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Abstract 

In performance-based measures of implicit contingency learning, learning effects have been 

observed very early in the task (e.g., within a few trials) and remain stable throughout the 

experiment. This has been taken to suggest that the contingency knowledge underlying the 

learning effects is formed almost instantly and does not develop further across trials. One 

potential concern with the available evidence is that response times are overall much slower 

early on in an experiment and speed up over practice in a decelerating function. If learning 

effects scale with overall response time, then learning effects observed early on in an 

experiment might be artificially inflated. In the current report with the colour-word 

contingency learning paradigm, participants were given an extended practice phase before 

introducing predictive stimuli (words). Thus, learning could be assessed after the large 

practice speedup in performance had already occurred. In one experiment, the contingency 

learning effect was found to again be fairly stable, but with a hint of an increasing effect with 

time. In a second experiment, words were pre-exposed in a neutral hue before being coloured. 

This increased the magnitude of the learning effect, suggesting a preparation time benefit. 

More importantly, the contingency learning effect was observed to increase over time. In a 

third experiment, we assessed unlearning rates when the contingency was removed, and 

relearning when the contingencies were reintroduced. The results revealed a cumulative effect 

of contingencies acquired across multiple blocks. In sum, the evidence reported in this paper 

shows that, contrary to previous claims, implicit contingency learning is cumulative.  

 

Keywords: contingency learning; acquisition; practice; power law; unlearning; relearning 
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Introduction 

 In the study of implicit contingency learning, performance (i.e., response time) 

paradigms are very useful for assessing learning. For instance, in the colour-word contingency 

learning paradigm, participants respond to the print colour of neutral (colour-unrelated) words 

(Atalay & Misirlisoy, 2012; Hazeltine & Mordkoff, 2014; Levin & Tzelgov, 2016; Schmidt & 

Besner, 2008; Schmidt, Crump, Cheesman, & Besner, 2007; Schmidt & De Houwer, 2012a, 

2012d, 2016; Schmidt, De Houwer, & Besner, 2010; see also, Musen & Squire, 1993). Each 

word is presented most often in one colour (e.g., “choose” most often in purple, “drive” most 

often in orange, etc.). Learning can be assessed by comparing high contingency trials, where 

the word is presented in the expected colour (e.g., “choose” in purple), to low contingency 

trials, where the word is presented in an unexpected colour (e.g., “choose” in orange). This 

produces a highly-robust learning effect: high contingency trials are responded to faster (and 

more accurately) than low contingency trials. A similar paradigm is the flanker contingency 

paradigm, in which flanking letters are predictive of a centrally-presented target letter 

(Carlson & Flowers, 1996; Miller, 1987). Other performance paradigms include the serial 

response time task (Nissen & Bullemer, 1987) and hidden covariation detection (Lewicki, 

1985, 1986; Lewicki, Hill, & Czyzewska, 1992). 

 One interesting finding with such performance paradigms is that the learning effect 

appears very early on in the experiment (i.e., within a few trials). In the most dramatic 

instance of this, a learning effect was observed after a single presentation of a stimulus by 

Lewicki (1985) in the hidden covariation paradigm. Similarly, contingency effects have been 

observed early on in sequence learning (Nissen & Bullemer, 1987). Also in the colour-word 

contingency learning paradigm, contingency effects emerge in the very first block of trials, 

with blocks as small as 18 trials. After this, the magnitude of the learning effect remains 

relatively stable (e.g., Schmidt et al., 2007; Schmidt & De Houwer, 2012b, 2012d, 2016; 
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Schmidt et al., 2010). That is, the learning effect does not seem to increase in any notable 

way. Results such as this have been taken to indicate that the learning rate is extremely high. 

In other words, the contingencies are learned very rapidly and there is little more to learn 

thereafter. 

 First, it is important to note the distinction between the learning effect and the 

underlying learning mechanism. The learning effect (e.g., the difference in response speed to 

high vs. low contingency trials) is a behavioural observation. Of course, some underlying 

learning mechanism (i.e., acquisition of contingency knowledge) must be assumed to explain 

the learning effect. However, the learning effect is not a pure measure of the underlying 

knowledge. In addition to general error in estimates of high contingency RT, low contingency 

RT, and thus the difference between the two (Kaufman et al., 2010), the size of the 

contingency effect is also partially determined by the expression of the underlying knowledge. 

That is, the observed contingency effect is not a pure measure of how much is known about 

the contingency, but is also determined by how effectively this contingency knowledge is 

being retrieved from memory and by the processes via which it influences performance. In the 

present report, we assess the potential role of two other factors on the magnitude of the 

learning effect, which may also have major implications for inferences about the learning rate 

in performance paradigms: practice and stimulus pre-exposure. 

 It is well known that overall performance in any response time experiment improves 

with practice. Indeed, this occurs in a consistent enough manner that it is often described as a 

law of behaviour (e.g., Logan, 1988; Newell & Rosenbloom, 1981). Specifically, response 

times at the beginning of an experiment tend to be very slow. As the experiment progresses, 

response times rapidly improve early on. The improvements continue throughout the 

experiment, but at an ever-diminishing rate. That is, response times decrease in a decelerating 

function. In blocked analyses, this practice improvement can be represented with a power 
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function: RT = a + bN−c. In this formula, a is the minimum RT that performance improves 

toward, b is the difference between a and Trial 1 performance, N is the trial number, and c is 

the learning rate (normally ≥ 0). In more refined, trial-by-trial analyses on the data of an 

individual participant an exponential function is more appropriate (Heathcote, Brown, & 

Mewhort, 2000; Myung, Kim, & Pitt, 2000). In either case, performance approaches a 

theoretical asymptote over trials, with larger absolute changes in the earlier relative to later 

trials. The ever-decreasing rate of improvement with further practice is easily explained by 

the fact that the closer the current response speed is to asymptote (i.e., the fastest responding 

physically possible) the less room there is for further improvements. In an extreme example, 

if response time started out at 1400 ms per trial and has already improved to 400 ms per trial 

(1000 ms speedup), it is obviously impossible to improve another 1000 ms faster (i.e., to −600 

ms) no matter how much one practices. 

 As we will shortly describe, these practice benefits might have implications for 

assessments of the acquisition of contingency knowledge. This is because response times do 

not merely decrease with practice; response time effects also seem, at least in some notable 

cases, to decrease with practice. For instance, in Stroop experiments the congruency effect is 

observed to decrease with practice (Dulaney & Rogers, 1994; Ellis & Dulaney, 1991; 

MacLeod, 1998; Simon, Craft, & Webster, 1973). This decrease in the congruency effect over 

time can be due to scaling with mean response time (Schmidt, 2016). That is, as mean 

response time decreases over practice, the congruency effect shrinks with it. Stated a different 

way, incongruent trials start out much slower than congruent trials, so they will gain more 

from practice. In yet other words, participants will get increasingly better at identifying the 

colour and executing the appropriate response over practice, giving the word less and less 

time to interfere. 

