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Chapter 1

Introduction

The well-known mantra association is not causation has led to the widespread
belief that one can only infer causal relations from randomized trials, as
they are often considered the gold standard for causal inference.

For example, observational studies in the 1950s reporting associations be-
tween smoking and lung cancer have long been criticized for not providing
decisive evidence on the supposed causal effect of smoking on lung cancer,
because of the simple fact that smokers and non-smokers are different not
only in their smoking behavior, but also in many other respects. Both the
tobacco industry and some prominent statisticians strongly supported the
hypothesis that this association could be explained by a genetic predispo-
sition to both lung cancer and smoking. Although the impact of potential
confounding factors, such as a genetic predisposition, is eliminated by de-
sign in randomized trials, these designs are often not feasible because of
ethical concerns.

Over the last few decades, methodological advances in the causal infer-
ence literature have successfully demonstrated that appropriately analyzed
data from observational studies may, nonetheless, shed light on causal
enquiries. In particular, the potential outcomes framework (Splawa-Neyman
et al., 1990; Rubin, 1974) has provided a formal language for clarifying
and communicating sufficient conditions under which well-defined causal
effects can be estimated from the data at hand.

This framework has proven especially useful for the analysis of data
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from studies that aim to open the ‘black box’ of causality in order to deepen
our understanding of the precise mechanisms behind established cause-
effect relations, as witnessed by the widespread usage of mediation analyses.
This statistical tool, which is the main topic of this thesis, aims to unravel dif-
ferent causal pathways by separating the component effect that acts through
a given intermediate variable or so-called mediator – i.e. an indirect effect –
from the remaining direct effect and by quantifying each of their respective
contributions to the overall causal effect. The improved understanding into
underlying processes that results from such analyses may not only be of
pure scientific or etiologic interest, but may also inform policymakers as to
which type of intervention or reform is most effective.

Below, we first list three empirical studies that focused on better under-
standing of the causal mechanisms behind the effect of a certain intervention
or exposure. Each of these examples will be discussed and/or analyzed
in more detail in later chapters of this thesis. Next, we briefly introduce
the central notion of potential or counterfactual outcomes which naturally
leads to formal yet intuitive definitions of the causal effects of interest and
enables clearly articulating causal assumptions that are required for obtaining
unbiased and valid estimates of these effects from observed data. We then
provide some intuition into the main challenges in mediation analysis and
give a short overview of the contributions of this thesis in terms of dealing
with these challenges, followed by a more detailed outline of the subsequent
chapters of this thesis.

1.1 Motivating examples

1.1.1 The Job Search Intervention Study (JOBS II)

The JOBS II field experiment (Vinokur et al., 1995), an often cited empirical
mediation example, was designed to assess the effectiveness of a theory-
driven job training intervention that aimed to both increase reemployment
and reduce depressive symptoms in unemployed workers. 1,801 subjects
were randomly assigned to either participate in several sessions of job
search skills workshops that also focused on enhancing one’s sense of

2
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mastery or self-efficacy and inoculation against setbacks after losing one’s
job (treatment group) or receive a booklet with job search tips (control
group).

Vinokur and Schul (1997) conducted a detailed analysis of potential
mediating mechanisms after beneficial effects on both reemployment and
mental health had been established in earlier analyses (Vinokur et al., 1995).
One mediation question of interest was whether workshop participation
leads to reduction in depressive symptoms (at two months follow-up) by
increasing chances of getting reemployed (at two months follow-up).

1.1.2 The Interdisciplinary Project for the Optimization of Separation
trajectories

The Interdisciplinary Project for the Optimization of Separation trajectories
(Ghent University and Catholic University of Louvain, 2010) was a large-
scale survey study which involved the recruitment of individuals who
divorced between March 2008 and March 2009 in four major courts in
Flanders. The main aim of this project was to improve the quality of life
in families during and after the divorce by translating research findings
into practical guidelines for separation specialists (such as lawyers, judges,
psychologists, welfare workers...) and by promoting evidence-based policy.

A subsample of 385 individuals responded to a battery of questionnaires
related to romantic relationship characteristics, such as adult attachment
style, and break-up characteristics, such as break-up initiator status, expe-
riencing negative affectivity and engaging in unwanted pursuit behaviors
towards the ex-partner (De Smet et al., 2012). Respondents were asked
to imagine their former partner as well as possible and to remember how
they generally felt in their relationship before the breakup when completing
the attachment style questionnaire. The mediation hypothesis of interest
concerned the question whether and to what extent the level of emotional
distress or negative affectivity experienced during the breakup mediates the
effect of attachment style towards the ex-partner before the breakup exerts
on the potential display of unwanted pursuit behaviors after the breakup
(Loeys et al., 2013).

3



Chapter 1. Introduction

1
1.1.3 The Large Analysis and Review of European Housing and Health

Status project

The last motivating example also concerns a survey study. The Large Anal-
ysis and Review of European Housing and Health Status (LARES) project
conducted by the World Health Organization (Shenassa et al., 2007) col-
lected survey data in the winter and spring of 2002/2003 from 5,882 adult
respondents from 2,983 households in 8 European cities. Baseline mea-
surements were available on both respondent characteristics (age, gender,
marital status, education level, employment, smoking and environmental
tobacco smoke at home) and household characteristics (ownership, size,
tenure, crowding, ventilation, natural light, heating and city of residence).

One of the mediation questions of interest was whether and to what
extent the effect of living in damp and moldy conditions on the risk of
depression is mediated by respondent’s perceived control over one’s home.

1.2 Counterfactual outcomes

The counterfactual or potential outcomes framework appeals to human
intuition, because it defines causal effects by comparing an outcome of inter-
est in the population under different hypothetical scenarios or interventions.
For instance, in this framework, the causal effect of smoking on lung cancer
could be defined as the difference in lung cancer incidence if the entire
population were to smoke versus no-one would smoke.

This ‘what if’ type of reasoning has been formalized by the use of so-
called counterfactual or potential outcomes. For instance, when A denotes the
exposure or treatment of interest and Y the outcome of interest, then Y(a)
denotes the value of the outcome that would have been observed had A
– possibly contrary to the fact – been set to level a. This notation enables
defining total causal effects as E{Y(a)−Y(a′)} where a and a′ correspond to
meaningful choices for active and reference (baseline) levels of treatment
or exposure, respectively.1 For expositional simplicity, we will restrict our

1This is essentially identical to the interventional contrast E(Y|do(A = a)) −
E(Y|do(A = a′)) in terms of Pearl’s do-operator.

4
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current presentation to binary treatments (a = 1 and a′ = 0), although
definitions and results extend to multicategorical or continuous treatments.
The population-average effect of smoking A – where A = 1 indicates
smoking status – on lung cancer Y would thus be defined as E{Y(1) −
Y(0)}.

1.3 Natural direct and indirect effects

Mediation analysis aims to decompose the average treatment or exposure
effect, E{Y(1)−Y(0)}, into the components that respectively capture the
treatment’s indirect effect on the outcome along an intermediate variable of
interest M, and the treatment’s remaining direct effect via potential other
mechanisms.

Robins and Greenland (1992) laid the foundations for such decompo-
sition by introducing nested counterfactuals Y(a, M(a′)), which denote the
value of the outcome that would have been observed had – possibly con-
trary to the fact – A been set to level a and M to M(a′), the value that would
have been observed for the mediator had A been set to a′. Using such
nested counterfactuals, one can now isolate and quantify part of the treat-
ment effect that is transmitted through the mediator M by leaving treatment
unchanged at A = 1, but changing the counterfactual intermediate outcome
M(1) to M(0), the value it would have taken under no treatment, leading
to the definition of the so-called total indirect effect

E{Y(1, M(1))−Y(1, M(0))}.

Its complement, the pure direct effect

E{Y(1, M(0))−Y(0, M(0))},

then captures the intuitive notion of blocking the treatment’s effect on
the mediator by keeping the latter fixed at whatever value it would have
attained under no treatment.

For instance, in the motivating example in section 1.1.3, the aim is to

5
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decompose the total exposure effect of mold on mental health, which com-
pares the average risk of depression in the population if everyone were to
be exposed to mold versus no-one were exposed. The total indirect effect
then captures the average change in risk of depression in the population if
everyone’s perception of control were to be changed from what it would
be under exposure to mold to what it would be under no exposure. The
pure direct effect, on the other hand, captures the average change in risk
of depression in the population if we were to change everyone’s exposure
status from being unexposed to being exposed, while leaving unchanged
everyone’s perceived control at the level that it would be under no exposure.

A primary appeal of these – and similar – effect estimands is that, as
opposed to definitions in the linear structural equation modeling tradition,
they are model-free: they combine to produce the total effect, irrespective of
the scale of interest or the presence of interactions or nonlinearities, under
the composition assumption that Y(a, M(a)) = Y(a). For instance, although
the above effects are expressed in terms of mean differences, the total effect
risk ratio of a binary outcome could similarly be expressed as the product
of the pure direct effect risk ratio and the total indirect effect risk ratio

P{Y(1) = 1}
P{Y(0) = 1} =

P{Y(1, M(0)) = 1}
P{Y(0, M(0)) = 1}

P{Y(1, M(1)) = 1}
P{Y(1, M(0)) = 1} .

The expectation of nested counterfactuals can be modelled using a so-
called natural effect model (Lange et al., 2012, 2014; Loeys et al., 2013; Steen
et al., 2016a,b; Vansteelandt et al., 2012a), e.g.

E{Y(a, M(a′))} = g−1{β0 + β1a + β2a′ + β3aa′},

where g(·) is a known link function. If g(·) is the identity link, β1 captures
the pure direct effect and β2 + β3 captures the total indirect effect.2 By dif-
ferently apportioning the interaction term β3, an alternative decomposition

2Similary, effect estimates on the risk and odds ratio scale can be obtained by choosing
g(·) to represent the log and logit link function, respectively.
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can be obtained in terms of the total direct effect

E{Y(1, M(1))−Y(0, M(1))},

as captured by β1 + β3 and the pure indirect effect

E{Y(0, M(1))−Y(0, M(0))},

as captured by β2. In accordance with VanderWeele (2013), any of these two
decompositions can thus be further refined leading to the same unique three-
way decomposition into the pure direct effect β1, the pure indirect effect β2,
and a mediated interactive effect β3. Pearl (2001) later adopted the same
definitions but named these parameters natural (rather than pure) direct
and indirect effects to refer to the fact that pure direct effects, as opposed to
controlled direct effects E{Y(1, m)−Y(0, m)}, allow for natural variation in
the mediator. That is, pure direct effects reflect the effect of treatment upon
fixing the mediator at values that would, for each individual, have naturally
occurred under no treatment, rather than at some predetermined level m
(uniformly across the population). In the remainder of this thesis, we will
adopt Pearl’s terminology of ‘natural’ effects to refer to any of the above
instances.

1.4 Challenges in mediation analysis

1.4.1 Causal assumptions

Adopting this counterfactual notation naturally leads to framing causal
inference as a missing data problem (Holland, 1986). That is, for each subject
i, only one counterfactual outcome, i.e. Yi = Yi(Ai) = Yi(Ai, Mi(Ai)), is
observed. In order to infer causal effects from observational data, we will
thus inevitably need to make some causal assumptions.

Although such assumptions will be discussed more formally and in more
detail in the next chapters, an important difference between inferring a total
causal effect (in point exposure studies) and, subsequently, learning about
its component effects – such as natural direct and indirect effects – merits
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1
attention here. While the former mainly requires that common causes of
treatment or exposure and outcome are adjusted for by statistical methods
or eliminated by experimental design, the latter, in addition, requires to
adjust for common causes of mediator and outcome.

Moreover, additional complexities arise when such mediator-outcome
confounders are themselves affected by treatment, because such variables
are then simultaneously a confounder and a mediator on the causal path-
ways that we aim to disentangle. For this reason, causal assumptions
generally get more complicated in mediation settings.

For instance, in the motivating example in section 1.1.3, the relation
between perceived control over one’s household and mental health may
be confounded by many factors, such as age, education level, ventilation
in the house, etc... Such potential common causes thus need to be taken
into account in statistical analyses. However, some of these potential con-
founders, such as physical health, are likely also affected by exposure to
mold (Kaufman, 2010).

As will be discussed in more detail later, the presence of such so-called
intermediate confounders generally prevents us from obtaining valid estimates
of natural direct and indirect effects with respect to the mediator of interest.
Nonetheless, in cases with multiple sequential mediators, alternative de-
compositions of the total effect may still be obtained from the data at hand,
in order to shed light on underlying causal mechanisms.

1.4.2 Modeling assumptions

It thus seems that answering mediation questions often, if not always,
requires some form of statistical adjustment for confounders. In most
applications, the set of confounders will be high-dimensional and will
usually consist of a mix of discrete and continuous covariates. To deal with
the curse of dimensionality, we will thus necessarily need to rely on some
modeling assumptions, preferably as few as possible. A further challenge is
that the risk of making incorrect modeling assumptions increases as more
and more confounders and mediators enter the picture. Although this
challenge is not unique to mediation analysis, semi-parametric approaches,
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which allow to relax certain modeling assumptions, have only recently been
adapted to this setting (Tchetgen Tchetgen and Shpitser, 2012, 2014; Zheng
and van der Laan, 2012).

1.5 Main contributions

In this thesis, we aim to contribute to the fast-growing field of mediation
analysis by – at least partially – addressing each of the aforementioned
challenges.

First, we give a detailed and up-to-date review of causal assumptions
that permit to identify – i.e. obtain consistent estimates of – component or
path-specific effects of interest from observed data. Recently, significant
advances have been made towards a complete characterization of causal
scenarios that permit non-parametric identification of natural (and more
generally defined path-specific) effects, thus providing both sufficient and
necessary conditions (Shpitser, 2013). However, to the best of our knowl-
edge, a systematic comparison of this recent work on complete conditions
and earlier work on sufficient conditions (Pearl, 2001) is currently lacking.
We contribute to the field by providing such a detailed comparison. In
doing so, we aim to offer the reader some deeper intuitive understanding
of particular obstacles that may prevent us from making progress in our
quest to learn about causal mechanisms. Such improved understanding of
necessary causal assumptions – often encoded in graphical models – may
‘aid [applied researchers] in planning of data collection and analysis, in
communication of results, and in avoiding subtle pitfalls of confounder
selection’ (Greenland et al., 1999). Importantly, we further reflect upon the
specific implications of the completeness of this recent result in terms of
complementary identification strategies that rely on so-called mediating
instruments. Moreover, we integrate these novel insights with earlier con-
ceptual considerations on the controversial nature of certain key identifying
assumptions (Robins and Richardson, 2010).

Second, we provide practical solutions for mediation analysis tailored
to the needs of applied researchers. In doing so, we build on a recently
proposed unified and flexible modeling framework for mediation analysis
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(Lange et al., 2012, 2014; Loeys et al., 2013; Vansteelandt et al., 2012b) that,
as compared to other modeling approaches, has the potential to both con-
siderably simplify result reporting and hypothesis testing, and to enable
straightforward implementations in standard statistical software. A main
contribution of this thesis, in this respect, is the development of a user-
friendly software package that implements two proposed semi-parametric
estimators within this modeling framework (Steen et al., 2016b), each of
which reduces modeling demands by allowing to refrain from modeling
certain aspects of the observed data distribution. Importantly, this package
handles a larger class of parametric models for mediator and outcome than
alternative software applications for modern mediation analysis that rely
on closed-form expressions (Valeri and VanderWeele, 2013), and is less
computer-intensive as compared to implementations that rely on Monte
Carlo integration (Imai et al., 2010a; Tingley et al., 2014a). The latter asset is,
in part, due to the development and implementation of robust sandwich
variance estimators, which permit to avoid reliance on bootstrap procedures.
Finally, we further extend this natural effect modeling framework, along with
semi-parametric estimators, to accommodate more complex mediation set-
tings with multiple, causally ordered mediators (Steen et al., 2016a). In
particular, we demonstrate that such an extension both enables a more
comprehensive assessment of underlying mechanisms and their potential
interactions, as compared to existing analytical approaches (VanderWeele
and Vansteelandt, 2013), and reduces modeling demands – and thus risk of
model misspecification bias – as compared to fully parametric approaches
(e.g. Daniel et al., 2015). Moreover, it offers a more principled solution
to cope with increasing complexity in the face of multiple mediators. In
addition, we propose a sufficient criterion for identification of (k + 1)-way
decompositions in the presence of k sequential mediators. This criterion
extends previous work, as it boils down to sequential application of an
existing graphical identification criterion for adjustment for a common set
of covariates (Shpitser et al., 2010; Shpitser and VanderWeele, 2011), leading
to a standard and generally applicable identification result. Its simplicity
can be considered to induce a trade-off between general applicability and
reduced identification power.
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1.6 Outline of this thesis

In the next two chapters, we mainly focus on causal assumptions.

In chapter 2, we first introduce the necessary theoretical background on
graphical causal models, which are commonly used to visually encode and
communicate the causal assumptions that serve to provide certain statistical
parameters a causal interpretation. Moreover, we review some important
algorithms that have mainly been developed within the field of artificial in-
telligence, but that can be widely applied in any field of empirical research
that attempts to address causal queries. Their importance follows from
the fact that, whereas often sufficient conditions are articulated, these algo-
rithms enable to deduce conditions that are both sufficient and necessary for
identifying total causal effects from available observed data, thus providing
a (more) complete characterization of hypothetical causal scenarios that
permit identification. As discussed in more detail in this chapter, this is of
particular relevance for graphical causal models that considerably weaken
certain causal assumptions by allowing for the presence of unobserved
common causes.

In chapter 3, we provide intuition into the distinct and controversial
nature of some of the identifying assumptions for mediation analysis. In
particular, we revisit earlier assumptions for identifying natural direct and
indirect effects (Pearl, 2001) in the light of recent developments (Shpitser,
2013) that build on the insights and algorithms discussed in chapter 2.
Importantly, we point out that these recent developments also lead to novel
insights that are in line with and help to frame some recent conceptual
formulations that were inspired by the debate about the controversial nature
of the targeted effects.

In the remaining chapters, we shift focus to flexible modeling and esti-
mation of the causal effects of interest. In chapter 4, we discuss estimation
of so-called natural effect models (Lange et al., 2012, 2014; Loeys et al., 2013;
Vansteelandt et al., 2012b), which were recently introduced in the literature
to offer a simple yet flexible alternative to other state-of-the-art modeling
approaches that, from the perspective of an applied researcher, may either
complicate obtaining interpretable results or hypothesis testing (Imai et al.,
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2010a) or pose a barrier to routine application because of their relative com-
plexity (Tchetgen Tchetgen and Shpitser, 2011; van der Laan and Petersen,
2008). In this chapter, we moreover give a detailed discussion of the features
of medflex, our free, open-source software package for R, which implements
two proposed semi-parametric estimators within this modeling framework.

More general methods for mediation analysis are provided in chap-
ter 5, in which we extend the natural effect modeling framework to settings
with multiple sequential mediators. Not only does such an extension offer
feasible alternative decompositions in settings in which the mediator of
interest is subject to intermediate confounding, it also enables parsimo-
nious modeling, which may be advocated given the multitude of possible
decompositions in the presence of an increasing number of mediators.

We conclude in chapter 6 with some further reflections and challenges.

Individual contributions

The major parts of this dissertation are based on two accepted papers, one submit-

ted handbook chapter and a software package. Although the aim is to present a

coherent and well-structured overview of my research, inevitably, by merging these

papers and chapters, which may not all have been presented in chronological order

of writing, some repetition and loss of continuity may arise. In this subsection, a

chronological overview is presented of the work in this thesis, along with a list of

my individual contributions to each of the chapters, excluding the introduction

and discussion (hence the switch in narrative voice).

Chapter 4 and chapter 5 can be considered as a product of a close collaboration

with Stijn Vansteelandt, Tom Loeys and Beatrijs Moerkerke. I have developed

and documented the medflex package, which implements the methods in Lange

et al. (2012) and Vansteelandt et al. (2012b) and is currently available3 from CRAN:

https://cran.r-project.org/package=medflex. In order to ensure both com-

patibility with future extensions of the package and optimal user experience, certain

crucial choices had to be made, mainly with respect to the core structure of the

package. These choices have greatly benefited from close consultation with S.

Vansteelandt, T. Loeys and B. Moerkerke. Valuable input, especially concerning the

3Up-to-date development releases of the package are available from https://github.
com/jmpsteen/medflex/.
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neWeight function, has also been provided by Theis Lange. Occasional technical

support in the developing stages of the package has been provided by Joris Meys.

Several bugs have been reported by S. Vansteelandt, T. Loeys, T. Lange, as well as

by users of the package (a more detailed list, along with some patches provided

by users, can be found at https://github.com/jmpsteen/medflex/issues). S.

Vansteelandt and Karel Vermeulen have provided guidance in constructing generic

robust sandwich variance estimators for combinations of a wide class of parametric

models (with canonical link functions).

Chapter 4 provides a detailed user guide for the package, using a dataset that

has also been used in Loeys et al. (2013) as an illustrating example. The theoretical

content of this chapter is largely based on Vansteelandt et al. (2012b), Lange et al.

(2012) and Loeys et al. (2013) (a paper to which I have also contributed). I have

taken the lead in writing this chapter, which is available as a vignette to the package,

in a slightly modified version, and has been accepted for publication in Journal of
Statistical Software (Steen et al., 2016b).

I have also taken the lead in writing chapter 5, although S. Vansteelandt has

made major contributions in rewriting parts of this chapter in order to make it more

accessible for an epidemiologic audience. The estimation procedure and graphical

translation of identifying assumptions into a generalization of the adjustment

criterion (Shpitser et al., 2010; Shpitser and VanderWeele, 2011) (in the technical

appendix) were developed by myself, with guidance from S. Vansteelandt, T. Loeys

and B. Moerkerke. In addition, I have implemented all R code in the technical

appendix, and have conducted all data analyses. This chapter has been accepted

for publication in American Journal of Epidemiology (Steen et al., 2016a).

The content of chapter 2 is largely based on other introductory texts including

Elwert (2013), Pearl (2000), Pearl et al. (2016), and Tian and Shpitser (2010).

Chapter 3 is based on a chapter that has recently been submitted for peer review

and is to appear in M. Drton, S. Lauritzen, M. Maathuis, M. Wainwright (Eds.),

Handbook of Graphical Models. CRC Press. The detailed comparison of identifying

assumptions, novel insights and relation with Robins and Richardson (2010), as

mentioned in section 1.5, are mainly individual contributions. Ilya Shpitser has

helped a great deal in the shaping of this chapter by providing valuable clarifica-

tions regarding his paper in Cognitive Science (Shpitser, 2013). S. Vansteelandt has

sigificantly contributed by improving the structure and clarity of earlier versions

of this chapter.
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Chapter 2

Inferring causal effects from
observed data

Over the years, graphical models have proven to be an indispensable tool
for visualizing and communicating causal assumptions within a given
research context. Such models typically consist of a causal diagram or causal
directed acyclic graph (DAG) G with nodes (or vertices) V = {V1, ..., Vn}
representing random variables of interest and directed edges (or arrows)
connecting these nodes.1

2.1 Encoding conditional independencies in a graph

These diagrams are used to visualize a set of assumed conditional inde-
pendencies. More specifically, whereas arrows between variables encode
probabilistic dependencies among those variables, the absence of an arrow
translates into an assumption of conditional independence stating that each
variable Vi is independent of its non-descendants conditional on its parents
PAi in the graph (i.e. the variables that have an arrow feeding directly
into Vi). This Markov assumption allows linking the structure of the graph
to the observed data on V. In particular, these conditional independence
assumptions impose a set of restrictions on the joint probability distribution

1Typically, kinship terminology (i.e. ‘parents’, ‘children’, ‘ancestors’ and ‘descendants’)
is used to describe the relationships between nodes implied by the arrows connecting them.
By convention, we will denote Vi to be both an ancestor and a descendant of Vi.
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of V, P(V) so that it factorizes as a product of conditional distributions
P(Vi|PAi) which only involve the parents PAi for each Vi:

P(V) = ∏
i

P(Vi|PAi), (2.1)

such that P(V) satisfies the global Markov property relative to G (see next
section).

Consider, for instance, the diagram in Figure 2.1A with V = {C, A, M, Y}.
It follows from the Markov assumption relative to this diagram that M and
C are conditionally independent given A

P(M|A, C) = P(M|A) (2.2)

denoted, M ⊥⊥ C|A, and that Y and A are conditionally independent given
{M, C}, i.e. Y ⊥⊥ A|M, C,

P(Y|A, M, C) = P(Y|M, C). (2.3)

P(V) thus factorizes as

P(C, A, M, Y) = P(Y|M, C)P(M|A)P(A|C)P(C).

2.1.1 d-separation

In this simple example, all conditional independencies encoded in the
graph follow directly from the local Markov property. More generally,
Pearl (1988)’s d-separation criterion provides a graphical rule that enables

(A) G

A M Y

C
(B) GA

A = a M Y

C
(C) G ′

A M Y

U

Figure 2.1: Original graph G (A), mutilated graph GA (B), and graph G ′ with C
replaced by unobserved U (C).
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summarizing all (conditional) independencies encoded in a given graph,
irrespective of its complexity. To fully appreciate this rule, however, one
needs to distinguish three elementary causal structures, which can be con-
sidered the building blocks of every causal DAG. Each of these structures
corresponds to a different source of association between observed variables.

Confounding and – especially – causation are two potential sources of
association that match relatively well with human intuition. Their causal
structures correspond to chains Vi → Vj → Vk and forks Vi ← Vj → Vk,
respectively. In both of these structures Vi and Vk are marginally dependent,
but conditionally independent given Vj. That is, Vi and Vk are said to be
d-connected. If these causal structures were viewed as an electric net (Shipley,
2002), in both cases, Vj could be considered an active switch that enables
electricity to be transmitted between Vi and Vk along their connecting edges.
The circuit can be broken by turning off the switch. Similarly, the path
connecting Vi and Vk can be blocked upon conditioning on Vj, rendering Vi

and Vk d-separated.
A third type of association, in contrast, arises when conditioning on a

third variable. That is, if the structure is an inverted fork Vi → Vj ← Vk,
Vi and Vk are marginally independent, but they become dependent when
conditioning on their common effect Vj. Nodes with converging edges,
so-called colliders, such as Vj, act like inactive switches that do not trans-
mit electricity, unless they are conditioned on. In this case, the blocked
path between Vi and Vk is unblocked, rendering these formerly d-separated
nodes d-connected. Conditioning on a collider may thus induce artificial
or spurious associations. This seems to be at odds with human intuition
(Burns and Wieth, 2004), as many would assume that conditioning on a third
variable would, if anything, reduce or eliminate any dependence. A simple
example may, however, help to elucidate this counterintuitive phenomenon
(Pearl, 2000). Suppose the admission criteria for a graduate school are high
grades and/or unusual musical talent and suppose one may assume these
attributes to be uncorrelated in the general population. Learning that a
random person has obtained high or low grades is thus uninformative as to
whether this person has unusual musical talent (and vice versa). However,
learning that a student of that school has obtained low grades tells us that
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this student must be exceptionally gifted in music. Likewise, students that
are not musically talented, are more likely to have obtained higher grades.
These two causal attributes, which are uncorrelated (or marginally inde-
pendent) in the general population, thus become dependent upon learning
about their common consequence, i.e. that a student has gained admission.
This phenomenon, which also occurs when conditioning on a descendant of
a collider, has been termed Berkson’s paradox in epidemiology and statistics
(Berkson, 1946) or the explaining away effect in artificial intelligence (Kim
and Pearl, 1983). Other commonly used terms are collider(-stratification) bias
(Greenland, 2003) or selection bias (Hernán et al., 2004). The latter terms
clarify, as in the above example, that this bias may not only occur because
of, for instance, regression adjustment, but also by selective sampling from
a specific subpopulation (i.e. stratification).

In contrast to the graphs associated with these three elementary struc-
tures, most graphs are of considerably higher complexity, containing both
more nodes and more edges. In particular, two nodes possibly have multi-
ple paths2 connecting them, each of which may contain any combination
of these structures and may hence be blocked or unblocked by a set of
other nodes. Given these elementary structures, however, we may predict
the dependencies encoded in a graph of any level of complexity, using the
following graphical criterion.

Definition 2.1.1. d-separation (Pearl, 2000) A path p is said to be d-separated (or
blocked) by a set of nodes Z if and only if

(i) p contains a chain Vi → Vj → Vk or a fork Vi ← Vj → Vk such that the
middle node Vj is in Z, or

(ii) p contains an inverted fork Vi → Vj ← Vk such that the middle node Vj is
not in Z and such that no descendant of Vj is in Z.

A set Z is said to d-separate X from Y if and only if Z blocks every path from a
node in X to a node in Y.

2A path is a sequence of distinct nodes where any two adjacent nodes in the sequence
are connected by an edge (of any directionality).
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While X and Y are said to be conditionally independent given Z if they
are d-separated by Z, the converse does not necessarily hold. For instance,
d-connected nodes may be independent if an exact cancellation of positive
and negative effects occur. Because such exact cancellations are unlikely
to occur, it is usually assumed that d-connected nodes are dependent, an
assumption referred to as faithfulness (Spirtes et al., 1993).

2.1.2 Observational equivalence

Importantly, since conditional independencies encoded in a graph impose
constraints on the probability distribution that governs the generated data,
they can be tested from observed data on the variables in the graph. This
enables us to partially test the validity of the causal model associated with
a given graph, but also serves as the basis for causal discovery algorithms.
However, the ability to falsify a given graphical model from observable
data does usually not permit to distinguish between multiple graphs that
are compatible with observed data.

For instance, the three graphs in Figure 2.2 encode the same set of
conditional independencies, i.e. X ⊥⊥ Y|W and W ⊥⊥ Z|X, Y. Because
they share an identical set of testable implications, observational data does
not carry any information to decide which of the three graphical models
reflects the true underlying data generating mechanism. This example
illustrates that conditional independencies usually do not allow us to infer
directionality for all edges on a given graph. Nonetheless, we can infer
some information about directionality, in each of the three graphs. Since we
may learn from observed data that X ⊥⊥ Y|W and that X 6⊥⊥ Y|W, Z, we
can infer that Z must be a collider and hence that the edges between Z and

(A)

W

X

Y

Z

(B)

W

X

Y

Z

(C)

W

X

Y

Z

Figure 2.2: Three graphs that belong to the same Markov equivalence class.
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X and between Z and Y must be pointing towards Z. Directionality may
thus to some extent be inferred by discovering so-called v-structures (i.e.
colliders whose parents are not adjacent).

Graphs that share a common skeleton (i.e. the same configuration of
edges, irrespective of their direction) and common v-structures, such as the
graphs in Figure 2.2, are said to be observationally equivalent or to belong
to the same Markov equivalence class (Verma and Pearl, 1991). That is, be-
cause they share an identical set of conditional independencies, they are
empirically indistinguishable. To assess the causal effect of, say W on Z,
it is, however, crucial to distinguish between each of these graphs. Nec-
essarily, to make progress, we will need to make certain assertions about
directionality based on subject matter knowledge and/or expert judgment.

2.2 What makes a diagram a causal diagram

Since the notion of causation is often formalized by referring to hypothetical
interventions, e.g. setting A to a, we ultimately wish to learn about some
aspects of the joint distribution of the other observed variables P(V \ A)

(i.e. usually the mean of some outcome Y ∈ V) under such different inter-
ventions in the population. Our ability to do so rests on the assumption
that the directed edges in a graph represent causal influences between the
corresponding variables and that the graph can be conceived to reflect a
modular system, in the sense that one can manipulate or change one part
of the system without affecting the rest. More specifically, this invariance
property states that each parent-child relation represents a stable and au-
tonomous physical mechanism. The ideas of intervention and modularity
match the intuitive notion of causation and conditions that enable turning
purely correlational claims into causal ones. These are therefore considered
to grant causal DAGs their causal interpretation.

Consider again, for example, the graph in Figure 2.1A. If we were to
intervene locally on A, fixing it to a, we would only curtail A’s natural
tendency to vary in response to C (e.g. a potential confounder), without
affecting the natural responses of the other variables. This action is often
represented graphically by performing a kind of surgery on the original
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graph G, turning it into GA, by removing all directed edges into A (as in
Figure 2.1B), or mathematically, using Pearl (2000)’s do-operator, where
do(A = a) represents the action or intervention that fixes A to a. In order
to learn about causal effects, we thus aim to compare joint interventional
distributions P(V \ A|do(A = a)) – or interventional distributions of an out-
come of interest P(Y|do(A = a)) – corresponding to different hypothetical
interventions enforced uniformly over the population.

2.3 The truncated factorization formula

Importantly, assuming modularity enables us to obtain the joint interven-
tional distribution by applying the usual factorization to the manipulated
graph GA

P(V \ A|do(A = a)) = ∏
i|Vi 6∈A

P(Vi|PAi)I(A = a), (2.4)

since the factors P(Vi|PAi) corresponding to variables in A are either 1
(when A = a) or 0 (when A 6= a), while those corresponding to the other
variables remain unaltered. It can be seen that the resulting truncated fac-
torization formula (Pearl, 1995a) – which has been referred to earlier as the
g-computation formula (Robins, 1986) and is implied by the manipulation
theorem (Spirtes et al., 1993)) – in expression (2.4) simply omits (from ex-
pression (2.1)) the conditional distribution of the node A that we intervene
on. The interventional distribution of some outcome of interest Y can then
simply be obtained by summing3 expression (2.4) over V \ {A, Y}

P(Y|do(A = a)) = ∑
v\{a,y}

∏
i|Vi 6∈A

P(Vi|PAi = pai), (2.5)

where pai denotes the vector of value assignments to PAi such that, if
A ∈ PAi, value assignment PAi = pai is consistent with A = a. Note
that, in the absence of hidden variables, the modularity assumption implies

3Throughout, for continuous Vi, replace summations by integrals and probabilities by
density functions.
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P(Vi|PAi) = P(Vi|do(PAi)) for each Vi, such that the truncated factorization
in expression (2.5) can be rewritten in terms of interventional distributions

P(Y|do(A = a)) = ∑
v\{a,y}

∏
i|Vi 6∈A

P(Vi|do(PAi = pai)). (2.6)

2.3.1 An example

Suppose, for example, that the variables in Figure 2.1A, as in Pearl (2000),
represent smoking A, amount of tar deposited in the lungs M, development
of lung cancer Y and a certain genotype C that predisposes to both smoking
and developing lung cancer. Application of the truncated factorization
formula yields that, under the assumptions encoded in the graph in Fig-
ure 2.1A, the interventional distribution of Y under an intervention that
would, irrespective of potential ethical objections, either ban, i.e. do(A = 0),
or enforce smoking, i.e. do(A = 1) – or more generally, do(A = a) – in the
general population equals

P(Y|do(A = a)) = ∑
c,m

P(Y|M = m, C = c)P(M = m|A = a)P(C = c).

Moreover, exploiting the conditional independencies (2.2) and (2.3) encoded
in the graph, we can simplify this resulting expression as follows:

∑
c,m

P(Y|A = a, M = m, C = c)P(M = m|A = a, C = c)P(C = c)

= ∑
c,m

P(Y, M = m|A = a, C = c)P(C = c)

= ∑
c

P(Y|A = a, C = c)P(C = c). (2.7)

This yields an expression commonly referred to as the adjustment formula or
the back-door formula (Pearl, 1993).
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2.4 The adjustment formula

The previous example illustrates that, in some cases, the identification result
for P(Y|do(A = a)) obtained via the truncated factorization formula (in
expression (2.5)) may be simplified to expression (2.7).

2.4.1 Conditional ignorability

This result can, in fact, be shown to naturally relate to a sufficient condition
for identification of causal effects defined in the counterfactual outcomes
framework, i.e. that of conditional ignorability. This assumption, denoted as
a conditional independence statement involving counterfactual outcomes

Y(a) ⊥⊥ A|C, for all a (2.8)

states that the counterfactual outcome Y(a) that – possibly contrary to
the fact – would have been observed under intervention that sets A = a,
does not depend on the actual level A within strata of a set of covariates
C. Assumption (2.8) has also been named the assumption of no omitted
confounders or no unmeasured confounding, to capture the more intuitive
notion that C constitutes a sufficient set to adjust for potential confounding
of the relation between A and Y.

When combined with a consistency assumption, which states that Y =

Y(a) if A = a, conditional ignorability (2.8) allows the counterfactual distri-
bution P(Y(a)) – which essentially corresponds to P(Y|do(A = a)) – to be
expressed by the adjustment formula (2.7) as follows:

P(Y(a)) = ∑
c

P(Y(a)|C = c)P(C = c)

= ∑
c

P(Y(a)|A = a, C = c)P(C = c)

= ∑
c

P(Y|A = a, C = c)P(C = c).

2.4.2 The adjustment criterion

Shpitser et al. (2010) provided a complete graphical criterion for identifi-
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cation of P(Y|do(A = a)) by the adjustment formula (2.7); a criterion that,
in other words, permits to find all possible adjustment sets C that satisfy
conditional ignorability (2.8). This adjustment criterion has been shown to
generalize and subsume Pearl (1995a)’s back-door criterion.4

In order to provide a more precise and formal definition of this criterion,
especially in the case where A may be a joint or sequential intervention, as
in the examples discussed below, we will need to introduce the following
terminology.

Definition 2.4.1. Proper causal path (Shpitser et al., 2010) Let X, Y be sets of
nodes. A directed path from a node in A ∈ X to a node in Y is called proper causal
with respect to X if it does not intersect X except at A.

More generally, a path from X to Y is called proper if only its first node is
in X (Perković et al., 2015). For example, suppose X = {A, M} in the graphs
in Figure 2.3. In the graph in panel (A), there are two proper causal paths
from X to Y, i.e. A→ Y and M→ Y. Note that A→ M→ Y is not proper
causal with respect to X because it intersects X at M. In the graph in panel
(B), there is an additional proper causal path from X to Y, i.e. A→ L→ Y.

Definition 2.4.2. Adjustment criterion (Shpitser et al., 2010) Z satisfies the
adjustment criterion relative to (X, Y) in the original graph G if

(i) No element in Z is a descendant in GX of any W 6∈ X which lies on a proper
causal path from X to Y, and

(ii) All proper5 non-causal paths in G from X to Y are blocked by Z.

The only non-causal path from {A, M} to Y in the graph in Figure 2.3A
is M ← C → Y. This path can be blocked by C, which is not on a proper
causal path from {A, M} to Y, nor is it a descendant of a node on such
a proper causal path. So C satisfies the adjustment criterion relative to

4For this reason, the back-door criterion is not further discussed.
5Shpitser et al. (2010)’s original formulation claimed that all non-causal paths in G from

X to Y should be blocked by Z. However, in accordance with Perković et al. (2015), we
provide a slight reformulation in which this is only required for all proper non-causal paths.
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(A)

A M

Y

C

(B)

A M

Y

L

Figure 2.3: Two mediation graphs with different proper causal paths from {A, M}
to Y.

