topologies. The latter is because the amplitude of the
induced harmonic components depends on the difference in
magnetic permeance, the greater this difference the greater the
amplitude. In slotless machines, where the highly permeable
teeth are replaced with non-magnetic teeth, the difference
between the permeability of the copper windings and that of
the non-magnetic teeth is very small. The slotting effect is
then so small that most authors neglect it.
As mentioned, the source of the induced spatial-harmonic
orders is a difference in magnetic permeance. The reason
is that such differences introduce a time periodicity, similar
to the one in (9). Indeed, under synchronous operation, the
machine’s rotor will have rotated over one slot pitch after a
time of Tm

Ns
seconds. The rotor will then experience the same

stator topology. Under no-load conditions, the magnetic field
will then be equal but shifted over one slot pitch. This can
be expressed mathematically in terms of the magnetic vector
potential:

A(r, φ, t0) = A

(

r, φ+
2π

Ns

, t0 +
Tm

Ns

)

(13)

As explained in Section IV, this has to be true for every time-
and spatial-harmonic combination separately:

An,k(r)e
j(kφ−nωmt0) = An,k(r)e

j(k(φ+ 2π

Ns
)−nωm(t0+Tm

Ns
))

(14)
And again a relation between the spatial- and time-harmonic
orders is found:

k − n = cNs (15)

Wherec is an integer. The above mentioned time periodicity is
only introduced due to different magnetic permeances in the
φ-direction, consequently changes in ther-direction do not
introduce harmonic combinations.
If the studies machine has teeth with different widths, there
will always be a repetition in the shape of the teeth. The right-
hand side of (15) should then be divided by the number of
subsequent teeth after which this set of teeth is repeated. If
this number is defined asNt, (15) can be rewritten as:

k − n = c
Ns

Nt

= cNs,eq (16)

With Ns,eq the number of repetitions in the shape of the slots,
if the teeth are all equalNt = 1 andNs,eq = Ns.
Note that, concerning the armature reaction, the effect of the
geometry is embedded in the winding distribution. Therefore
the geometry will have no further effect on the harmonic
combinations introduced due to the current distribution.
Finally, it should also be noted that differences in the magnetic
permeance can also occur on the rotor. However, due to the
synchronous rotation of the rotor, these differences do not
affect the periodicity found in (13).
As a conclusion, it can be stated that, under no-load conditions,
the machine’s geometry will introduce harmonic combinations
whereforek − n = cNs,eq. However, in a slotless machine,
the field components related to combinations for whichc 6= 0
may be considered negligible.

VI. H ARMONIC COMBINATIONS

In Sections III-V, the harmonic orders introduced due to the
magnets, the current density and the geometry were discussed.
Based on that discussion it can be concluded that, on the one
hand, the source terms, being the permanent magnets and the
applied current density, determine which time-harmonic orders
will be present. On the other hand, the distribution of the
windings and the machine’s geometry determine the present
spatial-harmonic orders.
Practically, no-load, armature-reaction and load conditions are
considered. This section discusses the present harmonic com-
binations for each of these conditions based on the findings in
the previous sections. The section is concluded with a simple
example of how the presented results may be used.

A. No load

Under no-load conditions the currents in the slots equal
zero. This means that the harmonic combinations found in
Section IV will not be present. The magnets will introduce
synchronous harmonic combinations(n = k) that are present
in the magnet distribution. For every present time-harmonic
ordern, the geometry will introduce spatial-harmonic orders
that satisfy (16). The restriction on the harmonic combinations
under no-load conditions can thus be summarized as:

{

n ∈ hm

k − n = cNs,eq

(17)

With c an integer andhm the time-harmonic orders for which
Brem,r,n,k 6= 0 or Brem,φ,n,k 6= 0. In a healthy machinehm
can only contain time harmonics that are multiples ofp. If the
magnets are symmetrical over half a fundamental period, no
time-harmonic orders whereforen

p
is even are present.

