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Abstract 

In order to prevent biofilm formation by Candida albicans, several cationic peptides were 

covalently bound to polydimethylsiloxane. The salivary peptide Histatin 5 and two synthetic 

variants (Dhvar 4 and Dhvar 5) were used to prepare  peptide functionalized PDMS using 4-

azido-2,3,5,6-tetrafluoro-benzoic acid (AFB) as an interlinkage molecule. In addition, 5 

polylysine-, polyarginine- and polyhistidine-PDMS surfaces were prepared.   Dhvar 4 

functionalized PDMS yielded the highest reduction of the number of C. albicans biofilm cells 

in the Modified Robbins Device. Amino acid analysis demonstrated that the amount of 

peptide immobilized on the modified disks was in the nanomole range. Poly-D-lysine PDMS, 

in particular the homopeptides with low molecular weight (2,500 and 9,600) showed the 10 

highest activity against C. albicans biofilms, with reductions of 93 % and 91 %, respectively. 

The results indicate that the reductions are peptide dependent. 
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Introduction 

Biofilm formation on medical devices is frequently associated with infections and in many 

cases removal of the medical device is the only option to combat them (Khardori and Yassien 

1995; Kadry et al 2009). Several approaches have already been evaluated to inhibit microbial 

biofilm formation on medical materials (Danese 2002; Von Eiff et al 2005). First, various 5 

materials have been passively coated  e.g. alkanethiols on gold (Hou et al 2007), fish protein 

coatings on glass or vinyl plastic coverslips (Vejborg and Klemm 2008) and diamond-like 

carbon on stainless steel (Raulio et al 2008). These passive coatings are not antimicrobially 

active but alter the physico-chemical properties of surfaces, so that micro-organism/substrate 

interactions are weakened or even prevented (Hetrick and Schoenfish 2006). However, their 10 

effectiveness is limited, due to adsorption of conditioning films, masking the functional 

groups (Hetrick and Schoenfish 2006). Secondly, coatings releasing antimicrobial compounds 

including antibiotics (Price et al 1996; Kwok et al 1999a, 1999b; Stigter et al 2004), silver 

ions (Dowling et al 2003) or silver nanoparticles and antiseptics (for a review see Von Eiff et 

al 2005) have been designed for use in intravenous polyurethane catheters and urinary 15 

catheters (Wu and Grainger 2006). A third series of surface modifications includes polymers 

with positively charged moieties such as quaternary ammonium or phosphonium groups at 

their surface. These substrates can be synthesized via copolymerization (Kenawy and 

Mahmoud 2003; Kenawy et al 2006; Kenawy et al 2007) or using photo- or plasma-induced 

graft polymerization (Hsiue et al 1998; De Smet et al., unpublished data).  Grafting results in 20 

the production of materials with altered surface properties without influencing the bulk 

properties (Pan et al 2003). 

Covalent binding of cationic peptides may be a useful approach to prevent microbial 

biofilm formation. Histatins are a family of naturally occurring, histidine-rich, low molecular 

weight peptides in human saliva (Helmerhorst et al 1997) and tear fluid (Jumblatt et al 2006). 25 
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Of these, histatin (Hst) 1, 3 and 5 are the most abundant peptides in saliva (De Smet and 

Contreras 2005). Hst 5, which is a peptide fragment derived from Hst 3, possesses the highest 

activity against Candida albicans and salivary concentrations range from 15 to 50 µM 

(Edgerton et al 1998). In the oral cavity, salivary peptides are believed to inhibit C. albicans 

overgrowth, thus offering a natural protection from oropharyngeal candidiasis. In addition, 5 

homodimerization of histatin-derived peptides showed an improved in vitro bactericidal 

activity against Staphylococcus aureus (Welling et al 2007). Dhvar 4 and Dhvar 5 are 

synthetic variants of the active domain of Hst 5 (Den Hertog et al 2004). Exposure of micro-

organisms to histatins results in leakage of intracellular components accompanied by a release 

of intracellular potassium and a decrease in the cellular ATP-level.  10 

In certain circumstances, disease states can diminish the body’s natural protective 

mechanisms against infection.  For example, malignant laryngeal tumors of the vocal cords in 

humans are removed by a total laryngectomy. For voice rehabilitation of laryngectomized 

patients, a voice prosthesis (VP) is placed between the trachea and the oesophagus 

