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Abstract 30 

The GlycoFibroTest and GlycoCirrhoTest are non-invasive alternatives for liver biopsy that can be 31 

used as a follow-up tool for fibrosis patients and to diagnose cirrhotic patients, respectively. These 32 

tests are based on the altered N-glycosylation of total serum protein. Our aim was to investigate the 33 

impact of etiology on the alteration of N-glycosylation and if other characteristics of liver patients 34 

could have an influence on N-glycosylation. 35 

In human liver patients, no specific alteration could be found to make a distinction according to 36 

etiological factor, although alcoholic patients had a significant higher mean value for the 37 

GlycoCirrhoTest. Undergalactosylation did not show a significantly different quantitative alteration 38 

in the cirrhotic and non-cirrhotic population of all etiologies. Importantly, patients with an elevation 39 

of total bilirubin level (>2 mg/dl) had a strong increase of glycans modified with α1-6 fucose. The 40 

fucosylation-index was therefore significantly higher in fibrosis/cirrhosis and hepatocellular 41 

carcinoma patients with elevated total bilirubin levels irrespective from etiology. Furthermore, in a 42 

multiple linear regression analysis, only markers for cholestasis significantly correlated with the 43 

fucosylation-index.  44 

In mouse models of chronic liver disease, the fucosylation-index was uniquely significantly increased 45 

in mice that were induced with a common bile duct ligation. Mice that were chronically injected with 46 

CCl4 did not show this increase. Apart from this difference, common changes characteristic to 47 

fibrosis development in mice were observed. Finally, mice induced with a partial portal vein ligation 48 

did not show biological relevant changes indicating that portal hypertension does not contribute to 49 

the alteration of N-glycosylation. 50 

 51 

 52 

 53 



1.Introduction 54 

Liver fibrosis is characterized by the replacement of liver tissue by fibrous scar tissue and the 55 

development of regenerative nodules, leading to progressive loss of liver function (22). The ‘golden’ 56 

standard to asses progression of liver fibrosis is a liver biopsy (1,10), but is associated with several 57 

complications such as intraperitoneal haemorrhage (~1%), puncture of the gallbladder, 58 

pneumothorax (both <0.5%) and in very rare cases even death (0.01-0.001%) (18,20). Due to these 59 

limitations, there is an increasing demand for non-invasive serum tests and imaging techniques to 60 

assess the stage of liver fibrosis. In this regard, interest is raised in serum N-glycans profiles as 61 

potential indicator of liver disease.                                                                                                 62 

The majority of serum proteins are produced by the liver and nearly all of these proteins are N-63 

glycosylated, a noticeable exception being albumin. Recently, a new technological platform, DNA 64 

sequencer-assisted-fluorophore-assisted capillary electrophoresis (DSA-FACE) (14), has been 65 

developed to assess glycan structures. This has led to the discovery of a non-invasive test 66 

characteristic for end-stage cirrhosis, the GlycoCirrhoTest. This test is defined by the logarithmic 67 

proportion of the peak heights of a biantennary, α1-6 fucosylated and bisecting N-acetylglucosamine 68 

(GlcNAc) modified sugar (NA2FB - increased in cirrhosis) and a tri-antennary sugar (NA3 - decreased 69 

in cirrhosis) in the electropherogram (3).  70 

NA2FB represents the increase of bisecting GlcNAc modified glycans in cirrhotic patients and NA3 71 

represents the decrease of multi-antennary glycans in the serum of cirrhotic patients. This is 72 

associated with the up-regulation of N-acetylglucosaminyltransferase III (GnT-III - responsible for 73 

bisecting GlcNAc modified glycans) and the competitive decrease of N-acetylglucosaminyltransferase 74 

V (GnT-V - responsible for multi-antennary glycans) in regenerative nodules and these occur per 75 

definition only in the cirrhotic stage.   76 



Undergalactosylation (UGS), the increase of agalacto glycans in serum, is also an important feature 77 

in the glycosylation patterns of liver patients. These glycans, that lack one or both galactoses, 78 

progressively increase with Metavir-stage (2) and they can be predominantly found on 79 

immunoglobulin G (IgG) (21).UGS of IgG forms the basis of the GlycoFibroTest . Finally, it was shown 80 

that the increased abundance of an α1-3 fucosylated glycan (NA3Fb) is associated with the 81 

development of HCC in HBV-patients (15).  82 

Callewaert et al showed the potential of glycome research in biomarker discovery (3). 83 

Complementary to this study, we would like to investigate the impact of etiology on N-glycosylation 84 

patterns. Therefore, we examined five patient populations of different etiology: cholestatic, hepatitis 85 

B (HBV), hepatitis C (HCV), alcoholic and non-alcoholic steatohepatitis (NASH) patients and one 86 

control population of healthy volunteers. Importantly, it was observed that patients with an 87 

elevation in serum total bilirubin level (>2 mg/dl) had a significant increase of peak height of glycans 88 

modified with α1-6 fucose. Therefore, the fucosylation-index (FI), defined as the percentage of α1-6 89 

fucosylated glycans in the glycome of serum proteins, was significantly elevated in fibrosis/cirrhosis 90 

patients with increased levels of total bilirubin. An increase of the FI has especially been linked with 91 

hepatocellular carcinoma (HCC)-patients (6,17), and therefore, we also tested some HCC-serum 92 

samples with normal (0-1 mg/dl) and elevated (>2 mg/dl) total bilirubin serum level. Moreover, 93 

patients with a strong elevation of total bilirubin level were excluded in the original studies 94 

