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Abstract Data analytics is at the core of the supply chain for both products and ser-
vices in modern economies and societies. Big data workloads, however, are placing
unprecedented demands on computing technologies, calling for a deep understanding
and characterization of these emerging workloads. In this paper, we propose ShenZhen
Transportation System (SZTS), a novel big data Hadoop benchmark suite comprised
of real-life transportation analysis applications with real-life input data sets from Shen-
zhen in China. SZTS uniquely focuses on a specific and real-life application domain
whereas other existing Hadoop benchmark suites, such as HiBench and CloudRank-D,
consist of generic algorithms with synthetic inputs. We perform a cross-layer workload
characterization at the microarchitecture level, the operating system (OS) level, and
the job level, revealing unique characteristics of SZTS compared to existing Hadoop
benchmarks as well as general-purpose multi-core PARSEC benchmarks. We also
study the sensitivity of workload behavior with respect to input data size, and we
propose a methodology for identifying representative input data sets.

This is an extended version of ‘SZTS: A Novel Big Data Transportation System Benchmark Suite’ by the
same authors, published at the 44th Annual International Conference on Parallel Processing (ICPP),
September 2015, Beijing, China. This extension includes a general revision, provides more details and
analysis, and includes an OS-level characterization, as a complement to the microarchitectural and
job-level characterization.
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1 Introduction

Information technology is undergoing a data-centric revolution in which companies
and governments use analytics on massive data to extract information and discover
trends. In fact, data are keys to many products and services in modern economies and
governmental policies. Projections, however, show that data are growing by an order
of magnitude every year, surpassing improvements in computing devices. Big data
analytics is thus placing unprecedented demands on our computer systems. Hence, it
is of utmost importance to analyze and understand these big data workloads to drive
future computer system research and development. Example big data workloads span
different areas of interest in government policy (e.g., city transportation, health care),
IT (e.g., social networking, Web 2.0), industry (e.g., manufacturing), and research
(e.g., data-intensive scientific discovery).

In this paper, we propose a novel benchmark suite, called ShenZhen Transporta-
tion System (SZTS), consisting of five applications that analyze different forms of
transportation data in Shenzhen, an 18-million city in the south of China. The appli-
cations are written in Hadoop, a popular open-source implementation framework of
the MapReduce programming model for big data processing. The SZTS workloads
analyze how many people are moving from point A to B using the metro or taxi; the
distribution of people and vehicles at a given time and location; identification and
prediction of hot spots in the city; mapping GPS measurements to the city grid; and
sorting GPS records for temporal correctness. The input data sets of the SZTS bench-
mark suite are taken from real-life operation; the number of data points are in the range
of tens of millions of records per day. SZTS is unique by focusing on real workloads
from a real application domain using real-life data, whereas other existing Hadoop
benchmark suites are comprised of generic algorithms using synthetic inputs. SZTS
is available for download at http://cloud.siat.ac.cn/cloud/szts/szts.php.

To better understand SZTS’ unique properties, we perform a cross-layer workload
characterization at the microarchitecture, operating system (OS), and job level; and we
compare SZTS against other Hadoop benchmarks from HiBench [6] and CloudRank-
D [7], as well as general-purpose multi-core benchmarks from PARSEC [9]. Our
characterization reveals that SZTS exhibits vastly different behavior from typical
general-purpose multi-core benchmarks (PARSEC), with much lower IPC, and much
higher instruction cache miss rates and last-level (data) cache miss rates at the microar-
chitecture level. In addition, the SZTS benchmarks spend a much larger fraction of
their execution time (90 %) in OS libraries. While more similar to the other Hadoop
benchmarks than to PARSEC, we find SZTS’ microarchitecture behavior to be quite
unique relative to HiBench and CloudRank-D with fairly low instructions per cycle
(IPC), good instruction cache performance (and thus relatively few fetch stalls), and
high last-level cache miss rates and high off-chip memory pressure (resulting in a
relatively high number of resource stalls). We also find that SZTS exhibits relatively
high data processing speed; limited time spent in the map stage relative to the reduce
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stage; fairly large amount of reduce output data; and substantial intra-node communi-
cation at the job level. Finally, we study the sensitivity to the input data set size, and
we find several benchmarks to be very sensitive to their inputs; hence, we propose a
methodology to identify representative input data sets.

In summary, we make the following contributions in this paper:

We propose ShenZhen Transportation System (SZTS), a novel Hadoop benchmark
suite composed of five benchmarks representative of the big data transportation
system in Shenzhen, China, and which we make publicly available.

— We perform a cross-layer characterization (at the microarchitecture, OS, and job
level) of SZTS, and compare its characteristics against other Hadoop benchmarks
from the HiBench and CloudRank-D benchmark suites. We also compare against
the general-purpose, multi-core PARSEC benchmark suite. We point out that
Hadoop/MapReduce workload characterization should be done across layers. In
particular, microarchitecture-level characterization reveals important properties
that job-level characterization cannot reveal, and vice versa.

— We find that SZTS exhibits very different characteristics compared to PARSEC at
the microarchitecture and OS levels. We also find SZTS to exhibit unique workload
characteristics relative to HiBench and CloudRank-D, with relatively low IPC,
good instruction cache performance, and high last-level cache and off-chip memory
pressure, along with high intra-node communication, large reduce outputs, and
large reduce processing times.

— We propose a methodology for identifying representative input data sets through

input sensitivity analysis.