(Kasperbauer and Thomas 2004). This VP is highly susceptible to colonization by micro-15 

organisms, particularly by Candida spp., growing in biofilms on the surface (Bauters et al 

2002; Elving et al 2002). Laryngectomized patients show a decreased salivary secretion as a 

side effect of radiation therapy, thus reducing the concentration of natural protective peptides 

(Rodrigues et al 2006). The release of antimycotics from buccal, bio-adhesive tablets has not 

been successful in preventing biofilm formation on VPs because of this reduced saliva 20 

secretion (Ameye et al 2005). In vitro studies have already focussed on the removal of mixed 

species biofilms by Dhvar 4 and 5 (Oosterhof et al 2003). However, the antibiofilm effect 

against C. albicans by peptides (applied by covalent binding, unlike by adsorption or dip 

coating) completely immobilized on silicone rubber has not been determined so far. 
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In the present study, the antifungal effect of three histatin-like antimicrobial peptides 

(Hst 5, Dhvar 4 and Dhvar 5) and several polylysine, polyarginine and polyhistidine 

homopolymers covalently bound to silicone was assessed against planktonic and sessile C. 

albicans cells.  

 5 

 

Materials and methods 

Materials 

Dhvar 4 and Dhvar 5 were synthesized at the Mousseron Institute (Montpellier, France). 

HEPES buffer, MES buffer, ethyl acetate, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 10 

hydrochloride (EDC), N-hydroxysuccinimide (NHS), acrylic acid (AA) and Hst5 were 

purchased from Sigma (St. Louis, MO, USA). Ethanol was obtained from Chem Lab 

(Zedelgem, Belgium). 4-azido-2,3,5,6-tetrafluorobenzoic acid (AFB) was purchased from 

Invitrogen (Carlsbad, CA, USA) and RBS 35 solution was purchased from Chemical Products 

(Brussels, Belgium). Dichloromethane was obtained from Acros Fine Chemicals (Geel, 15 

Belgium). All homopolymers were purchased from Sigma. They included seven poly-D-

lysine HBr salts (molecular weight distributions: 1,000-4,000; 4,000-15,000; 15,000-30,000; 

30,000-70,000; 70,000-150,000; 150,000-300,000 and > 300,000); four poly-L-lysine HBr 

salts (molecular weight distributions: 500-2,000; 1,000-5,000; ≥ 15,000 and 15,000-30,000); 

two poly-DL-lysine HBr salts (molecular weight distributions: 1,000-4,000; 25,000-40,000); 20 

three poly-L-arginine HCl salts (molecular weight distributions: 5,000-15,000; 15,000-70,000 

and > 70,000 ) and one poly-L-histidine HCl salt (molecular weight distribution: 5,000-

25,000). 

 

Polydimethylsiloxane (PDMS) production 25 



 6 

Medical grade silicone rubber (Q7-4735, Dow Corning Corp., Midland, MI, USA) was 

prepared as described previously (Coenye et al 2008).  

 

Synthesis of PDMS functionalized with peptides   

To select the appropriate interlinkage molecule for covalent binding of peptides to PDMS, 5 

Dhvar 4 was bound onto the PDMS surface by grafting of AA or AFB. To initiate grafting of 

PAA onto PDMS, the surfaces were brought in contact with a benzophenone solution (5% 

[w/v] in ethanol). In a first approach, Dhvar 4 was coupled to the carboxylic groups of grafted 

AA using EDC as coupling reagent in combination with NHS. To this end, a stable activated 

ester on the PDMS surface was prepared by soaking the PAA-grafted PDMS surface for 4 h at 10 

room temperature in a solution of 1.76 mM EDC and 1.78 mM NHS, dissolved in MES-

buffer (pH 5.5). The surfaces were washed in MES-buffer for 24 h at 37°C. Finally the 

terminal amino group of Dhvar 4 was coupled onto the surface in HEPES buffer pH 8.5, 

resulting in covalent binding of Dhvar 4 onto PDMS. After a contact time of 48 h the peptide 

containing disks were rinsed in sterile MilliQ water and treated aseptically until use. 15 

The second approach to synthesize Dhvar 4-PDMS makes use of AFB. PDMS sheets 

were incubated in ethanol for 4 h, to remove the catalyst and subsequently cleaned in a 2 % 

(v/v) RBS solution. The sheets were incubated in a saturated AFB solution (5 mg/ml) 

prepared in dry ethyl acetate for 4 h, allowing AFB to adsorb onto the PDMS sheets. 