[3,21,15]. 95 

To confirm the results of the human data, we investigated the N-glycosylation patterns of two 96 

mouse models of chronic liver disease, common bile duct ligation (CBDL) and subcutaneous 97 

injections with CCl4. In addition, a mouse model for a pure portal hypertension (PHT) without liver 98 

damage, partial portal vein ligation (PPVL), was also evaluated.  99 

 100 



2. Materials and methods 101 

Human liver patients 102 

Five patient populations of at least 15 patients were assembled (Table 1). Each group had a specific 103 

etiology: cholestasis (n=15), HBV (n=20), HCV (n=32), alcoholic (n=31) and NASH (n=17). The 104 

cholestatic group consisted out of 1 patient with progressive familial intrahepatic cholestasis, 9 105 

patients with primary sclerosing cholangitis and 5 patients with primary biliary cirrhosis. Most of the 106 

alcoholic patients kept to a regime of alcohol abstinence at he time of analysis, there was only one 107 

active drinker (>21 alcoholic consumptions/week). The majority of HBV-patients (70%) were on 108 

treatment. We also included a control group of 16 healthy volunteers and a HCC-group of 16 109 

patients (Table 2). The volume of the tumor in a HCC-patient was calculated based on the diameter 110 

(>1 cm) of the nodule(s) reported by the radiologist on CT-scan. In the case of multiple nodules, the 111 

different diameters were counted up. Subsequently, the formula to calculate the volume of a sphere 112 

(4/3πr3) was used to assess tumor volume. Medical records of these patients were reviewed. Liver 113 

tests, Metavir-stage if determined by biopsy, other underlying diseases or conditions and clinical 114 

manifestations were assessed. All patients and volunteers signed an informed consent and the 115 

protocol was approved by the ethical committee of the Ghent University Hospital. Serum samples of 116 

patients and controls were taken fasted. 117 

The concentration of bile acids in serum was spectrophotometrically determined on a Hitachi 912 118 

analyser (Diagnostica; Boehringer Mannheim, Ingelheim, Germany) using a commercial kit (Trinity 119 

Biotech, Co Wicklow, Ireland). The alanine aminotransferase activity (ALT), aspartate 120 

aminotransferase activity (AST), gamma glutamyl transferase (GGT), alkaline phosphatase (AP), C-121 

reactive protein (CRP), total bilirubin and total protein were analyzed using routine photometric test 122 

on a Hitachi 747 analyser (Diagnostica, Boehringer Mannheim, Ingelheim, Germany). 123 

 124 



Animal models 125 

Male C57Bl/6 mice (25-30 g) were purchased from Harlan Laboratories (Horst, The Netherlands). The 126 

mice were kept under constant temperature and humidity in a 12 hours controlled light/dark cycle. 127 

The Ethical Committee of experimental animals at the faculty of Medicine and Health Sciences, 128 

Ghent University, Belgium, approved the protocols.  129 

The mouse model for a pure PHT without liver damage was induced by PPVL (7). The surgical 130 

procedure was performed under sterile conditions. Mice were anaesthetized under isoflurane 131 

inhalation (Forene®; Abbott NV, Brussels, Belgium). A midline abdominal incision was performed and 132 

the portal vein was separated from the surrounding tissue. A ligature (silk cut 5-0) was tied around 133 

both portal vein and adjacent 27-gauge blunt-tipped needle. Subsequent removal of the needle 134 

yielded a calibrated stenosis of the portal vein. Mice were sacrificed 7 and 14 days after PPVL (n=8 in 135 

each group).  136 

The portal venous pressure was measured in PPVL and Sham mice. The portal vein was cannulated 137 

through an ileocolic vein with a 24-gauge catheter (Becton Dickinson, Erebodegem-Aalst, Belgium), 138 

which was advanced into the portal vein and connected to a highly sensitive pressure transducer 139 

(Powerlab, ADInstruments, Spechbach, Germany). The external zero reference point was placed at 140 

the midportion of the animal.  141 

The mouse model for a secondary biliary cirrhosis is CBDL (13). The surgical procedure was 142 

performed under sterile conditions. Under isoflurane inhalation anaesthesia, a midline abdominal 143 

incision was made and the common bile duct was isolated. The common bile duct was occluded with 144 

a double ligature of a non-resorbable suture (silk cut 5-0). The first ligature was made below the 145 

junction of the hepatic ducts and the second was made above the entrance of the pancreatic duct. 146 

The common bile duct was sectioned between the two ligatures. Mice were sacrificed 1, 3, 4, 5 and 6 147 



weeks after CBDL (n=8 in each group). Sham-operated mice were used as control group for the CBDL 148 

and PPVL model (n=8 in each group).  149 

Finally, the third mouse model was induced by chronic subcutaneous (SC) administration of carbon 150 

tetrachloride (CCl4) (Merck, Darmstadt, Germany) twice weekly (1:1 dissolved in olive oil; 1 ml/kg) 151 

(11). 5% alcohol was added to drinking water. Mice were sacrificed after 1, 3, 6, 10 and 16 weeks 152 

(n=8 per group). Control mice for CCl4 received a saline solution (1ml/kg) subcutaneously (n=8 in 153 

each group). No alcohol was added to the drinking water. The time points at which the mice in the 154 

different mouse models were sacrificed roughly correspond with the semi-quantitative Metavir-155 

stage (2) as validated in a previous study (8). 156 

Blood samples were taken by puncture of the aorta abdominalis. These samples were centrifuged at 157 

2000 rpm for 10 minutes. At least 200 µl serum was taken off the clot and the alanine 158 

aminotransferase activity (ALT), aspartate aminotransferase activity (AST) and total bilirubin were 159 

analyzed as described for the human samples. The remaining serum volume was used for the 160 

analysis of the N-glycan profiles and to perform two Enzyme-Linked Immuno Sorbant Assays (ELISA) 161 

for the determination of the serum IgG and Serum Amyloid A concentration (Immunology 162 

