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Abstract 

Despite mounting evidence regarding the underlying neurobiology in transgender persons, 

information regarding resting-state activity, particularly after hormonal treatment, is lacking. 

The present study examined differences between transgender persons on long-term cross-sex 

hormone therapy and comparisons on two measures of local functional connectivity, intensity 

of spontaneous resting-state activity (low frequency fluctuations, LFF) and local 

synchronization of specific brain areas (regional homogeneity, ReHo). Nineteen transgender 

women (TW, male-to-female), 19 transgender men (TM, female-to-male), 21 non-transgender 

men (NTM) and 20 non-transgender women (NTW) underwent a resting-state MRI scan. The 

results showed differences between transgender persons and non-transgender comparisons on 

both LFF and ReHo measures in the frontal cortex, medial temporal lobe, and cerebellum. 

More interestingly, circulating androgens correlated for TM in the cerebellum and regions of 

the frontal cortex, an effect that was associated with treatment duration in the cerebellum. By 

comparison, no associations were found for TW with estrogens. These data provide first 

evidence for a potential masculinization of local functional connectivity in hormonally-treated 

transgender men.  

 

Keywords: functional connectivity; testosterone; transsexual; hormone treatment; 

masculinization; androgenization
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1. Introduction 

Transgender persons are characterised by persistent cross-sex identification and uneasiness 

with their natal sex (APA, 2013). Consequently, transgender persons often desire cross-sex 

hormonal treatment and surgical reassignment. Despite the increasing awareness and progress 

surrounding surgical gender reassignment, there is still a need for better understanding the 

potential impact of sex hormones on the underlying neurobiology. Functional and structural 

neuroimaging (fMRI/sMRI) studies in transgender persons are still scarce but slowly 

increasing. These limited studies have focused on whether transgender persons resemble their 

natal sex or their gender identity in structural neuroanatomy (for a review see Saraswat et al., 

2015) or sexually-dimorphic cognitive-affective functions (for a review see Smith et al., 

2015). Studies on the effects of cross-sex hormonal treatment in transgender persons have 

revealed changes in cortical, subcortical, and ventricular volumes and thickness (Hulshoff Pol 

et al., 2006; Luders et al., 2009; Zubiaurre-Elorza et al., 2014). Moreover, in transgender men 

(female-to-male) androgen treatment increased white matter diffusivity in cortical and 

cortico-spinal tracts (Rametti et al., 2012). However, the potential consequences of androgen 

or estrogen treatment on basic neural synchrony are currently unknown.  

Resting-state activity is defined as the intrinsic fluctuations in neural activation when 

the brain is not actively engaged in any task. This resting-state activity may inform on 

essential networks underlying a variety of cognitive-affective functions (Biswal et al., 2010; 

Fox et al., 2005). Presently, resting-state MRI (rsfMRI) mainly focuses on functional 

connectivity examining the inter-regional temporal correlation between distant brain regions 

(e.g., between the amygdala and the prefrontal cortex) that may be involved in a specific 

cognitive function (Biswal et al., 2010; Fox et al., 2005; Greicius et al., 2007). However, 

resting-state activity may also characterize the intensity or synchronization of baseline neural 

signals within a localized brain region, i.e., local functional connectivity, which has been 

shown to influence whole brain dynamics (Deco et al., 2014). Recent technical advances in 

the analysis of rsfMRI data have begun to map such local functional connectivity providing 
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new measures of signal intensity. These measures include low frequency fluctuations (LFF) 

and regional homogeneity (ReHo), i.e., local synchronization of the neural signal.  

Indeed, it has been argued that low frequency fluctuations in rsfMRI record 

physiologically meaningful signs of intrinsic brain function and mark the intensity of 

spontaneous resting-state neural activity (Zhou et al., 2010). LFF analysis in clinical 

populations has indicated regionally-specific changes in resting-state activity in the prefrontal 

and temporal cortices in depressed patients relative to healthy comparisons (Liu et al., 2014). 

These findings were interpreted to reveal a possible underlying brain-behavior mechanism 

that may be indicative of excessive self-referential processing or deficits in affective 

regulatory control commonly seen in depression.   

Complementary to LFF, regional homogeneity (ReHo) characterizes the local 

synchronisation of spontaneous fMRI BOLD signals and has been described as an index of 

local functional connectivity (Jiang and Zuo, in press). This method assumes similarity of the 

temporal hemodynamic characteristics of neighbouring voxels within a functional cluster, i.e., 

of a dynamic synchronization of a given brain region (Zang et al., 2004). Akin to LFF, ReHo 

studies in depression (Liu et al., 2010) or autism spectrum disorders (Paakki et al., 2010) have 

documented regional alterations in local synchronization in patients highlighting disorder-

specific perturbations.  