Afterwards the incubated sheets were dried under reduced pressure to remove ethyl acetate 20 

from the surface. The azido group of AFB readily reacts with methyl groups on the PDMS 

and both sides of the PDMS sheet were irradiated with UVC light (λ = 254 nm) for 5 min. 

Following polymerization, the surfaces were cleaned using dichloromethane to remove the 

non-reacted AFB. NHS esters were then synthesized by the reaction of the carboxylic group 

with EDC and NHS in MES-buffer pH 5.5 for 4 h at room temperature. The obtained surfaces 25 
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were cleaned in MES buffer for 24 h at 37°C. Finally, Dhvar 4 was coupled to the PDMS 

substrate as described above.  

For covalent binding of all other (homo)peptides, the coupling procedure with AFB 

was used. Peptide concentrations of 5 or 20 mg/ml and 1 or 5 mg/ml were used for Dhvar 4 

and Dhvar 5, respectively. The peptide concentration for covalent binding of Hst 5 was 0.5 5 

mg/ml. All homopolymers were bound to PDMS using a concentration of 5 mg/ml of the 

homopeptide. 

 

Characterization of modified PDMS surfaces  

The peptide modified PDMS surfaces were characterized using Attenuated Total Reflection-10 

Infrared spectroscopy (ATR-IR) and Attenuated Total Reflection-imaging (ATR-imaging) 

Attenuated Total Reflection-Infrared spectroscopy (ATR-IR) measurements on the 

modified PDMS surfaces were performed at room temperature using a Biorad 575C 

spectrometer. All spectra were recorded between 4000 cm-1 and 720 cm-1 at 2 cm-1 resolution. 

A single beam reference spectrum of a freshly cleaned diamond crystal was recorded before 15 

the measurements and used as the background spectrum. All spectra were normalized by the 

C-H bending band of the PDMS backbone located at 1259 cm-1. 

For Attenuated Total Reflection-imaging (ATR-imaging) the Spotlight 300 instrument 

(Perkin Elmer Life and Analytical Sciences, Waltham, MA, USA), was used. Samples of 1.5 

mm thickness were tightened between the sample stage and the Ge crystal. The Spotlight 20 

system was run with two scans per pixel and with a spectral resolution of 4 cm-1. The data 

collection software collects rectangular image areas of 100 µm by 100 µm (De Smet et al., 

unpublished data).  
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Amino acid analyses were carried out to determine the amount of cationic peptide 

bound to PDMS. To this end, the peptide modified PDMS disks were cut in two pieces and 

introduced in a vial for hydrolysis. The vials were loaded in a vessel filled with 200 µl 6N 

HCl and subsequently with argon, closed and incubated at 106°C for 24 h. The hydrolysed 

amino acids were washed from the polymer with 200 µl of MilliQ water. From this mixture, 5 5 

µl of sample was loaded on an automated Applied Biosystems amino acid analyzer using the 

phenylisothiocyanate chemistry. Each sample was measured in triplicate. 

.  

Strain and culture conditions 

 Candida albicans SC5314 (ATCC MYA-2879) was used throughout. The strain was 10 

maintained at -80°C using the Microbank storage system (Pro-Lab Diagnostics, Richmond 

Hill, ON, Canada). After thawing at room temperature, one bead was transferred to 10 ml of a 

sterile Sabouraud broth (Becton Dickinson Co, Franklin Lakes, NJ, USA) and the inoculated 

broth was incubated at 37°C for 24 h. From this suspension, a pure culture was obtained on 

Sabouraud Dextrose agar (SDA, (Becton Dickinson). To prepare overnight cultures, one or 15 

two isolated colonies of the pure culture were transferred to Sabouraud broth.  