Consultants Laboratory, Inc – Newburg, OR, USA). The ELISAs were run according to manufacturer’s 163 

instructions and all analyses were done in duplo. 164 

Histopathology of the mouse liver was performed by staining with 0.1% picrosirius red. Microscopic 165 

evaluation was carried out blinded by two independent investigators (J.V. and B.B.). Scoring of the 166 

liver tissues was done to determine the stage of fibrosis and this was expressed according to the 167 

Metavir-score (2) with the emphasis on the fibrosis and not on activity. 168 

 169 

 170 

 171 



Serum protein N-glycome sample processing 172 

The 96-well on-membrane deglycosylation method (14) was used to prepare APTS-labeled N-glycans 173 

from 5 µl serum. Samples were finally reconstituted in 5 µl milliQ water and analyzed using DSA-174 

FACE.  175 

To get an idea about the structures of the glycans present in the mouse profiles, exoglycosidase 176 

array sequencing was applied. Batches (0.5 µl) of APTS-labeled N-glycans were subjected to 177 

digestion with different mixtures of exoglycosidases in 5 mM NH4Ac (pH 5).  The enzymes used were 178 

Arthobacter ureafaciens sialidase, Streptococcus pneumoniae β-1,4-galactosidase, jack bean β-N-179 

acetylhexosaminidase and bovine kidney α-fucosidase. After complete digestion (overnight at 37°C), 180 

the samples were evaporated to dryness, reconstituted in 10 µl water and analyzed by DSA-FACE. 181 

Data processing 182 

We quantified the heights of 11 peaks that were detectable in all mouse and human samples (fig. 1) 183 

to obtain a numerical description of the profiles, and analyzed these data with SPSS 15.0 software 184 

(SPSS, Chicago, IL, USA). First, the sum of the peak heights of all the peaks were calculated (total 185 

intensity) and then the peak heights were normalized to the total intensity of the measured peaks 186 

(expressed as percentage of the total intensity). 187 

All mouse data were analyzed with Mann-Whitney U-test (control vs. treated). The human data were 188 

statistically processed as appropriate for the study design (independent sample t-test, single-factor 189 

ANOVA, Kruskal-Wallis test and multiple linear regression). A P-value less than 0.05 was considered 190 

significant in all analyses.  191 

 192 

 193 

 194 



3. Results 195 

Alcoholic patients have a significant higher mean value for the GlycoCirrhoTest 196 

The analysis was done on cirrhotic HCV (n=21) and cirrhotic alcoholic patients (n=23). The relative 197 

percentage of NA2FB was significantly higher in the alcoholic group compared to the HCV-group 198 

(8.9% ±2,8 vs. 6.4% ±2,4) (P=0.004, two-tailed t-test). The relative percentage of NA3 was not 199 

significantly different between the two groups (P=0,164, two-tailed t-test), although the mean value 200 

in the alcoholic group was lower than in the HCV-group (2,5% vs. 3,1%). As a consequence, the mean 201 

value of the GlycoCirrhoTest was almost double as high in the alcoholic group compared to the HCV-202 

group (0.59 ±0,33 vs. 0,31 ±0,26) (P=0,005, two-tailed t-test). The cirrhotic patients in the other 203 

etiologies also had a mean value that was considerably lower than that of alcoholic patients: 204 

cholestatic (0.26 ±0.2 – n=4) and HBV (0.3 ±0.39 – n=9). These latter observations were still 205 

substantially higher in comparison with the control group (-0.03  ±0.15) (fig. 2). The value for NASH-206 

patients (0.5 ±0.57 – n=4) was also quite high. Our data-set, in all etiologies together, had a AUROC 207 

of 0.81 for the discrimination between F0-F3 and F4 which was similar to the original study (3). More 208 

informative was the AUROC in the individual etiologies: cholestatic (0.77), HBV (0.72), HCV (0.68), 209 

alcoholic (0.96) and NASH (0.83). Finally, we found significant correlations between scores of the 210 

GlycoCirrhoTest and various markers of chronic liver disease: GGT, AST, total bilirubin, AP and bile 211 

acids (P<0,001; Spearman rank test) and ALT (P=0,018; Spearman rank test). This was expected 212 

because the GlycoCirrhoTest only displays an increase in score in the cirrhotic stage as these 213 

parameters were also seen to be elevated at this stage. In contrast, there was no correlation 214 

between scores of the GlycoCirrhoTest and viral load in HBV and HCV-patients (P=0,347; Spearman 215 

rank test). 216 

 217 

 218 



 219 

No significantly different quantitative alteration in undergalactosylation score between all etiologies 220 

Undergalactosylation (UGS) score was defined as [(2x(peak1+2)) + peak 3 + peak 4] / [2x(peak1 + 221 

peak2 + peak3 + peak4 + peak5 + peak6 + peak7)) + (3x(peak8 + peak9 + peak10)) + (4xpeak11)] 222 

(expressed in %) (20).  223 

In the non-cirrhotic group (F1-F3), there was no significant difference in UGS score between the 224 

etiologies as determined by pairwise comparisons using Scheffé-tests (single-factor ANOVA). The 225 

HCV and alcoholic liver disease group showed the highest mean level of UGS score (0.24 and 0.23, 226 

respectively), followed by HBV (0.2), cholestatic liver disease (0.18) and NASH (0.16). (P=0,322) 227 

The classification according to Metavir-stage was possible for the HCV-population (table 1). We were 228 

able to reproduce the linear increase of UGS score in increasing Metavir-stage: F1: 0.15, F2: 0.25, F3: 229 

0.29 and F4: 0.32.  230 

In cirrhotic patients, again no significant difference in UGS score between the etiologies was seen 231 