 Given these considerations, scaling of effects with practice can also be a concern for 
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performance-based contingency effects. That is, overall learning effects might be larger when 

overall responding is slower (Stevens et al., 2002; Urry, Burns, & Baetu, 2015). In the initial 

blocks of learning, the contingency effect might be inflated simply because overall responding 

is slower early in the experiment. Thus, even if the amount of contingency knowledge 

acquired is relatively minimal, the contingency effect might nevertheless appear large due to 

response time scaling. Indeed, if we assume that: (a) contingency effects do scale with overall 

RT and (b) learning does reach peak very early on, then we should actually expect much 

larger contingency effects in the first (slower) blocks than in later (faster) blocks. This is 

illustrated in Panel A of Figure 1. In particular, the response time contingency effect would be 

very large early on (due to the overall slow response times), and as participants become faster 

and faster at responding to the colour with practice, the absolute difference between high and 

low contingency trials would diminish. This is unlike what we have observed in the past.  

(Figure 1) 

 Two alternative possibilities are illustrated in Panels B and C of Figure 1, both of 

which produce a seemingly flat acquisition slope. In Panel B, we see a situation where: (a) 

true acquisition of contingency knowledge is extremely rapid, but (b) the contingency effect 

does not scale with mean RT. In Panel C, we see the exactly opposite situation, where: (a) the 

true contingency knowledge is still developing early on, but (b) the contingency effect does 

scale with mean RT. As such, the absolute contingency effect in response times might 

nevertheless already be large in the initial blocks of learning given that overall response speed 

is slow. As practice progresses, the contingency effect both (a) increases due to better 

contingency knowledge, and (b) decreases due to scaling down with faster responses. The net 

effect is a seemingly-flat acquisition curve. That is, practice-based scaling of RT effects 

works against the ability of the experimenter to reveal any true effect of increasing 

contingency knowledge, especially if practice-based scaling is of a roughly comparable 
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magnitude to the true growth in contingency knowledge. Given these considerations, it is 

possible that underlying contingency knowledge does accumulate over time, but this has been 

partially masked by practice-based scaling in prior reports. The only way to distinguish 

between the situation in Panel B and Panel C is to attempt to study contingency acquisition in 

an experiment with relatively stable mean block RTs. In this case, the two accounts make very 

different predictions, as indicating in the rightmost panels of Figure 1. 

 Of course, it is never possible to separate practice from the acquisition of contingency 

knowledge entirely, because acquisition must be studied across time. That said, in the 

experiments to follow we control for practice partially. In particular, participants first 

practiced responding to a coloured control stimulus (“@@@@”) for an extended period of 

time. This was to practice colour-to-key mappings prior to contingency learning. Predictive 

stimuli, presented in the same colours, were introduced only after this practice. Assuming that 

most of the practice benefit occurs relatively early in an experiment, little more of a practice 

benefit will be observed during the contingency learning phase (i.e., overall RT will be 

relatively stable). It is possible that under these conditions we will observe that the 

contingency effect increases over blocks. On the other hand, it might be the case that the 

contingency learning effect does not scale with response time. In other words, the contingency 

learning effect might be of similar magnitude both when overall responding is fast and slow. 

If this is the case, then we should again observe that the contingency learning effect does not 

increase across blocks. 

 In Experiment 1, we first aim to establish whether an increasing contingency effect 

across blocks is observable after an initial practice phase. In Experiment 2, we extend on these 

findings. In particular, another way in which to study the cumulative effect of acquired 

contingency knowledge is with changes in the contingency at different stages of the 

experiment. In particular, we will investigate how long the contingency effect persists during 
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unlearning, where the contingency is removed (i.e., word switched from predictive to 

unpredictive of the colour). We will also study relearning, in order to investigate whether a 

prolonged unlearning phase slows acquisition of the contingency once it has been 

reintroduced. 

 

Experiments 1a and 1b 

 Experiment 1 had three interrelated added aims. First and most importantly, the 

experiment aimed to see whether the contingency learning effect does or does not increase 

over time. Most critically and unlike past reports, we assessed acquisition after an initial 

practice phase, wherein participants were familiarized with the task and the colour-to-key 

mappings. This was to minimize the impact of scaling with mean RT on the contingency 

effect. In that vein, Experiment 1a was essentially a replication of a three-choice colour-word 

contingency learning paradigm, save for the extended practice phase. Second and relatedly, 

we determined to what extent mean RT correlates with the contingency effect, both in a 

between participant and within participant analysis. The latter tests can give us an indication 

to what extent the contingency effect scales with mean RT. 

 Third and more incidentally, we assess whether brief pre-exposure of the predictive 

word stimulus might boost contingency learning effects. We take our inspiration for this idea 

from paradigms that study the binding between distracting word stimuli and responses (see 

Frings, Rothermund, & Wentura, 2007; Rothermund, Wentura, & De Houwer, 2005). These 

paradigms also have participants respond to target stimuli while ignoring a distracting 

stimulus. Rather than manipulating the contingencies between words and colours in these 

paradigms (i.e., repeatedly-bound target-distracter pairs), these paradigms study the effect of 

recently-encountered target-distracter bindings on performance (for an extended discussion, 

see Schmidt & De Houwer, 2016). The distracting stimulus is typically briefly pre-exposed 
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prior to target onset in these paradigms, and there is some indication that binding effects 

might be larger with this pre-exposure (Klaus Rothermund, personal communication). 

Because we propose that contingency learning and binding effects likely result from the same 

learning process (Schmidt & De Houwer, 2016), it seems possible that a larger and more 

robust contingency learning effect might be observable when the predictive word stimulus is 

pre-exposed (i.e., rather than being presented concurrently with the target colour). This could 

occur simply because the participant has more preparation time if the word comes earlier. In 

this vein, Experiment 1b was identical in all respects to Experiment 1a, except that the 

predictive word was presented first on the screen in a neutral (non-response set) colour before 

changing to one of the target colours 150 ms later. This manipulation is also relevant to our 

main question about acquisition. If the contingency learning effect is, indeed, more robust 

with pre-exposure, then we might have greater power to detect increases in the contingency 

learning effect over time (i.e., assuming that the effect does increase with time). That is, a 

larger contingency effect should produce an equally steeper learning curve. 

Method 

 Participants. Thirty-six Ghent University undergraduates participated in Experiment 

1a and thirty-four participated in Experiment 1b in exchange for €5. No participants 

participated in both experiments. 

 Apparatus. Stimulus presentation and response timing were controlled by E-Prime 2 

(Psychology Software Tools, Pittsburgh, PA). Participants responded with the “J” key for 

purple, “K” key for orange, and “L” key for grey with the first three fingers of their right 

hand. 

 Design. The display colours were purple (RGB: 128,0,128), orange (255,165,0), and 

grey (192,192,192), which are “purple,” “orange,” and “silver” in the standard E-Prime colour 

palate. The experiment began with 3 blocks of 30 practice trials (90 total). The length of this 
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practice phase was determined by visually inspecting some of our old datasets to determine 

how many trials it took for overall mean RT to stabilize. The practice phase was then made 

slightly longer than this stabilization point. In each practice block, the stimulus “@@@@” 

was presented 10 times in each of the three colours. These frequencies exactly match the 

following learning blocks. After practice and a self-paced break, there were 10 blocks of 30 

learning trials (300 total). Three four-letter, first-person Dutch verbs served as the predictive 

words (zoek [search], kies [choose], rijd [drive]). Each word was presented 80% (8 of 10 

times per block) in one colour, and 10% (1 of 10) in each of the remaining two colours. One 

word was presented most often in purple, another most often in orange, and the third most 

often in grey. Which word was presented most often in which colour was randomly 

determined on a participant-by-participant basis. In both parts of the experiment, trials were 

selected at random without replacement. 