({A, M}, Y) in this graph, such that P(Y|do(A = a, M = m)) is identified
by

P(Y|do(A = a, M = m)) = ∑
c

P(Y|A = a, M = m, C = c)P(C = c).

Likewise, in the graph in Figure 2.3B, L blocks the only non-causal path
from {A, M} to Y, i.e. M ← L → Y. However, L lies on the proper causal
path A→ L→ Y in GAM and thus does not satisfy the adjustment criterion
relative to ({A, M}, Y) in this graph. Nonetheless, P(Y|do(A = a, M = m))

can be computed from the observed data by expression (2.5), which yields

P(Y|do(A = a, M = m)) = ∑
l

P(Y|A = a, M = m, L = l)P(L = l|A = a).

Intuitively, these examples illustrate that the first part of the adjustment
criterion keeps us from adjusting for mediators, whereas the second part
ensures that we adjust for common causes.

2.4.3 Flexible estimation strategies for the adjustment formula

Most often interest lies in comparing some mean outcome of interest under
different hypothetical interventions in the population. That is, E(Y|do(A =

a)) is the causal quantity of interest, rather than the interventional distri-
bution P(Y|do(A = a)) per se. Estimating this quantity from observed data
via direct application of the adjustment formula may be cumbersome, as
it requires modeling P(C = c). This can be challenging, especially when C
contains continuous covariates and/or high-dimensional and data is sparse.
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Below we show that there are two ways of rewriting the adjustment for-
mula that give rise to estimators that may considerably reduce modeling
demands in the sense that neither require modeling P(C = c).

Inverse probability weighting

The first estimator arises from rewriting the adjustment formula as follows

E(Y|do(A = a)) = ∑
y,c

y · P(Y = y|A = a, C = c)P(C = c)

= ∑
y,c

y · P(Y = y, A = a, C = c)
P(A = a|C = c)

= ∑
y,c

y · P(Y = y, C = c|A = a)P(A = a)
P(A = a|C = c)

= E
[

YI(A = a)
P(A = a|C)

]
.

The corresponding sample estimator

n−1
n

∑
i=1

Yi I(Ai = a)
P̂(Ai = a|Ci)

corresponds to a weighted mean outcome, where each individual exposed
at level A = a is weighted by the inverse of its propensity of being exposed
at that exposure level given baseline covariates C, P̂(A = a|C). Inverse
weighting can be thought of aiming to construct a pseudo-population in
which confounding by C is eliminated (i.e. mimicking a randomized trial).
This weighted-based estimator thus focuses solely on modeling the relation
between A and C as it only requires a propensity score model for P(A|C).

Imputation

The second estimator results from simply applying the law of iterated
expectations, so that one can average over the empirical distribution of C in
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the observed data, as follows:

E(Y|do(A = a)) = ∑
c

E(Y|A = a, C = c)P(C = c)

= E [E(Y|A = a, C)|A = a] .

The resulting expression gives rise to an imputation-based estimator

n−1
n

∑
i=1

Ê(Yi|Ai = a, Ci)

that requires imputing each individual’s outcome under observed levels
of the covariate set C but a (possibly) counterfactual exposure level a.
E(Y|do(A = a)) can then be estimated by simply calculating the mean
of these imputed outcomes. This estimator thus focuses on modeling the
relation between Y and C within strata of A as it only requires an imputation
model for the mean outcome E(Y|A, C).

Marginal structural models

E(Y|do(A = a)) or E(Y(a)) can be parameterized using so-called marginal
structural models (Robins, 1999; Robins et al., 2000). The parameters of such
models correspond to interventional contrasts of interest. For instance, in
the marginal structural model

E(Y(a)) = β0 + β1a, (2.9)

β1 captures the average causal effect corresponding to a change in the
exposure from A = 0 to A = a, i.e. E(Y(a)−Y(0)).

Model (2.9) could be considered a special case of a wider class of gener-
alized linear marginal structural models

E(Y(a)) = g−1{β>W(a)} (2.10)

with W(a) a known vector with components that may depend on a. W
may be specified so as to accommodate non-linearities in the case of a
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continuous exposure. β is an unknown parameter vector and g(·) a known
link function, the choice of which permits some flexibility as to the scale on
which the causal effect of interest is desired to be expressed.

The marginal structural model framework provides a natural environ-
ment for implementing the aforementioned estimators. That is, marginal
structural models are traditionally fitted by weighted regression models, in
which the weights correspond to the inverse probability weights discussed
in section 2.4.3 (Robins et al., 2000). Alternatively, one may regress imputed
mean outcomes on the exposure (Snowden et al., 2011). The latter approach
is, however, computationally more intensive, as it requires replicating the
original data along multiple values of the exposure and imputing outcomes
for each individual under each of these exposure levels.

In chapter 3, similar estimators will be developed for estimating natu-
ral direct and indirect effects in a mediation context. Similarly, marginal
structural models will be generalized to parameterize mean nested coun-
terfactuals E(Y(a, M(a′))). The motivation for these extensions follows
from the fact that the adjustment criterion can be generalized to covariate
sets that enable identifying natural direct and indirect effects by a general-
ized adjustment formula for mediation analysis (Shpitser and VanderWeele,
2011).

2.5 Identifiability in the presence of hidden variables

When all relevant variables are observed, all causal queries of the form
P(Y|do(A = a)) can be computed from the observed joint distribution P(V)

via the truncated factorization formula (expression (2.4)). However, the
assumption that all common causes of any two (or more) variables in the
graph are also included in the graph, i.e. that of causal sufficiency, is often
unrealistic because it dismisses the possibility of unmeasured confounding.
Whenever we relax this assumption, the question of identifiability arises,
i.e. whether P(Y|do(A = a)) can be expressed as a function of the joint
distribution of observed variables P(V).
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2.5.1 A simple example: the front-door formula

Consider again the smoking example. Suppose the genetic predisposition
for both smoking and developing lung cancer is unmeasured and named U,
as in Figure 2.1C. The graphical model associated with this causal diagram
can be considered a semi-Markovian model.6 Often, semi-Markovian mod-
els are represented by acyclic directed mixed graphs (ADMGs) (Richardson,
2003), where the presence of an unobserved common cause of two nodes
is indicated by bi-directed edges (↔). However, for the purpose of our
presentation, we will explicitly represent hidden variables U by circled
nodes and their direct effects on observed variables V by dashed edges.

Since U is unobserved, the adjustment criterion cannot be satisfied.7

Likewise, the truncated factorization formula (expression (2.4)) yields

P(Y|do(A = a)) = ∑
u,m

P(M = m, Y, U = u|do(A = a))

= ∑
u,m

P(Y|M = m, U = u)P(M = m|A = a)P(U = u),

(2.11)

which involves U and thus cannot be evaluated. However, progress can
be made upon noting that, when recovering the joint distribution P(V) by
summing over U, factors involving observed variables without unobserved
parents, such as M, ‘factor out’ of the summation, as follows:

P(A, M, Y) = ∑
u

P(Y|M, U = u)P(M|A)P(A|U = u)P(U = u)

= P(M|A)∑
u

P(Y|M, U = u)P(A|U = u)P(U = u). (2.12)

The joint distribution P(A, M, Y) can thus be written as the product of

6A model whose corresponding graph only includes unobserved variables that have
(i) no parents (i.e. is a root node) and (ii) exactly two observed children, is called a semi-
Markovian model. Even though identification results and algorithms described below can
be extended to more general Markovian models with arbitrary sets of unobserved variables
upon obtaining a semi-Markovian projection of these models (Tian and Pearl, 2003), for
ease of exposition, throughout this thesis, we will focus on semi-Markovian models.

7Also note that the graph in Figure 2.1C carries no more testable implications since all
conditional independencies encoded in the graph involve U.
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P(M|A) and a factor that involves the confounded nodes A and Y.

A key observation is that, despite U being unobserved, the second factor
can be expressed in terms of the observed data V = {A, M, Y}, as follows
(from expression (2.12)):

∑
u

P(Y|M, U = u)P(A|U = u)P(U = u)
= P(A, M, Y)/P(M|A) = P(Y|A, M)P(A). (2.13)

Moreover, because no factors in the summation (over U) depend on A, we
can rewrite expression (2.11) as

∑
m

P(M = m|A = a) ∑
a′,u

P(Y|M = m, U = u)P(A = a′|U = u)P(U = u),

which, by expression (2.13) reduces to

∑
m

P(M = m|A = a)∑
a′

P(Y|A = a′, M = m)P(A = a′), (2.14)

an expression generally referred to as the front-door formula (Pearl, 1995a).

This example illustrates that, at least in some settings, we may still
be able to identify P(Y|do(A = a)) from P(V), despite the presence of
unmeasured confounding. In fact, as will be elucidated in section 2.5.3,
identification via the front-door formula can be considered to arise via
sequential application of the adjustment formula, by which P(M|do(A =

a)) is identified by P(M|A = a) via adjustment for the empty set, while
P(Y|do(M = m)) is identified by ∑a P(Y|A = a, M = m)P(A = a) via
adjustment for A. A crucial assumption here, though, is that M intercepts
all directed paths from A to Y, or in other words, that M mediates the entire
effect of A on Y. If this exclusion restriction would not hold, we could not
have written expression (2.11) as expression (2.14) and we would not have
obtained identification.
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V1 V2 V3 V4 V5

U1

U2

U3

Figure 2.4: Graph for a semi-Markovian model with c-components {V1, V3, V5}
and {V2, V4}.

2.5.2 C-component factorization

The factorization in expression (2.12) moreover illustrates that the set of
observed variables V can be partitioned into j disjoint sets or components,
according to whether they share common unobserved parents. These dis-
joint sets have been referred to as confounded components (abbreviated: c-
components) (Tian and Pearl, 2002) or districts (Richardson, 2009). More
generally, it is said that any two observed variables sharing a common
unobserved parent belong to the same c-component Sj. The importance of
c-components can be appreciated by the fact that their disjointness implies
that the joint distribution of observed variables P(V) can be factorized as a
product of their corresponding c-factors.

For example, the joint distribution P(V1, V2, V3, V4, V5) in the graph in
Figure 2.4, with c-components S1 = {V1, V3, V5} and S2 = {V2, V4}, factor-
izes as

∑
u1,u2,u3

P(V1|U1 = u1)P(V2|V1, U2 = u2)P(V3|V2, U1 = u1, U3 = u3)

× P(V4|V3, U2 = u2)P(V5|V4, U3 = u3)

× P(U1 = u1, U2 = u2, U3 = u3)

= ∑
u1,u3

P(V1|U1 = u1)P(V3|V2, U1 = u1, U3 = u3)P(V5|V4, U3 = u3)

× P(U1 = u1, U3 = u3)

×∑
u2

P(V2|V1, U2 = u2)P(V4|V3, U2 = u2)P(U2 = u2)

= Q[S1]Q[S2],

where Q[S1] and Q[S2] are the corresponding c-factors of S1 and S2, respec-
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tively.
More generally, in the presence of unobserved variables U, the probabil-

ity distribution P(V) of observed variables V in a semi-Markovian graph,
has been shown to factorize as a mixture of products involving observed
and unobserved variables:

P(V) = ∑
u

∏
i

P(Vi|PAi, Ui = ui)P(U = u), (2.15)

where PAi and Ui stand for the observed and unobserved parents of Vi,
respectively. Tian and Pearl (2002) pointed out that, because of disjointness
of the c-components Sj, expression (2.15) can always be rewritten as a c-
component factorization as follows

∏
j

Q[Sj] = ∏
j

P(Sj|do(PA (Sj))),

where PA (Sj) = PA(Sj) \ Sj denotes the set of observed parents of all
nodes in Sj (excluding nodes in Sj itself) such that every c-factor Q[Sj] can
be interpreted as the interventional distribution of Sj under an intervention
to all its observed parents (excluding those in Sj). Moreover, every Q[Sj]

can be expressed in terms of the observed data according to the following
lemma.

Lemma 2.5.1. (Tian and Pearl, 2002) Let a topological order over V be V1 <

... < Vn (where Vi < Vj denotes that Vi precedes Vj), and let V(i) = {V1, ..., Vi},
i = 1, ..., n, and V(0) = ∅. For any observed set C, let GC denote the subgraph of
G composed only of variables in C. Then

(i) Each c-factor Q[Sj], j = 1, ..., k, is identifiable and is given by

Q[Sj] = ∏
i|Vi∈Sj

P(Vi|V(i−1)).

(ii) Each factor P(Vi|V(i−1)) can be expressed as

P(Vi|V(i−1)) = P(Vi|PA(Ti) \Vi),
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where Ti is the c-component of GV(i) that contains Vi.

For instance, the result for Q[{A, Y}] in expression (2.13) arises from
applying this lemma in the simple front-door example discussed in sec-
tion 2.5.1.

2.5.3 A complete identification algorithm

The above insights allowed Tian and Pearl (2003) to develop a complete
identification algorithm based on c-component factorization, referred to as
Tian’s algorithm or the ID algorithm, as depicted in Figure 2.5. In particular,
they showed that the original problem of identifiability of P(Y|do(A = a))
can be reduced to smaller identifiability problems within a subgraph of
G where certain non-essential nodes are systematically removed. More
specifically, identifiability of P(Y|do(A = a)) depends on identifiability
of the c-factors of districts Di in the subgraph8 GD, where D is the set of
ancestors of Y (including Y) in the subgraph GV\A. This dependence follows
from the fact that P(Y|do(A = a)) can always be expressed as a sum over
the product of the c-factors Q[Di]:9

P(Y|do(A = a)) = ∑
d\y

∏
i

Q[Di]

= ∑
d\y

∏
i

P(Di|do(PA (Di) = pa (Di))). (2.16)

where each district Di in the subgraph GD (logically) constitutes a subset
of a c-component Sj in the original graph G, and, again, pa (Di) denotes
the vector of value assignments to PA (Di) such that, if A ∈ PA (Di), value
assignment PA (Di) = pa (Di) is consistent with A = a. Consequently,

8Let GC, in contrast to the notation in Lemma 2.5.1, denote the subgraph of G composed
only of nodes in C and hidden nodes with at least two children in C. In ADMGs, GC can
be denoted as the subgraph of G composed only of nodes in C and edges in G with both
endpoints in C. Moreover, to increase clarity, we will henceforth refer to c-components or
districts in the original graph G as c-components and in the subgraph GD as districts.

9Note that expression (2.16) can be conceived as a generalization of the truncated
factorization formula in expression (2.6) for graphs with latent variables. In the absence
of latent variables, each district consists of a single node and expression (2.16) reduces to
expression (2.6).
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INPUT: two disjoint sets A, Y ⊂ V.
OUTPUT: the expression for P(Y|do(A = a)) or FAIL.

Phase 1:

1. Find the c-components of G: S1, ..., Sk. Compute each Q[Si] by
Lemma 2.5.1.

2. Let D denote the ancestors of Y in GV\A and the c-components of
GD be Di, i = 1, ..., l.

Phase 2:
For each set Di such that Di ⊆ Sj:
Compute Q[Di] from Q[Sj] by calling Identify(Di, Sj, Q[Sj]) in Figure 2.6.
If the function returns FAIL, then stop and output FAIL.

Phase 3:
Output P(Y|do(A = a)) = ∑d\y ∏i Q[Di].

Figure 2.5: Algorithm ID(Y, A) (Tian and Pearl, 2003)

identification of each of the c-factors Q[Di] depends on whether it can be
derived from its corresponding c-factor Q[Sj] in the original graph G, which
can be determined by the Identify algorithm in Figure 2.6 (Tian and Pearl,
2003).

For instance, in the example in section 2.5.1, GV\A corresponds to the
graph that only includes M and Y, both of which are ancestors of Y (or
included in Y), such that V \ A = D = {M, Y} and hence GV\A = GD. In
addition, GD contains two c-components, i.e. D1 = {M} and D2 = {Y},
such that Tian’s algorithm yields

P(Y|do(A = a)) = ∑
m

Q[{Y}]Q[{M}]

= ∑
m

P(Y|do(M = m))P(M = m|do(A = a)), (2.17)

an expression involving interventional distributions whose identification
result can, in this case, be obtained via the adjustment criterion, leading to
expression (2.14). Note that, more generally, Q[D2] = Q[{Y}] could have
been computed from the c-factor Q[{A, Y}] in the original graph G by the
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INPUT: C ⊆ T ⊆ V, Q = Q[T]. GT and GC are both composed of one
single c-component.
OUTPUT: the expression for Q[C] in terms of Q or FAIL.

Let A denote the ancestors of C in GT.

• If A = C, output Q[C] = ∑t\c Q.

• If A = T, output FAIL.

• If C ⊂ A ⊂ T

1. Assume that in GA, C is contained in a c-component T′.

2. Compute Q[T′] from Q[A] = ∑t\a Q by Lemma 2.5.2.

3. Output Identify(C, T′, Q[T′]).

Figure 2.6: Algorithm Identify(C, T, Q) (Tian and Pearl, 2003)

Identify algorithm in Figure 2.6. Since Q[{A, Y}] = P(Y|A, M)P(A) by
Lemma 2.5.1, Q[{Y}] = P(Y|do(M = m)) can indeed be shown to equal

∑a P(Y|A = a, M)P(A = a). That is, because of the exclusion restriction
discussed in section 2.5.1, A is not an ancestor of Y in G{A,Y}, so that Q[{Y}]
is identified and can simply be obtained by summing Q[{A, Y}] over A.

As opposed to this simple front-door example, in many settings, GD 6=
GV\A and, moreover, determining whether each Q[Di] is computable from
a corresponding Q[Sj] is less straightforward as it often leads to recursive
applications of the Identify algorithm, as illustrated in the next, somewhat
more involved example.

2.5.4 A somewhat more involved example

Consider the graph G in Figure 2.7, which was discussed in Pearl (2014).
It is easily shown that P(Y|do(A = a)) cannot be identified by covariate
adjustment.10 That is, the non-causal path A← U3 → C3 → Y can only be

10The steps below can easily be followed using DAGitty, a browser-based environment for
creating, editing, and analyzing causal models (Textor et al., 2011). Graph G in Figure 2.7
can be loaded from this url: http://dagitty.net/mMdmQxs
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Figure 2.7: A somewhat more involved graph G and three of its subgraphs required
for application of the ID algorithm.

blocked by C3. Adjusting for C3 also blocks the non-causal path A← C2 ←
U1 → C3 → Y. However, since C3 is a collider, adjusting for it would open
a spurious pathway, i.e. A← U3 → C3 ← C1 → M→ Y.11 This spurious
pathway can again be blocked upon adjusting for C1. This leaves us with
one remaining non-causal path, i.e. A ← C2 ← U2 → M → Y, which can
only be blocked by C2. However, since C2 is also a collider, adjusting for
it opens yet another spurious pathway that passes collider C3, which is
already adjusted for, i.e. A ← U3 → C3 ← U1 → C2 ← U2 → M → Y.
The only way to block this spurious pathway would be to adjust for M.
However, this would imply blocking a proper causal path that we are
interested in. Indeed, the adjustment criterion dictates that no element in
the adjustment set lies on a proper causal path from A to Y.

11Adjusted variables are represented by a boxed-in node.
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Nevertheless, non-parametric identification of P(Y|do(A = a)) can be
obtained using the Tian’s ID algorithm (Figure 2.5).12 Intuitively, this may
be appreciated by the fact that progress can be made by relying on exclusion
restrictions encoded in the graph in Figure 2.7. Indeed, below, we illus-
trate that, just as the exclusion restrictions that A does not affect Y other
than through M and that C does not affect M other than through A in the
simple front-door example in section 2.5.1 enabled us to make progress,
reliance on similar exclusion restrictions may aid in obtaining identification
of P(Y|do(A = a)) in the graph in Figure 2.7.

The districts in the original graph G are S1 = {C1}, S2 = {C2, C3, A, M}
and S3 = {Y}. Their corresponding c-factors can be obtained by applying
Lemma 2.5.1. Because S1 and S3 are singletons, their c-factors have a unique
expression, which can easily be obtained by Lemma 2.5.1 as Q[S1] = P(C1)

and Q[S3] = P(Y|A, M, C3), respectively. The second district, S2, on the
other hand, consists of multiple nodes, which, moreover, are subject to
multiple possible topological orders. That is, within S2, there is no order
restriction with respect to C3. In other words, whereas C2 strictly precedes
A, which, in turn, strictly precedes M, i.e. C2 < A < M, the location of C3

within the topological ordering is unconstrained: it may precede or succeed
any of the other nodes in S2. This observation may be exploited later on
when we need to sum out Q[S2] over certain variables in order to obtain
c-factors of some of the districts in the subgraph GD. In particular, we will
need to cleverly choose two specific topological orderings in order to make
progress. First, according to the ordering C1 < C3 < C2 < A < M < Y,
Q[S2] can be expressed as

P(C3|C1)P(C2|C1, C3)P(A|C1, C2, C3)P(M|A, C1, C2, C3) (2.18)

by Lemma 2.5.1, whereas the ordering C1 < C2 < A < M < C3 < Y enables

12Identification results from both the ID algorithm and the IDC algorithm, discussed in
the next section, can be obtained using the R package causaleffect (Tikka, 2016). The added
value of this package follows from the fact that applying these algorithms ‘by hand’ can be
tedious, as illustrated in this and the next section.

37



Chapter 2. Inferring causal effects from observed data

2

us to express Q[S2] as

P(C2)P(A|C2)P(M|A, C1, C2)P(C3|A, M, C1, C2). (2.19)

In the subgraph GV\A (Figure 2.7), C2 is no longer an ancestor of Y, such
that D = {C1, C3, M, Y}. The resulting subgraph GD (Figure 2.7) has four
districts, i.e. D1 = {C1}, D2 = {C3}, D3 = {M} ⊂ S2 and D4 = {Y}, such
that P(Y|do(A = a)) can be expressed as

∑
c1,c3,m

Q[{C1}]Q[{C3}]Q[{M}]Q[{Y}]

= ∑
c1,c3,m

P(C1 = c1)P(C3 = c3|do(C1 = c1))P(M = m|do(A = a, C1 = c1))

× P(Y|do(A = a, M = m, C3 = c3)). (2.20)

Since D1 = S1 and D4 = S3, their corresponding c-factors will also be
identical, i.e. Q[D1] = Q[S1] = P(C1) and Q[D4] = Q[S3] = P(Y|A, M, C3).

Obtaining the c-factors of D2 and D3 – both of which are subsets of S2 –
will, however, be somewhat more involved, as this involves application of
the Identify algorithm (Figure 2.6). Since C3 only has itself as an ancestor
in the subgraph GS2 (Figure 2.7), obtaining Q[D2] is relatively simple, as
further instructions are then indicated by the first bullet in Figure 2.6. That
is, Identify(D2, S2, Q[S2]) yields Q[D2] = ∑c2,a,m Q[S2], which, by expres-
sion (2.18) reduces to

∑
c2,a,m

P(C3|C1)P(C2 = c2|C1, C3)P(A = a|C1, C2 = c2, C3)

× P(M = m|A = a, C1, C2 = c2, C3) = P(C3|C1). (2.21)

Note that the careful choice of letting C3 precede the other nodes in S2 in
the topological ordering C1 < C3 < C2 < A < M < Y, indeed leads to an
expression for Q[S2] which can easily be summed over the other variables
in S2.

Obtaining Q[D3], on the other hand, is quite tedious, because it involves
recursive applications of the Identify algorithm. To see why, note that the
set of ancestors of M in GS2 corresponds to {C2, A, M}, which, in turn, is a
subset of S2, thus leading us to the third bullet in Figure 2.6. Furthermore,
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in the subgraph G{C2,A,M}, M is contained in the district {C2, M}. Before we
can compute Q[{C2, M}] we first need to obtain Q[{C2, A, M}] = ∑c3

Q[S2].
By expression (2.19), the latter can simply be expressed as

∑
c3

P(C2)P(A|C2)P(M|A, C1, C2)P(C3 = c3|A, M, C1, C2)

= P(C2)P(A|C2)P(M|A, C1, C2). (2.22)

However, obtaining Q[{C2, M}] from Q[{C2, A, M}], now requires applica-
tion of Lemma 2.5.2, which is a more complex variant of Lemma 2.5.1.

Lemma 2.5.2. (Tian and Pearl, 2003) Let H ⊆ V, and assume that H is parti-
tioned into c-components H1, ..., Hl in the subgraph GH. Then we have

(i) Q[H] decomposes as

Q[H] = ∏
i

Q[Hi].

(ii) Each Q[Hi] is computable from Q[H]. Let k be the number of variables in
H, and let a topological order of the variables in H be Vm1 < ... < Vmk in
GH. Let H(i) = {Vm1 , ..., Vmi} be the set of variables in H ordered before Vmi

(including Vmi), i = 1, ..., k, and H(0) = ∅. Then each Q[Hj], j = 1, ..., l is
given by

Q[Hj] = ∏
i|Vmi∈Hj

Q[H(i)]

Q[H(i−1)]
,

where each Q[H(i)], i = 1, ..., k, is given by

Q[H(i)] = ∑
h\h(i)

Q[H].

Applying this lemma, we get H = {C2, A, M} with C2 < A < M and
only admissible topological order. We then get

Q[{C2, M}] = Q[{C2, A, M}]Q[{C2}]
Q[C2, A]
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=
Q[{C2, A, M}]∑a,m Q[{C2, A, M}]

∑m Q[{C2, A, M}]

=
P(C2)P(A|C2)P(M|A, C1, C2)P(C2)

P(C2)P(A|C2)

= P(C2)P(M|A, C1, C2). (2.23)

As a last step, we still need to obtain Q[D3] = Q[{M}] from Q[{C2, M}]
by invoking Identify(M, {C2, M}, Q[{C2, M}]). Since M does not have any
ancestors (except itself) in the subgraph G{C2,M}, we get

Q[{M}] = ∑
c2

Q[{C2, M}] = ∑
c2

P(C2 = c2)P(M|A, C1, C2 = c2). (2.24)

It follows that, since every Q[Di] is identifiable, P(Y|do(A = a)) is
also identifiable. Its identification result can be obtained by putting all
pieces together and substituting every Q[Di] in expression (2.20) by its
corresponding functional of the observed data. We hence obtain:

P(Y|do(A = a)) = ∑
c1,c3,m

P(C1 = c1)P(C3 = c3|C1 = c1)∑
c2

P(C2 = c2)

× P(M = m|A = a, C1 = c1, C2 = c2)

× P(Y|A = a, M = m, C3 = c3)

= ∑
c1,c2,c3,m

P(Y|A = a, M = m, C3 = c3)

× P(M = m|A = a, C1 = c1, C2 = c2)

× P(C1 = c1)P(C2 = c2)P(C3 = c3|C1 = c1).
(2.25)

2.5.5 Conditional causal effects

An extension of the ID algorithm for identifying conditional causal ef-
fects in subsets of the population defined by strata of a covariate set C –
i.e. causal queries of the form P(Y|do(A = a), C) – was later developed
by Shpitser and Pearl (2006a) and is referred to as the IDC algorithm,
as shown in Figure 2.8. The logic behind this algorithm is to re-express
P(Y|do(A = a), C) in terms of unconditional interventional distributions,
such that further identification can be obtained using the ID algorithm. This
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INPUT: disjoint sets A, Y, Z ⊂ V.
OUTPUT: Expression for P(Y|do(A = a), Z) in terms of P or FAIL.

1. If there exists a variable W ∈ Z such that Y ⊥⊥ W|A, Z \ {W} in the
subgraph GAW , return IDC(Y, A ∪ {W}, Z \ {W}).

2. Else let P′ = ID(Y ∪ Z, A) and return
P′

∑y P′
.

Figure 2.8: Algorithm IDC(Y, A, Z) (Shpitser and Pearl, 2006a)

can be achieved by relying on rule 2 of Pearl (1995a)’s do-calculus, which
allows interventions do(W = w) and observations W = w to be exchanged
if the conditional independence Y ⊥⊥ W|A, Z \ {W} holds in the subgraph
GAW , obtained by removing from the original graph G all edges pointing
to nodes in A and all edges emanating from nodes in W. The idea is to
iteratively apply this rule to find a unique maximal set W ⊆ C that enables
expressing P(Y|do(A = a), C) as P(Y|do(A = a, W), C \W). If W = C,
P(Y|do(A = a), C) then simply equals P(Y|do(A = a, C)). However, often
one may not get rid of all conditioning variables, that is W ⊂ C. In this case,
P(Y|do(A = a), C) equals

P(Y, C \W|do(A = a, W))

P(C \W|do(A = a, W))
=

P(Y, C \W|do(A = a, W))

∑y P(Y = y, C \W|do(A = a, W))
.

such that its identification ultimately depends on identification of the uncon-
ditional joint interventional distribution P(Y, C \W|do(A = a, W)), which
can be assessed by the ID algorithm. Suppose that interest lies in the
effect of A on Y conditional on {C1, C2, C3}, i.e. P(Y|do(A = a), C1, C2, C3),
in graph G in Figure 2.7 (or Figure 2.10).13 It follows from the subgraphs

13It is worth noting here that if, contrary to the fact, P(Y|do(A = a)) were identified by
the adjustment formula upon adjusting for {C1, C2, C3} (refer to section 2.5.4), this would
have necessarily implied that P(Y|do(A = a), C1, C2, C3) were likewise identified. This can
be seen upon noting that identification of both interventional distributions can be obtained
under conditional ignorability Y ⊥⊥ A|C1, C2, C3, which would be implied if {C1, C2, C3}
would satisfy the adjustment criterion with respect to (A, Y). As opposed to more general
identification strategies, such as the ID algorithm, identification by the adjustment criterion
can thus be conceived as being agnostic as to whether the interventional distribution is
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Figure 2.9: Different subgraphs of G Figure 2.7 that aid in finding a maximal set
W ⊆ C through recursive applications of the first step of the IDC algorithm.
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G
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U3

GV\{A,C1} = G ′D

M

Y

C2

C3

U1

U2

Figure 2.10: A somewhat more involved graph G and a subgraph required for
application of the second step of the IDC algorithm.

GAC1
, GAC2

and GAC3
in Figure 2.9 that the unique maximal set W ∈ C =

{C1, C2, C3} such that P(Y|do(A = a), C) = P(Y|do(A = a, W), C \W) con-
tains only C1. That is, the first iteration of the IDC algorithm (Figure 2.8) first
picks W = C1, then reinvokes the algorithm as IDC(Y, {A, C1}, {C2, C3})
which assesses whether Y ⊥⊥ C2|A, C1, C3 in the subgraph GA,C1C2

or Y ⊥⊥
C3|A, C1, C2 in the subgraph GA,C1C3

. However, note that, since no edges are
entering C1, GA,C1C2

and GA,C1C3
correspond to GAC2

and GAC3
in Figure 2.9,

respectively. Since we already have that the above conditional independen-
cies do not hold in the latter subgraphs, we conclude that C1 is the unique
maximal set such that P(Y|do(A = a), C) = P(Y|do(A = a, W), C \W).
Consequently, we have

P(Y|do(A = a), C1, C2, C3) =
P(Y, C2, C3|do(A = a, C1))

∑y P(Y = y, C2, C3|do(A = a, C1))
,

such that identification of P(Y|do(A = a), C1, C2, C3) depends on identifica-
tion of the unconditional joint interventional distribution P(Y, C2, C3|do(A =

a, C1)), which can be obtained by the ID algorithm as follows.

All variables in the subgraph GV\{A,C1} (Figure 2.10), are ancestors of
{Y, C2, C3}, such that GV\{A,C1} = GD′ .14 This subgraph GD′ contains two

conditional on (a subset of) covariates in the sufficient adjustment set.
14In order to avoid confusion, we will denote the set of ancestors of {Y, C2, C3} in
GV\{A,C1} by D′ and the districts in GD′ by D′i .
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districts, i.e. D′1 = {C2, C3, M} and D′2 = {Y}, such that P(Y, C2, C3|do(A =

a, C1 = c1)) can be expressed as

∑
c2,c3,m

Q[{C2, C3, M}]Q[{Y}].

It was shown in section 2.5.4 that Q[{Y}] = P(Y|A, M, C3), so we only
need to obtain Q[D′1] from its corresponding district in G, i.e. Q[S2]. For
this purpose, we need to invoke Identify(D′1, S2, Q[S2]). However, because
the set of ancestors of D′1 in the subgraph GS2 (Figure 2.7) coincides with
S2, Q[D′1] is not identifiable. Because identification of Q[D′1] fails, identi-
fication of P(Y, C2, C3|do(A = a, C1)) also fails, which ultimately leads to
the conclusion that the conditional effect P(Y|do(A = a), C1, C2, C3) is not
identifiable from observable data.

However, it can easily be shown that, in contrast, e.g. P(Y|do(A =

a), C1, C3) is identifiable. This can mainly be appreciated upon noting that
by avoiding to condition on collider C2, C3 may – in addition to C1 – also be
included in the unique maximal subset W such that P(Y|do(A = a), C \ C2)

= P(Y|do(A = a, W), (C \ C2) \W). As a result, P(Y|do(A = a), C1, C3)

equals P(Y|do(A = a, C1, C3)), which can be shown to be identified via the
ID algorithm.
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Chapter 3

Identifying natural and
path-specific effects from
observed data

This chapter is an adapted version of a handbook chapter submitted for
peer review in M. Drton, S. Lauritzen, M. Maathuis, M. Wainwright (Eds.),
Handbook of Graphical Models. CRC Press.

In this chapter, we will study non-parametric identification of natural
direct and indirect effects, and of path-specific effects (Avin et al., 2005)
in general. In particular, we revisit earlier identifying assumptions (Pearl,
2001) in the light of a recently proposed graphical identification criterion
for path-specific effects (Shpitser, 2013) that extends previous work on
complete conditions for non-parametric identification of total treatment
effects (Huang and Valtorta, 2006; Shpitser and Pearl, 2006a,b, 2008a; Tian
and Pearl, 2002, 2003) – as discussed in chapter 2 – to allow for effect de-
composition. Through various worked-out examples, we aim to provide
insight into the use of this graphical criterion, as well as into the nature
of the assumptions on which mediation analysis relies. Before conclud-
ing this chapter by extending notions of natural direct and indirect effects
to more generally defined path-specific effects, we highlight that Shpitser
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(2013)’s graphical criterion leads to novel insights that may contribute to a
more comprehensive understanding of recent conceptual developments and
formulations inspired by the debate about the distinct and controversial na-
ture of both definitions and required assumptions of targeted path-specific
effects (Robins and Richardson, 2010).

3.1 Cross-world counterfactuals...

Despite their formal and intuitive appeal, non-parametric identification of
natural effects is subtle and a source of much controversy. The reason is that
the usual consistency assumptions alone – namely that M(a) and Y(a) equal
M and Y, respectively, when A = a, and that Y(a, m) equals Y when A = a
and M = m – do not suffice to link all counterfactual data to observed data.
In particular, nested counterfactual outcomes Y(a, M(a′)) are unobservable
when a 6= a′. Data, whether experimental or observational, thus never carry
information about the distribution of these counterfactuals as they imply
a union of two incompatible states a and a′ that may only seem to coexist
‘across multiple worlds’. Mediation analyses based on natural effects are
thus bound to rely on assumptions that cannot be empirically verified or
guaranteed by the study design. Even randomised cross-over trials, where
one would first manipulate A to a′ to observe M(a′), and then manipulate
A to a and M to M(a′) to finally observe Y(a, M(a′)), would require strong
assumptions of no period effect and no carry-over effects at the individual
level (Imai et al., 2013; Josephy et al., 2015; Robins and Greenland, 1992).

3.2 ... require cross-world assumptions

To develop intuition into non-parametric identification of natural effects –
and, by extension, path-specific effects – we will work through a number of
simple, but typical examples.

Consider the basic mediation setting depicted in the causal diagram in
Figure 3.1. Identification of natural effects in this setting can be obtained if
we recover the distribution of nested counterfactuals P(Y(a, M(a′)) = y).
This requires summing the joint counterfactual distribution P(Y(a, m) =
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A M

Y

Figure 3.1: A simple, typically over-simplistic, mediation graph.

y, M(a′) = m) over m. When a 6= a′, the observed data carry no information
about the dependence of Y(a, m) and M(a′). This articulates why natural
effects cannot, in general, be identified from experimental data without
further, untestable assumptions.

One such assumption is that of cross-world independence,

Y(a, m) ⊥⊥ M(a′), (i)

which Pearl (2001) claimed to be key to ‘experimental’ identification of natu-
ral effects. Under this assumption, we can factorize P(Y(a, m) = y, M(a′) =
m) as a product of interventional distributions1 – each of which is identified
from observed data under the assumptions encoded in the causal diagram
in Figure 3.1 – as follows

P(Y(a, M(a′)) = y) = ∑
m

P(Y(a, m) = y, M(a′) = m)

= ∑
m

P(Y(a, m) = y)P(M(a′) = m)

= ∑
m

P(Y = y|A = a, M = m)P(M = m|A = a′).

3.2.1 Non-parametric structural equation models

Cross-world independence (i) is satisfied under the non-parametric struc-
tural equation model (NPSEM) associated with the causal diagram in Fig-

1In this chapter, we will use counterfactual notation instead of Pearl’s do-notation (since
cross-world counterfactuals simply cannot be expressed using do-notation). However,
we will refer to counterfactual distributions as interventional distributions, whenever
appropriate.
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ure 3.1. This model is defined by the following structural equations:

A = fA(εA)

M = fM(A, εM)

Y = fY(A, M, εY)

where fA, fM and fY are unknown deterministic functions and εA, εM and
εY are mutually independent random error terms (representing unobserved
background variables).

The invariance of these structural equations enables to deduce the coun-
terfactual dependencies that they encode. For example, under the joint
intervention do(A = a, M = m) and the single intervention do(A = a′), the
structural equations can be written respectively as

A = a A = a′

M(a) = m M(a′) = fM(a′, εM)

Y(a, m) = fY(a, m, εY) Y(a′) = fY(a′, M(a′), εY)

Under this representation, the only variation in the so-called one-step ahead
counterfactuals Vi(pai) = fVi(pai, εi) – where Vi could be any variable on the
causal diagram and pai refers to its parents – is due to the mutually indepen-
dent error terms. It thus follows that all such one-step ahead counterfactuals
are also mutually independent, irrespective of the value pai to which Vi’s
parents are set. As a result, independence of the error terms εM ⊥⊥ εY in
the above structural equations not only translates into Y(a, m) ⊥⊥ M(a) but
also into cross-world independence (i). This may sound reassuring, but also
signals the restrictiveness of the NPSEM (e.g. Robins and Richardson, 2010).

3.2.2 Unmeasured mediator-outcome confounding

However, the assumption of independent error terms εM ⊥⊥ εY encoded
in the NPSEM representation of Figure 3.1 requires all common causes of
mediator and outcome to be represented on the graph. It is therefore likely
violated, even if treatment is randomised. In this section, we will therefore
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(A)

A M

Y

U

(B)

A M

Y

C

U

(C)

A M

Y

C U

Figure 3.2: A more realistic mediation graph with unmeasured mediator-outcome
confounding (A) along with two scenarios where a covariate set C may deconfound
the mediator-outcome relation (B,C).

relax assumptions by adding a hidden node U, which induces unmeasured
confounding of the mediator-outcome relation, as in Figure 3.2A.

