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General introduction 

1.1 Salmonella: a diverse genus 

This introduction does not include all aspects of Salmonella bacteriology, epidemiology and 

virulence. Only aspects that are of importance for this work will be mentioned. Salmonellae are 

prominent members of the family Enterobacteriaceae. They are gram-negative, non-sporogenic, 

facultative anaerobic, peritrichously flagellated (with a few exceptions) rods that produce gas 

from glucose and utilize citrate as their sole carbon source. Salmonellae generally produce 

hydrogen sulfide gas, decarboxylate lysine and ornithine, but are urease-negative and do not 

produce indole (Ruan, 2013). The genus Salmonella consists of only 2 species: Salmonella 

enterica and Salmonella bongori, based on DNA hybridization studies (Euzeby, 1999). The 

Salmonella enterica species is further subdivided in 6 subspecies (enterica, salamae, arizonae, 

diarizonae, houtenae and indica). Subspecies enterica contains the majority of human 

pathogenic Salmonella, whereas the other subspecies are mainly associated with cold-blooded 

vertebrates. Subspecies enterica is divided in approximately 2500 serotypes based on flagellar 

(H), capsular (Vi) and somatic (O) antigens. Serotypes can be further divided based on their 

susceptibility to antimicrobials and phages. Serotypes can also be divided in biovars. Salmonella 

enterica serotype Gallinarum is divided into biovars Gallinarum and Pullorum. These biovars 

cause distinct diseases, with biovar Gallinarum eliciting fowl-typhoid and Pullorum being a 

dysentery agent (Shivaprasad, 2000).  

 

These 2500 different serovars can also be divided into typhoidal and non-typhoidal Salmonella. 

Despite their genetic similarity, these two groups elicit very different diseases and distinct 

immune responses in humans. Typhoidal salmonellosis is caused by Salmonella enterica 

serotype Typhi. It is restricted to humans, causing 13.5 million annual episodes of typhoid fever, 

especially in low-and middle-income countries (Ceyssens et al, 2015). It is not necessarily food 

borne. Other serotypes belonging to this group include serotypes Sendai and Paratyphi A B or C. 
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Non-typhoidal salmonellosis, results in gastroenteritis and is caused by ingestion of a variety of 

serotypes. These serotypes differ greatly in their natural reservoirs, their ability to provoke 

infections, and their resistance to antimicrobials (Parry and Threlfall, 2008). Non-typhoidal 

Salmonella infections in humans have an incubation period of 12-72 hours, and illness duration 

is typically 4-7days. Fecal excretion usually persists for days or weeks after recovery from illness. 

Life-threatening invasive infections may occur in vulnerable patients. Antibiotic treatment does 

not reduce symptom duration, can prolong shedding, and is usually not indicated except in case 

of complicating extra-intestinal infections (Guerrant et al., 2001). Human salmonellosis caused 

by Salmonella Enteritidis is linked to contaminated eggs and egg products. 

 

1.2 Population dynamics of Salmonella enterica serotypes: shift, trends and prevalence 

1.2.1 Salmonellosis in the human population in Belgium 

The Belgian National Reference Centre for Salmonella received 16 544 human isolates of 

Salmonella enterica between January 2009 and December 2013. A schematic overview is 

presented in figure 1. A total of 377 different serotypes were identified, but the landscape is 

dominated by Salmonella enterica serovars Typhimurium (55%) and Enteritidis (19%) in a ratio 

inverse to European Union averages (Ceyssens et al., 2015). An explanation for this discrepancy 

can be found in the national vaccination program in layer flocks at the beginning of the 

millennium, causing a drastic reduction in Salmonella Enteritidis (Collard et al., 2008). Other 

non-typhoid Salmonella serotypes are far less commonly encountered and account for a 

maximum of 2.1% of all isolates. (Johnson et al., 2011).  
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Figure 1: Epidemiology of human salmonellosis in Belgium from 2009 to 2013. The number of 

annually submitted strains remained fairly constant, varying between 3,182 and 3,668 

isolates. In this vast collection, 377 different serotypes were identified. Results are shown 

grouped by the total number of isolates (with the contribution of the two major Salmonella 

serotypes indicated) (A), prevalence of 10 important non-typhoid, non-Enteritidis and non-

Typhimurium Salmonella serotypes (B), and three typhoid Salmonella serotypes (C) (Ceyssens 

et al., 2015). 
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While the serotype landscape remained largely stable for the past 5 years, apart from specific 

outbreaks, serotype-dependent trends of antibiotic resistance are emerging. A particular threat 

for public health are circulating clonal lineages of cephalosporine- and fluoroquinolone-resistant 

Salmonella Infantis and Salmonella Kentucky strains, respectively, and intermediate 

fluoroquinolone- resistant Salmonella Paratyphi A and B isolates (Ceyssens et al., 2015).  

 

1.2.2 Salmonellosis in humans and poultry in the EU 

From 2003 

 on, the reporting of investigated food-borne outbreaks has been mandatory for European 

Union (EU) member states (MS). Since 2005, campylobacteriosis has been the most commonly 

reported zoonosis with an increase in confirmed human cases in the EU since 2008. 

Salmonellosis remains the second most common zoonosis in humans in the EU with 88 715 

confirmed cases and 1 049 food-borne outbreaks reported in 2014 (EFSA, 2015). As in previous 

years, the two most commonly reported Salmonella serovars in 2014 were Salmonella 

Enteritidis and Salmonella Typhimurium, representing 44.4% and 17.4% respectively, of all 

reported serovars in confirmed human cases (table 1). An increase in the absolute number of 

Salmonella Typhimurium (typically attributed to the pig and cattle reservoirs) cases is also 

observed. This is partly related to the emergence of monophasic variants (Messens et al., 2013). 

Since 2014 this serotype is the third most important serotype and often carries multi drug 

resistance. Whether currently used vaccines offer protection against this serotype was not yet 

been investigated at the start of these PhD studies.  

 

Since 2008, a mandatory Salmonella control program is to be implemented in laying hen flocks 

in the EU, with specific targets set for the different member states depending on the level of 

contamination of their laying hen flocks. Most MS met their Salmonella reduction targets for 

poultry (flockprevalence <2% for layers, <1% for broilers and breeders) but isolates of 

Salmonella Infantis increased at EU level (EFSA, 2015). Indeed, the most commonly reported 

serovar was Salmonella Infantis, accounting for 38.3% of all 5 377 reported isolates, followed by 

Salmonella Mbandaka (12.1%) and Salmonella Enteritidis (11.9%). Although Salmonella Infantis 
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is the most common detected serovar in Gallus gallus species, it only accounts for 2.5% of 

human salmonellosis cases in the EU (table 1). Nevertheless, the steady increase in Salmonella 

Infantis reports over the past few years is a matter of concern (EFSA, 2015). 

The distribution of serovars in the poultry production listed in the EU summary report on zoonoses, 

zoonotic agents and food-borne outbreaks in 2014 mainly concerns Gallus gallus, including breeding 

hens, layers and broilers. Between 2013 and 2014, the total number of Salmonella isolates from laying 

hens went down from 758 to 598, which is a reduction of 21.1%. Although the absolute number of 

Salmonella Enteritidis isolates reduced, the proportion of Salmonella isolates from laying hens being 

typed as Salmonella Enteritidis has actually increased from 37.2% to 43%, and this serovar is recognized 

as being the only one of major significance in terms of contamination of eggs, because of its special 

ability to invade, survive and multiply within intact eggs. 

The proportion of Salmonella isolates from G. gallus being typed as Salmonella Typhimurium was 3.9%, 

while it was 10.4% from laying hens. Salmonella Typhimurium therefore seems to be overrepresented in 

laying hen flocks compared to broiler and breeder flocks.  
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Table 1: Distribution of reported confirmed cases of human salmonellosis in the EU. Member 

State (MS): 25 MS and two non-MS; Austria, Belgium, Cyprus, Czech Republic, Denmark, 

Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, 

Luxembourg, Malta, Netherlands, Norway, Portugal, Romania, Slovakia, Slovenia, Spain, 

Sweden and United Kingdom (EFSA, 2015). 

Serovar 2014 2013 2012 

 
Cases MS % Cases MS % Cases MS % 

Enteritidis 32,878 27 44.4 29,09 27 39.5 32,917 27 41.0 

Typhimurium 12,867 27 17.4 14,852 27 20.2 17,975 27 22,4 

Monophasic Typhimurium 1,4, [5], 

12:i:- 
5,770 13 7.8 6,313 14 8.6 5,836 12 7.3 

Infantis 1,841 26 2.5 2,226 25 3.0 1,929 26 2.4 

Stanly 757 23 1.0 714 21 1.0 969 20 1.2 

Derby 753 23 1.0 813 21 1.1 730 21 0.9 

Newport 752 20 1.0 818 21 1.1 754 21 0.9 

Kentucky 605 21 0.8 651 23 0.9 626 23 0.8 

Virchow 509 22 0.7 571 22 0.8 532 20 0.7 

Bovismorbificans 441 22 0.6 412 20 0.6 410 20 0.5 

Java 388 15 0.5 581 24 0.8 445 18 0.6 

Agona 378 23 0.5 401 18 0.5 452 18 0.6 

Saintpaul 374 19 0.5 448 17 0.6 354 18 0.4 

Muenchen 368 17 0.5 434 14 0.6 242 20 0.3 

Napoli 333 14 0.4 290 17 0.4 365 16 0.5 

Brandenburg 294 20 0.4 111 13 0.2 302 17 0.4 

Chester 294 18 0.4 267 19 0.4 106 13 0.1 

Hadar 286 16 0.4 238 10 0.3 300 20 0.4 

Braenderup 276 17 0.4 245 19 0.3 454 17 0.6 

Oranienburg 261 17 0.4 274 15 0.4 311 16 0.4 

Other 13,599 - 18.4 13,883 - 18.9 14,286 - 17.8 

Total 74,024 27 100.0 73,632 27 100.0 80,295 27 100.0 

 

Eggs and egg products continue to be the most frequently identified food vehicle, associated 

with 44% of the reported outbreaks, mainly caused by Salmonella Enteritidis (table 2). 
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Table 2: Percentage of human salmonellosis cases in EU attributable to the four main animal 

reservoirs included (Messens et al., 2013). 

 Percentage of human cases(%) 

Mean
 

Pigs 28.2 

Broilers 2.4 

Laying hens 65.0 

Turkeys 4.5 

 

1.2.3 Global salmonellosis 

A recent study estimated that approximately 93.8 million human cases of gastroenteritis and 

155 000 deaths occur due to non-typhoidal Salmonella infection around the world each year 

(Hoelzer et al., 2011). In Switzerland, salmonellosis and campylobacteriosis case curves crossed 

in 1995; in Austria it was in 2006. The reason for this striking difference might be that 

Switzerland addressed the epidemic of Salmonella Enteritidis in eggs at a very early stage 

(Schmutz et al., 2016). In China, a laboratory-based surveillance of non-typhoidal Salmonella 

infections was carried out for the first time in 2008. Salmonella Enteritidis and Salmonella 

Typhimurium were the most common serotypes, similar to most other countries (Ran et al., 

2011). 

 

Over the last several decades, there have been significant global shifts in the predominant 

Salmonella serovars associated with both poultry and human infections. Some of the most 

commonly detected serovars in chickens over the last 25 years are also among the top five 

serovars associated with human infections (Salmonella Enteritidis and Salmonella Heidelberg; 

Foley et al., 2011). Salmonella Kentucky has recently become the most commonly detected 

serovar in chickens, while Salmonella Typhimurium and Enteritidis remain the most common 

cause of human infections. 
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1.3 Molecular pathogenesis highlighting major virulence factors 

Salmonella pathogenesis has been studied mostly as it relates to human infections, while there 

is more limited information about the mechanisms of colonization and pathogenesis in food 

animals such as chickens. Section 1.3.1 and 1.3.2 describe the general pathogenesis. The 

remainder of the current section focuses on Salmonella responses to the poultry host. 

1.3.1 SPIs, fimbriae  

Once the Salmonella bacterium orally infects its host, the species encounters extremes of pH, 

oxygen tension, bile salts, and competing microorganisms in the gastro-intestinal environment. 

This hostile environment serves as a signal for Salmonella to initiate transcription of genes 

specifically adapted for host interactions. Attachment of bacteria to the host cell surface is 

believed to be a first and essential step in the pathogenesis and occurs mainly through fimbriae. 

Fimbriae are a family of polymeric proteinaceous surface organelles expressed by many 

bacteria. Salmonella Enteritidis has 10 putative fimbrial operons (Folkesson et al., 1999). These 

fimbrial operons can be divided according to their assembly pathways: the chaperone-usher 

pathway, the extracellular nucleation pathway and a special system of type IV pili, which is 

similar to the type II secretion system.  

Fimbriae assembled by the chaperone-usher pathway are directed to the periplasm through the 

general secretion pathway via an N-terminal secretion sequence that is cleaved off during 

transport. The function of these fimbrial adhesins is primarily achieved through binding to a 

specific receptor on the host cell. In general, the nature of these receptors may be a distinct 

membrane protein, sugar residues or lipid structures. However, all fimbrial adhesins 

characterized so far in Salmonella exhibit lectin-like functions. StdA binds to alfa (1-2) 

fucosylated receptors, PefA binds to the Lewis X blood group antigen and FimH, which is 

encoded by the fim operon, is highly specific for mannose residues.  

A second group of fimbriae are named the thin aggregative fimbriae, whose structures are 

assembled through the nucleation-precipitation pathway. These thin aggregative fimbriae are 

fimbrial adhesins with a diameter of 3-4 nm and lead to auto-aggregation of Salmonella, biofilm 
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formation and adhesion to various surfaces and are expressed and assembled in response to 

nutrient limitation, low osmolarity and low temperature. They interact with different 

extracellular matrix proteins such as fibronectin or laminin and might allow the colonization of 

wounds.  

A last class of fimbrial adhesins are the type IV pili, but these are only detected in the strictly 

human-adapted serovar Typhi (Wagner et al, 2011).  

After attachment, the Type 3 Secretion System (T3SS), a multiprotein complex, is expressed and 

facilitates epithelial uptake and invasion. This apparatus acts as a molecular syringe to transport 

toxins and other effector proteins into intestinal epithelial cells and is associated with 

Salmonella Pathogenicity island-1 (SPI-1), which harbors virulence genes involved in Salmonella 

adhesion, invasion and toxicity. Upon activation, membrane ruffling is induced and the 

Salmonella bacterium is engulfed by the host cell membrane in a membrane-bound 

compartment termed the Salmonella containing vacuole (SCV). Once internalized into host cells, 

Salmonella cells express a second T3SS encoded on SPI-2 that is responsible for secreting 

effector proteins that modulate trafficking of the SCV to avoid fusion with the lysosomes 

(Raspoet R., 2014). This is a strategy to avoid immunologic recognition of Salmonella microbial 

associated molecular pattern (MAMPs) by the important Toll-like receptor4 (TLR4) which 

recognizes lipopolysaccharide (LPS) and TLR5, which recognizes flagellin. 

 

1.3.2 MAMPs 

The Salmonella bacterium contains different MAMPs. The major MAMPs are LPS, flagellin and 

unmethylated CpG motifs in the DNA. TLR4 is activated by LPS, TLR5 by flagellin and although 

TLR9 (which recognizes Cytosine Guanine dinucleotide (CpG) motifs in mammals) is not present 

in the chicken genome this recognition capacity is fulfilled by chicken TLR21 (Temperley et al., 

2008). All of these TLR-MAMP interactions are important for the induction of responses in a 

range of cell types including epithelial, macrophage and polymorphonuclear neutrophil (PMN) 

cells. 
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The majority of Salmonella serovars possess up to 10 randomly positioned flagella on their cell 

surface, which confer motility to these bacteria. The ability of certain serovars to display 

flagellin phase variation is another mechanism of the organisms to minimize the host immune 

response by creating phenotypic heterogeneity of the flagellar antigens (Foley et al, 2013). Even 

more, genetically modified aflagellate Salmonella Typhimurium was able to cross the gut more 

efficiently, supporting the idea that TLR5-flagellin interactions are an important event in starting 

a pro-inflammatory reaction and restricting flagellate serovars (Enteritidis and Typhimurium) 

largely to the intestine. This may also partly underpin the ability of non-flagellate biovars 

(Gallinarum and Pullorum) to rapidly escape the gut and colonize the deep tissues (Broz et al., 

2012). The avian-adapted egg-contaminating biovars Salmonella Pullorum and Salmonella 

Gallinarum lack flagella and associated motility. Flagellation has been shown to contribute to 

virulence in birds (Horiyama et al., 2010). The exact role of flagella in Salmonella pathogenesis 

and their possible role in adhesion and invasion of oviduct cells remain unclear. 

 

1.3.3 Role of MDR pumps in reproductive tract colonization in laying hens 

In the final stage of the pathogenesis in laying hens, Salmonella Enteritidis reaches the 

reproductive tract (figure 2), most likely by taking advantage of the macrophages. Once inside 

the reproductive tract, Salmonella Enteritidis invades and resides within primary chicken 

oviduct epithelial cells (Li et al., 2009). The region of colonization in the reproductive tract 

determines the site of incorporation into the forming egg. Infection of the ovary would lead to 

incorporation of Salmonella Enteritidis into the yolk, while persistence in the magnum, isthmus 

or uterus gives rise to contamination of the egg white, inner shell membranes or egg shell 

respectively. Salmonella Enteritidis has been isolated from both the yolk and the albumen, but 

according to most authors, the albumen is most frequently contaminated (De Buck et al., 2004a; 

Humphrey et al., 1991). Yolk contamination could occur due to ovary colonization. Degeneration 

of follicles in the ovary however, has often been observed after experimental Salmonella 

infections, most likely caused by extensive growth in the nutrient-rich yolk at chicken body 

temperature (Kinde et al., 2000). Secondary immigration from egg white to egg yolk during 

storage of eggs seems more plausible (Humphrey et al., 1991). Salmonella Enteridis is more 
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often associated with the tubular gland cells of the isthmus than with other parts of the oviduct 

(De Buck et al., 2004b). Once inside the egg white, Salmonella Enteritidis uses multi drug efflux 

pumps to neutralize the antibacterial proteins present in egg white. Until now, 9 of these pumps 

have been identified in Salmonella. Two of these pumps belong to the major facilitator (EmrAB 

and MdfA), 1 to the multidrug and toxic compound extrusion (MdtK), 1 to the ATP-binding 

cassette efflux (ABC) and 5 to the RND (AcrAB, AcrD, AcrEF, MdetABC, MdsABC) transporter 

family (Nishino et al., 2007). Two pumps (MdfA and MdtK) span the cytoplasmic membrane, 

while the other 7 transporters are multicomponent systems spanning both the inner and outer 

membrane. Except for MdsAB, which is capable of using MdsC, all multicomponent system 

pumps require TolC as outer membrane channel for their function (Horiyama et al., 2010). 

Besides a role in bacterial pathogenicity by exporting host-derived antimicrobial agents and thus 

allowing the bacteria to colonize and survive in hostile host niches, MDR-pumps also confer 

antibiotic resistance. This will be discussed below (1.6.1). 

 

  



General introduction 

           

26 

 

 

Figure 2: Summary of Salmonella Enteritidis oviduct colonization and egg contamination 

(Raspoet et al., 2014). 

 

 

1.4 Salmonella pathogenesis: highlighting the differences in most important Salmonella 

serovars in laying hens 

Bacteria can either infect a broad range of hosts, or become specialized, infecting one or few 

hosts, the latter usually being associated with more severe disease presentation. The severity of 

Salmonella infections indeed depends strongly on the infecting serovar (Chappell et al., 2009). 