(P=0.054 – Kruskal-Wallis H test).  Mean UGS score was highest in cirrhotic NASH patients (0.35), 232 

followed by alcoholic (0.34) and HCV (0.32) patients. Cholestatic (0.23) and HBV (0.17) patients had a 233 

clearly lower, although not significant, mean level of UGS score. 234 

Fucosylation-index is significantly increased in fibrosis/cirrhosis and HCC-patients with an elevation of 235 

total bilirubin level 236 

It was observed that the FI of liver patients with an elevation in total bilirubin level (70%) was 237 

significantly higher than the FI of liver patients with normal total bilirubin levels (52.9%) (P<0.001, 238 

two-tailed t-test). The increase in α1-6 fucosylation was clearly not linked to etiology (single-factor 239 

ANOVA, P=0,254), only to an elevation in total bilirubin level. The FI was comparable in the 240 

progression of F1 to F3 in HCV-patients (0.5, 0.58 and 0.52, respectively), but it was clearly elevated 241 



in the cirrhotic stage (0.7). Patients with the syndrome of Gilbert had a normal FI. The degree of α1-3 242 

fucose did not differ significantly between patients with normal and elevated bilirubin levels 243 

(P=0.687, two-tailed t-test). 244 

We also tested other markers of liver damage (AST, ALT, GGT, AP, CRP and total protein) to 245 

investigate if these did not confound our results. Only AST and AP were also significantly elevated in 246 

the group with increased FI (P=0.001 and P=0.034, respectively, two-tailed t-test). 247 

Subsequently, we tested eight HCC-patients with an elevation in total bilirubin level and eight HCC-248 

patients with normal total bilirubin level. Again, the FI in the HCC-group with elevated total bilirubin 249 

concentrations was significantly higher (70.8% vs. 48.7% - P<0.001, two-tailed t-test). Both 250 

populations did not differ in AFP-level (P=0.35, two-tailed t-test) but AST was significantly increased 251 

in the HCC-group with increased FI (P<0.001, two-tailed t-test) in agreement with the results in the 252 

fibrosis/cirrhosis group. There was no significant difference in the other markers (ALT,GGT, AP, CRP 253 

and total protein). Again, the level of α1,3-fucose did not differ significantly between HCC-patients 254 

with normal and elevated bilirubin levels (P=0.585, two-tailed t-test).  255 

We also analyzed the correlation between the scores of the GlycoHCCTest and tumor volume in 256 

HCC-patients. There was a clear trend observed between the two variables, but significance was not 257 

reached (P=0,054; Spearman rank test). Only 1 HCC-patient showed metastasis and this did not 258 

influence the score.  259 

Serum bile acid concentration  260 

Serum bile acid concentration was determined in every fibrosis/cirrhosis and HCC-patient. 261 

Inconsistent data (low total bilirubin, high FI and vice versa) showed consistency in the bile acid data. 262 

Cholestatic patients had a mean serum bile acid concentration of 49.5 µmol/L (±83.4), HBV-patients 263 

had a mean value of 16.2 µmol/L (±26.1), HCV-patients had a mean value of 38.6 µmol/L (±53.2), 264 



alcoholic patients had a mean value of 50.2 µmol/L (±56), NASH-patients had a mean value of 67.2 265 

µmol/L (±85.4) and HCC-patients had a mean value of 51.5 µmol/L (±73). 266 

Only markers for cholestasis correlated significantly with the FI in a multivariate analysis 267 

 The total bilirubin and bile acid data were first logarithmically transformed. The correlation between 268 

the FI and the discontinuous variables HCC, cirrhosis (cirrhotic and non-cirrhotic) and etiology was 269 

determined with a two-tailed Spearman test and a single-factor ANOVA. The correlation with the 270 

continuous variables total bilirubin, serum bile acid concentration, AST and AP was determined with 271 

a simple linear regression analysis. The variables AST, total bilirubin, serum bile acid concentration 272 

and cirrhosis correlated significantly with the FI (P<0.001). Scatter dots of the correlation between 273 

the (logarithmically transformed) total bilirubin and serum bile acid concentration are seen in figure 274 

3. 275 

Subsequently, a multiple linear regression analysis was performed with FI as dependent factor and 276 

bilirubin level, serum bile acid concentration, AST, AP, HCC, etiology and cirrhosis as co-variants in 277 

the linear model. The (logarithmically transformed) total bilirubin level, (logarithmically 278 

transformed) bile acid concentration and AP correlated significantly with the FI (P<0.001, P=0.001 279 

and P=0.029, respectively) in the linear model. 280 

Laboratory tests and histological analysis of mouse models of chronic liver disease 281 

Test samples (4 in the PPVL and Sham group) confirmed earlier reports that there were no changes 282 

in AST, ALT and bilirubin after PPVL induction (6). One week after PPVL induction, the portal venous 283 

pressure (PVP) was at a mean of 8.3 mmHg (±1.9) and two weeks after PPVL induction, mean PVP 284 

rose further to 10.7 mmHg (±4). This was significantly higher than sham-operated mice that had a 285 

mean PVP of 4.3 mmHg (±0.8) (P<0.001) one week after induction and at 2 weeks a PVP of 5 mmHg 286 

(±1.7) (P=0.004). Histological examination revealed no significant fibrosis development in PPVL mice 287 

at 1 and 2 weeks after induction. They were predominantly scored F0.  288 



After 3 weeks of CCl4 administration, the Sirius Red stain demonstrated fibrotic changes in the 289 

centrolobular area. After 6 weeks, the liver architecture demonstrated a reversed lobulation due to 290 

development of centro-central fibrotic linkages and after 10 weeks, the reversed lobulation was 291 

accentuated with the development of centro-portal thin fibrotic septa apart from the centro-central 292 

fibrotic linkages. Finally, after 16 weeks, all mice had homogeneous characteristics of cirrhosis. For 293 

laboratory tests see table 3.  294 

Enlargement of the portal tracts accompanied by dilatation of bile canaliculi and proliferation of the 295 

smaller bile ducts appeared as soon as 1 week after CBDL. After 3 weeks, the periportal alterations 296 

were accompanied by fibrotic changes to be described as F2 and evolving into F3 after 5 weeks of 297 