The NPSEM associated with this causal diagram can thus be considered
a semi-Markovian NPSEM, a broader class of graphical models which are
often represented by acyclic directed mixed graphs (ADMGs) that employ
bi-directed edges to indicate (potential) unmeasured confounding (Richard-
son, 2003). However, as in chapter 2, for the purpose of our presentation,
we will explicitly represent hidden variables U by circled nodes and their
direct effects on observed variables V by dashed edges.

Not surprisingly, by treatment randomization, P(Y(a) = y) is still iden-
tified by P(Y = y|A = a) under Figure 3.2A. Formally, since U ⊥⊥ A, the
truncated factorization formula yields

P(Y(a) = y) = ∑
u,m

P(Y = y|A = a, M = m, U = u)

× P(M = m|A = a, U = u)P(U = u), (3.1)

= ∑
m

P(Y = y|A = a, M = m)P(M = m|A = a) (3.2)

= P(Y = y|A = a).

Unfortunately, a similar marginalisation over the distribution of U does not
permit to identify P(Y(a, M(a′)) = y), even under conditional cross-world
independence Y(a, m) ⊥⊥ M(a′)|U. Indeed, we obtain

P(Y(a, M(a′)) = y) = ∑
u,m

P(Y(a, m) = y|U = u)

× P(M(a′) = m|U = u)P(U = u)
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= ∑
u,m

P(Y = y|A = a, M = m, U = u)

× P(M = m|A = a′, U = u)P(U = u),
(3.3)

an expression that closely resembles expression (3.1), but that cannot be
further simplified as a functional of observed variables (such as expres-
sion (3.2)) because of the conflicting treatment assignments in its first two
factors.

3.2.3 Identification by the mediation formula

Issues of non-identifiability of P(Y(a, M(a′)) = y) can, however, be reme-
died when one has available a measured set of prognostic covariates C for
mediator and/or outcome that renders the mediator-outcome relationship
unconfounded given treatment assignment. This is because the existence
of such a set C, as, for instance, in the causal diagrams of Figures 3.2B
and 3.2C, no longer necessitates stratifying on U to establish cross-world
independence.

For example, in Figure 3.2B, conditioning on C suffices, since

Y(a, m) = fY(a, m, C, εY)

M(a′) = fM(a′, U, εM),

such that we obtain cross-world independence within strata of C, i.e.

Y(a, m) ⊥⊥ M(a′)|C. (ii)

This then implies the same functional as expression (3.3) but with unob-
served U replaced by the observed set C

P(Y(a, M(a′)) = y) = ∑
c,m

P(Y(a, m) = y|C = c)

× P(M(a′) = m|C = c)P(C = c) (3.4)

= ∑
c,m

P(Y = y|A = a, M = m, C = c)

× P(M = m|A = a′, C = c)P(C = c).
(3.5)
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This functional is commonly referred to as Pearl (2001)’s mediation formula.

To appreciate the importance of adjustment for prognostic factors C,
reconsider the Job Search Intervention Study (JOBS II) (Vinokur et al., 1995),
an often cited empirical mediation example that was introduced in sec-
tion 1.1.1 of chapter 1. Recall that the JOBS II field experiment was designed
to assess the effectiveness of a theory-driven job training intervention that
aimed to both increase reemployment and reduce depressive symptoms
in unemployed workers. One mediation question of interest was whether
workshop participation led to reduction in depressive symptoms (at two
months follow-up) by increasing chances of getting reemployed (at two
months follow-up). Randomization of the intervention in itself did not
suffice to eliminate potential confounding between re-employment M and
the outcome. It is therefore essential to adjust for pretreatment level of
depression, a strong prognostic factor of the outcome of interest and most
likely also related to re-employment. Measurements on a range of other
baseline covariates, including demographics, previous occupation and fi-
nancial strain, were also collected and adjusted for in order to strengthen
the validity of cross-world assumption (ii).

3.2.4 Treatment-induced mediator-outcome confounding

The previous example may have led the reader to erroneously conclude
that, given treatment randomization, adjustment for a measured covariate
set C that deconfounds the mediator-outcome relation within treatment
arms, is all that is required to establish cross-world independence (ii) under
NPSEMs, thus enabling identification of P(Y(a, M(a′)) = y).

An important additional requirement, however, is that no element of C is
affected by treatment. Intuitively, such adjustment would block the pathway
from A to M via C, which makes up part of the natural indirect effect of
interest. More importantly, and more formally, a lack of identification can
be understood as follows.

According to the NPSEM associated with the causal diagram in Fig-
ure 3.3A, Y(a, l, m), M(a′, l′) and {L(a), L(a′)} are mutually independent,
such that, by the generalized consistency assumption (Pearl, 2000) – which
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Figure 3.3: Problematic mediation graphs with treatment-induced confounding.

states that for each a and a′, Y(a, L(a), m) = Y(a, m) and M(a′, L(a′)) =

M(a′) with probability 1 – Y(a, m) ⊥⊥ M(a′) holds conditional on {L(a) =
l, L(a′) = l′}. This can also be seen upon noting that

Y(a, m) = fY(a, m, L(a), εY)

M(a′) = fM(a′, L(a′), εM),

which allows to express P(Y(a, M(a′)) = y) as

∑
l,l′,m

P(Y(a, m) = y|L(a) = l, L(a′) = l′)P(M(a′) = m|L(a) = l, L(a′) = l′)

× P(L(a) = l, L(a′) = l′)

= ∑
l,l′,m

P(Y = y|A = a, L = l, M = m)P(M = m|A = a′, L = l′)

× P(L(a) = l, L(a′) = l′).

However, this expression cannot be further reduced to a functional of the
observed data as it requires the joint counterfactual distribution P(L(a) =
l, L(a′) = l′). Since this distribution again involves conflicting treatment
assignments, strong untestable restrictions (beyond those encoded in the
NPSEM representation of Figure 3.3A) would be needed to enable identifi-
cation.

In the JOBS II study, all available covariates were measured prior to
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randomization. It may thus be safely assumed that none of them was
affected by the intervention. However, as will be discussed later, other
mediators of the intervention’s effect on mental health, such as an altered
sense of self-efficacy, may well have affected re-employment and thus mani-
fest themselves as mediator-outcome confounders that are affected by the
intervention. In that case, cross-world independence (ii) would be violated.

3.2.5 Pearl’s graphical criteria for cross-world independence

Pearl (2001) devised two graphical criteria for assessing cross-world inde-
pendence (ii) under a NPSEM, the logic for which can be understood from
the previous two examples in sections 3.2.2 and 3.2.4.

The first criterion requires the availability of an adjustment set C that is
sufficient, along with treatment A, to adjust for confounding of the associa-
tion between mediator and outcome. Such covariate set C should block all
back-door paths between mediator and outcome (except those traversing
A) in the sense that

(Y ⊥⊥ M|C)GAM (iii)

that is, C d-separates Y from M in GAM, the subgraph formed from the
original graph G by deleting all arrows emanating from A and M.

The second criterion requires that

no element of C is affected by treatment. (iv)

We will henceforth refer to this criterion as ‘no treatment-induced confound-
ing’ or ‘no intermediate confounding’.

3.3 Avoiding recantation...

The key problem in the examples in sections 3.2.2 and 3.2.4, which respec-
tively violate (iii) and (iv), is that the occurrence of conflicting treatment
assignments in certain factors prevents further identification. It can be
shown that this problem arises whenever the conflict is situated in the re-
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spective (interventional) distributions of variables belonging to the same
confounded component (abbreviated: c-component) (Tian and Pearl, 2002) or
district (Richardson, 2009). As discussed in more detail in section 2.5.2 of
chapter 2, any two observed variables that share a common unobserved
parent belong to the same c-component or district.

For instance, in Figure 3.2A, identification of P(Y(a, M(a′)) = y) (see
expression (3.3)) requires evaluating M when A is set to a′ and Y when A is
set to a. However, since M and Y share a common unmeasured cause U and
thus belong the same district {M, Y}, the truncated factorization formula
yields univariate factors for M and Y that both require conditioning on
U. However, since U is unobserved, we cannot generally marginalise
over it in expression (3.3), unless a = a′, as in expression (3.1). Likewise,
P(Y(a, M(a′)) = y) is not identifiable in Figure 3.3A because the conflict
arises within a single node L, which is itself a district.

In the next sections we provide a more formal treatment of the perhaps
rather intuitive notion of such conflicting treatment assignments.

3.3.1 From recanting witnesses...

In the terminology of Avin et al. (2005), L in Figure 3.3A would be called a
recanting witness for the following reason. For identification of the natural
indirect effect it would need to retract an earlier statement, which allows
treatment to transmit its entire effect on the mediator in order not to block the
path from A to M via L, in favour of a new statement that keeps treatment
from transmitting its effect on the outcome other than through the mediator,
so as to block the path from A to Y via L. The recanting witness criterion
(Avin et al., 2005) formalizes this requirement of having no such witnesses
on the paths of interest in order to identify the targeted path-specific effect –
such as the natural direct or indirect effect – transmitted along those paths.

3.3.2 ... to recanting districts

Shpitser (2013) recently developed a complete graphical criterion for iden-
tifying path-specific effects under NPSEMs by generalizing the recanting
witness criterion to also account for settings with sequential treatments and
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unmeasured confounding. Informally, this criterion – which is formalized
by theorem 3.4.1 below – requires there to be no ‘conflict of interest’ be-
tween members of a common district within a particular subgraph of G.
Districts in which such conflicts exist, are said to be recanting with respect
to a path-specific effect of interest, as formally defined as follows.2

Definition 3.3.1. Recanting district (Shpitser, 2013). Let G be an ADMG, V
the set of observed nodes in G, and π a subset of directed paths from A ∈ V to
Y ∈ V in G. Let D be the set of ancestors of Y (including Y) in the subgraph3

GV\A. Then a district Di in the subgraph GD is called a recanting district for the
π-specific effect of A on Y – i.e. the path-specific effect along all paths in π – if
there exist nodes Zj, Zk ∈ Di (possibly Zj = Zk) such that there is a directed path
A→ Zj → ...→ Y in π, and a directed path A→ Zk → ...→ Y not in π.

Although this definition applies to generally defined path-specific effects
which consist of arbitrary bundles of causal or directed paths π, for now,
we will solely focus on natural effects with respect to a single (possibly
vector-valued) mediator of interest M.

3.3.3 Some examples

The natural direct effect in the causal diagram G in Figure 3.2A consists only
of the directed path A→ Y, such that π = {A→ Y}. The set of observed
variables in G corresponds to V = {A, M, Y}. The set of ancestors of Y in
GV\A (including Y) corresponds to D = {M, Y}. Note that D, in this case, is
itself a district, because of unoberved mediator-outcome confounding by U.
Moreover, it is recanting, since there exist nodes M ∈ D and Y ∈ D, such
that the directed path A → Y is in π and the directed path A → M → Y
is not in π. It can easily be shown that, by symmetry, D is also a recanting

2In Shpitser (2013)’s original paper, a more general definition was provided in the sense
that A and Y could be sets of nodes in G. For the purpose of this chapter, and for ease of
exposition, we provide a slightly simplified version of this definition which is restricted to
singletons A and Y.

3Let GC be a subgraph of G composed only of nodes in C and edges in G with both
endpoints in C. Similarly, if G corresponds to a DAG with hidden nodes, such as displayed
throughout this chapter, then GC corresponds to a subgraph of G composed only of nodes
in C, hidden nodes with at least two children in C and edges in G with both endpoints in C.
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district for the natural indirect effect, which consists of the directed path
A → M → Y. In other words, since natural direct and indirect effects are
each other’s complement – i.e. particular instances of each effect combine
to produce the total treatment effect – D is recanting with respect to both
the natural direct and the natural indirect effect.

Similarly, if π is chosen to represent the natural indirect effect in the
causal diagram G in Figure 3.3A, then π = {A → M → Y, A → L →
M → Y}. The set of observed variables in G now corresponds to V =

{A, L, M, Y}. The set of ancestors of Y in GV\A (including Y) corresponds
to D = {L, M, Y}, with districts D1 = {L}, D2 = {M} and D3 = {Y}.
As already intuitively motivated, it is easily shown that D1 is a recanting
district with respect to π, since there exists a node L ∈ D1, such that the
directed path A→ L→ M→ Y is in π and the directed path A→ L→ Y
is not in π. Again, by symmetry, D1 is also a recanting district with respect
to the natural direct effect in G.

3.4 ...yields interventional identification

Having provided a formal definition of recanting districts, we are now
ready to discuss a graphical criterion that enables transporting cross-world
quantities – used to define path-specific effects – into a strictly interventional
framework under NPSEMs.

3.4.1 The recanting district criterion

Theorem 3.4.1. Recanting district criterion (Shpitser, 2013). Let G be an ADMG,
V the set of observed nodes in G, and π a subset of directed paths from A ∈ V to
Y ∈ V in G. Then the π-specific effect of A on Y is expressible as a functional of
interventional distributions if and only if there does not exist a recanting district
for this effect.

From this perspective, the need for an observed covariate set C, that
is sufficient to adjust for confounding of the mediator-outcome relation
(within strata of A), serves to establish that mediator and outcome belong
to separate districts so that no conflict arises (provided that no member
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of C is affected by treatment). For instance, in Figure 3.2A, a sufficient
adjustment set C enables to pull apart the district {M, Y} and resolve the
conflict in order to ensure the validity of cross-world assumption (ii) that
permits factorizing P(Y(a, m) = y, M(a′) = m|C = c) as P(Y(a, m) =

y|C = c)P(M(a′) = m|C = c).

Importantly, the central notion of recantation thus groups Pearl (2001)’s
graphical criteria (iii) and (iv) for establishing cross-world independence (ii)
under NPSEMs by offering a framework that allows their respective viola-
tions to be interpreted as distinct instances of essentially the same problem.
As will be discussed in section 3.2.5, the implications of this graphical
criterion reach beyond those provided earlier by Pearl (2001).

3.4.2 Interventional identification 1.0

Since cross-world independence (ii) thus enables expressing the cross-world
counterfactual distribution P(Y(a, M(a′)) = y) in terms of interventional
distributions, as in expression (3.4), Pearl (2001) complemented (ii) with a
second and third condition for identification. In particular, P(Y(a, M(a′)) =
y) can be estimated from observed data if, in addition to (ii),

P(M(a′) = m|C = c) is identifiable by some means, and (v)

P(Y(a, m) = y|C = c) is identifiable by some means. (vi)

In accordance with Pearl (2014), we explicitly add ‘identifiable by some
means’, since these last two conditions have often been interpreted too
strictly in the literature in terms of identifiability by means of adjustment
for C. Specifically, (v) has typically been replaced by

M(a′) ⊥⊥ A|C (v’)

and (vi) by requiring that

Y(a, m) ⊥⊥ A|C, (vi’)

Y(a, m) ⊥⊥ M|A = a, C (vi”)
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both hold, implying once more Pearl’s well-known mediation formula
(expression (3.5)).

The adjustment criterion for natural effects

A complete graphical criterion for identification of P(Y(a, M(a′)) = y)
under NPSEMs by the mediation formula was developed by Shpitser and
VanderWeele (2011). They termed expression (3.5) the adjustment formula for
natural direct and indirect effects in order to emphasize the restrictiveness of
the identification strategy. This criterion generalizes the adjustment criterion
(Shpitser et al., 2010), a complete graphical criterion for identification of
total treatment effects P(Y(a) = y) by the adjustment formula ∑c P(Y =

y|A = a, C = c)P(C = c), as discussed in section 2.4.2 of chapter 2.

Specifically, in order for P(Y(a, M(a′)) = y) to be identified by expres-
sion (3.5) under NPSEMs, this generalized adjustment criterion demands
that both P(M(a) = m) and P(Y(a, m) = y) are identifiable by means of
adjustment for a common set of measured baseline confounders C. That
is, P(M(a) = m) is identified by ∑c P(M = m|A = a, C = c)P(C = c)
and P(Y(a, m) = y) by ∑c P(Y = y|A = a, M = m, C = c)P(C = c),
implying that P(M(a) = m|C = c) and P(Y(a, m) = y|C = c) in condi-
tions (iii) and (iv) are readily identified as P(M = m|A = a, C = c) and
P(Y = y|A = a, M = m, C = c), respectively, without needing additional
auxiliary covariates for identification.

Intuitively, the adjustment criterion for natural effects can be thought of
aiming to establish both cross-world independence (ii) and conditions (v)
and (vi) solely by means of adjustment for a common measured covariate
set C. First, it demands no unmeasured mediator-outcome confounding,
as in Figure 3.2A, which would violate cross-world independence (ii) and,
moreover, hamper identification of P(Y(a, m) = y) by means of covariate
adjustment. Second, it demands the absence of treatment-induced mediator-
outcome confounders, such as L in Figure 3.3A, since the presence of such
intermediate confounders would both violate cross-world independence (ii)
and hinder the availability of a common set C that enables identification
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of both P(M(a) = m) and P(Y(a, m) = y) by means of adjustment for C.4

Establishing cross-world independence (ii) and conditions (iii) and (iv) by
means of the generalized adjustment criterion thus appear to go hand in
hand.

Semi-parametric estimators

In section 2.4.3 of chapter 2, we illustrated that rewriting the adjustment
formula for treatment effects (in point treatment studies) leads to two semi-
parametric estimators. Similar estimators for natural direct and indirect
effects have been developed based on the generalized adjustment formula
for mediation analyis (or Pearl’s mediation formula) (expression (3.5)).

Ratio-of-mediator-probability-weighting estimator One such estimator
(Hong, 2010; Lange et al., 2012) requires a working model for the mediator
distribution P(M|A, C) in order to calculate weights that are based on the
ratio of mediator probabilities (under different treatment assignments). It
can be seen to arise by rewriting expression (3.5) as follows

E{Y(a, M(a′))}
= ∑

c,m
E(Y|A = a, M = m, C = c)P(M = m|A = a′, C = c)P(C = c)

= ∑
y,c,m

y · P(Y = y|A = a, M = m, C = c)

× P(M = m|A = a′, C = c)
P(C = c, A = a)
P(A = a|C = c)

= ∑
y,c,m

y · P(Y = y, M = m|A = a, C = c)

× P(M = m|A = a′, C = c)
P(M = m|A = a, C = c)

P(C = c|A = a)P(A = a)
P(A = a|C = c)

= ∑
y,c,m

y · P(Y = y, M = m, C = c|A = a)
P(A = a)

P(A = a|C = c)

4This can be seen upon noting that identification of P(M(a) = m) by covariate adjust-
ment insists L not to be included in C since doing so would amount to adjusting away part
of the effect of interest. On the other hand, even though identification of P(Y(a, m) = y)
cannot be obtained by the adjustment criterion, a more general identifying functional for
P(Y(a, m) = y) can be shown to require some form of adjustment for L.
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× P(M = m|A = a′, C = c)
P(M = m|A = a, C = c)

= E
[

YI(A = a)
P(A = a|C)

P(M|A = a′, C)
P(M|A = a, C)

]
.

Just as for the inverse probability weighted estimator, discussed in sec-
tion 2.4.3, one needs to (additionally) weight by the inverse of the probabil-
ity of being assigned to treatment arm a, to account for the possibly selective
nature of subjects with treatment assignment A = a. One thus additionally
needs to fit a propensity score model P(A|C).

Imputation estimator Another estimator (Albert, 2012; Vansteelandt et al.,
2012b) requires an imputation model for the mean outcome given treatment,
mediator and covariate set C, to impute counterfactual outcomes under a
(possibly) counterfactual treatment assignment A = a. It can be seen to
arise by rewriting expression (3.5) as follows

E{Y(a, M(a′))}
= ∑

c,m
E(Y|A = a, M = m, C = c)P(M = m|A = a′, C = c)P(C = c)

= ∑
c,m

E(Y|A = a, M = m, C = c)
P(M = m, C = c, A = a′)

P(A = a′|C = c)

= ∑
c,m

E(Y|A = a, M = m, C = c)
P(M = m, C = c|A = a′)P(A = a′)

P(A = a′|C = c)

= E
[

I(A = a′)
P(A = a′|C)E(Y|A = a, M, C)

]
.

Similarly, the resulting estimator additionally requires to weight by the
inverse of the probability of being assigned to treatment level a′, to account
for the possibly selective nature of subjects with treatment assignment
A = a′ and hence also requires fitting a propensity score model P(A|C).5

Implementation of these estimators (as well as stratum-specific analogs)

5Technically, such a propensity score model could be avoided by a two-stage imputation
approach. This can be seen upon noting that expression (3.5) can also be rewritten as
E{E[E(Y|A = a, M, C)|A = a′, C]|A = a′}.
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will be discussed in more detail in chapter 4. The unbiasedness of these
estimators logically depends on whether the used covariate set C satisfies
the adjustment criterion relative to both (A, M) and ({A, M}, Y).

Increased identification power in observational studies

At least from a theoretical point of view, it can be argued that the adjustment
criterion seriously limits the ability to identify P(Y(a, M(a′)) = y). Indeed,
as recently indicated by Pearl (2014), the interventional distributions in (v)
and (vi) can be identified under a much wider range of research settings by
Shpitser and Pearl (2006a)’s IDC algorithm for conditional treatment effects,
which may involve

(a) additional adjustment for separate (but possibly overlapping) covari-
ate sets or

(b) mediating instruments6 that enable application of the front-door esti-
mator (as discussed in section 2.5.1 in chapter 2).

Pearl (2014) referred to the first identification strategy (a) as piecemeal
deconfounding, because it can be regarded as a compromise between iden-
tification by the adjustment criterion (which requires identification by ad-
justment for a common set of covariates) and more general identification
strategies such as (b). More specifically, this ‘divide and conquer’ strategy
requires finding a set C that both satisfies (ii) and enables identification of
P(M(a′) = m|C = c) and P(Y(a, m) = y|C = c) by means of adjusting for
sufficient adjustment sets Cm and Cy, respectively.7

The increased identification power of these additional strategies is,
however, only relevant for observational studies (e.g. Imai et al., 2014),
as both (v’) and (vi’) are satisfied by design if treatment is randomized,
whereas (vi”) follows from combining either of these two assumptions

6This terminology was used in Pearl (2014) to refer to strong intermediate variables that
fully mediate certain effects whose identification can thus be obtained by the front-door
criterion.

7This thus implies that P(M(a′) = m|C = c) is identified by ∑cm P(M = m|A = a′, C =
c, Cm = cm)P(Cm = cm) and P(Y(a, m) = y|C = c) by ∑cy P(Y = y|A = a, M = m, C =

c, Cy = cy)P(Cy = cy).
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with (ii). This indeed implies that, in experimental studies in which treat-
ment is randomized, only cross-world independence (ii) is required.

3.4.3 Interventional identification 2.0

We now show how the insights provided by the central notion of recantation
can be incorporated within recent work on complete identification algo-
rithms for interventional distributions (Huang and Valtorta, 2006; Shpitser
and Pearl, 2006a,b, 2008a; Tian and Pearl, 2003) so as to arrive at identifi-
cation strategies with complete identification power. Specifically, Shpitser
(2013) recently proved that any π-specific effect of A on Y is identifiable
under NPSEMs if, and only if the following two conditions hold:

there is no recanting district for the π-specific effect of A on Y (vii)

P(Y(a) = y) is identifiable by some means. (viii)

Since π may refer to a subset of paths that constitute either a natural direct
or a natural indirect effect, this result also provides a complete identification
criterion for P(Y(a, M(a′)) = y).

Below we demonstrate that this result opens avenues towards novel
strategies for identifying natural effects, mainly by resorting to alterna-
tive cross-world assumptions that may substitute for cross-world indepen-
dence (ii). Before doing this, we give a more detailed review of Shpitser
(2013)’s main results, followed by some examples.

From cross-world to interventional quantities

In the beginning of this section, we already mentioned that the recant-
ing district criterion enables translating cross-world quantities – used to
define path-specific effects – into interventional quantities. It does so by
demanding there to be no recanting district for the π-specific effect of in-
terest, such that conflicting treatment assignments only occur in different
districts. Specifically, if condition (vii) holds, by Theorem 3.4.1, π-specific
effects on some outcome Y can be expressed as a functional of interventional
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distributions8

∑
d\y

∏
i

P(Di|do(PA (Di) = pai (Di))), (3.6)

where PA (Di) = PA(Di) \ Di denotes the set of parents of all nodes in
district Di (excluding nodes in Di itself). Here, the product runs across
all districts Di in the subgraph GD, and the summation is made over all
possible realisations of the nodes in these districts, except for the outcome.
Note that this expression closely matches Tian and Pearl (2003)’s identifying
functional for interventional distributions P(Y(a) = y) (expression (2.16) in
chapter 2), which builds on c-component factorization and can be consid-
ered a generalization of the truncated factorization formula to DAGs with
hidden variables. In fact, expression (3.6) differs from expression (2.16) only
to the extent that treatment assignments are allowed to be different across
districts. This is indicated by the superscript i in pai (Di), which denotes
the vector of value assignments to PA (Di). For instance, pai (Di) includes
the treatment assignment a or a′ depending on whether Di includes children
of treatment A that transmit part of the natural direct or indirect effect, re-
spectively. More generally, if interest lies in identifying a certain π-specific
effect, then pai (Di) includes e.g. the active treatment assignment a (or
baseline assignment a′) depending on whether (or not) Di includes children
of treatment A that transmit part of that π-specific effect, respectively.

From interventional to observed quantities

Further identification of π-specific effects in terms of observational distribu-
tions thus depends on whether each factor P(Di|do(PA (Di) = pai (Di)))

in expression (3.6) is identifiable from the observed data. However, be-
cause expression (3.6) only differs from Tian and Pearl (2003)’s identifying
functional in that the former allows for conflicting treatment assignments
between districts, identifiability of P(Y(a) = y) by Tian’s ID algorithm
logically implies each factor in expression (3.6) to be expressible in terms of

8For notational simplicity, we choose to display expression (3.6) in terms of interven-
tional rather than counterfactual notation.

63



Chapter 3. Identifying natural and path-specific effects from observed data

3

observational distributions. This is made explicit in condition (viii).

Some examples

To illustrate the above results, we give a number of examples in which
the recanting district criterion mainly serves to establish cross-world in-
dependence (ii); natural effects are therefore also identified under Pearl’s
identifying conditions, as discussed in section 3.4.2. In the next section,
we develop a novel complementary identification strategy that is inspired
by the logic of the recanting district criterion and circumvents cross-world
independence (ii).

A simple example In the subgraph GD of causal diagram G in Figure 3.2B,
there are two districts in D = {C, M, Y}, i.e. D1 = {M, C} and D2 = {Y},
such that, by Theorem 3.4.1, P(Y(a, M(a′)) = y) is expressible as

∑
c,m

P(Y = y|do(A = a, M = m, C = c))P(M = m, C = c|do(A = a′)).

Since we know that P(Y(a) = y) is identifiable, each of the factors in this
expression must also be identifiable. Indeed, by Tian’s ID algorithm, we
find that this expression can be written as a functional of the observed data,
i.e. expression (3.5).

If C were unmeasured, such as in Figure 3.2A, the identifying functional
for P(Y(a) = y) would be

∑
m

P(Y = y, M = m|do(A = a)),

an expression that necessarily groups together M and Y into a joint interven-
tional distribution, because they belong to a common district {M, Y}. This
grouping into joint distributions once more illustrates the obstacle to enable
conflicting treatment assignments for nodes in a common district, as was
also exemplified by the inability to marginalise over U in expression (3.3).
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Figure 3.4: The somewhat more involved graph G from chapter 2 along with its
subgraph GD.

A somewhat more involved example Consider again the causal diagram
G from Figure 2.7, which corresponds to Figure 5F in Pearl (2014) and is
reproduced here in Figure 3.4, for convenience, along with the subgraph of
interest GD.

In section 2.5.4 of chapter 2, we had demonstrated that P(Y(a) = y) is
not identifiable in G via the adjustment criterion. Similarly, no common
set of baseline covariates C can be found such that the adjustment criterion
is satisfied relative to both (A, M) and ({A, M}, Y). That is, any subset
of {C1, C2, C3} that includes C2 but not C3 can be shown to satisfy the
adjustment criterion relative to (A, M). This can be seen by noting that,
in any case, we must adjust for C2. Since C3 is a collider, adjusting for it
opens spurious pathways A ← U3 → C3 ← C1 → M and A ← U3 →
C3 ← U1 → C2 ← U2 → M that cannot be blocked by additionally

adjusting for C1. However, the adjustment criterion relative to ({A, M}, Y)
insists that C3 be included in the adjustment set, because the spurious path
A← U3 → C3 → Y can only be blocked by C3. The adjustment criterion for
natural effects (Shpitser and VanderWeele, 2011) thus tells us that, logically,
since P(Y(a) = y) is not identifiable via the adjustment criterion, neither is
P(Y(a, M(a′)) = y).

Nonetheless, since there is no recanting district for the natural direct or
indirect effect in GD, the identifying functional for P(Y(a, M(a′)) = y) can
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be expressed as

∑
c1,c3,m

P(Y|do(A = a, M = m, C3 = c3))P(M = m|do(A = a′, C1 = c1))

× P(C3 = c3|do(C1 = c1))P(C1 = c1). (3.7)

Moreover, since – as illustrated in section 2.5.4 of chapter 2 – P(Y(a) = y)
is identifiable by Tian’s ID algorithm, the above expression is likewise
identified from the observed data, namely as:

∑
c1,c2,c3,m

P(Y|A = a, M = m, C3 = c3)P(M = m|A = a′, C1 = c1, C2 = c2)

× P(C1 = c1)P(C2 = c2)P(C3 = c3|C1 = c1). (3.8)

Note that, in contrast to the previous example, this functional cannot be
reduced to an expression of the form of the adjustment formula.

Nonetheless, it can easily be verified that Pearl’s ‘piecemeal deconfound-
ing’ approach would have yielded the same identification result. However,
it would have required searching the space of candidate covariate sets C that
not only satisfied cross-world indendence (ii) (i.e. {C1}, {C3} or {C1, C3})
but also conditions (v) and (vi) (i.e. only {C1}). Shpitser’s identification
approach is not only (more) complete, but arguably also more insightful
as it clarifies that identification of P(Y(a) = y) is the main difficulty in
identifying the natural (in)direct effect, which cannot be achieved solely by
covariate adjustment.

3.4.4 Stratum-specific natural effects

Before going on to discuss further implications of Shpitser (2013)’s result,
one comment merits attention at this point.

Even though the adjustment criterion for natural effects can be shown
to serve identification of both population-averaged and stratum-specific
natural direct and indirect effects – that is, both P(Y(a, M(a′)) = y) and
P(Y(a, M(a′)) = y|C∗), with C∗ ⊆ C – more general identification of
stratum-specific natural effects cannot be obtained under (vii) and (viii), as
these conditions are sufficient for identifying P(Y(a, M(a′)) = y), but not
necessarily for identifying P(Y(a, M(a′)) = y|C∗).
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Whereas complete conditions for identifying stratum-specific natural
effects have yet to be articulated, it is clear, at this point, that corresponding
identification algorithms or criteria will possibly be slightly more involved
than for population-averaged natural effects.9 This can be appreciated by
referring to the increased complexity of the IDC algorithm for conditional
effects (Figure 2.8 in chapter 2) relative to the ID algorithm for marginal
effects (Figure 2.5 in chapter 2).

3.5 Complementary identification strategies

The completeness of Shpitser (2013)’s identification approach reveals that
Pearl (2001)’s identifying conditions (v) and (vi) may not be necessary, since
identifiability of P(Y(a) = y) – i.e. condition (viii) – suffices. Interestingly,
the completeness of conditions (vii) and (viii) also highlights that, in some
rare cases, cross-world independence (ii) – despite being a sufficient con-
dition for experimental identification (Pearl, 2001) – may not be required
either.

3.5.1 Interchanging cross-world assumptions

For example, cross-world independence (ii) is violated in the causal diagram
in Figure 3.5A because there is no adjustment set C such that graphical
criterion (iii) holds. Nonetheless, {M, Y} is not a recanting district because
of the assumed absence of a direct path from A to M. P(Y(a, M(a′)) = y)
can thus be identified as

P(Y(a, M(L(a′))) = y)

= ∑
l,m

P(Y(a, m) = y, M(l) = m, L(a′) = l)

= ∑
u,l,m

P(Y(a, m) = y|U = u)P(M(l) = m|U = u)P(L(a′) = l)P(U = u)

= ∑
u,l,m

P(Y = y|A = a, M = m, U = u)P(M = m|L = l, U = u)

× P(L = l|A = a′)P(U = u)

9Thanks to Ilya Shpitser for clearly pointing this out.
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= ∑
u,l,m

P(Y = y|A = a, L = l, M = m, U = u)P(M = m|A = a, L = l, U = u)

× P(L = l|A = a′)P(U = u|A = a, L = l)

= ∑
l

P(Y = y|A = a, L = l)P(L = l|A = a′).

The same result can be obtained more elegantly via expression (3.6):

∑
l,m

P(Y = y, M = m|do(A = a, L = l))P(L = l|do(A = a′))

= ∑
l,m

P(Y = y|A = a, L = l, M = m)P(M = m|A = a, L = l)P(L = l|A = a′)

= ∑
l

P(Y = y|A = a, L = l)P(L = l|A = a′).

This novel result can be explained by the fact that the recanting district
criterion does not serve to establish identifiability via cross-world inde-
pendence (ii), but, instead, via an alternative cross-world independence
assumption encoded in the associated NPSEM, i.e. Y(a, m) ⊥⊥ L(a′). Indeed,
the above derivations illustrate that the mediating instrument L achieves
to prevent the conflict between treatment assignments a and a′ from tak-
ing place within the district {M, Y} by diverting treatment state a′ to itself,
thereby fulfilling its mediating role, literally and figuratively. A crucial
insight here is that when L is assumed to mediate the entire treatment effect
on the mediator M, then the latter is no longer a child of A, and hence,
cannot receive any input from A that may conflict with any input to other
children of A in the same district.

The above result should, on second thought, not come as a big surprise:
since the effect of treatment on the mediator is (assumed to be) entirely

(A)

A M

Y

L U

(B)

A M

Y

Z

U

(C)

A M

Y

Z

L U

Figure 3.5: Mediation graphs with mediating instruments L for the A→ M path
(A), Z for the A→ Y path (B), and a combination of both (C).
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mediated by L, and, in addition, L only affects the outcome via M (i.e. L
is not an intermediate confounder), L can simply substitute for M. Note
that a mediating instrument on the path between treatment and outcome,
such as Z in Figure 3.5B, would similarly allow to make progress upon
substituting (ii) by cross-world independence Z(a) ⊥⊥ M(a′).

3.5.2 Two types of auxiliary variables

The above examples illustrate that when the treatment effect is identifiable –
i.e. (viii) holds – further identification of P(Y(a, M(a′)) = y) – by (vii) – can
be achieved under NPSEMs with the help of two types of auxiliary variables.
Each type has its own distinct strategy of preventing recantation.10

The first type – such as C in Figures 3.2B and 3.2C – aims to prevent
conflicting treatment assignments within districts by separating nodes of a
district that is very likely to recant because of potential mediator-outcome
confounding – such as {M, Y} in Figure 3.2A – into different districts. Ad-
justment for this type of covariates specifically aims to strengthen assump-
tion (ii).

The second type – such as L or Z in Figures 3.5A, 3.5B and 3.5C – avoids
conflicts in district {M, Y}, not by separating its nodes, but instead hosting
one potential ‘troublemaker’ in its own district. Such mediating instru-
ments therefore do not aspire to establish assumption (ii), but instead target
identification by means of alternative cross-world assumptions that may
substitute for assumption (ii). This result is important since Pearl (2014)
pointed out that, although mediating instruments can be used to identify
P(M(a) = m|C = c) and/or P(Y(a, m) = y|C = c) in order to satisfy
conditions (v) and (vi), they cannot aid in (avoiding recantation by) estab-
lishing cross-world independence (ii) as this can only be achieved by means
of covariate adjustment. However, the recanting district criterion leads
to the novel insight that recantation can be avoided in alternative ways.

10Note that this classification is analogous to the one often used for auxiliary variables
that aid identification of treatment effects, where identification can be achieved via two
main strategies: using either the back-door criterion (i.e. standard adjustment for co-
variates) or the front-door criterion (i.e. sequential adjustment by means of a mediating
instrument).
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More specifically, we have demonstrated the extended utility of mediat-
ing instruments as auxiliary variables that may help to avoid recantation,
thereby establishing cross-world independencies that may substitute for
cross-world independence (ii).

In section 3.7, we further discuss and illustrate complete identification
strategies for generally defined path-specific effects. In the next two sections,
we first aim to provide a bridge between the insights provided by this
complementary identification strategy on the one hand, and certain recent
conceptual developments on the other hand.

3.6 From mediating instruments to conceptual clarity

Contrary to the long-held belief that identification of P(Y(a, M(a′)) = y)
hinges on the assumption that no mediator-outcome confounding is left
unadjusted, mediating instruments arm us with additional identification
power in the presence of such unmeasured confounding. This is interest-
ing as it provides researchers with different identification strategies, each
relative to a specific set of assumptions. One may use this as a basis for a
sensitivity analysis, or adopt the strategy that corresponds with the most
plausible assumptions given a certain research context. However, some
caution is warranted as mediating instruments can be difficult to justify.

First, the assumption that L or Z is a mediating instrument involves
strong and often unrealistic no-direct-effect assumptions (often referred
to as exclusion restrictions).11 For instance, for L in Figure 3.5A to be a
mediating instrument, it would need to mediate the entire effect of A on
M. Despite being a strong assumption, it is partially testable when there is
no unmeasured L−M or A−M confounding, as in Figure 3.5A, for then
M must be conditionally independent of A, given L. Likewise, for Z in
Figure 3.5B to be a mediating instrument for the A → Y path, it would
need to mediate the entire direct treatment effect on the outcome that is not
mediated by M. However, the requirement that Z and M together mediate
the entire treatment effect (which implies Y ⊥⊥ A|Z, M) is untestable in the

11Needless to say, L or Z may also constitute a set of covariates - rather than being
singletons - which satisfy the stated conditions.
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presence of unmeasured M−Y confounding.

Second, even if one is willing to assume that L or Z are mediating
instruments, the requirement of no unmeasured confounding simply shifts
from the mediator-outcome relation to both the instrument-mediator and
instrument-outcome relations. This can be seen upon noting that either
type of unmeasured confounding results in the instrument being ‘absorbed’
into the district {M, Y}, so that it expands to {L, M, Y} in Figure 3.5A or to
{Z, M, Y} in Figure 3.5B. Both of these would be recanting, thereby violating
assumption (iv). As for mediator-outcome confounding, neither types of
unmeasured confounding can be avoided by treatment randomization.

