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Abstract---A mobile application is presented for real-time
testing and optimization of path-loss models and network plan-
ning, based on the execution of validation measurements in the
considered environment. The application istested in three indoor
scenarios and for three path-loss models. Without optimization,
average absolute prediction errors of about 5 dB are obtained,
with a smple free-space model performing best. Executing a
limited set of ten additional measurements suffices to improve
predictions by up to more than 40%. The application is partic-
ularly useful for very quick path-loss model tests in a certain
environment or for easily obtaining more accurate network
deployments, as a single measurement only takes a few seconds
and optimization of the path-loss modé is fully automated.

I. INTRODUCTION

In this paper, a mobile application for real-time testingl an
optimization of path loss models using Android smartphone
or tablet is presented. It allows combining the intelligerod

a network planner with the measurement and optimization pos
sibilities of state-of-the-art site survey tools. Afteralibration

of the Android tablet, the testing method is applied to three
different environments and three different path-loss nmde
The user-friendliness of the touchscreen is exploited ltmal
quickly performing an extensive set of measurements and
optimizing network planning in real-time, which is illuated

in an application example. In Section Il, a system overview
is given. Section Ill discusses the scenarios that will be
investigated, and describes the tested path-loss models an
environments. A full discussion of the results of the tegand
optimization scenarios is presented in Section IV, andlfina

During recent years, more and more electronics have bene paper's main findings are summarized in Section V.
come wirelessly connected to the internet. As these dewiees

most often used indoors, a reliable wireless connectiortdas 1.
be provided. Indoor environments easily allow the use of Wire h d is based bil droid
less Local Area Networks (WLANS) for indoor mobile internet _Th€ Proposed system is based on a mobile Androi

access and as a reliable offloading mechanism for macrocePPlication connecting with a backend server that exhibits
connections. Reliability is indispensable for applicaticuch network planning functionalities. The entire system isdahas

as video conferencing, which require a continuous trarsions  ©" the WiCa Heuristic Indoor Propagation Prediction (WHIPP)
of data with a low delay. The reliability of a WLAN link is tool [5]. After discussing this existing WHIPP system, welwil

for a large part determined by the wireless channel betweefl€Scribe the mobile application system.
the access point (AP) and the receiving mobile device, in
particular bypthe path loss between the transmit and recei\/é" WHIPP 100l

antennas. Therefore, it is of major importance to perform a The WHIPP tool is a wireless indoor network planning tool-
reliable wireless network planning in the environment veher box developed within the Wireless & Cable group [5]. It allows
user devices require a wireless internet connection. predicting network coverage for WiFi, Zigbee, or Universal
In recent and in less recent years, different indoor path[lbs  Mobile Telecommunication Systems (UMTS) and Long Term
[2] and penetration loss [3] models have been proposedivolution (LTE) femtocells. Another feature is an autoroati
sometimes claiming a high accuracy for a specific enviramime network design algorithm, which optimally places APs on a
type (e.g., conference [4], industrial, office,...), stimes floor plan, based on user-defined throughput requiremients
claiming a more general applicability. Time-consuming raythe different rooms [5]. The WHIPP tool allows the user to
tracing tools [5] have tried to fully characterize the chann choose from different path loss models for the simulatiog.,, e

by accounting for reflections, diffractions, wall abséopss,... the IEEE 802.11 TGn model [10], a user-defined one-slope
that occur in indoor environments [6]. However, the phyisica log-distance model, a multiwall model [11], or the free<spa
complexity of the indoor environment often still signifitdy  model.

impairs the quality of the wireless network prediction. A The original tool is constructed as a webservice connedting
possible workaround to obtain a reliable network planngpi a backend server. This server accepts input (e.g., floar, pla
perform a site survey on the spot [7]. Many site survey tools d simulation parameters,...) from the webservice, perfoaihs

not incorporate any intelligence and just measure and pdot t simulations on the backend and returns the output data to the
WiFi signal strength without an automated planning, urgingwebservice for visualisation. Input is provided by, andpot

the user to measure at all locations. Moreover, indicatings received by a classical desktop pc or laptop, communmigati
the measurement locations is not always user-friendly whewith the web service via an ethernet connection or a WiFi con-
using e.g., a measurement laptop and specialized WLANection. The following section will describe the developme
sniffer software (e.g., AirMagnet [8], Ekahau [7], Acrylic of the mobile version of the tool. Fig. 1 (top) shows the main
WiFi [9],...). screen of the tool, where the user draws a ground plan.