The rest of this paper is organized as follows. Section 2 describes the Hadoop
framework we use in this paper. Section 3 introduces SZTS, our novel big data bench-
mark suite derived from the Shenzhen transportation system. Section 4 describes the
methodology used to characterize the workloads at the job, OS and microarchitecture
levels. Section 5 introduces our experimental setup. Section 6 presents our character-
ization results and analysis. Section 7 discusses input sensitivity and representative
input selection. Section 8§ discusses related work, and finally, Sect. 9 concludes the

paper.

2 Background: big data and MapReduce

Big data applications are often characterized using the four Vs: volume, velocity, vari-
ety and veracity. Volume refers to the scale of the data; velocity refers to the analysis of
streaming data; variety refers to the different forms of data; and veracity refers to the
uncertainty of data. The huge scale of the data, its uncertainty and variety makes big
data analytics extremely challenging; the fact that the data are continuously streaming
in, as is the case for our application domain (city transportation system), makes big data
analytics a grand challenge. Benchmarking big data applications and systems hence
comes with its own challenges: the huge volumes of (streaming) data in real-life appli-
cations require that sufficiently large input sizes are considered during performance
evaluation, as we will see in this paper. In fact, to the best of our knowledge, how
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input data set size affects Hadoop application behavior and performance has not been
systematically studied before.

Big data applications call for domain-specific languages. MapReduce is a program-
ming model designed for big data processing; a MapReduce program takes a set of
key/value pairs as input and produces a set of output key/value pairs. Hadoop is the
most popular open-source implementation framework for MapReduce. Users only
need to write map and reduce functions and the rest is handled by the Hadoop run-
time. Large input data sets are split into small blocks by the Hadoop Distributed File
System (HDFS). The execution of a Hadoop program can be divided into map and
reduce stages. In the map stage, each map task reads a small block and processes it.
When map tasks complete, the outputs—also known as intermediate files—are copied
to the reduce nodes. At the reduce stage, reduce tasks fetch the key/value pairs from
the output files of the map stage, which they then sort, merge, and process, to produce
the final output. The map stage itself can be further divided into read, map, collect,
spill, and merge phases. Similarly, the reduce stage can be divided into shuffle, merge,
reduce, and write phases.

3 ShenZhen transportation system

The SZTS benchmarks are derived from the Smart Urban Transportation System of
Shenzhen (SUTS). Before we dig into the details of SUTS, it is worth briefly intro-
ducing the Shenzhen city. Shenzhen is a famous international city located in southern
China. It covers 2000 square kilometers with a population of approximately 18 mil-
lion. Shenzhen already built a modern urban transportation infrastructure including
5 subway lines with 118 stations, 936 bus lines, and 30,000 cabs. Each bus and cab
is equipped with a GPS device. As Shenzhen hosts a lot of Internet and software
companies, it attracts more and more people to work in the city. In fact, Shenzhen
was founded in 1979—only 35 years ago—and has grown to become one of the most
successful special economic zones in China. As a result, the city transportation faces
severe challenges. For example, daily traffic jams during rush hour now take 1.5 h
longer than 2 years ago!

SUTS was built with two goals in mind. For one, it provides the government with
a tool to develop transportation policies and plan for future infrastructure. Second, it
helps citizens organize their daily intra-city trips. To achieve these goals, data gener-
ated by all vehicles and passengers must be stored and used as an analysis base for
various transportation policies and smart applications. SUTS, therefore, developed
a data warehouse to store the data. Currently, there are four types of data: (1) Cel-
lular phone GPS records with fields such as phoneid, owner-name, time, location,
and speaking-time; (2) GPS records with fields such as cab-id, time-stamp, latitude,
longitude, speed and direction; (3) smart card transaction records with fields such as
smart-card-id, entrance- or exit-flag, station-id and transaction-account; (4) cab deal
information with fields such as time-stamp, transaction-account, distance and start-
time. These data are generated by GPS devices (in buses, taxis, and cellular phones)
and by machines in metro stations, and is sent to the data warehouse of SUTS at arate of
approximately once every 20 seconds. Table 1 summarizes the amount of datain SUTS.
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Table 1 The amount of data in SUTS

Index Item Value

1 No. vertices of digital map 73,515

2 No. edges of digital map 101,749

3 No. smart cards 11 million

4 No. GPS records 95 million per day

5 No. smart card records 15 million per day

6 No. taxicab deal records 1.5 million per day

Transportation  Route Real Time || Hot Region || Passenger
Application | planping || Road Status || Prediction || Distribution
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Fig. 1 Architecture overview of the Smart Urban Transportation System of Shenzhen (SUTS)

The three-layer architecture of SUTS is shown in Fig. 1. The bottom layer is the
real-time data collection which receives the aforementioned data in an online manner.
The middle layer is the data warehouse. A data interface is defined to support the top
application layer. A unique feature of SUTS is that it uses a digital map as its user
interface, visualizing the distribution or traffic jams of the city. All components of
SUTS are implemented in the Hadoop framework and its derivative systems such as
Hive and Pig, making up for a typical big data system.

3.1 SZTS benchmark suite

Given the SUTS system as just described, we have distilled five typical benchmarks,
of which we now provide more details, and which we refer to as the SZTS benchmark
suite.
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Sztod The sztod program computes how many moving objects start from point A
and head for point B in a given time interval in the city. sztod has two use-cases
in SZTS: (1) Metro system: in this case, sztod computes how many people enter
station A and exit station B; (2) Taxi system: in this case, szt od calculates how many
cabs navigate from point A to point B.

Hotregion The hotregion program computes the distribution of people, cars, or
other vehicles in Shenzhen within a given time interval. For example, hotregion
can compute how many smart card transactions occur in all metro stations of the
Shenzhen city on a special day such as the National Holiday. We can, therefore, easily
identify the hot metro stations according to the number of smart card transactions.
Another example is to use hotregion to compute the real-time taxi distribution in
all traffic regions that are specified by their latitude and longitude coordinates on the
Shenzhen digital map.