CBDL. After 6 weeks, the majority of mice (62,5%) developed cirrhosis with nodular changes in the 298 

liver parenchyma. For laboratory tests see table 3. Typical cirrhotic images of CBDL and CCl4 mice are 299 

seen in figure 4. 300 

N-glycosylation patterns in mouse models of chronic liver disease 301 

The overall picture of the glycosylation pattern of a PPVL mouse was that of a control sample. One 302 

week after PPVL induction, peak 5/NA2 was significantly decreased (P=0.003) and peak 6 was 303 

significantly increased (P=0.006) compared to sham mice. Two weeks after induction, when PVP is at 304 

its maximum (7), only one peak was significantly altered: peak 9 was significantly increased 305 

(P=0.004) compared to Sham mice (Table 4). However no systematic changes were observed. 306 

In CCl4 mice, a significant increase in peaks 9 and 11 in the glycosylation pattern was observed 307 

starting from the first week of CCl4 treatment. Peak 10 also started to increase significantly in 308 

abundance from 6w on. After three weeks CCl4, peak 5/NA2 decreased significantly in abundance 309 

and at later time points, its two adjacent peaks (peak 3 and 4) also decreased significantly in 310 

abundance (fig. 5) (P-values see Table 4). 311 



CBDL mice were characterized by the significantly increased abundance of peaks 1, 6 and 7 (table 4, 312 

fig. 5) in the glycosylation pattern. Peak 1/NGA2F increased significantly already in the first week 313 

after CBDL, peaks 6 and 7/NA2F after 3 weeks CBDL. Fucosidase digest revealed that these are all 314 

fucosylated glycans. CBDL mice also exclusively had a significant lowered abundance of peak 8 and, 315 

common with CCl4, a decrease in abundance of peaks 4 and 5/NA2. CBDL mice also showed a 316 

significantly elevated peak height of peaks 9, 10 and 11 in agreement with CCl4 mice. Peak 11 was 317 

significantly increased in abundance from an early stage on, but peaks 9 and 10 only in the cirrhotic 318 

stage (P-values see Table 4). 319 

As a consequence of the increase of fucosylated glycans in CBDL mice, the FI was an excellent 320 

marker to distinguish CCl4 and CBDL mice. This index barely rose above 20% in CCl4 and control mice, 321 

while it reaches 30 to 40% in CBDL mice (P<0.001 in F2, F3 and F4-stage) (fig. 6). We also analyzed 322 

one pure bile mouse sample and the FI was comparable to a serum sample of a CBDL mouse (42%). 323 

IgG and SAA concentration in mouse models of chronic liver disease 324 

Six mice were evaluated at every time point in the CCl4 and CBDL group and two mice at every time 325 

point in the control mice. Both fibrotic mouse models showed a doubling of the IgG concentration in 326 

the progression of fibrosis to cirrhosis (from approx. 0.5 mg/ml to approx. 1.3 mg/ml). Apart from an 327 

early strong increase in SAA-concentration (a mean of 700 µg/ml after 3w in the CCl4 model and a 328 

mean of 320 µg/ml after 1w in the CBDL model) no significant difference in SAA-concentration 329 

between the CCl4, CBDL and control mice could be observed (baseline value was approximately 50 330 

µg/ml). 331 

4. Discussion 332 

Alteration of total serum N-glycans is indicative for chronic necro-inflammatory diseases and 333 

especially in liver diseases, it shows great potential as biomarker (3,21,15). Our group has made 334 



important contributions to this research with a follow-up tool for fibrosis (21) and non-invasive tests 335 

for cirrhosis and HCC (3,15).  336 

Alcoholic patients were shown to have a mean value for the GlycoCirrhoTest that was considerably 337 

higher than in other liver patients. This  could be due to the micronodular fibrotic nature of the liver 338 

of alcoholic patients. More nodules correspond to more elevated GnT-III induction in the cirrhotic 339 

liver (3). The mean value of NASH-patients was also quite high, but this was due to one outliner in a 340 

limited number of samples. Nevertheless, the mean value of the cirrhotic patients in all etiologies 341 

was significantly and considerably higher than the mean value of the control group. (4) stated that 342 

NASH-patients had no change in expression of GnT-III and GnT-V and these patients could therefore 343 

not be diagnosed with the GlycoCirrhoTest. However, we found that three out of our four cirrhotic 344 

NASH patients had a high value for the GlycoCirrhoTest, well over the cut-off value for cirrhosis, 345 

which implies strong up-regulation of GnT-III and concomitant down-regulation of GnT-V. (fig. 2).  346 

UGS of IgG in the progression of fibrosis is the feature on which the GlycoFibrotest is mainly based. 347 

This paper shows that there was no significantly different quantitative alteration in 348 

undergalactosylation in the cirrhotic as well as in the non-cirrhotic population across all etiologies 349 

(fig. 2). Remarkable was the strong increase of UGS score in cirrhotic NASH-patients compared to the 350 

non-cirrhotic group. The overall higher mean value of UGS in the cirrhotic stage (with the exception 351 

of HBV) can be attributed to the linear increase of the mean UGS state of IgG that reaches a 352 

maximum in end-stage liver disease (21) as exampled in HCV-patients.   353 

An important finding was that an elevation of total bilirubin is strongly associated with a consequent 354 

increase of the FI. In a multiple regression model, a significant correlation was found with the 355 

