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Abstract—Connected devices offer tremendous opportuni-
ties. However, their configuration and control remains a major
challenge in order to reach widespread adoption by less
technically skilled people. Over the past few years, a lot
of attention has been given to improve the configuration
process of constrained devices with limited resources, such
as available memory and absence of a user interface. Still,
a major deficiency is the lack of a streamlined, standardized
configuration process. In this paper we propose EC-IoT, a novel
configuration framework for constrained IoT devices. The pro-
posed framework makes use of open standards, leveraging upon
the Constrained Application Protocol (CoAP), an application
protocol that enables HTTP-like RESTful interactions with
constrained devices. To validate the proposed approach, we
present a prototype implementation of the EC-IoT framework
and assess its scalability.
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I. INTRODUCTION

The Internet of Things (IoT) has been continuously grow-
ing during the past years and it is estimated that the total
number of connected things will double each 5 years for
the coming decade [1], [2]. The high diversity of contexts
and environments where these things operate in, goes in line
with the proliferation of potential application areas.

The current trend in IoT is to move away from propri-
etary and closed ecosystems to open standards and cross-
technology solutions. Moreover, there has also been an
evolution of vertical domain applications into cross-domain
applications, mainly referred to as polymeric applications.
This evolution is seen as an enabler to improve and create
new business models, thereby reducing costs and risks [3].

Considering this context, it is very unlikely that a single
manufacturer will provide all nodes of a complete IoT
system. Often, devices need to be integrated into existing
systems. As such, the coexistence and interoperability of
devices supporting different technologies is important. It is
required that a device is sufficiently configurable and flexible
to adapt and operate depending on a specific context and user
need.

Such configuration of devices is required during different
phases of their lifetime, including installation, commission-
ing within a network, user customization and device control.
On the other hand, the constraints related to most of these
devices in terms of energy supply, available memory and

lack of user interface make these operations not straightfor-
ward for an installer or end user.

Generally, this problem is faced by interfacing the user
to an application utility or a dedicated web server in order
to perform basic commissioning and management. Given
the lack of common configuration solutions, each vendor
develops its own solution, causing a myriad of different
applications and interfaces that a user needs to install and
use in parallel for managing all his connected devices.
This situation results in high integration and development
costs for the manufacturer. At the same time, it hinders the
usability, resulting in high operational costs for the installer,
frustrations for the end user and slow down of the uptake
of IoT solutions.

Until now, efforts that have been put in the definition of
converged solutions were based on closed frameworks, and
therefore, risk to remain isolated commercial solutions. Our
main contribution is the design of an open standard based
configuration framework for constrained IoT devices, called
EC-IoT. A prototype implementation was built in order to
demonstrate the flexibility and usability benefits that our
solution offers to device manufacturers, installers as well
as end users. Further, our evaluation demonstrates that the
framework can effectively and efficiently configure hetero-
geneous constrained devices with low operational overhead.
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Figure 1. Proposed vs. existing configuration solution

The remainder of this paper is organized as follows.
Section II discusses in more detail the problem statement,
followed by the challenges and requirements that have driven
the design of our framework. Section III elaborates on the
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design, architecture and operation of the EC-IoT framework,
whereas Section IV presents a prototype implementation,
together with a description of the resulting configuration
flow. The evaluation of our framework is discussed in
Section V. Finally, existing IoT configuration solutions and
related work are discussed in Section VI, before concluding
this work with a summary and outlook in Section VII.

II. PROBLEM STATEMENT AND REQUIREMENTS

When deploying a new IoT device or integrating it in a
larger system, users need to be able to perform proper in-
stallation, configuration and customization. The user expects
from his devices the same operational flexibility as the one
he is used to when operating normal unconstrained devices.
As a first step, possibly performed by a technician, initial
commissioning has to take place, including the configuration
of network, security and other context related parameters.

Next, further device configuration and control has to
be done,including setting parameters related to the usage
context, such as name of device, location, function etc.

Mostly, constrained devices possess no physical user
interface that would allow any direct configuration of the
device by an installer or a user. Moreover, the constraints in
terms of resources such as CPU and memory, make it hard
to store on the device generic configuration parameters that
might be known already during the design. Considering the
above, it is almost impossible for any device manufacturer
to fully cover any future device configuration.