 The extent to which sex hormones influence or alter such local synchronization has 

not yet been investigated. Previous reports find that frontal brain oscillatory coupling is 

associated with testosterone levels in men (Miskovic and Schmidt, 2009). Similarly, studies 

in women report that resting-state EEG varies with estrogen level, menstrual cycle phase, and 

use of oral contraceptives (Brotzner et al., 2014), which influence inter-hemispheric transfer 

time of information (Hausmann et al., 2013). Interestingly, some changes in the oscillatory 

pattern of the sleep EEG have been documented in transgender persons on cross-sex hormone 

therapy (Kunzel et al., 2011) indicating alterations in basic neural synchronization. 

The goal of the present study was to compare the intensity (LFF) and synchronization 

(ReHo) of local functional connectivity using rsfMRI in transgender persons on cross-sex 
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hormone treatment and non-transgender comparisons. Moreover, the potential impact of 

hormone therapy was assessed by examining the influence of circulating sex hormones on 

resting-state activity. Based on limited available evidence (Kunzel et al., 2011; Rametti et al., 

2012), we anticipated a shift toward resting-state activity consistent with their gender identity 

in transgender persons with treatment.  

 

 

********************Please insert Table 1 about here please************* 

 

 

2. Materials and Methods 

2.1 Participants 

Nineteen transgender women (TW, male-to-female, mean age =40.53 years, SD = 8.55), 19 

transgender men (TM, female-to-male, mean age = 36.84 years, SD = 8.59), 21 non-

transgender men (NTM, mean age = 32.57 years, SD = 9.88), and 20 non-transgender women 

(NTW, mean age = 34.6 years, SD =11.20) participated (Table1). All transgender persons 

(except one) were two years post gender reassignment surgery but all were receiving 

hormonal treatment; TM for a mean duration of 84.52 months (SD = 49.49 months) and TW 

for 81.56 months (SD=66.17 months). TM were receiving an injection with 1000mg of 

intramuscular testosterone undecanoate  (Nebido®, Bayer, Germany, once every 10- 12 

weeks, N=10), intramuscular testosterone esters (testosterone decanoate 100mg, testosterone 

isocaproate 60mg, testosterone fenylpropionate 60mg, testosterone propionate 30mg/ml, 

Sustanon 250®, MSD, The Netherlands, between !-2 ampoules every two weeks, N=8) or 

transdermal testosterone gel (Itnogen® 2% gel, 50 mg/day, N=1). TW were receiving 4mg 

(2x 2mg) oral estradiol valerate daily (Progynova ®, Bayer, N=7), transdermal 17-B estradiol 

patch 0.100 mg/24h (Dermestril®, Besins, Belgium, N=3), transdermal 17-B estradiol gel (2 

x 2mg daily, N=7, Oestrogel®, Besins, Belgium or Estreva®, Besins, Belgium) 
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or contraceptive pill daily (N=1). Transgender persons were recruited through flyers and 

through the Department of Endocrinology of the Ghent University Hospital. Non-transgender 

comparison participants were recruited through word of mouth and through flyers that were 

distributed throughout the city of Ghent. The study was approved by the Medical Ethical 

Committee of Ghent University Hospital. All participants were screened for psychiatric 

pathology by a clinician (KW) using the MINI neuropsychiatric interview (Sheehan et al., 

1997).  

 

2.2 Resting-state MRI 

Resting-state images (acquisition time 6:04 minutes) were acquired on a 3T Siemens Trio 

(TrioTim syngo MR B17, Siemens, Erlangen, Germany). The scanning parameters were as 

follows: TR/TE = 2000/27ms, FOV = 192mm, 34 slices, slice thickness = 3 mm. The first 6 

scans were discarded to account for signal saturation effects. Participants were instructed to 

remain awake and relaxed with their eyes open and to fixate on a white cross on a projection 

screen. For normalization purposes, a high resolution anatomical MPRAGE (acquisition time 

5:14 minutes) was acquired with flip angle = 9°; field of view (FOV) = 256 mm; repetition 

time (TR) = 2250 ms; echo time (TE) = 4.18ms.  

 

2.3 Image processing 

Data were pre-processed using the Data Processing Assistant for Resting-State fMRI 

(DPARSF, V2.0_101025, http://www.restfmri.net), based on SPM 8 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8) and the Resting-State fMRI Data Analysis 

Toolkit (REST, V1.5_101101, http://www.restfmri.net). Further pre-processing included slice 

timing correction, head motion correction, spatial normalisation, and smoothing. The standard 

EPI template from the Montreal Neurological Institute (MNI) was used for spatial 

normalisation. Data were spatially smoothed using a 4mm full-width half maximum (FWHM) 

Gaussian Filter. Finally, linear detrending and temporal band pass (0.01-0.08 Hz) filtering 
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were performed to remove low frequency drifts and physiological high-frequency noise 

(Cordes et al., 2001). 