SYSTEM OVERVIEW
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Given the limited processing power on mobile devices anc 1
the nature of the original architecture, it is a straightfard | setparameters ——[ SelectPLmodel | [ Test PLmodels | | Optimize
choice to use a similar architecture for the mobile applicat
the Android device communicates with the backend servegig. 2. Fiow graph of test scenario.
via the same web service, over a WiFi, 3G, or 4G connec-
tion. In order to maximize the number of devices that are
compatible with the application, the lowest possible Andiro [1l. SCENARIOS
version was chosen (Android 2.2 Froyo). With respect to the . . . . .
graphical aspects of the mobile application, usage is mainl AS expla!ned ea”'e_“ using an Andr_0|_d device allows
expected on tablets, to allow visualisation of a floor plan@dding additional functionalities to the original WHIPP ltoo
and functionalities on the screen. All functionalities diet (1) the mobile nature of the device with its integrated anéen
original tool were reprogrammed for Android, with the mebil 2/lows an easy and quick execution of RSSI measurements
application allowing importing existing floor plans (thaave ~ and (2) the touchscreen allows a very user-friendly way of
been created on a desktop computer) or drawing a plan, Hjpdicating the location of the measurements. In this paper,
clicking and/or dragging the touched location on the screedWo scenarios will be investigated. First, a set of threenpat
Horizontal/vertical scrolling and zooming functionadisi are 0SS models will be tested against a large set of additional
also implemented, leading to a completely mimicked versiorf€asurements in three different indoor environments. igco
with respect to the functionalities and usage of the originalt Will be investigated to what extent these measuremefus/al
tool. Fig. 1 (bottom) shows the same screen as in the comput&fiProvement of the accuracy of the models (and the wireless
version, redesigned for Android. Using this mobile applm, ~ N€tWork planning). Fig. 2 shows a flow graph of these test
it is now possible to perform measurements in the buildingSCenarios. First a ground plan is obtained by importingtegs
This is done by tapping the location at which the user is keatat f1€S Or by drawing it with the mobile app. After setting para
The location’s coordinates and the recorded Received Bign&ters (réceiver type, fading margin,...) and selectingth joss
Strength Information (RSSI) value are stored on the devick a model, the network deployment is calculated for the given AP

can be exchanged with the backend server for testing and/#RCation(s). Then, the user performs measurements atetiife
optimization purposes. ocations. These measurements not only allow comparison of

the accuracy of the different available PL models (scenhyjo
but also allow optimization of these models for an improved

(i ) accuracy and network planning (scenario 2).
a8
¢ == A Path loss models
N\ 4
e Three different path loss models are considered in the: tests
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Free-space: The free-space loss (FSL) [dB] is the path loss

Coreets between two antennas in idealized conditions, meaning that
the antennas are in each others far-field, the environnmeent i

‘ unobstructed free space, the antenna polarizations aiecher

Jll | e matched, ... The free-space loss is sometimes used as an
estimate for path losses and is calculated as follows:

SSSSSS

s FSL =20-logip(d) +20-logio(f) +32.45, (1)

with d [km] the distance between transmit and receiving
antenna, and f [MHz] the operating frequency. At 2.4 GHz,

660:1625

(@ _ eqg. (1) can be rewritten as
) (i %% i
y -“mw; FSL = PLO + 10 -n - lOglo(d), (2)
I A 1% with PLy = 40.05dB and n = 2.

IEEE 802.11 TGn mode [10]: The IEEE 802.11 TGn
model (TGN) is a two-slope path loss model, which is suitable
b | LT P for path-loss predictions in office environments. The raedi
momen TGN loss TGNL [dB] is calculated as:

EEEEEEEE TGNL = PLy + 10 - ny - logio(d) (d < dy,) @)
o TGNL = PLy+10-ny - logio(d) — 32 (d > dy,),

with dp, = 10 m, PLy = 40.05 dB,n; = 2, andn, = 5.2. For
d < dy,, the TGn model equals the free-space model.

