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Inverse Alexander phase detector

M. Verbeke, P. Rombouts, X. Yin and G. Torfs

In this letter, an improved bang-bang phase detector (PD) for multi Gb/s
clock and data recovery (CDR) circuits is presented. The proposed PD
is based on inverting the Alexander PD. In a typical subsampled CDR
circuit, this Inverse Alexander PD results in a 10 times better bit error
rate (BER) compared to the conventional Alexander PD. Additionally,
in the case of duty-cycle distorted input data, this Inverse Alexander
PD can even reach 20 times better BER compared to the conventional
Alexander PD.

Introduction: Clock and data recovery (CDR) circuits are key building
blocks in all high speed serial communication systems. This makes the
performance of the CDR crucial to ensure the reliability of the entire
communication system [1]. An important aspect to take into account in
the design of a CDR is duty-cycle distortion (DCD) of the received data,
because it degrades the performance. This duty-cycle distortion is caused
by non-ideal driver and receiver characteristics [2].

The block diagram of a generic CDR circuit is shown in Fig. 1. The
purpose of the bang-bang (BB) phase detector (PD) is to determine the
phase error between the incoming data (Din) and the recovered clock
(Clk) signal. The BBPD only outputs whether the clock is leading or
lagging the data signal. The corresponding ‘Early’ and ‘Late’ signals are
sent to the loop filter (LF), which adjusts the control signal of the voltage
controlled oscillator (VCO) in order to reduce the phase error. If no data
transition occurs, the BBPD does not generate any signal and the VCO is
not adjusted.

Fig. 1. A general bang-bang CDR circuit with subsampling.

Such BBPDs are typically used in high speed CDR circuits because
they provide simplicity in design, good phase adjustment and can work
at high speeds [3]. In recent years some new BBPD topologies have come
up [4, 5]. However, either the complexity in these topologies is increased
or the data retiming and the phase detection operation are not performed
in the same circuit. The latter requires an explicit decision circuit and
intrinsically introduces skew between both circuits. This is unfavorable
for high speed data communication applications [6]. Therefore, the
Alexander PD topology [7], including variations such as the half-rate, the
quarter-rate, the multilevel, and the majority-voting variant, is the most
commonly used PD in high speed designs with data rates larger than 10
Gb/s.

Furthermore, the high data rates make it inevitable to use subsampling
in the bang-bang phase detector in order to alleviate the speed and
hardware requirements [1]. This means that the BBPD will only generate
an output signal once out of every N clock cycles. This is needed to
reduce the speed in the LF and the circuitry driving it to a practical level.
In Fig. 1, the subsampling is modeled by the decimation block N.

This letter introduces an Inverse Alexander phase detector. The
BER performance of this improved PD is compared with the
conventional Alexander PD for multiple cases of duty-cycle distortion
and subsampling factors. It is found that in a typical subsampled CDR
system, the use of our newly proposed Inverse Alexander PD improves
the BER 10 to 20 times compared to the conventional Alexander PD.

The Alexander PD: The block diagram of the Alexander PD is shown
in Fig. 2. Utilizing three data samples taken by three consecutive clock
edges, the PD can determine whether a data transition is present and
whether the clock leads or lags the data. The CDR with an Alexander
PD will try to align the falling edge of the clock signal with an edge of
the data, resulting in a 0.5 unit interval (UI) phase difference ∆φ between
the data and the clock. This is illustrated by Fig. 3(a). If the falling edge of
the clock leads (is ‘Early’), the last sample, S3, is unequal to the first two
and the clock frequency must be decreased (Fig. 3(b)). Vice versa, if the

Fig. 2. The conventional Alexander PD and Inverse Alexander PD.

falling edge of the clock lags (is ‘Late’), the first sample, S1 is unequal
to the last two and the clock frequency must be increased (Fig. 3(c)). In
absence of data transitions, all three samples are equal and no action is
taken. These relations are summarized by [6]:

Early :S1 ⊕ S2 = 0, S2 ⊕ S3 = 1 → Clk frequency ↓ (1)

Late :S1 ⊕ S2 = 1, S2 ⊕ S3 = 0 → Clk frequency ↑ (2)

Others :S1 ⊕ S2 = S2 ⊕ S3 → Do not adjust clk (3)

Note that the definition used here for ‘Early/Late’ is similar to [6]
and different from [7], because the definition of ‘Early/Late’ and the
corresponding frequency adjustment is more intuitive in [6].

Fig. 3(a) shows that once the CDR has settled, either the first or last
sample, S1 or S3 can correspond with the data output Dout while the
other sample moment S2 occurs at the transition of the data.

Fig. 3 Waveforms for the locking behavior of the Alexander PD: (a) Ideal
locking condition with phase difference ∆φ= 0.5 UI; (b) ‘Early’ condition;
(c) ‘Late’ condition.

The Inverse Alexander PD: The proposed PD is also shown in Fig. 2. It
has the same schematic as the Alexander PD, however the ‘Early/Late’
signal is inverted:

Early :S1 ⊕ S2 = 1, S2 ⊕ S3 = 0 → Clk frequency ↓ (4)

Late :S1 ⊕ S2 = 0, S2 ⊕ S3 = 1 → Clk frequency ↑ (5)

Others :S1 ⊕ S2 = S2 ⊕ S3 → Do not adjust clk (6)

The inversion of the sign of the CDR loop causes the CDR to settle at
a different operating point. As shown in Fig. 4(a), the Inverse Alexander
PD will try to align the rising edge of the clock signal with an edge of
the data. If the rising edge of the clock leads (is ‘Early’), the first sample,
S1, is unequal to the last two and the clock frequency must be decreased
(Fig. 4(b)). Vice versa, if the rising edge of the clock lags (is ‘Late’), the
last sample, S3 is unequal to the first two and the clock frequency must
be increased (Fig. 4(c)). In lock, the middle sample, S2 now corresponds
with the data sample Dout while the other sample moments S1 and S3

occur at the data transitions.