The broad host range Salmonella serovar Enteritidis is able to infect plants and different species 

of warm and cold blooded animals, while Salmonella Gallinarum is restricted to birds, as 

Salmonella Dublin is found mostly in cattle. Consequently, Salmonella Enteritidis and Salmonella 

Gallinarum follow a very different course. Salmonella Gallinarum causes Fowl Typhoid, a severe 

systemic infection affecting birds of all ages, typified by hepatosplenomegaly, anemia and in the 
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later stages hemorrhage of the intestinal tract. Poultry infected with Salmonella Pullorum and 

Salmonella Gallinarum, experience drastic weight loss and sharply decreased egg production. A 

mortality rate of 60% is observed after experimental infection of 3 week old outbred chickens 

(Wigley et al., 2005). When replication of Salmonella Gallinarum is not controlled, this usually 

results in death of the animal. Salmonella Enteritidis infection is most often not associated with 

mortality but leads to persistence in the gut and reproductive tract and consequently egg 

infection. There are typically no clinical signs in birds infected with Salmonella Enteritidis. 

Therefore farmers often are not aware of the public health threat posed by Salmonella 

Enteritidis infected laying hens and their produce. Nevertheless, Salmonella Enteritidis and 

Salmonella Gallinarum are closely related genetically, presenting 99.7% homology between 

orthologous genes. Reasons for their different pathological behavior are still poorly understood. 

Within Salmonella subspecies however, there are patterns of genome evolution that accompany 

host adaptation. Some differences at the genomic and proteomic levels that have been 

identified will be described below.  

 

As pathogens acquire virulence determinants they become increasingly adapted to a specific 

host. Evolution of pathogenicity of Salmonella is strongly associated with the acquisition of 

mobile genetic elements called SPIs. Many of these SPIs were acquired very early in the 

evolution of Salmonella and so their complement is found to be conserved across this species. 

These SPIs encode secretion systems allowing the bacteria to enter and survive in cells, and 

although they are still present in host restricted serovars, they might function differently. 

Several studies have shown that Salmonella Gallinarum is less invasive than Salmonella 

Enteritidis when tested in cells of avian or human origin. Apparently, the Salmonella T3SS-1 is 

slower in Salmonella Gallinarum compared to Salmonella Enteritidis (Allen-Vercoe and 

Woodward, 1999). Genome comparison of four Salmonella Gallinarum and two Salmonella 

Enteritidis strains revealed that all Salmonella Gallinarum genomes display the same point 

mutations in each of the main T3SS-1 effector genes (SipA, SopA, SopD, SopE and SopE2; 

Rossignol et al., 2014).  
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Host restricted pathogens also often exhibit extensive genome decay, through insertion 

sequence element proliferation, genomic rearrangement and pseudogene formation. As a 

consequence, loss of metabolic capacity is seen with host adapted serovars, mostly function loss 

through pseudogene formation (Lillehoj et al., 2000). Pseudogene formation largely occurred 

after serovar diversification. Salmonella Gallinarum has a large number of pseudogenes in its 

genome compared to the broad-host-range serovar Salmonella Enteritidis. Moreover, 

Salmonella Gallinarum has lost many metabolic pathways such as 1,2-propanediol degradation 

and ornithine decarboxylation, leading to restriction of usable carbon and energy sources. These 

limited metabolic capabilities could explain Salmonella Gallinarum’ s reduced ability to colonize 

the gut (Atterbury et al., 2009). 

 

Different host range serovars also vary in their interaction with the immune system of the host. 

Invasion of Salmonella biovars Pullorum or Gallinarum in the gut does not cause substantial 

intestinal inflammation, unlike Salmonella Typhimurium or Salmonella Enteritidis. The former 

two are not recognized by TLR5 due to lack of flagellin, which plays a key role in the initiation of 

inflammatory responses. A key aspect of systemic disease is survival and multiplication within 

macrophages, although Salmonella Dublin organisms in calves at least translocate from the gut 

to the spleen as extra-cellular bacteria (Barrow et al., 2012). It is known that biovar Pullorum 

persists within macrophages and the immune response to the organism is different from the 

response after infection with Salmonella Typhimurium. Sometimes clearance from the tissues is 

not complete and Salmonella Pullorum is able to persist in the tissues until sexual maturity of 

the bird. Wigley and colleagues found that the pathogen persists in splenic macrophages in 

young convalescent birds until onset of lay when a transient immunosuppression associated 

with a surge in sex hormones in the female enables the bacteria to escape and infect the 

oviduct resulting in vertical transmission. This group also found that the immune response 

induced by Salmonella Pullorum is associated with higher levels of interleukin-4 (IL-4) and 

reduced interferon gamma (IFNgamma) indicating a T-helper 2 (Th2)-type response in contrast 

to the more common Th1-type response associated with serovars such as Salmonella 

Typhimurium (Wigley et al., 2001). 



General introduction 

           

29 

 

The broad host range serotypes Enteritidis and Typhimurium appear to have similar virulence 

mechanisms and pathogenicity. Both pathogens have the highly conserved pathogenicity island-

encoded type III secretion mechanisms and virulence effector proteins, and both harbor a large 

virulence plasmid, are motile and produce a galactose-rhamnose-mannose repeat unit of the 

LPS O-chain backbone decorated with a dideoxyhexose that determines serotype (Galan and 

Curtiss, 1991). Nevertheless, Salmonella Enteritidis is the predominant serotype contaminating 

eggs, while Typhimurium is far less commonly found in eggs. At the onset of the present PhD 

studies it was still unclear how Salmonella Enteritidis is predominantly the cause of egg-

associated salmonellosis.  

 

1.5 Salmonella Enteritidis: the egg autocrat 

Salmonella Enteritidis is indeed the only human pathogen that contaminates eggs routinely, 

even though the on-farm environment of the chicken is a rich source of a range of different 

Salmonella serotypes and other pathogens. Different serotypes have been evaluated for their 

egg colonization capacities and results show that Salmonella Enteritidis is superior in 

reproductive organ colonization and egg white survival compared to other serotypes (De Vylder 

et al., 2013). 

Egg contamination associated with Salmonella Enteritidis is believed to occur before deposition 

of the shell, by internal (vertical) transmission to the contents of the egg (yolk or albumen) via 

the reproductive tract (figure 3). The bacteria can reside inside the cells of the oviduct and 

escape the host defense mechanisms, but once inside the egg, bacteria face a hostile 

environment (Raspoet et al., 2011). Egg white proteins, such as lysozyme and ovotransferrin are 

important for anti-bacterial defense. Lysozyme is a muramidase capable of rupturing the 

peptidoglycan layer. Ovotransferrin causes an iron-deficient environment through chelation of 

iron and interacts with the bacterial cytoplasmic membrane, inducing damage to biological 

functions (Gantois et al., 2009). Additional minor egg proteins and peptides have recently been 

found to play known or potential roles in protection against bacterial contamination, mainly 

showing proteinase-inhibiting activity (Baron et al., 2016).  
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Figure 3: Overview of egg contamination by Salmonella (Gantois et al., 2009): a) Salmonella 

contamination of the reproductive organs of a hen via systemic spread after gut colonization 

or via an ascending infection; b) horizontal transmission route; c) vertical transmission route; 

d) survival and growth of Salmonella in the egg contents. 

 

Numerous attempts have been made to identify genes encoding proteins important for egg 

white survival of Salmonella Enteritidis. Based on current literature, the main approaches used 

are directed mutagenesis (Cogan et al., 2001; Kang et al., 2006; Lu et al., 2003), insertional 

mutagenesis (Chappell et al., 2009; Clavijo et al., 2006), IVET (Gantois et al., 2008), and a 

microarray-based transposon library screening (Raspoet et al., 2014). These studies based on 

mutagenesis differ in terms of methods of mutant construction, screening approaches, strains, 

and incubation conditions (inoculum size, temperature). Taken together, a great diversity of 

genes involved in the survival of Salmonella Enteritidis in egg white have been identified (table 

3). The genes presented are mainly implicated in cell wall structure or function, cell wall 

proteins or metabolism.  
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Table 3: Mutants of Salmonella enterica serovar Enteritidis SE2472
a 

(Clavijo, R.I., 2006) 

Category Mutant Gene Function and/or feature 

Cell wall structure or 

function 

ES1 SEN3892 Homologous to mechanosensitive ion channel 

 ES2 prgH Component of type III secretion apparatus 

 ES10 glnH Glutamine-binding periplasmic protein precursor 

 ES11 prgJ Invasion protein of type III secretion apparatus 

 ES15 proY Proline-specific permease 

 ES21 modF Putative molybdenum transporter 

 ES30 bcfC Fimbrial usher protein 

 ES46 spaP Membrane protein of type III secretion system 

 ES53 waaJ LPS synthesis 

 ES54 yijC Transcription factor regulating fat production 

Putative cell wall proteins ES17 SEN1188 Putative inner membrane protein 

 ES31 yigQ Putative periplasmic protein or exported protein 

 ES33 SEN1861 Putative inner membrane lipoprotein 

 ES37 STM3980 Putative outer membrane protein 

 ES41 SEN0784 Putative inner membrane protein 

 ES50 SEN1204 Putative membrane protein 

Metabolism ES3 ordL Homologous to DadA involved in phenylalanine metabolism 

 ES5 tdk Thymidine kinase 

 ES7 yejD Ribosomal small subunit pseudouridine synthase 

 ES12 ydiB Putative shikimate 5-dehydrogenase involved in aromatic amino acid 

synthesis 

 ES20 ybdL Putative aminotransferase involved in phenylalanine metabolism 

 ES22 tyrR Regulator of aromatic amino acid biosynthesis and transport 

 ES25 cadA Lysine decarboxylase 

 ES52 lysC Lysine sensitive aspartokinase III 

Unknown function ES6 SEN2128 Putative cytoplasmic protein 

 ES19 SEN2997 Putative ATP-dependent RNA helicase-like protein 

 ES27 ygdI Putative lipoprotein 

 ES28 SEN2263 Transcriptional regulator, function unknown 

 ES35 ybbN Putative thioredoxin protein 

 ES51 rssC Putative cytoplasmic protein 

SE specific ES16 SEN4287 Possible restriction endonuclease gene 

 ES47 Prot6E 

gene 

Fimbrial biosynthesis 

 

a 
A summary of the characteristics of mutants isolated from screening a Tn mutant library for mutants with decreased survival in egg albumen 

compared to the wild-type Salmonella enterica serovar Enteritidis is presented. The gene that was disrupted by the Tn insertion in each mutant 

is listed. If the Tn insertion was present in a gene that is uncharacterized and unnamed, the annotation of Salmonella enterica serovar Enteritidis 

or Salmonella enterica serovar Typhimurium genome is used. Salient features of the ORFs disrupted by the Tn insertion in each mutant are 

summarized. 
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1.6 Combating Salmonella  

1.6.1 Antimicrobials 

Antibiotics were used from the 1960s to reduce mortality in young birds, caused by a variety of 

pathogens including Salmonella (Bleuel et al., 2005). Resistant bacteria were selected over time 

due to extensive use. In the 1990s, the prevalence of multidrug-resistant Salmonella serotypes 

increased dramatically in many countries, with documented outbreaks associated with drug 

resistant Salmonella in poultry meet, beef and pork. This emerging resistance to antibiotics in 

Salmonella has also been found in strains isolated from humans and is thus a potentially serious 

public health problem (Yamasaki et al., 2011). The emergence of resistant isolates is now a 

major concern (Dias de Oliveira et al., 2005; Schmutz et al., 2016). The resistance is mediated by 

transmissible plasmids. Resistance to drugs is often associated with multidrug efflux pumps that 

decrease drug accumulation in the bacterium. In gram-negative bacteria, transporters belonging 

to the Resistance Nodulation Division (RND) family are particularly effective in generating 

resistance through forming a tripartite complex with periplasmic proteins and the outer 

membrane protein channel TolC (figure 4). The RND transporters have broad substrate 

specificity and require TolC for their function (Nikaido H., 2011). In Salmonella enterica, the 

function of all RND transporter systems requires TolC, except for MdsABC, which requires either 

MdsC or TolC for drug resistance. Furthermore these drugs also cause disruption of the gut 

flora, enhancing Salmonella colonization and increasing susceptibility in birds. While antibiotic 

usage to eliminate Salmonella in poultry is now strictly forbidden in the EU, in other parts of the 

world this is still common practice. According to Article 2 of Regulation (EC) No 1177/2006 

(Commission Regulation (EC) No 1177/2006), antimicrobials shall not be used as a specific 

method to control Salmonella in poultry. There is a significant correlation between the use of 

the aminoglycoside apramycin and the isolation of resistant Salmonella, especially Salmonella 

enterica serotype Typhimurium. Amnioglycoside resistance in these bacteria is due to the 

acquisition of a gene encoding an acetylating enzyme. Another pool of resistence genes are 

bèta-lactamase genes which are encoded on mobile genetic elements, such as plasmids, 

transposons and integrons, which often also carry additional resistance genes (Smet et al, 2009). 
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The consequences of selection of resistance can range from prolonged illness and side effects, 

due to the use of alternative, and possibly more toxic drugs, to death, following complete 

treatment failure. To reduce the risk of selecting resistant bacteria, the use of antibiotics must 

be restricted. Furthermore, in order to ensure that EU targets for reducing Salmonella are met, 

all Member States national control programs should include biosecurity measures designed to 

prevent Salmonella infection on poultry farms. The introduction of such measures also has a 

positive effect in terms of preventing other diseases. Specific EU guidelines have been published 

by the Commission services for farms where broilers and laying hens are kept.  

 

 

Figure 4: The RND transporters AcrB, AcrD, and MdtABC capture antimicrobials in the 

periplasm and then export them to the growth medium through the outer membrane channel 

TolC (Horiyama et al., 2010). 



General introduction 

           

34 

 

1.6.2 Non-antibiotic feed additives 

Various substances have been investigated for their inhibitory effects on Salmonella infection 

and faecal shedding. Butyrate can reduce Salmonella colonization in chickens in vivo via up-

regulation of host defense peptides and by the suppression of SPI-1 (Gantois et al., 2006; 

Sunkara et al., 2011). Acidified feed inhibits Salmonella shedding (Willamil et al., 2011). The 

cereal type in feed influences Salmonella colonization in broilers (Teirlynck et al., 2009). Other 

soluble plant non-starch polysaccharides have been shown to block pathogen-epithelium 

interactions. Adding polysaccharide hydrolyzing enzymes into the diets may modify the 

microfloral and physicochemical balance in the gastrointestinal tract (Parsons et al., 2014). 

Another strategy is to create passive immunity of birds through feeding them aspecific 

antibodies produced from eggs of hyperimmunized hens. Other strategies simply recommend 

the use of genetically resistant chicken lines. Feed additives such as prebiotics, probiotics, and 

synbiotics that modify the gut microflora are also being investigated, and the success of these 

approaches differs with the additive used.  

 

1.7 Currently used vaccines: never change a winning team? 

1.7.1 Historical overview 

In the 1960s and 1970s killed vaccines against Salmonella Gallinarum were used in order to limit 

Salmonella Gallinarum associated mortality. In the 1980s Salmonella Enteritidis arised and 

became the most important bacteria causing zoonotic disease. This serotype mostly does not 

cause any clinical signs in chickens. Humans get contaminated by the consumption of eggs and 

egg products. Reducing mortality was the main benefit of the killed vaccines but due to the 

limited effect on faecal shedding and lack of effectively stimulating cytotoxic T-cells, the 

industry quickly turned to live vaccines, prepared by bacterial culture under conditions of iron 

starvation or in the presence of a mutagenic product (Barrow et al., 2007). Live vaccines have 

been shown to generate higher levels of protection in birds and instead of needing to inject the 

vaccine, they can be administered in the drinking water (Barrow et al., 1990; Methner et al., 

2011). These vaccines are often produced on the basis of metabolic drift mutations. They are 
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often antibiotic resistant and with undefined mutations. A successful decrease of Salmonella 

Gallinarum was seen through extensive use of the Salmonella Gallinarum 9R vaccine developed 

by Williams Smith in 1956, with J. F. Tucker. A decrease of Salmonella Enteritidis infections has 

been seen after vaccination with live Salmonella Enteritidis vaccines (Nassar et al., 1994).  

Due to the successful decrease of salmonellosis by live attenuated vaccines, the use of these 

vaccines in commercial poultry increased worldwide and is regarded as one of the most 

important prophylactic measures to protect chickens against Salmonella infections and to 

protect the public from egg-borne Salmonella infections (Vandeplas et al., 2010). Currently used 

live vaccines contain strains harboring (undefined) point mutations. Although in previous years, 

vaccination was proven to be safe, current data suggest that these types of vaccines can regain 

virulence. Safety is undeniably a major concern of live vaccines, including the possible risk of 

reversion to virulence (Van Immerseel et al., 2013; White et al., 1997). A solution could be to 

delete whole genes. Since the scientific understanding of the organism has exploded in the past 

25 years, an increasing number of defined deletion vaccines have been developed and 

investigated. These vaccines were mainly evaluated for their ability to reduce shedding. Few 

studies evaluated the protection against egg contamination. 

 

1.7.2 Possible attenuations in Salmonella 

Selecting genes that can be deleted from the Salmonella bacterium is not an easy task. The basic 

criteria needed to be fulfilled for vaccines should be kept in mind. An ideal Salmonella vaccine 

should offer protection against mucosal and systemic infection, preferably during the whole life 

span of the chicken, while being avirulent to both man and animals. Finally, reduction of 

intestinal colonization to reduce or completely prevent shedding and egg contamination, 

congruence with other control measures, and low cost of application are of importance (Van 

Immerseel et al., 2005). Protection against most or even all serovars of Salmonella capable of 

causing foodborne illness in humans could top off the list. Currently, no vaccine or vaccination 

program is capable of providing this type of protection. Luckily, in recent years, knowledge on 
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the function of Salmonella genes and the host response to Salmonella infections, combined with 

molecular biological techniques has led to the development of more sophisticated vaccines.  