Fig. 1. WHIPP tool's main screen for computer (a) and Android @pp



o~

Fig. 3. Test environments: Turnhout (left), Bruges (midd@hent (right). I ; *
[ ] it ] ]

Multiwall model: The multiwall model (MWM) is a model - —
consisting of a distance-dependent part and a wall-depgende 2
part that adds a wall-specific loss for each wall that is seds
by the direct ray between transmitter and receiver. The amedi
path loss MWL [dB] according to the MWM is calculated as:

Fig. 4. Ground plan of Turnhout (a), Bruges (b), and Ghem\t!) indication
of measurement locations and AP.
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O r‘neasurem‘ents ‘ (2 -7
=30+ li fit . g
MWL = PLy+10-n-logio(d) + § ‘Lw,, (4) — — — upper and lower sigma boundaries et

with PL, [dB] the path loss at a reference distance of 1 m
(under the absence of walls), n [-] the path-loss exponemt,

[dB] the loss of walllV; that is crossed, with a summation over
all walls W; crossed by the transmitter-receiver line. Here,
PLy and n will be chosen so as to match FSRI{, = 40 dB,

n = 2). The wall loss values are chosen as described in [5],
metal walls (e.g., elevators) are modeled with a loss of 180 d

RF power [dBm]

i -75 -70 -65 -60 -55 -50 -45 -40
B. Environments RSS! [dB]

Three different indoor environments will be tested. AFig.5. Relation between measured RSSI and measured RF pothdingar
picture of the environments is shown in Fig. 3. A groundfit and one-sigma deviation boundaries.
plan with the measurement locations is shown in Fig. 4. The
location of the APs is indicated with a red dot with a black . . . .
1) Tablet RSS calibration: For the calibration tests, 7

edge. . . . - .
Turnhout: a residential house with wooden walls and doors!/ocations in an office building were selected. An accessipoi

The considered AP was a DLink dir-615 (hardware versionV@S installed and the RSSI was measured with the tablet

H2, firmware version 8.02) with two antennas and a transmifOMPUter (5 instantaneous measurements per locationjieAt t
power of 13 dBm, installed at a height of 1 m. The total S2Me time, the actually received power was recorded with a

considered surface equals 89:28, consisting of 112 possible spectrum analyser. The difference between the recorded RSS
measurement locations (1.255 possible measurements¥er valué and the recorded RF power equals 11.4 dB with a
Bruges: an old townhouse with brick walls and wooden or Standard deviation of 2.67 dB. Fig. 5 shows a plot of the
glass doors. The considered AP was a DLink dir-600 (firmwaréneasured RSSI and RF powers and the linear fit with a
version DD-WRT v24-sp2) with one antenna and a transmiﬁ'ﬁer?n.ce of 11.4 dB. The plot shows that most measurements
power of 8 dBm, installed at a height of 1 m. The total € within a one-sigma deviation from the fit. However, it
considered surface equals 77:m5, consisting of 96 possible should be noted _that RSS| measurements with an internal
measurement locations (1.235 possible measurementaf)er 2ntenna of a mobile device will always be less accurate than
Compared to the "Turnhout' environment, the Bruges environ2ctu@l RF measurements, e.g., due to the proximity of thg.bod
ment is more cluttered (cupboards with books, piano,...).