The existing trend is that these devices are designed to
offer a limited set of capabilities, using a specific data
standard and a rigid way of interacting and exchanging the
data with the user. There is no unique open standard that
would allow a common configuration and control interface
for different types of constrained devices that need to be used
in the same environment. As a result, when the user installs
a new constrained device, he often needs to install a vendor
specific application on a smartphone, tablet or PC in order to
be able to configure it. In other cases, the user is required to
manage the process by browsing to a web server, running on
a remote cloud based solution. In both cases, the solution is
vendor and device dependent. The configuration and control
of devices using such parallel interfaces and tools tend to be
confusing and impractical for an unexperienced user. Often,
issues are experienced by the lack of connection or the
discontinuity of the remote cloud based service. Another side
effect of vertical ecosystems is the lack of interoperability
and information exchange between different devices, which
on the other side, need to coexist and cooperate in the same
environment.

Often, these factors push the user towards vertical ecosys-
tems, where all his IoT products are offered by the same
manufacturer [4]. This trend contributes to the vendor lock-
in and to high project integration costs. By hindering overall
system integration flexibility, it also causes high operational

costs, blocking the easy adaptation and penetration of inno-
vative IoT solutions [5]. Contrary, the existence of flexible
and standardized tools to configure such constrained IoT
devices would result in more attractive and user friendly
products, narrowing existing application gaps. Moreover, the
exchange of valuable information between different devices
during the configuration, operation and control would be of
added value for the user and contribute to an augmented
perception of efficiency and intelligence of the devices as a
system. This last concept, together with the usability, goes
in line with the Web-of-Things (WoT) paradigm.

The above discussion reveals the need of a streamlined
configuration and management framework that builds on
open standards and targets todays key problems regarding
the deployment and usage of constrained devices. In order to
properly design such a framework it is important to clearly
understand the main configuration requirements and chal-
lenges. In terms of supported devices, the framework should
be able to support resource limited devices without user
interface that possibly operate in sleep mode. In order to be
sufficiently versatile and performant, it should build on open
solutions, have a small footprint and low communication
overhead, and be scalable, cost effective and easy to integrate
in either local or cloud operated solutions. Its impact on
the devices (e.g. code changes) must be minimal. Finally,
towards the user, the framework must offer a user friendly
interface, operate on a variety of heterogeneous user devices
and able to automatically adapt to context, user and device.

These requirements have driven the design of our EC-IoT
framework, which is discussed in detail in the following
section.

III. DESIGN, ARCHITECTURE AND OPERATION

A. Design choices

The previous challenges and requirements were trans-
formed into a set of design choices for our EC-IoT frame-
work. In order to support the most resource constrained
devices that can be connected to the Internet, we minimally
support Class 1 devices, with 10 KiB RAM and 100 KiB
ROM, as in [15].

Next, in order to be open, low overhead, scalable and
easy-to-integrate, CoAP protocol [16] has been chosen as
the application protocol for our framework. Using UDP as
transport layer, CoAP benefits from a smaller UDP header
overhead, compared to TCP headers. On the other side, the
message exchange reliability is managed by CoAP itself.
CoAP is designed to use minimal resources and therefore
ideally suited for constrained IoT devices in low-power and
lossy networks. It supports the well-known REST paradigm
and can be easily mapped to HTTP methods. A variety of
implementations are available, which can be easily reused
for realizing the communication part of the user interface on
a variety of devices.



Finally, it supports data models for semantic interoper-
ability, such as IPSO [13] and OMA LWM2M [14], which
are relevant to automatically derive the device type and the
meaning of REST resources. This semantic recognition of
the type of resources enables the visualization of device
specific information on a user interface.

As such, it is clear that CoAP and its corresponding REST
model are perfectly suited to meet our requirements with
respect to device support, communication and the realization
of the user interface.