 Procedure. All stimuli were presented in bold, 18 pt. Courier New font on a black 

screen. In Experiment 1a, each trial began with a white (255,255,255) fixation “+” for 150 

ms, followed by a blank screen for 150 ms. The stimulus was then presented until either a 

response was made or 1500 ms had elapsed. After correct responses, the next trial 

immediately began. If participants responded incorrectly or failed to respond in 1500 ms, then 

“XXX” in white was presented for 1000 ms. The procedure of Experiment 1b was identical in 

all respects to Experiment 1a, with one exception. Instead of a 150 ms blank screen between 

the fixation and target stimulus the word was pre-exposed for 150 ms in a light brown 

(255,183,113). This colour was selected to both have high enough contrast with the black 

background and to be noticeably different from the three target colours (i.e., purple, orange, 

and grey). 

 Data analysis. Correct response time and error percentages were calculated. All 

participants had acceptable error rates (<20%), so no participants were excluded. For the 
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scaling analyses, mean RT was computed as the experiment-wide (between subject analysis) 

or block-wide (within participant analysis) average response time, including all trials in which 

a response (correct or incorrect) was made. The contingency effect was computed as low 

minus high contingency mean RT for each participant, also experiment- or block-wide. For 

the between participant analysis, both parametric r and nonparametric Spearman’s ρ were 

calculated. For the within participant analysis, a linear mixed effect (LME) analysis was 

conducted using restricted maximum likelihood estimation and diagonal variance structure. 

Results 

 Response times. First, the practice blocks were analysed with a block (1-3) ANOVA 

for each experiment. The linear contrast of block was significant in Experiment 1a, F(1,35) = 

35.997, MSE = 936, p < .001, 𝜂𝑝
2 = .51, and in Experiment 1b, F(1,33) = 13.957, MSE = 3603, 

p < .001, 𝜂𝑝
2 = .30, indicating that performance improved with practice. More precisely, in 

Experiment 1a Block 1 performance (593 ms) was significantly slower than Block 2 (554 ms), 

t(35) = 5.261, SEdiff = 7, p < .001, 𝜂𝑝
2 = .44, and Block 3 (550 ms), t(35) = 6.000, SEdiff = 7, p 

< .001, 𝜂𝑝
2 = .51, but there was no difference between Blocks 2 and 3, t(35) = .618, SEdiff = 7, 

p = .540, 𝜂𝑝
2 = .01. Similarly in Experiment 1b, Block 1 performance (636 ms) was 

significantly slower than Block 2 (580 ms), t(33) = 5.721, SEdiff = 10, p < .001, 𝜂𝑝
2 = .50, and 

Block 3 (581 ms), t(33) = 3.736, SEdiff = 15, p < .001, 𝜂𝑝
2 = .30, but there was no difference 

between Blocks 2 and 3, t(33) = .124, SEdiff = 11, p = .902, 𝜂𝑝
2 < .01. Thus, there was clear 

evidence for practice benefits, but this was most noticeable in the shift from the first to second 

block. 

 Next, a contingency (high vs. low) by block (1-10) ANOVA was conducted on the 

learning blocks for each experiment. The data are presented in Figure 2. Unsurprisingly, the 

main effect of contingency was significant in both Experiment 1a, F(1,35) = 50.326, MSE = 

6915, p < .001, 𝜂𝑝
2 = .59, and Experiment 1b, F(1,33) = 133.932, MSE = 5835, p < .001, 𝜂𝑝

2 
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= .80, because responses were faster to high contingency trials. The linear main effect of 

block was not significant in Experiment 1a, F(1,35) = .092, MSE = 8588, p = .764, 𝜂𝑝
2 < .01, 

but was significant in Experiment 1b, F(1,33) = 7.054, MSE = 7111, p = .012, 𝜂𝑝
2 = .18. This 

main effect of block might seem to suggest that responses slowed over the experiment, but 

this is mostly illusory: low contingency trials contribute 50% to the main effect calculation, 

despite their low frequency. Overall RT (i.e., ignoring the distinction between conditions) did 

not slow significantly across blocks, F(1,33) = 1.992, MSE = 2249, p = .167, 𝜂𝑝
2 = .06. 

 Most critical is the interaction between contingency and block. This interaction was 

significant in Experiment 1b (with pre-exposure of the word), F(1,33) = 7.685, MSE = 4888, p 

= .009, 𝜂𝑝
2 = .19, indicating that the contingency increased over time. In Experiment 1a, 

however, the interaction was not significant, F(1,35) = .059, MSE = 5363, p = .810, 𝜂𝑝
2 < .01, 

suggesting a relatively stable contingency effect. However, it is noteworthy that the effect in 

Block 1 was abnormally large in Experiment 1a, both relative to the immediately following 

blocks and to what we have observed in past reports (and Experiment 1b). With Block 1 

eliminated, results are more suggestive of an increasing effect of contingency with block, but 

this is still not significant, F(1,35) = 1.975, MSE = 3863, p = .169, 𝜂𝑝
2 = .05. Indeed, assume 

that we (a) retain Block 1, and (b) assume that the true slope varied anywhere from 0 ms per 

block (minimum bound) to 5 ms (maximum bound), meaning a 45 ms increase in the 

contingency effect from Blocks 1 – 10 (which exceeds the overall observed contingency 

effect). Despite the fact that these two assumptions favor the null, the resulting Bayes factor 

(using the calculator of Dienes, 2014) using a uniform distribution and the observed slope of 

0.460 ms/block (SE = 2.236) was .64, which is not conclusive evidence for a null slope (i.e., 

because it is greater than 1/3 or .33). 

 Given that Experiment 1b observed some significant effects that were only (non-

significant) trends in Experiment 1a, it is interesting to consider what the overall trends were 
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across experiments. We are also able to test whether the pre-presentation variant of the 

paradigm is, in fact, effective in boosting colour-word contingency learning effects and, in 

turn, acquisition curves. Thus, the learning blocks for RTs were reanalyzed in a contingency 

(high vs. low) by block (1-10) by experiment (1a vs. 1b) ANOVA. Interestingly, the 

contingency effect was significantly larger in Experiment 1b than in Experiment 1a, F(1,68) = 

7.770, MSE = 6391, p = .007, 𝜂𝑝
2 = .10, indicating that word pre-exposure boosts the learning 

effect. The analysis also replicated the interaction between contingency and block, F(1,68) = 

4.463, MSE = 5133, p = .038, 𝜂𝑝
2 = .06. The three-way interaction was only marginal, F(1,68) 

= 3.125, MSE = 5133, p = .082, 𝜂𝑝
2 = .04, suggesting that the change in the contingency effect 

over time in Experiment 2 was not only more robust, but slightly bigger. 

(Figure 2) 

 Error percentages. First, the practice blocks were analysed with a block (1-3) 

ANOVA for each experiment. In Experiment 1a, the linear contrast of block was not 

significant, F(1,35) = .279, MSE = 9.8, p = .601, 𝜂𝑝
2 < .01. As such, the practice blocks were 

not analysed further. However, mean error rates for the three blocks were 6.9%, 6.4%, and 

6.5%, respectively. In Experiment 1b, the main effect of block was marginal, F(1,33) = 3.421, 

MSE = 49.2, p = .073, 𝜂𝑝
2 = .09. More precisely, there were significantly more errors in Block 

1 (12.0%) than in Block 2 (9.5%), t(33) = 2.315, SEdiff = 1.1, p = .027, 𝜂𝑝
2 = .14, and 

marginally more errors in Block 1 than in Block 3 (8.9%), t(33) = 1.850, SEdiff = 1.7, p = .073, 

𝜂𝑝
2 = .09. However, there was no difference between Blocks 2 and 3, t(33) = .367, SEdiff = 1.6, 

p = .716, 𝜂𝑝
2 < .01. Thus, there was also some limited evidence for practice benefits in errors. 