B. Armature reaction

When Brem = 0, the permanent magnets will not intro-
duce any harmonic combinations. The current density will
only introduce the time-harmonic orders that are present in
the applied current. The introduced spatial-harmonic orders
are defined by the distribution of the current density (12).
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The restrictions on the harmonic combinations can then be
summarized as:

{

n ∈ hc

k − n = cςmτ
(18)

With c an integer andhc the time-harmonic orders for which
In 6= 0. hc can only contain multiples ofp and will not contain
any time-harmonic orders for whichn

p
is a multiple ofm. If

the currents are symmetrical over half a period, non wherefore
n
p

is even are present.

C. Load conditions

The load situation is a superposition of the no-load and
the armature-reaction situations. This implies that all the
harmonic combinations that satisfy either (17) or (18) willbe
present in the magnetic field.
The above is summarized in Table I.

TABLE I: Harmonic content of synchronous electric machines

Operation Time-HO (n) Spatial-HO (k)

No load n ∈ hm k − n = cNs,eq

Armature reaction n ∈ hc k − n = cςmτ

Load n ∈ hm ∪ hc k − n = cςmτ

D. Examples

To illustrate the applicability of the above theory, two
example will be presented in this section. The first, very
simple, example shows how Table I can be used to get a better
understanding of the machine’s physics. Secondly, the above
theory was used to construct a Fourier-Based (FB) analytical
model of a more complex machine geometry. This model was
then validated with Finite-Element (FE) software to confirm
the theory’s validity. It is shown that applying the above theory
results in a huge reduction of the FB model’s computational
time.
The first example evaluates the effect of an increasing number
of slots per pole and per phase on the harmonic content of the
no-load field using (17).
If q is increased, the number of slots(Ns = 2mpq) increases
as well. According to (17) this implies fewer spatial-harmonic
content. This was indeed expected, increasing the number of
slots per pole and per phase is a well-known technique to
reduce the harmonic content. Usually only the fundamental
time-harmonic order(n = p) is considered. This results in
the commonly known spatial-harmonic contents for a machine
with three phases and one pole pair:

{

k = · · · ,−17,−11,−5, 1, 7, 13, 19, · · · if q = 1

k = · · · ,−11, 1, 13, · · · if q = 2
(19)

However, (17) also allows prediction of the spatial-harmonic
content at higher time-harmonic orders. For example ifn = 5,
the spatial-harmonic content will be:
{

k = · · · ,−19,−13,−7,−1, 5, 11, 17, · · · if q = 1

k = · · · ,−19,−7, 5, 17, · · · if q = 2
(20)

The above shows that the results presented in this section can
lead to a better understanding of the machine’s performance.
Not only for the fundamental time-harmonic order but also
for higher harmonic orders. The presented example is a very
simple one, but knowledge of the magnetic field’s harmonic
combinations may also contribute to the understanding of more
complicated physical phenomena like the production of torque
and torque ripple.
The second example considers a five-phase, outer-rotor ma-
chine with 15 slots and 7 pole pairs, as shown in Figure
5. Note that the yellow cylinder in Figure 5 is a shielding
cylinder, i.e. a conductive sleeve wrapped around the magnets
to protect them from higher harmonics in the magnetic field.
The machine is equipped with a four-layer winding and has
a pitch factor of 1. Its parameters are listed in Table II. By
means of example, the spatial harmonics corresponding to
n = p = 7, i.e. the fundamental time-harmonic order, and
to n = 3p = 21 can be calculated from Table I. In no-load
conditions, the following spatial harmonic orders are obtained:
{

k = · · · ,−53,−38,−23,−8, 7, 22, 37, 52, · · · if n = 7

k = · · · ,−54,−39,−24,−9, 6, 21, 36, 51, · · · if n = 21
(21)

A similar prediction can be made for armature-reaction con-
ditions:
{

k = · · · ,−13,−8,−3, 2, 7, 12, 17, 22, · · · if n = 7

k = · · · ,−19,−14,−9,−4, 1, 6, 11, 16, · · · if n = 21
(22)