 

2.4 LFF analysis 

LFF was calculated using the REST toolkit. The LFF at each voxel was computed for each 

subject, and it was further divided by the global mean value to reduce the global effects of 

variability across participants (Zang et al., 2007). Each LFF map was detrended and band 

pass filtered at the default frequency (0.01-0.08 Hz), and spatially smoothed with a Gaussian 

filter of 4 mm FWHM before analyses were run. Individual mean LFF images were then 

analysed in SPM8 with Group (TM, TW, NTM, NTW) as the main factor of interest and age 

as a covariate of no interest. Because this study aimed to examine the whole brain, we used a 

combined voxel and cluster-size thresholding approach to correct for multiple comparisons 

using Monte Carlo Simulations (with the programme AlphaSim as implemented in AFNI, 

http://afni.nimh.nih.gov/afni/) with 10.000 iterations and a voxel-wise p-value set at .001. 

These simulations indicated that in order to control for a Type I error, a minimum cluster size 

of 47 voxels would be needed to accomplish a corrected alpha level of p=.05 (that is 47 

contiguous voxels would occur less than 5% of the time by random noise alone assuming a 

group of highly significantly activated voxels set at an individual voxel-wise threshold of 

p=.001).  

 

2.5 ReHo analysis 

The ReHo maps were generated using the REST toolkit. Kendall’s coefficient of concordance 

(KCC) (Kendall and Gibbons, 1990) was used to measure the similarity of the time series 

within a functional cluster based on the regional homogeneity hypothesis (Zang et al., 2004). 

The individual ReHo maps were generated in a voxel-wise fashion, with 27 nearest 

neighbouring voxels defined as a cluster. A predefined mask (made with the MNI template to 

assure matching with the normalization step), in the REST software was used to remove non-

brain tissue. The ReHo maps were divided by their  own KCC value within the mask for 
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standardisation purposes (Wu et al., 2009). The ReHo maps were spatially smoothed with a 

Gaussian filter of 4mm FWHM. Age was used as a covariate of no interest in the analyses. 

Individual mean ReHo images were then analysed in SPM8 with Group (TM, TW, NTM, 

NTW) as the main factor of interest and age as a covariate of no interest. As above, Monte 

Carlo Simulations (AlphaSim, 10.000 iterations, voxel-wise p=.001) were run to determine 

the minimum cluster size needed to correct for Type I errors. Simulations for ReHo analysis 

indicated that a minimum cluster size of 57 contiguous voxels was needed to accomplish a 

corrected alpha of p=.05. 

 

2.6 Analyses of correlations between sex hormones and LFF and ReHo 

To examine how circulating sex hormones correlated with LFF and ReHo measures, SPM 

ANOVA matrices were set up that examined the correlations between TM and NTM for 

luteinizing hormone, testosterone, and androstenedione, and between TW and NTW for 

luteinizing hormone, E1, and E2 for LFF and ReHo, respectively. Additional contrasts were 

not done based on the logic that female sex hormones were suppressed in TM and male sex 

hormones were suppressed in TW. Such comparisons between transgender persons with their 

natal sex would have unlikely yielded any significant effects. The respective combined 

cluster- and voxel-wise thresholds as in the main analyses were used to correct for multiple 

comparisons. Moreover, as in the main analysis, age was covaried for in all correlations.  

 

2.7 Hormonal assays 

Venous blood was obtained and serum was stored at "80˚C until hormones were analyzed in 

one batch. Luteinizing hormone (LH) was measured by electrochemiluminiscence 

immunoassay (ECLIA) (Modular, Roche Diagnostics, Mannheim, Germany). The inter-assay 

CV was 2.19%. Estradiol (E2), estrone (E1), androstenedione, cortisol, and testosterone were 

determined using liquid chromatography tandem mass spectrometry (AB Sciex 5500 triple-

quadrupole mass spectrometer; AB Sciex, Toronto Canada). The serum limit of quantification 

was 0.3 pg/mL for E2 and 0.5 pg/ml for E1, and the inter-assay CVs were 4% at 21 pg/mL for 
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E2 and 7.6% at 25 pg/mL for E1 (Fiers et al., 2012). Serum limit of quantification was 1 

ng/dL (35pmol/L) for T, and the interassay CV was 6.5% at 3 ng/dL.   