 

Determination of the minimal inhibitory concentration 

The minimal inhibitory concentrations (MICs) were determined using LYM broth (5 mM 

KCl, 5.6 mM Na2HPO4, 0.5 mM MgSO4, 1.0 mM sodium citrate, 0.4 mg l-1 ZnCl2, 2.0 mg l-1 20 

FeCl3.6H2O, 0.1 mg l-1 CuSO4.5H2O, 0.1 mg l-1 MnSO4.H2O and 0.1 mg l-1 Na2B4O7.10H2O) 

according to Rothstein et al (2001). Glucose, an amino acid mixture, and a vitamin mixture 

were added as well according to the manufacturer’s instructions. Stock solutions of each 

peptide were  diluted (1:2). Of each dilution, two ml were transferred to the wells of a flat-

bottom 24-well microtiter plate (TPP, Trasadingen, Switzerland). A standardized cell 25 
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suspension was prepared as follows : overnight cultures were centrifuged and the cells of 

these freshly prepared overnight cultures were washed three times with and diluted in LYM 

broth to a concentration of 106 CFU ml-1. One hundred µl of these standardized cell 

suspensions, containing appr. 105 C. albicans cells per ml LYM broth, were added to each 

well. Prior to use, the bacterial suspensions were vigorously mixed using a vortex mixer. 5 

Following 24 h of incubation at 37°C, the growth was measured by determining the 

absorbance at 530 nm using a Wallac Victor2 (PerkinElmer Life and Analytical Sciences, 

Waltham, MA, USA) microtiter plate reader. The MICs for each peptide was defined as the 

lowest concentration resulting in a lack of visible growth. For the homopeptides, instead of 

LYM broth, Yeast Nitrogen Base (YNB) medium supplemented with 50 mM glucose was 10 

used. Each MIC test was carried out in triplicate. The following concentration ranges were 

tested : 125-0.12 µg/ml (Dhvar 4), 100-0.01 µg/ml (Dhvar 5), 850-0.001 µg/ml (Hst), 2500-

78 µg/ml (poly-DL-lysine) and 2500-1 µg/ml (poly-L-lysine, poly-DL-lysine and poly-L-

arginine). 

 15 

Biofilm growth in the MRD 

C. albicans biofilms were grown on PDMS disks in the Modified Robbins Device (MRD), as 

described previously (Coenye et al 2008). Prior to the determination of the antibiofilm effect, 

all the modified surfaces were rinsed in sterile saline (0.9% [w/v] sodium chloride solution). 

A flow system consisting of 6 custom made stainless steel Modified Robbins Devices 20 

(MRDs) was employed to allow C. albicans adhesion and subsequent biofilm formation. One 

such a device comprises six individual ports in a linear array along a channel of rectangular 

cross-section, having dimensions of 10.0 mm (width), 145.0 mm (length) and 3.5 mm (depth), 

respectively. Each port may hold a cylinder-shaped plug that serves as a substrate for biofilm 

development at the interior side of the MRD. These were placed in an aluminium heating 25 
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block to ensure a constant temperature of 37°C during biofilm growth. Prior to each run the 

tubing, the valves and the devices were cleaned with MilliQ water and finally autoclaved. The 

assembly of these different parts was carried out prior to sterilization. Two bottles containing 

the C. albicans inoculum suspension and the growth medium (YNB supplemented with 50 

mM glucose) were connected to the silicone tubing under aseptic conditions. The inoculum 5 

suspension was prepared using saline (0.9 % sodium chloride solution). To this end C. 

albicans overnight cultures were centrifuged at 4000 rpm for 4 min and the pelleted yeasts 

were washed with saline. The cells were subjected to three wash cycles and finally 

resuspended in saline. One ml aliquots were added to 99 ml saline containing bottles resulting 

in the inoculum suspensions. The growth medium was prepared by adding 6.7 g of Yeast 10 

Nitrogen Base (Becton Dickinson) and 9 g glucose to 100 ml of MilliQ water. This solution 

was sterilized by vacuum filtration through a 0.45 µm cellulose acetate membrane filter 

(Corning Incorporated, Corning, NY, USA) and was aseptically diluted (1:10) in sterile 

MilliQ water, resulting in a YNB solution with final glucose concentration of 50 mM. The 

tubing was mounted on top of a pump head in a peristaltic pump (Watson-Marlow 505S, 15 