(logarithmically transformed) bile acid concentration and AP. These biochemical variables are 356 

markers for liver damage, but specifically for cholestasis. 357 



Increase in fucosylation has especially been linked with HCC and an up-regulation of 358 

fucosyltransferases in hepatoma tissue was suggested to be the driving force after this increased 359 

fucosylation of serum proteins (18,5). An alternative hypothesis in non-HCC cholestatic patients 360 

reasons that  α1-6 fucosylation of N-linked glycans within polarized hepatocytes directs 361 

glycoproteins to the basolateral surface and into bile. As a consequence, α1-6 fucosylated 362 

glycoforms are normally rare in the blood, and are enriched in the bile. Thus, if liver cells become 363 

depolarized, the α1-6 fucosylated glycoforms rise in abundance in the blood (16). The data collected 364 

in this study strongly favors the latter hypothesis. Moreover, the presence of high concentrations of 365 

bile acids in the serum samples with high FI is a strong confirmation of our data.  366 

In the setting of cholestasis, the basolateral path to the bile ducts is blocked. Therefore, we 367 

hypothesize that there is an accumulation of α1-6 fucosylated glycoproteins in the hepatocyte. The 368 

only exit for these glycoproteins is apically to the Space of Disse and eventually to the systemic 369 

circulation. In conclusion, α1-6 fucosylation does not seem to be a HCC marker, but a marker for 370 

cholestasis.  371 

Our group has previously shown that α1-3 fucose significantly increases in HCC-patients (15). 372 

However, we could not reproduce this up-regulation of α1-3 fucose. Possibly because we used a 373 

mixed HCC-population of different etiologies in contrast to the original study that was uniquely 374 

performed in HBV-patients (15). α1-3 fucose did not differ significantly between patients with 375 

normal and elevated bilirubin level, both in fibrosis/cirrhosis and HCC-patients. 376 

The mouse models allowed us to investigate some variables independently from each other. The 377 

influence of PHT was investigated with PPVL mice. No biologically relevant changes in N-378 

glycosylation were observed in the PPVL mice indicating that PHT does not contribute to the 379 

alteration of N-glycosylation in liver diseases. 380 



The effect of elevated total bilirubin levels on N-glycosylation can be studied with CBDL mice. In 381 

analogy with liver patients that had a strong increase in total bilirubin, CBDL mice had a strong 382 

increased abundance of all  α1-6 fucosylated glycans. An additional advantage of mouse models is 383 

the easy follow-up of histology and there is also less bias in the histological analysis of the mouse 384 

liver. In this respect, we were able to observe that the increase of α1-6 fucosylation is an early event 385 

in the cholestatic development (table 3).  386 

CCl4 mice did not show an increase in total bilirubin level and these mice therefore did not have an 387 

increased FI. These mice develop a micronodular fibrosis/cirrhosis with characteristics of an alcoholic 388 

cirrhosis and it is also considered as a model with an important amount of inflammation. However, 389 

inflammation did not have an influence on the N-glycosylation patterns in these mouse models. 390 

Apart from an early peak in SAA-concentration, no significant difference was observed and there 391 

was no such correlation with the N-glycosylation patterns of the mouse models. The hallmarks of 392 

CCl4 mice are an increase of peaks 9, 10 and 11, probably all multi-antennary glycans. Again, this 393 

occurred very early in the fibrotic development and was not unique to CCl4 mice because also CBDL 394 

mice had a significant increased abundance of these three glycans, albeit later in the fibrotic 395 

development. Other common changes with CBDL were a significant decrease in abundance of peak 396 

5/NA2 and its adjacent peak 4.  397 

Some N-glycosylation aspects of human liver patients are difficult to study in mouse models. Even if 398 

UGS would be present in mouse models, it would be much less pronounced than in humans because 399 

the IgG-concentration in serum is inherently low at 0,5 to 1,5 mg/dl. Additionally, in mice, glycan 400 

modifications that do not exist in humans, especially α-galactosylation, are present (12). Therefore, 401 

the baseline N-glycosylation pattern of a control C57Bl/6 mouse will be different than the baseline 402 

N-glycosylation pattern of a healthy human control (fig. 1). Moreover, our study strongly suggests 403 

that the spectrum of N-glycosylation alterations in liver disease is different between mouse and 404 

man. In summary, caution is offered when extrapolating mouse data. 405 



In conclusion, we have shown that the GlycoFibroTest and GlycoCirrhoTest can be used in all 406 

etiologies as universal non-invasive tests. An important finding was that liver patients with elevated 407 

total bilirubin levels have a significant increase of glycans modified with α1-6 fucose. When studying 408 

fucosylation, a distinction has to be made between an increase of α1-6 fucose which is a marker for 409 

cholestasis and an increase of α1-3 fucose which is a marker for HCC, the latter most likely 410 

exclusively in HBV-patients. Future studies on biomarker discovery based on N-glycosylation will 411 

have to take into account that an increase of total bilirubin is attended with an increase of α1-6 412 

fucosylation in serum. 413 
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Fig. 1. The upper panel shows a typical desialylated N-glycan profile from a control C57Bl/6 mouse 504 

total serum protein. The lower panel shows a typical desialylated N-glycan profile from a healthy 505 

human control total serum protein. The glycan structures of all the peaks in the human profile are 506 

known: Peak 1 indicates an agalacto α1-6 fucosylated biantennary glycan (NGA2F), peak 2 indicates 507 

an agalacto α1-6 fucosylated bisecting biantennary glycan (NGA2FB), peaks 3 and 4 indicate a single 508 

agalacto α1-6 fucosylated biantennary glycan (NG1A2F), peak 5 indicates a bigalacto biantennary 509 

glycan (NA2), peak 6 indicates a bigalacto α1-6 fucosylated biantennary glycan (NA2F), peak 7 510 

indicates a bigalacto α1-6 fucosylated bisecting biantennary glycan (NA2FB), peak 8 indicates a tri-511 

antennary glycan (NA3), peak 9 indicates a α1-3 fucosylated triantennary glycan (NA3Fb), peak 10 512 

indicates a α1-6 fucosylated triantennary glycan (NA3Fc) and peak 11 indicates a tetra-antennary 513 

glycan (NA4). The symbols used in the structural formulas are as follows: (    ) β-linked galactose, (    ) 514 