B. Architecture and operation

The high-level architecture of the proposed EC-IoT frame-
work is shown in Figure 2. The configuration of sensors
using heterogeneous wireless technologies is managed by the
EC-IoT framework, which, in this example, runs on a gate-
way that is able to communicate with all constrained devices
and with the user interface device using the CoAP protocol.
There are two main components that run on the gateway:
the Resource Directory (RD) [18] and the Configuration
Directory (CD). RDs are mainly used to indirectly discover
the presence and properties of CoAP servers, mainly in the
cases when, due to the specific characteristics of the nodes
in a LLN, direct discovery of the nodes is not possible
or practical. As by our initial design challenges, we did
not modify the standard behavior of the RD. Instead, we
introduce the novel CD component. The architecture of the
CD has similarities with the one of the RD, but the CD is
used specifically for the configuration of the nodes.

In order to become informed about new devices joining
the network, the CD observes a resource on the RD that
contains the list of the nodes that are registered with the
RD.
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Figure 2. Resource configuration process

The main steps, starting from the moment that a new
CoAP sensor is added to the network until its configuration
is complete, are shown in Figure 2 and described below.

A vendor designs a CoAP-enabled IoT device (e.g. sen-
sors) that hosts a set of CoAP resources modeled according
to OMA LWM2M and IPSO. Every configurable or to be

configured resource has been assigned a ’conf ’ link attribute.
Next, the unconfigured sensor is powered on and added
to the Wi-Fi or WSN network. Immediately, the sensor
triggers the registration with the RD by sending a CoAP
POST request to ’/rd’ resource on the RD. The link of its
resources in CoRE link format is included in the payload.
As soon as the request is received, the RD registers the
sensor and updates the /rd-lookup/ep resource containing
information about all registered end points (STEP 1). As
the CD continuously observes the /rd-lookup/ep resource
on the RD, it is being informed about the presence of a
new endpoint (STEP 2). The CD will now retrieve from
the rd-lookup/res resource on the RD, the list of all re-
sources that are present on the sensor and that have the
’conf ’ attribute set. The CD now updates its corresponding
cd-lookup/ep and cd-lookup/res resources. These resources
contain all configurable endpoints and their resources. The
configuration status of a configurable resource is also stored
here (STEP 3). The client application on the user device
observes the cd-lookup/ep resource on the CD and is being
informed about the presence of newly to be configured
devices (STEP 4). The client can then retrieve the list
of configurable resources and their attributes and render a
suitable interface (STEP 5). As soon as the user confirms
and submits the configuration parameters for the available
configurable resources, the client application configures the
respective resources by sending CoAP POST requests (STEP
6). Upon completion of the configuration of the sensor,
the user application updates the status of the resources and
endpoints into configured and notifies the CD (STEP 7). The
device configuration status is now marked as configured.

The above functional internal processes are transparent
to the user. The steps that a user needs to follow when
managing his devices are described in detail in Section IV.

IV. PROTOTYPE OF EC-IOT FRAMEWORK

A prototype implementation of the proposed EC-IoT
configuration framework has been built in order to evaluate
the feasibility and performance of the proposed approach.
The following main hardware components have been used:

1) Zolertia Z1 nodes. A headless device, such as Zolertia
Z1, was chosen as constrained sensor node, as this
module falls into the Class 1 device categorization.

2) nodeMCU ESP8266 nodes. A less constrained device,
such as the NodeMCU ESP8266 module, was chosen
to demonstrate the support of heterogeneous wireless
technologies. Both, Z1 and nodeMCU modules, can
operate as battery powered devices and different sleep
mode mechanisms can be enabled.

3) Raspberry Pi. The Raspberry Pi runs a CoAP gateway
implementation, called CoAP++, realized in Click
Router [17]. On top of it, an implementation of a
CoAP Resource Directory (RD) [12] and Configura-
tion Directory (CD) has been built. The gateway is



able to communicate to all constrained devices and
the user interface device.

4) Wi-Fi IEEE 802.11n Access Point, used to connect
both the user interface device and the Wi-Fi sensor
nodes.

5) User interface device. A consumer Android tablet has
been selected as the user interface device. For this
purpose, an Android CoAP client and user interface
application have been developed.
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Figure 3. Devices and network setup

Figure 3 shows the respective components and their
interconnection. All these components have been integrated
in a flightcase housing. The resulting setup models a home
automation use case that incorporates a variety of sensors
distributed on the model surface. The respective sensors
were connected to LEDs, and were mains powered (in case
of Z1 devices), or battery powered (in case of nodeMCUs).
The setup of the flightcase, including the tablet user interface
and a standalone nodeMCU device to demo the EC-IoT
framework are shown in Figure 4.