A

B

D

C

E

PHASES

Fig. 5: Geometry of a machine with 5 phases, 15 slots and 7
pole pairs

The above theory was used to construct a computational-time
efficient, i.e. only the time- and spatial-harmonic combinations
that satisfy Table I are considered, time-dependent Fourier-
based analytical model for the 5-phase machine of Figure 5.
Assuming a sinusoidal current, the resulting tangential com-
ponent of the armature-reaction field is compared to results
from a FE model in Figure 6. To ensure a good accordance,



8

TABLE II: Parameters of the validated five-phase machine

Parameter Value

Number of slots 15
Number of pole pairs 7
Number of phases 5
Current density in the slots (RMS) 5A

mm2

Outer radius of the machine 79.20 mm
Outer radius of the magnets 72.20 mm
Outer radius of the shielding cylinder 66.70 mm
Outer radius of the air gap 66.70 mm
Outer radius of the teeth tips 63.70 mm
Outer radius of the teeth 60.70 mm
Outer radius of the stator yoke 44.20 mm
Opening angle of the slot openings 5.54◦

Opening angle of the slots 15.02◦

in the periodic subdomains 130 spatial-harmonic orders were
considered, in the slots the amount of spatial-harmonic order
was set to 15 and the amount of time-harmonic orders was
set to 130 as well. The very good accordance between the
FE model and the FB model confirms the validity of Table I.
Moreover, compared to a traditional time-dependent Fourier-
based model, the computational time was reduced from 636.02
seconds to 191.27 seconds. Similar results are obtained forthe
radial component and for machines in no-load operation. Note
that the Fourier-based model has a higher computational time
than one might expect from a semi-analytical model, this is due
to the fact that it has to consider the field’s time-dependency.
Indeed, that is the only way to account for the eddy-current
reaction-field of the shielding cylinder [13]. Nevertheless, the
computational time is still low when compared to that of
the time-dependent FE model (2734 s) seconds, which has
42133 degrees of freedom and was run for 8 periods to ensure
convergence.

0 90 180 270 360
-0.2

-0.1

0

0.1

0.2

angle (°)

analytical

FEM

B
(T

)
r

Fig. 6: Tangential component of the magnetic flux density in
the center of the air gap at armature-reaction conditions

Note that the FE model was constructed using the same
assumptions as those in Section I-B.

VII. VALIDITY

In the previous sections, a synchronous machine with
surface-mounted magnets was considered. However, the re-
sults, presented in Section VI, may be applicable more
generally. Therefore this section regards the validity of the
performed study.

A. Rotor topologies

As already mentioned in Section V, the differences in
magnetic permeance between the magnets and the magnet gaps
have no effect on the present harmonic orders. This is true for
every difference in magnetic permeance on the rotor. Indeed,
such differences do not affect the time periodicity found in
(13). This implies that the results from Section VI are also
valid for machines with interior magnets.
Despite an increasing popularity of permanent-magnet excited
machines, the vast majority of synchronous machines is still
excited using electromagnets. Although the excitation source
is different in such machines, it has the same characteristics
as regards periodicity. If the excitation current is constant, the
excitation as such does not vary in time. Combined with the
previous consideration that differences in magnetic permeance
have no effect, this implies that the obtained results are also
valid for machines with a classical excitation.

B. Winding topologies

The winding topologies considered in Appendices A and B
are double-layer topologies. However, the SOS technique can
also be used to construct single- or multilayer topologies [30],
[34]. Nevertheless, the findings from Section VI are still valid.
Indeed, switching to a single or multilayer topology does not
change the fact that a number of slot groups can be defined,
resulting in a time periodicity as in (9).
Note that for single-layer topologies only half of the slotsis
considered to construct the star-of-slots [30]. This may affect
the number of phase zones.