Bredel, Wilmington, MA, USA). The setup of each device includes a bypass to allow rinsing 

of the silicone tubing with either inoculum suspension or growth medium at the inlet side and 

removal of entrapped air bubbles. First the inoculum suspension was pumped towards the 

MRDs in order to fill the interior side of the MRD. Once filled, the pump was switched off 

and the MRDs were clamped off using a clamp at the inlet and one at the outlet side. Each 20 

device was flipped over to allow planktonic C. albicans cells adhering to the disks. After 1 h, 

the MRDs were flipped back and the clamps were loosened. The pump was started to permit a 

flow of continuous growth passing over the colonized disks. Flow rate was set at 0.5 rpm 

(corresponding with 7.9 ml/h) and C. albicans biofilms were allowed to develop at 37°C for 

24 h.  25 



 11 

After biofilm formation, the number of sessile C. albicans cells was determined by plating on 

SDA, as described previously (Coenye et al 2008).  To this end, the sessile C. albicans cells 

were harvested following 1 h of adhesion and 1 h of adhesion followed by 24 h of biofilm 

formation. The disks were aseptically recovered from the plug (MRD) and added to Sab. The 

cells were harvested  by 30 s of intensive mixing with a vortex (IKA® works, Inc., 5 

Wilmington, NC, USA) and 30 s of sonication (Bransonic® 3510, Soest, The Netherlands) 

three times. Finally the C. albicans cell suspensions were serially (1:10) diluted in Sab, one 

ml aliquots were transferred to petri dishes (Novolab, Geraardsbergen, België) and mixed 

with molten SDA (45°C). The plates were incubated at 37°C for 24 h, the number of colonies 

was counted and the number of colony forming units was calculated for all disks.  10 

 

 

Statistical analysis 

All cell counts were log transformed and data from the peptide modified disks were compared 

with those from the corresponding control disks. Analysis of variance with the Scheffe post 15 

hoc tests was performed using the SPSS 15.0 software package (SPSS Inc, Chicago, IL). 

Differences in biofilm cell counts between modified and control disks were considered 

significant when p<0.05. Correlation between molecular weight of peptides and MIC values 

was determined using Kendall’s tau test ; correlations were considered statistically significant 

if p < 0.05. 20 

 

 

 

 

 25 
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Results and Discussion 

 

Characterization of modified PDMS surfaces 

The distribution of the cationic peptides bound to the PDMS surface, studied by ATR-

Imaging was found to be homogeneous for both procedures, i.e. grafting of AA or AFB (see 5 

Figure 1 in Supplementary Data). However, after biofilm growth in the MRD visual 

inspection revealed a marked swelling (i.e. increase in surface area available for biofilm 

formation) of the AA grafted PDMS. In contrast, PDMS disks modified with AFB remained 

unchanged. This observation strongly indicates the need for the selection of the appropriate 

interlinkage molecules for covalent binding of antimicrobials on PDMS. For all further 10 

experiments, AFB was used as the interlinkage molecule.  

 

Antifungal effect on planktonic C. albicans cells 

The MIC of Dhvar 4, Dhvar 5 and Hst 5 for C. albicans SC5314 was 7 µM, 9 µM and 41 µM, 

respectively (Table 1). The MICs of poly-D-lysine, poly-L-lysine, poly-DL-lysine and poly-15 

L-arginine where inversely correlated with the molecular weight of each peptide (p<0.05) 

(Table 2).  

 

Antifungal  effect of salivary  peptides on sessile C. albicans cells 

Table 1 lists the percent reduction in sessile C. albicans cell numbers on PDMS 20 

functionalized with Dhvar 4, using AA and AFB as interlinkage molecules. The reduction for 

each type of modification and for each replicate was calculated with reference to the cell 

count on the peptide-free control PDMS disks. The cell counts on the unmodified disks 

ranged from 104 to 105 after 1 h of adhesion and from  106 to 107 following 1 h of adhesion 

and 24 h of biofilm formation. The results clearly show that the highest reductions in the 25 
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numbers of sessile C. albicans cells, both after adhesion and biofim development were 

obtained for Dhvar 4 containing surfaces, modified using AFB. Dhvar 5  and Hst 5 yielded 