Third, mediating instruments do not resolve the previously considered
identification problems in the presence of intermediate confounding. In fact,
the (testable) exclusion restriction that Z does not affect M, in Figure 3.5B,
can also be thought of as a constraint that prevents Z from turning into
a recanting witness or intermediate confounder. For the same reason the
(untestable) exclusion restriction that L does not affect Y (other than through
M) is key to identification in Figure 3.5A.

Even though the practical use of mediating instruments, as an alternative
route to identification of natural effects, may be debatable, undoubtedly,
their added value is more immediate on a conceptual level. In particu-
lar, such instruments might help to clearly frame some recent conceptual
development that aims to cast mediation analysis into a more strict inter-
ventionist paradigm, void of untestable cross-world assumptions (Robins
and Richardson, 2010). Before going on to discuss this development in more
detail, we briefly sketch some difficulties that may arise when interpreting
natural (but also controlled) effects, at least from a interventional point of
view.

3.6.1 In search of operational definitions

When it comes to the interpretation of natural direct effects, critics adhering
to the slogan ‘no causation without manipulation’ have repeatedly empha-
sised the operational question of how exactly one may go about blocking
the treatment’s effect on the mediator, in order to recover M(0) in treated
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subjects, without affecting the direct path from treatment to outcome (e.g.
Didelez et al., 2006). Inevitably, any answer to this question invokes a me-
diating instrument, such as L in Figure 3.5A, that can be intervened on in
order to prevent treatment from exerting its effect on the mediator.

In order to avoid interpretational ambiguities or strong, untestable cross-
world assumptions, critics have therefore proposed to, instead, study ‘ma-
nipulable’ causal quantities, such as controlled direct effects (e.g. Naimi
et al., 2014a), which express what the treatment effect would have been if
the mediator were kept fixed at some predetermined level m uniformly in
the population. As opposed to natural effects’ descriptive formulation, their
prescriptive interpretation has been claimed to be more directly informative
as to potential policy implications of certain interventions. However, apart
from the fact that, in many settings, the mediator may often be difficult to
manipulate, when aiming to decompose the treatment effect into a mediated
and unmediated component, general attempts to define the controlled direct
effect’s counterpart, a so-called ‘controlled indirect effect’, have stumbled
upon similar operational difficulties. Whereas some would simply define
such an effect as the difference between treatment effect and the controlled
direct effect, such a definition is not entirely satisfactory, especially in the
presence of treatment-mediator interactions, in which case, their interpre-
tation may be highly ambiguous. Without the introduction of a mediating
instrument, such as Z in Figure 3.5B, it is indeed difficult to conceive of
an intervention that would block only the direct path from treatment to
outcome (also see VanderWeele, 2011b).

3.6.2 Deterministic expanded graphs

It thus seems that mediating instruments provide some sort of necessary
extension to the original causal diagram12 that allows for interventionist
– some may say, empirically meaningful – interpretations of natural ef-
fects. Moreover, they are key for a clear operational definition of controlled

12Note that the expanded graphs with mediating instruments, depicted in Figure 3.5, can
be marginalized over L and/or Z to result in the original causal diagram in Figure 3.2A,
only if the above exclusion restrictions pertaining to L and/or Z hold, such that neither L
nor Z is a common cause of any two variables on the original graph in Figure 3.2A.
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indirect effects. The conceptual notion of an expanded graph with two
mediating instruments, as depicted in Figure 3.5C, corresponds very closely
to what has been described in Robins and Richardson (2010).

In this – possibly unrealistic – setting, Shpitser (2013)’s result tells us
that identification of P(Y(a, M(a′)) = y) may be obtained – provided (viii)
holds and L and Z are truly mediating instruments – if L and Z are in
separate districts. If not, their district would be recanting and identification
would fail. The associated cross-world assumption – i.e. Z(a) ⊥⊥ L(a′)
– indeed formalizes the need for no unmeasured confounding between
the two instruments. However, this can never be guaranteed unless, as
postulated by Robins and Richardson (2010), both L and Z are deterministic
functions of (a randomized) treatment A. In that case, both Z(a) and L(a′)
are constant, and hence trivially independent.13

Ironically, this required determinism seems to leave us incapable of
pulling apart the causal pathways that we meant to assess in the first place,
which brings us back to square one. However, progress can be made if
one can conceive of separate interventions on L and Z that would enable
to break their perfect correlation. From this perspective, the deterministic
characterization of an expanded graph such as Figure 3.5C, gives rise to a
specific type of experimental design that requires one to think of L and Z as
inherent, but distinct, properties of the treatment, which may be intervened
on separately, but when combined, fully capture all of its active ingredients;
see section 3.6.3 for an example. The feasibility of such designs thus pri-
marily mirrors the extent to which different active components of treatment
or exposure can be conceived of being manipulated in isolation (Didelez,
2013b).14 Moreover, when combined with the aforementioned exclusion

13In addition, as in Robins and Richardson (2010), independence of Z(a) and L(a′) can
be shown to lead to cross-world assumption (ii).

14One may (justly) claim that, in theory, only one of the mediating instruments would
need to be a deterministic function of treatment. However, it seems difficult to conceptually
conceive of any scenario where only one of the mediating instruments would be fully
determined by treatment. Try, for instance, to imagine manipulating A, while L is fully
determined by A. Nonetheless, one needs to be able to manipulate L, which captures
an inherent aspect of A, while leaving untouched all other aspects of A. This seems to
necessarily imply that all other inherent aspects of A need to be captured by another
deterministic variable, which would then naturally lead to Z.
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restrictions, such designs thus entail separate manipulations of L and Z,
which capture distinct but exhaustive features of the treatment to which,
respectively, solely M and Y are (directly) responsive. Importantly, this
characterization enables to interpret natural effects as specific interventional
contrasts.

Consider, for instance, the causal diagram in Figure 3.2A and its expan-
sion in Figure 3.5C, where Z and L are deterministic functions of treatment
which can be conceived as two complementary components that fully char-
acterise treatment such that A = {L, Z}, a = {la, za} and a′ = {la′ , za′}.
Then identification of P(Y(a, M(a′)) = y) under the NPSEM associated
with the causal diagram in Figure 3.5C is tantamount to identification of the
interventional distribution P(Y(za, la′) = y) since

P(Y(a, M(a′)) = y) = ∑
l,z,m

P(Y = y, M = m|do(L = l, Z = z))

× P(L = l|do(A = a′))P(Z = z|do(A = a))

= ∑
l,z,m

P(Y = y|L = l, Z = z, M = m)P(M = m|L = l)

× P(L = l|A = a′)P(Z = z|A = a) (3.9)

= ∑
l,z

P(Y = y|L = l, Z = z)I(L = la′)I(Z = za)

= P(Y = y|L = la′ , Z = za)

= P(Y(za, la′) = y).

The first equality holds by expression (3.6), the second by Tian’s ID al-
gorithm and the third by the conditional independence M ⊥⊥ Z|L and
determinism.

The mere feasibility of such an experimental design and the plausibility
of the two aforementioned exclusion restrictions thus provide the necessary
context for interpreting natural effects as manipulable and hence – as critics
may claim – policy-relevant parameters (Robins and Richardson, 2010). In
other words, instead of actually conducting such an experiment, one could
estimate natural effects based on available (experimental or observational)
data, provided (vii) and (viii) hold, while the construction of a scientifically
plausible story – encoded in a deterministic extended graph – then serves
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to license their interventional interpretation. Moreover, the problem of
identification of natural effects from available data on observable variables
represented in a deterministic extended graph is thus effectively reduced
to one of identification of the effect of a joint intervention on {L, Z}, to
which the usual calculus for joint treatment effects (Tian and Pearl, 2003) is
applicable, which typically avoids reliance on cross-world assumptions.15

3.6.3 Examples

Some existing designs, such as double-blind placebo-controlled trials, were
in fact devised in the spirit of Robins and Richardson (2010)’s deterministic
extended graphs (Didelez, 2013b). Such trials indeed aim to isolate part
of the effect of the drug A that may be attributed to active chemical com-
ponents Z, and is not mediated by the patient’s or doctor’s expectations
about the effectiveness of the drug M. In such designs it is often reason-
able to assume that expectations are solely affected by the knowledge of
(possibly16) being treated L and that the active component itself does not
affect expectations. The natural direct effect of the drug, not mediated by

15This perspective leads to the conjecture that, given identifiability of P(Y(a) = y),
the recanting district criterion serves to assess whether the identifying functional of the
joint interventional distribution P(Y(za, la′) = y) that corresponds to P(Y(a, M(a′)) = y)
under a deterministic extended graph G ′ is expressible in terms of the observed variables
in the original graph G (which excludes deterministic variables such as L and Z). For
instance, without actually conducting the aforementioned experiment that involves a
joint intervention on L and Z, the distribution of P(Y(za, la′) = y) is not identified by
P(Y = y|L = la′ , Z = za) if a 6= a′, since then P(L = la′ , Z = za) = 0 in the observed
data. Nonetheless, in the absence of unmeasured M− Y confounding under the deter-
ministic extended graph in Figure 3.5C, P(Y(za, la′) = y) is still identifiable: in that case
expression (3.9) can be shown to reduce to the mediation formula since the conditional
independence Y ⊥⊥ L|A, M holds. Such reduction is not possible in the presence of un-
measured M−Y confounding since then L and Y are dependent conditional on {A, M}
because of collider stratification. Similarly, it can be shown that P(Y(za, la′) = y) is identifi-
able if one has measurements of a mediating instrument for the directed path L→ M or
Z → Y.

16For ethical reasons, patients need to be informed about the possibility of being assigned
to the (placebo) control arm. So, technically speaking, the actual expectation M may not
perfectly correspond to M(1), the expectation that would be invoked when (possibly)
being ‘tricked’ into thinking actually being treated. Nonetheless, L is, by design, controlled
at the same level for every patient, for instance, by administering similar looking pills with
or without the active component, so that the patient nor doctor cannot possibly find out
whether one is on active treatment or not.
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expectations, could therefore be interpreted as the interventional contrast
comparing effectiveness between treatment and (placebo) control arm.17

Unfortunately, success is not always guaranteed. Side effects in the
treatment arm may for instance affect the expectation of being on active
treatment, thereby violating the assumptions of Figure 3.5C. To accom-
modate for known side effects, active placebos have been designed that
mimic side effects of the active treatment (e.g. Didelez, 2013a; Lok, 2016),
illustrating that the ability to increase the credibility of required exclusion re-
strictions may often be highly dependent on the creativity of the researcher
(Robins and Richardson, 2010).18

In other contexts, experimental designs in the spirit of Robins and
Richardson (2010)’s deterministic extended graphs are more difficult to
conceive. For instance, even though the JOBS II study (Vinokur and Schul,
1997) involved a job-search skills workshop that targeted specific compo-
nent processes grounded in psychological theory, it may still be hard to
imagine similar interventions or workshops that isolate the distinct trigger-
ing elements of separate targeted processes, let alone, to conceive of distinct
elements that exclusively affect either re-employment or mental health. Any
attempt to endow natural direct and indirect effects with an interventionist
interpretation would thus necessarily rely on strong theoretical assertions
about the active components of the job training intervention.

3.7 Path-specific effects

In section 3.4, we pointed out that the recanting district criterion not only
serves to identify natural effects, but any path-specific effect of a treatment
or exposure on an outcome of interest. The utility of this criterion may
thus be particularly appealing in settings with multiple causally ordered
mediators, as it sheds light on which alternative or more fine-grained decom-
positions of the total treatment effect can be obtained non-parametrically.

17Note that experimental designs reflecting an expanded graph, do not require any
measurements on the mediator.

18In a strict sense, active placebo designs also violate the required exclusion restrictions.
Nonetheless, they enable to arrive at a measure of a direct effect that more closely resembles
the natural direct effect of primary interest (Didelez, 2013a).

76



3

3.7. Path-specific effects

3.7.1 Alternative decompositions in the presence of multiple mediators
or intermediate confounding

Consider again the causal diagram in Figure 3.3A. In the previous sections,
it was indicated that, because of the presence of an intermediate confounder
(or recanting witness) L, the natural effects with respect to mediator M are
not (non-parametrically) identifiable under the NPSEM associated with
Figure 3.3A.

When L would be the primary mediator of interest, on the other hand,
non-parametric identification of P(Y(a, L(a′)) = y) is trivial, since, in Fig-
ure 3.3A there is no recanting district for the natural direct and indirect
effect with respect to L. Specifically, the natural indirect effect with respect
to L

E{Y(1, L(1))−Y(1, L(0))}
= E{Y(1, L(1), M(1, L(1)))−Y(1, L(0), M(1, L(0)))} (3.10)

consists of the directed paths in π = {A → L → Y, A → L → M → Y}.
Since it is never the case that a path in π and a path not in π traverses
children of A that are in the same district, it can indeed be concluded that
there is no recanting district for the π-specific effect of interest, i.e. in this
case the natural direct effect with respect to L. Again, by symmetry, there is
no recanting district for the natural indirect effect with respect to L. Hence,
since both (vii) and (viii) hold, P(Y(a, L(a′)) = y) is identifiable.

Unlike the natural indirect effect with respect to L, the natural direct
effect

E{Y(1, L(0))−Y(0, L(0))}
= E{Y(1, L(0), M(1, L(0)))−Y(0, L(0), M(0, L(0)))},

which consists of directed paths in π = {A → Y, A → M → Y}, can be
further decomposed into more fine-grained components or path-specific
effects, i.e. into a direct effect not mediated by either L nor M

E{Y(1, L(0), M(0, L(0)))−Y(0, L(0), M(0, L(0)))}, (3.11)
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as captured by the directed path A→ Y, and part of the effect mediated by
M that bypasses L

E{Y(1, L(0), M(1, L(0)))−Y(1, L(0), M(0, L(0)))}, (3.12)

sometimes referred to as the partial (Huber, 2014) or semi-natural (Pearl, 2014)
indirect effect with respect to M, as captured by the path A → M → Y.
Identifiability of each of these component effects can easily be verfied via
the recanting district criterion.

3.7.2 Coarser decompositions in the presence of unobserved confound-
ing

Whereas in Figure 3.3A, a three-way decomposition of the total treatment ef-
fect could be obtained, unmeasured confounding in Figures 3.3B, 3.3C
and 3.3D only enables to obtain a two-way decomposition, leading to
coarser decompositions of the total treatment of A on Y. Again, the re-
canting district criterion provides insight into this.

For instance, under the NPSEM associated with the causal diagram in
Figure 3.3B, the natural effects with respect to L are still identifiable, because,
by the same logic applied in the previous paragraph, the district {M, Y}
is not recanting relative to these effects. However, the natural direct effect
with respect to L cannot be further decomposed, as in Figure 3.3A, because
{M, Y} is recanting relative to the ‘direct’ effect captured by the path A→ Y
and, by symmetry, also relative to the partial indirect effect with respect to
M. Under the NPSEM representation of the causal diagram in Figure 3.3C,
on the other hand, we can no longer identify the natural effects with respect
to L nor the partial indirect effect with respect to M, as {L, M} is a recanting
district for each of these effects. However, we may still identify the natural
indirect effect with respect to {L, M} as a joint mediator

E{Y(1, L(1), M(1))−Y(1, L(0), M(0))}
= E{Y(1, L(1), M(1, L(1)))−Y(1, L(0), M(0, L(0)))},

which consists of paths in π = {A→ L→ Y, A→ M→ Y, A→ L→ M→
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Y} and can be considered a combination of the natural indirect effect with
respect to L and the partial indirect effect with respect to M. By symmetry,
we can also identify the natural direct effect with respect to {L, M}, which
corresponds to the directed path A→ Y.

Finally, in Figure 3.3D, the partial indirect effect with respect to M is
identifiable. However, its complement path-specific effect cannot be further
decomposed into the natural indirect effect with respect to L and the direct
effect along the directed path A→ Y, because the district {L, Y} is recanting
with respect to both of these more fine-grained path-specific effects.

For instance, in section 3.2.4, we mentioned that the natural indirect
effect of job-search skills workshop participation A on the presence of
depressive symptoms Y mediated by re-employment M is not identifiable
if M− Y confounders, such as increased self-efficacy L, are also affected
by the job-search intervention. Interestingly, we may still identify e.g. the
partial indirect effect mediated by re-employment but not by increased
self-efficacy

E{Y(1, L(1), M(1, L(1)))−Y(1, L(1), M(0, L(1)))}, (3.13)

even in the presence of unobserved confounding between sense of self-
efficacy and mental health, as depicted in Figure 3.3D (also see Miles et al.,
2014).

Note that the availability of mediating instruments may aid to recover
all three aforementioned component effects in the presence of unmeasured
confounding in Figures 3.3B, 3.3C and 3.3D. Suppose, for instance, that
interest lies in identification of the partial indirect effect with respect to M in
Figures 3.3B and 3.3C. If one is willing to make certain strong and possibly
untestable exclusion restrictions, progress can be made with the help of a
mediating instrument on the direct path A → M or the paths A → Y or
A→ L in Figures 3.3B and 3.3C, respectively.

In chapter 5, we cast estimation of alternative and fine-grained decompo-
sitions into a more general modeling approach for mediation analysis that
enables dealing with multiple sequential mediators, such as L and M in the
causal diagram in Figure 3.3A. Moreover, in the same chapter, we further
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extend the adjustment criterion to accommodate effect decomposition in
such settings with multiple sequential mediators. Similar to single mediator
settings in chapter 4, we will, however, restrict our focus to identification by
this generalized adjustment criterion for mediation analysis, since it leads
to a standard form of identification result that can be seen as a general-
ization of Pearl’s mediation formula. This, in turn, enables constructing
generally applicable semi-parametric estimators, such as those discussed in
section 3.4.2.19 In chapter 6, we further discuss the feasibility to incorporate
results obtained by more general identification strategies in this modeling
framework.

3.7.3 Costs of fine-grained decompositions: assumptions

An appealing side effect of adopting the recanting district criterion is that
it makes explicit formulations of cross-world independence assumptions
redundant. One should not forget, though, that non-parametric identifi-
cation of generally defined path-specific effects relies on such untestable
assumptions, just as for natural effects. Their precise nature can be shown to
vary depending on the path-specific effect of interest that one aims to iden-
tify (Shpitser, 2013). Moreover, the number of such assumptions on which
identification relies, increases with the number of component effects (e.g., if
one aims to obtain fine-grained decompositions into more than two com-
ponent effects). This proliferation of untestable cross-world assumptions
also makes it harder to completely avoid such assumptions via particular,
feasible experimental designs which enable interventionist interpretations
of generally defined path-specific effects, as discussed for natural effects in
section 3.6.2. A detailed discussion of deterministic mediating instruments
for generally defined path-specific effects is, however, beyond the scope of
this chapter (although see Robins and Richardson, 2010).

19An additional rationale for focusing on identification by generalizations of the adjust-
ment formula, beyond its standard form results, is that, as indicated in section 3.4.4, the
adjustment criterion also serves to identify stratum-specific natural effects.
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3.7.4 Costs of fine-grained decompositions: interpretation

Fine-grained decompositions into more than two path-specific effects along
multiple causally ordered mediators also bring about additional conceptual
or interpretational challenges. For instance, in chapter 5, we indicate that
the aforementioned three-way decomposition into path-specific effects (in
Figure 3.3A) can be parameterized by a natural effect model for the mean of
recursively nested counterfactual outcomes

E{Y(a, L(a′), M(a′′, L(a′)))} = g−1{γ0 + γ1a + γ2a′ + γ3a′′

+ γ4aa′ + γ5aa′′ + γ6a′a′′ + γ7aa′a′′}.

This model highlights that, in total, six possible three-way decompositions
can be obtained by differently apportioning the interaction parameters γ4 to
γ7. These decompositions involve four distinct instances of each of the path-
specific effects of interest. For instance, if g(·) corresponds to the identity
link function, the path-specific effects of the particular three-way decom-
position discussed in section 3.7.1, as defined by expressions (3.10), (3.11)
and (3.12), are captured by γ2 + γ4 + γ6 + γ7, γ1, and γ3 + γ5, respectively.
Depending on the levels at which a, a′ and a′′ are set, other results might be
obtained. For instance, the partial indirect effect with respect to M can be
defined as (3.13), instead of (3.12), which is captured by γ3 + γ5 + γ6 + γ7.

In general, in the presence of k causally ordered mediators, maximally
k + 1 fine-grained path-specific effects are (possibly) non-parametrically
identifiable,20 each of which can be defined in 2k different ways. This
multitude of definitions gives rise to (k + 1)! different ways in which path-
specific effects of interest can be combined to produce the total treatment
effect (also see Daniel et al., 2015). Differences in interpretation between
distinct instances of a path-specific effect may, however, be subtle and often a
substantive motivation may be lacking to prefer one specific decomposition

20Specifically, in chapter 5, we target identification of the most fine-grained (k + 1)-way
decomposition characterized in terms of k path-specific effects identifiable by the recanting
witness criterion (Avin et al., 2005). In the absence of unmeasured confounding, we may
indeed obtain (k + 1)-way decompositions (since the recanting district criterion reduces
to the recanting witness criterion in that case). In semi-Markovian NPSEMs, on the other
hand, we may need to settle with coarser decompositions (see section 3.7.2).
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over another. The absence of interactions between path-specific effects can
thus substantially facilitate interpretations of the targeted effects (Daniel
et al., 2015).

Accordingly, in chapter 5, we indicate that flexible and parsimonious
modeling and estimation approaches seem unavoidable to reduce increas-
ing complexity in the face of multiple causally ordered mediators to more
manageable proportions. These enable assessing evidence of interaction,
and expressing effects on the scale at which the evidence of interaction is
weak. Alternatively, if interest lies in only one – or fewer – path-specific
effects, as is often the case in practice, one may redirect focus on coarser
and therefore less ambitious decompositions that involve only those spe-
cific component effects of interest. These may often be identifiable under
weaker conditions, as discussed in section 3.7.2, and moreover increase
interpretability.
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Chapter 4

Flexible mediation analysis with a
single mediator

This chapter is based on the following paper: Steen, J., Loeys, T., Moerkerke,
B., Vansteelandt, S. (2016). Medflex: An R Package for Flexible Mediation
Analysis Using Natural Effect Models. Journal of Statistical Software, in press.

Mediation analysis is routinely adopted by researchers from a wide
range of applied disciplines as a statistical tool to disentangle the causal
pathways by which an exposure or treatment affects an outcome. The coun-
terfactual framework provides a language for clearly defining path-specific
effects of interest and has fostered a principled extension of mediation analy-
sis beyond the context of linear models. This chapter describes medflex, an R

package that implements some recent developments in mediation analysis
embedded within the counterfactual framework. The medflex package offers
a set of ready-made functions for fitting natural effect models, a novel class
of causal models which directly parameterize the path-specific effects of
interest, thereby adding flexibility to existing software packages for media-
tion analysis, in particular with respect to hypothesis testing and parsimony.
In this chapter, we give a comprehensive overview of the functionalities of
the medflex package.
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4.1 Introduction

Empirical studies often aim at gaining insight into the underlying mech-
anisms by which an exposure or treatment affects an outcome of interest.
Mediation analysis, as popularized in psychology and the social sciences
by Judd and Kenny (1981) and Baron and Kenny (1986), has been widely
adopted as a statistical tool to shed light on these mechanisms, by enabling
the decomposition of total causal effects into an indirect effect through a
hypothesized intermediate variable or mediator and the remaining direct ef-
fect. Although its initial formulations were restricted to the context of linear
regression models, several attempts have been made to extend the applica-
tion of traditional estimators for indirect effects (i.e. product-of-coefficients
and difference-in-coefficients estimators) beyond linear settings (e.g. MacK-
innon and Dwyer, 1993; MacKinnon et al., 2007; Hayes and Preacher, 2010;
Iacobucci, 2012). However, these extensions lack formal justification and
yield effect estimates that are often difficult to interpret (e.g. Pearl, 2012).

Recent advances from the causal inference literature (e.g. Albert, 2008;
Albert and Nelson, 2011; Avin et al., 2005; Imai et al., 2010b; Pearl, 2001,
2012; Robins and Greenland, 1992; VanderWeele and Vansteelandt, 2009,
2010) have furthered these developments and improved both inference and
interpretability of direct and indirect effect estimates in nonlinear settings by
building on the central notion of counterfactual or potential outcomes. This
notion provides a framework that has aided in (i) formally defining direct
and indirect effects (in a way that is not tied to a specific statistical model),
(ii) describing the conditions required for their identification (unveiling and
formalizing often implicitly made causal assumptions) and (iii) assessing
the robustness of empirical findings against violations of these identification
conditions (i.e. sensitivity analysis).

For instance, Imai et al. (2010a) proposed mediation analysis techniques
that can be applied within a larger class of nonlinear models. They imple-
mented these in a user-friendly R package, called mediation (Tingley et al.,
2014b; see Hicks and Tingley, 2011 for a version in Stata (StataCorp, 2013)
with more limited functionality). More recently, Valeri and VanderWeele
(2013) reviewed the latest developments in mediation analysis for non-
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linear models, focusing on exposure-mediator interactions, and provided
SAS (SAS Institute Inc., 2014) and SPSS (IBM Corporation, 2013) macros,
enabling practitioners to easily conduct these methods using well-known
commercial packages. Similarly, Emsley and Liu (2013) and Muthén and
Asparouhov (2015) described how direct and indirect effects as defined in
the counterfactual framework can be estimated in Stata and via extended
types of structural equation models in Mplus (Muthén and Muthén, 2012),
respectively.

In this chapter, we introduce medflex (Steen et al., 2015), an R package
that enables flexible estimation of direct and indirect effects while accommo-
dating some of the limitations of other available packages. More specifically,
we make use of novel so-called natural effect models (Lange et al., 2012, 2014;
Loeys et al., 2013; Vansteelandt et al., 2012b), which directly parameter-
ize the target causal estimands on their most natural scale. This renders
formal testing and interpretation more straightforward compared to other
approaches as implemented in the aforementioned software applications.
The medflex package is freely available from the Comprehensive R Archive
Network (CRAN) at http://cran.r-project.org/package=medflex (R Core
Team, 2015).

Throughout, the functionalities of the medflex package will be illus-
trated using data from a survey study that was part of the Interdisciplinary
Project for the Optimization of Separation trajectories (Ghent University and
Catholic University of Louvain, 2010). This large-scale project involved the
recruitment of individuals who divorced between March 2008 and March
2009 in four major courts in Flanders. It aimed to improve the quality of life
in families during and after the divorce by translating research findings into
practical guidelines for separation specialists (such as lawyers, judges, psy-
chologists, welfare workers...) and by promoting evidence-based policy. The
corresponding dataset UPBdata is included in the package and involves a
subsample of 385 individuals who responded to a battery of questionnaires
related to romantic relationship characteristics (such as adult attachment
style) and breakup characteristics (such as breakup initiator status, experienc-
ing negative affectivity and engaging in unwanted pursuit behaviors; UPB)
(De Smet et al., 2012). Respondents were asked to imagine their former
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partner as well as possible and to remember how they generally felt in
their relationship before the breakup when completing the attachment style
questionnaire. The mediation hypothesis of interest concerned the question
whether the level of emotional distress or negative affectivity experienced
during the breakup can be regarded as an intermediate mechanism (M)
through which attachment style towards the ex-partner before the breakup
(A) exerts its influence on displaying UPBs after the breakup (Y) (Loeys et al.,
2013).

In the next section, we briefly introduce the mediation formula (Pearl,
2001, 2012; Petersen et al., 2006; Imai et al., 2010b), which is the predomi-
nant vehicle for effect decomposition within the counterfactual framework.
Advantages of natural effect models over direct application of the media-
tion formula will also be discussed in more detail. We then focus on two
missing data techniques for fitting these models and demonstrate how these
approaches can be implemented in R using the medflex package (section 4.3).
Next, we demonstrate how different types of exposure and mediator vari-
ables can be dealt with (section 4.4) and how to assess effect modification
of natural effects (i.e. exposure-mediator interactions and moderated me-
diation) (section 4.5). Tools are provided for calculating and visualizing
different causal effects estimates (section 4.6) and for estimating population-
average natural effects (section 4.7) and natural indirect effects as defined
through multiple intermediate pathways jointly (section 4.8). In section 4.9,
we further elaborate on modeling demands and missing data, two aspects
that may need to be taken into consideration by practitioners when choos-
ing between the two main estimation approaches offered by the package.
Finally, we conclude with some final remarks and list some extensions
of the package which are planned to be implemented in the near future
(section 4.10).
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4.2 The mediation formula

4.2.1 Counterfactual outcomes and effect decomposition

A major appeal of the counterfactual framework is that it enables to de-
compose the total causal effect into a so-called natural direct and natural
indirect effect, irrespective of the data distribution or scale of the effect.
Readers familiar with counterfactual notation, definitions and assumptions
for natural direct and indirect effects may wish to skip to section 4.2.2.

Let Yi(a) denote the potential outcome for subject i that had been ob-
served if, possibly contrary to the fact, i had been assigned to treatment
(or exposure level) a. For a binary exposure (with A = 1 for the exposed
and A = 0 for the unexposed), the individual-level causal effect can then
be expressed by comparing Yi(1) to Yi(0), whereas the population average
total causal effect can be expressed as E{Y(1) − Y(0)}. Similarly, direct
and indirect effects have been defined in terms of counterfactual outcomes.
For instance, the definition of the so-called controlled direct effect reflects
the traditional notion of measuring the effect of exposure while fixing the
mediator M at the same value m for all subjects (Robins and Greenland,
1992). Using counterfactual notation, this effect can be expressed as

CDE(m) = E{Y(1, m)−Y(0, m)},

where Y(a, m) denotes the potential outcome that would have been ob-
served under exposure level a and mediator value m.

Robins and Greenland (1992) introduced an alternative definition that in-
vokes so-called composite or nested counterfactuals, Y(a, M(a′)). For instance,
the (pure) natural direct effect

NDE(0) = E{Y(1, M(0))−Y(0, M(0))}

expresses the expected exposure-induced change in outcome when keep-
ing the mediator fixed at the value that had naturally been observed if
unexposed. By considering potential intermediate outcomes M(a′) rather
than a fixed mediator value m, these authors offered a definition of direct
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effect that both allows for natural variation in the mediator and provides
a complementary operational definition for the indirect effect (which the
definition of the controlled direct effect does not). That is, under the com-
position assumption, which states that Y(a, M(a)) = Y(a) (VanderWeele
and Vansteelandt, 2009), the difference between the average total effect
E{Y(1)−Y(0)} and the (pure) natural direct effect yields an expression for
the (total) natural indirect effect

NIE(1) = E{Y(1, M(1))−Y(1, M(0))}.

This reflects the expected difference in outcome if all subjects were exposed
but their mediator value had changed to the value it would take if unex-
posed.

Adopting this counterfactual notation naturally leads to framing causal
inference as a missing data problem (Holland, 1986): for each subject i,
only one counterfactual outcome, i.e. Yi = Yi(Ai, Mi(Ai)), is observed.
Consequently, identification of natural effects relies on rather strong causal
assumptions. In the context of mediation analysis, the most commonly in-
voked conditions for identification can be encoded in a causal diagram (such
as Figure 4.2) interpreted as a non-parametric structural equation model
with independent error terms (NPSEM; Pearl, 2001). More specifically, upon
adjustment for a given set of observed baseline covariates C, such model
implies certain independencies among variables and potential outcomes
which have been proposed as sufficient conditions for non-parametric or
model-free identification of natural effects. However, this adjustment set C
needs to be carefully selected, such that it is deemed sufficient to control for
confounding (i) between exposure and outcome, thereby satisfying

Y(a, m) ⊥⊥ A|C for all levels of a and m, (A1)

(ii) between exposure and mediator, thereby satisfying

M(a) ⊥⊥ A|C for all levels of a, (A2)
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and (iii) between mediator and outcome (after adjustment for the exposure),
thereby satisfying

Y(a, m) ⊥⊥ M|A = a, C for all levels of a and m. (A3)

In addition to these no omitted confounders assumptions, identification re-
quires the further cross-world independence assumption (Pearl, 2001)

Y(a, m) ⊥⊥ M(a′)|C for all levels of a, a′ and m, (A4)

which is satisfied under a NPSEM when no confounders of the mediator-
outcome relationship (whether observed or unobserved) are affected by the
exposure (i.e. no intermediate or exposure-induced confounding).

Whereas the first two assumptions by definition hold in randomized ex-
periments, the other two assumptions may not.1 Although Judd and Kenny
(1981) initially pointed to its importance, assumption (A3) since has largely
been ignored in much of the social sciences literature, as evidenced by many
mediation studies not adjusting for confounders of the mediator-outcome
relationship. In recent years, however, this issue has been brought back to
attention within the social sciences (e.g. Bullock et al., 2010; MacKinnon,
2008; Mayer et al., 2014).

Assumption (A4) is more difficult to grasp intuitively. It is a strong
assumption because, in contrast to the other three conditions, it is impossible
to design a study that would be able to validate it (Robins and Richardson
2010; although see Imai et al. 2013 for a notable attempt).

The interested reader may refer to VanderWeele and Vansteelandt (2009)
for a more detailed and intuitive account of these identification assump-
tions (or to Petersen et al. 2006 or Imai et al. 2010b for alternative sets of
assumptions).

1Note that assumption (A1) is sufficient for identifying total causal effects, whereas
identification of controlled direct effects can be obtained under assumptions (A1) and (A3).
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4.2.2 The mediation formula

The language of counterfactuals has enabled to clearly define causal effects
in a more generic, non-parametric way, but has also promoted a more
principled approach to estimating these effects than the one offered by
the traditional SEM literature from the social sciences, which was mainly
entrenched in parametric linear regression. The main identification result
(Pearl, 2001; Imai et al., 2010b), which Pearl (2012) referred to as the mediation
formula, has played a pivotal role in this regard. It prescribes estimating the
expected value of nested counterfactuals by standardizing predictions from
the outcome model corresponding to exposure level a under the mediator
distribution corresponding to exposure level a′:

E
{

Y(a, M(a′))|C
}
= ∑

m
E(Y|A = a, M = m, C)P(M = m|A = a′, C).

This weighted sum can be calculated based on any type of statistical model
and has been shown to yield closed-form expressions for the natural in-
direct effect that encompass the traditional difference-in-coefficients and
product-of-coefficient estimators when confined to strictly linear models
(e.g. VanderWeele and Vansteelandt, 2009; Pearl, 2012). However, as soon as
moving beyond linear settings, the latter estimators no longer coincide with
their corresponding mediation formula expressions and no longer yield
readily interpretable causal effect estimates (as formalized in the counter-
factual framework).2

More recently, closed-form expressions for natural direct and indirect
effects as defined on both additive and ratio scales have been derived for
a limited number of nonlinear scenarios (VanderWeele and Vansteelandt,
2009, 2010; Valeri and VanderWeele, 2013).

2Muthén and Asparouhov (2015) give an intuitive account for SEM practitioners explain-
ing why the product-of-coefficient estimator fails when applied in nonlinear settings or
settings involving exposure-mediator interactions. Nonetheless, the product-of-coefficients
method can still be useful for testing the null hypothesis of no indirect effect (VanderWeele,
2011a; Vansteelandt et al., 2012b).
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4.2.3 Applying the mediation formula in practice

Software applications for obtaining closed-form solutions derived from
the mediation formula, as well as their corresponding Delta method (or
bootstrap) standard errors, have been made available as SPSS and SAS

macros (Valeri and VanderWeele, 2013) and as the Stata module PARAMED

(Emsley and Liu, 2013). More recently, Muthén and Asparouhov (2015)
demonstrated how natural effect estimates can be obtained via extended
types of structural equation models in Mplus, even in the presence of latent
variables. However, such closed-form expressions can often not readily be
obtained, for instance when combining a linear model for the mediator and
a logistic model for the outcome.

Imai et al. (2010b) addressed this issue and instead suggested a more
generic approach based on Monte-Carlo integration methods, which they
implemented in the R package mediation (Tingley et al., 2014b). Whereas its
lightweight version in Stata (Hicks and Tingley, 2011) and the Stata mod-
ule gformula (Daniel et al., 2011), which adopts a similar simulation-based
approach, are restricted to parametric models, this R package additionally
allows to specify semi-parametric models for the mediator and outcome.
Despite being computationally intensive, these offer more flexibility than
the applications based on a purely analytical approach. In addition, the
mediation package offers useful extensions, such as methods for dealing
with multiple mediators and treatment noncompliance, while at the same
time enabling users to evaluate the robustness of their findings to potential
unmeasured confounding in a widely applicable sensitivity analysis.

A drawback of direct application of the mediation formula, however, is
that combinations of simple models for the mediator and for the outcome
often result in complex expressions for natural direct and indirect effects
(Lange et al., 2012; Vansteelandt et al., 2012b). For instance, when using
logistic regression models

logitP(M = 1|A, C) = α0 + α1A + α2C

logitP(Y = 1|A, M, C) = β0 + β1A + β2M + β3C (0)

91



Chapter 4. Flexible mediation analysis with a single mediator

4

for binary mediators and outcomes, the mediation formula yields

P(Y(a, M(a′)) = 1|C)
= expit (β0 + β1a + β2 + β3C) expit

(
α0 + α1a′ + α2C

)
+ expit (β0 + β1a + β3C)

{
1− expit

(
α0 + α1a′ + α2C

)}
,

an expression which depends on exposure and covariate levels in a compli-
cated way. Even though none of the postulated models include interaction
terms reflecting effect modification, the corresponding direct and indirect
effect estimates will vary with different exposure or covariate levels. This is
also illustrated in Figure 4.1, which depicts estimates for the natural indirect
effect odds ratio, as obtained by applying the mediation formula to these
models fitted to our example dataset (using a dichotomized version of the
mediator and baseline covariates C including gender, age and education
level). As pointed out before by Lange et al. (2012) and Vansteelandt et al.
(2012b), these convoluted expressions render results difficult to report and
hypothesis testing (e.g. testing for moderated mediation) infeasible, as it
may turn out impossible to find plausible models for the mediator and out-
come that combine into effect expressions that do not depend on covariate
levels. In certain cases, this complexity can pose a major impediment to
routine application of the mediation formula.

Moreover, the mediation package only provides natural effect estimates
on the additive scale. This may complicate estimation and inference in
nonlinear outcome models, mainly when dealing with continuous expo-
sures or covariates, because of induced nonadditivity. Specifically, because
the indirect effect is not encoded by a single parameter, but may take on a
different value for each level of a, the null hypothesis of no indirect effect
over the entire range of exposure levels becomes difficult to test. Similarly,
although the mediation package enables users to test for effect modification
in nonlinear models (i.e. either treatment-mediator interactions or moder-
ated mediation), these hypothesis tests probe research questions in terms
of e.g. risk differences that are tied to pre-specified exposure or covariate
levels. A concern is that these levels might, at least in some applications,
need to be chosen in a rather arbitrary way (Loeys et al., 2013).
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Figure 4.1: Estimated (total) natural indirect effect odds ratios corresponding to
a one-unit change in anxious attachment level as a function of different reference
levels for anxious attachment level a (as obtained through direct application of the
mediation formula). These are conditional estimates for 43-year-old men (solid
curve) and women (dashed curve) with intermediate education levels.