Mapmatching Typically, a GPS (Global Position System) trajectory consists of a
sequence of points with latitude, longitude and time-stamp information. However,
this information is not accurate due to the measurement error caused by the limita-
tion of GPS devices and sampling error. The observed GPS points, therefore, need to
be aligned with the route network on a given digital map [8]. The mapmatching
program is used to match the observed GPS trajectory with the route on a digital
map. Based on mapmatching, one can develop a lot of other applications such as
identifying traffic hotspots and smart route planning.

Hotspot In SUTS, the hotspots are defined as (1) a shopping center, (2) a train station,
(3) a prominent landmark, (4) the airport, and (5) customs. The hotspot program
aims at acquiring, aggregating, analyzing, visualizing, and predicting traffic jams on
the roads surrounding and leading to these hotspots. For instance, hotspot ana-
lyzes the intensity of traffic flow (free or congested) to identify the traffic phases of
each hotspots. In addition, hotspot contains a prediction model based on logistic
regression to predict the future traffic flow intensities for a given hotspot.

Secsort The original GPS records received from remote GPS devices or smart card
readers in SUTS are out-of-order. However, further analyses may need sorted data.
The secsort program is developed to sort the data according to two keys. What the
two keys are depends on the application that uses secsort. For example, one smart
card record has multiple fields such as time-stamp and metro station name. In a metro
application, secsort first sorts the records by smart card record, then sorts by the
primary time-stamp key, and finally sorts the records in each group by the secondary
metro station name key. secsort is implemented in Apache Pig.

3.2 SZTS Input Data Sets

The input data sets of SUTS are considerable. The 30,000 cabs generate 4.8 GB of data
each day, resulting in 144.8 GB and 1.74 TB data per month and per year, respectively.
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The Shenzhen city has approximately 15,000 buses servicing 936 bus lines in between
10,300 bus stations, generating 5 GB data per day. The Shenzhen urban transportation
company has sold more than 10 million smart cards, of which 7.3 million are used on
a daily basis on average. The total amount of smart card transaction data is 1 GB per
day.

The SZTS programs do not change frequently; however, their inputs change every
20 seconds in the most extreme case. Moreover, the amount of data that needs to be
processed may vary widely: for example, officers of the Shenzhen government may
want to see the daily, monthly, even yearly cab and passenger distributions of the
city. This indicates that the same program needs to process a lot of different sizes of
input data. However, to the best of our knowledge, no previous work has carefully
studied how the input data size affects the behavior of Hadoop programs. We provide
such a detailed analysis in this paper, and we provide the SZTS benchmark suite with
different input sets for each benchmark.

4 Cross-layer characterization

We analyze the SZTS benchmark suite through a cross-layer characterization involving
the job, OS and microarchitecture levels. As will become clear in the results section, a
cross-layer characterization reveals insights that a single-layer characterization cannot
reveal. Subsequent data analysis is done using principal component analysis (PCA)
and cluster analysis.

4.1 Job-level characterization

The metrics we consider at the job level are enumerated in Table 2; these metrics
are chosen such as to provide a fairly broad view on data size, processing speed and
communication at the job level. Data Processing Speed (DPS) measures how fast a
program processes data, and is defined as the amount of data processed divided by

Table 2 Job-level metrics

Index Metric Description

1 DPS Data processing speed

2 MOI (Map output)/(map input)

3 SMI (Shuffle data)/(map input)

4 TMRS (Map stage time)/(reduce stage time)

5 TMRF (Map function time)/(reduce function time)
6 ROI (Reduce output)/(reduce input)

7 ROMI (Reduce output)/(map input)

8 T™MI (Temporal write data)/(map input)

9 TRAMI (Intra-node transmitted data)/(map input)
10 TERMI (Inter-node transmitted data)/(map input)
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the execution time of a program. To quantify how the data size changes after the map
operation, we define Map Output/Input ratio (MOI) as the ratio of the amount of map
output and input data; Shuffle/’Map Input ratio (SM1I) is defined as the ratio of the amount
of data processed by the shuffle operation to that processed by the map operation. Two
metrics—Time Map/Reduce Stage ratio (TMRS) and Time Map/Reduce Function ratio
(TMRF )—quantify the amount of time spent in the map stage and function relative to
the reduce stage and function, respectively. (Note that the map stage takes longer than
the map function since the map stage includes more operations such as spill and merge,
as previously mentioned.) Two metrics—Reduce Output/Input ratio (ROI) and Reduce
Output to Map Input ratio (ROMI)—relate to the amount of output data produced by
the reduce stage. The Temporal to Map Input ratio (TMI) metric quantifies the amount
of data temporally written to the local file system. Finally, two metrics—Intra-node
to Map Input (TRAMI) and Inter-node to Map Input (TERMI)—quantify the amount
of data transmitted between processes within the same node versus between different
nodes.

Collectively, the job-level metrics primarily focus on data size changes between
the map and reduce stages and functions, and the time required to process the data.
HiBench [6] in its characterization, employs three job-level metrics only; we define
more metrics to enable a more detailed analysis.

4.2 OS-level characterization

In addition to the job-level characteristics, we also characterize how much time is
consumed in the OS and system libraries. This information helps us find where cycles
go in the system stack. Hadoop is a framework implemented in Java, which leads to an
overall complicated software stack, involving the application, the MapReduce runtime,
the JVM and the OS. The complex system stack presents interesting challenges for
correlating performance between kernel modules, shared libraries, the runtimes and
application binaries.