Many live Salmonella vaccine strains have been experimentally tested with different results 

(table 4). Deleting genes important for metabolism, virulence, or survival in the host organism is 

the usual strategy. Indeed, a number of vaccines contain strains with gene deletions that are 

important for metabolism, like aroA, aroC and aroD (in Salmonella Enteritidis). The reduced 

virulence of aro mutants has been explained by their inability to produce aromatic metabolites, 

mainly aromatic amino acids such as phenylalanine, tyrosine, and tryptophan. This extreme 

attenuation most likely led to some cases where the aro mutants were not sufficiently 

immunogenic and did not efficiently protect animals from subsequent infection (Hormaeche et 

al., 1991; Nnalue, 1990). Despite this, inactivation of aro genes is one of the most frequently 

used methods for Salmonella attenuation. Other vaccine strains compromised for metabolic 

functions contain crp derived mutations in Salmonella Typhimurium. The crp gene encodes the 

cAMP receptor protein (crp), which regulates transcription of a magnitude of operons involved 

in transport of sugars and catabolic functions (Schroeder and Dobrogosz, 1986). 
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Table 4: A small selection of experimental and commercial live attenuated Salmonella 

vaccines (Desin et al., 2014) 

Type of vaccine 
Route of 

delivery 

Frequency of 

immunization 
Challenge Effect 

Salmonella Enteritidis ΔaroA Oral Once, 1 day of age 
Oral, S. Enteritidis 

10
8
 CFU 

Reduction of colonization 

Salmonella Typhimuium 

Δcyalcrp 
Oral Twice (1, 14 days) 

Oral, S. Enteritidis 

10
6
 CFU 

Reduction of spleen colonization only 

Ts S. Enteritidis mutant Oral Twice (1, 14 days) 
Oral, S. Enteritidis 

10
9
 CFU 

Reduction of colonization 

Nobilis® SG 9R sc. Twice (6, 14-16 weeks) Field conditions 
Protection: 2.5% flocks positive relative to 

control (11.5%) 

TAD Salmonella vac®E Oral 
Three doses (1day, 6 

weeks, 16 weeks) 

iv., S. Enteritidis 10
7 

CFU 

Protection: 12/28 liver, 6/28 oviduct, 9/35 egg 

samples positive relative to control (25/30, 

15/29 and 15/35, respectively) 

Megan® 
Vac 1 Oral 

Three doses (1 day, 2 

weeks, 5 weeks) 
Field conditions 

Protection: 38\% cecal and 14% reproductive 

tract samples positive versus 68 and 52% 

control, respectively 

S. Enteritidis ΔphoP/fliC Oral Twice (1, 21 days) 
Oral, S. Enteritidis 

10
8
 CFU 

Reduction of colonization 

S. Enteritidis Δlon/cpxR Oral Twice (1 day of age) 
Oral, S. Enteritidis 

10
9
 CFU 

Reduction of colonization 

Salmonella Gallinarum 

ΔcobS/cbiA 
Oral Twice (5, 25 days) 

Oral, S. Enteritidis 

10
8 

CFU 
Reduction of colonization 

S. Enteritidis ΔSPI-1, ΔSPI-2 Oral Twice (1, 21 days) 
Oral/ iv., S. 

Enteritidis 10
7
 CFU 

Reduction of colonization 

Another range of deletions include virulence factors. Salmonella Enteritidis secretion systems 

are known to be important virulence factors in chickens but since structural components are 

protective antigens in other bacterial species, their deletion may not be beneficial (Methner et 

al., 2011). Other vaccines containing strains impaired for virulence lack the phoP gene, among 

other attenuations. The PhoP/PhoQ system is directly involved in the regulation of the SPI-2 

pathogenicity island and highlights PhoP/PhoQ's central role in Salmonella virulence. The 

phoP/fliC double gene deleted strain allows differentiation of vaccinated from infected animals, 

through the absence of fliC, which is a major component of flagellin. Flagellin is one of the 

MAMPs, recognized by TLR5, leading to the production of anti-flagella antibodies (Gewirtz et al., 

2001). Deletion of flagella in Salmonella Typhimurium however, led to a less efficient 

recognition by the host immune system and a temporary increase in the virulence in the early 

stages of chicken infection (Karasova et al., 2009; Kodama and Matsui, 2004). Deletion of this 

important MAMP thus raises concerns about increased virulence and shedding of flagella 

defective mutants (Iqbal et al., 2005; Methner and Barrow, 1997). Additional independent 

attenuations are thus needed. A final range of deletions result in a decreased survival of 

Salmonella in the environment. Lon for example is an evolutionarily conserved stress protein 

induced by multiple stressors and helps to remove damaged and abnormal proteins during 
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stress (Si et al., 2015). The cpdB gene enables Salmonella Enteritidis to grow on 2", 3"-cAMP as a 

sole source of carbon and energy (Si et al., 2015). A major drawback of most current used live 

vaccines in the field is that immunized animals, producing antibodies against the vaccine strain 

are no longer distinguishable from field-exposed animals by serological tests (Adriaensen et al., 

2007; Matulova et al., 2013). Taken together, there still appears to be a need for new deletion 

mutants that better fulfill the requirements as set forward at the start of this paragraph. 

   

1.7.3 Currently used vaccines: modes of action 

Since live vaccines are most widely used, this section focuses on the mode of action of live 

vaccines. Protective mechanisms observed by live vaccines can be divided into mechanisms 

effective during the "immunity gap" and protection based on a humoral and, more importantly, 

cell-mediated immunity.  

Protective mechanisms effective during the "immunity gap", the time between administration 

of the vaccine and development of the adaptive immune response, relies on the principle of 

colonization inhibition (CI, Methner et al., 2011). Oral administration of a live attenuated 

Salmonella strain to day-old chicks confers protection against a Salmonella infection within 

hours after administration. This protective mechanism cannot be based on an adaptive immune 

response (see below). The actual mode of action remains unclear but it is assumed that 

bacteriological exclusion phenomena play a role. 

 

During the immunity gap, chickens are most vulnerable for infections, and contamination during 

this period results often in persistent infection. CI is highly effective especially between strains 

of the same serotype (Cox et al., 1990; Vandeplas et al., 2010). The molecular basis of 

colonization inhibition is still relatively poorly understood. Oral administration of live vaccines to 

newly-hatched chickens results in massive multiplication in the gut for a few days with a 

resulting competitive exclusion effect against related bacteria. This is thus thought to be largely 

a bacteriological exclusion, with heterophil infiltration into the gut mucosa also inhibiting 

invasion of Salmonella strains and other bacteria to internal organs. 
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Long term protection against salmonellosis requires the host’ s immunity of both cellular and 

humoral arms (Babu et al., 2003). It was shown that an increase of T-cell subsets is seen 7 days 

post-inoculation, peaking at day 10 after inoculation with a live vaccine. This increased cell 

mediated immunity is only associated with live vaccines and could explain why these live 

vaccines are more effective than killed vaccines for the control of Salmonella infections. Cell 

mediated immune responses are generally more important in controlling organisms which 

replicate intracellularly (Imre et al., 2015). It has also been observed that CD8+ T-cells play an 

important role in the immunological defense after primary infection in young chicks and that 

clearance of Salmonella Typhimurium infections in chickens correlates with high cell-mediated 

responses (Barrow, 2007). In addition, intraperitoneal administration of recombinant IFNgamma 

decreases Salmonella colonization, underlying the importance of cell-mediated immune 

mechanisms in the systemic clearance of Salmonella. Finally heterophil-depleted chickens are 

much more susceptible to Salmonella Enteritidis, further illustrating the importance of cell 

mediated immunity in Salmonella infections in poultry (Methner et al., 2011).  

 

The peak of CD8+ T-cells is then followed by an increase in B-cell numbers at day 14. An 

adaptive immune response thus takes at least 10 days to develop. Serum titers of IgM and IgG 

are directly related to the size of the inoculum. These antibodies remain in the serum for at 

least 35 weeks pi (Cox and Pavic, 2010). Protection against infection is generated by preventing 

translocation from the gastrointestinal tract. Secretory IgA functions by inhibiting the adherence 

of coated micro-organisms to mucosal cells. This kind of protection is of primary importance to 

avoid a bacterial infection (Desmidt et al., 1998). Oral administration of live Salmonella vaccines 

could thus allow for an early protection of young chickens by CI, followed by the development 

of a long-lasting immunity when the birds reach immunological maturity. 
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Scientific aims 

Salmonellosis is still the second most commonly reported zoonotic disease, following 

campylobacteriosis. The first attempts to control Salmonella enterica serovar Enteritidis were 

initiated in the 1980s in the EU, and control measures were developed, including stringent 

biosecurity programs, the use of feed additives and vaccination programs using inactivated and 

live vaccines. Thanks to the implementation of control programs, an epidemiologic turnaround 

for Salmonella Enteritidis infections has been achieved. Initially, the EU target was to cover only 

Salmonella Enteritidis and Salmonella Typhimurium. In addition, for breeding flocks of Gallus 

gallus, Salmonella Hadar, Salmonella Infantis and Salmonella Virchow were considered, as these 

serovars were, together with the former, the five most frequently reported Salmonella serovars 

in human salmonellosis in the EU. Most of the legislation related to Salmonella control in the EU 

dates back to the beginning of the 21
st

 century. The control programs that were set up and 

implemented in response to this legislation, including vaccination programs in layers, have 

drastically changed the epidemiological situation. On the one hand, Salmonella Enteritidis 

infections in layers have become almost rare events. On the other hand, multiple other 

serotypes have emerged in humans. Therefore, the general aim of this thesis was to evaluate 

the efficacy of existing vaccines and the exploration of novel vaccine approaches that may be 

better adapted to the evolving epidemiological situation. The Salmonella monophasic strains 

with antigenic formula 1,4,[5],12:i:- are important epidemiological developments. These strains 

are variants of Salmonella Typhimurium and EU legislation thus also states that these need to be 

controlled. These monophasic Salmonella Typhimurium strains have been shown to have similar 

virulence and antimicrobial resistance characteristics to other strains of Salmonella 

Typhimurium and thus are considered to pose comparable public health risks to that of other 

epidemic Salmonella Typhimurium strains. Current vaccines have been developed and tested 

against Enteritidis and Typhimurium infections, but their efficacy against emerging monophasic 

variants has not yet been investigated. A first aim was thus to study the efficiency of a widely 

used commercial live Typhimurium vaccine against infection with this new arising monophasic 
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variant. This was done by evaluating shedding and organ colonization in three independent 

trials with different infection doses, after vaccination at day 1.  

Currently monophasic Salmonella Typhimurium 1,4,[5],12:i:- variants are emerging worldwide. 

These variants are lacking the fljB-encoded second phase antigen. It has been suggested that 

the lack of flagella changes virulence characteristics of Salmonella but the exact role of flagella 

in the pathogenesis of Salmonella infections in chickens is not yet completely clear. The 

aflagellate Salmonella Gallinarum is causing severe systemic disease with reproductive tract 

pathology. Little was known yet about the role of flagellin in oviduct colonization by non-host 

specific serotypes such as Salmonella Enteritidis. Therefore the second aim of this work was to 

evaluate the role of flagellin in oviduct colonization by analyzing the expression of flagellar 

genes in oviduct cells and studying the response of oviduct cells to flagellin. This information 

could be important for future vaccine development. 

 

Egg white survival is a key feature of Salmonella Enteritidis that gives strains of this serotype a 

unique opportunity to be transmitted to the egg-consuming host. Various genes have been 

identified that play a role in egg white survival. Mutating these genes thus enable a vaccine to 

be safe for humans and allow the creation of vaccines that will not enter the food chain through 

eggs. Multidrug resistance pumps (MDR) are bacterial systems that export host antimicrobial 

proteins and antibiotics as protection mechanism. MDR pump mutants have been shown to be 

attenuated and cannot survive in egg white, making these strains potentially valuable safe live 

vaccines. A third aim of the PhD thesis was to evaluate whether MDR pump mutants also 

protect chickens against egg contamination, after oral vaccination. 
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3.1 Oral administration of the Salmonella Typhimurium vaccine strain 

Nal2/Rif9/Rtt to laying hens at day of hatch reduces shedding and 

caecal colonization of Salmonella 4,12:i:-, the monophasic variant of 

Salmonella Typhimurium. 
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Oral administration of the Salmonella Typhimurium vaccine strain 

Nal2/Rif9/Rtt to laying hens at day of hatch reduces shedding and 

caecal colonization of Salmonella 1,4,[5],12:i:-, the monophasic 

variant of Salmonella Typhimurium. 

Abstract 

A new monophasic variant of Salmonella Typhimurium, serotype 1,4,[5],12:i:-, is rapidly 

emerging. This serotype is now considered to be among the 10 most common serovars 

isolated from humans in many countries in Europe and in the United States. The public 

health risk posed by these emerging monophasic Salmonella Typhimurium strains is 

considered comparable to that of classical SalmonellaTyphimurium strains. The serotype 

1,4,[5],12:i:- is frequently isolated from pigs but also poultry are carrying strains from this 

serotype. In the current study, we evaluated the efficacy of the Salmonella Typhimurium 

strain Nal2/Rif9/Rtt, a strain included in the commercially available live vaccines 

AviPro Salmonella Duo and AviPro Salmonella VacT, against infection with the emerging 

monophasic variant in poultry. Three independent trials were conducted. In all trials, laying 

type chicks were orally vaccinated with the Salmonella Typhimurium strain Nal2/Rif9/Rtt at 

d hatch, while the birds were challenged the next d with a different infection dose in each 

trial (low, high, and intermediate). For the intermediate-dose study, a seeder bird model was 

used in which one out of 3 animals were infected while all individual birds were infected in 

the other trials. Data obtained from each independent trial show that oral administration of 

the Salmonella Typhimurium strain Nal2/Rif9/Rtt at d hatch reduced shedding, caecal, and 

internal organ colonization of Salmonella Typhimurium 1,4,[5],12:i:- , administered at d 2 

life. This indicates that Salmonella Typhimurium strain Nal2/Rif9/Rtt can help to control 

Salmonella 1,4,[5],12:i:- infections in poultry. 
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Introduction 

For more than 20 years health agencies and the animal production industry are combating 

Salmonella infections. In the European Union (EU), the implementation of Salmonella control 

programs in poultry (and pigs) has led to a strong decrease in the number of human 

salmonellosis cases (EFSA, 2010a). Although Salmonella Enteritidis and Typhimurium still 

continue to be the most commonly reported Salmonella serovars in human cases, atypical 

pathogenic Salmonella strains have emerged. Current studies in numerous countries 

worldwide confirm the rapid emergence and dissemination of a monophasic variant of 

Salmonella Typhimurium, i.e. serotype 1,4,[5],12:i:- (Bone et al., 2010; Hopkins et al., 2012; 

Mossong et al., 2007; Peters et al., 2010). This variant has been detected in Spain and 

Portugal since 1997 (Usera et al., 2002) and is now the third most commonly isolated 

serotype causing human and animal salmonellosis in the EU (EFSA, 2010b; EFSA, 2014). Of a 

total of 92,916 cases of human salmonellosis that were reported by the European Union 

Member States in 2012, the monophasic strain Salmonella Typhimurium 1,4,[5],12:i:- was 

responsible for 7.2% of the cases (EFSA, 2010b; Anonymous, 2014). 

While most Salmonella serovars are biphasic and express two distinct flagellar antigens 

encoded by fliC (phase-1 flagellin) and fljB (phase-2 flagellin), monophasic strains fail to 

express either the phase-1 or phase-2 flagellar antigen. Cases of human infection caused by 

the emerging monophasic variants have been linked to a number of sources, predominantly 

pigs (EFSA, 2010a; Mandilara et al., 2013). Strains from this serotype have also been found in 

chicken meat, broilers and recently in laying hens (Le Hello et al., 2012). This shows that the 

monophasic variant 1,4,[5],12:i:- represents a significant and potential emerging threat to 

humans, not only through porcine meat, but also through chicken product consumption. 

Consequently it has been included in actions implementing the legislation of the EU to 

detect and control Salmonella serovars of public health significance in laying hens 

(Anonymous, 2011; Parsons et al., 2014).  

While control programs have been efficient in reducing the prevalence of Salmonella 

Enteritidis in laying hen flocks and as a consequence contamination of eggs and egg 

products, data on effects of control measures for Salmonella 1,4,[5],12:i:- in layers are 

scarce. Control of Salmonella in the primary production of chickens should mainly be based 



Chapter 3.1 

 

57 

 

on biosecurity measures and the administration of feed additives. In laying hens vaccination 

is an important tool to protect against colonization. While vaccination of layers against 

Salmonella is mainly used to control egg contamination, vaccines also aim to reduce gut 

colonization and shedding. Booster immunizations of live vaccine strains are used in the field 

to decrease Salmonella colonization in adult birds, but administration of live vaccine strains 

at day-of-hatch can also protect chickens against early colonization with Salmonella, a 

process called colonization-inhibition (De Cort et al., 2013). To our knowledge not a single 

vaccine study has been performed until now, with the objective of reducing the colonization 

of the emerging monophasic variant in chickens. While the efficacy of the commercial live 

vaccines Salmonella TAD® VacE and VacT (later renamed to AviPro® Salmonella VacE and 

VacT) to protect laying hens from oviduct colonization and egg contamination by Salmonella 

Enteritidis has been proven (Gantois et al., 2006), no data have been published yet on 

potential effects of this vaccine on caecal, spleen and liver colonization by the monophasic 

serotype 1,4,[5],12:i:-. Therefore, in the present study two short-term (two weeks) trials, 

either using a high or a low infection dose, and 1 longer term study (6 weeks) were carried 

out to evaluate the protective effect against gut and internal organ colonization after 

vaccination with Salmonella Typhimurium strain Nal2/Rif9/Rtt, a strain contained in the 

commercially available live vaccines AviPro® Salmonella Duo and AviPro® Salmonella VacT, 

at day of hatch. 

Materials and Methods 

Experimental Birds 

One-day-old Lohmann Brown laying type chicks were obtained from a local commercial 

hatchery (De Biest, Kruishoutem, Belgium). Experimental groups were housed in separate 

rooms in containers (3 m
2
) on wood shavings. Commercial feed and drinking water was 

provided ad libitum. The animals received 12 h of light per day. The birds were confirmed to 

be Salmonella-free by bacteriological analysis of cloacal swabs. All of the animal experiments 

in this study followed the institutional guidelines for the care and use of laboratory animals 

and were approved by the Ethical Committee of the Faculty of Veterinary Medicine, Ghent 

University, Belgium. Euthanasia was performed humanely with an overdose of sodium 

pentobarbital (Sigma-Aldrich, St. Louis, MO). 
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Bacterial Strains and Growth Conditions 

Salmonella Typhimurium strain Nal2/Rif9/Rtt, contained in the commercially available live 

vaccines AviPro® Salmonella Duo and AviPro® Salmonella VacT, is a metabolic drift mutant of 

Salmonella Typhimurium produced by chemical mutagenesis (Linde, 1981) and is resistant to 

nalidixic acid and rifampicin. The vaccine strain was suspended in sterile Hank’s Balanced 

Salt Solution (HBSS, Invitrogen, Paisley, England) according to the manufacturer’s protocol to 

obtain the appropriate dilution. The monophasic variant of Salmonella Typhimurium 

1,4,[5],12:i:- (strain number 06-01900) was used as a challenge strain and is resistant to 

carbenicillin. The strain was originally isolated from a hospitalized human patient with 

diarrhea. It exhibits the characteristics of the new epidemic type (seroformula 1,4,[5],12:i:-). 

Before use in the trials, the strain was statically incubated overnight at 37°C in Luria Bertani 

(LB) medium (Sigma, St. Louis, MO, USA). After overnight incubation, ten-fold dilutions were 

plated on brilliant green agar (BGA, Oxoid, Hampshire, UK) and incubated overnight to 

determine the titer. The culture of the challenge strain was put at 4°C overnight, and the 

bacterial suspension was diluted in phosphate buffered saline (PBS, Sigma, St. Louis, MO, 

USA) to the desired colony forming units (cfu) per ml.  

Experimental Design 

In total 3 different independent experimental studies were set up in order to evaluate the 

colonization-inhibiting potential of the vaccine strain against the Salmonella Typhimurium 

1,4,[5],12:i:- strain. 

Trial 1. Trial one was conducted to evaluate the ability of the Salmonella Typhimurium strain 

Nal2/Rif9/Rtt to protect against a low dose challenge of Salmonella Typhimurium 

1,4,[5],12:i:-. One-day-old chicks were orally immunized through crop instillation of 0.5 ml 

containing 10
8
 cfu Salmonella Typhimurium strain Nal2/Rif9/Rtt (n=30). The control group 

(n=30) was kept as non-immunized control and was given 0.5 ml sterile PBS. The next day, 

the groups were infected with the monophasic variant of serotype Typhimurium, serotype 

1,4,[5],12:i:-, through crop instillation of 0.5 ml containing 10
3
 cfu (low dose). Cloacal swabs 

were taken one week after the infection and analyzed as described below. At the same time, 

10 animals per group were euthanized. Samples of the spleen and caeca were aseptically 

removed and analyzed as described below (bacterial recovery from organs). The remaining 
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animals were euthanized 14 days post infection (pi). Enumeration of Salmonella in the 

spleen and caeca was performed as described below (bacterial recovery from organs).  