 Next, a contingency (high vs. low) by block (1-10) ANOVA was conducted on the 

learning blocks for each experiment. The data are presented in Figure 3. The main effect of 

contingency was significant in both Experiment 1a, F(1,35) = 27.331, MSE = 96.2, p < .001, 

𝜂𝑝
2 = .44, and Experiment 1b, F(1,33) = 33.782, MSE = 94.6, p < .001, 𝜂𝑝

2 = .51, because 
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errors were less frequent to high contingency trials. The linear main effect of block was also 

significant in both Experiment 1a, F(1,35) = 8.409, MSE = 100.6, p = .006, 𝜂𝑝
2 = .19, and 

Experiment 1b, F(1,33) = 13.534, MSE = 48.7, p < .001, 𝜂𝑝
2 = .29, indicating an increase of 

errors with block. 

 Most critical is the interaction between block and contingency. This interaction was 

significant in Experiment 1b, F(1,33) = 10.517, MSE = 81.4, p = .003, 𝜂𝑝
2 = .24, indicating 

that the contingency effect increased over time. The interaction was not significant in 

Experiment 1a, F(1,35) = 2.445, MSE = 154.3, p = .127, 𝜂𝑝
2 = .07. It is noteworthy, however, 

that error rates were relatively noisy. Visual inspection of the data hints at an increasing 

contingency effect, much like the RT data. Indeed, Bayes analysis again revealed no 

conclusive evidence for the null: with a minimum bound of 0.0% per block, maximum bound 

of 0.5% (or 4.5% from Block 1 – 10, again exceeding the overall observed contingency 

effect), and the observed slope of 0.504%/block (SE = 0.379), the Bayes factor was 1.86, 

which hints at a true effect but inconclusively (i.e., because it is < 3). 

 We again conducted a between-experiment comparison. Unlike the response time 

data, the contingency effect did not differ significantly between experiments, F(1,68) = .241, 

MSE = 95.4, p = .625, 𝜂𝑝
2 < .01. However, the overall analysis replicated the interaction 

between contingency and block, F(1,68) = 10.020, MSE = 118.9, p = .002, 𝜂𝑝
2 = .13, and this 

was not modified by a three-way interaction, F(1,68) = .466, MSE = 118.9, p = .497, 𝜂𝑝
2 < .01. 

Thus, also in errors there was evidence for increasing contingency effects, but the pre-

exposure manipulation proved the more robust measure. 

(Figure 3) 

 Scaling analysis. Finally, we assessed to what extent contingency learning effects 

scaled with practice. The data are presented in Figure 4. In a between participant analysis, the 

RT contingency learning effect correlated marginally with mean RT in both the parametric, 



PRACTICE AND CONTINGENCY LEARNING 15 
 

r(34) = .308, p = .067, and nonparametric test, ρ(34) = .322, p = .055, in Experiment 1a. Thus, 

there was some evidence for scaling. In Experiment 1b, the correlation was significant with 

both tests, r(32) = .497, p = .003 and ρ(32) = .473, p = .005, respectively. Thus, there was 

clear evidence for scaling. The error contingency learning effect did not correlate with mean 

RT in the parametric, r(34) = .031, p = .858, or nonparametric test, ρ(34) < .001, p = .998 in 

Experiment 1a. This was also true of Experiment 1b, r(32) = .018, p = .919 and ρ(32) = –.075, 

p = .672, respectively. 

(Figure 4) 

 In a within participant analysis, an LME was conducted with mean block RT as a scale 

predictor and the block contingency effect as the dependent measure, with ten blocks as a 

repeated measure and a subject intercept for each experiment. Thus, we test to what extent, 

within individual participants, the contingency effect changes with mean block RT. Mean 

block RT was significantly correlated with the contingency effect in RT both in Experiment 

1a (parameter estimate: .304), t(79) = 4.414, SE = .069, p < .001, and in Experiment 1b 

(parameter estimate: .213), t(63) = 3.120, SE = .068, p = .003, again consistent with scaling. 

The parameter estimates indicate, respectively, that the contingency effect increased by .304 

ms and .213 ms for every 1 ms change in mean block RT. Mean block RT did not correlate 

with the contingency effect in errors both in Experiment 1a (parameter estimate: .017), t(76) = 

1.180, SE = .010, p = .241, and Experiment 1b (parameter estimate:  –.007), t(57) = –.749, SE 

= .009, p = .457. 

Discussion 

 Experiment 1 achieved several interesting and novel things. First, the overall 

contingency learning effect was markedly increased with pre-exposed words. This suggests a 

useful adjustment for all future work with the colour-word contingency learning paradigm (or 

even other learning paradigms). Though the effect is already extraordinarily robust without 
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this change, anything to boost the magnitude of the effect is certain welcome. This is 

particularly the case when aiming to test the influence of other factors on the contingency 

learning effect (e.g., acquisition), which may be less robust (e.g., because trials must be 

broken down into smaller blocks, each of which contains very few low contingency trials). 

 Related to this, the second interesting observation of Experiment 1 is that the 

contingency learning effect was observed to increase across blocks, but this was clearer when 

the predictive words were pre-exposed (Experiment 1b) rather than presented concurrently 

with the target colour (Experiment 1a). The same patterns were observed in Experiment 1a, 

albeit much less robustly. This is easily explained by the added potency of pre-exposed 

words: a larger contingency effect produces a concomitantly larger slope in the block by 

contingency interaction. In other words, the interaction scales with the mean contingency 

effect (i.e., in the same way and for the same reason that the contingency effect scales with 

mean RT). 

 Third, participants performed an extended colour identification practice phase to 

reinforce colour-to-key mappings before the learning phase began. This procedure eliminated 

the typical practice-based speedups normally seen at the start of an experiment (i.e., overall 

mean RT was not substantially slower in the first few blocks than in later blocks). Unlike our 

previous studies on acquisition, this manipulation produced an increase in the contingency 

effect across blocks, visually in Experiment 1a and significantly in Experiment 1b in both 

response times and errors (and also significantly when averaged across both experiments). It 

is noteworthy that, while we did observe increasing contingency effects, robust learning 

effects were already evident as early as the first block of 30 trials. Thus, learning is certainly 

rapid, but not as instantaneously asymptotic as previously supposed. 
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Experiment 2 

 Experiment 2 had three primary aims. First, we aimed to replicate the finding of an 

increasing contingency effect over blocks with pre-presentation of the predictive word 

stimulus. This seems particularly important given that Experiment 1 was the first such 

demonstration. Second, we aimed to test to what extent a cumulative learning effect might 

impact rates of unlearning. In Schmidt and colleagues (2010), participants first learned 

contingencies between words and colours, and then the contingencies were removed from the 

task (i.e., the same words were now presented equally often in all colours). The aim was to 

determine how quickly the learning effect would disappear (i.e., be unlearned). After three 

short, 18-trial learning blocks, the contingency effect was already cut in half in the very first 

18-trial block of unlearning. In the following nine blocks, the effect was eliminated. This was 

taken to suggest that unlearning, like learning, is extremely rapid and only based on a small 

“window” of immediately-preceding trials. Given the results of the current investigation, 

however, it might be supposed that unlearning will occur at a less rapid rate if the initial 

learning phase is longer. In particular, if there is a cumulative effect of contingency 

knowledge over time, then it might take longer to unlearn a contingency that has been 

extensively reinforced than one that was encountered only briefly. As such, half of the 

participants in the present experiment had a short learning phase before unlearning, and the 

other half had a longer learning phase. Additionally, given that pre-presentation of the word 

seems to boost learning, we might additionally expect that the contingency effect will persist 

longer during the unlearning phase. 