Programs generally rely on a set of common system libraries such as the C runtime,
a mathematical library, a dynamic linker/loader, and the POSIX thread library. How-
ever, unlike compute-intensive programs (such as those from the PARSEC benchmark
suite), Hadoop benchmarks involve two additional types of libraries: network-related
libraries and JVM-related libraries. Analyzing the time spent in these system libraries
enables us identifying optimization opportunities. For example, the IBM 1ibjvm. so
system library leads to a 38 % performance improvement compared to the default ver-
sion of 1ibjvm. so for a set of Hadoop programs according to a study done by Yasin
et al. [32]. Such a general approach is usually preferred over ad hoc approaches since
the latter typically work for a small subset of Hadoop programs only.

The OS and system libraries that we characterize are shown in Table 3. While most
libraries are widely known, a couple needs further explanation, such as vdso and
anon. vdso is the abbreviation of Virtual Dynamically linked Shared Object and it
exports kernel space routines to user space applications using standard mechanisms
for linking and loading the standard ELF format. It also helps to reduce the calling
overhead on simple kernel routines as well as to select the best system call method on
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Table 3 OS and system libraries

OS and system library Description Category

vmlinux Linux kernel Linux

libc-2.15.s0 C runtime library Linux

libm-2.15.s0 Mathematical library Linux

1d-2.15.50 Dynamic linker/loader Linux
libpthread-2.15.s0 POSIX thread library Linux

Libnio.so Network interface Java network lib
Libnet.so Network lib Java network lib
e1000e Network Network device driver
Libjava.so Java library JVM-related libraries
Libjvm.so Java virtual machine JVM-related libraries

Libhadoop.so
vdso

Anon
Libverify.so
Librt-2.15.s0

Hadoop libraries

Virtual dynamically linked shared object

Anonymous executable mappings

Verification module

Real-time library

JVM-related libraries
JVM-related libraries
JVM-related libraries
Others
Others

Table 4 Microarchitecture-level metrics

Index Metric Description

1 IPC Instructions per cycle

2 LIICMPKI No. L1 icache misses per 1K insns

3 L2ICMPKI No. L2 icache misses per 1K insns

4 LLCMPKI No. last-level cache misses per 1K insns

5 BRPKI No. branches per 1K insns

6 BRMPKI No. branch misses per 1K insns

7 OCBWUTI Off-chip bandwidth utilization

8 IFSPKC No. instruction fetch stall cycles per 1K cycles
9 RSPKC No. resource related stall cycles per 1K cycles
10 DTLBPKI No. D-TLB load misses per 1K insns

some architectures. anon represents anonymous executable mappings which are not
backed by an ELF file, and they occur when programs involve dynamic compilation
into machine code using a just-in-time (JIT) compiler.

4.3 Microarchitecture-level characterization

Table 4 shows the metrics we use to characterize our benchmarks at the microarchitec-
ture level; these metrics, when put together, provide a good view on the performance
and behavior of individual nodes. We collect these metrics on each node, and then com-
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pute the average across all eight nodes (see Sect. 5 for experimental details). We will
use these metrics not only to compare SZTS against other Hadoop benchmarks, but
also to compare SZTS against (non-Hadoop) general-purpose multi-core benchmarks.

Instructions Per Cycle (IPC) computes the number of useful instructions exe-
cuted per cycle, and is a measure for performance (higher is better). LIICMPKI and
L2ICMPKI quantify the number of L1 and L2 instruction cache misses, respectively,
per thousand instructions, and are measures for the instruction footprint and locality
(lower is better). LLCMPKI quantifies the number of last-level cache (LLC) misses
per thousand instructions, and is a metric for the data footprint and locality (lower is
better). We do not consider L1 and L2 data cache misses as most of these latencies
can be hidden by out-of-order execution (as supported by the processors considered
in this paper). BRPKI is the number of branches per 1000 instructions, and BRMPKI
is the number of branch misses per 1000 instructions (lower is better). OCBWUTI
is the off-chip bandwidth utilization per-core measured in bytes per second, and is
calculated as follows:

(64 x 2.4 x 10°) x llem/clkuh,

with 64 the number of bytes fetched, 2.4 GHz the frequency of the processor, llcm the
number of LLC misses and clkuh the number of unhalted clock cycles. IFSPKC and
RSPKC are defined as the number of stall cycles due to instruction fetch stalls and
other resource stalls, respectively. DTLBPKI quantifies the number of D-TLB misses
per thousand instructions.

4.4 Data analysis

The amount of data collected during this characterization is substantial: 10 job-
level metrics, 15 OS-level metrics, and 10 microarchitecture-level metrics for all 133
benchmark-input pairs in the analysis, as we will discuss later in this paper, yielding
199,500 data points in total. (Note that we collect the data from eight server nodes,
leading to a total of over 1.5 million data points.) To facilitate the analysis, we employ
a well-established workload characterization methodology using principal component
analysis (PCA) and cluster analysis [21].

4.4.1 Principal component analysis

PCA is a statistical data analysis technique that presents a different view on the
measured data. It builds on the assumption that many variables, the 35 metrics (microar-
chitecture, OS and job level metrics) for each workload in our data set, are correlated
and these metrics measure the same or similar properties of the benchmark-input pairs.
PCA computes new variables, called principal components, which are linear combi-
nations of the original variables. The resulting principal components are uncorrelated
or independent.

PCA transforms p variable X1,X5,...X}, into p principal components (PCs)
Z21,Z5,...,Zp such that:
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p
Z,’ = Zainj.
Jj=0

This transformation has the property that Var[Z1] > Var[Z;] > --- > Var[Z,],
which means that Z; contains the most information while Z,, contains the least. PCA
enables reducing the dimensionality of the data set in a controlled way by removing
PCs with the lowest variance.