Ghent: office building with layered drywalls around a core of IV. RESULTS

concrete walls. The same AP type as in Bruges was used. The |, this section, results for the two described scenarioti¢pa

total considered surface equals 2435, consisting of 272 |5gg modeltesting and optimization) will be presented.
possible measurement locations (1.117 possible measnoteme
perm?). The environment contains less objects than the otheA Seenario 1: path loss model testing
two environments. ' '
Here, it will be tested which of the three proposed path-
loss models shows the best prediction performance. Fig. 6

shows the predicted power as a function of the tablet-medsur
The tablet is a Sony Xperia Tablet Z (Model SGP311E4/8yower for the three considered envi.ror!me_nts. and the three
with 802.11n capabilities. Just like many other measuremerfonsidered path loss models. The solid line indicates aeperf
devices, this tablet measures RSSI instead of the actuabRadPrediction of the received power. Table | shows the average
Frequency (RF) power. Therefore, a calibration measuremeprediction errorsé, the average absolute prediction errors
of the Android Tablet was performed. |0], and the standard deviatioqé—‘ on the average absolute

C. Experiment equipment
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Fig. 6. Predicted power vs. measured RF power for (a) Turni{byBruges, and (c) Ghent

prediction errors, over all measurement locations (see4jig be investigated in the next section. Although an advantdige o
Fig. 6 shows that for all environments, the three modelsour system is that no additional hardware is required tot#e i
predict the same received power in unobstructed lineglitsi could be argued that the lack of an external antenna willeaus
(LoS) situations (higher received powers in the figurefcei the measurement accuracies to probably be lower than tliose o
they all use the free-space approximation for unobstructedlassical systems that use an external antenna connected to
LoS (see Section IlI-A). Unlike for the Bruges and Ghentlaptop via Universal Serial Bus (USB). Technically, howeve
environments, the received powers in LoS (highest powersj would be possible to improve our system by connecting a
in the Turnhout environment are somewhat underestimatetetter (external) measurement antenna to the Android devic
For the Turnhout environment, the TGn and free-space models B

pretty accurately predict the received powers (averagerserr TABLEI.  AVERAGE PREDICTION ERRORS), AVERAGE ABSOLUTE
below 3 dB, average absolute errors around 5 dB, see Table [f;REPICTION ERRORS 4|, AND STANDARD DEVIATION o757 ON 4], OVER
while the multiwall model mostly underestimates the reediv ALL MEASUREMENT LOCATIONS (IN DB).

power (or overestimates the path loss). This phenomenen oft TGn Free space Multiwall
occurs in environments with many walls (or with smaller S Mol Jog | oWl [og | o] T8l o
rooms), such as in office buildings (Ghent). This is indeed [dB]

: : ; Turnhout | 2.8 | 5.0 3.4 1.8 | 53 3.3 5.4 5.9 3.9
observed in the Ghent environments, where due to the high Bruges | 43 49 32 53150 42 121 49 34

losses by the metal elevator (modeled as 100 dB l0SS pPer—Grent| 87 [ 91| 53 | 14 | 49 | 34 [ 557 | 550 | 951
wall), powers as low as -300 dBm are predicted (Y-range
cut off in Fig. 6 (c) for reasons of clarity). This leads to
the average prediction errors of 55 dB shown in Table IB. Scenario 2a: path loss model optimization
Overall, the free-space loss model appears to be the best

prediction model with average absolute errors of about 5 dBeach of the environment, based on the total set of measure-

However, the quite horizontal left tail of the free-spacekaes . ; . _
in Fig. 6 (c) also shows that, as expected, path losses a%ents executed in each of the environments (see Secti@).lll

Here, each of the path loss models will be optimized for

underestimated and measured powers are overestimated b ach set of measurements yields a value of the average
f . P . Y Blediction error for the considered model in the considered
ree-space model at higher distances from the AP (i.e., fo

g nvironment (values of in Table 1). This value will then
lower RF powers). This is compensated for by the secon . ; X
slopen, in eq. (3) of the TGn model: the TGn markers aretge used to linearly shift the path loss models (adjustment of

indeed closer to the perfect prediction for lower RF poweisd a parameter” Lo in €gs. (2,3,4)), so that the average prediction

rror becomes zero. Since this shift accounts for all measur
hence, also lower absolute errors are observed for Tumho'%oints, it is assumed to deliver the best possible linedt. shi

and Bruges. However, in the offu?e building in Ghent, th'S.TabIe Il shows the same metrics as Table I, but now after
phenomenon is overcompensated: the TGn markers now Ilg

below the perfect prediction line for lower powers, i.e.e th dJUSt.mITthf the path loﬁs modgl. For the Tan medel’
path loss is overestimated or the predicted received power(e)sspeqa y the Bruges anq Ghent environments benefit ftum t
are underestimated. This is mainly due to the fact that th ptimization, since the original predictions deviated enfsom