Trial 2. In the second trial chicks were orally immunized on day of hatch as described above 

for trial 1 (n=30), or kept as non-immunized controls (n=30). The next day, the groups were 

infected with the monophasic variant of serotype Typhimurium 1,4,[5],12:i:-, through crop 

instillation of 0.5 ml containing 10
8
 cfu (high dose). Cloacal swabs were taken at day 3, 6 and 

11 pi. Samples of the spleen and caeca were aseptically removed on day 7 (n=10) and 14 

(n=20) pi. 

 Trial 3. In trial 3, one-day-old chicks were orally immunized on day of hatch through crop 

instillation of 0.5 ml containing 10
8
 cfu Salmonella Typhimurium strain Nal2/Rif9/Rtt (n=75) 

or kept as non-immunized controls (n=75). Twenty-four hours later, 15 randomly selected 

chicks in each group were tagged and infected with 10
5
 cfu (intermediate dose, seeder birds) 

and housed together with the non-infected chicks. Cloacal swabs were taken at day 3, 9, 16, 

23 and 30. Samples of the spleen, caeca and liver were taken at day 7, 21 and 42. At each 

sampling 1/3 of the chicks were euthanized (of which 5 were seeder birds at each time 

point). At the end of the trial, litter samples were collected.  

Bacteriological Analysis of Cloacal Swabs 

Cloacal swabs were taken at different time points and bacteriologically examined to evaluate 

the shedding of the Salmonella strains. In order to quantify shedding of the challenge strain 

(Salmonella Typhimurium 1,4,[5],12:i:-), the swabs were directly inoculated on Brilliant 

Green Agar (BGA) plates supplemented with 100 µg/ml carbenicillin. Additionally in the third 

trial, the swabs were directly inoculated on BGA supplemented with 100 µg/ml rifampicin to 

quantify shedding of the Salmonella Typhimurium strain Nal2/Rif9/Rtt. Swabs negative after 

direct inoculation were pre-enriched in buffered peptone water (BPW, Oxoid, Basingstoke, 

Hampshire, UK) and incubated overnight at 37°C. One ml of this BPW suspension was further 

enriched by adding nine ml tetrathionate-brilliant green broth (TETRA, Oxoid, Basingstoke, 

Hampshire, UK). After overnight incubation at 37°C a loopful of this suspension was plated 

on BGA supplemented with the appropriate antibiotic. Litter samples were plated out on 

BGA supplemented with 100 µg/ml rifampicin to detect the Salmonella Typhimurium strain 

Nal2/Rif9/Rtt in the third trial. 
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Bacteriological Analysis of Organs 

Samples of caecum and spleen were manually homogenized in BPW (10 % weight/volume 

suspensions) and 10-fold dilutions were made in HBSS (Invitrogen, Paisley, England). Six 

droplets of 20 µl of each dilution were plated on BGA supplemented with 100 µg/ml 

carbenicillin (for quantification of the Salmonella 1,4,[5],12:i:- strain) or 100 µg/ml rifampicin 

(for quantification of the Salmonella Typhimurium vaccine strain Nal2/Rif9/Rtt in the third 

trial). After overnight incubation at 37°C, the number of cfu/g tissue was determined by 

counting the number of bacterial colonies for the appropriate dilution. Negative samples 

were enriched as described above. 

Statistical Analysis 

GraphPad Prism 5 software was used for statistical analysis. Data of cfu Salmonella/gram 

tissue were log-transformed and analyzed by a student’s t–test to determine differences 

between the groups. Differences with p-values below 0.05 were considered to be statistically 

significant. After enrichment samples were classified as either positive or negative. A Fisher’s 

exact test was used to determine significant differences (p<0.05). Cloacal swabs were 

analyzed in the same way. 

Results 

Analysis of Cloacal Swabs: Evaluating Shedding of Salmonella 1,4,[5],12:i:- and the Vaccine 

Strain (Salmonella Typhimurium strain Nal2/Rif9/Rtt) 

During the first trial (low challenge dose), shedding of the challenge strain was only observed 

in the challenge-control group (Table 1). In the second trial (high challenge dose), one chick 

died in the vaccinated group during administration of the vaccine. There was a significant 

difference in shedding of the challenge strain at day 3 (p<0.0001), 6 (p<0.0001) and 11 

(p=0.0019) between the vaccinated and the control group. In the third trial (seeder bird 

model, intermediate dose) there was a significant difference in shedding of the challenge 

strain between vaccinated and control animals at day 9 (p=0.0005), 23 (p=0.0181) and 30 

(p=0.0181). Shedding of the vaccine strain Salmonella Typhimurium Nal2/Rif9/Rtt could not 

be detected anymore in trial 3 at day 23, while only 1 animal out of 50 was positive at day 
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16. At the end of the third trial litter samples were collected and analyzed. The vaccine strain 

Salmonella Typhimurium Nal2/Rif9/Rtt could not be isolated. 

Table 1. The number of cloacal swabs positive for Salmonella 1,4,[5],12:i:- and Salmonella 

Typhimurium strain Nal2/Rif9/Rtt at direct plating and after enrichment Trial 1: 

vaccination at day 1 (10
8
 cfu) and infection the next day (10

3
 cfu); Trial 2: vaccination at 

day 1 (10
8
 cfu) and infection the next day (10

8
 cfu); Trial 3: vaccination at day 1 (10

8
 cfu), 

infection at day 2 (seeder birds were infected with 10
5
 cfu of the challenge strain) 

  Strain days pi 3 6 7 9 11 16 23 30 

 

trial 1 

Salmonella 

Typhimurium 

1,4,[5],12:i:- 

control  

  

0/30
a 

(3)
b
      

 VacT     0/30 (0)           

 

trial 2 

control  30/30 (30) 29/30 (30) 

  

17/20 

(18)    

 
VacT 

17/29*** 

(29) 

15/29*** 

(21)**   

6/20** 

(17)    

 

trial 3 

control        
28/50 

(50) 
  

24/50 

(50) 

10/25 

(15) 

10/25 

(17) 

 
VacT       

19/50 

(39)** 
  

19/50 

(36) 

2/25* 

(18) 

2/25* 

(12) 

 
Salmonella 

Typhimurium 

strain 

Nal2/Rif9/Rtt 

control  0/75 (0) 

  
0/50 (0) 

 
0/50 (0) 0/25 (0) 0/25 (0) 

 
VacT 17/75 (57)     

15/50 

(45) 
  0/50 (1) 0/25 (0) 0/25 (0) 

 

 

a
Number of positive samples after direct plating/total number of samples 

 

b
Number of positive samples after enrichment 

 

***Significant difference in positive samples for the monophasic variant between the control and vaccinated group (p<0.0001) 

 

**Significant difference in positive samples for the monophasic variant between the control and vaccinated group (p<0.005) 

 

*Significant difference in positive samples for the monophasic variant between the control and vaccinated group (p<0.05) 

 

Analysis of Gut and Internal Organ Samples: Evaluation of the Colonization-Inhibiting 

Potential of the Salmonella Typhimurium Strain Nal2/Rif9/Rtt. 

In the first trial, bacterial enumeration of the organs showed that vaccination significantly 

decreased colonization of the caeca on day 7 (at direct plating and after enrichment, 

p=0.0351 and p=0.0039, respectively) and day 14 (at direct plating and after enrichment, 

p=0.0471 and p=0.0033, respectively; table 2).  
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Table 2. The number of caecal or spleen samples positive at direct plating and after 

enrichment for Salmonella Typhimurium 1,4,[5],12:i:- during trial one and two Trial 1: 

vaccination at day 1 (10
8
 cfu) and infection the next day (10

3
 cfu) Trial 2: vaccination at day 

1 (10
8
 cfu) and infection the next day (10

8
 cfu)  

  Organs Groups trial 1 trial 2 

Day 7 post 

inoculation 

Caecum 
Control 5/10

a 
(7)

b
 10/10 (10) 

Vaccinated 0*/10 (0**) 10/10 (10) 

Spleen 
Control 0/10 (1) 4/10 (10) 

Vaccinated 0/10 (0) 0/10 (0**) 

Day 14 post 

inoculation 

Caecum 
Control 5/20 (10) 20/20 (20) 

Vaccinated  0*/20 (1**) 15**/19 (15) 

Spleen 
Control 0/20 (1) 3/20 (14) 

Vaccinated  0/20 (0) 0/19 (1***) 

a
Number of positive samples after direct plating/total number of samples 

b
Number of positive samples after enrichment 

***Significant difference in positive samples for the monophasic variant between the control and vaccinated group (p<0.0001) 

**Significant difference in positive samples for the monophasic variant between the control and vaccinated group (p<0.005) 

*Significant difference in positive samples for the monophasic variant between the control and vaccinated group (p<0.05) 

 

In the high challenge dose study (second trial), a reduction in spleen colonization was seen in 

vaccinated animals at day 7 (p=0.0001; after enrichment; table 2). On day 14 a significantly 

lower caecum (p=0.0006; at direct plating) and spleen (p<0.0001; after enrichment) 

colonization was seen in the vaccinated group. Colonization of the challenge strain in the 

caeca was lower in the vaccinated group on day 7 (p<0.0003) and day 21 (p=0.0105) in the 

third trial (figure 1). 
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Figure 1. Caecal (A,C,E) and spleen (B,D,F) colonization of the Salmonella Typhimurium 

4,12:i:- challenge strain in trial 3. Animals (n=25) were orally challenged 24 hours after 

vaccination (Salmonella Typhimurium strain Nal2/Rif9/Rtt) or not (control). Subfigures A 

and B represent colonization on day seven, C and D on day 21, and E and F on day 42. 

Represented values are 
10

log of cfu/g sample. The middle horizontal line represents the 

mean, the error bars represent the standard error of the mean (SEM). The number of 

samples negative after direct plating (n) and the number of samples negative after direct 

plating but positive after enrichment (z) are displayed below the group name. Asterisks 

indicate a difference between the groups. (* equals p<0.05 and ** equals p<0.005) 
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DISCUSSION 

In the current study, it was shown that oral administration of the Salmonella Typhimurium 

strain Nal2/Rif9/Rtt, included in the commercially available live vaccines AviPro® Salmonella 

Duo and AviPro® Salmonella VacT, at day of hatch, reduces colonization with a strain of the 

monophasic variant of Salmonella Typhimurium, 1,4,[5],12:i:- after challenge at day 2. It is of 

paramount importance that day-old chicks are protected as early as possible because 

infection with field strains often occurs within the first week of life. At this age, the 

autochthonous intestinal microbiota is not fully mature and the animal’s immune system is 

not yet fully developed (Bar-Shira and Friedman, 2006). Early protection of chickens after 

oral administration of a live vaccine strain at day 1 against a challenge strain administered 

already at day 2 can be conferred by a phenomenon called colonization-inhibition (Bohez et 

al., 2008; Bohez et al., 2007; De Cort et al., 2013; Methner et al., 1999). The exact 

mechanism is unknown but the exclusion phenomenon can be modelled in vitro in test 

tubes, indicating a microbiological exclusion effect (Barrow et al., 1987). This colonization-

inhibition phenomenon has until now only been recognized between strains of the same 

serotype (Barrow et al., 1987). The Salmonella 1,4,[5],12:i:- serotype is Typhimurium-like and 

can thus, as shown in this study, also be controlled in the early immune deprived stage by 

using live Salmonella Typhimurium vaccines.  

In addition, live vaccines may stimulate innate immunity, which may help to protect against 

invasion and systemic spread of Salmonella to internal organs (Methner et al., 1997). Indeed, 

in different studies the expression of CXC chemokines and subsequent infiltration of the 

intestinal mucosa by immune cells, of which heterophilic granulocytes are the first, were 

observed after administration of live Salmonella Typhimurium strains (Withanage et al., 

2004; Withanage et al., 2005). Although our study did not investigate long-term protection 

conferred by the live vaccine, typically the observed protective effect would require cell-

mediated immune responses (Chappell et al., 2009).  

In practice, the live vaccines containing the Salmonella Typhimurium strain Nal2/Rif9/Rtt are 

recommended to be administered at day 1, week 7 and week 16. Vaccination with the 

commercially available AviPro® Salmonella VacT and AviPro® Salmonella Duo is 

recommended for vaccination of layer flocks, parent flocks and grandparent flocks against 
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Salmonella Typhimurium. Data provided in the current study show that early vaccination 

already protects the animals against challenge with a Salmonella 1,4,[5],12:i:- at day 2 post-

challenge. This also implies that the live vaccine can in theory protect broilers when 

delivered at day 1. Although the colonization-inhibition phenomenon can thus help in 

protecting young chickens against infection, also other methods need to be implemented 

on-farm to control Salmonella. These include biosecurity measures and potentially the use of 

feed additives that limit Salmonella colonization.  

In summary, oral administration of the Salmonella Typhimurium strain Nal2/Rif9/Rtt, a strain 

present in the commercially available live vaccines AviPro® Salmonella Duo and AviPro® 

Salmonella VacT, at day of hatch, is able to limit shedding and caecal colonization of a 

Salmonella 1,4,[5],12:i:- strain that is administered at day 2 of life. This is of value for layers 

and breeders as well as for broilers and can be part of a control program for the new 

emerging serotype 1,4,[5],12:i:-. 
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Salmonella Enteritidis flagellar mutants have a colonization benefit in 

the chicken oviduct. 

Abstract 

Egg borne Salmonella Enteritidis is still a major cause of human food poisoning. Eggs can 

become internally contaminated following colonization of the hen’s oviduct. In this paper we 

aimed to analyze the role of flagella of Salmonella Enteritidis in colonization of the hen’s 

oviduct. Using a transposon library screen we showed that mutants lacking functional 

flagella are significantly more efficient in colonizing the hen’s oviduct in vivo. A micro-array 

analysis proved that transcription of a number of flagellar genes is down-regulated inside 

chicken oviduct cells. Flagella contain flagellin, a pathogen associated molecular pattern 

known to bind to Toll-like receptor 5, activating a pro-inflammatory cascade. In vitro tests 

using primary oviduct cells showed that flagellin is not involved in invasion. Using a ligated 

loop model, a diminished inflammatory reaction was seen in the oviduct resulting from 

injection of an aflagellated mutant compared to the wild-type. It is hypothesized that 

Salmonella Enteritidis downregulates flagellar gene expression in the oviduct and 

consequently prevents a flagellin-induced inflammatory response, thereby increasing its 

oviduct colonization efficiency.  
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Introduction 

Salmonella (S.) enterica is a major cause of food poisoning worldwide. Most outbreaks are 

due to subspecies enterica serovar Enteritidis contamination of eggs (De Reu et al., 2006). 

Contaminated eggs however, usually don’t present any signs of microbial alteration (EFSA, 

2007.). Furthermore, laying flocks infected with S. Enteritidis usually show no symptoms, nor 

a decline in egg production (Kaiser et al., 2000). How S. Enteritidis is capable of causing such 

insidious infections in laying hens is a puzzling question that remained largely unanswered 

since at least two decades. More recently, it was shown that strains from the serotype 

Enteritidis are superior to other serotypes in colonizing the oviduct of chickens without 

causing overt clinical signs (Gantois et al., 2008b; Okamura et al., 2001; Raspoet et al., 2011). 

The isthmus and magnum of the oviduct are the predominant colonization sites (De Buck et 

al., 2004a).  

Very little is known about the mechanisms allowing S. Enteritidis to persistently colonize the 

hen’s oviduct. Temporary regression of certain highly expressed beta defensins of the 

chicken oviduct cells by the S. Pathogenicity Island-2 encoded type III secretion system 

avoids antimicrobial killing (Ebers et al., 2009). For sure, one of the hallmarks of oviduct 

colonization by S. Enteritidis is the relative lack of inflammation and cellular damage, which 

may play a role in the persistence of oviduct colonization and consequently stable egg 

production (Kaiser et al., 2000). Nevertheless, S. Enteritidis does carry microbial associated 

molecular patterns (MAMPs), such as LPS and flagellin, which bind to Toll-like receptors 

(TLRs) on epithelial cells. Binding of MAMPs to TLRs should normally initiate the innate 

immune response, leading to inflammation and tissue damage. Flagellin is the main 

structural protein of the bacterial flagellum and binds to TLR5. Flagellin/TLR5 signaling 

triggers several mechanisms that activate the pro-inflammatory cascade in various epithelial 

cells (Eaves-Pyles et al., 2001; Hayashi et al., 2001; Steiner, 2007). The importance of the 

TLR-5 activation pathway in clearance of bacterial pathogens is well documented (Vijay-

Kumar et al., 2007). 

The TLR5 receptor has been identified in the theca and granulosa of the ovary as well as in 

the glandular epithelial cells of the oviduct in laying hens (Woods et al., 2009). Considering 

the presence of TLR5, it is even more remarkable that S. Enteritidis is able to avoid 

inflammation while colonizing the hen’s oviduct. Therefore, in the present study we 



Chapter 3.2 

 

73 

 

investigated the role of flagella in oviduct colonization by S. Enteritidis. More specifically, a 

transposon library screen was performed in order to evaluate the behavior of flagellar gene 

mutants in oviduct colonization. Using a microarray, flagellar gene transcription was 

evaluated in oviduct cells. We investigated the role of flagella in adhesion to and invasion in 

oviduct gland cells. Finally, we studied the effect of flagellin on oviduct cells in vivo by 

comparing inflammatory cell infiltration after injection of an aflagellated mutant (ΔfliG) in 

oviduct ligated loops compared to the S. Enteritidis wild-type. Based on these data, it was 

concluded that S. Enteritidis downregulates flagellar gene expression in the chicken oviduct, 

hereby avoiding inflammation, which may be essential for persistent colonization.  

Materials and Methods 

Salmonella Enteritidis strain and ΔfliG mutant construction 

Salmonella (S.) Enteritidis phage type 4 strain 147 was used for the experiments. This strain 

is streptomycin resistant and was originally isolated from egg white. S. Enteritidis phage type 

4 strain 147 is known to colonize the gut and internal organs to a high level (Bohez et al., 

2008; Methner et al., 1995). S. Gallinarum strain was originally isolated from egg white. ∆fliG 

is an aflagellate mutant of S. Enteritidis 147 phage type 4 lacking the fliG gene. This gene 

encodes one of the switch proteins of Salmonella bacteria located towards the cytoplasmic 

face of the M ring of the flagellar basal body (Francis et al., 1992). This mutant was 

constructed according to the one step inactivation method previously described (Datsenko 

and Wanner, 2000). The targeted gene was deleted from start to stop codon, as confirmed 

by sequencing. 

Evaluation of the behavior of S. Enteritidis flagellar gene mutants in isolated oviduct cells 

(in vitro) and in the hen’s oviduct (in vivo), using a transposon library 

Primary chicken oviduct epithelial cells (OEC) were harvested from seven Lohman Brown 

pullets (obtained from a local hatchery) according to the isolation method developed by 

Jung-Testas (Jung-Testas et al., 1986). One day after the final estradiol-benzoate 

administration the 13 to 15 week old chickens were euthanized with an overdose of 

pentobarbital. Non-adhering oviduct cells were removed and seeded in tissue culture 24-

well plates at 1 x 10
6 

cells/ml. The 24-well plates had been coated for 24 hours with Bovine 

Collagen Solution (Purecol
®
, Advanced Biomatrix, San Diego, USA, 1ml/well). Two days post-
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isolation, the wells were evaluated for confluent growth and used for in vitro experiments. 