An approach that circumvents the aforementioned complexity but is
closely related to application of the mediation formula was recently pro-
posed by Lange et al. (2012) and Vansteelandt et al. (2012b). These authors
proposed to directly model natural effects and introduced a novel class of
mean models for nested counterfactuals, which they termed natural effect
models (also see van der Laan and Petersen, 2008, for a similar approach).
This approach is implemented in the medflex package and provides a viable
alternative to the aforementioned software applications because

• it can handle a larger class of parametric models for the mediator
and outcome than the software applications that rely on closed-form
expressions (see section 4.4),

• estimates can be expressed on more natural effect scales (i.e. a scale
that corresponds to the link-function of the outcome model), thereby
avoiding potential induced dependence on exposure or covariate
levels characteristic for the additive scale,
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• natural effect models simplify testing since the hypotheses of interest
can always be captured by a finite set of model parameters,

• for the most common types of parametric models robust standard
errors (based on the sandwich estimator) are available as an alternative
to more computer-intensive bootstrap standard errors.

In the next section, we describe this novel class of causal models together
with two different estimation approaches that have been suggested in Lange
et al. (2012) and Vansteelandt et al. (2012b).

4.3 Mediation analysis via natural effect models

Natural effect models are conditional mean models for nested counterfactu-
als Y(a, M(a′)):

E{Y(a, M(a′))|C} = g−1{β′W(a, a′, C)}

with g(·) a known link function (e.g. the identity or logit link), W(a, a′, C) a
known vector with components that may depend on a, a′ and C, and β a
vector including parameters that encode the natural effects of interest. It
can, for instance, easily be inferred that in model

E{Y(a, M(a′))|C} = β0 + β1a + β2a′ + β3C,

β1 captures the natural direct effect whereas β2 captures the natural indirect
effect, both corresponding to a one-unit increase in the exposure level. With
g(·) the log-link function, for example, the Poisson regression model

log E{Y(a, M(a′))|C} = β0 + β1a + β2a′ + β3C,

enables to quantify the natural direct and indirect effect for count outcomes
on a more natural, multiplicative scale. Specifically, in this model, exp(β1)
captures the natural direct effect rate ratio

E{Y(a + 1, M(a))|C}
E{Y(a, M(a))|C}
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whereas exp(β2) captures the natural indirect effect rate ratio

E{Y(a, M(a + 1))|C}
E{Y(a, M(a))|C} ,

corresponding to a one-unit increase in exposure level. Since each of the
effects or quantities of interest are encoded by parameters indexing the
natural effect model, the aforementioned limitations related to direct ap-
plication of the mediation formula can be overcome. As will be illustrated,
this facilitates interpretation and hypothesis testing in nonlinear settings.

4.3.1 Fitting natural effect models

Before describing the two main approaches for fitting natural effect methods,
we first return to our motivating example. The corresponding dataset will
then be used to both illustrate these approaches and to demonstrate how
they can be implemented in R.

To install the most recent version of the medflex package available from
CRAN, use the command

install.packages("medflex")

After loading the package, displaying the first few rows of the example
dataset UPBdata provides some insight into the data:

library("medflex")

data("UPBdata")

head(UPBdata)

## att attbin attcat negaff initiator gender educ age UPB

## 1 1.001 1 M 0.840 myself F M 41 1

## 2 -0.709 0 L -1.257 both M M 42 0

## 3 -0.709 0 L -1.202 both F H 43 0

## 4 0.606 1 M -0.374 ex-partner M H 52 1

## 5 0.212 1 M 1.945 ex-partner M M 32 1

## 6 2.052 1 H -0.816 ex-partner M H 47 0
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De Smet et al. (2012) and Loeys et al. (2013) proposed emotional distress
or the amount of negative affectivity experienced during the breakup as a
mediating variable for the effect of attachment style towards the ex-partner
before the breakup on displaying unwanted pursuit behaviors after the
breakup. Figure 4.2 depicts the causal diagram (Pearl, 1995a) that reflects
this mediation hypothesis along with its aforementioned identification
assumptions.

As direct and indirect effects are most easily understood for a binary
exposure, we will use a dichotomized version of anxious attachment level
(attbin) for didactive purposes. Moreover, negative affectivity (negaff)
has been standardized to allow for easily interpretable effect estimates. The
outcome variable unwanted pursuit behavior (UPB) indicates whether (=1)
or not (=0) the respondent has engaged in any unwanted pursuit behaviors.

A relatively simple natural effect model is the logistic model

logitP
{

Y(a, M(a′)) = 1|C
}
= β0 + β1a + β2a′ + β3C, (4.1)

with a and a′ corresponding to hypothetical levels of the dichotomized
version of the anxious attachment variable (i.e. 0 for lower than average
or 1 otherwise), M(a′) to the level of negative affectivity that would have
been reported if anxious attachment level were set to a′, and Y(a, M(a′))
to the UPB perpetration status that would have been observed if anxious
attachment level were set to a and negative affectivity were set to the level
that would have been reported if anxious attachment style were set to a′.
To control for confounding, we condition on a set of baseline covariates C:

anxious attachment (A)

negative affectivity (M)

unwanted pursuit (Y)

gender, education, age (C)

Figure 4.2: Causal diagram reflecting the mediation hypothesis.
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age (in years), gender and education level (educ; with H or ‘high’ indicating
having obtained at least a bachelor’s degree, M or ‘intermediate’ indicating
having finished secondary school and L or ‘low’ otherwise). As emphasized
earlier, the selection of such an adjustment set needs careful consideration
in order to meet assumptions (A1)-(A4). For illustrative purposes, the
current set of baseline covariates C will, possibly contrary to the fact, be
considered sufficient to control for confounding throughout the remainder
of this chapter.

As an illustration, we schematically display the first two observations in
Table 4.1. For each individual or observation unit i, only the counterfactual
outcome Yi(Ai, Mi(Ai)), corresponding to Yi(a, Mi(a′)) with a and a′ equal
to the observed exposure level Ai, is observed. Postulating a model for
nested counterfactuals that encodes both natural direct and indirect effects
requires data in which either a or a′ can be kept fixed within each individual
while allowing the other variable to vary. Such a procedure amounts to
expanding the data along unobserved (a, a′) combinations, as illustrated
by the grey entries in Table 4.1. Although, for the data at hand, three (a, a′)

i Ai a a′ Yi(a, Mi(a′))

1 1 1 1 Y1

1 1 1 0 .

1 1 0 1 .

1 1 0 0 .

2 0 0 0 Y2

2 0 0 1 .

2 0 1 0 .

2 0 1 1 .
...

...
...

...
...

Table 4.1: Schematic display of the expanded dataset with missing counterfactual
outcomes.
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neWeight()

mediator model

neImpute()

outcome model

neModel()

natural effect model

neLht()

linear hypotheses

weighting-
based approach

imputation-
based approach

Figure 4.3: Workflow of the medflex package.

combinations are unobserved for each individual, to disentangle natural
direct and indirect effects, it is sufficient to introduce only one additional
observation corresponding to an unobserved combination for which a does
not equal a′.

Fitting natural effect models then entails using well-established methods
to deal with missingness in the outcome, which results from expanding the
data. Throughout, we will describe a weighting- and an imputation-based
approach, which, as outlined below, differ mainly in terms of the statistical
working models on which they rely (Vansteelandt, 2012).

Data expansion is highly similar for both approaches, but subsequent
algorithms for data preparation differ depending on the type of working
model. In the medflex package, these two steps are implemented in the func-
tions neWeight and neImpute. Both return an expanded dataset to which
the natural effect model can be fitted using the central function neModel

(see Figure 4.3). In the next two sections, we explain both approaches and
give example code in R.

4.3.2 Weighting-based approach

One way to account for missingness in the expanded data is to standard-
ize observed outcomes to the mediator distribution of the hypothetical
exposure level a′. Building on Hong’s (2010) ratio-of-mediator-probability
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i Ai a a′ Yi(a, Mi(a′)) wi

1 1 1 1 Y1 1

1 1 1 0 Y1 p̂1(0)/ p̂1(1)

2 0 0 0 Y2 1

2 0 0 1 Y2 p̂2(1)/ p̂2(0)
...

...
...

...
...

...

Table 4.2: Schematic display of the weighting-based approach.

weighting (RMPW) method, Lange et al. (2012) proposed to weight each
observation in the expanded dataset by

wi =
pi(a′)
pi(a)

=
P(M = Mi|A = a′, C = Ci)

P(M = Mi|A = a, C = Ci)
.

For instance, for a binary exposure, E{Y(0, M(0))|C} and E{Y(1, M(1))|C}
can readily be estimated from the observed data (under assumption (A1))
without weighting (i.e. as a = a′ the corresponding weights equal 1). To en-
able estimation of E{Y(1, M(0))|C} and E{Y(0, M(1))|C} RMPW aims to
construct a ‘parallel’ pseudo-population for each exposure group a (within
each stratum of C) with mediator values that would have been observed if
each subject had been a member of the opposite exposure group a′ = 1− a.
This is done by up-weighting individuals whose observed mediator value
is more typical for the opposite exposure group than the exposure group
to which they originally belong. Similarly, individuals whose observed
mediator value is relatively more typical for the original exposure group
are down-weighted.3

Data expansion hence only requires a′ to take on values different from
the observed exposure to enable estimation of natural direct and indirect
effects via the weighting-based approach, as illustrated in Table 4.2. Esti-
mates can then be obtained by regressing the observed outcome on a, a′ and

3Hong et al. (2015) gives a more detailed example which may provide more intuition
into RMPW.
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baseline covariates C, weighting each observation in the expanded dataset
by its corresponding ratio-of-mediator-probability weight. This procedure
easily extends to continuous exposures (see section 4.4.2) and/or mediators
(provided probabilities are replaced by densities). The interested reader
is referred to Technical appendix 4.A.1, where we illustrate that the corre-
sponding estimator is the stratum-specific analog of the RMPW estimator
discussed in section 3.4.2 of chapter 3.

Expanding the data and computing weights for the natural effect model

Using the medflex package, expanding the dataset and calculating weights
can be done in a single run, using the neWeight function. To calculate the
weights, a model for the mediator needs to be fitted. For instance, in R, the
simple linear model

E(M|A, C) = α0 + α1A + α2C,

can be fitted using the glm function:

medFit <- glm(negaff ~ factor(attbin) + gender + educ + age,

family = gaussian, data = UPBdata)

Next, this fitted object needs to be specified as the first argument in
neWeight, which in turn codes the first predictor variable in the formula

argument as the exposure and then expands the data along hypothetical
values of this variable. It is important to note here that, for successful data
expansion, categorical exposures should be explicitly coded as factors in
the formula if they are not yet coded as such in the dataset.

expData <- neWeight(medFit)

Inspecting the first rows of the resulting expanded dataset shows that
for each individual two replications have been created.
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head(expData, 4)

## id attbin0 attbin1 att attcat negaff initiator gender educ age UPB

## 1 1 1 1 1.001 M 0.84 myself F M 41 1

## 2 1 1 0 1.001 M 0.84 myself F M 41 1

## 3 2 0 0 -0.709 L -1.26 both M M 42 0

## 4 2 0 1 -0.709 L -1.26 both M M 42 0

The new variables attbin0 and attbin1 correspond to hypothetical
exposure values a and a′, respectively. By convention, the index ‘0’ is used
for parameters (and corresponding auxiliary variables) indexing natural
direct effects, whereas the index ‘1’ is used for parameters indexing natural
indirect effects in the natural effect model.

To shorten code, one can instead choose to directly specify the formula,
family and data arguments in neWeight.

expData <- neWeight(negaff ~ factor(attbin) + gender + educ + age,

data = UPBdata)

By default, glm is used as internal model-fitting function. However,
other model-fitting functions can be specified in the FUN argument (e.g.
vglm from the VGAM package; Yee, 2015).4

Finally, the weights are stored as an attribute of the expanded dataset
and can easily be retrieved using the generic weights function, e.g. for
further inspection of their empirical distribution:

w <- weights(expData)

head(w, 10)

## [1] 1.000 0.640 1.000 0.494 1.000 0.475 1.000 1.211 1.000 0.326

4In the current version of the package also vglm and vgam from the VGAM package
and gam from the gam package (Hastie, 2015) are supported. When specifying model-
fitting functions other than glm in the FUN argument, one might need to specify the family

argument differently. That is, in a way that is consistent with argument specification of
that specific model-fitting function.
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Fitting the natural effect model on the expanded data

After expanding the data and calculating regression weights for each of
the replicates, the natural effect model can be fitted using the neModel

function. Argument specification for this function is similar to that of the
glm function, which is called internally. However, the formula argument
now must be specified in function of the variables from the expanded
dataset. The latter, in turn, needs to be specified via the expData argument.
neModel automatically extracts the regression weights from this expanded
dataset and applies them for model fitting.

Default glm standard errors tend to be downwardly biased as the un-
certainty inherent to prediction of the weights based on the estimated
mediator model is not taken into account. For this reason, neModel re-
turns bootstrapped standard errors. In order to approximate the sampling
distribution of each of the natural effect model parameters, the applied non-
parametric bootstrap procedure repeatedly resamples the original data with
replacement. For each replication, all aforementioned steps are repeated
and estimates of the natural effect model parameters are obtained. The
resulting bootstrap distribution can then be used for statistical inference.
By refitting the same model for the mediator distribution to each bootstrap
sample and recalculating ratio-of-mediator-probability weights for the (sub-
sequently) expanded bootstrap samples, uncertainty related to estimation
of the mediator model is incorporated into the bootstrapped standard errors.
The number of bootstrap replications defaults to 1000 and can be set in the
nBoot argument:

set.seed(1234)

neMod1 <- neModel(UPB ~ attbin0 + attbin1 + gender + educ + age,

family = binomial("logit"), expData = expData)

The summary table of the resulting natural effect model object provides
these bootstrap standard errors along with corresponding Wald-type z statis-
tics and p values.
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summary(neMod1)

## Natural effect model

## with standard errors based on the non-parametric bootstrap

## ---

## Exposure: attbin

## Mediator(s): negaff

## ---

## Parameter estimates:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -0.92521 0.91389 -1.01 0.311

## attbin01 0.39592 0.23283 1.70 0.089 .

## attbin11 0.35197 0.08829 3.99 6.7e-05 ***

## genderM 0.27597 0.23954 1.15 0.249

## educM 0.16701 0.75404 0.22 0.825

## educH 0.42335 0.75101 0.56 0.573

## age -0.00945 0.01283 -0.74 0.461

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

As an alternative, robust standard errors based on the sandwich esti-
mator (Liang and Zeger, 1986) can be requested by setting se = "robust".
Calculation of these standard errors is less computer-intensive and is avail-
able for natural effect models with working models fitted via the glm func-
tion. Technical details on this variance estimator can be found in Technical
appendix 4.A.2.

neMod1 <- neModel(UPB ~ attbin0 + attbin1 + gender + educ + age,

family = binomial("logit"), expData = expData, se = "robust")

summary(neMod1)

## Natural effect model

## with robust standard errors based on the sandwich estimator

## ---
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## Exposure: attbin

## Mediator(s): negaff

## ---

## Parameter estimates:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -0.92521 0.71463 -1.29 0.195

## attbin01 0.39592 0.21761 1.82 0.069 .

## attbin11 0.35197 0.08939 3.94 8.2e-05 ***

## genderM 0.27597 0.23370 1.18 0.238

## educM 0.16701 0.50065 0.33 0.739

## educH 0.42335 0.50917 0.83 0.406

## age -0.00945 0.01227 -0.77 0.441

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Interpreting model parameters

Exponentiating the model parameter estimates provides estimates that can
be interpreted as odds ratios. For instance, for a subject with baseline
covariate levels C, altering the level of anxious attachment from low (=0)
to high (=1), while controlling negative affectivity at levels as naturally
observed at any given level of anxious attachment a, increases the odds of
displaying unwanted pursuit behaviors with a factor

ÔR
NDE
1,0|C =

odds {Y(1, M(a)) = 1|C}
odds {Y(0, M(a)) = 1|C} = exp(β̂1) = 1.49.

Altering levels of negative affectivity as observed at low anxious attachment
scores to levels that would have been observed at high anxious attachment
scores, while controlling their anxious attachment score at any given level a,
increases the odds of displaying unwanted pursuit behaviors with a factor

ÔR
NIE
1,0|C =

odds {Y(a, M(1)) = 1|C}
odds {Y(a, M(0)) = 1|C} = exp(β̂2) = 1.42.
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Wald-type confidence intervals can be obtained by applying the confint

function to the natural effect model object. The confidence level defaults
to 95%, but can be changed via the level argument. By exponentiating the
intervals on the logit scale, we can obtain the corresponding 95% confidence
intervals (based on the robust standard errors) on the odds ratio scale:

exp(confint(neMod1)[c("attbin01", "attbin11"), ])

## 95% LCL 95% UCL

## attbin01 0.97 2.28

## attbin11 1.19 1.69

If standard errors are obtained via the bootstrap procedure, bootstrap
confidence intervals are returned. The default type is calculated based on
a first order normal approximation (type = "norm"), but other types of
bootstrap confidence intervals (such as basic bootstrap, bootstrap percentile
and bias-corrected and accelerated confidence intervals) can be obtained by
setting the type argument to the desired type.5

4.3.3 Imputation-based approach

The second approach avoids reliance on a model for the mediator distribu-
tion and instead requires fitting a working model for the outcome mean
(Vansteelandt et al., 2012b). By setting a′ (rather than a) equal to the ob-
served exposure A, unobserved nested counterfactuals can be imputed
using any appropriate model for the outcome mean. That is, since the po-
tential intermediate outcome M(a′) equals the observed mediator M within
the subgroup with exposure A = a′, Y(a, M(a′)) equals Y(a, M) for all indi-
viduals in that exposure group. The latter can then be imputed using fitted
values Ê(Y|A = a, M, C) based on an appropriate model for the outcome
mean, henceforth referred to as the imputation model, with exposure A set
to a and with mediator M and baseline covariates C set to their observed
values. This approach easily accommodates missing outcomes in the orig-

5The type argument in confint corresponds to that of the boot.ci function from the
boot package (Canty and Ripley, 2015), which is called internally.
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inal dataset, as the corresponding nested counterfactuals can likewise be
imputed.

In contrast to the weighting-based approach, data expansion only re-
quires a to take on values different from the observed exposure to enable
estimation of natural direct and indirect effects, as illustrated in Table 4.3.
Estimates can finally be obtained upon fitting a natural effect model to the
imputed dataset. For ease of implementation, observed nested counterfac-
tuals are imputed as well in the medflex package.6 Again, the interested
reader is referred to Technical appendix 4.A.1, where we illustrate that the
corresponding estimator is the stratum-specific analog of the imputation
estimator discussed in section 3.4.2 of chapter 3.

i Ai a a′ Yi(a, Mi(a′))

1 1 1 1 Y1

1 1 0 1 Ŷ1(0, M1)

2 0 0 0 Y2

2 0 1 0 Ŷ2(1, M2)
...

...
...

...
...

Table 4.3: Schematic display of the imputation-based approach. Ŷi(a, Mi) represent
the imputed counterfactual outcomes.

Expanding the data and imputing nested counterfactuals

Although application of the imputation-based approach is similar to that of
the weighting-based approach, it differs in some key respects. These differ-
ences are mainly captured by differences between the functions neWeight
and neImpute. Argument specification of this function is identical to that of
neWeight, unless indicated otherwise.

As for the weighted-based approach, the first step amounts to fitting a
working model. Instead of a model for the mediator, the imputation-based

6Simulation studies (not shown here) have shown that this procedure does not lead to
bias or loss of efficiency.
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approach requires fitting a mean model for the outcome. Moreover, this
model should at least reflect the structure of model (4.1) (i.e. it should at
least contain all terms of this natural effect model with a′ replaced by M).
For instance, a simple logistic regression model

logitP(Y = 1|A, M, C) = γ0 + γ1A + γ2M + γ3C,

can be fitted in R using the glm function:

impFit <- glm(UPB ~ factor(attbin) + negaff + gender + educ + age,

family = binomial("logit"), data = UPBdata)

In order for neImpute to identify the predictor variables in the formula

argument correctly as either exposure, mediator(s) or baseline covariates,
they need to be entered in a particular order. That is, the first predictor
variable again needs to point to the exposure and the second to the medi-
ator. All other predictors are automatically coded as baseline covariates.
It is important to adhere to this prespecified order to enable neImpute to
create valid pointers to these different types of predictor variables. This
requirement extends to the use of operators different from the + operator,
such as the : and * operators (when e.g. adding interaction terms). For
instance, the formula expressions below all impose the same structural form
for the imputation model.

Y ~ A + M + C1 + C2 + A:C1 + M:C1

Y ~ A + M + A:C1 + M:C1 + C1 + C2

Y ~ (A + M) * C1 + C2

Y ~ A * C1 + M * C1 + C2

However, only for the former three expressions, correct pointers to exposure,
mediator and baseline covariates will be created, as the order of occurence of
each of the unique predictor variables is identical in all three specifications,
but not in the latter.

This fitted object then needs to be entered as the first argument in
neImpute:

107



Chapter 4. Flexible mediation analysis with a single mediator

4

expData <- neImpute(impFit)

Alternatively, the formula, family and data arguments can be directly
specified in neImpute:

expData <- neImpute(UPB ~ factor(attbin) + negaff + gender + educ + age,

family = binomial("logit"), data = UPBdata)

Similar to neWeight, neImpute first expands the data along hypothetical
exposure values. Instead of calculating weights for these new observations,
neImpute then imputes the nested counterfactual outcomes by fitted val-
ues based on the imputation model. As illustrated below, the resulting
expanded dataset includes two imputed nested counterfactual outcomes
for each subject. The outcomes are no longer binary, but are substituted by
conditional mean imputations.

head(expData, 4)

## id attbin0 attbin1 att attcat negaff initiator gender educ age UPB

## 1 1 1 1 1.001 M 0.84 myself F M 41 0.492

## 2 1 0 1 1.001 M 0.84 myself F M 41 0.384

## 3 2 0 0 -0.709 L -1.26 both M M 42 0.187

## 4 2 1 0 -0.709 L -1.26 both M M 42 0.263

Fitting the natural effect model on the imputed data

After expanding and imputing the data, specifying the natural effect model
can be done as for the weighting-based approach:

neMod1 <- neModel(UPB ~ attbin0 + attbin1 + gender + educ + age,

family = binomial("logit"), expData = expData, se = "robust")

Again, bootstrap or robust standard errors are reported in the output of
the summary function, in order to account for the uncertainty inherent to the
working model (i.e. in this case, the imputation model):
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summary(neMod1)

## Natural effect model

## with robust standard errors based on the sandwich estimator

## ---

## Exposure: attbin

## Mediator(s): negaff

## ---

## Parameter estimates:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -0.9216 0.6892 -1.34 0.18

## attbin01 0.4015 0.2134 1.88 0.06 .

## attbin11 0.3407 0.0805 4.23 2.3e-05 ***

## genderM 0.2940 0.2250 1.31 0.19

## educM 0.3462 0.4817 0.72 0.47

## educH 0.5143 0.4878 1.05 0.29

## age -0.0122 0.0119 -1.02 0.31

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Natural direct and indirect effect odds ratio estimates and their confi-
dence intervals can be obtained as before.

4.4 Dealing with different types of variables

In the previous section, we used a dichotomized version of the continuous
exposure variable att. However, the natural effect model framework easily
extends to different types of exposure, mediator or outcome variables. In the
following two sections, we give a detailed description on how to fit natural
effect models with multicategorical (i.e. ordinal or nominal) and continuous
exposures. In these sections, as well as throughout the remainder of this
chapter, we will focus on the imputation-based approach when introduc-
ing new features of the medflex package. Unless indicated otherwise, the
weighting-based approach can be applied analogously.
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Outcome type

Binary Count Continuous

Mediator type neWeight neImpute neWeight neImpute neWeight neImpute

Binary 3 3 3 3 3 3

Count 3 3 3 3 3 3

Continuous 3 3 3 3 3 3

Ordinal 3 3 3

Nominal 3∗ 3 3∗ 3 3∗ 3

Table 4.4: Types of variables that can be dealt with in the medflex package. Natural
effect models are currently restricted to models that can be fitted with the glm

function. ‘*’ indicates that robust standard errors are not available.

An overview of the types of mediators and outcomes the medflex package
can currently handle, is given in Table 4.4. When using the weighting-based
approach, models for binary, count and continuous mediators can be fitted
using the glm function or the vglm function from the VGAM package. Models
for nominal mediators, on the other hand, can only be fitted using the vglm

function (setting family = multinomial).7 Although models for ordinal
mediators are not compatible with the neWeight function, ordered factors
can easily be treated as nominal variables. Finally, the imputation-based
approach can deal with virtually any type of mediator as it does not require
the specification of a mediator model.

4.4.1 Multicategorical exposures

Methods for dealing with multicategorical treatments or exposures, as
encountered in e.g. multiple intervention studies, in which multiple exper-
imental conditions are compared to a control condition, have rarely been
described within the mediation literature (although see Hayes and Preacher,

7In the current version of the package, when using working models for weighting
(either when adopting the weighting-based approach or when fitting population-average
natural effect models), robust standard errors are only available if these working models
are fitted using glm and their outcomes (i.e. either an exposure or a mediator) follow either
a normal, binomial or Poisson distribution.
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2014; Tingley et al., 2014b, for some notable exceptions).
In this section, we illustrate how to expand the dataset and fit natural

effect models when using a multicategorical exposure. In this example,
instead of using the binary exposure variable attbin, we use a discretized
version of anxious attachment style, named attcat (with L indicating low,
M indicating intermediate and H indicating high anxious attachment levels).

Inspecting the first rows of the expanded dataset shows that the number
of replications for each subject again corresponds to the number of unique
levels of the categorical exposure variable. That is, the auxiliary variable a′

(attcat1) is fixed to the observed exposure, whereas the other, a (attcat0),
enumerates all potential exposure levels.

expData <- neImpute(UPB ~ attcat + negaff + gender + educ + age,

family = binomial, data = UPBdata)

head(expData)

## id attcat0 attcat1 att attbin negaff initiator gender educ age UPB

## 1 1 M M 1.001 1 0.84 myself F M 41 0.468

## 2 1 H M 1.001 1 0.84 myself F M 41 0.558

## 3 1 L M 1.001 1 0.84 myself F M 41 0.366

## 4 2 L L -0.709 0 -1.26 both M M 42 0.182

## 5 2 M L -0.709 0 -1.26 both M M 42 0.253

## 6 2 H L -0.709 0 -1.26 both M M 42 0.327

The summary table returns estimates for the natural direct and indirect
effect log odds ratios comparing intermediate and high anxious attachment
levels to low levels of anxious attachment (i.e. the reference level).

neMod <- neModel(UPB ~ attcat0 + attcat1 + gender + educ + age,

family = binomial, expData = expData, se = "robust")

summary(neMod)

## Natural effect model

## with robust standard errors based on the sandwich estimator

## ---
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## Exposure: attcat

## Mediator(s): negaff

## ---

## Parameter estimates:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -0.9616 0.6976 -1.38 0.16807

## attcat0M 0.3921 0.2365 1.66 0.09729 .

## attcat0H 0.7239 0.3105 2.33 0.01975 *

## attcat1M 0.3012 0.0797 3.78 0.00016 ***

## attcat1H 0.5218 0.1314 3.97 7.2e-05 ***

## genderM 0.2700 0.2266 1.19 0.23336

## educM 0.3279 0.4817 0.68 0.49601

## educH 0.4826 0.4877 0.99 0.32239

## age -0.0127 0.0121 -1.05 0.29510

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Overall assessment of natural effects (i.e. a joint comparison of all levels
of the exposure) cannot be based on the default summary output, but instead
requires an Anova table for the natural effect model, which can be obtained
using the Anova function from the car package (Fox and Weisberg, 2011):

library("car")

Anova(neMod)

## Analysis of Deviance Table (Type II tests)

##

## Response: UPB

## Df Chisq Pr(>Chisq)

## attcat0 2 5.98 0.05 .

## attcat1 2 19.11 7.1e-05 ***

## gender 1 1.42 0.23

## educ 2 1.17 0.56

## age 1 1.10 0.30
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## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Both type-II (the default) and type-III Anova tables can be requested
by specifying the desired type via the type argument. This table includes
corresponding Wald χ2 tests for multivariate hypotheses which account for
the uncertainty inherent to the working model. The output suggests that
the natural direct and indirect effect odds differ significantly between the
three exposure levels.

4.4.2 Continuous exposures

In contrast to the mediation package, hypothesis testing for natural direct
and indirect effects along the entire support of continuous exposures is
facilitated by defining causal effects on their most natural scale. In this
section, we use the continuous variable att, a standardized version of the
original anxious attachment variable.

For continuous variables, expanding the dataset along unobserved (a,
a′) combinations requires a slightly adapted approach than for categorical
exposures. Instead of enumerating all exposure levels to construct auxiliary
variables a and a′ for each subject, Vansteelandt et al. (2012b) proposed
to draw specific quantiles from the conditional density of the exposure
given baseline covariates. By default, these hypothetical exposure levels
are drawn from a linear model for the exposure, conditional on a linear
combination of all covariates specified in the working model.8

Both neWeight and neImpute allow to choose the number of draws to
sample from this conditional density via the nRep argument (which defaults
to 5).9

8If one wishes to use another model for the exposure, this default model specification
can be overruled by referring to a fitted model object in the xFit argument. Misspecification
of this sampling model does not induce bias in the estimated coefficients and standard
errors of the natural effect model.

9We recommend to use a minimum of 3 draws. Although finite sample bias and
sampling variability can be reduced to some extent by choosing a larger number of draws,
simulations have shown this gain to be ignorable when choosing more than 5 draws
(Vansteelandt et al., 2012b).
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expData <- neImpute(UPB ~ att + negaff + gender + educ + age,

family = binomial("logit"), data = UPBdata, nRep = 3)

head(expData)

## id att0 att1 attbin attcat negaff initiator gender educ age UPB

## 1 1 -1.64e+00 1.001 1 M 0.84 myself F M 41 0.309

## 2 1 8.02e-06 1.001 1 M 0.84 myself F M 41 0.429

## 3 1 1.64e+00 1.001 1 M 0.84 myself F M 41 0.557

## 4 2 -1.66e+00 -0.709 0 L -1.26 both M M 42 0.149

## 5 2 -1.82e-02 -0.709 0 L -1.26 both M M 42 0.227

## 6 2 1.63e+00 -0.709 0 L -1.26 both M M 42 0.330

Specification of the natural effect model via neModel can be done as
described before:

neMod1 <- neModel(UPB ~ att0 + att1 + gender + educ + age,

family = binomial("logit"), expData = expData, se = "robust")

summary(neMod1)

## Natural effect model

## with robust standard errors based on the sandwich estimator

## ---

## Exposure: att

## Mediator(s): negaff

## ---

## Parameter estimates:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -0.4873 0.6862 -0.71 0.4776

## att0 0.2923 0.1091 2.68 0.0074 **

## att1 0.2018 0.0470 4.29 1.8e-05 ***

## genderM 0.2671 0.2274 1.17 0.2402

## educM 0.2679 0.4894 0.55 0.5841

## educH 0.4103 0.4959 0.83 0.4080

## age -0.0120 0.0122 -0.99 0.3236

## ---
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## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The output illustrates that defining natural effects on the (log) odds ratio
scale allows to capture each of these effects along the entire support of the
exposure by a single parameter. For instance, for a subject with baseline
covariate levels C, the direct and indirect effects of one standard deviation
increase in anxious attachment level (i.e. from a to a + 1) correspond to an
increase in the odds of displaying unwanted pursuit behaviors by a factor

ÔR
NDE
a+1,a|C =

odds {Y(a + 1, M(a)) = 1|C}
odds {Y(a, M(a)) = 1|C} = exp(β̂1) = exp(0.29) = 1.34,

and

ÔR
NIE
a+1,a|C =

odds {Y(a, M(a + 1)) = 1|C}
odds {Y(a, M(a)) = 1|C} = exp(β̂2) = exp(0.2) = 1.22,

respectively, regardless of the initial level a. Defining natural effects on the
risk difference scale (as in the mediation package) would not have enabled to
capture these by a single parameter along the entire support of the exposure,
because of induced non-additivity (an artificial example illustrating this
induced non-additivity is given in Figure 4 of Loeys et al., 2013).

Throughout the remainder of this chapter, we will continue to use the
original continuous exposure variable, att.

4.5 Effect modification of natural effects

4.5.1 Exposure-mediator interactions

So far, the considered natural effect models reflected the assumption that
exposure and mediator do not interact in their effect on the outcome (on
the scale defined by the link function). In particular, the natural direct effect
odds ratio

ORNDE
1,0|C(a′) =

odds {Y(1, M(a′)) = 1|C}
odds {Y(0, M(a′)) = 1|C}
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was postulated to be the same for each choice of mediator level M(a′), and
hence for each choice of reference exposure level a′, at which the mediator
is evaluated. Similarly, the natural indirect effect odds ratio

ORNIE
1,0|C(a) =

odds {Y(a, M(1)) = 1|C}
odds {Y(a, M(0)) = 1|C}

was postulated to be constant across different choices of a at which the
outcome is evaluated. In other words, the effects Robins and Greenland
(1992) referred to as the pure direct effect, ORNDE

1,0|C(0), and total direct effect,
ORNDE

1,0|C(1), were assumed to be equal. Likewise, the pure indirect effect,
ORNIE

1,0|C(0), and total indirect effect, ORNIE
1,0|C(1), were assumed to be equal.

However, in many studies, these assumptions may not be plausible.

As pointed out by VanderWeele (2013), total causal effects can be de-
composed into a pure direct effect, a pure indirect effect and a mediated
interactive effect. On an additive scale, the latter can be described as either
the difference between total direct and pure direct effects or as the difference
between total indirect and pure indirect effects. Similarly, the total effect
odds ratio

OR1,0|C =
odds {Y(1, M(1)) = 1|C}
odds {Y(0, M(0)) = 1|C}

can be expressed as the product

ORNDE
1,0|C(0)×ORNIE

1,0|C(0)×
ORNDE

1,0|C(1)

ORNDE
1,0|C(0)

= ORNDE
1,0|C(0)×ORNIE

1,0|C(0)×
ORNIE

1,0|C(1)

ORNIE
1,0|C(0)

of the pure direct and pure indirect effect odds ratios and the mediated
interaction odds ratio. Rather than reflecting the difference between total
and pure direct or indirect effects, the mediated interaction odds ratio
corresponds to the ratio of total and pure direct or indirect effect odds ratios.

In a logistic natural effect model, testing for exposure-mediator interac-
tion amounts to testing whether the mediated interaction odds ratio differs
from 1, or equivalently, on the scale of the linear predictor, whether the
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corresponding log odds ratio, β′3 in natural effect model

logitP
{

Y(a, M(a′)) = 1|C
}
= β′0 + β′1a + β′2a′ + β′3aa′ + β′4C, (4.2)

differs from 0. When including this interaction term in the outcome model,
β′1 and β′2 encode the pure direct and indirect effect log odds ratios, respec-
tively.

When applying the imputation-based approach, the working model
needs to at least reflect the structure of the final natural effect model (as has
been pointed out in section 4.3.3). This requires the user to first (re)fit the
imputation model accordingly. For instance, a minimal imputation model
for natural effect model (4.2) would be the logistic regression model

logitP(Y = 1|A, M, C) = γ′0 + γ′1A + γ′2M + γ′3AM + γ′4C.

The output of the corresponding natural effect model object suggests there is
no evidence for mediated interaction at the 5% significance level (p = .0541).

expData <- neImpute(UPB ~ att * negaff + gender + educ + age,

family = binomial("logit"), data = UPBdata)

neMod2 <- neModel(UPB ~ att0 * att1 + gender + educ + age,

family = binomial("logit"), expData = expData, se = "robust")

summary(neMod2)

## Natural effect model

## with robust standard errors based on the sandwich estimator

## ---

## Exposure: att

## Mediator(s): negaff

## ---

## Parameter estimates:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -0.3949 0.6800 -0.58 0.5614

## att0 0.2950 0.1102 2.68 0.0074 **
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## att1 0.1817 0.0467 3.90 9.8e-05 ***

## genderM 0.2815 0.2263 1.24 0.2135

## educM 0.1798 0.4857 0.37 0.7113

## educH 0.3105 0.4929 0.63 0.5287

## age -0.0139 0.0122 -1.14 0.2545

## att0:att1 0.0698 0.0363 1.93 0.0541 .

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

4.5.2 Effect modification by baseline covariates

One might additionally wish to determine whether direct or indirect effects
generalize across different strata of the population and across different
conditions.

In our example, researchers might for instance investigate whether the
extent to which the effect of anxious attachment level on engaging in UPBs
is mediated through the experience of negative affectivity differs between
men and women or between people with different education levels (Muller
et al., 2005; Preacher et al., 2007). This moderated mediation hypothesis can
be probed by allowing the conditional indirect effect, as indexed by β2 in
expression (4.1), to depend on gender, C1, as expressed in model (4.3):

logitP
{

Y(a, M(a′)) = 1|C
}
= β′′0 + β′′1 a + β′′2 a′ + β′′3 a′C1 + β′′4 C. (4.3)

The amount of effect modification by gender in this model is then simply
captured by β′′3 .

impData <- neImpute(UPB ~ (att + negaff) * gender + educ + age,

family = binomial("logit"), data = UPBdata)

neMod3 <- neModel(UPB ~ att0 + att1 * gender + educ + age,

family = binomial("logit"), expData = impData, se = "robust")

summary(neMod3)

## Natural effect model
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## with robust standard errors based on the sandwich estimator

## ---

## Exposure: att

## Mediator(s): negaff

## ---

## Parameter estimates:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -0.4731 0.6860 -0.69 0.4904

## att0 0.2850 0.1069 2.67 0.0077 **

## att1 0.1441 0.0583 2.47 0.0134 *

## genderM 0.2591 0.2278 1.14 0.2553

## educM 0.2718 0.4903 0.55 0.5793

## educH 0.4166 0.4975 0.84 0.4024

## age -0.0123 0.0122 -1.00 0.3153

## att1:genderM 0.1598 0.1016 1.57 0.1156

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The output suggests that the natural indirect effect does not differ signif-
icantly between men and women (p = 0.1156).

In a similar way, researchers can gauge effect modification by education
level. Suppose, for instance, that one wishes to test whether education level
moderates both the direct and indirect effect. This can be done by fitting
the natural effect model

logitP
{

Y(a, M(a′)) = 1|C
}
= β?

0 + β?
1a + β?