In other words, the input to PCA is araw data set comprised of behavioral metrics for
each of the workloads; the output is a reduced data set with principal components for
each of the workloads. The reduced dimensionality enables visualizing the workload
space, and in addition, it guarantees that the dimensions are no longer correlated
which enables an unbiased analysis. The dimensions (principal components) are linear
functions of the original behavioral metrics, enabling a comprehensive interpretation.

4.4.2 Cluster analysis

Although PCA reduces dimensionality, visualizing a multi-dimensional space beyond
2D and 3D remains challenging. We, therefore, employ cluster analysis to visualize the
high-dimensional workload space. Clustering analysis is a data analysis technique that
groups n workloads based on the measurements of p variables (principal components
in this paper). The final goal is to obtain a number of groups, so-called clusters, each
containing workloads that have ‘similar’ behavior. There exist two commonly used
types of clustering techniques, namely linkage clustering and K-means clustering. In
this paper, we use linkage clustering as it enables easy visualization of the clustering
output.

Linkage clustering starts with a matrix of distances between the n workloads (i.e.,
benchmark-input pairs). As a starting point for the algorithm, each benchmark-input
pair is considered a group. In each iteration of the algorithm, the two groups that are the
closest to each other (with the smallest distance in the p-dimensional space, also called
the linkage distance) are combined to form a new group. As such, close groups are
gradually merged until finally all cases belong to a single group. This can be represented
in a so-called dendrogram, which graphically represents the linkage distance for each
group merge at each iteration of the algorithm. Having obtained a dendrogram, it is
up to the user to decide how many clusters to retain. This decision can be made based
on the linkage distance, as small linkage distances imply strong clustering while large
linkage distances imply weak clustering. We use linkage clustering to evaluate the
impact of input data size on Hadoop program behavior by analyzing the behavior
dis/similarity between workloads.

5 Experimental Setup

Before presenting our experimental results and the corresponding analysis, we first
discuss our setup.
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5.1 Hardware platform

We use a Hadoop cluster consisting of one master (control) node and eight slave (data)
nodes. All the nodes are equipped with two 1 GB/s ethernet cards and are connected
through two ethernet switches, as shown in Fig. 2. The A switch is used for global
clock synchronization whereas the B switch is used to route Hadoop communication.
Each node has three 2 TB disks, 16 GB memory, and two Intel Xeon E5620 multi-
core (Westmere) processors. The detailed configuration of each processor is shown in
Table 5. Each processor contains 8 cores, with each core being a 4-wide out-of-order
superscalar architecture. The operating system running on each node is Ubuntu 12.04,
kernel version 3.2.0. The versions of Hadoop and JDK are 1.0.3 and 1.7.0, respectively.
The Hadoop security model is disabled, as by default.

We note that our experimental setup is limited in size, and much smaller compared
to typical big data systems. Our experimental results confirm that the master node is

EmEssss===r® Switch A (NTP)

TaskTracker-1 TaskTracker-N JobTracker
operf ! operf ! operf : operf : J_Jobl_oéger

" iostat ! ! fostat | ' iostat | " jostat | t----m-moee-

DataNode-1 DataNode-N NameNode

Fig.2 Our experimental cluster consists of one master node and eight slave nodes. The nodes are connected
using two switches. Switch B is used to route Hadoop computation, whereas switch A is used for global
clock synchronization

Table 5 Processor configuration

Index Item Value

1 CPU type Intel Xeon E5620

2 # cores 8 cores, 2.4 GHz

3 # threads 16 threads

4 # sockets 2

5 I-TLB 4-way, 64 entries

6 D-TLB 4-way, 64 entries

7 L2 TLB 4-way, 512 entries

8 L1 DCache 32 KB, 8-way, 64 bytes/line
9 L1 ICache 32 KB, 4-way, 64 bytes/line
10 L2 Cache 256 KB, 8-way, 64 bytes/line
11 L3 Cache 12 MB, 16-way, 64 bytes/line
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not the bottleneck in the system. In larger systems, one may need to consider several
master nodes. The proposed workload characterization can still be applied to larger
scale systems with multiple master nodes.

5.2 Measurement tools

To observe the microarchitecture-level characteristics, we employ oprofile v0.98
to read the hardware performance counters of the processors via sampling. To collect
the job-level events, we use sysstat v9.06. In addition, we read the log file of the
Hadoop framework every 5 s to observe the Hadoop job features. Finally, we also read
/proc/net/dev every S s to obtain the runtime characteristics of the network.

5.3 Benchmarks

The benchmarks considered in this paper are summarized in Table 6. Next to the SZTS
benchmarks discussed in Sect. 3, we also consider benchmarks from HiBench [6] and
Cloudrank-D 1.0 [7]. The inputs for the latter benchmark suites are synthetically
generated. The SZTS benchmarks on the other hand come with real-life inputs. Note
that a Hadoop program may consist of multiple jobs. Each job typically consists of
a map task and a reduce task. From this point of view, a Hadoop job is actually
a small Hadoop program. Hence, we treat different jobs of the same program as
different benchmarks. The no. jobs column in Table 6 shows the number of jobs of
the corresponding program.