β-linked N-acetylglucosamine,   (    ) α/β-linked mannose,    (     ) α-1,3/6-linked fucose. The structures 515 

of the peaks in the mouse profile were obtained after exoglycosidase digests. The three glycans 516 

indicated in the murine profile were clearly deduced from the exoglycosidase digests (data not 517 

shown). 518 

Fig. 2. Comparison of typical cirrhotic N-glycan profiles of different etiologies and a typical N-glycan 519 

profile of a healthy control. The peaks that represent undergalactosylated glycans are in red and the 520 

peaks that represent the GlycoCirrhoTest are in green.  521 

Fig. 3. Scatter dots of the correlation between the logarithmically transformed bilirubin and serum 522 

bile acid concentration with the fucosylation-index. 523 

Fig.4 Sirius Red staining (objective magnification 10x). A) control mice for CCl4 and Sham-operated 524 

mice did not develop fibrosis at any time point (Stage 0 or F0). B) Typical cirrhotic image of the liver 525 

6 weeks after common bile duct ligation (black arrow: fibrotic strands, white arrow: bile duct 526 

proliferation). C) Typical cirrhotic image of the liver chronically injected with CCl4 for 16 weeks (black 527 

arrow: fibrotic strands). 528 



Fig. 5. Comparison of a typical N-glycan profile of a control, CCl4 (F2-F4) and CBDL (F2-F4) mouse. The 529 

peaks that significantly decrease in abundance compared to control mice are in red and those that 530 

significantly increase in abundance compared to control mice are in green.  531 

Fig. 6. The error bars represent the evolution of the FI in the progression towards cirrhosis. Starting 532 

from a F2-stage, the FI is clearly higher in the CBDL mice (B) when compared to the CCl4 mice (A). 533 
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Table 1: Anthropomorphic data and liver tests in the different etiologies of chronic liver disease and 
control group 

 Fibrosis/Cirrhosis-patients          Etiologies 
 Cholestatic HBV HCV alcoholic NASH control

Age (y) 45,2 (±15,6) 45,1 (±16,4) 53,9 (±16,1) 59,2 (±9,2) 46,2 (±12,2) 46,6 (±12,8) 
Weight (kg) 72,9 (±14,8) 80,3 (±15,5) 72,9 (±13,6) 80 (±18,5) 89,4 (±23,7) ND

Sex (m/f) 10/5 13/7 21/11 22/9 11/6 10/5 
F0-F1 ND ND 5/32 (15,6%) ND ND NA 

F2 ND ND 3/32 (9,4%) ND ND NA 
F3 ND ND 3/32 (9,4%) ND ND NA
F4 4/15 (26,7%) 9/20 (45%) 21/32 (65,6%) 23/31 (74,2%) 4/17 (23,5%) NA 

Bilirubin (mg/dl) 1,34 (±1,5) 1,04 (±0,93) 1,02 (±1) 1,79 (±1,4) 5,3 (±14,4) 0,2 (±0,16) 
AST (U/l) 45,6 (±39,6) 31,2 (±15,9) 68,3 (±42,8) 43,6 (±26,3) 34,8 (±38,4) 8,6 (±5,7) 
ALT (U/l) 55,5 (±52,1) 33,1 (±31,2) 76,8 (±81,5) 31,3 (±19,2) 36,1 (±58,1) 10,6 (±3,9)
GGT (U/l) 202,3 (± 439) 24,8 (±13,7) 89,3 (±73,2) 117,5 (±115,8) 98 (±127,1) 29,2 (±24)

ND: Not Determined  NA: Not Applicable 



Table 2: Anthropomorphic data and liver tests in the different etiologies of HCC-patients 

 Etiologies of HCC-patients                   
 HBV HCV alcoholic NASH 

n 2 4 8 2 
Age (y) 72 (±12,7) 76,3 (±7,6) 64,7 (±16) 65,5 (±78) 

Weight (kg) 54,5 (±7,8) 69,5 (±17,7) 73,8 (±18,1) 83 (±8,9) 
Sex (m/f) 1/1 3/1 5/3 1/1 

Bilirubin (mg/dl) 3,4 (±4,1) 1,85 (±1,6) 5,1 (±6,9) 0,6 (±0) 
AST (U/I) 76 (±84,9) 73,5 (±30,4) 70,1 (±59,3) 31,5 (±17,7) 
ALT (U/I) 44,5 (±40,3) 64 (±24,2) 35 (±20,1) 37 (±14,1) 
GGT (U/I) 99 (±46,7) 217,3 (±193,4) 164,4 (±83,4) 136 (±161,2) 

AFP (ng/ml) 1009 (±1422) 133,1 (±208,9) 10027 (±24416,4) 140,1 (±195,1)
MELD score 13,9 (±5,8) 11,7 (±3,4) 14,2 (±8,4) 7,2 (±0,1) 

Milan criteria (within/outside) 1/1 3/1 5/3 1/1 
 

 



Table 3: laboratory tests: CBDL - Sham and CCl4 - saline (n=8 per group) 