 

 

3. Results 

3.1 Low frequency fluctuations (ALFF) 

Transgender persons differed from their natal sex in low frequency fluctuations in the frontal 

lobe and the cerebellum. Specifically, relative to NTW, TM exhibited greater LFF in the left 

precentral gyrus (Fig 1, right panel) but smaller LFF in two areas of the cerebellum, the 

inferior semi lunar lobule and the pyramis. Conversely, TW showed greater LFF than NTM in 

parahippocampal gyrus but smaller LFF in the insula and postcentral gyrus. Looking at sex 

differences in non-transgender participants, similar to the finding in TM, natal women had 

larger LFF than natal men in the inferior semi-lunar lobule of the cerebellum (Table 2). There 

were no differences between TM and TW.  

 

********************Please insert Figure 1 about here please************* 

 

********************Please insert Table 2 about here please************* 

 

3.2 Regional homogeneity (ReHo) 

Mirroring the pattern observed in LFF, TM had smaller ReHo in the cerebellum (uvula) than 

NTW (Fig 2, top and bottom left). TM also differed from their gender identity by showing 

smaller ReHo than NTM in the auditory cortex, i.e., the transverse temporal gyrus. Similarly, 

TW differed from their gender identity by showing larger ReHo than NTW in the medial 

frontal gyrus. Consistent with the above findings, examination of sex differences revealed 

larger ReHo for natal women relative to natal men in the cerebellum (Fig 2, top and bottom 

left)  but smaller ReHo for natal women in the frontal lobe, namely the pre- and postcentral 

gyri and the inferior frontal gyrus (Table 2, Fig 1 left and right panels). In the direct 
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comparison of both transgender groups, TM had larger ReHo than TW in the middle occipital 

gyrus. 

 

********************Please insert Table 3 about here please************* 

********************Please insert Figure 2 about here please************* 

 

3.3 Analysis of circulating hormones with LFF and ReHo 

3.3.1 LFF 

The analysis of circulating hormone levels (testosterone, androstenedione, luteinizing 

hormone, E1 and E2) revealed some associations with LFF in a variety of regions. Both TM 

and NTM showed associations with androgens. In TM, testosterone and androstenedione 

were positively associated with greater LFF in the precentral gyrus (Fig 1 right panel). 

Moreover, androstenedione levels were negatively associated with LFF in the cerebellar uvula 

and pyramis. In NTM, lower testosterone was associated with larger LFF in superior frontal 

gyrus and cingulate gyrus while higher androstenedione levels were associated with larger 

LFF in lingual gyrus, middle occipital gyrus and uncus. In contrast to androgens, there were 

few associations for E1, E2, or LH in NTW or TW. Only E2 was significantly positively 

correlated with LFF in the inferior parietal lobule in NTW (Table 3).  

 

3.3.2 ReHo 

Regarding ReHo a strong effect of circulating androgens on the cerebellum became apparent 

in TM and NTM. In TM both testosterone and androstenedione were negatively correlated 

with regional homogeneity in the uvula and pyramis. In NTM this negative association was 

apparent for androstenedione in the cerebellar tonsil (Table 3, Fig 2, bottom right). In 

addition, NTM also showed a positive association with ReHo in the middle temporal gyrus. 

No associations emerged for TW or NTW.  

 

3.3.3 Examination of treatment duration on the observed effects 
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To examine whether treatment duration was associated with the observed effects in LFF and 

ReHo, we conducted an additional exploratory analysis using the cluster of significant 

correlation of androstenedione in the cerebellum in TM as a mask and checked for an effect 

of treatment duration (in months) as a covariate in this region with a more lenient threshold of 

p =.005. This analysis revealed a significant positive association with treatment in TM in the 

nodule of the cerebellum [k = 27, t = 4.00, xyz = 0 -58 -25]. There was no association with 

treatment in the precentral gyrus cluster.  

 

3.4 Exploratory analysis of psychiatric psychopathology 

To assess the extent to which the findings could have been driven by psychiatric comorbidity, 

we re-ran analyses but with the 5 participants (2 TM, 3 TW) with the most psychopathologies 

(2 or 3 comorbidities each) excluded. Effects remained stable albeit with somewhat smaller 

cluster sizes due to the reduced statistical power.   