reductions of 64 % and 72 % (p < 0.05). Although a 10-fold higher concentration was used in 

the procedure for covalent binding of Dhvar 5 compared to Hst 5, similar reductions were 

observed. Maximum reduction (95 %) was obtained on Dhvar 4-PDMS surfaces.  5 

Our results differ from those obtained by others, such as Oosterhof et al. (2003), who 

used an artificial throat (a biofilm model system similar to the MRD) to grow mixed species 

biofilms on intact Groningen button voice prostheses. They examined the biofilm eradication 

effect of the synthetic peptides, Dhvar 4 and Dhvar 5, applied by dip coating. After a 3-day 

growth period, mature biofilms were exposed 3 times a day to Dhvar 4 and Dhvar 5, dissolved 10 

in the salivary substitute Xialine in a final concentration of 4 mg per ml (well above the MIC). 

Dhvar 4 did not affect the number of bacteria and yeasts compared with the control 

prostheses. The highest reductions [78 % (bacteria) and 94 % (yeasts)] were obtained on VPs 

soaked in Dhvar 5 solutions, (Oosterhof et al  2003). This is unlike our own observations and 

may reflect the profound difference in activity between bound and free peptides. 15 

 

Antifungal  effect of homopeptides on sessile C. albicans cells 

Histatins reportedly have intracellular targets (mitochondria). Their effects on cytoplasmatic 

membranes are limited and permeabilization of the microbial membrane is a secondary effect 

rather than the primary cause of their antimicrobial activity (Ruissen et al 2001, 2002; Den 20 

Hertog et al 2005, Welling et al 2007). The most potent anti-Candida member of this family 

is Hst 5 and analysis of its sequence showed the presence of lysine and arginine residues 

(Helmerhorst et al 1997). Covalent binding of peptides only consisting of lysine, arginine and 

histidine residues might increase the anti-Candida effect on biofilms, as these cationic amino 

acids are believed to be partly responsible for the antifungal effect.  25 
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Poly-D-lysine PDMS with molecular weights of 2,500 or 9,600 and poly-DL-lysine 

PDMS (molecular weight of 32,800) yielded a significantly lower C. albicans sessile cell 

count than the controls, with reductions of 93 %, 91 % and 79 %, respectively (Table 2). 

However, covalent binding of poly-D-lysine moieties containing more lysine residues 

drastically decreased the antibiofilm activity. C. albicans biofilm formation on other 5 

substrates was hardly affected (Table 2). In addition, neither poly-L-arginine PDMS nor poly-

L-histidine PDMS affected C. albicans biofilm growth. These observations demonstrate that 

inhibition of C. albicans biofilm formation highly depends on the nature of the immobilized 

peptide, its molecular weight and its stereochemistry. 

 10 

 

Conclusions 

In the present study we have shown that salivary peptides and homopeptides can be bound to 

PDMS using preferably AFB as the interlinkage molecule. AA is less suitable as interlinkage 

molecule as it results in swelling of the PDMS after contact with aqueous media in the MRD. 15 

This  highlights the importance of the interlinkage molecule to be bound to PDMS.  

Although reductions of > 90 % (Dhvar 4 and low molecular weight poly-D-lysine) 

were obtained in an in vitro biofilm model system, it remains to be established if these would 

be sufficient for a prolonged, protective effect in vivo.   

 20 
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Table 1. Reduction in C. albicans biofilm cells grown in the MRD recovered from peptide grafted PDMS. 

Substrate  MIC 
(µM)  Interlinkage 

molecule  Time 
(h)  Concentration 

(mg ml-1)  
Peptide 
amount 

(nmoles) 
 n  

Sessile cells 
PDMS (control)     

% 
reduction 
(mean ± 

SD) 

p-value 

              PDMS 
(control) 

Modified   

Dhvar 4-
PDMS  7  PAA  1  5  1  6  4.51 ± 0.26 4.51 ± 0.41 - - 

    AFB  1  5  1  6  4.51 ± 0.26 4.16 ± 0.18 55±12 NS 
    PAA  24  5  1  6  6.57 ± 0.49 7.16 ± 0.39 - - 
    AFB  24  5  1  6  6.57 ± 0.49 5.17 ± 0.45 96±3 <0.001 
Dhvar 5-
PDMS  9  AFB  24  1  ND  12  6.67 ± 0.29 6.80 ± 0.18 - - 