 CBDL Sham 
 1w 3w 6w 10w 16w 1w 3w 6w 10w 16w 

AST 
(U/L) 

586 
(±417)    

377 
(±101)  

326  
(±75)   

477  
(±239)   

422 
(±201)  

87 
 (±16)  

102 
(±52,5) 

71    
(±12) 

82    
(±34) 

136  
(±52) 

 *** *** *** *** ***      

ALT 
(U/L) 

694 
(±662)    

246  
(±38)    

206  
(±65)      

296  
(±118)   

284 
(±141)   

66    
(±39) 

46    
(±18) 

41    
(±12) 

38    
(±10) 

68    
(±44) 

 *** *** *** *** ***      
 

TBiln 
(mg/dl) 

13,1 
(±6,2)  

24,8 
(±4,9)  

20,7 
(±5,7)  

17,6  
(±4,6)    

22,9 
(±4,6)  

0,11 
(±0,04) 

0,13 
(±0,04) 

0,12 
(±0,02) 

0,16 
(±0,04) 

0,19 
(±0,03) 

 *** *** *** *** ***      
   CCl4     Saline   
 1w 3w 6w 10w 16w 1w 3w 6w 10w 16w
 

AST 
(U/L) 

 

112 
(±42) 

215 
(±159) 

78 
 (±44) 

122 
 (±61) 

98 
(±26) 

89   
 (±21) 

81 
(±23) 

72 
(±21) 

87 
(±81) 

67 
(±29) 

  **   *      
 

ALT 
(U/L) 

 

87 
 (±52) 

68  
(±24)    

51 
(±30) 

77  
(±28) 

88  
(±34) 

81  
(±59) 

41  
(±16) 

38 
 (±6,9) 

47  
(±15) 

28  
(±10) 

  **  * **      
 

TBiln 
(mg/dl) 

 

0,2 
(±0,06) 

0,17 
(±0,05)   

  0,22 
(±0,08) 

0,21 
(±0,15) 

0,19 
(±0,02) 

0,2 
 (±0,2) 

0,12 
(±0,01) 

0,15 
(±0,04) 

0,09 
(±0,04) 

0,21 
(±0,05) 

  ** * *   
Mean (±SD);   *p<0,05     ** p<0,01   *** p<0,001 compared to Sham and saline 

 



Table 4: mean relative peak height (in %) of the different peaks in the mouse electropherogram 
(treated – control). 

*0,01<p<0,05  **p<0,01  ***p<0,001 

 

Group Time 
point 

Peak 1 Peak 2 Peak 3 Peak 4 Peak 5 Peak 6 Peak 7 Peak 8 Peak 9 Peak 10 Peak 11 

 Week 1 0,7-0,7 1,4-1,7 1,3-1,8 10-11,4 46,2-47,7 2,6-3,3 13,6-15,2 3,9-3,5 15,3-11,2 3-2,7 1,6-1

          ***  ***

 Week 3 0,7-0,8 1,1-1,3 3-2 12,9-12,6 45,4-49,3 2,6-2,9 12,2-12,7 4,5-3,8 13,8-11,6 2,4-2,2 1,3-1

      *    *  *

CCl4 - Week 6 1,4-1,4 1,3-1,2 0,7-2,3 6,9-12,7 49,2-48,3 2,5-2,9 16,2-12,4 2,3-4 15,2-11,7 3-2 1,4-1

Saline    ** ***     ** *** *

 Week 10 2-2,9 1,2-1,4 0,8-1,6 9,3-12,3 45,9-48,8 3,2-3,4 14,6-13,2 3-3,2 15,9-10,7 2,7-1,8 1,5-0,8

    ** ***     *** *** ***

 Week 16 2,7-2,3 1,3-1,6 0,8-1,1 9,2-12,3 44,6-50,9 2,2-2,5 14,8-13,7 3-2,6 17,2-10,5 2,5-1,8 1,7-0,8

   * ** *** *** *** ** ***

 Week 1 0,9-0,6 0,9-1,1 4,6-3,7 16,3-15,2 40,9-40,5 3,4-3,3 14-12 4,5-5,9 11,1-14 1,7-2,6 1,7-1,4

  *       * *  *

 Week 3 5,8-1,7 1,8-2,5 2,1-2,4 10,1-12,8 40-46,6 3,6-2,8 20,5-13 2,5-4 9,8-11 1,9-2,1 2-1

  **   ** ** ** *** *** *  ***

CBDL -  Week 4 3,3-2,3 1,3-1,2 2-1,3 10-10,5 43-51,2 3,6-2,9 20,2-14,3 2,5-2,8 9,9-11,2 1,9-2 1,7-0,7

Sham  *   *** ** *** *  ***

 Week 5 6,5-2,6 1,5-1,6 1,7-1,6 9,2-10,6 38,7-47,4 3,2-3 21,3-15,6 2,5-3,2 11,1-11,2 2,4-2,5 1,7-0,9

  **   *** * *** *  **

 Week 6 3,7-1 1,7-1,2 1,3-1,5 10,5-14,9 41-48,9 3,8-3,5 20,9-13,2 2,5-3,2 11,1-9,9 2,4-2 2,1-0,8

  ***   *** *** * *** *** * ** ***

 Week 1 1,1-1,5 1,2-1,1 4,1-3,3 16-14,8 39-44,4 4,6-3,3 15,2-12,8 4,7-4,4 10,5-11,3 2,6-2,1 1,1-1

PPVL-      ** *      
Sham Week 2 1,1-1,6 1,2-1,3 1,8-2,2 13,1-14 48,7-49,8 3,5-4 12,3-13,9 3,6-3,5 12-9,2 1,7-1,9 1-0,8

    ***  
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