Table 6 Benchmarks and their input data sets

Benchmark Suite No. jobs Input data set (GB)
Terasort HiBench 1 100, 400,..., 1000
Sort HiBench 1 20, 40,..., 400
Wordcount HiBench 1 20, 40,...400, 500
Kmeans HiBench 2 26, 50, 80, 107, 201
Pagerank HiBench 2 12, 24, 53, 80, 109
Hive-aggre HiBench 1 23, 61, 83, 100, 140
Hive-join HiBench 3 23,61, 83, 100, 140
Grep CloudRank-D 1 50, 100, 160, 200, 300
hmm CloudRank-D 1 50, 100, 160, 200, 300
Nativebayes CloudRank-D 4 10, 30, 50, 80, 100
Sztod SZTS 1 20, 50, 100, 160, 200
Hotregion SZTS 1 50, 100, 160, 200, 300
Mapmatching SZTS 1 2,4,8,12, 16
Hotspot SZTS 2 50, 100, 160, 200, 300
Secsort SZTS 2 50, 100, 160, 200, 300
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6 Results and analysis

We now characterize SZTS at the microarchitecture, OS, and job levels, followed by
a cross-layer characterization. We provide an input data set sensitivity analysis and
representative input selection methodology in the next section.

6.1 Microarchitecture-level characterization

IPC We start off the microarchitecture-level characterization by quantifying IPC in
Fig. 3. The average per-core IPC for the Hadoop benchmarks equals 0.62, which is
substantially lower than for PARSEC with an average IPC of 0.98. We notice that the
program with the lowest IPC among all benchmarks is mapmatching from the SZTS
benchmark suite. In fact, except for hotspot-s2, the SZTS benchmarks seem to
have a consistently low IPC, compared to the other Hadoop benchmarks. We explore
the reason next.

Cache performance Figure 4 quantifies the L1 and L2 instruction cache misses per 1K
instructions of the Hadoop programs and PARSEC benchmarks. The I-cache miss rate
appears to be much higher for the Hadoop benchmarks compared to PARSEC, indicat-
ing a large code footprint and poor instruction locality. Figure 5 shows the LCC misses
per 1K instructions. The Hadoop benchmarks have a generally high LLC MPKI com-
pared to PARSEC, with SZTS’s mapma t ching having the highest LLC MPKI among
all the Hadoop programs, indicating a bigger data footprint and limited data locality.

PCA analysis Having established the major difference between the Hadoop bench-
marks and PARSEC, we now focus on the Hadoop benchmarks. As noted in Figs. 3
through 5, it is hard to clearly discern the key differences between SZTS and the other
Hadoop benchmarks. We, therefore, need a more advanced data analysis and workload
characterization methodology, namely PCA. Applying PCA to the microarchitecture-
level characteristics, we retain six principal components (PCs), accounting for 88.9 %
of the total variance. The first PC explains 32.7 % of total variance, the second 18.7 %,
the third 12.2 %, the fourth 11.9 %, the fifth 7.5 %, and the sixth 5.8 %.

In Fig. 6, the factor loadings are presented for the first four principal components.
The first principal component is positively dominated by the number of last-level
cache misses and the number branches per thousand instructions, and is negatively
dominated by IPC, the number of L1 instruction cache misses, fetch stalls and DTLB
misses. The second component is positively dominated by the number of resource
stalls and off-chip bandwidth utilization, and negatively dominated by the number
of L1/L2 instruction cache misses and instruction fetch stalls. This implies that a
workload that has a high value along the first component exhibits a relatively large
last-level cache miss rate and high branch ratio, but low IPC, relatively few DTLB
misses, and relatively few fetch stall cycles and L1 instruction cache misses. A similar
interpretation can be given to the second (and other) principal components.

Figure 7 visualizes how different/similar these Hadoop benchmarks are with respect
to each other: it shows all the Hadoop workloads as a function of the first (horizontal
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Fig.7 Workload space (first two principal components) based on the microarchitecture-level characteristics

axis) and second (vertical axis) principal components. The red and green symbols
represent the SZTS and CloudRank-D benchmarks, respectively, while the black and
blue symbols represent the HiBench benchmarks. The black symbols are written in
Hive, differentiating from the other HiBench benchmarks. The different data points per
benchmark represent different input data set sizes. There are a number of interesting
observations to be made here. For one, we observe that, although SZTS exhibits
somewhat similar behavior compared to HiBench and CloudRank-D, we find the
SZTS benchmarks to be located in the upper right corner of the workload space, i.e.,
high values for the two most significant principal components. This suggests that the
SZTS benchmarks have arelatively low IPC, fairly good instruction cache performance
(with relatively few fetch stalls as a result), and relatively high last-level cache miss
rate and off-chip memory bandwidth pressure, which results in a fairly high number
of resource stalls. In other words, SZTS is more data intensive with a relatively small
code footprint compared to the other Hadoop benchmarks. Second, one of the SZTS
benchmarks, namely mapmatching, is an outlier workload compared to all the other
benchmarks considered here, primarily because of its poor last-level cache behavior
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and high off-chip memory bandwidth pressure. Third, we also observe that some
benchmarks are quite sensitive to their inputs, while others are not. For example, all
of mapmatching’s inputs lead to similar behavior—all data points are located close
to each other in the workload space. In contrast, the input has a significant impact on
the benchmark’s behavior, see for example sztod—a small input (e.g., 20GB) leads
to isolated behavior in the workload space.

6.2 OS-level characterization

Figure 8 shows the time breakdown for SZTS, the other Hadoop programs and PAR-
SEC, for the OS and system libraries versus user code. The most prevalent OS and
system libraries are shown only, accounting for more than 90 % of the total execution
time for all benchmarks. Hadoop benchmarks spend more than 90 % of their time
in OS and system libraries. More specifically, 37.8, 25.4, and 32.4 % of the time is
spent in 1ibjvm. so, anon, and vl inux, respectively. In contrast, the PARSEC
benchmarks spend most of their time in user-level code (denoted as application
in Fig. 8), not OS and system libraries. PARSEC benchmarks employ pthreads
and OpenMP; the creation, cleanup, synchronization, and switching is done (almost)
entirely in user space without system calls [33]. The Hadoop benchmarks on the other
hand spend most of their execution time in JVM-related libraries (1ibjvm. so and
anon) and the OS (vm1linux). This is due to the fact that the Hadoop workloads run
on top of Sun’s JVM which maps Java threads to Light-Weight Processes (LWP) [31].
Moreover, the Hadoop workloads send and receive network messages, and read and
write to file—tasks serviced by the operating system.