; X i fhe measurements than the Turnhout environment and thus
Ghent environment consists of light walls (layered drysjall |-\ 50’ 00m for improvement. Similarly, for the free-spac
with small penetration losses, where path losses are IOW%odel the small original average errarin tﬁe Turnhout and
tEan in typical off||<|:e er(;wlronmdents. .Fmally,hTabIe .I S(;] OWS hent environment leave less room for improvement compared
tgat on averag?c, a hm% els underestimate t i recell\I/e r%O\?’ 0 the Bruges environment (absolute error reduction of 38% v
© > ()),_except or the Bruges environment, where all mo %% or 2%). The multiwall model’s improvement is mainly in
overestimate the received powes (< 0). This indicates

; o :
that performing additional environment-specific meameats the Turnhout environment (37%). In the Ghent environment,

would allow improvement of the models by only performing ahowever, no performance improvement is possible with a

; . ; e T simple linear shift. In this case, adjustment of the walkkxs
simple linear shift. The application of such optimizatiofllw would be required to obtain better models. Analogously, for
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Fig. 7. Average absolute prediction error as a function eflhmber of random measurements, for (a) Turnhout, (b) Bruges(@ Ghent

the other models, an additional adjustment of the slope o€hance of more than 95% to improve the path loss model: two
the free-space loss (making it a classical one-slope modefheasurements for Ghent TGn, three for Turnhout multiwall,
or the slopes of the TGn two-slope model would allow aand four for Bruges free-space. On average, five additional
further improvement of the performance. In general, it ca€measurements already lead to predictions where the error is
be observed from Table Il that not only the average absolutapproaching the minimal error with a linear-shift optintiea,
error decreases after the optimization (up to 46%), butthlso which is equal tgd| in Table. II.

standard deviations on the error (up to 36%). Degree of possible performance deterioration - When the

original prediction is already good (e.g., free-space rhode
C. Scenario 2b: path loss model optimization with a limited  in Ghent, where the maximal improvement is only 2%, see
number of additional measurements Table II), there is a reasonable probability that tuning the
. : ) . model based on a limited set of measurements will actually
As mentioned earlier, the presented linear shifts fromyqrsen the prediction. Therefore, Fig. 8 shows the regyltin
the previous section are the most accurate ones, since th@yerage error over all measurement locations as a function
account for all measurements. Executing measurements at & the subset size of the additional measurements. It shows
locations is time-consuming and might be not necessary. Ifhat the prediction could indeed deteriorate (see 95%eptite
this subsection, it will be investigated how fast the averag line). When only 5 measurements are added, there is a chance
error of a subset of measurements converges to the average o, that the resulting average absolute error is more than
error of the total set of measurements. A quick convergencg 4 dB, compared to an original error of 4.94 dB. On average,
would indicate that with already a few measurements, thenis error will be 5.1 dB. With a chance of 5% for a maximal
path loss models and the network planning can be improvegd or increase of less than 1.5 dB, it is fair to state that

in at most a few minutes. To investigate this, random RSS}¢ possible worst-case impact is limited when using only
measurements were taken from the total measurement set fgr jyeasurements. For 10 measurements. this maximal error