 

4. Discussion 

This study investigated differences in local functional connectivity as measured by 

intensity (LFF) and synchronization of spontaneous fluctuations (ReHo) of brain activity in 

transgender persons. Based on limited available evidence (Kunzel et al., 2011; Rametti et al., 

2012), we had hypothesized a shift toward gender identity in resting-state activity in 

transgender persons on cross-sex hormone therapy. Three main findings pertinent to this 

study hypothesis emerged. First, consistent with predictions, TM differed from their natal sex 

(i.e., non-transgender women) in the cerebellum (ReHo/LFF) and the frontal cortex (LFF), 

which was supported by correlations with circulating androgens in these regions. Second, the 

observed patterns in TM were consistent with sex differences between natal men and natal 

women in resting-state activity in the cerebellum and the frontal lobe. However, third and 

contrary to the hypothesis, TM and TW also differed from their gender identity in ReHo in 

the medial frontal lobe and primary auditory cortex.  
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The main finding emerging from this study was an association of androgens with 

resting-state activity in the cerebellum in TM paralleled by sex differences in these regions 

between non-transgender men and non-transgender women. LFF and ReHo were both larger 

in this region in non-transgender women relative to TM. Moreover, the negative correlation 

of androgens in TM in large areas of the cerebellum approximated resting-state activity of 

natal men. The cerebellum is mostly known for its role in motor control and motor learning 

although its putative role in cognitive processes is also slowly being acknowledged (Van 

Overwalle et al., 2014). Prior reports have indicated a negative association of sex 

chromosome number but not sex hormone levels with cerebellar volume (Lentini et al., 2012). 

The precise role of sex hormones in cerebellar development is currently under debate, 

recognizing on the one hand the role of the cerebellum as a target for estrogen (and 

progesterone) action (Hedges et al., 2012), but also suggesting little change with sex 

hormones in adulthood (Dean and McCarthy, 2008). In support of the latter hypothesis (Dean 

and McCarthy, 2008), we found no correlations of estrogens or LH in NTW or TW in the 

cerebellum. By contrast, androgens were negatively associated with resting-state activity in 

TM, with some correlations also being visible in NTM. Of note, although evidence linking 

androgens to the cerebellum is currently very limited, some correlational evidence links 

testosterone with increase in fine motor skills in high school students (Wegner et al., 2014), 

while in two cases cerebellar ataxia has been found in males with hypogonadism (Erdemoglu 

et al., 2000). Sadly, our data preclude a conclusion that differences in resting-state 

fluctuations in the brain between NTW and TM were due to the hormone treatment, given the 

lack of pre-scan data. However, the negative correlations in TM, i.e., smaller androstenedione 

levels in TM would resemble the resting-state patterns of natal women, would suggest 

sensitivity to activational effects of androgens in the cerebellum in adulthood. This is further 

supported by a sexually-dimorphic pattern between natal men and natal women in LFF and 

ReHo in the cerebellum in the present data.   

  Regional specificity in other brain areas also indicated differences between 

transgender persons and their natal sex. For example, TW differed from NTM in LFF in 



Mueller et al. Resting-state MRI in transgender persons!

! "$!

structures of the medial temporal lobe, namely the parahippocampus. A body of work is 

slowly emerging that demonstrates associations between the parahippocampus and androgens 

in a variety of contexts. Studies in both healthy adults (Lentini et al., 2012) and boys with 

androgen excess (Mueller et al., 2011) have found a positive association between androgens 

and parahippocampal gyrus volume. Moreover, parahippocampal activity increased after 

sublingual testosterone administration in natal women during a spatial orientation task 

(Pintzka et al., 2016). Differences in LFF at-rest in this region might indicate, as in the 

cerebellum, regional sensitivity to activational effects of androgens that may further influence 

underlying cognitive-affective function.  

A final area that deserves attention is the frontal cortex. Sexual dimorphism in the 

frontal cortex has been observed in a variety of settings. For example, inferior frontal gyrus 

volume (IFG, BA44/45) is modulated by the androgen receptor (AR) gene in women 

(Raznahan et al., 2010), IFG is larger in women than in men (Ruigrok et al., 2014), and is an 

area that displays sex differences in activation patterns in prefrontally-mediated tasks such as 

verbal fluency (Gauthier et al., 2009). In the present study, natal men relative to natal women 

and transgender men differed in resting-state measures in IFG thus being consistent with this 

prior work. Moreover, resting-state activity between men and women also differed in the left 

precentral gyrus (BA6), an area that has been found larger in men than in women (Ruigrok et 

al., 2014). Interestingly, whereas resting activity of the IFG differed between transgender men 

and their gender identity, in the precentral gyrus, transgender men differed from natal women 

in LFF, an effect that was supported by positive correlations with androgens in this structure. 