 The third goal of the present study is to investigate relearning for the first time in the 

colour-word contingency learning task. After either a short learning phase and long 

unlearning phase or a long learning phase and a short unlearning phase, contingencies were 

reintroduced to the task. The reintroduced contingencies in this relearning phase were 
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identical to the initial contingencies in the learning phase (e.g., if “search” was presented most 

often in purple in the learning phase, then it was again presented most often in purple in the 

relearning phase). The first more general question is how rapidly relearning progresses. After 

a period of null (unpredictive) contingencies, will relearning appear rapidly? That is, will the 

contingency effect reappear in the first block or two of relearning (similar to the fast 

acquisition rate during initial learning at the start of an experiment)? Or will recovery from 

the unlearning phase take an extended period of time? The second more specific question is 

whether relearning rates will differ between the two groups of participants. That is, will 

relearning be faster or more pronounced in participants experiencing an extended learning 

phase and brief unlearning phase relative to participants experiencing a brief learning phase 

and an extended unlearning phase? Thus, Experiment 2 provides us with two added ways (i.e., 

unlearning and relearning) to overcome problems with response speeding with practice (i.e., 

by studying adaptations to changes in contingencies at different phases of the experiment) and 

to investigate potentially longer-term cumulative effects of contingencies. 

Methods 

 Participants. Ninety-six Ghent University undergraduates participated in the 

experiment in exchange for €5. None of the participants had participated in Experiment 1. 

 Apparatus and data analysis. The apparatus and data analysis for Experiment 2 were 

identical in all respects to Experiments 1. Two participants (one from each group) were 

excluded for having error rates in excess of 20% in the main phases of the experiment. 

 Design and procedure. The design and procedure of Experiment 2 was identical in all 

respects to Experiment 1b with the following exceptions. The initial practice phase consisted 

of 3 shorter blocks of 18 trials each (54 total), consisting again of the stimulus “@@@@” 

equally often in each of the three colours (six times each per block). The learning phase 

consisted of either 3 or 12 blocks of 18 trials each. The words and colours were identical to 
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the previous experiments, only with slightly different contingencies: each word was presented 

67% (4 of 6 times per block) in one colour, and 17% (1 of 6) in each of the remaining two 

colours. This was followed by an unlearning phase consisting of either 12 or 3 blocks of 18 

trials each. Participants who received the short learning phase received the long unlearning 

phase, and vice versa. In unlearning blocks, each word was now presented equally often in all 

colours (2 of 6, or 33%). Finally, this was followed by a relearning phase, in which words 

were again presented with the learning phase contingencies. This comprised of three blocks of 

18 trials, with identical contingencies to the initial learning phase. Thus, each participant 

received a total of 18 blocks of 18 experimental trials each, in addition to 54 practice trials 

(378 total). 

Results 

 Response times. First, the practice blocks were analysed with a block (1-3) by 

condition (long vs. short learning) ANOVA. Reassuringly, there was no main effect of 

condition, F(1,92) = 1.628, MSE = 20413, p = .205, 𝜂𝑝
2 = .02, and also no interaction between 

condition and block, F(1,92) = 0.091, MSE = 4169, p = .764, 𝜂𝑝
2 < .01, indicating no pre-

existing differences between groups. The linear contrast of block was significant, F(1,92) = 

105.424, MSE = 4169, p < .001, 𝜂𝑝
2 = .53, indicating that performance improved with practice. 

More precisely, Block 1 performance (687 ms) was significantly slower than Block 2 (610 

ms), t(93) = 6.935, SEdiff = 11, p < .001, 𝜂𝑝
2 = .34, and Block 3 (590 ms), t(93) = 10.318, SEdiff 

= 9, p < .001, 𝜂𝑝
2 = .53, and Block 2 was significantly slower than Block 3, t(93) = 2.859, 

SEdiff = 7, p = .005, 𝜂𝑝
2 = .08. As in the previous two experiments, there was clear evidence for 

practice benefits, particularly early on. 

 Next, a contingency (high vs. low) by block (1-12) ANOVA was conducted on the 

learning blocks of the long learning phase group. The data are presented in Figure 5a. The 

main effect of contingency was significant, F(1,46) = 78.832, MSE = 3948, p < .001, 𝜂𝑝
2 = .63, 
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because responses were faster on high contingency trials. The linear main effect of block was 

not significant, F(1,46) = 1.702, MSE = 9080, p = .199, 𝜂𝑝
2 = .04. As before, contingency and 

block significantly interacted, F(1,46) = 8.086, MSE = 2937, p = .007, 𝜂𝑝
2 = .15, again 

indicating that the contingency effect increased over time. 

(Figure 5) 

 Next, a similar contingency (high vs. low) by block (1-3) ANOVA was conducted on 

the learning blocks of the short learning phase group. The data are presented in Figure 5b. The 

main effect of contingency was significant, F(1,46) = 4.911, MSE = 2780, p = .032, 𝜂𝑝
2 = .10, 

because responses were faster on high contingency trials. The linear main effect of block was 

not significant, F(1,46) = .204, MSE = 5775, p = .654, 𝜂𝑝
2 < .01. Critically, contingency and 

block significantly interacted, F(1,46) = 4.083, MSE = 4966, p = .049, 𝜂𝑝
2 = .08. Thus, 

evidence for an increasing contingency effect was already observable with just three short 

blocks of 18 trials. Reassuringly, an additional contingency (high vs. low) by block (1-3) by 

condition (short vs. long learning phase) ANOVA on the first three blocks revealed no effects 

of condition on any of the main effects or interactions (all Fs ≤ 1.607, all ps ≥ .208). 

 Results from the unlearning and relearning phases can also be observed in Figure 5. 

There were no main effects for block in either phase for either group of participants (all Fs ≤ 

1.107, all ps ≥ .298). For participants with the long learning phase (and therefore short 

unlearning phase), there was a robust overall contingency effect during unlearning, F(1,46) = 

14.525, MSE = 4020, p < .001, 𝜂𝑝
2 = .24. The linear decrease in the contingency effect across 

unlearning blocks was marginal, F(1,46) = 3.002, MSE = 3235, p = .090, 𝜂𝑝
2 = .06. Including 

the last learning block in the ANOVA (i.e., Blocks 12-15), this decreasing contingency effect 

across blocks was significant, F(1,46) = 11.747, MSE = 2863, p = .001, 𝜂𝑝
2 = .20. Thus, some 

carryover from the learning phase to the unlearning phase was apparent, but even with a 

lengthier learning phase, the contingency effect did diminish. This is consistent with the 
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notion that the learning rate is high (i.e., given that the effect does diminish), but there is some 

cumulative effect of contingencies learned across the experiment (i.e., given that the effect 

does persist partially after the contingency is removed). For the same group of participants, 

the overall contingency effect was highly robust during relearning, F(1,46) = 28.287, MSE = 

2782, p < .001, 𝜂𝑝
2 = .38. Though there was some numerical trend for an increasing 

contingency effect across blocks, this was not significant, F(1,46) = 1.630, MSE = 2589, p 

= .208, 𝜂𝑝
2 = .03, indicating that the contingency was relearned very quickly. 