Apart from the distinction in OS/system-level code versus user-level code, there
is another distinction to be made between the Hadoop workloads and the PARSEC
benchmarks. Figure 9 shows that Hadoop programs uniformly spend between 1 and
2 % of their total execution time in 1ibpthread-2.15.soand 1ibc-2.15. so.
In contrast, PARSEC benchmarks use these libraries to varying degrees. For example,
the time spentin 1ibc-2.15. so amounts to 18.5 % of the total execution time for
blackscholes, whereas time spent in 1ibpthread-2.15.so only accounts
for 0.03 % of the time, as shown in Fig. 9.

Figure 10 illustrates the fraction of cycles per 1K cycles consumed in the
network-related libraries 1ibnet.so, 1ibnio. so, and e1000e for the Hadoop
benchmarks. The PARSEC benchmarks spend less than 0.4 % of their time in network-
related libraries. While some Hadoop programs such as wordcount, kmeans, hmm
and grep, also do not spend a large fraction of their execution time in network-related
libraries (because most communication is done intra-node), other Hadoop benchmarks
spend up to 10 % of their time in networking.

6.3 Job-level characterization
We now turn to job-level analysis. Applying PCA to the job-level characteristics yields

five PCs, accounting for 90 % of the overall variance. (The first PC accounts for 45.8 %
of the variance; the second PC accounts for 16.5 % of the variance.) Figure 11 shows
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Fig. 11 PCA factor loadings using job-level characteristics

the factor loadings of the first four principal components. PC1 is positively dominated
by SMI, TMI, TERMI and TRAMI, and is negatively dominated by DPS, TMRS and
TMREF. This implies that if a workload has a higher value along the first principal
component, the workload shuffles more data; more temporal data are generated; and
more data are transmitted within a node and between nodes. On the other hand, data
processing speed tends to be lower; more time is spent in the reduce stage/function
versus the map stage/function.

Figure 12 visualizes the workload space considering the job-level characteristics
as a function of the first two principal components. The most notable conclusion here
is that SZTS benchmarks have negative values for the second principal component,
which suggests that these benchmarks exhibit a relatively high data processing speed
(DPS); relatively limited time is spent in the map stage compared to the reduce stage;
arelatively large amount of reduce output data is being produced; and a relatively high
intra-node communication traffic is observed. Most of the other Hadoop benchmarks
are located in the upper half of the workload space (positive value along second
principal component), although some appear in the bottom half. This analysis clearly
shows that SZTS as a whole exhibits consistent and fairly unique behavior at the job
level.

Another key observation to be made here is that the workload space is very different
across layers. For example, mapmatching, as discussed in the previous section, is
the SZTS benchmark with the most distinct behavior at the microarchitecture level,
yet it appears right in the center of the workload space at the job level (see Fig. 12).
In other words, although this workload exhibits very typical behavior at the job level,
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Fig. 12 Workload space (first two principal components) considering the job-level characteristics

it shows very unique behavior at the microarchitectural level. The inverse reasoning
can be done for sort: we observe very unique behavior at the job level (see the
isolated data points on the right-hand side in Fig. 12), but very typical behavior at
the microarchitectural level (see the data points close to the origin in Fig. 7). The
meta-conclusion is that the characterization of MapReduce/Hadoop workloads needs
to be done across layers, to unravel a workload’s true characteristic behavior.

6.4 Cross-layer characterization

Applying PCA to the job-level and microarchitecture characteristics yields ten PCs,
accounting for 90.5 % of the overall variance. (The first PC accounts for 23.6 % of
the variance; the second PC accounts for 15.6 % of the variance.) Figure 13 shows the
factor loadings for the first four principal components. The first principal component
is positively dominated by SMI, ROMI, TMI, TERMI, TRAMI, L2ICMPKI, and
is negatively dominated by DPS, TMRS, TMRF, LLCMPKI, and BRMPKI. This
implies that a workload with a high value along the first principal component exhibits
a large amount of shuffled data, reduce output, temporal write data, intra/inter-node
transmitted data, and high L2 instruction cache miss rate, but low data processing
speed, low last-level cache miss rate, low branch misprediction rate, and more time
spent in the reduce stage and function compared to the map stage and function.
Combining the microarchitecture and job-level characteristics in one analysis yields
the workload space shown in Fig. 14. This visualization and its interpretation recon-
firm our findings. SZTS is fairly unique at both the microarchitectural and job level
compared to the other Hadoop benchmarks. The SZTS benchmarks appear at the bot-
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Fig. 14 Workload space (first two principal components) considering both job-level and microarchitecture-
level characteristics

tom half which reflects their relatively low IPC, low instruction cache miss rate, high
last-level cache and off-chip bandwidth pressure, and limited time spent in the map
stage relative to the time spent in the reduce stage. This re-enforces our finding that
cross-layer characterization reveals unique workload behaviors and provides a more
comprehensive analysis.