Taken together, the precise meaning of group differences in resting-state MRI remains to be 

determined. However, the present findings are consistent with theories that propose that 

differences in temporal dynamics of intrinsic brain activity may organise behaviour (Biswal et 

al., 2010; Fox et al., 2005) and the notion of sexual dimorphism in functional connectivity 

between distant brain regions (Biswal et al., 2010). Importantly, in the present context, they 

show that such intrinsic activity is sensitive to variation in gonadal hormones.  
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 The present data extend a slowly mounting research agenda in transgender persons 

(e.g., Smith et al., 2015) and the search for a biological basis of gender identity (Saraswat et 

al., 2015). Importantly, the present study extends urgently needed work to examine the long-

term effects of cross-sex hormone therapy in transgender persons. While cross-sectional data 

indicate potential long-term health changes (osteoporosis, thromboembolic, or cardiovascular 

events) during hormonal treatment (Wierckx et al., 2012), evidence of hormonal therapy on 

neuroanatomy is scarce. The little available evidence to date indicates alterations in 

ventricular volume and cortical thickness in various areas of the cortex (Zubiaurre-Elorza et 

al., 2014), increased diffusion in white matter structural connectivity (Rametti et al., 2012) 

and reduction of the availability of neurotransmitters (Fuss et al., 2015) with cross-sex 

hormone therapy. Whereas this prior literature indicated differences on structural anatomy 

with cross-sex hormone therapy, the present data revealed differences during spontaneous 

synchronized neural activity at-rest. Future work may need to examine to what extent these 

differences can characterize performance of task based neural activity. 

Some important limitations require discussion. First, we acknowledge the small 

sample size of participants in the study. However, using a combination of a voxel-wise and 

cluster-wise correction to control for multiple comparisons at the whole-brain level, we were 

nonetheless able to detect a variety of significant group differences indicating sufficient 

sensitivity of our data for the variables of interest. Yet, although participants were matched 

for education level and ethnicity (all were of Caucasian ethnicity), the representativeness of 

the findings have to be taken with caution given the relatively small number of comparison 

participants and the potential bias of participants willing to undergo an MRI study. Second, 

the present study examined resting-state transgender persons on hormonal treatment already 

living in their gender identity. Given that we were not able to acquire pre-hormonal treatment 

scans, we cannot make any strong inferences with regards to the causal nature of the 

hormonal treatment vs. inherent group differences. However, we hope that inclusion of 

correlations with circulating hormone levels mitigates this fact and provides valuable 

information on the possible effect of cross-sex hormone treatment on spontaneous brain 
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activity. Additionally, although the present study utilized state-of-the-art hormonal analyses 

providing great sensitivity with regards to hormonal assays, hormonal levels in the blood may 

not necessarily reflect hormonal levels in the brain. Given these limitations, the data are best 

seen in a larger context of converging studies examining the impact of sex hormones on brain 

structure and function beyond those of transgender persons such as endocrine conditions 

(Lentini et al., 2012; Merke et al., 2003; Mueller et al., 2009; Mueller et al., 2011; 

Skakkebaek et al., 2014) or general sex differences (Raznahan et al., 2010; Ruigrok et al., 

2014). Finally, while much prior MRI work has invested effort to exclude transgender 

persons with psychiatric comorbidity, we decided to include all participants based on the 

notion that such a sample is more representative given a 70% prevalence rate of a current or 

lifetime psychiatric diagnosis in a large pan-European sample of individuals with gender 

dysphoria (Heylens et al., 2014). While some contribution of psychiatric comorbidity to the 

present findings cannot be completely ruled out, presence of psychopathology was relatively 

low for a given diagnosis. This was based on the fact that the greatest contribution of 

psychiatric comorbidity was driven by 5 individuals (2 TM and 3 TW) who had at least 2 or 3 

comorbid affective disorders each (depression, dysthymia, generalized anxiety disorder, 

social phobia, panic disorder, agoraphobia). Moreover, after excluding these 5 individuals, 

effects remained stable. This would indicate that psychopathology did not, or at least very 

little, influence our findings.    

 

5. Conclusions 

In summary, to our knowledge, this is the first study to characterize resting-state activity and 

local functional connectivity in transgender persons. The main finding of this study was 

differences between TM and NTW in resting-state activity and associations of this activity 

with circulating androgens in the cerebellum and frontal cortex. The present data indicate that 

intrinsic brain activity is related to current sex steroid fluctuations. Future work will need to 

examine whether these perturbations in resting-state activity manifest in behavioural changes 

subserved by the affected neurocircuitry.  
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Captions 

 

Table 1. Demographic information as well age psychiatric comorbidity and hormonal levels 

for non-transgender men (NTM), non-transgender women (NTW), transgender men (TM) and 

transgender women (TW).   