 For participants with the short learning phase (and therefore long unlearning phase), 

the contingency effect seemed to hover slightly above zero across unlearning blocks. The 

overall contingency effect was significant, F(1,46) = 10.820, MSE = 4240, p = .002, 𝜂𝑝
2 = .19. 

There was also no evidence for a decrease in the contingency effect across blocks, F(1,46) = 

0.012, MSE = 3238, p = .912, 𝜂𝑝
2 < .01, primarily because the contingency effect was small 

right from the start of the unlearning phase. Indeed, if the last block of learning and first three 

blocks of unlearning are included with the condition factor in an ANOVA, the rate of 

unlearning was marginally steeper in the long learning phase group, F(1,92) = 3.058, MSE = 

3178, p = .084, 𝜂𝑝
2 = .03. Thus, carryover from the learning phase to the unlearning phase was 

again apparent, albeit less dramatically as in the long learning phase group. Interestingly, 

however, if the unlearning phase was divided into the first and last halves of unlearning (i.e., 

Blocks 4-9 and Blocks 10-15), the overall contingency effect was significant in both the first 

half of unlearning, F(1,46) = 5.612, MSE = 3713, p = .022, 𝜂𝑝
2 = .11, and the second half, 

F(1,46) = 6.939, MSE = 3623, p = .011, 𝜂𝑝
2 = .13. This indicates that, though reduced, a 

cumulative effect of contingencies persists even after a relatively short learning phase and 

long unlearning phase. In the same group of participants, there was a significant contingency 

effect during relearning, F(1,46) = 13.943, MSE = 4590, p < .001, 𝜂𝑝
2 = .23. As with the long 

learning phase group, there was some numerical trend for an increasing contingency effect 
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across blocks, but this was again not significant, F(1,46) = 2.225, MSE = 3314, p = .143, 𝜂𝑝
2 

= .05, indicating again that the contingency was relearned very quickly. There was no 

apparent difference in the rate of relearning across groups, F(1,92) = 0.074, MSE = 2952, p 

= .786, 𝜂𝑝
2 < .01, probably because of how quickly the contingency was relearned in both 

groups. 

 Error percentages. First, the practice blocks were analysed with a block (1-3) by 

condition (long vs. short learning) ANOVA. Again, there was no main effect of condition, 

F(1,92) = 0.063, MSE = 388, p = .802, 𝜂𝑝
2 < .01, and also no interaction between condition 

and block, F(1,92) = 0.009, MSE = 75, p = .962, 𝜂𝑝
2 < .01, indicating no pre-existing 

differences between groups. The linear contrast of block was significant, F(1,92) = 8.915, 

MSE = 75, p = .004, 𝜂𝑝
2 = .09, indicating that errors decreased with practice. More precisely, 

Block 1 errors (9.2%) were significantly higher than in Block 2 (6.2%), t(93) = 3.203, SEdiff 

= .9, p = .002, 𝜂𝑝
2 = .10, and Block 3 (5.4%), t(93) = 3.002, SEdiff = 1.3, p = .003, 𝜂𝑝

2 = .09. 

Blocks 2 and 3 did not significantly differ, t(93) = 0.789, SEdiff = 1.0, p = .432, 𝜂𝑝
2 < .01. 

Again, there was clear evidence for practice benefits, particularly early on. 

 The data for the main blocks of the experiment are presented in Figure 6. Given the 

binary nature of errors, the small block sizes, and the uneven distribution of high and low 

contingency trials per block (i.e., relatively few low contingency trials in the learning and 

relearning blocks, and relatively few “high contingency” trials in the unlearning blocks), it is 

probably not surprising that the errors were generally less informative than response times for 

the main blocks of the experiment. During the learning phase, there was a significant overall 

contingency effect in errors for the long learning phase group, F(1,46) = 6.624, MSE = 68, p 

= .013, 𝜂𝑝
2 = .13, and the short learning phase group, F(1,46) = 5.783, MSE = 56, p = .020, 𝜂𝑝

2 

= .11. However, there were no main effects of block or interactions between block and 

contingency for either group (all Fs ≤ .716, all ps ≥ .402). Thus, acquisition curves were not 
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observed in the errors, likely due to noisier error data. 

(Figure 6) 

 During the unlearning phase, the contingency effect was not significant for the long 

learning phase group, F(1,46) = 1.758, MSE = 60, p = .191, 𝜂𝑝
2 = .04, or the short learning 

phase group, F(1,46) = 0.010, MSE = 70, p = .921, 𝜂𝑝
2 < .01. During the relearning phase, the 

contingency effect was again significant for the long learning phase group, F(1,46) = 5.569, 

MSE = 104, p = .023, 𝜂𝑝
2 = .11, and the short learning phase group, F(1,46) = 9.935, MSE = 

63, p = .003, 𝜂𝑝
2 = .18. There were no main effects of block or interactions between block and 

contingency for either group (all Fs ≤ 2.336, all ps ≥ .133). Thus, the error data captures only 

the larger trends in the data, but is otherwise generally consistent with the response times. 

 Scaling analysis. As in Experiment 1, we then performed scaling analyses on the 

learning phase data with the identical data analysis strategy. Of course, including the 

unlearning and relearning data would confound the analysis, given the change in 

contingencies, so these data were excluded. The learning phase in the long learning phase 

group did include more blocks (12) than in Experiment 1 (10), but overall less observations 

(216 and 300 trials, respectively), given the smaller block sizes. For the short learning phase 

group, scaling analyses are less meaningful given the small number of blocks (3) and trials 

(54), and understandably revealed no significant effects (all ps > .05). For the participant-level 

analysis of the long learning phase group, the correlation between mean RT and the response 

time contingency effect was marginal with the parametric test, r(47) = .266, p = .071, but not 

significant with the nonparametric test, ρ(47) = .208, p = .161. As before, mean RT did not 

correlated with the error contingency effect in either test, r(47) = −.094, p = .531 and ρ(34) = 

−.130, p = .382. For the block level analysis, mean block RT correlated significantly with the 

block response time contingency effect (parameter estimate: .131), t(114) = 2.711, SE = .048, 

p = .008. Again, mean block RT did not correlate with the block error contingency effect 
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(parameter estimate: −.001), t(133) = −0.179, SE = .006, p = .858. Thus, evidence for scaling 

was again observed in the response time data, but less robustly in the participant-level 

analysis. 

 

Discussion 

 In Experiment 2, we replicated the observation of increasing contingency effects over 

blocks, in addition to scaling with mean response times. We additionally observed some 

persistence of the contingency effect from the learning phase to the unlearning phase, 

particularly in the group of participants with a longer learning phase. However, even in the 

short learning phase group, a contingency effect was still observable in the second half of the 

unlearning blocks. These findings are consistent with the notion that recent events have the 

largest effect on behaviour (i.e., high learning rate), but that more distant events do have some 

cumulative effect on learning. Relearning also seems to occur very quickly. Indeed, relearning 

was quick enough that we did not observe a significant increase in the contingency effect 

across relearning blocks (i.e., because the effect was already present from the start of the 

relearning phase). There were some suggestive (but non-significant) trends, but the change in 

the contingency effect across blocks was not particularly drastic. 