7 Input data set sensitivity and selection

Input data size increases rapidly and hence a single Hadoop program needs to run with
a lot of different input data sets in the big data era. However, how the input data size of
a Hadoop program affects its performance behavior has not yet been fully understood.
We, therefore, investigate this issue in this section.
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Fig. 16 Various metrics as a function of the input data set size for sztod

We use a wide range of input data set sizes, as wide as we possibly can. In particular,
for mapmatching we are limited to an input set size of 16 GB because that is the size
of the Shenzhen city map at the highest resolution. For the other SZTS benchmarks
we consider input set sizes ranging from 10 to 300 GB; there are five input set sizes
per benchmark uniformly distributed across the entire range.

Figure 15 shows the dendrogram from applying cluster analysis on the workload
space built from microarchitecture and job-level characteristics after PCA. (Note that
we do not use OS-level characteristics for different input data sets of the same bench-
mark here because the ratio of time spent in kernel space to total execution time for
even different benchmarks is quite similar, see Fig. 8.) Recall that large linkage dis-
tances indicate dissimilar behavior, whereas short distances indicate similar behavior.
The dendrogram is a useful tool to understand the impact of input data sets on execu-
tion behavior. For example, all inputs for mapmatching and hmm (Hidden Markov
Model), as well as forwordcount and sort (towards the bottom of the dendrogram)
lead to similar execution behavior—short linkage distances. However, other programs
are quite sensitive to their input, see for example grep and sztod, as illustrated in
the Fig. 15 using the dashed red lines. For grep, the smallest input (50 GB) leads
to dissimilar behavior compared to the larger inputs (100-250 GB). Similarly, for
sztod, the smallest input (20 GB) is dissimilar to the larger inputs.

We now zoom in on these two cases, sztod and grep. Figure 16 shows
why the 20 GB input data set of sztod cannot be merged to the group of other
input data sets (50-200 GB). The seven metrics shown in the graph, including job-
and microarchitecture-level characteristics (L1ICMPKI, BRMPKI, BWU, IFSPKC,
RSPKC, DTLBMPKI and SMI) suggest significant differences between the 20 GB
input data set and the other input data sets. Figure 17 illustrates why the program
behavior of the 50 GB input data set of grep is significantly different from the other
input data sets. The IPC, LICMPKI and TMRF for all five input data sets is quite
similar. However, the ROI is much higher for the 50 GB input data set compared to
the others. The same applies to BRPKI, although to a lesser extent. DPS also seems
lower for the 50 GB input data set.

Input data set sensitivity analysis is instructive when selecting representative inputs
for benchmarking purposes. For example, for mapmatching, which appears to be
an input-insensitive workload, we could pick any input size and still obtain the same
performance results. One strategy could be to pick a small input to reduce experimen-
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Fig. 17 Various metrics as a function of the input data set size for grep

tation time. On the contrary, for sztod, we should not pick the smallest input to save
experimentation time as it may lead to a misleading characterization compared to the
larger, more representative inputs. In other words, for an input-sensitive workload, we
need to be very careful when selecting a representative input.

8 Related work

Big data processing has placed unprecedented demands on computing systems, result-
ing in challenges for evaluating and understanding such systems. Benchmarking big
data systems, therefore, attracts significant attention. Although big data system per-
formance evaluation is a recent topic, benchmarking parallel systems has been a
long-standing challenge, see for examples [35—43].

The traditional benchmark suite for database systems is TPC [10]. Big data imposes
severe challenges on database systems and impels these systems to improve for big
data processing, see TPC-DS [10] and BigBench [15]. Another database benchmark
suite for big data processing is YCSB which is designed for evaluating Yahoo!’s
cloud platform and data storage systems [11]. YCSB mainly consists of online ser-
vice workloads—so-called ‘Cloud OLTP’ workloads. More recently, Armstrong et
al. released a benchmark suite—LinkBench—based on Facebook’s social graph [12].
These benchmark suites focus on database systems which are fairly different from
Hadoop-based systems.

Several non-database big data benchmark suites have been proposed as well. Ferd-
man et al. study the microarchitecture-level characteristics of scale-out programs in the
cloud [13]; Wang et al. propose a big data benchmark suite named BigDataBench for
evaluating Internet services [ 14]; and Jia et al. characterize data analysis workloads in
data centers [16]. Early Hadoop benchmarks include GridMix [17], Sort [18], and
TeraSort [19,20]. The closest related works are HiBench [6] and CloudRank-D [7].
All these prior works focus on a single layer, either the job level or the microarchi-
tecture level. In this work, we characterize the workloads at both levels, and more
importantly, we focus on a particular application domain (city transportation) while
considering real, deployed big data applications with real-life inputs; other benchmark
suites contain (mostly) generic algorithms with (mostly) synthetically generated input
data sets.
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9 Conclusions

In this paper, we propose a novel big data benchmark suite named SZTS, which we
release publicly. The SZTS benchmarks are unique because they are derived from
domain-specific real-life programs in city transportation analysis along with real-life
data. We comprehensively characterize SZTS via a cross-layer approach including
microarchitecture-, OS-, and job-level characteristics. We find SZTS to be very differ-
ent from traditional multi-core workloads (PARSEC), and while being more similar to
other Hadoop benchmark suites (HiBench and CloudRank-D), we still find that SZTS
exhibits fairly unique behavior. SZTS typically has unique characteristics at both the
microarchitecture level and job level: relatively low IPC, good instruction cache per-
formance, but high last-level cache and off-chip memory bandwidth pressure; limited
time spent in the map stage relative to the reduce stage, high data processing speed,
and high intra-node communication traffic. We also study the impact of input data
size on workload behavior, and find several benchmarks to be very sensitive to input
size, which enables identifying representative inputs. The meta-conclusion from the
analysis is that cross-layer characterization leads to unique insights and a more com-
prehensive evaluation.
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