 

Table 2. Displays the significant group differences in low frequency fluctuations (ALFF) and 

regional homogeneity (ReHo). Only regions are listed that survived correction for multiple 

comparison, p<.05, corrected. Several structures are reported if peaks within a cluster were 

more than 8mm apart. Coordinates are MNI coordinates. ISLL – Inferior Semi-Lunar Lobule 

  

Table 3. Displays the results from the correlational analysis, for each group separately, for 

ALFF and ReHo for testosterone (T), androstenedione (A), estrogen 1 (E1), estrogen 2(E2), 

and luteinizing hormone (LH). “+” indicates positive correlation and “-“ indicates negative 

correlation for non-transgender men (NTM), non-transgender women (NTW), transgender 

men (TM) and transgender women (TW). Only regions that survived correction for multiple 

comparisons are listed (p<.05, corrected). Coordinates are MNI coordinates. Several 

structures are reported if peaks within a cluster were more than 8mm apart. 

 

Figure 1. Left panel. Figure illustrates larger LFF in NTM relative to TM (in green) and 

larger ReHo in NTM relative to NTW (in red) in the right inferior frontal gyrus (IFG). The 

yellow color illustrates the overlap between the two conditions suggesting that TM are more 

similar to their natal sex than their gender identity in this region. Right panel. This figure 

shows the larger ReHo activity in NTM relative to NTW (in green), the larger LFF in TM 

relative to NTW (in red) and the significant positive correlation of LFF activity with 

testosterone levels in TM (in blue) in the left precentral gyrus. This figure illustrates that TM 

resemble their gender identity more than their natal sex in this region, an effect that correlated 

with testosterone levels in this group. The upper black circle shows the overlap (in pink) 
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indicating a significant correlation in the same region where TM differ from NTW. The lower 

circle illustrates that the difference between NTM and NTW (in green), between TM and 

NTW (in red) and the correlation of LFF with testosterone in TM (in blue) are all located 

within the same vicinity of the precentral gyrus with some overlap (pink and yellow colors). 

A = anterior, P = posterior, L = left, R = right, S = superior, I = inferior. Image was created 

with MRIcron (http://people.cas.sc.edu/rorden/mricron/index.html) using SPM maps with a 

voxelwise threshold set at p=.001. 

 

Figure 2. Top. Grey circles on axial slices illustrate the overlap (in grey) in the left and right 

cerebellum among the negative correlation of ReHo with androstenedione levels in TM (in 

green), the greater ReHo activity in NTW relative to TM (in blue), and the greater ReHo in 

NTW relative to NTM (in red). This figure illustrates that TM are more similar to their gender 

identity than their natal sex in ReHo activity, an effect that correlates with androstenedione 

levels in this cohort. Pink color denotes the overlap between red and blue and turquoise the 

overlap between green and blue. Bottom left. 3D rendered image of the same effect 

illustrated on the top. Bottom right. Correlation between the androstenedione levels in TM 

and extracted parameter estimates for ReHo activity (10mm sphere around MNI xyz [-12 -76 

-23], cf. Table 3). Correlation stays significant if point at the top left is removed. Brain 

images were created with MRIcron and SPM maps with a voxelwise threshold of p=.001. A = 

anterior, P= posterior, L=left, R=right, S = superior, I = inferior. Numbers at the top indicate z 

coordinates.  
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 NTM  
(N= 21) 

NTW 
(N=20) 

TM 
(N=19) 

TW 
(N=19) 

Signif. 

Age in years (Mean/SD) 32.57 (9.88) 34.50 (11.20) 36.84 (8.59) 40.53 (8.55) TW > 
NTM 

Education  
(number of years/SD) 

16.15 (2.21) 16.25 (2.55) 14.11 (2.99) 14.29 (2.87) ns 

Treatment duration 
(months/SD) 

  84.52 (49.49) 81.56 (66.17)     ns 

      
Psychiatric comorbidity 
(MINI): N 

     

Depressive episode    2 2  
Dysthymia - - 4 2  
Hypomania - - 1 -  
Panic disorder - - 2 -  
Agoraphobia - 1 1 3  
Social phobia - - 1 3  
OCDa - - 1 -  
PTSDb - - - 2  
Alcohol/drug abuse  - - 1 -  
Generalized anxiety - - - 3  
Pain disorder - - 1 -  
      
Hormonal levels      
Testosterone (ng/dL) 456.37 

(184.46) 
27.24  

(10.03) 
841.37 

(627.25) 
14.47  
(5.25) 

 

Androstenedione (ng/dL) 60.62  
(20.10) 

80.79 
 (36.29) 

104.83  
(47.92) 

53.73 
 (19.13) 

 

E1 (pg/mL) 31.80 
 (21.18) 

78.45 
 (63.12) 

59.54  
(21.96) 

242.51 
 (423.76) 

 