2a′ + β?
3aC2,1 + β?

4aC2,2

+ β?
5a′C2,1 + β?

6a′C2,2 + β?
7C, (4.4)

with C2,1 and C2,2 dummy variables encoding the three education levels.
Effect modification of the natural indirect (direct) effect by education level
in model (4.4) is then captured by β?

5 and β?
6 (β?

3 and β?
4).
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impData <- neImpute(UPB ~ (att + negaff) * educ + gender + age,

family = binomial("logit"), data = UPBdata)

neMod4 <- neModel(UPB ~ (att0 + att1) * educ + gender + age,

family = binomial("logit"), expData = impData, se = "robust")

Testing for moderation by a multicategorical variable calls for a multi-
variate test, which can again be obtained by requesting an Anova table for
the natural effect model.

4.6 Tools for calculating and visualizing causal effect esti-

mates

In this section, we highlight tools that can aid in calculating and visualizing
specific causal effect estimates of interest. These tools might prove useful for
gaining insight, especially for more complex models including interaction
terms involving natural effect parameters.

4.6.1 Linear combinations of parameter estimates

Although effect estimates for e.g. the total causal effect can easily be ob-
tained from the summary table of a natural effect model, its standard error
and confidence interval cannot. To this end, the function neLht, which
exploits the functionality of the glht function from the multcomp package
(Hothorn et al., 2008) can be of use. This function enables the calculation of
linear combinations of parameter estimates as well as their corresponding
standard errors and confidence intervals based on the bootstrap or robust
variance-covariance matrix of the natural effect model.

For instance, in model (4.2), the total direct and indirect effect can be
expressed on the log odds scale as β′1 + β′3 and β′2 + β′3, respectively. Simi-
larly, the total causal effect log odds ratio is captured by β′1 + β′2 + β′3. As
the argument for the linear function, linfct, needs to be specified in terms
of one or more linear hypotheses, these effects can be specified as illustrated
below:
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lht <- neLht(neMod2, linfct = c("att0 + att0:att1 = 0",

"att1 + att0:att1 = 0", "att0 + att1 + att0:att1 = 0"))

The corresponding odds ratios and their confidence intervals can be
requested by exponentiating the coefficients and confidence intervals of the
resulting object:

exp(cbind(coef(lht), confint(lht)))

## 95% LCL 95% UCL

## att0 + att0:att1 1.44 1.15 1.80

## att1 + att0:att1 1.29 1.15 1.43

## att0 + att1 + att0:att1 1.73 1.39 2.15

Separate univariate tests for linear hypothesis objects can be requested
using the summary function:

summary(lht)

## Linear hypotheses for natural effect models

## with standard errors based on the sandwich estimator

## ---

## Estimate Std. Error z value Pr(>|z|)

## att0 + att0:att1 0.3648 0.1145 3.19 0.0014 **

## att1 + att0:att1 0.2515 0.0553 4.55 5.4e-06 ***

## att0 + att1 + att0:att1 0.5465 0.1118 4.89 1.0e-06 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

## (Univariate p-values reported)

In contrast to the summary table for glht objects, which yields p values
that are adjusted for multiple testing, tests returned by the summary function
applied to neLht objects report unadjusted univariate tests. Adjusted tests
can be obtained by setting test = adjusted() (for more details consult the
help page of the adjusted() function from the multcomp package; Hothorn
et al., 2008).
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4.6.2 Effect decomposition

If interest is mainly focused on the natural effect parameters, the conve-
nience function neEffdecomp can be used instead of neLht. This function
automatically retains the natural effect estimates and generates a linear
hypothesis object that reflects the most suitable effect decomposition:

effdecomp <- neEffdecomp(neMod2)

summary(effdecomp)

## Effect decomposition on the scale of the linear predictor

## with standard errors based on the sandwich estimator

## ---

## conditional on: gender, educ, age

## with x* = 0, x = 1

## ---

## Estimate Std. Error z value Pr(>|z|)

## pure direct effect 0.2950 0.1102 2.68 0.0074 **

## total direct effect 0.3648 0.1145 3.19 0.0014 **

## pure indirect effect 0.1817 0.0467 3.90 9.8e-05 ***

## total indirect effect 0.2515 0.0553 4.55 5.4e-06 ***

## total effect 0.5465 0.1118 4.89 1.0e-06 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

## (Univariate p-values reported)

By default, reference levels for the exposure, a and a′, are chosen to be
1 and 0, respectively. If one wishes to evaluate causal effects at different
reference levels (e.g. if the natural effect model allows for mediated inter-
action or if it includes quadratic or higher-order polynomial terms for the
exposure), these can be specified as a vector of the form c(a*,a) via the
xRef argument.

The output indicates that, for a subject with baseline covariate levels C,
a standard deviation increase from the average level of anxious attachment
(=0), increases the odds of displaying unwanted pursuit behaviors with a
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factor

ÔR
NDE
1,0|C(0) =

odds {Y(1, M(0)) = 1|C}
odds {Y(0, M(0)) = 1|C} = exp(β̂′1) = 1.34

when controlling negative affectivity at levels as naturally observed at
average anxious attachment levels, or with a factor

ÔR
NDE
1,0|C(1) =

odds {Y(1, M(1)) = 1|C}
odds {Y(0, M(1)) = 1|C} = exp(β̂′1 + β̂′3) = 1.44

when controlling negative affectivity at levels as naturally observed at
anxious attachment levels one standard deviation above the average level.

On the other hand, altering negative affectivity from levels that would
have been observed at average levels of anxious attachment to levels that
would have been observed at attachment scores of one standard deviation
higher, increases the odds of displaying unwanted pursuit behaviors with a
factor

ÔR
NIE
1,0|C(0) =

odds {Y(0, M(1)) = 1|C}
odds {Y(0, M(0)) = 1|C} = exp(β̂′2) = 1.20

when controlling their anxious attachment level at the average, or with a
factor

ÔR
NIE
1,0|C(1) =

odds {Y(1, M(1)) = 1|C}
odds {Y(1, M(0)) = 1|C} = exp(β̂′2 + β̂′3) = 1.29

when controlling their anxious attachment level one standard deviation
above the average.

The total causal effect odds ratio can be expressed as the product of the
pure direct and indirect effect odds ratios and the mediated interaction odds
ratio: a standard deviation increase from the average level of anxious at-
tachment approximately doubles the odds of displaying unwanted pursuit
behaviors.

ÔR1,0|C =
odds {Y(1, M(1)) = 1|C}
odds {Y(0, M(0)) = 1|C} = exp(β̂′1 + β̂′2 + β̂′3) = 1.73.
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If the model includes terms reflecting effect modification by baseline
covariates (e.g. as in model (4.3)), effect decomposition is by default evalu-
ated at covariate levels that correspond to 0 for continuous covariates and
to the reference level for categorical covariates coded as factors. However,
for this type of models, it might often be insightful to evaluate natural
effect components at different covariate levels than the default levels. This
can be done via the covLev argument, which requires a vector including
valid levels for modifier covariates specified in the natural effect model.
An example of effect decomposition for women (gender = "F", the default
covariate level) and men (gender = "M") in model (4.3) is given in the R

code below.

neEffdecomp(neMod3)

## Effect decomposition on the scale of the linear predictor

## ---

## conditional on: gender = F, educ, age

## with x* = 0, x = 1

## ---

## Estimate

## natural direct effect 0.285

## natural indirect effect 0.144

## total effect 0.429

neEffdecomp(neMod3, covLev = c(gender = "M"))

## Effect decomposition on the scale of the linear predictor

## ---

## conditional on: gender = M, educ, age

## with x* = 0, x = 1

## ---

## Estimate

## natural direct effect 0.285

## natural indirect effect 0.304

## total effect 0.589
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4.6.3 Global hypothesis tests

Wald tests considering all specified linear hypotheses jointly can be re-
quested by specifying test = Chisqtest(). For instance, in model (4.4),
instead of using the Anova function, one could also test for moderated medi-
ation by the multicategorical baseline covariate education level via a global
hypothesis test involving the relevant parameters β?

5 and β?
6.

modmed <- neLht(neMod4, linfct = c("att1:educM = 0", "att1:educH = 0"))

summary(modmed, test = Chisqtest())

## Global linear hypothesis test for natural effect models

## with standard errors based on the sandwich estimator

## ---

## Chisq DF Pr(>Chisq)

## 1 5.2 2 0.0742

4.6.4 Visualizing effect estimates and their uncertainty

Finally, the generic plot function can be applied to linear hypothesis objects
to visualize (linear combinations of) effect estimates and their uncertainty
by means of confidence interval plots. To obtain estimates and confidence
intervals on the odds ratio scale, one can specify transf = exp in order to
exponentiate the original parameter estimates (on the log odds ratio scale).
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log odds ratio
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Figure 4.4: Effect decomposition on the log odds ratio and odds ratio scales.
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Applying the plot function to a natural effect model object automatically
retains the causal effect estimates of interest, generates a linear hypothesis
object using neEffdecomp and then plots its corresponding estimates and
confidence intervals, as shown in Figure 4.4. The default exposure reference
and covariate levels for these plots are the same as for the neEffdecomp

function, but can again be altered via the corresponding arguments xRef
and covLev.

4.7 Population-average natural effects

In all previous sections, we defined natural effects as conditional or stratum-
specific effects (i.e. conditional on baseline covariates). However, the medflex

package additionally allows to estimate population-average natural effects.
As demonstrated in section 3.4.2 of chapter 3, rewriting the mediation
formula reveals that estimation of these population-average effects requires
weighting by the reciprocal of the conditional exposure distribution in order
to adjust for confounding (also see Albert, 2012; Vansteelandt, 2012).

As a consequence, a model for the exposure density needs to be fitted
and specified as an additional working model, e.g.

expFit <- glm(att ~ gender + educ + age, data = UPBdata)

Since specifying population-average natural effect models using the
neModel is equivalent for the weighting- and imputation-based approaches,
in the remainder of this section, we demonstrate how to proceed when
adhering to the imputation-based approach. Moreover, when estimating
population-average natural effects, incoherence between imputation and
natural effect models is less of a concern as the latter does not require
modeling the relation between outcome and covariates. The (first) working
model can again be fitted using the same commands as before:

impData <- neImpute(UPB ~ att + negaff + gender + educ + age,

family = binomial("logit"), data = UPBdata)
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Each observation in the expanded dataset to which the marginal natural
effect model

logitP
{

Y(a, M(a′)) = 1
}
= θ0 + θ1a + θ2a′ (4.5)

is fitted, needs to be weighted by the reciprocal of the exposure probability
density, P(A|C), evaluated at the observed exposure. The fitted model
object that is used to calculate regression weights needs to be specified in
the xFit argument of the neModel function:

neMod5 <- neModel(UPB ~ att0 + att1, family = binomial("logit"),

expData = impData, xFit = expFit, se = "robust")

summary(neMod5)

## Natural effect model

## with robust standard errors based on the sandwich estimator

## ---

## Exposure: att

## Mediator(s): negaff

## ---

## Parameter estimates:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -0.5793 0.1112 -5.21 1.9e-07 ***

## att0 0.2967 0.1082 2.74 0.0061 **

## att1 0.2294 0.0578 3.97 7.2e-05 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Both the marginal natural direct and indirect effect odds ratios again
seem to be significantly different from 1: increasing the anxious attachment
level from average to one standard error above average, while keeping
negative affectivity fixed at levels corresponding to anxious attachment
level a′, increases the odds of displaying unwanted pursuit behaviors with
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a factor

ÔR
NDE
1,0 =

odds {Y(1, M(a′)) = 1}
odds {Y(0, M(a′)) = 1} = exp(θ̂1) = 1.35.

A similar interpretation can again be made for the natural indirect effect.

4.8 Intermediate confounding: a joint mediation approach

In many settings multiple mediators may be of interest. In our example, one
could argue that being anxiously attached to one’s partner makes respon-
dents more hesitant to end their relationship and that, in turn, not having
initiated the break-up causes them to engage in unwanted pursuit behaviors
more often. Initiator status (initiator: either "both", "ex-partner", or
"myself") can thus also be considered a mediator, which we denote L.

If hypothesized mediators are conditionally independent (given expo-
sure and baseline covariates), separate natural effect models can be fitted
(each with a different working model involving only one of the media-
tors) to assess the mediated effects through each of the mediators one at a
time. Specifically, if the aforementioned ignorability conditions in assump-
tions (A1)-(A4) hold with respect to each mediator separately10, natural
indirect effects, as defined as causal pathways through single mediators,
are identified since these conditions imply that the given mediators are
independent given exposure and baseline covariates (Imai and Yamamoto,
2013; VanderWeele and Vansteelandt, 2013). Recently, Lange et al. (2014)
demonstrated how independent intermediate pathways can be assessed
in a single natural effect model using the weighting-based approach. Ad-
ditionally, these authors proposed a regression-based approach for testing
conditional dependence between mediators (also see Loeys et al., 2013; Imai
and Yamamoto, 2013).

Often, however, mediators are interdependent and can be thought of
as being linked in a sequential causal chain. For instance, not having initi-

10In addition to assumptions (A1)-(A4), we additionally assume that Y(a, l) ⊥⊥ A|C (for
all levels of a and l), L(a) ⊥⊥ A|C (for all levels of a), Y(a, l) ⊥⊥ L|A = a, C (for all levels of
a and l) and Y(a, l) ⊥⊥ L(a′)|C (for all levels of a, a′ and l).
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anxious attachment (A)

initiator status (L)

negative affectivity (M)

unwanted pursuit (Y)

gender, education, age (C)

Figure 4.5: Causal diagram reflecting exposure-induced confounding.

ated the break-up could have made respondents more prone to feeling sad,
jealous, angry, frustrated or hurt, as reflected in the causal diagram in Fig-
ure 4.5. Under this diagram, initiator status confounds the relation between
the mediator and outcome (given that negative affectivity is the mediator
of interest), while at the same time being affected by the exposure, hence
violating assumption (A4). As a consequence, the natural indirect effect
via negative affectivity is no longer identified under the NPSEM depicted
in Figure 4.5 (although see Robins, 2003; Tchetgen Tchetgen and Vander-
Weele, 2014; Vansteelandt and VanderWeele, 2012, for additional (paramet-
ric) restrictions which enable identification). This non-identification can
intuitively be appreciated by the fact that, in the presence of an intermediate
confounder L, the natural indirect effect via M can be rewritten as

odds {Y(a, L(a), M(1, L(1))) = 1|C}
odds {Y(a, L(a), M(0, L(0))) = 1|C} ,

which involves blocking the causal path through L only (A → L → Y),
while at the same time assessing the effect transmitted through L and M
(A→ L→ M→ Y) (Didelez et al., 2006).

Alternatively, the total causal effect can be decomposed into the effect
transmitted through L and M simultaneously and the effect not mediated
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by any of the given mediators (VanderWeele and Vansteelandt, 2013; Van-
derWeele et al., 2014). Although such a joint mediation approach might
not target the initial mediation hypothesis, it may still shed some light on
the underlying causal mechanisms if there are reasons (either theoretical
or empirical) to question the validity of assumption (A4) (with respect to
a single mediator)11, since this decomposition relies on a weaker set of
ignorability assumptions. Specifically, if, as under the NPSEM depicted in
Figure 4.5, we assume that a set of baseline covariates C satisfies ‘no omitted
confounders’ assumptions (A1)-(A3) with respect to L and M jointly (rather
than separately) and that no measured or unmeasured confounders of the
(L, M)−Y relation are affected by the exposure12, the joint mediated effect
and corresponding direct effect are identified. The appeal of this joint medi-
ation approach is that by defining a natural indirect effect with respect to a
set or vector of mediators (rather than a single mediator) assumption (A4)
can be made more plausible by simply including mediator-outcome con-
founders that are deemed likely to be affected by the exposure in the joint
set of mediators (VanderWeele and Vansteelandt, 2013).

For example, exp(β??
1 ) in model (4.6)

logitP
{

Y(a, L(a′), M(a′, L(a′))) = 1|C
}
= β??

0 + β??
1 a + β??

2 a′ + β??
3 C,

(4.6)

captures the (newly defined) natural direct effect odds ratio

ORNDE
1,0|C =

odds {Y(1, L(a′), M(a′, L(a′))) = 1|C}
odds {Y(0, L(a′), M(a′, L(a′))) = 1|C} ,

whereas exp(β??
2 ) captures the natural indirect effect odds ratio

ORNIE
1,0|C =

odds {Y(a, L(1), M(1, L(1))) = 1|C}
odds {Y(a, L(0), M(0, L(0))) = 1|C}

11In particular, it can be interesting to assess if the two mediators in combination lead
to a null direct effect as this may signal that all important components in the causal chain
from exposure to outcome have been identified.

12i.e. assuming that Y(a, l, m) ⊥⊥ A|C (for all levels of a, l and m), {M(a), L(a)} ⊥⊥
A|C (for all levels of a), Y(a, l, m) ⊥⊥ {L, M}|A = a, C (for all levels of a, l and m) and
Y(a, l, m) ⊥⊥ {L(a′), M(a′)}|C (for all levels of a, a′, l and m).
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through L and M jointly.
Fitting this natural effect model, however, requires both mediators to be

taken into account in the working model(s). When applying the weighting-
based approach, dealing with multiple mediators entails fitting a model for
each of the mediators separately to calculate ratio-of-mediator probability
weights, as in Lange et al. (2014). The imputation-based approach, on
the other hand, is less demanding as it only requires one working model
for the outcome. For this reason, estimation of joint mediated effects is
implemented only for the imputation-based approach in the current version
of the medflex package.

Hence, after expanding the data, nested counterfactual outcomes need
to be imputed by fitted values from an imputation model conditional on
both L and M. For instance, in the R code below, a logistic model

logitP(Y = 1|A, L, M, C) = γ??
0 + γ??

1 A + γ??
2 L + γ??

3 M + γ??
4 LM + γ??

5 C

is fitted that allows the mediators to interact in their effect on the outcome.

impData <- neImpute(UPB ~ att + initiator * negaff + gender + educ + age,

family = binomial("logit"), nMed = 2, data = UPBdata)

The number of mediators to be considered jointly should be set via
the nMed argument in the neImpute function. If nMed = 2, not only the
second predictor variable, but the two predictor variables declared after the
exposure variable are internally coded as mediators. Subsequently, natural
effect model (4.6) can be fitted to the imputed dataset using the neModel

function.

neMod6 <- neModel(UPB ~ att0 + att1 + gender + educ + age,

family = binomial("logit"), expData = impData, se = "robust")

summary(neMod6)

## Natural effect model

## with robust standard errors based on the sandwich estimator

## ---
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## Exposure: att

## Mediator(s): initiator, negaff

## ---

## Parameter estimates:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -0.4919 0.6854 -0.72 0.473

## att0 0.2444 0.1114 2.19 0.028 *

## att1 0.2476 0.0538 4.60 4.2e-06 ***

## genderM 0.2629 0.2274 1.16 0.248

## educM 0.2780 0.4912 0.57 0.571

## educH 0.4223 0.4979 0.85 0.396

## age -0.0121 0.0122 -0.99 0.320

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Correct specification of the (number of) mediators can easily be checked
in the summary output of the natural effect model object, which lists the
names of the exposure and all mediators.

Although we have hypothesized that initiator status affects the level
of experienced negative affectivity, this joint mediator approach does not
necessarily require knowing the ordering of the mediators. VanderWeele
and Vansteelandt (2013) and VanderWeele et al. (2014) described how addi-
tional insight into the causal mechanisms can be gained when the ordering
is (assumed to be) known. These authors advocated a sequential approach
which enables further effect decomposition of the total causal effect into
multiple path-specific effects (Avin et al. 2005; also see Huber 2014 for an
inverse-probability weighting approach and Albert and Nelson 2011 and
Daniel et al. 2015 for a parametric g-computation approach for estimating
some of these path-specific effects). Such sequential approach can easily
be embedded in the natural effect model framework and is planned to be
implemented in an upcoming version of the medflex package.
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4.9 Weighting or imputing?

For both the weighting- and imputation-based approach, valid estimation
of natural effects hinges on adequate specification of their corresponding
nuisance working models and the natural effect model. In this section, we
highlight the impact of model misspecification for each of the two proposed
estimation approaches. The resulting trade-off in terms of modeling de-
mands may serve as a guideline as to which of the two approaches is to
be preferred in which particular setting. Moreover, certain missing data
patterns might also favor one approach over the other, as discussed in more
detail below.

4.9.1 Modeling demands

The proposed weighting-based approach yields consistent natural effects
estimates if both the natural effect model and the conditional distribution of
the mediator are correctly specified. The latter needs careful consideration,
especially when exposure or baseline covariates are highly predictive of the
mediator, for then even minor misspecifications in its conditional expec-
tation can have a major impact on the weights and lead to heavily biased
estimation of the target natural effects parameters. However, residual plots
with scatterplot smoothers are often helpful to diagnose model inadequacy
and can be requested, for instance, by passing the expData-class object
to the residualPlots function from the car package. When dealing with
continuous mediators, correct modeling not only demands adequate specifi-
cation of the mediator’s expectation, but also requires additional parametric
assumptions on the mediator’s conditional density (i.e. the distribution
of the error terms).13 Moreover, even under proper model specification,
weights for continuous mediators typically tend to be unstable, leading to

13By default, the density function will correspond to the error distribution specified
in the family argument for the mediator model (in turn specified via neWeight). QQ
plots of the residuals can in this case be informative as to whether this parametric as-
sumption is warranted for continuous mediators and can be obtained using the qqnorm

function. The residuals can easily be obtained directly from the expanded dataset (as the
working model is stored as an attribute in the expanded dataset object) by the command
residuals(expData).
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less precise natural effect estimates and considerable finite sample bias. In
particular, when the outcome is linear in the mediator, it might be sensible
to avoid unnecessary parametric assumptions, since then the mediation
formula prescribes only correct specification of the mediator’s expectation.

In the light of these considerations, Vansteelandt et al. (2012b) recom-
mended routine application of the imputation-based approach, especially
when dealing with continuous mediators, since it avoids reliance on a model
for the mediator. Despite this attraction, the imputation estimator does not
come without limitations.

As in other imputation settings, one must pay due attention to coherent
(or congenial) specification of the imputer’s model and the analyst’s model
(i.e. in this case, the natural effect model) (Meng, 1994). This might be partic-
ularly challenging for nonlinear outcome models. For instance, when using
logistic regression to model binary outcomes, the imputation model may be
difficult or impossible to match with the natural effect model (VanderWeele
and Vansteelandt, 2010; Tchetgen Tchetgen, 2014). To limit the impact of
potential model uncongeniality in terms of misspecification bias, Vanstee-
landt et al. (2012b) and Loeys et al. (2013) advocated the use of a sufficiently
rich imputation model.14 To this end, the medflex package allows users
to fit an imputation model using generalized additive models or machine
learning techniques, such as the ensemble learner as implemented in the
SuperLearner package (Polley and van der Laan, 2014).15 Moreover, issues of
uncongeniality can be avoided altogether by resorting to saturated natural
effect models. In practice, models for conditional natural effects will rarely
be saturated as either (some) baseline covariates or the exposure variable
are continuous (or both). If the exposure is categorical, saturated models
can be fitted for estimating population-average rather than stratum-specific
natural effects (see section 4.7). However, for observational data, as op-

14A ‘minimal’ imputation model should thus at least reflect the structure of the natural
effect model (e.g. also including exposure-mediator interactions when these are postulated
as an aa′ interaction in the natural effect model) to avoid attenuation of the estimates of
effects that were precluded from the imputation model.

15An example is given in the help files of the package and can be consulted via
?neImpute.default. Only bootstrap standard errors are available when fitting the impu-
tation model using the SuperLearner function.
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posed to data from experiments where the exposure is randomly assigned,
adjustment for confounding in population-average natural effect models
requires inverse weighting for the exposure.16

Second, as opposed to the weighting-based estimator, estimation by
imputation requires modeling the mediator-outcome relation, which can be
far from trivial whenever the exposure or baseline covariates are strongly
associated with the mediator. In these scenarios, information about the effect
of the mediator on the outcome may be sparse within certain strata defined
by the exposure and covariates and, as a result, model misspecification
may be difficult to diagnose and extrapolation bias becomes more likely
(Vansteelandt, 2012). Whenever increased concerns of model extrapolation
arise, the weighting-based approach may be indicated, as extrapolation
uncertainty will typically be more honestly reflected in the corresponding
standard errors (Vansteelandt et al., 2012a).17

Finally, it can be argued that, for both estimation approaches, if the
working model is correctly specified (either via generalized linear models or
via more advanced techniques), a parsimonious (and possibly misspecified)
natural effect model will still provide some summary result tailored to
answer the practitioner’s main research questions (Vansteelandt et al., 2012b;
Loeys et al., 2013). Suppose, for instance, that the logistic regression models
in expression (0) are correctly specified. Fitting a natural effect model of the
form

logitP(Y = 1|A, M, C) = β0 + β1a + β2a′ + β3C

to the expanded dataset using the imputation-based approach will then
yield an estimated conditional natural indirect effect odds ratio of 1.143,

16Note that in both settings all baseline confounders still need to be adjusted for in the
imputation model. Moreover, although the use of population-average natural effect models
can, in some settings, avoid issues concerning potential model uncongeniality, it is up to
the researcher to decide whether stratum-specific or population-average effects are the
target of interest.

17Extrapolation might also affect estimation in the natural effect model, primarily when
baseline covariates and exposure are highly correlated. This concern holds for both the
weighting- and imputation-based estimator, since both require regression adjustment for
covariates to estimate conditional natural effects.
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which can be roughly considered as the mean conditional odds ratio across
potential exposure levels (as depicted in Figure 4.1). If such an approach
turns out to be unsatisfactory, users can again request residual plots to
guide further model building and improve goodness-of-fit (by calling the
residualPlots function). These diagnostics can be particularly helpful in
the presence of certain non-linearities. For instance, when a continuous
mediator is quadratic in the exposure, residual plots will indicate the need
for a quadratic term for the indirect effect in the natural effect model, which
will usually go unnoticed when fitting an imputation model for the outcome.

4.9.2 Missing data

As previously stated, when missingness occurs in the outcome, this is
naturally dealt with when choosing the imputation-based approach, as
missing outcomes in the original dataset are (by default) imputed in the
expanded dataset, under the assumption that these outcomes are MAR
(missing at random) given exposure, mediator(s) and baseline covariates.18

The weighting-based approach, on the other hand, is restricted to the
analysis of complete cases and hence requires the more stringent MCAR
(missing completely at random) assumption to hold in order to obtain
unbiased estimation of the natural effect parameters. Whenever missingness
occurs only in the outcome, we therefore advise to use the imputation-based
approach. Alternatively, one might resort to multiple imputation, as also
recommended if missingness occurs in either the exposure, mediator(s) or
baseline covariates.

For instance, the mice function from the mice package (van Buuren
and Groothuis-Oudshoorn, 2011) can be used to obtain multiply imputed
datasets (stored in a mids-class object). The working model can in turn
be fitted to each of these datasets by passing them (or rather the object
containing these datasets) to the with.mids function, which also processes
the function (i.e. either neWeight or neImpute) and expression that needs

18It might be necessary to include additional covariates (that are both predictive of
the outcome and missingness in the outcome, but are not included in the set of baseline
covariates, C, that is chosen to meet assumptions (A1)-(A4)) in the imputation model to
make the MAR assumption more plausible.
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to be evaluated via the second argument. These steps are illustrated in the
code below, in which missdat is a copy of the UPB dataset with artificially
introduced missingness in each of the original variables.

library("mice")

library("mitools")

missdat <- UPBdata

for (i in 1:ncol(missdat))

missdat[sample(nrow(missdat))[1:10], i] <- NA

multImp <- mice(missdat, m = 10)

expData <- with(multImp, neWeight(negaff ~ factor(attbin) + gender

+ educ + age))

Next, we use some functionalities from the mitools package (Lumley,
2014) to fit natural effect model (4.1) to each of the expanded multiply im-
puted datasets (stored in expData$analyses). The function imputationList

can be used to transform the output containing these expanded datasets into
a format that can be further passed to the with.imputationList function.

expData <- imputationList(expData$analyses)

neMod1 <- with(expData, neModel(UPB ~ attbin0 + attbin1 + gender

+ educ + age, family = binomial("logit"), se = "robust"))

Finally, the results can be pooled by using the MIcombine function.

MIcombine(neMod1)

## Multiple imputation results:

## with(expData, neModel(UPB ~ attbin0 + attbin1 + gender + educ +

## age, family = binomial("logit"), se = "robust"))

## MIcombine.default(neMod1)

## results se

## (Intercept) -1.10743 0.7421
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## attbin01 0.40150 0.2223

## attbin11 0.35112 0.0900

## gender2 0.26952 0.2374

## educ2 0.20981 0.5148

## educ3 0.36723 0.5299

## age -0.00568 0.0125

4.10 Concluding remarks

In this chapter, we provided some theoretical background on the counterfac-
tual framework, in particular on mediation analysis and natural direct and
indirect effects, and described the functionalities of the R package medflex.

This package combines some important strengths of other (software)
applications for mediation analysis that build on the mediation formula,
while accommodating some of their respective weaknesses. The major
appeal of this package is its flexibility in dealing with nonlinear parametric
models and the functionalities it offers for hypothesis testing by resorting to
natural effect models, which allow for direct parameterization of the target
causal estimands on their most natural scale. Furthermore, for the most
common parametric models, robust standard errors can be obtained, so the
computer-intensive bootstrap can be avoided. A limitation of this package
is that, at present, it does not offer any tools for assessing the sensitivity of
one’s results to possible violations of the identification assumptions of the
causal estimands.

As mentioned in section 4.8, additional functionalities for dealing with
exposure-induced confounding and multiple mediators are intended to be
added to the package in the future, as well as extensions for survival models.
Future developments within the realm of natural effect models (such as a
generic framework for conducting sensitivity analyses) will be added in
updates of the package.
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4.A Technical appendices

4.A.1 Semi-parametric estimators

Weighting-based estimator

E
{

Y(a, M(a′))|C
}

= ∑
m

E(Y|A = a, M = m, C)P(M = m|A = a′, C)

= ∑
y,m

y · P(Y = y|A = a, M = m, C)P(M = m|A = a′, C)

= ∑
y,m

y · P(Y = y, M = m|A = a, C)
P(M = m|A = a, C)
P(M = m|A = a′, C)

= E
[

Y
P(M = m|A = a′, C)
P(M = m|A = a, C)

∣∣∣∣ A = a, C
]

Imputation-based estimator

E
{

Y(a, M(a′))|C
}

= ∑
m

E(Y|A = a, M = m, C)P(M = m|A = a′, C)

= E
[

E(Y|A = a, M, C)
∣∣∣ A = a′, C

]
4.A.2 Constructing sandwich estimators

In this section, we construct empirical sandwich estimators for the sam-
pling variance of the stratum-specific analogs of the aforementioned semi-
parametric estimators. Analytical expressions of sandwich estimators for
population-average estimators are provided at
https://cran.r-project.org/web/packages/medflex/vignettes/sandwich.pdf.

Weighting-based estimator

Let µ1(A, a′, C; β) denote a natural effect model for g
[
E{Y(A, M(a′))|C}

]
,

µ2(A, C; θ) denote a nuisance working model for g
[
E(M|A, C)

]
, and g(·) a

canonical link function.
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The stratum-specific weighting-based estimator then yields the follow-
ing estimating equations:

U1(Ai, a′, Ci; β, θ) = k−1
k

∑
j=1

∂µ1(Ai, a′ij, Ci; β)

∂β
Σ−1

µ1

P(Mi|a′ij, Ci; θ)

P(Mi|Ai, Ci; θ)

·
[
Yi − µ1(Ai, a′ij, Ci; β)

]
U2(Ai, Ci; θ) =

∂µ2(Ai, Ci; θ)

∂θ
Σ−1

µ2

[
Mi − µ2(Ai, Ci; θ)

]
with k the number of replications or hypothetical values a′ for each obser-
vation unit i and Σµi the residual variance-covariance matrix for model
µi.

Let ζ = (β, θ) and Ũ = (U1, U2). The sandwich estimator variance-
covariance matrix can then be written as

n−1 · E
(
−∂Ũ

∂ζ

)−1

Var(Ũ) · E
(
−∂Ũ

∂ζ

)−T

with n the total sample size of the original dataset,

E
(
−∂Ũ

∂ζ

)−1

=

 E
(
−∂U1

∂β

)
E
(
−∂U1

∂θ

)
0 E

(
−∂U2

∂θ

)

−1

and

∂U1

∂β
= −k−1

k

∑
j=1

∂µ1(Ai, a′ij, Ci; β)

∂β
Σ−1

µ1

P(Mi|a′ij, Ci; θ)

P(Mi|Ai, Ci; θ)

∂µ1(Ai, a′ij, Ci; β)

∂β

∂U1

∂θ
= k−1

k

∑
j=1

∂µ1(Ai, a′ij, Ci; β)

∂β
Σ−1

µ1

∂

∂θ

(
P(Mi|a′ij, Ci; θ)

P(Mi|Ai, Ci; θ)

) [
Yi − µ1(Ai, a′ij, Ci; β)

]
∂U2

∂θ
= −∂µ2(Ai, Ci; θ)

∂θ
Σ−1

µ2

∂µ2(Ai, Ci; θ)

∂θ
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Imputation-based estimator

Let µ1(a, A, C; β) denote a natural effect model for g
[
E{Y(a, M(A))|C}

]
,

µ2(A, M, C; γ) a nuisance working model for g
[
E(Y|A, M, C)

]
, and g(·) a

canonical link function.
The stratum-specific imputation-based estimator then yields the follow-

ing estimating equations:

U1(a, Ai, Ci; β, γ) = k−1
k

∑
j=1

∂µ1(aij, Ai, Ci; β)

∂β
Σ−1

µ1

·
[
µ2(aij, Mi, Ci; γ)− µ1(aij, Ai, Ci; β)

]
U2(Ai, Mi, Ci; γ) =

∂µ2(Ai, Mi, Ci; γ)

∂γ
Σ−1

µ2

[
Yi − µ2(Ai, Mi, Ci; γ)

]
Let ζ = (β, γ) and Ũ = (U1, U2). The sandwich estimator variance-

covariance matrix can then be written as

n−1 · E
(
−∂Ũ

∂ζ

)−1

Var(Ũ) · E
(
−∂Ũ

∂ζ

)−T

with

E
(
−∂Ũ

∂ζ

)−1

=


E
(
−∂U1

∂β

)
E
(
−∂U1

∂γ

)

0 E
(
−∂U2

∂γ

)



−1

and

∂U1

∂β
= −k−1

k

∑
j=1

∂µ1(aij, Ai, Ci; β)

∂β
Σ−1

µ1

∂µ1(aij, Ai, Ci; β)

∂β

∂U1

∂γ
= k−1

k

∑
j=1

∂µ1(aij, Ai, Ci; β)

∂β
Σ−1

µ1

∂µ2(aij, Mi, Ci; γ)

∂γ

∂U2

∂γ
= −∂µ2(Ai, Mi, Ci; β)

∂γ
Σ−1

µ2

∂µ2(Ai, Mi, Ci; β)

∂γ
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Chapter 5

Flexible mediation analysis with
multiple mediators

This chapter is based on the following paper: Steen, J., Loeys, T., Moerk-
erke, B., Vansteelandt, S. (2016). Flexible mediation analysis with multiple
mediators. American Journal of Epidemiology, in press.

The advent of counterfactual-based mediation analysis has triggered
enormous progress on how, and under what assumptions, one may disen-
tangle path-specific effects upon combining arbitrary (possibly nonlinear)
models for mediator and outcome. However, current developments have
largely focused on single mediators because required identification assump-
tions prohibit simple extensions to settings with multiple mediators that
may depend on one another.

In this chapter, we propose a procedure for obtaining fine-grained de-
compositions that may still be recovered from the data in such complex
settings. We first show that existing analytical approaches target specific
instances of a more general set of decompositions and may therefore fail to
provide a comprehensive assessment of the processes that underpin cause-
effect relations between exposure and outcome. We then outline conditions
for obtaining the remaining set of decompositions. Because the number of
targeted decompositions increases rapidly with the number of mediators,
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we introduce natural effect models along with estimation methods that
allow for flexible and parsimonious modeling.

Our procedure can easily be implemented using off-the-shelf software
and is illustrated in a re-analysis of the World Health Organization’s Large
Analysis and Review of European Housing and Health Status (WHO-
LARES) study on the effect of mold exposure on mental health (2002-2003).

5.1 Introduction

Mediation analysis is widely conducted to deepen understanding of the
mechanisms behind established cause-effect relationships. It does so by
separating the indirect effect that operates through a given intermediate
(or mediator) from the remaining direct effect and by quantifying their
respective contributions to the overall exposure effect. Epidemiologists
often focus on multiple mediators, either because interest lies in multiple
mechanisms or because the association between the mediator of interest
and the outcome is confounded by an earlier intermediate. However, as
the number of definable causal pathways from exposure to outcome grows
exponentially with an increasing number of mediators being considered, so
does the complexity related to their identification and estimation (Daniel
et al., 2015).

Although analyses with multiple mediators have a long tradition in the
structural equation models (SEM) literature, complications related to effect
decomposition have long been obscured as SEM-based definitions of path-
specific effects rely on stringent parametric constraints (Taylor et al., 2007).
Recent contributions building on the counterfactual framework have helped
to unveil intricacies related to non-parametric identification of path-specific
effects (Avin et al., 2005). Accordingly, counterfactual-based approaches to
effect decomposition in the presence of causally ordered mediators have
been put forward. These approaches have mainly illustrated that progress
can be made either by incorporating sensitivity analyses to obtain the finest
possible decomposition (Daniel et al., 2015; Albert and Nelson, 2011) or
by focusing on coarser decompositions that require weaker assumptions
(VanderWeele and Vansteelandt, 2013; VanderWeele et al., 2014).
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5.2. Effect decomposition into path-specific effects

In the current chapter, we extend this second line of research by propos-
ing a simple estimation procedure for effect decomposition in the presence
of causally ordered mediators. Such settings give rise to a large number
of possible decompositions (Daniel et al., 2015). For instance, applications
with only three sequential mediators already yield 24 possible ways of
partitioning the total causal effect into path-specific effects that can be iden-
tified, under certain conditions, without imposing parametric restrictions.
Existing approaches (VanderWeele and Vansteelandt, 2013) are limited as
they recover only a subset of all such targeted decompositions. They may
therefore give an incomplete assessment of the processes that underlie
cause-effect relations, especially in the presence of interaction. The multi-
tude of possible decompositions, however, calls for parsimonious modeling
strategies. We therefore extend so-called natural effect models (Lange et al.,
2012; Vansteelandt et al., 2012b), a class of marginal structural models for
mediation analysis, along with accompanying fitting strategies. Besides
parsimony, our procedure offers greater modeling flexibility than prevailing
Monte Carlo approaches (Daniel et al., 2015; Albert and Nelson, 2011). For
didactic purposes, we present our approach for two sequential mediators,
although it easily extends to more mediators (see Technical appendices 5.A.1
and 5.A.2).