Fig. 4 Waveforms for the locking behavior of the Inverse Alexander PD:
(a) Ideal locking condition with phase difference ∆φ= 0 UI; (b) ‘Early’
condition; (c) ‘Late’ condition.

Influence of duty-cycle distortion: Duty-cycle distortion (DCD) means
that the duration of a logic-0 will be be different from the duration of a
logic-1 [2]. The notations T0 and T1 are used to represent respectively the
duration of an occurrence of a single logic-0 and a single logic-1 affected
by DCD; where the sum of T0 and T1 always equals 2 UI. Note when T1

equals 1 UI, there is no DCD and when T1 < 0.5 UI, the DCD is too large
to have any useful operation of the CDR. The dual case when T1 > T0,
is analogue and is therefore covered by our discussion as well.
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Fig. 5 Output characteristic of the PDs without subsampling: (a) the
Alexander PD; and (b) the Inverse Alexander PD.

Fig. 6 Waveforms of dead-zones: (a) ‘No action’-zone; and (b) ‘Early+late’-
zone or ‘Late+Early’-zone.

To examine the influence of DCD, the output characteristics of both
PDs are determined. This is calculated by sweeping the phase difference
∆φ between a DCD data stream with a single logic-1 bit and the
recovered clock. Therefore, the characteristics in Fig. 5 are derived for the
case that two consecutive data transitions occur. Note that no subsampling
is applied here. Fig. 5 illustrates that both output characteristics are the
inverted versions of each other, and that next to the expected ‘Early’ and
‘Late’ zones, two new zones with zero output (dead-zones) are present.
Due to the characteristic of the Alexander PD (Fig. 5(a)), the CDR loop
will lock such that the phase difference ∆φ lies between [0.5, 1.5-T1] UI.
This is also indicated on the figure as the ‘Locking region’ and contains
the ‘Early+Late’-zone. This is different from the locking region of the
Inverse Alexander PD, as shown in Fig. 5(b), which is located between
[0, 1-T1] UI. This region corresponds with the ‘No-action’-zone.

The two cases where a dead-zone can occur, are displayed in Fig. 6.
In the ‘No action’-zone, the first and last sample are equal and different
from the middle sample. The PD outputs simultaneously a ‘Late’ and an
‘Early’ signal and therefore the frequency of the VCO will not change.
In the ‘Early+Late’-zone or the ‘Late+Early’-zone, the PD outputs first
an ‘Early’ and outputs the subsequent clock period a ‘Late’ signal or
vice versa. Due to the loop filtering this results in a net zero action.
This can be extended to the more general case where we have multiple
consecutive identical bits: As long as the number of consecutive identical
bits is limited due to bit scrambling and the loop filter has a low enough
cut off frequency, the ‘Early’ signal generated at the first data transition
will be canceled out by the ‘Late’ signal generated at the second data
transition. This also results in a net zero action.

Performance: To study the performance, simulations were performed.
A CDR with an Alexander PD is compared with a CDR containing an
Inverse Alexander PD. For both CDRs the loop parameters are equal and
the BER performance for different input jitter levels, DCD and subsample
factors is discussed.

In the case that no subsampling is present in the system, we expect that
the BER curves for both systems are equal, because the characteristics of
both PDs (Fig. 5) are identical apart from the phase shift in ∆φ. Hence the
system will react in a similar way and this results in the coincidence of the
BER curves. This is confirmed by the simulations as shown in Fig. 7(a).
Additionally, Fig. 7(a) illustrates that the BER becomes worse when the
DCD increases. This is because the shorter logic-1 levels become more
susceptible to jitter. As mentioned above, the cases for T1 = 0.8 UI and
T1 = 1.2 UI are analogue and result in the same BER curves. These
curves are omitted from the figures.

Fig. 7(b) illustrates the BER for a 4-times subsampled CDR. In this
case the Inverse Alexander PD performs better than the Alexander PD.
This is because subsampling causes the output characteristic of the PDs
to change: especially the ‘Early+Late’-zone which resulted in a net zero
action when no subsampling was present. Due to the subsampling only
one signal of the two subsequent ‘Early’ and ‘Late’ signals is sampled. In
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Fig. 7. BER performance: (a) No subsampling; (b) Subsample factor = 4.

this way, the ‘Early’ and ‘Late’ signal will not cancel out rapidly as was
the case without subsampling. This will undesirably lead to an adjustment
of the frequency and cause fluctuations in the phase difference. For the
Alexander PD this results in a worse BER, because its locking region
is located in the ‘Early+Late’-zone. For the Inverse Alexander PD, the
BER will also degrade due to the lower update rate of the error signal.
However, this degradation is less severe because the output characteristic
in the locking region for the Inverse Alexander PD (i.e. ‘No action’-
zone) remains the same when subsampling is applied. Fig. 7(b) shows
that the inverse Alexander PD is consistently better than the conventional
Alexander PD and the difference becomes more pronounced for high
levels of DCD and/or low levels of jitter, e.g.: for a typical case with
0.05 UI RMS input jitter and a subsample factor of 4, the Inverse
Alexander PD reaches a BER which is 20 times better than the BER for
the Alexander PD.

Conclusion: In this letter, an improved BBPD was proposed by inverting
the sign of the Alexander PD. We can conclude that with this minimal
effort, the Inverse Alexander PD has all the advantages of an Alexander
phase detector while improving the BER with a factor 10 to 20 in the
typical situation that the CDR system uses subsampling in the PD.
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