The experimental protocol was approved by the ethical committee of the Faculty of 

Veterinary Medicine, Ghent University (no 2013_34).  

Details on library construction can be consulted elsewhere (Badarinarayana et al., 2001; 

Chan et al., 2005; Lawley et al., 2006; Raspoet et al., 2014). For the identification of S. 

Enteritidis genes involved in intracellular oviduct cell persistence, oviduct cells were isolated 

and cultured. The S. Enteritidis transposon library (initial library) was grown for 7 h at 37°C in 

LB medium (Sigma-Aldrich, ST. Louis, USA) with agitation in the presence of streptomycin 

(200 μg/ml) and kanamycin (30 μg/ml). The bacterial suspension was added to the oviduct 

tubular gland cells at a concentration of 10
7
 cfu/ml (multiplicity of infection (MOI) 10:1). The 

plates were centrifuged for 10 min at 524 g. The cells were incubated for 1 h at 37°C and 

rinsed three times with Hanks Balanced Salt Solution (HBSS), and then cell culture medium 

containing gentamicin (100 μg/ml; Gibco/Invitrogen) was added. After 1 h, the gentamicin 

concentration was lowered to 30 μg/ml, and the cells were incubated for another 14 h. The 

plates were rinsed three times with HBSS, and the cells were lysed using 1% Triton X-100 

(Sigma-Aldrich, ST. Louis, USA). The plates were placed on an MTS 2/4 digital microtiter plate 

shaker (IKA, Staufen, Germany) for 10 min at maximum speed. Afterward, HBSS was added, 

and the bacteria were collected. Harvested intracellular bacteria (output library) were grown 

in LB medium with streptomycin and kanamycin for 7 h and then used for a second round of 

invasion. In all, three subsequent enrichment passages were performed, and the experiment 

was repeated in five independent replicates.  

For the identification of genes involved in oviduct colonization in vivo, three 21-week-old 

commercial laying hens (Lohman Brown) were pre-medicated intramuscularly with 

buprenorphine hydrochloride at 0.05 mg/kg (Temgesic; Schering-Plough, Kenilworth, NJ) and 

atropine at 0.05 mg/kg. Anesthesia was induced by the administration of isoflurane 

(Schering-Plough). After intubation with a 3.0-mm uncuffed tracheal tube (Hudson RCI, 

Temecula, CA), a continuous oxygen flow of 1.5 to 2.0 liters/min was administered carrying 

1.5 to 3% isoflurane. The oviduct segments were carefully exposed. The oviduct was 

inoculated with 1 ml of the bacterial suspension at the isthmus-magnum transition zone 

(Vicryl
TM

 Plus, Johnson & Johnson, Diegem, Belgium). A 7-h-old culture of the S. Enteritidis 

transposon library was centrifuged and diluted in HBSS until 10
7
 colony forming units 
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(cfu)/ml were obtained. After inoculation, the oviduct was reintroduced into the abdomen, 

and the abdominal wall was sutured. After recovery from anesthesia, the birds were placed 

in separate cages on wood shavings. The animals had unrestricted access to drinking water 

and feed. The hens were euthanized 2 days after infection by an overdose of sodium 

pentobarbital (Sigma-Aldrich, St. Louis, USA). The oviducts were aseptically removed and 

opened longitudinally. Oviducts were rinsed three times in HBSS supplemented with 100 

μg/ml gentamicin to kill extracellular bacteria. Tubular gland cells were isolated according to 

the isolation method developed by Jung-Testas (Jung-Testas et al., 1986) but with an 

additional 50 μg of gentamicin/ml in all enzyme solutions and without penicillin and 

streptomycin until the cells were lysed with 1% Triton X-100 for 10 min, after which the 

bacteria were harvested. Microarray hybridization was performed as (Raspoet et al., 2014). 

Enteritidis gene transcription analysis in oviduct cells  

The S. Enteritidis 147 strain was grown overnight in Luria Bertani (LB) broth (Sigma-Aldrich, 

ST. Louis, USA), supplemented with streptomycin (100µg/ml, Sigma-Aldrich, ST. Louis, USA). 

After overnight incubation, bacterial cultures were centrifuged at 4000 g for 10 minutes and 

re-suspended in cell culture medium without foetal calf serum (FCS). Ten-fold dilutions were 

plated on LB supplemented with streptomycin (100µg/ml) and incubated overnight to 

determine the number of cfu. The culture was kept at 4°C overnight. The bacterial 

suspensions were diluted in cell culture medium to the desired cfu/ml. Primary chicken 

magnum cells were seeded at 1 x 10
6 

cells/ml and were allowed to adhere for 48h (37°C, 5% 

CO2). Subsequently the cells were washed twice with HBSS. Infection was carried out using 

an MOI of 10:1. The cells were incubated for 4 hours with the bacteria after centrifugation (5 

min, 1200 g). A gentamicin protection assay was performed and after 4 hours the cells were 

lysed and intracellular bacteria were recovered (Metcalfe et al., 2010). A detailed description 

of the microarray procedure is described in the study of Raspoet et al. (Raspoet et al., 2014). 

For the comparative control, the strain was grown in LB medium until mid-exponential phase 

was reached (OD600: 0.6). Significantly different transcribed Salmonella genes in magnum 

cells 4h post-infection relative to the comparative control were identified (p<0.05). Signal 

values of the output library were normalized against those of the initial library and used to 

identify mutants for which the gene value had at least a 2-fold increase (fold difference < 

0.5) after the selection procedure compared to the initial library grown in LB. Significance of 
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the centered data, at p≤0.001 for ‘in vitro’ tests and p≤0.05 for ‘in vivo’ tests, was 

determined using a parametric-based statistical test adjusting the individual p-value with the 

Benjamini and Hochberg false discovery rate multiple test correction (Noda et al., 2010). As 

the microarray is mainly annotated for S. Typhimurium, gene sequences were used in a 

BLAST search to look for their S. Enteritidis (SEN) homologues.  

Adhesion to and invasion of S. Enteritidis wild type and ΔfliG in isolated oviduct cells 

The S. Enteritidis 147 strain and the ΔfliG mutant were grown overnight in LB broth (Sigma, 

ST. Louis, USA), supplemented with streptomycin (100µg/ml, Sigma, ST. Louis, USA). S. 

Gallinarum was also grown overnight in LB broth (Sigma, ST. Louis, USA) without the addition 

of antibiotics. After overnight incubation, bacterial cultures were centrifuged at 4000 g for 

10 minutes and re-suspended in cell culture medium without FCS. Ten-fold dilutions were 

plated on LB supplemented with streptomycin (100µg/ml) or without antibiotics for the S. 

Gallinarum strain and incubated overnight to determine the number of cfu. The cultures of 

the strains were kept at 4°C overnight. The bacterial suspensions were diluted in cell culture 

medium to the desired cfu per ml. Two 24-well plates of primary chicken OEC were seeded 

at 1 x 10
6 

cells/ml and were allowed to adhere for 48h (37°C, 5% CO2). Subsequently the 

cells were washed twice with HBSS and incubated for 2 hours with the bacteria. Infection 

was carried out at an MOI of 10:1. Following the 2h incubation, the inoculum was removed 

from each well and oviduct cells were washed 3x with HBSS. Bacterial invasion and adhesion 

was determined as described by Metcalfe et al. (Metcalfe et al., 2010). Cfu were counted 

after incubation for 24h at 37°C. Intracellular and associated bacteria were quantified by 

calculating the number of cfu in the homogenate. Adherent bacteria were calculated by 

subtracting the intracellular bacteria from the associated bacteria. In total 3 biological 

repeats were performed. 

 

2.5 Determination of inflammation in a ligated loop model 

Commercial Lohmann Brown laying hens (obtained from a local hatchery) of 21 weeks old 

were brought under anesthesia as described in section 2.2. Three loops/chicken 

(experimental, in-between and control loop) were ligated in the magnum using surgical 

suture (Vicryl
TM

 Plus, Johnson & Johnson, Diegem, Belgium). The ligated loops were 1.5 to 

2.0 cm long. Sufficient blood supply was ensured to all separate loops. In total 6 hens were 
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used for this experiment. On 3 separate days, each day 2 hens were used and ligated loops 

were constructed in which either 1 ml of the S. Enteritidis 147 wild type (10
7 

cfu/ml) or the 

ΔfliG (10
7
 cfu/ml) mutant were injected in the experimental loop using a 27 gauge needle. 

Each time the included control loop contained pure HBSS. The bacterial cultures were 

prepared overnight as described in section 2.1. After injection of the loops, 2 ml of HBSS 

containing 400 µg/mL of gentamicin (Thermo Fisher Scientific, Erembodegem, België) was 

sprayed over the serosal side of the loops and the loops were reintroduced into the 

abdomen. After 6 hours the hens were euthanized. Samples of the ligated loops were put in 

formalin. A haematoxylin-eosin staining was performed on the oviduct ligated loop samples. 

This allowed visualization of recruited immune cells. A scoring system based on 

histopathological descriptions for experimental infection of the chicken described by 

Withange et al. (Withanage et al., 2005) was used to evaluate the inflammatory state of the 

oviduct tissue (table 1). After looking at all the samples, scoring was performed blinded for 

10 random fields (20X enlargement) by a board certified pathologist. The experimental 

protocol was approved by the ethical committee of the Faculty of Veterinary Medicine, 

Ghent University (EC2015/25). 
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Table 1. Scoring system used for evaluation of inflammation in the oviduct wall. 

score histopathology (haematoxylin-eosin) 

0 Normal 

1 Small increase in dispersed heterophils 

2 Increased numbers of heterophils throughout the tissue, small foci of heterophils. 

3 Small increase in heterophil numbers in longitudinal folds or underlying epithelium 

4 Increased numbers of heterophils associated with epithelium and lamina propria 

5 Extensive influx of heterophils, necrotic damage 

 

Statistical analysis 

All data were analyzed with GraphPad Prism 5 software. For the invasion and adhesion tests, 

a non-parametric Kruskal-Wallis test was performed, followed by a Dunns multiple 

comparison test to determine significant differences. The same statistical tests were used to 

determine significant differences between the groups for the scoring of the oviduct loops. 

For all tests, differences with p-values below 0.05 were considered to be statistically 

significant. 

Results 

Evaluation of the behavior of S. Enteritidis gene mutants in isolated oviduct cells (in vitro) 

and in the hen’s oviduct (in vivo), using a transposon library 

The technique using the transposon library identifies mutants harboring transposon 

insertions in genes that are either important for persistence or multiplication in oviduct cells, 

or mutants that have an advantage in oviduct colonization. Mutants harboring insertions in 

genes, leading to decreases in persistence in oviduct cells were described in a paper by 

(Raspoet et al., 2014). Here we report mutations leading to a significantly increased 

intracellular presence in oviduct cells in vitro and an increased colonization level in the hen’s 

oviduct in vivo. The list of genes that are truncated and lead to increased intracellular 

presence in isolated oviduct cells (in vitro) as well as a significantly increased intracellular 

presence in the hen’s oviduct (in vivo), is shown in table 2. The genes flgE, flgL, fliF encode 
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structural proteins; flhB, flgN, fliI, flgM and fliK are related to the assembly and function of 

flagellin. 

Table 2. Genes involved in intracellular persistence in isolated oviduct cells (in vitro) as 

well as a significantly increased intracellular presence in the hen’s oviduct (in vivo).  

gene symbol locus tag gene description 

flgE SEN1871 flagellar hook protein FlgE 

flgL SEN1864 flagellar hook-associated protein FlgL 

flgM SEN1876 anti-sigma-28 factor FlgM 

flgN SEN1877 flagella synthesis protein FlgN 

flhB SEN1089 flagellar biosynthesis protein FlhB 

fliF SEN1040 flagellar MS-ring protein 

fliI SEN1037 flagellum-specific ATP synthase 

fliK SEN1035 flagellar hook-length control protein 

 

Mutations in the genes listed in Table 2 resulted in a significantly increased intracellular 

persistence of Salmonella in oviduct cells in an in vitro assay (p<0.001) and after inoculation 

in the hen’s oviduct in vivo (p<0.05). 

 

S. Enteritidis flagellar gene transcription analysis in oviduct cells  

Salmonella flagellar genes of which the transcription significantly differed intracellularly in 

oviduct cells relative to the LB control are listed in table 3. In total 27 flagellar genes were 

downregulated inside oviduct cells. Gene characteristics range from assembly of the flagellar 

body (flgA, flgD, flgL, flgN, fliH, fliO, fliP), structural proteins (flgB,flgE to flgJ, fliE to fliG, fliJ, 

fliK to fliN, fliS to fliY) to regulation of its activity (fliA, fliG, fliM, fliZ). 
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Table 3. List of flagella-related genes of which the transcription significantly differed 

intracellulary in oviduct cells relative to the LB control.  

Gene symbol Fold decrease vs LB Gene symbol Fold decrease vs LB 

flgA 5.38 fliG 6.78 

flgB 10.72 fliH 4.02 

flgD 33.92 fliJ 6.76 

flgE 15.22 fliK 3.93 

flgF 9.79 fliL 6.25 

flgG 5.72 fliM 23.28 

flgH 7.22 fliN 3.58 

flgI 7.67 fliO 2.56 

flgJ 9.52 fliP 3.71 

flgL 8.12 fliS 14.84 

flgN 3.29 fliT 5.00 

fliA 2.88 fliY 2.20 

fliE 3.09 fliZ 7.43 

fliF 4.37 

  The expression of flagella-related genes was significantly (more than two-fold, p<0.05) down 

regulated in hens magnum cells 4h post infection compared with log phase LB. 

Quantification of intracellular and adherent bacteria 

The fraction of bacteria that were able to adhere and invade in chicken OEC was determined. 

There was no significant difference in the percentage of adherent bacteria to the oviduct 

cells between the strains (figure 1). The S. Enteritidis 147 parent strain was significantly 

more invasive in oviduct cells compared to the aflagellated S. Gallinarum strain (p<0.05). This 

was not the case for the aflagellated S. Enteritidis 147 ∆fliG mutant strain.  
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Figure 1. Percentage of adhesion and invasion in oviduct epithelial cells. Values shown are 

means and SEM from three independent experiments for S. Enteritidis 147, S. Gallinarum, 

ΔfliG (deletion strain in S. Enteritidis 147). Asterisks indicate significance (p<0.05). 

 

Scoring of inflammation in the ligated oviduct loop 

Results obtained from scoring the inflammatory state of the oviduct wall are presented in 

figure 2. S. Enteritidis attracted significantly more heterophils than its aflagellated mutant 

ΔfliG. 
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Figure 2. Heterophilic granulocyte infiltration scored in ligated oviduct loops. Scoring was 

performed 6 hours after injection of HBSS (A), S. Enteritidis (B) and ΔfliG mutant of S. 

Enteritidis (C). In total, 3 loops were analyzed per strain. Haematoxylin-eosin staining was 

performed on the oviduct samples. Scoring was done blinded and based upon 10 random 

fields (20X enlargement) of each oviduct sample. Significant differences are indicated by an 

asterisk. 

DISCUSSION 

Multiple hypotheses have been put forward in order to explain why the Salmonella (S.) 

serotype Enteritidis has been successful in contaminating eggs. The best known hypotheses 

are based on the observations that the serotype Enteritidis is capable of colonizing the 

chicken oviduct without causing pathological changes and its superior survival in egg white 

as compared to other serotypes (Coward et al., 2013; De Vylder et al., 2013; Raspoet et al., 

2014; Raspoet et al., 2011). The strategy used by S. Enteritidis to persistently colonize the 

chicken oviduct without causing inflammation however, remained hitherto largely 
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unexplained (De Buck et al., 2004b; Gantois et al., 2008a). In the present study, we 

investigated the role of flagella in chicken oviduct colonization. Although the presence of 

flagella has been reported to be essential for the full invasive potential of Salmonella strains 

in various tissue cultures (Jones et al., 1992; Schmitt et al., 2001), no studies regarding 

flagellin were done yet with primary chicken oviduct epithelial cells (OEC). S. Enteritidis 

grown in peritoneal cavities of chickens do not express flagella (Chart et al., 1993). Here we 

report that absence of flagella in S. Enteritidis does not significantly affect invasiveness in 

chicken OEC. However, we also found that expression of flagella by S. Enteritidis is 

downregulated following colonization of the chicken oviduct and in chicken OEC. Moreover, 

using a transposon library screen, we showed that flagellar mutants have a colonization 

advantage in the chicken oviduct. Downregulation of flagella expression thus appears to be 

important for successful oviduct colonization by S. Enteritidis. In addition, an aflagellate 

mutant ΔfliG of S. Enteritidis attracted less heterophilic granulocytes in a ligated oviduct loop 

model, thus escaping the host’s primary inflammation reaction. 

This is in accordance with the behavior of aflagellate mutants in other Salmonella serotypes. 

Indeed, lack of flagella in S. Dublin correlates with a reduced early inflammation in the ceca 

of mice (Yim et al., 2014). Similarly, lack of flagella in S. Typhimurium is associated with 

reduced heterophil influx in experimentally infected chickens (Pan et al., 2012). Conversely, 

when flagella are expressed in a mutant of the naturally aflagellated S. serovar Gallinarum 

biovar Gallinarum, the flagellated mutant induces a higher expression of inflammatory 

cytokines in chicken kidney cells compared to the parent strain. Also, mortality rates are 

lower in birds challenged with a flagellated Gallinarum mutant compared to the wild-type 

Gallinarum strain (de Freitas Neto et al., 2013). 

Recruitment of heterophilic granulocytes is an essential primary response to infectious insult 

in the chicken, as heterophilic granulocytes exhibit a range of activities including adhesion, 

chemotaxis, phagocytosis and microbicidal activity through degranulation and oxidative 

burst (Genovese et al., 2013). Swaggerty et al. selected broilers for higher levels of pro-

inflammatory mediators. This resulted in progeny with increased in vitro heterophil function 

and an increased resistance against S. Enteritidis challenge infection (Swaggerty et al., 2006; 

Swaggerty et al., 2014). In the case of S. Enteritidis colonization of the oviduct in the laying 

hen however, it appears that downregulation of the flagella expression hampers efficient 
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clearance of the bacteria by the heterophilic granulocytes. Taken together, the present 

studies indicate that S. Enteritidis is capable of avoiding an effective inflammatory response 

when colonizing the chicken oviduct and when invading chicken OEC through 

downregulation of flagellar gene expression. Further studies are needed to identify the 

signaling and sensing mechanisms involved in the downregulation of flagella expression by S. 