VIII. C ONCLUSIONS

In this work the study of the harmonic content of syn-
chronous electrical machines has been extended to harmonic
combinations, where both the time- and spatial-harmonics are
regarded. This has resulted in general rules to determine which
harmonic combinations are present in the magnetic field, see
Section VI. Sections III-V clearly indicate where the different
harmonic combination originate from, this information canbe
used to get a better insight when studying harmonic-related
phenomena in synchronous electrical machines. The latter was
also illustrated in Section VI-D with a simple example.
The presented work hereby provides an answer to the need for
a better understanding of the harmonic content in the magnetic
field of synchronous machines. Moreover, some very simple
equations to determine the harmonic content of a very broad
range of electric machines were presented.
Although the range of machines to which this study applies
is very large, induction machines and machines that are not
wound according to the star-of-slots theory may contain other
harmonic combinations. It would therefore be interesting to
perform a similar study for these machines. An other interest-
ing topic for future research is the application of the above
findings in Fourier-based models. It is the authors’ conviction
that the computational time of such models can be drastically
reduced by considering the results of this work.
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APPENDIX A
STAR-OF-SLOTS

The so-called Star-Of-Slots (SOS) is a technique that is used
to assign the phases of the applied current system to the slots
of an electrical machine. It is described by a large number
of authors [23], [30], [34] and can be used for both integral
and fractional slot windings. N. Bianchiet al. have extended
the technique to determine the winding layout of single layer
[30] and multilayer [34] topologies. An extensive description
of the SOS technique is beyond the scope of this appendix.
However, an understanding of the SOS’s basics is required for
the discussion in Section IV.
In a first step the machine’s periodicity (τ ) is calculated as
the greatest common divisor of the number of slots and the
number of pole pairs:

τ = gcd(Ns, p) (23)

Secondly, a system ofNs

τ
phasors, called spokes, with a mutual

shift of p 2π
Ns

radians is drawn. This is illustrated in Figure 7
for a machine with 12 slots and 5 pole pairs. An example
of such a machine is shown in Figure 1. Every spoke now
corresponds to a slot in the electrical machine. Logically,the
spoke with numberi corresponds to the slot with numberi.
The third step is drawing the phase zones. Every phase is
assigned two zones, a positive zone and a negative zone. Each
phase zone spansπ

m
radians. The shift between two phase

zones equals the shift between their corresponding phases,as
illustrated in Figure 7 for a three-phase system. Consequently
the time shift between the currents linked to the phases of
subsequent phase zones is1

ωe

π
m

seconds.
The resulting diagram defines one conductor of each coil by
linking the spokes, and thereby the slots, to the phases of the
applied current system. The slot corresponding to the other
conductor of the same coil is defined by the coil throw, which
is calculated as:

yq = round

(

Ns

2p

)

(24)

The obtained distribution is repeated afterNs

τ
slots.

The winding distribution obtained from the star-of-slots in
Figure 7 is shown in Figure 1.

APPENDIX B
SLOT GROUPS

In this section the term slot group is introduced as a number
of subsequent slots so that, under synchronous operation, the
mechanical shift between two slot groups equals the time shift
of their corresponding current densities. In other words, the
time the rotor needs to rotate from one slot group to the next
equals the time shift of the current densities related to those
slot groups.
For simplicity reasons the slot groups are chosen so that each
group is dominated by one phase, this is illustrated in Figure
4.
In the following the mechanical shift and the time shift of
different slot groups are calculated to prove that they indeed
correspond.
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Fig. 7: Star of slots for a machine withNs = 12 andp = 5

A. Mechanical shift

Two cases are regarded; the cases whereNs

τ
is odd and the

case whereNs

τ
is even.

If the number of slots per machine period is odd, every
phase will dominate one slot group per machine period.
Indeed, every phase should dominate an equal number of
similar slot groups, otherwise the winding distribution can
never be balanced. A phase dominating more than one slot
group, on the other hand, would imply two coinciding spokes
in the star of slots. This in turn would imply that all of the
following spokes also coincide with another spoke, this can
only happen if these spokes belong to another machine period.
Therefore a machine withNs

τ
odd containsmτ slot groups.