5.2 Effect decomposition into path-specific effects

5.2.1 Decomposition in a single mediator setting

Notation, definitions and identification

Within the counterfactual framework, causal effects are defined by com-
paring counterfactual outcomes under different exposure regimes. The
total effect of a binary exposure (A = 1 for exposed, A = 0 for unexposed)
on an outcome Y is obtained by contrasting Y(1) and Y(0), with Y(a) the
counterfactual outcome that would be observed if A were set, possibly
contrary to the fact, to a. The population-average exposure effect can then
be expressed in terms of mean differences E{Y(1)− Y(0)}, relative risks
P{Y(1) = 1}/P{Y(0) = 1}, etc.
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Figure 5.1: Causal diagram with a single mediator M.

Expressions for direct and mediated effects can similarly be obtained
by invoking nested counterfactuals Y(a, M(a′)). For instance, one can iso-
late part of the effect that is transmitted by M by leaving the exposure
unchanged at A = 1, but changing the mediator from M(1), the natural
value it would have taken under exposure, to M(0), the value it would have
taken under no exposure. Comparison of nested counterfactuals Y(1, M(1))
and Y(1, M(0)) is central to the definition of natural indirect effects (Pearl,
2001; Robins and Greenland, 1992). Definitions of natural direct effects
can similarly be obtained by comparing Y(1, M(0)) and Y(0, M(0)). This
contrast captures the intuitive notion of blocking the exposure’s effect on
the mediator by keeping the latter fixed at the level it would have taken in
the absence of exposure.

Natural effects combine to produce the total effect, irrespective of the
scale of interest or the presence of interactions or nonlinearities. For instance,
on the additive scale, the total causal effect decomposes into the sum of the
natural direct and indirect effect

E{Y(1)−Y(0)} = E{Y(1, M(0))−Y(0, M(0))}
+ E{Y(1, M(1))−Y(1, M(0))},

given the composition assumption that Y(a, M(a)) = Y(a).

Non-parametric identification of natural effects can be obtained under a
set of sufficient conditions (VanderWeele and Vansteelandt, 2009), which
state that for any value of a, a′ and m

Y(a, m) ⊥⊥ A|C (5.1)

Y(a, m) ⊥⊥ M|A = a, C (5.2)
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M(a) ⊥⊥ A|C (5.3)

Y(a, m) ⊥⊥ M(a′)|C, (5.4)

where U ⊥⊥ V|W denotes that U and V are independent conditional on W.

These conditions require a set of measured baseline covariates C that
suffices to deconfound not only (i) the effect of exposure A on outcome Y
and (ii) the effect of mediator M on outcome Y conditional on exposure A,
as dictated in the SEM literature (Judd and Kenny, 1981), but also (iii) the
effect of exposure A on mediator M. Assumption (5.4) is a strong assump-
tion, commonly referred to as Pearl (2001)’s ‘cross-world’ independence
assumption. If the data are assumed to be generated from a non-parametric
structural equation model with independent errors (NPSEM) (Robins and
Richardson, 2010), assumptions (5.1)-(5.4) can be shown to hold if, in addi-
tion to (i)-(iii), (iv) none of the mediator-outcome confounders are affected
by exposure. In this chapter, we will further discuss identification condi-
tions, such as (i)-(iv), as represented in causal diagrams (such as Figure 5.1)
interpreted as NPSEMs.

Natural effect models

Natural direct and indirect effects can be parameterized by so-called natural
effect models (Lange et al., 2012; Steen et al., 2016b; Vansteelandt et al.,
2012b). These express the mean of nested counterfactuals in terms of hypo-
thetical exposure levels a and a′ and therefore naturally extend marginal
structural models to allow for effect decomposition. For instance, in the
following saturated model for a binary exposure A

E{Y(a, M(a′))} = β0 + β1a + β2a′ + β3aa′, (5.5)

for a, a′ equal to 0 or 1, β1 and β2 + β3 respectively capture the natural direct
and indirect effect as expressed above, that is,

E{Y(1, M(0))−Y(0, M(0))} = β1,

E{Y(1, M(1))−Y(1, M(0))} = β2 + β3.
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This two-way decomposition of the total effect (β1 + β2 + β3) into the so-
called pure direct and total indirect effect is not unique (Robins and Green-
land, 1992). A different decomposition into the so-called total direct and
pure indirect effect arises from differently apportioning the interaction term
β3 as follows:

E{Y(1, M(1))−Y(0, M(1))} = β1 + β3,

E{Y(0, M(1))−Y(0, M(0))} = β2.

Model (5.5) is a special case of the wider class of generalized linear
natural effect models

E{Y(a, M(a′))|C∗} = g−1{β>W(a, a′, C∗)},

with W(a, a′, C∗) a known vector with components that may depend on a, a′

and (possibly) a set of baseline covariates C∗ (with C∗ ∈ C), β an unknown
parameter vector and link function g(·). In model (5.5), which encodes
population-average rather than stratum-specific natural effects, C∗ is the
empty set, β = (β0, β1, β2, β3)

>, W(a, a′, C∗) = (1, a, a′, aa′)>, and g(·) is
the identity link. The inclusion of a non-empty set C∗ additionally enables
parameterizing effect modification by baseline covariates.

5.2.2 Decomposition in a setting with two sequential mediators

In most mediation analyses, even when interest lies in a single mediator, one
cannot ignore the possible presence of multiple mediators, as the following
motivating example illustrates.

Motivating example

For illustrative purposes, we revisit previous analyses (VanderWeele and
Vansteelandt, 2010; Vansteelandt et al., 2012b) on survey data from 5,882
adult respondents from the Large Analysis and Review of European Hous-
ing and Health Status (LARES) project conducted by the World Health
Organization (Shenassa et al., 2007). These analyses focused on the effect
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A

M1

M2

Y

C

Figure 5.2: Causal diagram with two sequential mediators M1 and M2.

of living in damp and moldy conditions (binary exposure A) on the risk
of depression (binary outcome Y) and put forward perceived control over
one’s home as a putative mediating mechanism (M). Corresponding natu-
ral direct and indirect effects (via perceived control) were estimated under
the assumption that available individual and housing characteristics (C)
were sufficient to control for confounding so that conditions (i)-(iii) were
met (as reflected by the DAG in Figure 5.1). Kaufman (2010), however,
indicated that mold exposure is likely to also cause physical illness, which
may, in turn, compromise both one’s sense of control and mental health.
This hypothetical scenario (as reflected by the DAG in Figure 5.2) therefore
violates assumption (iv) and thus hinders identification of the targeted nat-
ural effects discussed earlier. It moreover implies that both physical illness
(M1) and perceived control (M2) act as sequential mediators, giving rise to
a finest possible decomposition that involves four distinct pathways from
exposure to outcome (i.e. pathways A→ Y, A→ M1 → Y, A→ M2 → Y
and A→ M1 → M2 → Y).

In the remainder of this section, we first outline a sequential approach
that bears close resemblance to VanderWeele and Vansteelandt (2013), start-
ing from a coarse two-way decomposition which is next refined into a
three-way decomposition. We then demonstrate how natural effect models
can be extended to parameterize component effects of the resulting and
alternative decompositions and articulate required identification conditions.
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A sequential approach

Let Y(a, M1(a′), M2(a′, M1(a′))) be the counterfactual outcome that would
be observed if A were set to a and M1 and M2 were set to the natural value
they would have taken if A had been a′. The first stage then corresponds
to a two-way decomposition with respect to the joint mediator {M1, M2},
separating pathway A→ Y from the remaining pathways as follows:

E{Y(1)−Y(0)}
= E{Y(1, M1(1), M2(1, M1(1)))−Y(1, M1(0), M2(0, M1(0)))} (5.6)

+ E{Y(1, M1(0), M2(0, M1(0)))−Y(0, M1(0), M2(0, M1(0)))}. (5.7)

That is, the effect transmitted along either one or both mediators, or so-
called joint natural indirect effect (expression (5.6)), is separated from the
remaining effect through neither of the mediators, or the joint natural direct
effect (expression (5.7)), denoted EA→Y(0, 0) (see Table 5.1).

In a second stage, a more fine-grained, three-way decomposition can
be obtained by further partitioning expression (5.6) into the entire effect
transmitted along M1 and the effect transmitted along M2 only, respectively
denoted EA→M1Y(1, 1) and EA→M2→Y(1, 0) (see Table 5.1):

E{Y(1, M1(1), M2(1, M1(1)))−Y(1, M1(0), M2(0, M1(0)))}
= E{Y(1, M1(1), M2(1, M1(1)))−Y(1, M1(0), M2(1, M1(0)))} (5.8)

+ E{Y(1, M1(0), M2(1, M1(0)))−Y(1, M1(0), M2(0, M1(0)))}. (5.9)

The first contrast (expression (5.8)) captures the notion of activating all
paths along M1 that feed into Y, either directly or indirectly via M2, while
blocking all other pathways. It corresponds to the natural indirect effect as
defined with respect to M1 (i.e. along the combined pathways A→ M1 → Y
and A → M1 → M2 → Y), under the composition assumption that
Y(a, M1(a′), M2(a, M1(a′))) = Y(a, M1(a′)). The second contrast (expres-
sion (5.9)) expresses the so-called semi-natural indirect effect (Pearl, 2014) or
partial indirect effect (Huber, 2014) with respect to M2 (i.e. A→ M2 → Y),
as it only captures part of the effect mediated by M2 that bypasses M1.
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EA→Y(a′, a′′) = g
(
E{Y(1, M1(a′), M2(a′′, M1(a′)))}

)
− g

(
E{Y(0, M1(a′), M2(a′′, M1(a′)))}

)
= θ1 + θ4a′ + θ5a′′ + θ7a′a′′

EA→M1Y(a, a′′) = g
(
E{Y(a, M1(1), M2(a′′, M1(1)))}

)
− g

(
E{Y(a, M1(0), M2(a′′, M1(0)))}

)
= θ2 + θ4a + θ6a′′ + θ7aa′′

EA→M2→Y(a, a′) = g
(
E{Y(a, M1(a′), M2(1, M1(a′)))}

)
− g

(
E{Y(a, M1(a′), M2(0, M1(a′)))}

)
= θ3 + θ5a + θ6a′ + θ7aa′

Table 5.1: Shorthand notation for the component effects from a three-way decom-
position in the presence of two causally ordered mediators M1 and M2 and their
parameterization in model (5.10), for which the link function g(·) is the identity
link.

Further decomposition will generally fail without imposing strong para-
metric constraints, as in the linear SEM framework (Avin et al., 2005) (al-
though see Daniel et al. (2015) for a sensitivity analysis approach). Likewise,
alternative decompositions of expression (5.6) that involve the natural in-
direct effect with respect to M2 (instead of M1; i.e. along the combined
pathways A → M2 → Y and A → M1 → M2 → Y) cannot be recovered
without making certain no-interaction assumptions (Huber, 2014; Imai and
Yamamoto, 2013; Petersen et al., 2006; Robins, 2003; Tchetgen Tchetgen
and VanderWeele, 2014). These decompositions are beyond the scope of
this chapter (see Technical appendix 5.A.1 for a detailed overview and
comparison of targeted decompositions).

Natural effect models

Natural effect models can be extended to characterize the three-way decom-
position of the previous section. For instance, in the following saturated
natural effect model for a binary exposure A

E{Y(a, M1(a′), M2(a′′, M1(a′)))} =θ0 + θ1a + θ2a′ + θ3a′′
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+ θ4aa′ + θ5aa′′ + θ6a′a′′ + θ7aa′a′′,
(5.10)

for a, a′ and a′′ equal to 0 or 1, the total effect, ∑7
i=1 θi, can be partitioned

into the joint natural direct effect

EA→Y(0, 0) = θ1,

and the joint natural indirect effect

EA→M1Y(1, 1) + EA→M2→Y(1, 0) =
7

∑
i=2

θi.

The latter can be further partitioned into the natural indirect effect with
respect to M1

EA→M1Y(1, 1) = θ2 + θ4 + θ6 + θ7,

and the partial indirect effect with respect to M2 (see Table 5.1)

EA→M2→Y(1, 0) = θ3 + θ5.

Model (5.10) is a special case of the wider class of generalized linear
natural effect models for three-way decomposition

E{Y(a, M1(a′), M2(a′′, M1(a′)))|C∗} = g−1{θ>W(a, a′, a′′, C∗)},

with W(a, a′, a′′, C∗) a known vector with components that may depend on
a, a′, a′′ and (possibly) covariates C∗.

Different ways of accounting for the interaction terms θ4 to θ7 yield
another five possible decompositions, listed in Table 5.2. For instance, θ4

can be apportioned to either EA→Y or EA→M1Y. Similarly, θ5 can be appor-
tioned to EA→Y or EA→M2→Y, θ6 to EA→M1Y or EA→M2→Y and θ7 to either
of the three components. VanderWeele and Vansteelandt (2013) focus only
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(1) EA→Y(0, 0) + EA→M1Y(1, 1) + EA→M2→Y(1, 0)
= (θ1) + (θ2 + θ4 + θ6 + θ7) + (θ3 + θ5)

(2) EA→Y(1, 1) + EA→M1Y(0, 0) + EA→M2→Y(0, 1)
= (θ1 + θ4 + θ5 + θ7) + (θ2) + (θ3 + θ6)

(3) EA→Y(0, 0) + EA→M1Y(1, 0) + EA→M2→Y(1, 1)
= (θ1) + (θ2 + θ4) + (θ3 + θ5 + θ6 + θ7)

(4) EA→Y(1, 1) + EA→M1Y(0, 1) + EA→M2→Y(0, 0)
= (θ1 + θ4 + θ5 + θ7) + (θ2 + θ6) + (θ3)

(5) EA→Y(0, 1) + EA→M1Y(1, 1) + EA→M2→Y(0, 0)
= (θ1 + θ5) + (θ2 + θ4 + θ6 + θ7) + (θ3)

(6) EA→Y(1, 0) + EA→M1Y(0, 0) + EA→M2→Y(1, 1)
= (θ1 + θ4) + (θ2) + (θ3 + θ5 + θ6 + θ7)

Table 5.2: All six possible three-way decompositions and their parameterization in
model (5.10). Each component on the lefthand side of the equation is represented by
a linear combination of parameters on the righthand side (grouped in parentheses).

on the first two decompositions in Table 5.2 as their sequential approach
builds on identification of EA→Y(0, 0) and EA→M1Y(1, 1), as outlined in the
previous section. The remaining four decompositions involve instances
of EA→Y(a′, a′′) with a′ 6= a′′, and instances of EA→M1Y(a, a′′) with a 6= a′′,
which require slightly stronger identification assumptions, as discussed
next.

Identification

Two-way decomposition into joint natural direct and indirect effects can be
obtained if assumptions (5.1)-(5.4) hold with respect to the joint mediator
{M1, M2}. We refer to the corresponding conditions in NPSEMs as (i’)-(iv’).

Such first-stage decomposition can be obtained for the DAG in Figure 5.2,
but also for the DAGs in Figures 5.3A and 5.3B. This may come as a sur-
prise since the effect of M1 on M2 is confounded either by an unmeasured
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confounder U (Figure 5.3A) or (measured) intermediate confounder L (Fig-
ure 5.3B). However, this does not hinder identification of the joint natural
direct and indirect effect because (i’)-(iv’) do not impose restrictions on the
structural relation between the mediators. The other DAGs, however, do not
enable such two-way decomposition. In Figures 5.3C and 5.3D, (ii’) and (iv’)
are violated because of unmeasured confounding by U and intermediate
confounding by L, respectively.

All six three-way decompositions in Table 5.2 can be recovered under
NPSEMs if, in addition to (i’)-(iv’), (v’) the effect of M1 on M2 is uncon-
founded within strata of {A, C} and (vi’) none of the M1−M2 confounders
are affected by exposure. In contrast to assumptions (i’)-(iv’), (v’) and (vi’)
do not allow for unmeasured or intermediate confounding of the effect of
M1 on M2. Consequently, these assumptions are violated in all discussed
DAGs (except the one in Figure 5.2). However, decomposition with respect
to the three sequential mediators L, M1 and M2 becomes possible under

(A)

A

M1

M2

Y

C

U (C)

A

M1

M2

Y

C

U

(B)

A

M1

M2

Y

C

L
(D)

A

M1

M2

Y

C

L

Figure 5.3: Causal diagrams with two sequential mediators M1 and M2 and un-
measured confounder U (in panels A and C) or intermediate confounder L (in
panels B and D).
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more general identification conditions for multiple mediators (see Technical
appendix 5.A.2).

Finally, consistent with VanderWeele and Vansteelandt (2013), we show
in Technical appendix 5.A.2.5 that the first two decompositions in Table 5.2
necessitate slightly weaker assumptions than (i’)-(vi’). In Technical ap-
pendix 5.A.2, we also provide a more detailed and formal discussion of
identification assumptions, as well as extensions to more than two medi-
ators. Importantly, we generalize the adjustment criterion for two-way
decomposition in a single mediator setting (Shpitser and VanderWeele,
2011) to (k + 1)-way decompositions in settings with k causally ordered
mediators.

5.3 Estimation approach

Vansteelandt et al. (2012b) proposed an imputation procedure for fitting
natural effect models for single mediators (also see Steen et al. (2016b);
Loeys et al. (2013)). Below we describe how this procedure can be extended
to recover all possible three-way decompositions in Table 5.2 in settings
with a binary exposure (coded 0/1) and two sequential mediators. We first
focus on estimation of component effects as defined within strata of C, a
covariate set assumed to be sufficient for conditions (i’)-(vi’) to be met, and
next describe how population-average analogs can be obtained. In Technical
appendix 5.A.3 we provide some intuition as to why this procedure works
and how it relates to Monte Carlo procedures based on generalizations of
Pearl (2001, 2012)’s mediation formula (Albert and Nelson, 2011; Daniel
et al., 2015).

1. Fit a suitable model for the probability (density) of either

(i) the first mediator conditional on exposure and covariate set C,
for instance, a logistic regression model for binary M1

logitP(M1 = 1|A, C) = β0 + β1A + β>2 C, (5.11)

(ii) or the second mediator conditional on exposure, the first media-
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tor and covariate set C, for instance, a linear regression model for
normally distributed M2 with constant variance σ2

f (M2|A, M1, C) = N
(

γ0 + γ1A + γ2M1 + γ3AM1 + γ>4 C, σ2
)

.

(5.12)

2. Fit a suitable model for the outcome mean conditional on exposure,
both mediators and covariate set C, for instance, a logistic regression
model for binary outcome Y

logitP(Y = 1|A, M1, M2, C)

= δ0 + δ1A + δ2M1 + δ3M2 + δ4AM1 + δ5AM2

+ δ6M1M2 + δ7AM1M2 + δ>8 C (5.13)

3. Construct an extended data set by replicating the observed data set
4 times. A similar step has previously been described by Lange et al.
(2014) and is best understood in terms of sequential duplication. For
the first duplication, add three auxiliary variables a, a′ and a′′. Let a
take on the value of the observed exposure Ai for the first replication
and of the counterfactual exposure 1− Ai for the second replication
(for each individual i). Let both a′ and a′′ take on the observed expo-
sure level for both replications. Next, duplicate the resulting extended
data once again, now letting a′ (a′′) take on counterfactual exposure
level 1− Ai if model (5.11) ((5.12)) is selected as working model (as
illustrated in Tables 5.3 and 5.4, respectively).

4. If model (5.11) is selected, compute weights

W1i,a′ =
P̂(M1 = M1i|A = a′, Ci)

P̂(M1 = M1i|A = a′′, Ci)
=

P̂(M1 = M1i|A = a′, Ci)

P̂(M1 = M1i|A = Ai, Ci)
,

or, if model (5.12) is selected, compute weights

W2i,a′′ =
f̂ (M2 = M2i|A = a′′, M1i, Ci)

f̂ (M2 = M2i|A = a′, M1i, Ci)
=

f̂ (M2 = M2i|A = a′′, M1i, Ci)

f̂ (M2 = M2i|A = Ai, M1i, Ci)
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for each row in the extended data set.

5. Impute nested counterfactuals Yi(a, M1i(a′), M2i(a′′, M1i(a′))) as fitted
values Ê(Yi|A = a, M1i, M2i, Ci) from outcome model (5.13) in step 2,
for each row in the extended data set.

6. Fit a natural effect model of interest for

E{Y(a, M1i(a′), M2i(a′′, M1i(a′)))|C}

to the extended data by regressing the imputed outcomes on a, a′, a′′

and C, weighting by the weights obtained in step 4.

In contrast to direct application of the generalized mediation formula (Al-
bert and Nelson, 2011; Daniel et al., 2015), which relies on a model for the
distribution of each of the mediators, our procedure requires only one of
these models. This allows investigators to weight by the ratio of densities
of the mediator whose corresponding model they believe is less prone to

i Ai a a′ a′′ Yi(a · a′ · a′′) Ŷi,a W1i,a′

1 1 1 1 1 Y1 Ŷ1,1 W11,1

1 0 1 1 . Ŷ1,0 W11,1

1 1 0 1 . Ŷ1,1 W11,0

1 0 0 1 . Ŷ1,0 W11,0

2 0 0 0 0 Y2 Ŷ2,0 W12,0

0 1 0 0 . Ŷ2,1 W12,0

0 0 1 0 . Ŷ2,0 W12,1

0 1 1 0 . Ŷ2,1 W12,1
...

...
...

...
...

...
...

...

Table 5.3: Data extension for working models E(Y|A, M1, M2, C) and P(M1|A, C).
We use Y(a · a′ · a′′) and Ŷi,a as shorthand notation for Y(a, M1(a′), M2(a′′, M1(a′)))
and Ê(Yi|Ai = a, M1i, M2i, Ci), respectively. Imputed nested counterfactuals Ŷi,a
for which a′ 6= a′′ (in dark gray) need to be weighted by W1i,a′ = P̂(M1 = M1i|A =
a′, Ci)/P̂(M1 = M1i|A = a′′, Ci).

157



Chapter 5. Flexible mediation analysis with multiple mediators

5

i Ai a a′ a′′ Yi(a · a′ · a′′) Ŷi,a W2i,a′′

1 1 1 1 1 Y1 Ŷ1,1 W21,1

1 0 1 1 . Ŷ1,0 W21,1

1 1 1 0 . Ŷ1,1 W21,0

1 0 1 0 . Ŷ1,0 W21,0

2 0 0 0 0 Y2 Ŷ2,0 W22,0

0 1 0 0 . Ŷ2,1 W22,0

0 0 0 1 . Ŷ2,0 W22,1

0 1 0 1 . Ŷ2,1 W22,1
...

...
...

...
...

...
...

...

Table 5.4: Data extension for working models E(Y|A, M1, M2, C) and
f (M2|A, M1, C). We use Y(a · a′ · a′′) and Ŷi,a as shorthand notation for
Y(a, M1(a′), M2(a′′, M1(a′))) and Ê(Yi|Ai = a, M1i, M2i, Ci), respectively. Imputed
nested counterfactuals Ŷi,a for which a′ 6= a′′ (in dark gray) need to be weighted by
W2i,a′′ = P̂(M2 = M2i|A = a′′, M1i, Ci)/P̂(M2 = M2i|A = a′, M1i, Ci).

misspecification. If, for instance, M1 is binary and M2 continuous, as in
the examples given for models (5.11) and (5.12), weighting for M1 would
be most appropriate, since it allows analysts to refrain from modeling the
(conditional) relationship between the mediators and making distributional
assumptions.

The natural effect model from step 6 can be fitted to the weighted impu-
tations to obtain estimates for stratum-specific component effects. If both
exposure A and confounders C are discrete, saturated models can be fitted
as long as C is not high-dimensional. In all other cases, our approach de-
mands model restrictions. This improves interpretability of the results, but
also increases the risk of misspecification of the natural effect model which
may, in turn, lead to biased estimation of the component effects. However,
as long as the structure of the imputation model is chosen sufficiently rich
so as to minimize the risk of it being misspecified, results from an overly
restrictive natural effect model may still be viewed as a useful summary
(Vansteelandt et al., 2012b).
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Component effects within strata of C∗, a subset of C, can be obtained
by fitting a natural effect model for E{Y(a, M1(a′), M2(a′′, M1(a′)))|C∗}
conditional on a, a′, a′′ and C∗ upon multiplying the weights from step 4
by P̂(A = Ai|C∗i )/P̂(A = Ai|Ci). If C∗ is empty, the corresponding natural
effect model encodes population-average rather than stratum-specific effects
and the numerator can simply be replaced by 1. Inverse weighting then
enables transporting results to the general population as it accounts for the
possibly selective nature of subjects with observed exposure A = Ai.

Finally, standard errors and confidence intervals for this imputation
estimator can be obtained using a bootstrap procedure (including steps
1-6). Bootstrapping is preferred over use of default standard errors for
parameter estimates of natural effect models returned by statistical software
as the latter fail to account for uncertainty due to estimation of the working
models.

Technical appendix 5.A.4 provides a detailed description on how to
adapt the above procedure to continuous exposures (building on Vanstee-
landt et al. (2012b)), and to settings without interactions between component
effects (building on an estimation procedure similar to the one described in
VanderWeele et al. (2014)). It also explains how to implement our procedure
and obtain bootstrap-based standard errors and confidence intervals in R.

In the next section, we reassess the mediating mechanisms from the
empirical example introduced earlier by applying our suggested procedure
to obtain a three-way decomposition of the total effect of dampness or mold
exposure (A) on the presence of depressive symptoms (Y).

5.4 Motivating example revisited

Following Kaufman (2010), we allow for the possibility that mold-related
illness (M1 = 1 in the presence of at least one physical condition known to
be related to mold exposure or 0 otherwise), affects perceived control (M2),
as measured on a 5-point Likert scale (reverse coded), but not vice versa.
The available set of covariates (C) was assumed sufficient for conditions
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(i’)-(vi’) to be met. A logistic natural effect model

logitP{Y(a, M1(a′), M2(a′′, M1(a′))) = 1|C}
= η0 + η1a + η2a′ + η3a′′ + η4aa′ + η5aa′′ + η6a′a′′ + η7aa′a′′ + η>8 C

(5.14)

was fitted to decompose the total effect odds ratio (OR) of dampness or mold
exposure A on the presence of depressive symptoms Y (conditional on base-
line covariates C), which was estimated to be 1.38 (95% confidence interval
(CI): 1.09, 1.73). This was done following steps 1-6 of the previous section.
First, mediator models (5.11) (for the probability of mold-related illness M1)
and (5.12) (for the density of perceived control M2) and an extended version
of outcome model (5.13) were fitted to the original data. The latter was
used to impute nested counterfactuals in the data set that was extended ac-
cording to whether model (5.11) or (5.12) was chosen to calculate regression
weights for natural effect model (5.14). Each of the working models was
specified to include all possible two- and three-way interactions between
exposure and mediators to ensure that different decompositions resulting
from model (5.14) appropriately reflected differences dictated by the data.
For simplicity of exposition, we excluded interaction or polynomial terms
involving baseline covariates. A more elaborate model focusing on effect
modification by covariates as well as a marginal natural effect model are
described in further detail in Empirical analysis section 5.B, which provides
a more detailed report of the analyses of this section. 1000 bootstrap sam-
ples were drawn to calculate 95% standard normal approximation bootstrap
confidence intervals.

Results for all possible three-way decompositions are displayed in Fig-
ure 5.4. Since different choices of working models yielded similar estimates,
we only report estimates obtained upon weighting by the ratio of proba-
bilities of M1. The joint natural direct effect OR, exp (EA→Y(0, 0|C)), was
1.25 (95% CI: 0.99, 1.57). The odds of depression within a population (with
specific individual and housing characteristics as defined within strata of C)
would thus increase by 24% if all individuals were to be moved from a dry
dwelling to a damp and moldy residence without their physical condition
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nor their sense of control over one’s living environment being affected by
it. Its complement, the joint natural indirect effect OR was 1.10 (95% CI:
1.03, 1.19). That is, if all individuals were exposed to residential dampness
and mold, then the effect of changing both their physical condition and
perceived control to what it would be if they were not to live under such
poor housing conditions, would be to reduce the odds of depression by 9%.
A reduction of 5% would be attributed to changing their physical condi-
tion; exp

(
ÊA→M1Y(1, 1|C)

)
= 1.05 (95% CI: 1.02, 1.09). Another reduction

of about 4% would be attributed to additionally changing their perceived
control, in as far as earlier changes in their physical condition would not
yet have done so; exp

(
ÊA→M2→Y(1, 0|C)

)
= 1.05 (95% CI: 0.98, 1.12).

Natural effect model (5.14) not only permits estimation of the component
effects, but also enables probing potential interactions between causal mech-
anisms. For instance, a multivariate Wald test based on the bootstrap normal
approximation indicated the mediating mechanisms captured by EA→M1Y

and EA→M2→Y did not interact in their effect on the outcome, i.e. the null
that η6 = η7 = 0 could not be rejected at the 5% level (χ2 = 1.35, p = 0.51).
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Figure 5.4: Odds ratio estimates and corresponding 95% confidence intervals for
each of the stratum-specific analogs of the component effects displayed in Table 5.2
(on the log odds ratio scale). Components are grouped per decomposition and
displayed in the same order as in Table 5.2. Estimates are based on natural effect
model (5.14), fitted upon weighting by W1i,a′ (black) or W2i,a′′ (white).
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Weighted by W1i,a′ Weighted by W2i,a′′

Component Estimate 95% CI Estimate 95% CI

exp
(
ÊA→Y

)
1.260 1.000, 1.573 1.259 1.000, 1.571

exp
(
ÊA→M1Y

)
1.042 1.015, 1.069 1.041 0.995, 1.089

exp
(
ÊA→M2→Y

)
1.052 1.008, 1.098 1.048 1.016, 1.079

Table 5.5: Estimates and 95% confidence intervals of the component effects odds
ratios, with component effects as parameterized in the logistic natural effect model
logitP{Y(a, M1(a′), M2(a′′, M1(a′))) = 1|C} = ζ0 + ζ1a + ζ2a′ + ζ3a′′ + ζ>4 C.

In addition, there were no substantial differences between decompositions
in Figure 5.4, i.e. the null that η4 = η5 = η6 = η7 = 0 could not be rejected
at the 5% level (χ2 = 3.43, p = 0.49). The absence of such interactions not
only facilitates interpretation of the component effects, it may also lead to
more precise estimates when fitting a natural effect model that excludes
these interaction terms. However, as the estimates and their 95% confidence
intervals in Table 5.5 suggest, this did not result in the anticipated efficiency
gain. Interestingly, in the absence of interactions, one may refrain from mod-
eling mediator densities altogether by adopting a fully imputation-based
estimation procedure (see Technical appendix 5.A.4.3).

Finally note that this illustrative analysis is likely oversimplistic as the
assumptions encoded in the DAG in Figure 5.2 may well be violated. For
instance, possible attempts to control mold growth, such as cleaning or
ventilating the house, are possibly affected by the level of mold exposure
and may, in turn, influence both mold-related illness and perceived control
over one’s home. The level of exposure may therefore be inherently time-
varying, adding another level of complexity.

5.5 Discussion

In this chapter, we focused on the finest decomposition that can be obtained
in settings with multiple causally ordered mediators without introducing
sensitivity parameters (Albert and Nelson, 2011; Daniel et al., 2015; Imai and
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Yamamoto, 2013) or parametric assumptions, as in the SEM tradition (see De
Stavola et al. (2014) for a review). We pointed out that previous approaches
with a similar focus yield only a subset of all possible decompositions
(VanderWeele and Vansteelandt, 2013). Moreover, we proposed a flexible
approach for estimating component effects and derived sufficient conditions
for their identification.

Our estimation approach combines imputation- and weighting-based
methods to fit a novel class of natural effect models (Lange et al., 2012;
Loeys et al., 2013; Steen et al., 2016b; Vansteelandt et al., 2012b), for multiple
mediators. As opposed to Monte Carlo approaches (Albert and Nelson,
2011; Daniel et al., 2015), which dictate modeling the joint density of the
mediators, our approach necessitates modeling the density of only one of
the mediators, enabling practitioners to bet on the mediator they feel most
confident about modeling correctly. In the absence of interactions between
component effects, one may even avoid modeling mediator densities alto-
gether, at the expense of an additional model for the outcome, as discussed
in Technical appendix 5.A.4.3. This may be particularly attractive in set-
tings with large numbers of mediators as it dramatically reduces modeling
demands. Nonetheless, when the joint density is correctly specified, fully
parametric Monte Carlo approaches yield more efficient estimators for the
component effects. Alternatively, one could refrain from modeling the out-
come and, instead, opt for an approach that exclusively relies on weighting.
However, this then requires correct specification of the joint density of the
mediators, as in Lange et al. (2014) and Taguri et al. (2015) for settings with
multiple causally unrelated mediators (also see VanderWeele et al. (2014) for
a similar approach in settings with intermediate confounding). Unless there
are major concerns for model extrapolation due to inadequate modeling
of the outcome (Vansteelandt et al., 2012b), we generally discourage such
approach, especially when dealing with continuous mediators, because
typical issues of instability, characteristic for weighting methods, tend to
exacerbate when combining density weights for each of the mediators.

In addition to added flexibility in choice of working models, natural
effect modeling owes much of its attractiveness to its parsimonious parame-
terization. It enables testing certain hypotheses of interest (especially those
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concerning effect modification by baseline covariates) which, in particular
settings, cannot be tested by direct application of the mediation formula
(Loeys et al., 2013; Vansteelandt et al., 2012b). In our illustration, we have
demonstrated that differences between decompositions listed in Table 5.2,
captured by the interaction terms of the natural effect model, can be formally
tested in a straightforward manner.

Although we have restricted our presentation to applications with only
two sequential mediators, results can straightforwardly be extended to
settings with more mediators. In Technical appendix 5.A.2, we illustrate
that, in such complex settings, our set of assumptions leads to a manageable
and piecemeal identification procedure. Moreover, in settings where the
structural dependence between certain subsequent mediators is unclear,
these groups of mediators can simply be treated as joint mediators in order
to render identification assumptions of the corresponding component effects
more plausible (Taguri et al., 2015; VanderWeele and Vansteelandt, 2013).
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5.A Technical appendices

5.A.1 Targeted decompositions

In the main text, we have focused on the finest possible decomposition(s) that can be

obtained in settings with two sequential mediators without imposing parametric

restrictions. We have demonstrated that such settings lead to 6 such possible

decompositions. More generally, settings with k sequential mediators lead to

(k + 1)! such possible decompositions along k + 1 distinct pathways that can

(possibly) be estimated from the data without making parametric assumptions. If

the exposure is binary, saturated natural effect models with 2k+1 parameters can be

fitted for estimating population-average component effects (see Table 5.6).

k 2k (2k)! k + 1 (k + 1)! 2k+1

2 4 24 3 6 8

3 8 40,320 4 24 16

4 16 2.092× 1013 5 120 32

Table 5.6: Finest possible decomposition in the presence of k sequential mediators
that can be non-parametrically obtained with (Daniel et al., 2015) and without
introducing sensitivity parameters (current chapter).

In contrast, Daniel et al. (2015) focus on the finest possible decomposition into

2k distinct pathways. However, identification results for the corresponding com-

ponent effects make reference to unknown sensitivity parameters which capture

cross-world correlations that cannot be identified from the data. As illustrated in

Table 5.6, the total number of such possible decompositions (2k)! increases expo-

nentially with increasing k. Moreover, it does so at a rate that far exceeds that of

the number of decompositions that are targeted in the current chapter.

Finally, VanderWeele and Vansteelandt (2013) describe a decomposition in

terms of the same k + 1 pathways as in the current chapter, but because of the

sequential treatment of the mediators only 2 out of the (k + 1)! decompositions are

obtained.

To illustrate both the differences in types of decompositions described in these

papers and extensions of our approach to more than two sequential mediators,

we will throughout focus on a setting with three sequential mediators M1, M2
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and M3 (as depicted in the causal diagram in Figure 5.5). The finest possible

decomposition in such a setting involves 8 distinct pathways from exposure to

outcome (i.e. pathways A → Y, A → M1 → Y, A → M2 → Y, A → M3 → Y,

A → M1 → M2 → Y, A → M1 → M3 → Y, A → M2 → M3 → Y and

A→ M1 → M2 → M3 → Y). However, this decomposition can never be recovered

from the observed data without making assumptions about the joint distribution

of the same counterfactual at different exposure levels. Under certain conditions

(articulated in section 5.A.2) we can, however, obtain a four-way decomposition of

the total causal effect into

1. a direct effect with respect to {M1, M2, M3} as joint mediator (capturing

pathway A→ Y),

2. an indirect effect with respect to M1 as mediator (capturing all pathways

along M1 that feed into Y, i.e. A → M1 → Y, A → M1 → M2 → Y,

A→ M1 → M3 → Y, and A→ M1 → M2 → M3 → Y),

3. a partial indirect with respect to M2 as mediator (capturing all pathways

along M2 that do not first pass M1, i.e. A→ M2 → Y and A→ M2 → M3 →
Y)

4. a partial indirect with respect to M3 as mediator (capturing all pathways

along M3 that do not first pass earlier intermediates M1 or M2, i.e. only

A→ M3 → Y)

Identification of the corresponding components depends on identification of

E{Y(a, M1(a′), M2(a′′, M1(a′)), M3(a′′′, M1(a′), M2(a′′, M1(a′))))}. (5.15)

A

M1
M2

M3

Y

C

Figure 5.5: Causal diagram with three sequential mediators.
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This expected nested counterfactual involves 4 hypothetical exposure levels a, a′,
a′′ and a′′′, corresponding to the 4 pathways or components. Moreover, it is a

specific case of the more general nested counterfactual

Y(a0, M1(a1), M2(a2, M1(a3)), M3(a4, M1(a5), M2(a6, M1(a7)))) (5.16)

that imposes the restriction that no conflicting hypothetical exposure levels can be

associated to a single mediator (i.e. a1 = a3 = a5 = a7 = a′ and a2 = a6 = a′′). This

restriction implies that contrasts based on expectations of nested counterfactuals

of the form in expression (5.15) only involve path-specific effects transmitted via

all paths through a given mediator (or set of mediators) excluding those that pass

earlier intermediates. It thus allows deriving all component effects described

earlier, just as any path-specific effect that is a combination of these components

(such as e.g. the joint indirect effect with respect to {M1, M2} as a joint mediator,

which combines the second and third component effect). It does not, however,

allow to derive path-specific effects such as the one transmitted only through

pathway A → M1 → Y, since this effect does not capture all pathways that pass

through M1. Neither does it allow obtaining e.g. the natural indirect effect with

respect to M2 (which captures pathways A → M2 → Y, A → M1 → M2 → Y,

A → M2 → M3 → Y and A → M1 → M2 → M3 → Y) as it captures all paths

through M2, but also those that first pass M1, which is an earlier intermediate.