Enteritidis in the environment of the chicken oviduct.  
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Prevention of egg contamination by Salmonella Enteritidis after oral 

vaccination of laying hens with Salmonella Enteritidis ∆tolC and 

∆acrABacrEFmdtABC mutants 

Abstract 

Vaccination of laying hens has been successfully used to reduce egg contamination by 

Salmonella Enteritidis, decreasing human salmonellosis cases worldwide. Currently used 

vaccines for layers are either inactivated vaccines or live attenuated strains produced by 

mutagenesis. Targeted gene deletion mutants hold promise for future vaccines, because 

specific bacterial functions can be removed that may improve safety and allow 

differentiation from field strains. In this study, the efficacy of Salmonella Enteritidis ΔtolC 

and ΔacrABacrEFmdtABC strains in laying hens as live vaccines was evaluated. The mutants 

are deficient in either the membrane channel TolC (ΔtolC) or the multi-drug efflux systems 

acrAB, acrEF and mdtABC (ΔacrABacrEFmdtABC). These strains have a decreased ability for 

gut and tissue colonization and are unable to survive in egg white, the latter preventing 

transmission of the vaccine strains to humans. Two groups of 30 laying hens were orally 

inoculated at day one, 6 weeks and 16 weeks of age with 10
8 

cfu of either vaccine strain, 

while a third group was left unvaccinated. At 24 weeks of age, the birds were intravenously 

challenged with 5x10
7
 cfu Salmonella Enteritidis PT4 S1400/94. The vaccine strains were not 

shed or detected in the gut, internal organs or eggs, 2 weeks after the third vaccination. The 

strains significantly protected against gut and internal organ colonization, and completely 

prevented egg contamination by Salmonella Enteritidis under the conditions of this study. 

This indicates that Salmonella Enteritidis ΔtolC and ΔacrABacrEFmdtABC strains might be 

valuable strains for vaccination of layers against Salmonella Enteritidis. 
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Introduction 

Salmonella Enteritidis first emerged in the 1980s as a significant threat to public health 

worldwide. Eggs were identified as the main food vehicle causing human illness (Braden, 

2006; Greig and Ravel, 2009). A sustained commitment of the authorities, implementation of 

Salmonella control programs and serious investment in Salmonella research led to 

international progress in decreasing the incidence of both egg contamination (Esaki et al., 

2013) and human infections (O'Brien, 2013). Vaccination in particular contributed to the 

decline in the number of recorded human cases of Salmonella Enteritidis (Cogan and 

Humphrey, 2003). Both inactivated and live vaccines have been shown to reduce Salmonella 

colonization in layers and contamination of eggs (Atterbury et al., 2009; de Freitas Neto et 

al., 2008; Gantois et al., 2009a). Several live vaccines were developed and proven to be 

efficient against Salmonella colonization (Gantois et al., 2006; Kilroy et al., 2015; Matsuda et 

al., 2011). Live vaccines may stimulate both cell-mediated and humoral immunity, can 

induce rapid protection by colonization-inhibition and are easy to administer, i.e. through 

the drinking water (Atterbury et al., 2009; Van Immerseel et al., 2005). A major concern of 

live vaccines however is safety, including the possible risk of reversion to virulence (Van 

Immerseel et al., 2013). Whole gene deletion mutants are generally considered to be less 

capable of reversion to a virulent phenotype as compared to strains harboring point 

mutations or undefined genetic alterations. For Salmonella Enteritidis, a lot of knowledge 

has been generated on the function of many of the chromosomal genes, and targeted 

deletions of specific genes related to virulence or persistence in a host have been used to 

construct live vaccine strains (De Cort et al., 2013; De Cort et al., 2014; Hassan and Curtiss, 

1997; Nassar et al., 1994; Parker et al., 2001). In the case of Salmonella vaccines for laying 

hens, the issue of vaccine safety has an additional dimension, as safety should not only 

include the target species, but also the risk of transmission to humans through consumption 

of the eggs. Deleting genes important for virulence in mammals, but also deleting genes that 

are involved in egg white survival can be a key issue because this will prevent transmission of 

the vaccine strains to the egg consumers. 

Egg white survival is a key characteristic of Salmonella Enteritidis transmission to humans. 

Because of the high pH, iron restricting conditions and the presence of a variety of 

antimicrobial molecules, egg white is an antimicrobial matrix (Pang et al., 2013). 
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Lipopolysaccharide (LPS) structure (Gantois et al., 2009b), lysozyme inhibitors (Callewaert et 

al., 2008) and protein and DNA damage repair mechanisms (Clavijo et al., 2006; Lu et al., 

2003) are important in egg white survival of Salmonella. Deleting genes encoding these 

functions could thus generate strains with a deficient egg white survival. Recently obtained 

data suggested that the multi-drug resistance (MDR) pump systems and the TolC outer 

membrane channel, through which MDR pumps export antibacterial molecules out of the 

bacterial cell, are also involved in egg white survival (Raspoet, 2014). Siderophore export 

through TolC counteracting iron-deprivation in egg white, or MDR pump-mediated export of 

antimicrobial molecules out of the bacterial cell may be involved in this (Clavijo et al., 2006; 

Li et al., 2015).  

In the current study, we aimed to evaluate the efficiency of the Salmonella Enteritidis ΔtolC 

and ΔacrABacrEFmdtABC strains, the latter devoid in 3 MDR efflux pumps, as live vaccines 

for protection against Salmonella Enteritidis egg contamination and tissue colonization in 

laying hens.  

Materials and Methods 

Vaccine and challenge strains  

The vaccine strains ΔtolC and ΔacrABacrEFmdtABC are defined mutants of Salmonella 

Enteritidis 147 phage type 4. The wild type strain 147 was originally isolated from egg white 

and is resistant to streptomycin. The strain is known to colonize the gut and internal organs 

to a high level (Bohez et al., 2008; Methner et al., 1995). All mutations were constructed 

according to the one step inactivation method previously described by Datsenko and 

Wanner (Datsenko and Wanner, 2000). Briefly, for the ΔtolC mutant, a kanamycin resistance 

cassette, flanked by FRT-sites, was amplified from the pKD4 plasmid with specific primers, 

homologous with the flanking region of the target gene. The resulting PCR product was used 

for recombination on the Salmonella Enteritidis 147 strain chromosome using the pKD20 

helper plasmid encoding the λ Red system, promoting recombination between the native 

gene and PCR adjusted antibiotic resistance cassette. Recombinant clones were selected on 

kanamycin containing plates. Replacement of the target gene by the resistance cassette was 

confirmed by PCR. The deletion was P22-transduced into a new Salmonella Enteritidis 147 

strain. The antibiotic resistance cassette was eliminated using the pCP20 helper plasmid, 



Chapter 3.3 

 

94 

 

encoding the FLP-recombinase, mediating recombination between the FRT-sites flanking the 

kanamycin resistance cassette. For the ΔacrABacrEFmdtABC strain, the procedure was 

carried out in 3 steps, successively deleting the acrAB, acrEF and mdtABC genes. P22 

transduction was done in the stepwise generated mutants. All targeted genes were 

completely deleted from start to stop codon, as confirmed by sequencing analysis. 

Salmonella Enteritidis S1400/94 was used as a challenge strain. The characteristics of this 

strain have been described previously (Allen-Vercoe and Woodward, 1999).  

The challenge and vaccine strains were incubated overnight with gentle agitation (60 rpm) at 

37°C in Luria Bertani (LB) medium (Sigma, ST. Louis, MO, USA). To determine bacterial titers, 

ten-fold dilutions were plated on brilliant green agar (BGA, Oxford, Basingstoke, Hampshire, 

UK) for the challenge strain. The vaccine strains were plated on LB supplemented with 1% 

lactose, 1% phenol red and 100 µg/ml streptomycin to determine the titer, because these 

strains do not grow on traditional Salmonella culture media. The vaccine and challenge 

strains were diluted in HBSS (Hanks Balanced Salt Solution, Invitrogen, Paisley, England) to 

10
8
 cfu/ml.  

Experimental birds  

Ninety (90) day-old Lohmann Brown laying hens (De Biest, Kruishoutem, Belgium) were 

randomly divided into 3 groups and housed in separate units. Commercial feed and drinking 

water was provided ad libitum. The animal experiment in this study followed the 

institutional guidelines for the care and use of laboratory animals and was approved by the 

Ethical Committee of the Faculty of Veterinary Medicine, Ghent University, Belgium 

(EC2013/135). Euthanasia was performed with an overdose of sodium pentobarbital in the 

wing vein. 

Experimental setup   

Two different groups (n=30) of animals were orally immunized at day of hatch, at 6 weeks of 

age and at 16 weeks of age through crop instillation of 0.5 ml containing 10
8
 cfu Salmonella 

Enteritidis 147 ΔtolC (group 1) or Salmonella Enteritidis 147 ΔacrABacrEFmdtABC (group 2). 

A third group of birds (n=30) was kept as non-immunized but Salmonella challenged positive 

controls (group 3). At the age of 18 weeks, serum samples were taken for quantification of 
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anti-Salmonella Enteritidis antibodies in an LPS-ELISA (Desmidt et al., 1996). At the same 

time, cloacal swabs were taken in each group and bacteriologically analyzed for the presence 

of the vaccine strains. At 21 weeks of age, all the hens were in lay. Eggs were collected daily 

during 3 weeks for bacteriological detection of the vaccine strain in the egg content. At 24 

weeks of age, all the animals were intravenously inoculated in the wing vein with 0.5 ml 

containing 5 x 10
7
 cfu of the Salmonella Enteritidis challenge strain S1400/94. This protocol 

was already used previously to produce high levels of internal egg contamination (De Buck et 

al., 2004; Gantois et al., 2006). The eggs were collected daily during 3 weeks after 

inoculation and analyzed for the presence of the challenge strain. Three weeks after 

challenge inoculation, all the animals were euthanized by an overdose of pentobarbital in 

the wing vein. Samples of the spleen, oviduct, ovary, uterus and caecum were aseptically 

removed for bacteriological quantification of challenge and vaccine strain bacteria. 

ELISA to quantify anti-LPS antibodies 

For analysis of anti-Salmonella LPS antibodies in serum samples, a previously described 

indirect ELISA protocol was used (Desmidt et al., 1996). Three 96 well-plates (Sigma, St. 

Louis, MO, USA) were coated with 100 µl of an LPS solution (10 µg/ml) in 0.05 M carbonate-

bicarbonate (pH 9.6; coating buffer) and incubated for 24 hours at 4°C. The LPS was purified 

from Salmonella Enteritidis PT4 strain. The plates were rinsed four times with phosphate 

buffered saline (PBS, Sigma, St. Louis, MO, USA) supplemented with 0.1% Tween-20 (Sigma, 

St. Louis, MO, USA; washing buffer) between each step. In the first step, 100 µl PBS (Sigma, 

St. Louis, MO, USA) supplemented with 1% bovine serum albumin (BSA, Sigma, St. Louis, 

MO, USA; blocking buffer) was added to the wells for one hour at 37°C. The blocking buffer 

was then removed. Secondly, serum samples of animals from the different groups were 

diluted in blocking buffer (1:200) and added to the plates (100 µl). As an internal negative 

control, serum from a Salmonella free chick was used. Serum from a chick that had been 

infected experimentally with Salmonella Enteritidis PT4, strain 76Sa88, was used as an 

internal positive control. The plates were incubated on a shaking platform for 2 hours at 

37°C. Thirdly, peroxidase-labelled rabbit anti-chick IgG (100 µl, Sigma, St. Louis, MO, USA) 

was diluted (1:2000) in blocking buffer and added to the wells for 1 hour and 30 min while 

shaking at 37°C. Finally 50 µl of TMB substrate (Fisher Scientific, Erembodegem, Belgium) 

was added to the wells. The reaction was blocked with 50µl of sulfuric acid (0.5M). The 
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absorbance was measured in an ELISA reader at 450nm. Every sample was analyzed in 

duplicate. Data were shown as S/P ratios, thus (OD(sample)-OD(negative 

control))/(OD(positive control)-OD(negative control)). Negative values were considered as 

zero. 

Bacteriological examination of the challenged birds 

Cloacal swabs taken at week 18 were incubated overnight at 37°C in buffered peptone water 

(BPW, Oxoid, Basingstoke, Hampshire, UK). Afterwards a loopful was plated on LB plates 

supplemented with 1% lactose, 1% phenol red and 100 µg/ml streptomycin (Sigma, St.Lous, 

MO, USA) for the detection of the vaccine strains Salmonella Enteritidis 147 ΔtolC and 

ΔacrABacrEFmdtABC.  

Samples of caecum, spleen, ovary, oviduct and uterus were pre- enriched and homogenized 

in BPW (10% weight/volume suspensions) and 10-fold dilutions were made in HBSS 

(Invitrogen, Paisley, England). Six droplets of 20 µl of each dilution were plated on BGA (for 

quantification of the challenge strain) or on LB supplemented with 1% lactose, 1% phenol 

red and 100 µg/ml streptomycin (for quantification of the vaccines). After overnight 

incubation at 37°C, the number of cfu/g tissue was determined by counting the number of 

bacterial colonies for the appropriate dilution. Samples that tested negative after direct 

plating for the challenge strain were enriched in tetrathionate brilliant green broth (Oxoid, 

Basingstoke, UK) by overnight incubation at 37°C. After incubation, a loopful of the 

tetrathionate brilliant green broth was plated on BGA. 

Egg production and bacteriological examination of eggs 

Eggs were collected daily for 6 weeks from week 21 onwards and the egg production was 

determined. Each day, eggs of six hens per group were pooled in one batch, yielding an egg 

per batch number that varied between one and six. Upon collection, lugol solution and 95% 

ethanol were used to decontaminate the surface of the eggshell. After decontamination of 

the eggshell, the eggs were broken aseptically and the total content of the eggs was pooled 

and homogenized per batch. A volume of 40 ml of BPW was added for each egg to the 

pooled egg content and incubated for 48h at 37°C. To detect the vaccine strains, a loopful of 

the BPW broth was plated on LB plates supplemented with 1% lactose, 1% phenol red and 
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100µg/ml streptomycin. To detect the challenge strain, a loopful of the BPW broth was 

plated on BGA. Additionally, further enrichment was done overnight at 37°C in tetrathionate 

brilliant green broth and after incubation, a loopful of broth culture was streaked onto BGA.  

Statistical analysis 

SPSS 22.0 software was used for statistical analysis. Cloacal swabs, batches of eggs and data 

of cfu Salmonella/gram tissue of the caecum, spleen, ovary, oviduct and uterus after 

enrichment were categorized as either positive or negative. A binary regression model was 

used to determine differences between the groups. For all tests, differences with p-values 

below 0.05 were considered to be statistically significant.  

Results 

Detection of anti-Salmonella LPS antibodies in serum 

Data derived from the LPS-ELISA are shown in figure 1. The data are represented as S/P 

ratios, thus (OD(sample)-OD(negative control))/(OD(positive control)-OD(negative control)). 

 

Figure 1. (OD(sample)-OD(negative control))/(OD(positive control)-OD(negative control) 

measured in the ELISA detecting anti-Salmonella LPS antibodies. Serum of 18-week old 

laying hens, vaccinated at day 1, 6 weeks of age and 16 weeks of age with Salmonella 

Enteritidis 147 ΔtolC and Salmonella Enteritidis 147 ΔacrABacrEFmdtABC was analysed.  
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Analysis of cloacal swabs and eggs for the presence of vaccine strains 

Not a single Salmonella vaccine isolate was obtained from cloacal swabs or egg content 

samples. 

Clinical signs and egg production after challenge 

Over the whole experiment, there was no reduction in feed and water intake in either of the 

groups. The egg production rate after infection in the unvaccinated control group dropped 

to 59% in the first week post-infection (pi) and raised to 75% and 86% in the second and 

third week pi. The egg production rate did not decrease significantly after challenge in the 

vaccinated groups compared to before challenge. The egg production percentage in the 

group vaccinated with the ΔtolC strain was 60%, 100% and 90%, in the first, second and third 

week after challenge. In the group vaccinated with the ΔacrABacrEFmdtABC strain, the egg 

production percentage was 56%, 70% and 68% respectively. Some eggs were thin-shelled 

and malformed during the first week after infection. At the end of the experiment, 11 hens 

died in the group of animals vaccinated with the Salmonella Enteritidis 147 

ΔacrABacrEFmdtABC strain because of cannibalism.  

Isolation of the challenge strain from egg contents 

Not a single Salmonella positive egg batch was detected from animals vaccinated with the 

Salmonella Enteritidis 147 ΔtolC and Salmonella Enteritidis 147 ΔacrABacrEFmdtABC strains 

(table 1). During the first week, three egg batches out of 26 were Salmonella positive in the 

non-vaccinated control group at direct plating. In the third week pi, no positive egg batches 

were found. 
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Table 1. Percentage of egg content batches positive for the challenge strain Salmonella 

Enteritidis S1400/94 after enrichment.  

Group   Week 1 Week 2 

Non-vaccinated 
 

70
a
(74)

a
 0(17)

a
 

ΔtolC 
 

0
b
(0)

b
 0(0)

b
 

ΔacrABacrEFmdtABC   0
b
(0)

b
 0(0)

b
 

Animals were vaccinated at day one, 6 weeks and 16 weeks of age with 10
8 

cfu of either 

Salmonella Enteritidis 147 ΔtolC or Salmonella Enteritidis 147 ΔacrABacrEFmdtABC strains or 

kept as non-immunized controls. Results are shown for egg content samples, plated on BGA 

after BPW (48h, 37°C) incubation. Percentage of batches positive after enrichment in 

tetrathionate brilliant green broth (37°C, overnight) are shown between brackets. Different 

superscripts within a column indicate significant differences between the groups (p<0.05) 

Isolation of the challenge strain from the organs at 3 weeks post-infection  

No samples were positive at direct plating. Table 2 presents the percentage of Salmonella-

positive organ samples after enrichment, in vaccinated and non-vaccinated groups, at 3 

weeks post challenge. Vaccination with the Salmonella Enteritidis 147 ΔtolC strain 

significantly decreased the number of Salmonella positive samples in the spleen, caecum 

and ovary as compared to the control group. Vaccination with the ΔacrABacrEFmdtABC 

strain significantly reduced the number of Salmonella positive samples in the caecum, ovary 

and oviduct.  

Table 2. Percentage of Salmonella-positive samples after enrichment.  

  control ΔtolC ΔacrABacrEFmdtABC 

uterus 13.3 10 15.9 

spleen  80 50
*
 63.2 

caecum 30 6.6
*
 0

*
 

ovary 70 36.6
*
 31.6

*
 

oviduct 46.6 30 5.3
*
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Samples of uterus, spleen, caecum, ovary and oviduct were taken, 3 weeks post-infection 

with Salmonella Enteritidis S1400/94. Animals were vaccinated at day 1, week 6 and week 16 

with either Salmonella Enteritidis 147 ΔtolC or Salmonella Enteritidis 147 

ΔacrABacrEFmdtABC. Statistically significant differences (p<0.05) in percentage of positive 

organ samples between vaccinated groups and the non-vaccinated control group are 

indicated with an asterisk. 

DISCUSSION 

Current commercial live vaccines contain strains harboring undefined mutations in one or 

more genes on the chromosome or defined point mutations. Strains harboring (undefined or 

defined) point mutations might, however, revert to a virulent phenotype and are thus 

considered to be unsafe (Audisio and Terzolo, 2002; Van Immerseel et al., 2013). Future live 

vaccines should therefore contain fully defined strains carrying (multiple) gene deletions for 

purposes of safety. Deletion of entire genes additionally permits differentiation from wild 

type strains, allowing quality control. Numerous experimental vaccines were already tested 

in various animal hosts, including chickens, but data on the protection of these live vaccines 

against egg contamination are scarce (Gantois et al., 2006; Hassan and Curtiss, 1997; Nassar 

et al., 1994). 

Successful attenuation of the wild type strain requires prior knowledge of the pathogen’s 

virulence factors. A vaccine strain used for the prevention of (vertical) egg contamination of 

Salmonella Enteritidis ideally colonizes and induces local immunity in the reproductive tract. 