The number of slots per slot group(Ng) can then be calculated
as:

Ng =
Ns

mτ
(25)

The above is illustrated in Figure 4a
If Ns

τ
is even, spokei + Ns

2τ will be opposite to spokei.
Indeed, the rotation between these spokes is:

Ns

2τ
p
2π

Ns

=
p

τ
π (26)

Since Ns

τ
is even andτ is the greatest common divisor ofNs

andp, p

τ
has to be odd. This means that spokesi and i+ Ns

2τ
are indeed opposite.
Because of the fact that this is true for every spoke, every
phase will dominate two similar groups of slots per machine
period. One due to the spokes in its positive phase zone and
one due to the spokes in its negative phase zone, this can be
seen in Figure 4b. This implies that the number of slot groups
is now 2mτ , the number of slots in every slot group is then:

Ng =
Ns

2mτ
(27)

The mechanical shift between similar slots of subsequent slot
groups can now be calculated as:

Ns

ςmτ

2π

Ns

=
2π

ςmτ
(28)
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The mechanical shift, found in (28), translates to a time shift
when divided by the synchronous pulsation:

1

ωm

2π

ςmτ
=

Tm

ςmτ
(29)

B. Time shift

In the SOS, the angle between two subsequent slots is
p 2π
Ns

electrical radians. This implies that in the SOS the angle
between similar slots of subsequent slot groups is:

Ns

ςmτ
p
2π

Ns

= p
2π

ςmτ
(30)

The SOS consists of2m phase zones with a mutual shift ofπ
m

radians, see Appendix A. Knowing this, the number of phase
zones between similar slots of subsequent slot groups can be
calculated as:

p 2π
ςmτ
π
m

=
2p

ςτ
(31)

The time shift between currents linked to consecutive phase
zones in the SOS isπ

m
electrical radians, see Appendix

A. Consequently the shift in electrical radians between the
currents linked to similar slots of subsequent slot groups is:

2p

ςτ

π

m
(32)

Which results in a time shift when divided by the electrical
pulsation:

2p

ς

π

mτ

1

ωe

=
Tm

ςmτ
(33)

This indeed equals (29).
Practically this implies that the rotor will experience the
same current density afterTm

mτ
or Tm

2mτ
seconds, depending

on whetherNs

τ
is odd or even. From the stator point of view

it means that afterTm

mτ
or Tm

2mτ
seconds the armature reaction

field will be identical but shifted over2π
mτ

or π
mτ

mechanical
radians respectively.
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[30] N. Bianchi and M. Dai Pŕe, “Use of the star of slots in designing
fractional-slot single-layer synchronous motors,”Electric Power Appli-
cations, IEE Proceedings -, vol. 153, no. 3, pp. 459–466, May 2006.



11

[31] K. Wei, D. Wang, X. Zheng, and S. Cheng, “Research on relationship be-
tween harmonic currents and resultant harmonic magnetomotive forces
in multiphase machines,” inTransportation Electrification Asia-Pacific
(ITEC Asia-Pacific), 2014 IEEE Conference and Expo, Aug. 2014, pp.
1–4.

[32] J. Wang, V. I. Patel, and W. Wang, “Fractional-Slot Permanent Magnet
Brushless Machines with Low Space Harmonic Contents,”IEEE Trans-
actions on Magnetics, vol. 50, no. 1, pp. 1–9, Jan. 2014.

[33] Z. Zhang, L. Yu, L. Sun, L. Qian, and X. Huang, “Iron Loss Analysis
of Doubly Salient Brushless DC Generators,”IEEE Transactions on
Industrial Electronics, vol. 62, no. 4, pp. 2156–2163, Apr. 2015.

[34] L. Alberti and N. Bianchi, “Theory and Design of Fractional-Slot
Multilayer Windings,” IEEE Transactions on Industry Applications,
vol. 49, no. 2, pp. 841–849, Mar. 2013.