    AFB  24  5  2  12  6.63 ± 0.24 6.16 ± 0.21 66±22 <0.05 
Hst 5-
PDMS  41  AFB  24  0.5  0.8  12  6.80 ± 0.22 6.21 ± 0.26 74±17 <0.05 

 
n, number of disks tested; PAA, polyacrylic acid; AFB, azido tetrafluorobenzoate; PDMS, polydimethylsiloxane; ND : not determined;  
Concentration refers to the concentration in solution used for modification; the amount of peptide refers to total amount per disk; - : biofilm 
formation stimulated (i.e. cell counts on control disks lower than on modified disks) ; NS, not significant.. 5 
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Table 2. Reduction in C. albicans biofilm cells grown in the MRD recovered from homopeptide grafted PDMS (using 5 mg ml-1 of petide and 

AFB as interlinkage molecule). 

Substrate Mol wt range Mol wt MIC 
(µM) m 

peptide 
amount 

(nmoles) 
n 

Sessile cells % reduction 
(mean ± SD) p-value 

       PDMS (control) Modified   
Poly-D-Lysine PDMS 1,000-4,000 2,500 500 17 31 12 6.76 ± 0.36 5.59 ± 0.38 93 ± 5 <0.01 
 4,000-15,000 9,600 130 66 50 11 6.67 ± 0.32 5.58 ± 0.56 91 ± 7 <0.05 
 15,000-30,000 27,200 46 186 34 12 6.67 ± 0.32 6.32 ± 0.54 55 ± 39 NS 
 30,000-70,000 40,600 31 278 55 11 6.67 ± 0.32 6.49 ± 0.37 34 ± 34 NS 
 70,000-150,000 150,000 8 1027 47 11 6.67 ± 0.32 6.41 ± 0.56 43 ± 40 NS 
 150,000-300,000 262,300 ND 1797 49 12 6.67 ± 0.32 6.46 ± 0.39 37 ± 43 NS 
 > 300,000 391,700 ND 2055 51 4 6.72 ± 0.37 6.70 ± 0.34 4 ± 66 NS 
Poly-L-Lysine PDMS 500-2,000 584 67 4 ND 6 7.15 ± 0.24 6.78 ± 0.25 56 ±27 NS 
 1,000-5,000 4,200 9 29 ND 5 7.15 ± 0.24 6.88 ± 0.38 45 ± 50 NS 
 ≥ 15,000 15,000 0.08 103 ND 6 7.15 ± 0.24 7.10 ± 0.27 12 ± 49 NS 
 15,000-30,000 24,000 0.13 164 ND 6 7.15 ± 0.24 6.73 ± 0.44 61 ± 53 NS 
Poly-DL-Lysine PDMS 1,000-4,000 4,000 10 27 ND 6 7.15 ± 0.24 6.97 ± 0.24 34 ± 29 NS 
 25,000-40,000 32,800 0.06 255 ND 6 7.15 ± 0.24 6.46 ± 0.34 79 ± 13 <0.01 
Poly-L-arginine PDMS 5,000-15,000 13,300 0.15 76 29 18 6.91 ± 0.33 6.84 ± 0.56 13 ± 72 NS 
 15,000-70,000 49,500 0.10 284 33 12 6.92 ± 0.35 7.04 ± 0.35 - - 
 > 70,000 125,000 0.08 718 42 12 6.92 ± 0.35 7.09 ± 0.28 - - 
Poly-L-histidine PDMS 5,000-25,000 10,000 ND 65 ND 6 6.91 ± 0.36 7.45 ± 0.18 - - 
 
m, number of amino acids per peptide; n, number of disks tested; AFB, azido tetrafluorobenzoate; PDMS, polydimethylsiloxane; Mol wt,  
molecular weight of most abundant molecule in mixture ; ND, not determined; peptide amount refers to total amount per disk; - : biofilm 5 
formation stimulated (i.e. cell counts on control disks lower than on modified disks) ; NS, not significant. 
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Supplementary data - Figure 1. ATR image of unmodified PDMS (top) and PDMS 

modified with Dhvar-4 using AFB as interlinker.  
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