 

General Discussion 

 In performance paradigms, acquisition of contingency knowledge appears to occur 

almost instantaneously (e.g., Schmidt et al., 2010; Nissen & Bullemer, 1987; Lewicki, 1985, 

1986). The present results further demonstrate that learning does, however, continue to grow 

over the course of an experiment. Most likely, this is due to learning following a power or 

exponential function with a high learning rate. That is, responding is heavily determined by 

learning from recent trials, and previous trials have ever decreasing effects on the current trial 
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the longer ago it occurred. Thus, like the overall performance improvements with practice, 

contingency learning effects will increase toward a theoretical asymptote over time, with less 

gains to be achieved the more that has already been learned. 

Mechanisms of Contingency Learning 

 Our results suggest that learning occurs very rapidly, but does not reach asymptote 

immediately. We consider the implications of this for mechanistic accounts of contingency 

learning. First, it is clearly not the case that participants are responding in a fixed way to the 

conditional probabilities, or ΔP (Allan, 1980; Jenkins & Ward, 1965; Ward & Jenkins, 1965), 

between stimuli and responses. Because the contingencies do not change during acquisition, it 

seems unlikely that participants are responding on the basis of the computed probability of a 

given response given the stimuli presented. Given that changes in task contingencies (i.e., 

during unlearning and relearning) are similarly extremely rapid it also seems clear that 

learning is not simply cumulative across the task as a whole. Rapid adaptation to a new 

contingency requires heavier weighting of recent events (discussed in more detail later). 

 Another possibility is that learning in the colour-word contingency paradigm occurs 

via the storage and retrieval of trial episodes (Logan, 1988). On each trial, an event is encoded 

into memory, which records the stimuli that were presented and the response that was made. 

On subsequent trials, presentation of a stimulus leads to automatic retrieval of similar 

episodes, thereby biasing the most frequent response. For instance, if the word “choose” is 

presented most often in purple, then experiencing the word “choose” again will lead to the 

retrieval of episodes of trials in which “choose” was also presented. Due to the contingency, 

most of these will point to a purple response. A computational model of this sort of learning, 

the Parallel Episodic Processing (PEP) model, has already been demonstrated to produce such 

contingency learning effects (Schmidt, 2013a; see also, Schmidt, 2013b, 2016; Schmidt & 

Weissman, 2016) and a forthcoming paper successfully models the acquisition curves 
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observed in the current report (Schmidt, De Houwer, & Rothermund, 2016). 

 In order for an episodic model to explain all of our results, however, it must be 

assumed that recently-encoded episodes are more strongly retrieved than more distant events. 

This is the case in the PEP model, but not in the model of Logan (where each episode “races” 

at an equal speed for retrieval). If all episodes were equally weighted (i.e., without decay of 

older episodes), then adaptation to a change in the contingency later on in an experiment 

would be slow. For instance, consider participants experiencing the long unlearning phase in 

Experiment 3. Short learning phase aside, most of their trial memories will point to a null 

contingency. Thus, the relearning phase would have to be quite long before a contingency 

effect would begin to re-emerge (i.e., until the experiment-wide contingency increased 

sufficiently). If recently-encoded memories are retrieved more strongly than older ones, 

however, then adaptation to a new contingency will unfold rapidly, as we observed. The rapid 

unlearning rate, even after a relatively long learning phase, also adds credence to this notion. 

 The implications are similar for associative models of learning, such as the Rescorla-

Wagner model (Rescorla & Wagner, 1972). The learning rate must be assumed to be high 

enough to produce rapid learning and equally rapid adjustment to changes in contingencies 

(e.g., during unlearning or relearning), but not so high that associative strengths approach 

asymptote too rapidly. In general, our results suggest that a viable account of learning in this 

sort of performance task must be rapid enough to acquire the contingency quickly and to be 

highly adaptive to changes in stimulus-response contingencies. 

Performance Measures 

 As we mentioned at the outset of the manuscript, performance measures of learning 

are highly useful in that they provide highly robust measures of learning that can be studied 

on-line (i.e., while learning is occurring). However, the present manuscript also highlights the 

potential complications with practice-based performance improvements when attempting to 
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study acquisition. Because contingency effects seem to scale with response time and response 

times tend to be slower early on in an experiment, contingency effects will tend to be 

increased early on. Though obviously still a genuine learning effect regardless of how the 

effect is scaled, this does make it difficult to directly relate the magnitude of a contingency 

effect to the amount of underlying contingency knowledge. Similar points have been raised 

outside the acquisition domain (Kaufman et al., 2010; Stevens et al., 2002; Urry et al., 2015). 

The extended training phase used prior to contingency learning in the present experiments 

partially circumvents this problem. Similarly, unlearning and/or relearning can be used to 

study transfer of contingency knowledge after varying amounts of learning and at different 

points during practice. 

 Another way of dealing with practice-induced scaling would be to convert the 

response time contingency effect to a proportion of mean RT (e.g., Kaufman et al., 2010). In 

the case of the current paradigm, this would entail the following transform to each block: (low 

contingency – high contingency) / mean RT. The mean RT could alternatively be replaced by 

either the high or low contingency RT. With such a transform, the contingency effect is 

rescaled to mean RT, thereby controlling for practice statistically. The reason that we did not 

opt for this approach in the current study of acquisition is the potentially circular logic this 

would entail for our purposes. That is, we set out to answer the questions: (a) does the 

contingency effect scale with mean RT? and (b) if so, does the contingency effect increase 

over practice after accounting for scaling? Controlling for overall RT statistically presumes a 

priori that the contingency effect does scale with mean RT (Question a) in order to assess 

acquisition (Question b). If the contingency effect did not scale with mean RT and was 

additive with the practice effect (as in Panel B of Figure 1), then a statistical control for mean 

RT could produce false evidence for a positive acquisition curve (as in Panel C of Figure 1). 

Thus, an experimental control seemed more appropriate. On the other hand, our results 
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indicate that the contingency effect does scale with mean RT, which might suggest that some 

form of statistical control could be appropriate in future research. Incidentally, unreported 

analyses confirmed that this statistical control has little impact on the present datasets, due to 

the relatively stable mean block RT. 

 As a more general point, it is also noteworthy that practice-based improvements can 

be conceived as resulting from the same (or similar) processes that produce the contingency 

learning effect. Contingency learning effects seem to be driven by the learning of word-

response correspondences (Schmidt et al., 2007; Schmidt & De Houwer, 2012b), which we 

have previously suggested might be due to episodic storage and retrieval. Practice benefits 

might also be due to episodic learning (Logan, 1988), but the learned regularity is between the 

colour and the response. For instance, each time a participant presses the “j” key to a purple 

stimulus a new episode is created that includes the colour purple and the response “j” (in 

addition to whichever word was presented). Over time, these episodes accumulate, such that 

there are more and more “purple-‘j’ key” episodes to retrieve to assist in responding. Thus, 

while we have treated practice effects as a “confound” in the current investigation of 

contingency learning acquisition, both effects can parsimoniously be explained by the same 

memory mechanisms. 