From a public health point of view, it may not persist here and preferably does not survive in 

egg white. A logical approach is to eliminate genes playing a role in egg white survival. In the 

current study defined mutants in MDR transporters and the TolC outer membrane channel 

were used as vaccine strains. The TolC promoter is activated after contact with egg white at 

42°C, but not under standard ‘in vitro’ culture conditions (Raspoet, 2014). The TolC outer 

membrane channel is used by MDR transporters (eg acrAB, acrEF, mdtABC) to export host 

antibacterial compounds and bacterial molecules such as siderophores, and is involved in 

survival in harmful environments, including egg white (Pan et al., 2010). The ΔtolC and 

∆acrABacrEFmdtABC vaccine strains can no longer survive in egg white, thereby eliminating 

the risk of human exposure through eggs (Raspoet, 2014). To our knowledge, these genes 
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were never associated with protective immunity in chickens, allowing wild type-like antigen 

presentation. 

The actual immune mechanism explaining the protection against Salmonella Enteritidis 

colonization observed in the current trial is not completely clear. Immunization with 

Salmonella vaccines can induce variable humoral and cell-mediated responses that do not 

always correlate with acquired resistance to re-infection (Mastroeni et al., 2001). A role for 

humoral responses in the clearance of Salmonella infections has been shown for using 

inactivated vaccines, which are less able to induce cellular responses but are still partially 

protective (Feberwee et al., 2001). Cell-mediated immunity was not investigated during this 

trial but for Salmonella in poultry, susceptibility to the infection is correlated with a fall in 

CD4
+
 and CD8

+
 T-lymphocytes and γδ T-lymphocytes in the oviduct, and with T-lymphocyte 

hyporesponsiveness (Johnston et al., 2012). Live vaccines have been shown to increase 

numbers of CD4
+
 and CD8

+
 T-lymphocytes to a certain level in the gut wall (Berndt and 

Methner, 2001). Future studies should further investigate the role of the humoral and 

cellular immune responses during vaccine-induced protection. Possibly a combination of 

cell-mediated immunity and a strong humoral response are yielding additional protective 

effects.  

To conclude, data from this trial indicate that Salmonella Enteritidis ΔtolC and 

ΔacrABacrEFmdtABC strains are safe vaccines that can induce protection against internal 

organ colonization after intravenous inoculation of a Salmonella Enteritidis challenge strain. 

The vaccine strains were able to completely prevent egg contamination with Salmonella 

Enteritidis in the current in vivo trial.  
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General discussion 

Vaccination against Salmonella has been a successful control method in poultry for years. 

Literature on vaccination against Salmonella colonization is very broad. In this work we aimed to 

highlight and discuss challenges in vaccine development. Although the prevalence of Salmonella 

serotypes, has declined in both poultry and humans due to vaccination programs, there are 

some challenges in vaccine development that will gain importance in the future. First, new 

serotypes are constantly emerging and current vaccines were not developed to control these 

serotypes. Secondly, there is a constant pressure to guard and improve vaccine safety. The 

general purpose of the present study was to lay the scientific foundation for novel vaccination 

strategies to protect laying hens and their eggs from Salmonella contamination under 

continuously evolving current and future epidemiological conditions. For live vaccines, it is a 

common belief that defined deletion mutants are safer than undefined mutants, since the 

chance of reversion to virulence is minimized (Van Immerseel et al., 2013). In the current work it 

was aimed to specifically gain scientific insights into the role of flagella in the pathogenesis of 

Salmonella infections in laying hens, with special emphasis on those aspects that have an impact 

on vaccination. Secondly, as non-phasic or monophasic strains are emerging it was aimed to 

evaluate the effect of a currently used live Typhimurium vaccine against infection with the 

monophasic variant and to evaluate the efficacy of a newly developed Salmonella Enteritidis 

defined mutant in multi-drug resistance pumps against egg contamination by Salmonella 

Enteritidis.  

 

4.1 Understanding the dynamics of Salmonella serotypes in poultry 

Understanding the historical factors that contributed to population shifts of Salmonella 

serotypes provides insights for developing strategies to control current Salmonella problems. 

The predominant serovars in the first half of the last century, Salmonella Gallinarum biovars 

Gallinarum and Pullorum, were successfully eradicated from commercial poultry in most 

countries in the EU through Salmonella control programs, but still are a problem in many other 
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countries worldwide. In the last couple of decades of the 20
th

 century, Salmonella Enteritidis 

became the predominant serovar in poultry and eggs worldwide, not only colonizing birds but 

also causing salmonellosis in humans. Salmonella Enteritidis consequently has been targeted by 

a number of control programs over the past few decades with great success. The decrease of 

Salmonella Enteritidis unfortunately coincides with the emergence of different strains belonging 

to various serotypes. Often multi-drug resistance is seen in the new emerging strains (Mandilara 

et al., 2013).  

Evaluating the protection of currently used vaccines against these emerging strains is important 

in order to find out whether novel strategies for vaccination need to be developed. Salmonella 

Typhimurium strain Nal2/Rif9/Rtt, present in the commercially available live vaccines AviPro 

Salmonella Duo and AviPro Salmonella VacT was proven to be efficacious after challenge with a 

low, intermediate and high dose of the emerging monophasic variant of Salmonella 

Typhimurium serotype 4,12: 1,4,[5],12:i:-. The monophasic variants are Typhimurium strains 

that have mutations in genes involved in flagella production, while almost all other antigens are 

well conserved. Protection of a vaccine strain against different Salmonella serotypes or variants 

in laying hens however is not self-evident. Oral vaccination of a Salmonella Typhimurium 

cya/crp double mutant for instance, significantly reduced levels of the Salmonella Typhimurium 

wild-type strain but was ineffective against Salmonella Enteritidis challenge (Hassan and Curtiss, 

1994). Furthermore, if the immune responses are specifically directed at surface antigens, other 

serotypes can conquer the available niche. It is known that colonization-inhibition is a serotype-

specific phenomenon. This type of protection as well as immune-related protection (antibodies 

or cell-mediated immunity) requires cell surface molecules that are conserved amongst strains 

against which one wants to protect. Once a given serotype is cleared following vaccination, 

other serotypes expressing different surface antigens may conquer the available niche. Indeed, 

Salmonella Heidelberg shares some common surface antigens with Salmonella Enteritidis that 

Salmonella Kentucky does not, which may help explain why Salmonella Kentucky has increased 

in recent years in the US (Foley et al., 2011).  
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4.2 Current limitations, pitfalls and shortcomings of vaccination 

Various prophylactic measures have been employed to control Salmonella infections in poultry 

production in general and in laying hens in particular. The aim of all control programs should be 

to provide and implement an integrated strategy including a series of complementary 

prophylactic measures. Such prophylactic measures are to produce Salmonella-free day-old 

chicks, Salmonella-free poultry feeds and Salmonella-free poultry houses. Within such a 

program, rigorous and planned vaccination is exceptionally important and should start as early 

as possible. Day-old chicks are most susceptible to Salmonella infection because the 

autochthonous intestinal microbiota has not yet developed sufficiently. Commercial poultry are 

often infected with Salmonella within the first week of life when the infectious dose required is 

several orders of magnitude less than that of an adult chicken (Cox et al., 1990).  

Several commercial vaccines based on live attenuated Salmonella strains are available and 

approved for vaccination of poultry. In Belgium, live oral vaccines are currently on the market 

for active immunization of laying hens to reduce mortality, colonization, shedding and faecal 

excretion of Salmonella Typhimurium and/or Enteritidis. Acquired immunity develops within 15 

days of the first vaccination. Vaccination is effective in reducing the overall number of positive 

birds and the level of colonization. These vaccine strains contain several point mutations in 

genes encoding essential enzymes and metabolic control centers of the bacterium, resulting in 

prolonged generation times and corresponding reductions in virulence (Linde et al., 1997). 

Although only very sporadically reported for specific live vaccines, the possible risk of reversion 

to virulence of current undefined vaccines combined with the fact that eggs and egg-products 

continue to be the most important source of Salmonella infection, has created a market pull 

towards developing defined deletion vaccines able to prevent egg colonization. Ideally such a 

vaccine should contain a strain that is able to offer optimal immune protection but cannot 

survive in egg white. The latter directly avoids transmission of the vaccine strains to the egg 

consumers. Previous studies from our group showed that colonization of and survival in egg 

white is critically important for contamination of table eggs by Salmonella Enteritidis (De Buck 

et al., 2004; De Vylder et al., 2013). Genes important for survival in egg white therefore need to 

be identified. A number of genes were found to be important for colonization and egg white 
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survival. This provides vital new data for the design of strategies to control Salmonella in laying 

hens and reduce transmission to humans (Chaudhuri et al., 2013). In the current PhD, 

Salmonella Enteritidis ∆tolC and ∆acrABacrEFmdtABC vaccine strains were created and 

evaluated for their protection against (vertical) egg contamination in a 6 months in vivo 

Salmonella Enteritidis challenge model. The mutants are deficient in either the membrane 

channel TolC (ΔtolC) or the multi-drug efflux systems acrAB, acrEF and mdtABC 

(ΔacrABacrEFmdtABC). Unlike most other defined deletion strains used for vaccination of laying 

hens, these deleted genes are not involved in metabolism or virulence. Furthermore, all surface 

antigens are intact and their multiplication under physiological circumstances is not 

compromised. These strains have a decreased ability for gut and tissue colonization, and are 

unable to survive in egg white, the latter preventing transmission of the vaccine strains to 

humans. After vaccination, egg contamination was completely prevented in a 6 months in vivo 

challenge model and the vaccine strains were not able to survive in egg white (Kilroy et al., 

2016). Moreover, organ colonization was also significantly reduced but could not be completely 

prevented. Protection against infection of other Salmonella serovars needs to be evaluated, 

even if these serotypes are rarely associated with laying hens, eggs and egg products.  

 

4.3 The role of flagellin in vaccination and infection. 

Completely eliminating salmonellosis is likely to be an utopia, since this pathogen is present in 

the environment and an internal gut colonizer. Minimizing the global salmonellosis burden 

requires different approaches depending on the Salmonella serotype and the respective host. 

Vaccines containing different defined deletion strains are needed. This has major implications 

for vaccine design (Morgan et al., 2004). Additionally, vaccines containing different serotypes 

with the same gene deletion do not necessarily result in the same type of attenuation or 

protection, since the genetic background of the serotype has a major impact (Foley et al., 2013). 

Moreover, it remains uncertain whether a double or triple mutant would combine the 

characteristics of the corresponding single mutations and if the additional deletion might affect 

the capability to induce an effective adaptive immune response. Indeed, immunization with the 
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double attenuated ∆phoPfliC mutant compared to the single phoP mutant did not reduce 

Salmonella contamination (Methner et al., 2011).  

Another limitation of currently registered live or inactivated vaccines for laying hens, is the lack 

of serological differentiation between vaccinated and infected animals. Deleting flagellin would 

allow such serological differentiation and could be a straightforward solution. However, earlier 

studies show that attenuated and less invasive flagellin mutants induce a lower influx of 

granulocytes in the gut mucosa and, as a result, a less effective invasion-inhibition effect 

especially against heterologous Salmonella serovars (Methner et al., 2010). Furthermore, non-

motile Salmonella serovars causing systemic disease in poultry are emerging. The absence of 

flagella would enable these variants to invade without the stimulation of a pro-inflammatory 

response from the host (Iqbal et al., 2005). Implications for vaccine development need to be 

elucidated, but mutating flagellin could help to escape the host’s immune response. Indeed, we 

showed that flagellar gene transcription is downregulated inside the chicken oviduct and 

aflagellated mutants have a colonization advantage in laying hens. While interaction of flagellin 

with the gut mucosa has been studied in detail at the start of this thesis, little information was 

available about the interaction of flagellin with the oviduct tissues. Primary cultivation of 

chicken oviduct epithelial cells showed that flagellin is not important for invasion in or adhesion 

to oviduct cells. In an attempt to understand the innate immune responses against flagellin, 

aflagellated mutants were introduced in the oviduct of laying hens and compared to the wild-

type. Injection of an aflagellated mutant indeed attracted significantly less heterophils 

compared to the wild-type strain, endorsing the hypothesis that flagellin downregulation is a 

possible immune escape mechanism employed by Salmonella Enteritidis to avoid host immune 

reaction. 

 

4.4 A new era in Salmonella vaccination of laying hens? 

The industry could turn to a new generation of vaccines that contain defined deletions which 

are less likely to revert to virulence and thus safer than current licensed vaccines for laying hens. 

Although the Salmonella Enteritidis ∆tolC and ∆acrABacrEFmdtABC strains completely 
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prevented (vertical) egg contamination, carcasses and eggs can still be (horizontally) 

contaminated because these vaccines reduce, but do not eliminate shedding or prohibit 

colonization of the gastrointestinal tract. Researchers could look for additional adjuvants that 

increase protection but do not cause side effects. As vaccines have become more advanced, 

there is a need for more advanced adjuvants to potentiate those vaccines has developed. 

Designing the ultimate vaccine preparation for use against Salmonella colonization in laying 

hens and egg transmission is not an easy task. As of today, no vaccine provides complete 

protection or cross-protection against all serogroups (Gast, 2007). Current vaccines are not 

protecting against other serovars with different O and H antigens (Noda et al., 2010). Ideally, 

the vaccine should offer protection against infection by more than one serotype such as 

Salmonella enterica serovar Infantis, which also has been isolated from laying hens frequently 

and is becoming more and more important. Proof-of-principle studies have demonstrated 

efficacy, in animal models, of live-attenuated and subunit vaccines that target the O-antigens, 

flagellin proteins, and other outer membrane proteins of Salmonella Typhimurium and 

Salmonella Enteritidis. The relatively poor immunogenicity of purified O-antigens can be 

significantly enhanced through chemical linkage to carrier proteins. The subunit 

glycoconjugation approach specifically links LPS-derived O polysaccharide to carrier proteins 

and has been successful in increasing immunogenicity of purified O-antigens. Another delivery 

strategy for non-typhoidal Salmonella vaccines are the Generalized Modules for Membrane 

Antigens (GMMA; Tennant et al., 2016). This technology presents surface polysaccharides and 

outer membrane proteins in their native conformation and is self-adjuvanting, as it delivers 

multiple MAMP molecules.  

To comply with increasing public demand for cross protective vaccines against multiple 

Salmonella serovars, also the development of component vaccines, with highly conserved 

antigens, has great value, although they need to be injected instead of added to the drinking 

water, causing practical limitations and leading to higher labor costs. Outer membrane proteins 

(OMPs) are considered effective antigens to stimulate immune responses because they are 

exposed on the bacterial surface and easily recognized by the host immune system. OmpA for 

instance is considered essential for the conservation of cell structure by physical linkage 
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between the outer membrane and peptidoglycan. It is reported to function in host-pathogen 

interactions, including the adhesion and invasion of epithelial cells. OmpA is also known as an 

immune target and is involved in evasion and biofilm formation (Smith et al., 2007). OmpA is 

well conserved among Salmonella serovars and shows a strong humoral response, however the 

bacterial shedding after challenge was not reduced by vaccination with OmpA. A potential 

reason is that the anti-OmpA antibody did not reach or recognize the OmpA on the outer 

membrane of live Salmonella due to the presence of other properties, such as LPS, pili, flagella 

and other porin proteins, which could have masked the OmpA. These antigenic component 

vaccines can be delivered through liposomes. Oral immunization with liposome-associated 

rSefA, which encodes the main subunit of the SEF14 fimbrial protein elicits both systemic and 

mucosal antibody responses and results in reduced bacterial colonization in the intestinal tract 

and reduced excretion of Salmonella Enteritidis in the feces. Significantly less fecal excretion of 

bacteria was observed in immunized chickens for 4 weeks after challenge in contrast with the 

unimmunized controls (Pang et al., 2013). Another genetic engineering technology that allows 

immune reactions against outer membrane proteins is ghost vaccination. Controlled expression 

of the PhiX174 lysis gene E in gram-negative organisms induces trans-membrane tunnel 

formation, expulsion of the cytoplasmic contents and ultimately leads to the generation of non-

living envelopes called bacterial ghosts. As the non-enzymatic activity of protein E does not 

cause any physical or chemical denaturation of the bacterial surface proteins during the lysis 

process, the resulting bacterial ghosts have the same antigenic determinants as their replicating 

counterparts (Witte et al., 1992). The efficacy of Salmonella Enteritidis ghost vaccination was 

evaluated in laying hens by characterizing the nature of the adaptive immune response. 

Chickens from the immunized group demonstrated significant increases in Salmonella 

Enteritidis-specific plasma IgG, intestinal secretory IgA and lymphocyte proliferative response, 

and different populations of cytokines. Furthermore, the immunized group exhibited decreased 

challenge strain recovery of the internal organs compared to the non-immunized group (Jawale 

and Lee, 2014).  

To overcome the need for intramuscular injection, the development of self-destructing 

Salmonella vaccines are in full development. These self-destructing vaccines form a biological 
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containment system using recombinant Salmonella strains that are attenuated yet capable of 

synthesizing protective antigens. The system is composed of two parts. The first component is 

the attenuated strain, which features a number of mutations in genes required for synthesis of 

the peptidoglycan layer of the bacterial cell wall, mutations that enhance bacterial cell lysis and 

antigen delivery, mutations ensuring that the bacteria do not survive in vivo or after excretion 

and mutations allowing maximum antigen production. The second component is a plasmid 

encoding genes that can lead to bacterial cell lysis through concerted activities. The regulated 

delayed attenuation and programmed self-destructing features designed into these Salmonella 

strains enable them to efficiently colonize host tissues and allow release of the bacterial cell 

contents after lysis. These vaccines are able to stimulate mucosal, systemic, and cellular 

protective immunities (Kong et al., 2012).  

 

4.5 A holistic management approach to control  

The future for Salmonella control in laying hens will consist of the maintenance of high 

standards of management to prevent introduction and spread of infection and the continuous 

exploration of new approaches. Biosecurity should play a crucial role. Novel ideas such as using 

lytic bacteriophages have been assessed experimentally, producing some reductions in levels of 

colonization and remarkable effects on carcass decontamination (Atterbury et al., 2007). 

Control of Salmonella as a zoonosis in general is definitely not limited to vaccination and 

protection of the laying hens, nor to vaccination of other poultry and other farm animal species. 

Continuing research on vaccine development for prevention of Salmonella infections in human 

populations will benefit communities where these infections are endemic, in both the 

developing and industrialized world. Experience gained in vaccine development for laying hens 

may contribute to the development of novel strategies for protecting the human population, 

which may also include vaccination of the human population with more advanced vaccines than 

the currently still commonly used inactivated vaccines for typhoid fever. It should be 

emphasized however that successful vaccination is closely correlated with optimal husbandry 

conditions and the maintenance of high sanitary standards. The overall Salmonella burden of a 

laying hen population can only be reduced by long-term, comprehensive vaccination of flocks, 
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which will ultimately minimize contamination of foods of animal origin with Salmonella. Future 

research should further focus on finding good adjuvantia, not only to enhance protection of 

these live defined attenuated vaccines but also to protect against a broader range of serotypes. 
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Summary 

Salmonella enterica subspecies enterica serovar Enteritidis is a pandemic pathogen, present in 

countries with industrial poultry production since the 1990s. Ingestion of this foodborne 

pathogen by humans results in gastroenteritis and is linked to contaminated eggs and egg 

products. Salmonellosis caused by Salmonella Enteritidis in chickens however does not lead to 

clinical symptoms but causes enormous economic losses. Consequently, there is continuing 

interest in finding ways of preventing flock infection of laying hens with Salmonella. Control of 

Salmonella infections in poultry farms begins with good farming practices and appropriate 

management. In laying hens vaccination is an important tool to protect against Salmonella 

colonization. Vaccination against Salmonella Enteritidis is vastly undertaken in many countries 

around the world. Studies have reported that cases of human salmonellosis due to food 

poisoning decreased significantly after the implementation of a widespread vaccination 

program in commercial layers. Although great efforts have been made, recently, atypical 

pathogenic Salmonella strains emerged. At the start of this doctoral thesis, studies in numerous 

countries worldwide confirm the rapid emergence and dissemination of a monophasic variant of 

Salmonella Typhimurium, i.e. 1,4,[5],12:i:-. Cases of human infection caused by the emerging 

monophasic variant have been linked to a number of sources, predominantly pigs. Strains from 

this serotype have also been found in chicken meat, broilers and recently in laying hens. This 

shows that the monophasic variant 1,4,[5],12:i:- represents a significant and potential emerging 

threat to humans, not only through porcine meat, but also through chicken product 

consumption. Consequently it has been included in actions implementing the legislation of the 

EU to detect and control Salmonella serovars of public health significance in laying hens, 

broilers, breeders and turkeys.  