E2 (pg/mL) 20.26 
 (8.07) 

88.46 
 (96.18) 

36.67  
(16.55) 

99.76 
 (122.65) 

 

Luteinizing hormone (LH) 
(mU/mL) 

5.57 
 (2.26) 

12.61 
 (13.70) 

5.65  
(8.59) 

28.50 
 (15.96) 

 

Cortisol (µg/dL) 
 

9.36 
 (3.91) 

7.79  
(3.34) 

7.68  
(3.27) 

8.79 
 (3.63) 

 

aObsessive compulsive disorder 
bPost-traumatic stress disorder 
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!
Effect Side Region Brodmann 

Area 
Cluster size (K) T value Coordinates 

LFF       
TW       >   NTM L Parahippocampal Gyrus 35 54 4.82 -15 -16 -29 
TM       >   NTW L Precentral Gyrus 6 75 4.14 -24 -10 70 
NTW    >      TM L Cerebellum – ISLL 

Cerebellum - Tuber 
- 614 5.89 

5.56 
-45 -79 -35 
-33 -76 -29 

 R Cerebellum - Pyramis - 61 3.89 33 -76 -32 
NTW    >   NTM L 

L 
R 

Cerebellum – ISLL 
Lingual Gyrus 
Cerebellum – ISLL 

- 
17 
- 

907 5.73 
5.60 
5.25 

-45 -79 -35 
-18 -97 -17 
3 -67 -41 

NTM    >      TW L Insula 13 47 4.22 -48 -19 22 
 R Postcentral Gyrus 3 78 3.95 63 -10 25 
NTM    >      TM 
 

R Inferior Frontal Gyrus 44 65 4.57 60 17 13 

       
ReHo       
TW       >   NTW L Medial Frontal Gyrus 9 97 4.25 -15 38 22 
TM       >      TW L Middle Occipital Gyrus 37 113 4.01 -36 -64 1 
NTW    >   NTM L 

L/R 
R 

Cerebellum – Tuber 
Cerebellum – Tonsil 
Cerebellum - ISLL 

- 1406 5.29 
4.98 
4.96 

-24 -94 -32 
0 -52 -44 
3 -67 -44 

NTW    >      TM         L 
L 

Cerebellum – Uvula 
Cerebellum – Pyramis 

- 1292 6.29 
5.92 

-24 -94 -29 
-30 -82 -32 

NTM    >   NTW L Precentral Gyrus 6 120 5.04 -36 -7 61 
 R Inferior Frontal Gyrus 45 73 4.47 57 20 19 
 R Postcentral Gyrus 3 63 4.27 63 -10 22 
NTM    >     TM R Transverse Temporal Gyrus 42 74 4.60 66 -16 13 

!
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Hormone and 
directionality 

Group Hemis-
phere 

Region BA Cluster Size 
(k) 

T Value Coordinates 

ALFF        
T +  TM L Precentral gyrus 6 101 9.39 -27 -16 55 
T - NTM R Superior frontal gyrus 10 82 5.37 18 62 7 
  R Cingulate gyrus 31 74 5.11 21 -43 40 
A +  NTM R Lingual gyrus 19 137 7.08 21 -67 1 
  R Uncus 28 78 6.93 18 2 -32 
  L Middle occipital gyrus 18 211 6.81 -30 -82 -2 
 TM L Precentral gyrus 6 91 7.49 -27 -16 55 
  R Rectal gyrus 11 64 6.28 9 29 -26 
A - TM R Cerebellum - Uvula  42a 4.16 36 -73 -26 
  L Cerebellum - Pyramis  39a 3.96 -12 -82 -29 
E1   None     
E2 + NTW L Inferior parietal lobule 40 65 4.91 -60 -37 37 
LH TM L Postcentral gyrus 3 47 4.98 -33 -34 49 
        
REHO        
T -  TM L 

L 
Cerebellum – Uvula 
Cerebellum - Tuber 

 645 6.62 
5.72 

-9 -61 -26 
-54 -67 -26 

A + NTM R Middle temporal gyrus  61 4.10 39 -68 22 
A - NTM L Cerbellum - Tonsil  61 4.07 -21 -34 -35 
 TM L Cerebellum - Pyramis  1515 5.62 -12 -76 -23 
E1   None     
E2   None     
LH   None     
a As for the main analyses, a combined voxel and clusterwise threshold was used to account for multiple comparisons (i.e., minimum 47 voxels for the ALFF 
analyses for p<.05, corrected). However, because the two cerebellar findings may be of interest in light of explaining some of the main findings, they have 
also been reported here although their conventional p-value would amount to p=.08, and p=.11 after correction, respectively. 
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