Relation to Past Results and Future Directions 

 The present results might seem to conflict with the findings of Schmidt and De 

Houwer (2012c). In that work, the authors varied the stimulus onset asynchrony (SOA) or 

inter-stimulus interval (ISI) between predictive nonwords (e.g., “yalan,” “zarif,” etc.) and 

colour word targets. Nonwords were predictive of colour word targets, much in the same way 

that neutral words were predictive of print colour targets in the present investigation. Over a 

wide range of lags (from 1200 ms to 50 ms pre-exposure) no noticeable changes in the 

contingency learning effect were observed (for related work, see Elsner & Hommel, 2004). 



PRACTICE AND CONTINGENCY LEARNING 29 
 

They interpreted this as indicating that temporal contiguity (i.e., closeness in time) between 

predictive stimuli and target stimuli has minimal effect on learning. In the present report, 

however, we observed that pre-exposing the word led to very noticeable increases in the 

contingency learning effect. Though it is certainly possible that more incidental differences in 

the procedure account for this difference (e.g., the use of nonwords vs. real words, or the use 

of colour word vs. print colour targets), one explanation seems more sensible to us. As 

discussed in the aforementioned paper, there were two potentially counteracting factors in the 

SOA/ISI studies. On the one hand, extra pre-exposure might allow for more preparation time 

(as we propose), thereby boosting learning effects (i.e., the expression of learning). On the 

other hand, non-integrated stimuli that are presented closer together in time might be more 

strongly bound together, thereby boosting the strength of the underlying learned 

contingencies. Thus, longer delays between (non)words and colour targets provides extra 

preparation time, but comes at the cost of weaker binding. By colourizing the words in the 

present Experiments 1b and 2, however, we might both: (a) maintain a strong binding 

between words and colours by integrating them, and (b) allow extra preparation time. Future 

research might thus aim to clarify these issues further (e.g., by manipulating SOA with our 

pre-exposure procedure). 

 Also interesting, Schmidt and colleagues (2010) argued that the “window” of previous 

trials that impact the contingency effect is quite small. In other words, they suggested that 

only a small number of immediately-preceding trials influenced the magnitude of the effect. 

However, in the present experiments we observed that the contingency effect continued to rise 

across the learning blocks. Similarly, in Experiment 2 we observed that an initially learned 

contingency can persist for quite some time after the contingencies are removed, albeit in a 

much diminished form. This might suggest that more distant trial memories, though weaker 

than more recent ones, also influence the observed effect. Future research might investigate 
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these issues further by, for instance, seeing to what extent manipulations of the strength of 

contingencies early on in an experiment influence the size of contingency effects later on in 

the procedure. 

 In addition to research on acquisition rates, unlearning and extinction have proved 

important in studying various types of learning (De Houwer, 2009; De Houwer, Thomas, & 

Baeyens, 2001; Shanks, 2007). In addition to the current Experiment 2, only one study so far 

has investigated unlearning in the colour-word contingency learning paradigm (Schmidt et al., 

2010). As with the prior report, we observed that the contingency effect diminishes when 

contingencies are removed (i.e., during unlearning). Different from the prior report, we did 

observe some persistence of the contingency effect during unlearning. We also investigated, 

for the first time, to what extent a longer learning phase might impact the unlearning rate. 

Interestingly, we did not observe that the contingency effect remained large longer for the 

group of participants with a longer learning phase. Indeed, the contingency effect decreased 

very rapidly in this group. However, future research might investigate to what extent an even 

longer learning phase does or does not lead to a more strongly persistent contingency effect. 

For instance, if participants are given days of practice with contingencies before unlearning, 

will the contingency effect again decrease quickly during unlearning or will the heavily-

reinforced contingency knowledge take longer to unlearn? 

Limitations 

 One limitation of the present work is that we did not directly compare learning in 

participants with versus without an initial practice phase. That is, while the present report 

provides clear evidence that contingency effects increase over time, we did not directly test 

the reason why the current procedure would reveal this acquisition curve, whereas past reports 

failed to. We reasoned that eliminating initial performance-based speedups with practice 

would allow us to observe a positive acquisition curve. Consistent with this, we observed an 
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increasing contingency effect across blocks, which is unlike what we observed in our previous 

reports with this paradigm. More ideally, it would be useful to show directly that the slope of 

the acquisition curve is statistically steeper with versus without an initial practice phase. 

Practically speaking, however, the sample size required to detect such a between-participant 

interaction might be prohibitive. Furthermore, the differences in the acquisition curves 

observed between the current three experiments and our previous work are striking enough 

already. In addition, our scaling analyses provide clear converging evidence that failures to 

control for initial practice in the task is problematic. 

 As another limitation, the increasing effects of contingencies across blocks might be 

reinterpreted in another manner. It might be argued that the contingency effect grows over 

time because retrieval of contingency knowledge from memory becomes more efficient over 

time. That is, even if contingency knowledge does reach asymptote near instantly (e.g., Panels 

A and B in Figure 1), the contingency effect might nevertheless continue to grow over the 

course of the experiment as a result of increasingly more effective use of this contingency 

information to anticipate the likely response. The persistence of the contingency effect across 

the unlearning blocks might seem to partially argue against this possibility (i.e., some 

carryover of contingency knowledge must be assumed), but it is certainly possible that 

changes in the expression of contingency knowledge over time do play some role in the 

acquisition curves observed in the present report. Future research might therefore aim to study 

true acquisition and the expression of contingency knowledge separately. 

Conclusions 

 Though it should be clear that contingency knowledge is extracted quite rapidly in the 

colour-word contingency learning paradigm, the present results further suggest that the effect 

does continue to grow over time. The present report also novelly illustrates how performance 

improvements with practice can play a potentially confounding role when investigating the 
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development of an effect over time. With regard to the contingency effect in particular, slower 

early block performance might inflate estimates of contingency acquisition. Our scaling 

analyses lend credence to this notion. The present results also demonstrate for the first time 

that performance indices of contingency learning can be magnified by pre-exposing predictive 

words, likely because of the added preparation time.  
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Figures 

Figure 1. Example true acquisition of contingency knowledge (left panels), practice speedups 

for high and low contingency trials (center panels), and predicted learning curves 

without practice speedups (right panels). A: near immediate acquisition that scales with 

mean RT. B: near immediate acquisition, but no scaling. C: gradual acquisition that 

scales with mean RT. Both B and C produce seemingly flat acquisition curves (center 

panels), but with very different underlying learning rates, leading to different 

predictions when practice speedups are eliminated (right panels). 

Figure 2. High and low contingency response times with standard errors for (a) Experiment 

1a (no pre-exposure) and (b) Experiment 1b (pre-exposed words). 

Figure 3. High and low contingency percentage errors with standard errors for (a) Experiment 

1a (no pre-exposure) and (b) Experiment 1b (pre-exposed words). 

Figure 4. Scatterplots relating mean response time (x-axis) to the contingency effect (y-axis) 

for (a) Experiment 1a (no pre-exposure) and (b) Experiment 1b (pre-exposed words). 

Figure 5. Experiment 2 high and low contingency response times with standard errors for (a) 

long learning phase (short unlearning phase) and (b) short learning phase (long 

unlearning phase). Unlearning phase marked in grey. 

Figure 6. Experiment 2 high and low contingency percentage errors with standard errors for 

(a) long learning phase (short unlearning phase) and (b) short learning phase (long 

unlearning phase). Unlearning phase marked in grey. 
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