While the efficacy of the commercial live vaccines AviPro® Salmonella VacE and VacT to protect 

laying hens from oviduct colonization and egg contamination by Salmonella Enteritidis has been 

proven, no data have been published yet on potential effects of this vaccine on caecal, spleen 

and liver colonization by the emerging monophasic serotype 1,4,[5],12:i:-. Therefore, in the first 
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study of this thesis (chapter 3.1), two short-term (two weeks) trials, either using a high or a low 

infection dose, and 1 longer term study (6 weeks) were carried out to evaluate the protective 

effect against gut and internal organ colonization after vaccination with Salmonella 

Typhimurium strain Nal2/Rif9/Rtt, a strain contained in the commercially available live vaccines 

AviPro® Salmonella Duo and AviPro® Salmonella VacT, at day of hatch. Oral administration of 

the vaccine strain at day of hatch, reduced colonization with a strain of the monophasic variant 

of Salmonella Typhimurium, 1,4,[5],12:i:-, after challenge at day 2. The Salmonella 1,4,[5],12:i:-

serotype is Typhimurium-like and can thus, as shown in this study, also be controlled in the early 

immune deprived stage by using live Salmonella Typhimurium vaccines. This is of value for 

layers as well as for broilers and can be part of a control program for the new emerging 

serotype 1,4,[5],12:i:-.  

These monophasic Salmonella Typhimurium 1,4,5,12:i:- variants are lacking the fljB-encoded 

second phase antigen. It has been suggested that the lack of flagella changes virulence 

characteristics of Salmonella but the exact role of flagella in the pathogenesis of Salmonella 

infections in chickens was not yet completely clear. Little was known yet about the role of 

flagellin in oviduct colonization. The glandular epithelial cells of the oviduct in laying hens 

express Toll-like receptors (TLRs). These interact with MAMPs, like LPS and flagellin. Binding of 

MAMPs to TLRs should normally initiate the innate immune response, leading to inflammation 

and tissue damage. Salmonella Enteritidis however is able to colonize the oviduct without 

causing an inflammatory reaction. Indeed we found that expression of flagella by Salmonella 

Enteritidis is downregulated following colonization of the chicken oviduct and in chicken OEC 

(chapter 3.2). The result of these studies indicate that Salmonella Enteritidis is capable of 

avoiding an effective inflammatory response when colonizing the chicken oviduct and when 

invading in chicken OEC through downregulation of flagellar gene expression and in this way 

suppressing the flagellin-TLR5 activation pathway. Further studies are needed to identify the 

signaling and sensing mechanisms involved in the downregulation of flagella expression by 

Salmonella Enteritidis in the environment of the chicken oviduct. This information could be 

important for future vaccine development. 
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Current commercial live vaccines contain strains harboring undefined mutations in one or more 

genes on the chromosome. Strains harboring point mutations might, however, revert to a 

virulent phenotype and are thus considered to be unsafe. Future live vaccines should therefore 

contain fully defined strains carrying (multiple) gene deletions for purposes of safety. Most 

experimental vaccines contain strains deleted for genes important for metabolism or virulence. 

Numerous experimental vaccines were already tested in various animal hosts, including 

chickens, but data on the protection of these live vaccines against egg contamination are scarce. 

A vaccine strain used for the prevention of (vertical) egg contamination of Salmonella Enteritidis 

ideally induces local immunity in the reproductive tract. From a public health point of view, it 

may not persist here and preferably does not survive in egg white. A logical approach is to 

eliminate genes playing a role in egg white survival. In the third chapter (chapter 3.3), defined 

mutants in MDR transporters and the TolC outer membrane channel were used as vaccine 

strains. The TolC outer membrane channel is used by MDR transporters (eg acrAB, acrEF, 

mdtABC) to export host antibacterial compounds and bacterial molecules such as siderophores, 

and is involved in survival in harmful environments, including egg white. The ΔtolC and 

∆acrABacrEFmdtABC vaccine strains can no longer survive in egg white, thereby eliminating the 

risk of human exposure through eggs. These genes were never associated with protective 

immunity in chickens, allowing wild type-like antigen presentation. Data from this chapter 

indicate that Salmonella Enteritidis ΔtolC and ΔacrABacrEFmdtABC strains are safe vaccines that 

can induce protection against internal organ colonization after intravenous inoculation of a 

Salmonella Enteritidis challenge strain. The vaccine strains were able to completely prevent egg 

contamination with Salmonella Enteritidis in a 6 months in vivo challenge trial.  

In conclusion, a number of control measures were being used to avoid Salmonella infections in 

the poultry industry. In spite of these measures, new (monophasic) variants arise. Current 

commercial available vaccines are able to protect against these upcoming variants. It is 

important however to keep evaluating the protection offered by current commercial vaccines 

against new upcoming variants in order to respond as quickly as possible to epidemiological 

changes. At the same time it is important to guarantee the safety of vaccine strains by deletion 
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of whole gene(s). The Salmonella Enteritidis ΔtolC and ΔacrABacrEFmdtABC vaccine strains are 

safe and could be used to prevent egg contamination.  
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Samenvatting 

Sinds 1990 is Salmonella enterica subspecies enterica serovar Enteritidis een pandemisch 

pathogeen, aanwezig in landen met industriële pluimveeproductie. Inname van deze voedsel- 

geassocieerde pathogeen door de mens veroorzaakt gastro-enteritis en wordt gelinkt aan besmette 

eieren en ei-producten. Salmonellose veroorzaakt door Salmonella enteritidis in kippen leidt 

echter niet tot klinische symptomen maar zorgt voor zware economische verliezen. Zodoende is 

er voortdurende interesse om mogelijke manieren te vinden om leghennen te beschermen tegen 

infectie met Salmonella. De controle van deze Salmonella infecties in pluimveebedrijven begint 

met een goed management en strikte veiligheidsmaatregelen. Bij leghennen is vaccinatie een zeer 

belangrijke maatregel om besmetting te voorkomen. Vaccinatie tegen Salmonella Enteritidis 

gebeurt wereldwijd. Studies rapporteren dat het aantal gevallen van humane salmonellose 

significant gedaald is na het implementeren van vaccinatieprogramma’s in commerciële 

leghennen. Hoewel er grote vorderingen gemaakt zijn, duiken er toch atypische pathogene 

Salmonella stammen op. Bij het begin van dit doctoraat tonen studies uit verschillende landen het 

snel opkomen van een monofasische variant van Salmonella Typhimurium, ie 4,12:i:- aan. 

Humane salmonellose veroorzaakt door deze monofasische variant wordt gelinkt aan een aantal 

oorzakelijke bronnen, voornamelijk varkens. Stammen van dit serotype worden ook 

teruggevonden in vleeskippen en recentelijk ook in leghennen. Dit toont aan dat besmetting door 

de monofasische variant een belangrijke bedreiging vormt voor mensen, niet enkel via 

varkensvlees, maar ook via producten afkomstig van kippen. Bijgevolg werd deze stam 

geïncludeerd in acties die de controle en detectie van Salmonella serovars, gevaarlijk voor de 

volksgezondheid, omschrijven. 

 

De werkzaamheid van de commerciële levende vaccines AviPro® Salmonella VacE en VacT 

voor de bescherming van leghennen tegen oviduct kolonisatie door Salmonella Enteritidis werd 

reeds beschreven, maar geen enkele data werden reeds gepubliceerd over het potentieel 

beschermend effect van deze vaccins tegen de opkomende monofasische variant op gebied van 

lever, milt en caecum kolonisatie. Daarom werden in een eerste studie van deze thesis twee korte-
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termijn (2 weken), met een hoge en lage orale toediening van de monofasische variant, en 1 

langere termijn studie (6 weken) opgezet om na te gaan of de Salmonella Typhimurium stam 

Nal2/Rif9/Rtt, die aanwezig is in de commercieel beschikbare levende vaccins AviPro® 

Salmonella Duo en AviPro® Salmonella VacT ook bescherming biedt tegen deze monofasische 

variant (hoofdstuk 3.1). Orale toediening van het vaccin op dag 1 reduceerde de kolonisatie met 

de monofasische Salmonella Typhimurium variant 4,12,:i:- na toediening ervan op dag twee. De 

autochtone intestinale microbiota van eendagskuikens is nog niet volledig matuur en ook het 

immuunsysteem is nog niet volledig ontwikkeld. Dit Salmonella 4,12,:i:- serotype is 

Typhimurium-achtig en kan, zoals aangetoond in dit hoofdstuk, ook gebruikt worden voor 

bescherming in de vroege levensfase door het gebruik van levende Salmonella Typhimurium 

vaccins. Dit is van belang voor leghennen alsook voor vleeskippen en kan deel uitmaken van een 

controleprogramma tegen de opkomende monofasische varianten. 

 

Deze monofasische Salmonella Typhimurium 1,4,5,12,:i:- varianten ontbreken een fljB-

gecodeerde 2de fase antigen. Het ontbreken van deze flagellen zou de virulentiekarakteristieken 

van Salmonella kunnen veranderen, maar de precieze rol van deze flagellen in de pathogenese 

van Salmonella infecties bij de kip is niet volledig duidelijk. Er was slechts zeer weinig gekend 

over de rol van flagelline tijdens oviduct kolonisatie. Flagelline interageert met pathogene 

herkenningsreceptoren die aanwezig zijn op epitheelcellen van de oviduct bij leghennen. Binding 

van flagelline met deze patronen leidt normaalgezien tot een sterke immuunrespons en met 

ontsteking en weefselschade als gevolg. Salmonella Enteritidis is echter in staat om de oviduct te 

koloniseren zonder een sterke immunologische reactie op te wekken. We hebben kunnen 

aantonen dat de expressie van flagellen bij Salmonella Enteritidis neergereguleerd is na 

kolonisatie van de oviduct, alsook in de epitheelcellen van de oviduct (hoofdstuk 3.2). De studies 

in hoofdstuk 3.2 tonen aan dat Salmonella Enteritidis in staat is om een effectieve 

immuunrespons van de gastheer te vermijden terwijl hij de oviduct koloniseert door het down 

reguleren van flagelline expressie. Verdere studies zijn nodig om de signaalmechanismen te 

identificeren die betrokken zijn in deze downregulatie van flagel door Salmonella Enteritidis in 

de omgeving van de oviduct. Deze informatie kan van belang zijn voor toekomstig vaccin 

onderzoek.  



Samenvatting 

 

131 

 

De huidige commerciële levende vaccins bevatten stammen die ongedefinieerde mutaties 

bevatten in 1 of meerdere genen op het chromosoom. Stammen met dit soort mutaties zouden 

echter kunnen terugkeren naar een virulent fenotype en worden dus beschouwd als onveilig. 

Toekomstige levende vaccins zouden dus volledig gedefinieerde stammen moeten bevatten die 

enkele of meerdere, volledige genen ontbreken. De meeste experimentele vaccins bevatten 

stammen die genen ontbreken die belangrijk voor het metabolisme of virulentie. Verschillende 

experimentele vaccins werd reeds getest in een aantal diersoorten, waaronder kippen, maar data 

over de bescherming van levende vaccins tegen ei besmetting zijn zeer zeldzaam. Een vaccin 

stam dat wordt gebruik voor de bescherming van verticale ei besmetting door Salmonella 

Enteritidis induceert idealiter een lokale immuunrespons in de reproductieve tractus. Vanuit het 

oogpunt van de volksgezondheid, mag het niet persisteren en bij voorkeur niet overleven in eiwit. 

Een logische aanpak is dus om genen te elimineren die belangrijk zijn voor eiwitoverleving. In 

het derde hoofdstuk (hoofdstuk 3) worden gedefinieerde mutanten voor MDR transporters 

gebruikt als vaccin stammen. Het tolc buitenste membraankanaal wordt gebruikt door MDR 

transporters (zoals acrAB, acrF en mdtABC) om antibacteriële componenten en bacteriële 

molecules te exporteren en is betrokken in de overleving in eiwit. De Salmonella Enteritidis ΔtolC 

en ΔacrABacrEFmdtABC stammen kunnen niet langer overleven in eiwit, hierbij wordt het risico 

op humane contaminatie door de vaccin stam via eieren geëlimineerd. De vaccin stammen waren 

in staat om ei besmetting met Salmonella te vermijden in een 6 maand in vivo proef. 

Samengevat, verschillende maatregelen werden gebruikt om Salmonella infecties in de pluimvee 

industrie te controleren en te vermijden. Ondanks deze maatregelen duiken nieuwe 

(monofasische) varianten op. De huidige commerciële vaccins bieden bescherming tegen deze 

opkomende (monofasische) varianten. Het is belangrijk om continu te evalueren als de huidige 

vaccins bescherming bieden tegen nieuwe, opkomende varianten om zo snel mogelijk in te 

kunnen spelen op eventuele epidemiologische veranderingen. Tegelijkertijd is het belangrijk om 

de veiligheid van vaccinstammen te garanderen door het verwijderen van (een) volledig(e) 

gen(en). De Salmonella Enteritidis ∆tolC and ∆acrABacrEFmdtABC vaccin stammen zijn veilige 

stammen die zouden kunnen gebruikt worden om ei besmetting te voorkomen. 
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fijne tijd. Nu start een nieuw hoofdstuk, succes met het opstarten van uw praktijk. Je hebt alvast 

1 trouwe klant! Beatrice, je bent hier ook al een tijdje weg maar ben blij dat ik je toch nog af en 
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tumdumdumdumdum… Lonneke, proficiat met de placematjes en goed bezig met het 
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verbouwen, ooit is jullie droomhuisje af. Michiel bedankt voor de vlotte babbels en de leuke 

noot. Leen, chapeau wat jij hier allemaal verzet in de snijzaal.  

Verder ook nog mensen in het labo: 

Eline, proficiat met je kindje. Nog veel succes in het onderzoek! Gunther, Roel en Bram, bedankt 

voor de leuke babbels. Marc, bedankt voor uw droge mopjes! Jo, Gunter en Koen, bedankt voor 

het oplossen van al mijn problemen. Marleen, Serge, Arlette, Sofie, Nathalie bedankt voor al 

jullie hulp. Sandra, bedankt om mijn soeppotjes voor de zoveelste keer in de vuilbak te gooien. 

Ook alle andere mensen die ik ken vanuit het labo, bedankt voor de babbels en de hulp. 

Myrthe, ook jij kwam op deze faculteit terecht na de studies Biomedische Wetenschappen. 

Samen met Iris, Ellen en Hannah kon ik altijd even bij jullie terecht voor een korte babbel en een 

status van zaken. Myrthe binnenkort is het aan u, ik duim! 

Tijdens mijn univ periode heb ik ook wat leuke mensen ontmoet 

Liezie, Djoelz, Liesel, Florence, Patricia, Iris, Jan, Charlotte, Dave, Cedric, Lynn, Tine, Julie. De 1 

zie ik al wat vaker dan de ander maar het is toch altijd leuk als we elkaar weerzien. 

Karenbeer, jij verdiend ook zeker een plaatsje in dit dankwoord! Schitterende tijden beleefd 

tijdens onze univ, altijd plezant om dat alles nog eens levendig voor te stellen. Samen met 

Renee, Lotje en de poezels vormen jullie een gezellig gezinnetje. Helena, ook jou ken ik sinds 

ons middelbaar, een babbeltje met u voelt altijd goed. 

Ghentian people 

Daan en Annet, Benny en Laura, Tine en Vincent, Evy en Sam, Tine Maertens en Arne, Brecht en 

Karel, Frederik en Eva; bedankt voor het luisteren naar al mijn doctoraatsperikelen en ander 

gezever, bedankt voor de fijne momenten, weekendjes en uitstapjes. 

Iedereen kent wel het cliché: beter een goeie buur dan een verre vriend… En wat hebben wij 

geluk gehad! Jan en Annick, sinds we elkaar leerden kennen, zien we elkaar bijna wekelijks. 
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Onze liefde voor Ragnar, reizen en vrijheid zorgen voor een soliede basis. Ik weet dat als ik het 

moeilijk heb, zeker bij jullie terecht kan, en dat geeft mij een superfijn gevoel. 

Mijn schoonouders en schoonfamilie 

Klaas en Annelore, leuk dat ik tegen jullie in vaktermen kan spreken. Korneel en VirGenie, 

bedankt voor al die prachtige ijstaartcreaties! Nergens beter dan bij de PARFAIT in Izegem of 

Menen(graag gedaan)! Hilde en Johan, zoveel keer bijna van mijn stoel gevlogen, zo verbaasd van 

hoeveel steun ik van jullie kreeg, niet enkel voor mijn doctoraat maar ook voor andere 

momenten in mijn leven. Ik kan jullie niet genoeg bedanken, ik weet alleen dat ik zeer gelukkig 

mag zijn met jullie als schoonouders. Jullie zijn voor mij hét voorbeeld van een goed gezin, 

bedankt daarvoor! 

Mijn mama wil ik ook zeer graag bedanken voor alle steun en voor het geduld dat ze met mij 

gehad heeft toen ik klein (puber) was, het is niet makkelijk geweest…jaar na jaar probeer ik dat 

een beetje goed te maken, een doctoraat telt wel voor redelijk veel (vind ik). Pieter bedankt om 

er te zijn voor mij op moeilijke momenten, we zijn geen grote familie, des te meer moeten we 

elkaars gezelschap koesteren. 

En dan is het tijd om mijn levensgezel in de bloemetjes te zetten. Mathijs ik kijk echt op naar 

jou, je bent echt wel mijn held, mijn Bear Grills. Sinds we samen zijn heb ik geen gevoel van 

paniek meer als ik iets kapot gemaakt heb, jij kan dan ook alles fixen. Daarnaast kan je mij als 

geen ander doen lachen. Hopelijk maken we samen nog mooie reizen en bouwen we aan een 

mooie toekomst. Ik zie je graag! 

Ook mijn diertjes wil ik bedanken voor hun onvoorwaardelijke steun. Tigri en Blacky, de liefste 

katjes van de hele wereld, bedankt om mij soms wakker te maken in het midden van de nacht, 

geen streeltje is teveel voor jullie. Bedankt om de populatie muizen in onze tuin onder controle 

te houden en voor het op commando opeten van spinnen. Onze laatste aanwinst van ons prille 

gezinnetje: Ragnar. Hopelijk leren we op de juiste manier met je omgaan want jij verdiend enkel 

het allerbeste. Ik zal alles doen om jou te begrijpen en heb nog zoveel leuke plannen met jou. 

Met veel geduld, vallen en opstaan leren we elkaar te vertrouwen en vormen we samen 1. 