Figure 4. Setup and configuration of a Wi-Fi nodeMCU LED using EC-
IoT

After the installation and the commissioning of the de-
vices in their respective networks, the user configuration
flow proceeds as below. First, the user launches the device-
independent configuration UI to check for any configured
and unconfigured devices in his network. These two cat-
egories, independently of each device technology, are dis-
played on the UI. At the same time, the UI is able to

visualize specific icons, depending on each sensors device
type link attribute. Link attributes, being specified in the
’.well-known/core’ resource of each device, are retrieved
during the discovery of the devices.

When a new unconfigured sensor is installed, an uncon-
figured sensor icon pops up on the UI, as shown in Figure
4. The user can now click on the sensor icon, after which
a UI screen is rendered that shows all resources that can be
configured. The user now fills in the configuration parame-
ters, as required by the UI and performs the configuration.
The whole process is fully device independent, with the UI
being able to handle heterogeneous devices.

In case of successful configuration, the sensor icon would
signal this by changing color and by getting listed under the
configured devices category. The LED sensor would signal
this to the user by blinking one time.

Using the same UI and in the same uniform way, the user
can always check and modify the parameters of the already
configured devices. He can configure device description
related resources (i.e. location, name, owner, etc.) or can
check the status of measurement resources (i.e. living room
temperature in the case of a temperature sensor) using
standard CoAP interactions. He is also able to modify, and
therefore control, the status of a LED sensor or an actuator
installed in his network.

V. EVALUATION

The realized prototype enables the evaluation of the
usability and flexibility of the proposed solution. From a
functional point of view, our solution makes the integra-
tion of heterogeneous constrained devices straightforward,
thereby requiring only a single, vendor independent UI. For
an IoT device to be able to interface with and get configured
by our framework, it is sufficient that i) it has a built-in
CoAP server able to trigger the registration with the RD,
and ii) it marks configurable resources with a conf link
attribute. Considering our implementation and the existing
CoAP-based solutions, both these minimal requirements can
be easily satisfied by any considered Class 1 constrained
device. An additional requirement would be the installation
and network commissioning of the device in order to be able
to communicate with the EC-IoT framework. However, this
is a prerequisite to the configuration process, and therefore
is out of the scope of this research work.

From a performance point of view, a low communication
overhead and good scalability are key requirements for our
solution. To this end, we have evaluated and modeled the
overall message exchange that takes place during the config-
uration of a configurable endpoint (EP ”c”) device, assuming
that there is only one RD and one CD entity. Figure 5 shows
the resulting CoAP message exchange, with the steps in
the first column referring to the steps previously described
in Figure 2. In this figure, we consider the most simple
case when the amount of data required for representing the



Steps

Endpoint "c" RD CD User APP.

Bootstrap

GET (OBS) RD/rd-lookup/ep
2.05 (OBS.) GET (OBS) CD/cd-lookup/ep

2.05 (OBS.)

1
POST RD/rd

2.05

2 2.05 (OBS.)

3

4 2.05 (OBS.)

5

POST [c]/resource
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6

POST CD/cd-lookup/ep
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2.05
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2.05

7

Figure 5. Total number of CoAP message exchanged in each step for
configuring S devices

device resources in CoRE link format is contained within
the maximum supported block size, i.e. block transfer is
not being used. With R resources on a single device, bR
bytes needed to represent a single resource and its attributes
in CoRE link format and B being the maximum supported
block size in bytes, this means that dR ∗ (bR/B)e is equal
to 1. Considering that the CD and RD may not necessarily
reside on the same device, we have also counted the message
exchange between these two components. Finally, we also
assume that the configuration of a single resource requires
the transfer of bC bytes (i.e. no block transfer if dbC/Be is
equal to 1), with the device having C configurable resources
in total (C ≤ R).