each environment, with the subset size varying between 1 anghther reduces to 0.7 dB. It can be concluded that perfogmin
30. For each subset size, 10,000 random subsets were creatg§l 5qditional measurements will in almost all cases result i
From the average prediction error at the subset locatitws, t 5 improvement of the prediction performance.
linear shift was again derived and then applied to the path lo
model. For envirpn_ments in V\_/hich there is room for improve-P_ Network planning application
ment when predicting according to a certain path loss model,
performing additional measurements will likely improveeth In this section, the optimization method for the path loss
prediction performance. Therefore, we will first investig ~model will be applied to a network planning problem for
three environment-model combinations Wh@> 5dBin  the Ghent environment with the TGn model. An 802.11b/g
Table | (remark the difference betweéif and[6]). Then, we ~ NEtWork with 16-dBm APs is to be designed for a physical-
will investigate the probability of a deteriorating pretitin ~ |2Yer coverage of 54 Mbps over the entire building floor..fig
performance when the original prediction was good alread)@)_ shows th_e_recelved power according to the network design
Since the optimization calculation time itself is negligibonly ~ USing the original non-optimized TGn model (APs are located
the time to conduct measurements is relevant. However, thi§ the centres of the circles). Five APs are required to pivi
time is very limited as each measurement only involves tappi 1€ réquired throughput. For this application, we assume an
the current location of the tablet. additional (random) measurement set of 10 samples with its
median deviation (overestimation of the path loss) of 8.7 dB
Degree of performance improvement - Fig. 7 shows the re- After decreasingPL, in eq. (3) with 8.7 dB, the resulting
sulting average error over all measurement locations.hk¢  designed network of Fig. 9 (b) consists of 3 APs instead of
path loss models were applied, each to a different envirome 5, indicating the value of the application. As the cost of the
Fig. 7 indicates the 5%, 50%, and 95% percentiles over th&P itself is only around one third of the total installation
10,000 subsets, as well as the original average absolueserr cost [12], an accurate network planning could -in this case-
without applying any linear shift (original situation). shows  save a significant amount of money for the company or person
that with very limited additional measurements, there is dnstalling the network. Moreover, using less APs also reduc



TABLE II.

A VERAGE ABSOLUTE PREDICTION ERROR$7| AND STANDARD DEVIATION o< ON W, OVER ALL MEASUREMENT LOCATIONS AFTER

9]

OPTIMIZATION OF THE PATH LOSS MODEL(IN DB). REDUCTIONS COMPARED TO ORIGINAL SITUATION ARE INDICATED BEWEEN BRACKETS

TGn Free space Multiwall
0] [ oTsT 5] [ oTsT 9] [ oTsT
[dB]
Turnhout | 4.6 (-8%) | 2.6 (-23%) [ 5.0 (-6%) | 3.3 (-0.3%) 3.7 (-37%) | 2.6 (-34%)
Bruges | 3.4 (-31%) | 2.1 (-34%) | 4.2 (-30%) | 2.6 (-36%) 4.7 (-5%) 3.5 (+4%)
Ghent | 5.0 (-46%) | 3.4 (-36%) | 4.8 (-2%) | 3.3 (-4%) | 68.6 (+22%) | 65.9 (-31%)

Ghent free-space

—oe— 5% percentile
6.4 —+—median
—6— 95% percentile

without optimization

average absolute prediction error [dB]
@
)

0 5 10 15 20 25 30
number of measurements [-]

Fig. 8. Average absolute prediction error as a function @f tlumber of
random measurements

5 dB), although no really harsh environments were consitiere
Deriving a linear shift from a set of additional measurersent
with the mobile app, and applying it to the path-loss models,
allowed for reductions of the prediction error of up to 46% fo
the considered environments and models. Further, it is show
that only a few additional mobile measurements often ajread
suffice for a drastic improvement of the path loss model
in the considered environment. Executing only 10 random
measurements in the environment, a task which can be done in
at most a few minutes, is already sufficient to obtain a pasis-
model that is close to the optimal model that can be obtained
through a linear shift. Even in the worst considered scenari
where the original model is performing very well alreadygrén

is a chance of less than 5% that the error increases by 0.7 dB
when performing 10 additional measurements.

In the future, the performance of more advanced path-loss
models (e.g., accounting for the physical properties of the
environment [5]) and more advanced optimization techrsque
will be investigated (e.g., changing the slope of the madels

& o— wall penetration losses in advanced models). Further, the
& D® = T B2 application will be able to differentiate between the RSSI
: o T =38 from different APs, yielding more optimization data in the
e e =4+ same time. Finally, thanks to the user-friendly indicatiin
— i ey - -56 measurement locations on a map, the application is alse well
| ® | - ' .- suited for quickly building an RSSI fingerprint database fo
1 . = TR . | >=74 iz ati
@ e Ll ,.,Q_ N localization purposes.
| ] i i | < -80
- b
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