Using the above notations, we can further generalize the
idea, by considering the configuration of more devices (S
in total), hosting resources that are not necessarily rep-
resentable within one maximum block size and that may
require configuration input exceeding the maximum block
size. We notate with B

′
the maximum supported block

size in bytes in the unconstrained network. Under these
assumptions, the total number of messages being exchanged
is shown in Figure 6. From Figure 6, we observe that there is

Steps Messages Entities

2 RD <---> CD

2 CD <---> APP

1 S*[2*⌈R*br/B⌉] EP <---> RD

2 2*S RD <---> CD

3 S*[2*⌈C*br/B'⌉] RD <---> CD

4 2*S CD <---> APP

5 S*[2*⌈C*br/B'⌉] APP <---> CD

6 S*[2*C*⌈bc/B⌉] APP <---> EP

7 2*S APP <---> CD

Bootstrap

Figure 6. Message exchange in each step for configuring S devices

a constant number of messages exchanged during bootstrap.
The number of messages exchanged during steps 2, 4 and

7 is purely proportional on the number of configurable
devices (S). The messages exchanged in steps 1, 3, 5 and
6, also depend on the overall number of resources, the
number of configurable resources and the required amount
of data to represent and configure the resources (bR and
bC). From these steps, we observe that the messages in
steps 3 and 5 are exchanged internally in the framework or
in the less constrained wireless network, between the user
interface device and the gateway. Assuming a large max-
imum supported block size in the unconstrained network,
then

⌈
C ∗ bR/B

′
⌉
≈ 1 and:

M3 ≈ 2 ∗ S

M5 ≈ 2 ∗ S

On the other side, the messages exchanged in steps 1 and
6 are exchanged with the constrained device itself, possibly
over a constrained network and therefore have the most
impact in terms of energy consumption and latency. We
observe that the number of exchanged messages in step 6
is proportional to the number of configurable resources and
the worst case scenario results when all the resources are
configurable (C=R):

M1 = 2 ∗ S ∗ dR ∗ bR/Be ≤ 2 ∗ S ∗R ∗ dbR/Be

M6 = 2 ∗ S ∗ C ∗ dbC/Be ≤ 2 ∗ S ∗R ∗ dbC/Be

The messages in step 1 are linked to the RD concept
itself and inherent to every solution that incorporates RD-
based discovery. The messages in step 6 are introduced by
our solution, but other solutions performing resource-based
configuration will exhibit similar scalability. Therefore, we
may conclude that the proposed solution respects the scala-
bility requirement.

VI. RELATED WORK

There has been continuous effort to define converged
solutions that are able to deal with the configuration and
management of heterogeneous IoT devices. These solutions
are proposed both by academic and industrial organizations,
and target mainly the standardization of interfaces, protocols
and IoT data models [6].

In [7]–[10], solutions for the configuration of IoT het-
erogeneous devices are described. However, these solutions
do not make use of open standards and require additional
hardware. As a specific protocol, software and hardware are
required, these solutions fall out of the scope of our work.

A sensor discovery and configuration framework is de-
scribed in [11]. This work makes use of semantics and
focuses mainly on the commissioning of the sensors and
the connection to a cloud IoT middleware. However, there
is less focus on the usability and user configuration interface.

In [12], an open standards-based self-configuration solu-
tion is described. It facilitates the deployment, discovery



and resource access for CoAP servers. However, it is not
focused on the user configuration of heterogeneous devices.
Our work leverages on these results, but goes beyond them
with respect to user interfacing, the CD concept and the use
of lightweight semantics for UI generation.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented our EC-IoT framework,
a configuration framework for IoT devices that is fully
based on open standards. The proposed solution offers a
streamlined configuration and management solution that can
help installers and non technical users when dealing with the
roll-out of heterogeneous IoT devices. It is beneficial also to
IoT device manufacturers, when designing and integrating
complex systems that include heterogeneous and vendor
dependent technologies and standards.

This is a crucial step in enabling the proliferation of
IoT applications, the interoperability and the usability of
constrained devices.

In order to evaluate the proposed solution, we have built
a prototype system that demonstrates the feasibility of the
concept. The experimental results show a successful con-
figuration of constrained heterogeneous devices, improved
usability by making use of a single user interface, and a
contained message exchange overhead.

In the future we plan to improve the framework towards
context-aware self-configuration of constrained devices.
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