Note that the latter path-specific effects, could, however, be derived by contrasts of

expected counterfactuals of the form in expression (5.16). Such contrasts would

enable obtaining the finest possible decomposition as described in Daniel et al.

(2015). However, non-parametric identification of expected counterfactuals of this

form cannot be obtained without introducing sensitivity parameters, as opposed

to identification of expected counterfactuals of the form in expression (5.15).

Finally, the decomposition approach described in VanderWeele and Vanstee-

landt (2013) would also result in a four-way decomposition into the same com-

ponents as previously listed. These components are derived from a series of (in

this case three) single mediator analyses in which respectively, M1, {M1, M2} and

{M1, M2, M3} are considered as the mediator of interest. The first analysis thus

requires identification of E{Y(a, M1(a′))}, whereas the second and third analysis re-

quire identification of E{Y(a, M1(a′), M2(a′))} and E{Y(a, M1(a′), M2(a′), M3(a′))},
respectively. Under certain composition assumptions, the involved expectations of
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nested counterfactuals can respectively be rewritten as

E{Y(a, M1(a′), M2(a, M1(a′)), M3(a, M1(a′), M2(a, M1(a′))))},
E{Y(a, M1(a′), M2(a′, M1(a′)), M3(a, M1(a′), M2(a′, M1(a′))))}

and

E{Y(a, M1(a′), M2(a′, M1(a′)), M3(a′, M1(a′), M2(a′, M1(a′))))},

which can easily be seen to be special cases of the form in expression (5.15). It can

be shown that the additional restrictions on these nested counterfactuals (which

arise because of the sequential nature of this approach) imply that, when using this

sequential approach, only 2 out of the 24 decompositions can be derived (since, for

each of the component effects only 2 instances can be derived).

More generally, for settings with k sequential mediators, one can, under certain

conditions (discussed below), identify mediated effects with respect to a mediator

Mj in as far that they act over and above the effect transmitted by earlier intermedi-

ates M1, ..., Mj−1. Identification of the component effects depends on identification

of

E{Y(a0, M∗1 , ..., M∗k )} (5.17)

with M∗1 = M1(a1) and M∗j = Mj(aj, M∗1 , ..., M∗j−1). This expected nested counter-

factual involves k + 1 hypothetical exposure levels a0 to ak, corresponding to the

k + 1 pathways or components.

5.A.2 Identification

In this section, we focus on identification of the component effects of all possible

four-way decompositions in the presence of three sequential mediators. Identifica-

tion assumptions and results can, however, easily be shown to extend to settings

with more mediators.

5.A.2.1 Identification assumptions

As discussed in section 5.A.1, identification of the component effects can be ob-

tained upon identifying expression (5.15) which is established if for all a, a′, a′′, a′′′,
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m1, m2 and m3

M1(a) ⊥⊥ A|C (B0)

M2(a, m1) ⊥⊥ {A, M1}|C (B1)

M2(a, m1) ⊥⊥ M1(a′)|C (C1)

M3(a, m1, m2) ⊥⊥ {A, M1, M2}|C (B2)

M3(a, m1, m2) ⊥⊥ {M1(a′), M2(a′′, m1)}|C (C2)

Y(a, m1, m2, m3) ⊥⊥ {A, M1, M2, M3}|C (B3)

Y(a, m1, m2, m3) ⊥⊥ {M1(a′), M2(a′′, m1), M3(a′′′, m1, m2)}|C. (C3)

5.A.2.2 Identification result

Below, we derive the identification result for the conditional equivalent of expres-

sion (5.15) given baseline covariates C, under (B0)-(B3) and (C1)-(C3). The result

for expression (5.15) can be obtained upon marginalizing over the joint density

of C. Moreover, identification results for expression (5.17) can more generally be

obtained in settings with k sequential mediators upon extending the assumption

set from section 5.A.2.1 accordingly. These results can be seen as a generalization of

the identification result for E{Y(a, M(a′))} (in single mediator settings) commonly

referred to as Pearl’s mediation formula (Pearl, 2001, 2012).

E{Y(a, M1(a′), M2(a′′, M1(a′)), M3(a′′′, M1(a′), M2(a′′, M1(a′))))|C}

=
∫

E
{

Y(a, m1, m2, m3)
∣∣M1(a′) = m1, M2(a′′, M1(a′)) = m2,

M3(a′′′, M1(a′), M2(a′′, M1(a′))) = m3, C
}

× dFM1(a′),M2(a′′,M1(a′)),M3(a′′′,M1(a′),M2(a′′,M1(a′)))|C(m1, m2, m3)

=
∫

E
{

Y(a, m1, m2, m3)
∣∣M1(a′) = m1, M2(a′′, m1) = m2, M3(a′′′, m1, m2) = m3, C

}
× dFM1(a′),M2(a′′,M1(a′)),M3(a′′′,M1(a′),M2(a′′,M1(a′)))|C(m1, m2, m3)

(C3)
=

∫
E
{

Y(a, m1, m2, m3)
∣∣C}

× dFM1(a′),M2(a′′,M1(a′)),M3(a′′′,M1(a′),M2(a′′,M1(a′)))|C(m1, m2, m3)

(B3)
=

∫
E
{

Y
∣∣A = a, M1 = m1, M2 = m2, M3 = m3, C

}
× dFM1(a′),M2(a′′,M1(a′)),M3(a′′′,M1(a′),M2(a′′,M1(a′)))|C(m1, m2, m3)

=
∫

E
{

Y
∣∣A = a, M1 = m1, M2 = m2, M3 = m3, C

}
dFM1(a′)|C(m1)

× dFM2(a′′,M1(a′))|M1(a′)=m1,C(m2)
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× dFM3(a′′′,M1(a′),M2(a′′,M1(a′)))|M1(a′)=m1,M2(a′′,M1(a′))=m2,C(m3)

=
∫

E
{

Y
∣∣A = a, M1 = m1, M2 = m2, M3 = m3, C

}
dFM1(a′)|C(m1)

× dFM2(a′′,m1)|M1(a′)=m1,C(m2)

× dFM3(a′′′,m1,m2)|M1(a′)=m1,M2(a′′,M1(a′))=m2,C(m3)

(B0)
=

∫
E
{

Y
∣∣A = a, M1 = m1, M2 = m2, M3 = m3, C

}
dFM1|A=a′,C(m1)

× dFM2(a′′,m1)|M1(a′)=m1,C(m2)

× dFM3(a′′′,m1,m2)|M1(a′)=m1,M2(a′′,M1(a′))=m2,C(m3)

(C1)
=

∫
E
{

Y
∣∣A = a, M1 = m1, M2 = m2, M3 = m3, C

}
dFM1|A=a′,C(m1)

× dFM2(a′′,m1)|C(m2)

× dFM3(a′′′,m1,m2)|M1(a′)=m1,M2(a′′,M1(a′))=m2,C(m3)

(B1)
=

∫
E
{

Y
∣∣A = a, M1 = m1, M2 = m2, M3 = m3, C

}
dFM1|A=a′,C(m1)

× dFM2|A=a′′,M1=m1,C(m2)

× dFM3(a′′′,m1,m2)|M1(a′)=m1,M2(a′′,M1(a′))=m2,C(m3)

(C2)
=

∫
E
{

Y
∣∣A = a, M1 = m1, M2 = m2, M3 = m3, C

}
dFM1|A=a′,C(m1)

× dFM2|A=a′′,M1=m1,C(m2)dFM3(a′′′,m1,m2)|C(m3)

(B2)
=

∫
E
{

Y
∣∣A = a, M1 = m1, M2 = m2, M3 = m3, C

}
dFM1|A=a′,C(m1)

× dFM2|A=a′′,M1=m1,C(m2)dFM3|A=a′′′,M1=m1,M2=m2,C(m3)

It can easily be seen that identification can still be obtained upon relaxing

assumptions (B0), (B1), (B2) and (B3) as below:

M1(a) ⊥⊥ I(A = a)|C (B0’)

M2(a, m1) ⊥⊥ {I(A = a), I(M1 = m1)}|C (B1’)

M3(a, m1, m2) ⊥⊥ {I(A = a), I(M1 = m1), I(M2 = m2)}|C (B2’)

Y(a, m1, m2, m3) ⊥⊥ {I(A = a), I(M1 = m1), I(M2 = m2), I(M3 = m3)}|C (B3’)

Note that, in contrast to (B0)-(B3), the weaker subset (B0’)-(B3’) does not en-

code any cross-world independencies.1 Simplifications under NPSEMs (in sec-

tion 5.A.2.3), however, only apply to the stronger subset (B1), (B2) and (B3), as

identification of the component effects critically hinges on certain cross-world

1It can easily be shown that this subset is implied by Robins and Richardson (2010)’s
Minimal Causal Model (MCM) associated with the DAG in Figure 5.5.
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independence assumptions.

5.A.2.3 Simplifications under NPSEMs

Note that assumptions (B0), (B1) and (C1) roughly correspond to assumptions (5.1)-

(5.4) (for identification of natural effects in single mediator settings) in the main

text, with M1 being the mediator and M2 the outcome. It is easily seen that (B0) cor-

responds to assumption (5.3) in the main text, (C1) corresponds to assumption (5.4)

and (B1) combines assumption (5.1) and Y(a, m) ⊥⊥ M|A, C (a stronger variant of

assumption (5.2)).

Below we show that cross-world assumptions (C1)-(C3) are redundant under

NPSEMs, as they follow from (B1)-(B3). This proof builds on the composition axiom

(Dawid, 1979; Pearl, 1988), which holds for all counterfactuals under NPSEMs

(Richardson and Robins, 2013) and states that if X ⊥⊥ Y|Z and W ⊥⊥ Y|Z, then

{X, W} ⊥⊥ Y|Z.2

First, it follows from (B1) that

M2(a, m1) ⊥⊥ A|C

and

M2(a, m1) ⊥⊥ M1(a′)|A = a′, C.

Together, these imply

M2(a, m1) ⊥⊥ {A = a′, M1(a′)}|C,

which, in turn, implies (C1)

M2(a, m1) ⊥⊥ M1(a′)|C.

This result has already been proven in Shpitser and VanderWeele (2011).

Similarly, it follows from (B2) that

M3(a, m1, m2) ⊥⊥ A|C

2Not to be confused with the composition assumption for counterfactuals (also called
generalized consistency assumption) which states that for each a, Y(a, M(a)) = Y(a) with
probability 1.
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and

M3(a, m1, m2) ⊥⊥ {M1(a′), M2(a′)}|A = a′, C.

Relying on the composition assumption that M2(a′) = M2(a′, M1(a′)), the latter

conditional independency, in turn, implies

M3(a, m1, m2) ⊥⊥ M1(a′)|A = a′, C

and

M3(a, m1, m2) ⊥⊥ M2(a′, m′1)|A = a′, M1(a′) = m′1, C,

which, together with the first conditional independency, combine into

M3(a, m1, m2) ⊥⊥ {A = a′, M1(a′)}|C

and

M3(a, m1, m2) ⊥⊥ {A = a′, M1(a′) = m′1, M2(a′, m′1)}|C.

From these conditional independencies, we get

M3(a, m1, m2) ⊥⊥ M1(a′)|C

and

M3(a, m1, m2) ⊥⊥ M2(a′, m1)|C,

which, by the composition axiom, combine into (C2)

M3(a, m1, m2) ⊥⊥ {M1(a′), M2(a′′, m1)}|C.

Finally, it follows from (B3) that

Y(a, m1, m2, m3) ⊥⊥ A|C

and

Y(a, m1, m2, m3) ⊥⊥ {M1(a′), M2(a′), M3(a′)}|A = a′, C.

Relying on the composition assumptions that M2(a′) = M2(a′, M1(a′)) and M3(a′) =
M3(a′, M1(a′), M2(a′)), the latter conditional independency implies

Y(a, m1, m2, m3) ⊥⊥ M1(a′)|A = a′, C,
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Y(a, m1, m2, m3) ⊥⊥ M2(a′, m′1)|A = a′, M1(a′) = m′1, C

and

Y(a, m1, m2, m3) ⊥⊥ M3(a′, m′1, m′2)|A = a′, M1(a′) = m′1, M2(a′, m′1) = m′2, C,

which, together with the first conditional independency (i.e. Y(a, m1, m2, m3) ⊥⊥
A|C), combine into

Y(a, m1, m2, m3) ⊥⊥ {A = a′, M1(a′)}|C,

Y(a, m1, m2, m3) ⊥⊥ {A = a′, M1(a′) = m′1, M2(a′, m′1)}|C

and

Y(a, m1, m2, m3) ⊥⊥ {A = a′, M1(a′) = m′1, M2(a′, m′1) = m′2, M3(a′, m′1, m′2)}|C.

From these conditional independencies, we get

Y(a, m1, m2, m3) ⊥⊥ M1(a′)|C,

Y(a, m1, m2, m3) ⊥⊥ M2(a′, m1)|C

and

Y(a, m1, m2, m3) ⊥⊥ M3(a′, m1, m2)|C,

which, by the composition axiom, combine into (C3)

Y(a, m1, m2, m3) ⊥⊥ {M1(a′), M2(a′′, m1), M3(a′′′, m1, m2)}|C.

5.A.2.4 A sequential identification approach via the adjustment crite-
rion

As demonstrated in section 5.A.2.3, under NPSEMs, assumptions (B0)-(B3) are

sufficient for identifying expression (5.15) and thus recovering all possible targeted

four-way decompositions (as listed in section 5.A.1). These assumptions are sat-

isfied under certain no unmeasured or intermediate confounding assumptions

which lead to a piecemeal sequential identification procedure that easily extends

to more complex settings with more than three sequential mediators. That is, in

general, expression (5.17) is identified (and thus all (k + 1)! targeted (k + 1)-way
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Figure 5.6: Causal diagrams with three sequential mediators and M1 −M2 con-
founder L affected by A.

decompositions can be recovered from the observed data) if there is a measured set

of covariates C that satisfies the adjustment criterion3 (Shpitser et al., 2010; Shpitser

and VanderWeele, 2011) relative to each of the joint effects listed below.

First, under a NPSEM, (B0) requires that the effect of A on M1 is unconfounded

within strata of C. This is equivalent to the requirement that C satisfies the adjust-

ment criterion relative to (A, M1), which enables identification of the total causal

effect of A on M1.

Second, (B1) requires that the joint effect of {A, M1} on M2 is unconfounded

within strata of C. In addition, it requires that no M1 − M2 confounders4 are

descendants of A. This is equivalent to requiring that C satisfies the adjustment

criterion relative to ({A, M1}, M2), which enables identification of the joint effect

of {A, M1} on M2. Furthermore, under NPSEMs, (B1) implies (C1). (B0) and (B1)

(i.e. C satisfies the adjustment criterion relative to both (A, M1) and ({A, M1}, M2))

therefore identify the natural direct and indirect effect of A on M2 with respect to

M1 as mediator. This result was established in Shpitser and VanderWeele (2011).

3Refer to section 2.4.2 of chapter 2.
4Note that in the remainder of the text, we denote Mi −Mi+1 confounders to be the

set of covariates that is sufficient to adjust for confounding of the association between
Mi and Mi+1 (conditional on A and earlier intermediates in the DAG). These do not
necessarily need to be common causes, as long as they render the relation between M1
and M2 unconfounded. For instance, in the DAG in the right panel of Figure 5.6, L would
be considered to be an M1 −M2 confounder, as it is sufficient to render the association
between M1 and M2 (given A) unconfounded by blocking the spurious pathway M1 ←
U → L → M2, even though L does not affect both M1 and M2 as in the DAG in the left
panel of Figure 5.6.
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An example. For instance, in the DAG in the left panel of Figure 5.6, the directed

paths A → M2, A → L → M2 and M1 → M2 are proper causal with respect to

({A, M1}, M2). In contrast, the directed paths A → M1 → M2 and A → L →
M1 → M2 are not proper causal with respect to ({A, M1}, M2) as they intersect

{A, M1} at M1. Furthermore, L is a confounder of the relation between M1 and

M2 and should therefore be included in the adjustment set Z (which also includes

C). However, by including L in the adjustment set Z, the proper causal path

A→ L→ M2 is blocked and the condition that no element of Z is a descendant in

GA,M1
of any W 6∈ {A, M1} which lies on a proper causal path from {A, M1} to Y

is violated (since, by definition, L is a descendant of itself). We cannot have it both

ways (i.e. fully adjusting for M1 −M2 confounding and not blocking any proper

causal paths with respect to {A, M1}). Thus, we conclude that, at least under this

DAG, no covariate set Z satisfies the adjustment criterion relative to both (A, M1)

and ({A, M1}, M2), so that we cannot obtain identification of the natural direct and

indirect effect of A on M2 with respect to M1 as mediator. Likewise, in the DAG

in the right panel of Figure 5.6, identification of these natural effects cannot be

obtained. In this DAG, the directed paths A→ M2, A→ L→ M2 and M1 → M2

are proper causal with respect to ({A, M1}, M2). In contrast, the directed path

A→ M1 → M2 is not proper causal with respect to ({A, M1}, M2) as it intersects

{A, M1} at M1. Although L is not a common cause of M1 and M2, its adjustment

does enable blocking the spurious (non-causal) pathway M1 ← U → L→ M2 and

therefore, L should again be included in the adjustment set Z. However, again,

since L is affected by A, including it in the adjustment set Z leads to violation of

the condition that no element of Z is a descendant in GA,M1
of any W 6∈ {A, M1}

which lies on a proper causal path from {A, M1} to Y.

Third, (B2) requires that the joint effect of {A, M1, M2} on M3 is unconfounded

within strata of C. In addition, it requires that no {M1, M2} − M3 confounders

are descendants of A.5 This is equivalent to requiring that C satisfies the adjust-

ment criterion relative to ({A, M1, M2}, M3), which enables identification of the

joint effect of {A, M1, M2} on M3. Together with the previous assumptions, (B2)

identifies the joint natural direct and indirect effect of A on M3 with respect to

{M1, M2} as joint mediator. This can be seen upon noting that, under NPSEMs,

5Note that this also requires that no M2 −M3 confounders are descendants of M1.
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their identification conditions

M3(a, m1, m2) ⊥⊥ A|C
M3(a, m1, m2) ⊥⊥ {M1, M2}|A = a, C

{M1(a), M2(a)} ⊥⊥ A|C
M3(a, m1, m2) ⊥⊥ {M1(a′), M2(a′)}|C

are implied by (B0)-(B2). The first two conditional independencies are implied by

(B2). The third conditional independency follows from (B0) and (B1), since, by the

composition axiom, these imply

{M1(a), M2(a, m1)} ⊥⊥ A|C.

This conditional independency, in turn, implies

M2(a, m1) ⊥⊥ A|M1(a) = m1, C

and hence

M2(a) ⊥⊥ A|M1(a) = m1, C,

which, together with (B0), implies

{M1(a) = m1, M2(a)} ⊥⊥ A|C.

By the composition axiom this result yields the third conditional independency,

when yet again combined with (B0). The fourth conditional independency follows

directly from

M3(a, m1, m2) ⊥⊥ A|C

and

M3(a, m1, m2) ⊥⊥ {M1(a′), M2(a′)}|A = a′, C,

which are direct implications of (B2). Combined, they imply

M3(a, m1, m2) ⊥⊥ {A = a′, M1(a′), M2(a′)}|C

and thus the fourth conditional independency.

Finally, (B3) requires that the joint effect of {A, M1, M2, M3} on Y is uncon-

founded within strata of C. In addition, it requires that no {M1, M2, M3} − Y
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confounders are descendants of A. This is equivalent to requiring that C satisfies

the adjustment criterion relative to ({A, M1, M2, M3}, Y), which enables identi-

fication of the joint effect of {A, M1, M2, M3} on Y. Together with the previous

assumptions, (B3) identifies the joint natural direct and indirect effect of A on Y
with respect to {M1, M2, M3} as joint mediator. This can again be seen upon noting

that, under NPSEMs, their identification conditions

Y(a, m1, m2, m3) ⊥⊥ A|C (A1”)

Y(a, m1, m2, m3) ⊥⊥ {M1, M2, M3}|A = a, C (A2”)

{M1(a), M2(a), M3(a)} ⊥⊥ A|C (A3”)

Y(a, m1, m2, m3) ⊥⊥ {M1(a′), M2(a′), M3(a′)}|C (A4”)

are implied by (B0)-(B3). The proof boils down to a simple extension of the proof

in the previous paragraph.

Note that, as previously mentioned, Shpitser and VanderWeele (2011) demon-

strated that if, under a NPSEM, a measured covariate set C can be found that satis-

fies the adjustment criterion for both (A, M) and ({A, M}, Y), the natural direct

and indirect effect of A on Y wrt M as a mediator are identified from the observed

data, and hence E{Y(a, M(a′))} is identified. We have illustrated that, by extension,

if, under a NPSEM, a measured covariate set C can be found that simultaneously

satisfies the adjustment criterion for (A, M1), ({A, M1}, M2), ({A, M1, M2}, M3)

and ({A, M1, M2, M3}, Y), expression (5.15) is identified and thus all possible tar-

geted four-way decompositions can be obtained from the data. More generally,

for settings with k sequential mediators M1, ..., Mk, expression (5.17) is identified if

there is a covariate set C that satisfies the adjustment criterion for {Mj, Mj+1} for

all j from 0 to k, with M0 = A, Mk+1 = Y and Mj = {M0, ..., Mj}.
We have thus shown that the adjustment criterion for natural direct and indirect

effects, as outlined in Shpitser and VanderWeele (2011), can be extended to settings

with k sequential mediators to recover all (k + 1)! targeted (k + 1)-decompositions.

Moreover, as shown above, the sequential nature of assumption set B (or the

generalized adjustment criterion described above) implies that each additional

step from j− 1 to j (for all j from 1 to k) enables identification of the natural direct

and indirect effect of A on Mj+1 with respect to {M1, ..., Mj} as joint mediator.

Conversely, it is easily shown that, under NPSEMs, identification of each of these

natural direct and indirect effects (along with the total causal effect of A on M1)

by means of adjustment for a common covariate set C also enables identification
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of expression (5.17) by means of adjustment for C. For instance, for settings with

k = 3, as described above, identification of

• the total causal effect of A on M1

or E{M1(a)},

• the natural effects of A on M2 wrt M1 as mediator

or E{M2(a, M1(a′))},

• the natural effects of A on M3 wrt {M1, M2} as (joint) mediator

or E{M3(a, M1(a′), M2(a′, M1(a′)))} and

• the natural effects of A on Y wrt {M1, M2, M3} as (joint) mediator

or E{Y(a, M1(a′), M2(a′, M1(a′)), M3(a′, M1(a′), M2(a′, M1(a′))))}

by means of adjustment for a common covariate set6 C implies identification

of expression (5.15) by means of adjustment for C and thus enables to recover

all possible targeted four-way decompositions. For instance, (B3) follows from

combining (A1”) and (A4”). By the composition axiom, this combination yields

Y(a, m1, m2, m3) ⊥⊥ {A, M1(a′), M2(a′), M3(a′)}|C,

which implies

Y(a, m1, m2, m3) ⊥⊥ {M1, M2, M3}|A = a′, C

for every a′. Combined with (A1”) this then results in (B3). Similarly (B1) and

(B2) can be obtained from the other identification conditions.

6We wish to distinguish here between identification by means of adjustment for a
common covariate set and identification by other means (e.g. by means of adjustment
for separate covariate sets or application of the front-door criterion, as described in Pearl
(2014)). Identification of the effects listed above only leads to identification of expres-
sion (5.15) under NPSEMs, if it is obtained by means of adjustment by a common covariate
set C. In particular, it can be shown that identification of expression (5.17) can more
generally be obtained under NPSEMs when (i) the total causal effect is identifiable and
(ii) the recanting district criterion (Shpitser, 2013) (i.e. a generalization of the recanting
witness criterion (Avin et al., 2005) to longitudinal settings with unobserved confounding),
does not hold with respect to any of the k + 1 constituent components from the targeted
(k + 1)-way decompositions (i.e. there does not exist a recanting district for any of the
component effects).
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5.A.2.5 Comparison with sequential identification approach of Vander-
Weele and Vansteelandt (2013)

Note that the sequential identification approach from section 5.A.2.4 differs from

the one described in VanderWeele and Vansteelandt (2013) (henceforth referred

to as VWV). Their approach also refers to the same nested set of mediators, i.e.

M1 ∈ {M1, M2} ∈ ... ∈ {M1, M2, ..., Mk}. However, each of their steps refer to the

endpoint Y as outcome, whereas our approach refers to Mj+1 as outcome when

{M1, ..., Mj} is considered the joint set of mediators (with Mk+1 = Y in the presence

of k mediators).

As already suggested in section 5.A.1, our approach yields slightly stronger

identification results, leading to all (k + 1)! targeted (k + 1)-way decompositions

instead of only 2 such decompositions. Below we illustrate that, for a simple

setting with k = 2, the conditions outlined in VWV do not imply the corresponding

identification assumptions from section 5.A.2.1 for three-way decomposition and

are thus not sufficient for identifying all component effects of all possible three-way

decompositions. However, we argue that in most realistic settings the differences

between identification conditions are subtle and of limited practical relevance.

VWV require the natural direct and indirect effect of A on Y with respect to M1

as a mediator to be identified, or

Y(a, m1) ⊥⊥ A|C (A1)

Y(a, m1) ⊥⊥ M1|A = a, C (A2)

M1(a) ⊥⊥ A|C (A3)

Y(a, m1) ⊥⊥ M1(a′)|C. (A4)

Additionally, they require the natural direct and indirect effect of A on Y with

respect to the joint mediator set {M1, M2} to be identified, or

Y(a, m1, m2) ⊥⊥ A|C (A1’)

Y(a, m1, m2) ⊥⊥ {M1, M2}|A = a, C (A2’)

{M1(a), M2(a)} ⊥⊥ A|C (A3’)

Y(a, m1, m2) ⊥⊥ {M1(a′), M2(a′)}|C. (A4’)
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Since, under NPSEMs, (A1) and (A4) can be combined into

Y(a, m1) ⊥⊥ {A, M1}|C

(cf section 5.A.2.4), which subsumes (A2), and, likewise, (A1’) and (A4’) can be

combined into

Y(a, m1, m2) ⊥⊥ {A, M1, M2}|C,

which subsumes (A2’), these two assumption sets can be summarized by the

assumption set V

{M1(a), M2(a)} ⊥⊥ A|C (V1)

Y(a, m1) ⊥⊥ {A, M1}|C (V2)

Y(a, m1, m2) ⊥⊥ {A, M1, M2}|C. (V3)

Corresponding identification conditions from section 5.A.2.1 (under NPSEMs) are

summarized in the assumption set S

M1(a) ⊥⊥ A|C (S1)

M2(a, m1) ⊥⊥ {A, M1}|C (S2)

Y(a, m1, m2) ⊥⊥ {A, M1, M2}|C. (S3)

Although (S1) is implied by (V1), and (V3) and (S3) are identical, (S2) is not implied

by assumption set V. This can be seen upon rewriting (S2) as an assumption set

that consists of (S2a) and (S2b)

M2(a, m1) ⊥⊥ M1|A, C (S2a)

M2(a, m1) ⊥⊥ A|C. (S2b)

(S2b) follows from (V1). This is because (V1) implies

M2(a) ⊥⊥ A|M1(a), C

and thus

M2(a, m1) ⊥⊥ A|M1(a) = m1, C,

which, when combined with

M1(a) ⊥⊥ A|C,
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another implication of (V1), implies

{M1(a) = m1, M2(a, m1)} ⊥⊥ A|C.

(S2a), on the other hand, does not follow from assumption set V. The proof follows

by contradiction in that one can construct a causal diagram for which set V is

satisfied, but not (S2a).

For instance, in the causal diagram in Figure 5.7, assumption set V is satisfied

because there is no unmeasured confounding of (i) the effect of A on M1, (ii) the

effect of A on M2, (iii) the joint effect of A and M1 on Y or (iv) the joint effect of A,

M1 and M2 on Y, nor is there intermediate confounding of (v) the effect of M1 on

Y or (vi) the joint effect of M1 and M2 on Y. However, (S2a) is violated since there

is unmeasured confounding of the effect of M1 on M2 by U. In other words, V

would need to be complemented with (S2a) in order to obtain all possible three-way

decompositions. Alternatively, A’ can be complemented with (S2a) (since it also

incorporates assumptions (V1) and (V3)), leading to assumptions (v’) and (vi’) for

NPSEMs in the main text.

It should be stressed, however, that causal diagrams such as Figure 5.7 may

not reflect realistic settings in practice, since, if researchers were to possess the

knowledge that M2 does not causally affect Y, it would simply not be treated as

a mediator in the first place. Consequently, differences between identification as-

sumptions outlined by VWV (such as set V) and those put forward in section 5.A.2.1

(such as set S) may be of little practical relevance.

Nonetheless, it can similarly be shown that, in settings with k sequential media-

A

M1

M2

Y

C

U

Figure 5.7: Causal diagram that satisfies assumption set V, but not assumption set
S.
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tors, the conditions outlined by VWV for (k + 1)-way decompositions, would need

to be complemented by

Mj(a, m1, ..., mj−1) ⊥⊥ {M1, ..., Mj−1}|A, C

for all j from 2 to k, in order to obtain all (k + 1)! possible targeted decompositions.

5.A.2.6 Coping with mediator confounding

An advantage of our identification approach that is shared with the approach

of VanderWeele and Vansteelandt (2013), is that, whenever in doubt about the

structural dependence between certain mediators, one can simply treat them as a

joint mediator in order to render identification assumptions of the corresponding

component effects more plausible.

For instance, one may know that M1 affects mediators M2 and M3, but the

relation between M2 and M3 may be unclear, as depicted in the causal diagram

in Figure 5.8. M2 may affect M3, but the causal effect may also be reverse. In

addition, it may be that, irrespective of the direct causal link between M2 and

M3, they share an unmeasured common cause U. Under these conditions, one

cannot obtain a four-way decomposition as described in section 5.A.1. However,

by simply treating {M2, M3} as a joint mediator, one may still obtain a three-way

decomposition of the total causal effect. Such strategy would, however, not work if

there are additional mediators on the path between M2 and M3 (or between M3

A

M1
M2

M3

Y

C

U

Figure 5.8: Causal diagram with three mediators. The dashed edge indicates the
uncertainty of the causal relation between M2 and M3: M2 may causally affect M3
or vice versa, or they may only be related because of common cause U.
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and M2) that are explicitly taken into account in the decomposition.

5.A.3 Relation between weighted imputation and direct application of
the generalized mediation formula

In this section, we provide a more detailed account of the relation between direct

application of a generalization of Pearl’s mediation formula (Pearl, 2001, 2012)

by Monte Carlo integration (as discussed in e.g. Daniel et al. (2015) and Albert

and Nelson (2011)) and our estimation procedure that relies on a combination of

weighting and imputation. We first illustrate this link for three-way decomposi-

tions in settings with two sequential mediators M1 and M2, as in the main text.

Throughout, we refer to steps and models from section 5.3.

Two-way decomposition into joint natural direct and indirect effects (with

respect to the joint mediator {M1, M2}), conditional on baseline covariates C,

involves estimation of the conditional expectation of nested counterfactuals

Y(a, M1(a′), M2(a′′, M1(a′)))

for which a′ = a′′, i.e. E{Y(a, M1(a′), M2(a′, M1(a′)))|C}, which, under assump-

tions (i’)-(iv’), is non-parametrically identified by∫
E(Y|A = a, M1 = m1, M2 = m2, C)

× f (M1 = m1, M2 = m2|A = a′, C)dm1dm2. (5.18)

This expression, commonly referred to as Pearl’s ‘mediation formula’ (Pearl, 2001,

2012), involves a form of standardization of the mean outcome in each stratum

defined by mediators M1 and M2 and confounders C among individuals exposed

at level A = a, to the mediator distribution of individuals exposed at level A = a′.

A single duplication of the original data set in step 3 (corresponding to the

first two entries for each individual in Tables 5.3 and 5.4) is, in fact, sufficient

to obtain such coarse two-way decomposition. Moreover, estimation of the con-

stituent effects doesn’t require weighting (i.e. as all corresponding weights in step

4 reduce to 1) and consequently, steps 1 and 4 can be omitted. Distributional and

functional form assumptions for the mediators can be avoided since the suggested

imputation estimator is constructed in such a way that averaging is done over

the empirical distribution of the joint mediator (also see Albert, 2012). This can

be seen upon noting that, in the duplicated data set, the latter corresponds to the
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joint mediator distribution evaluated at A = a′ (as auxiliary variable a′ is set equal

to the observed exposure level A), and, hence, E{Y(a, M1(a′), M2(a′, M1(a′)))|C}
can be estimated by averaging predicted outcomes Ê(Y|A = a, M1, M2, C) (based

on an imputation model such as model (5.13)) in each stratum of C. As a result,

this imputation strategy offers an attractive alternative to direct application of the

mediation formula, which additionally relies on a model for the joint density of the

mediators, as can clearly be seen upon inspecting expression (5.18).

Three-way effect decomposition as described in section 5.A.2.2 and parameter-

ized by natural effect model (5.14) involves the conditional expectation of nested

counterfactuals

Y(a, M1(a′), M2(a′′, M1(a′)))

(for which possibly a′ 6= a′′), i.e. E{Y(a, M1(a′), M2(a′′, M1(a′)))|C}. Under as-

sumptions (i’)-(vi’), this expectation is non-parametrically identified by∫
E(Y|A = a, M1 = m1, M2 = m2, C)

× f (M1 = m1|A = a′, C) f (M2 = m2|A = a′′, M1 = m1, C)dm1dm2,

which can be rewritten as∫
E(Y|a, m1, m2, C)

f (M1 = m1|a′, C)
f (M1 = m1|a′′, C)

f (M1 = m1, M2 = m2|a′′, C)dm1dm2,

or

∫
E(Y|a, m1, m2, C) f (M1 = m1, M2 = m2|a′, C)

f (M2 = m2|a′′, m1, C)
f (M2 = m2|a′, m1, C)

dm1dm2.

with E(Y|a, m1, m2, C) shorthand notation for E(Y|A = a, M1 = m1, M2 = m2, C).
Accordingly, E{Y(a, M1(a′), M2(a′′, M1(a′)))|C} can be estimated from the fully ex-

tended data set by calculating a weighted average of predicted outcomes Ê(Y|A =

a, M1, M2, C) (based on an imputation model such as model (5.13)) in each stratum

of C, using either of the weights from step 4, depending on whether a model for

M1 or for M2 is chosen as additional working model in step 1. Since this procedure

again relies on averaging over the empirical joint distribution f (M1, M2|A, C), data

expansion is restricted to cases where either a′′ or a′ correspond to the observed

exposure level A, depending on whether, respectively, a model for M1 or for M2 is

chosen as additional working model in step 1, as illustrated in Tables 5.3 and 5.4 in

the main text.
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This estimation approach can easily be extended to settings with more than

two sequential mediators. We give a short sketch of how to extend this procedure

to obtain a four-way decomposition in the presence of three sequential mediators,

which involves the conditional expectation of nested counterfactuals

Y(a, M1(a′), M2(a′′, M1(a′)), M3(a′′′, M1(a′), M2(a′′, M1(a′))))

(for which possibly a′ 6= a′′ 6= a′′′), i.e.

E(Y(a, M1(a′), M2(a′′, M1(a′)), M3(a′′′, M1(a′), M2(a′′, M1(a′))))|C).

Under assumptions (B0)-(B3) and (C1)-(C3), this expectation is non-parametrically

identified by∫
E(Y|a, m1, m2, m3, C) f (M1 = m1|a′, C) f (M2 = m2|a′′, m1, C)

× f (M3 = m3|a′′′, m1, m2, C)dm1dm2dm3,

which can be rewritten as∫
E(Y|a, m1, m2, m3, C)

f (M1 = m1|a′, C)
f (M1 = m1|a′′′, C)

f (M2 = m2|a′′, m1, C)
f (M2 = m2|a′′′, m1, C)

× f (M1 = m1, M2 = m2, M3 = m3|a′′′, C)dm1dm2dm3,∫
E(Y|a, m1, m2, m3, C)

f (M1 = m1|a′, C)
f (M1 = m1|a′′, C)

f (M3 = m3|a′′′, m1, m2, C)
f (M3 = m3|a′′, m1, m2, C)

× f (M1 = m1, M2 = m2, M3 = m3|a′′, C)dm1dm2dm3,

or

∫
E(Y|a, m1, m2, m3, C)

f (M2 = m2|a′′, m1, C)
f (M2 = m2|a′, m1, C)

f (M3 = m3|a′′′, m1, m2, C)
f (M3 = m3|a′, m1, m2, C)

× f (M1 = m1, M2 = m2, M3 = m3|a′, C)dm1dm2dm3.

Accordingly, E(Y(a, M1(a′), M2(a′′, M1(a′)), M3(a′′′, M1(a′), M2(a′′, M1(a′))))|C)
can be estimated from the fully extended data set by calculating a weighted av-

erage of predicted outcomes Ê(Y|A = a, M1, M2, M3, C) (based on an extended

imputation model for the outcome) in each stratum of C, using weights that are

calculated by combining working models for M1 and M2, M1 and M3, or M2 and

M3, respectively.
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In order to obtain a four-way decomposition, the extended data set needs to

include an additional auxiliary variable a′′′. Moreover, it needs to be constructed

by replicating the observed data set 8 times (or sequentially duplicating it three

times). The way it is constructed again depends on the choice of working models

for the mediators. This can be seen upon noting that, again, this procedure relies on

averaging over the empirical joint distribution of mediators f (M1, M2, M3|A, C),
such that data expansion needs to be restricted to cases where either a′′′, a′′ or a′

correspond to the observed exposure level A, depending on whether weights are

calculated by combining working models for M1 and M2, M1 and M3, or M2 and

M3, respectively, as illustrated in Table 5.7.

More specifically, for the first duplication, four auxiliary variables need to be

added:

(i) a, which, for each individual i, equals the observed exposure Ai for the first

replication but the counterfactual exposure 1− Ai for the second replication,

(ii) a′, which equals the observed exposure for both replications,

(iii) a′′, which also equals the observed exposure for both replications and

(iv) a′′′, which also equals the observed exposure for both replications.

If M1 and M2 are selected to be modelled, let a′ take on counterfactual exposure

level 1− Ai in the second duplication and a′′ take on counterfactual exposure level

1− Ai in the third duplication. If M1 and M3 are selected to be modelled, let a′

take on counterfactual exposure level 1− Ai in the second duplication and a′′′ take

on counterfactual exposure level 1− Ai in the third duplication. Finally, if M2 and

M3 are selected to be modelled, let a′′ take on counterfactual exposure level 1− Ai

in the second duplication and a′′′ take on counterfactual exposure level 1− Ai in

the third duplication.

Note that, again, one mediator does not need to be modelled. Although this

flexibility can be advantageous in settings with two sequential mediators, this

advantage diminishes in settings with large number of mediators, as it only reduces

a relatively small part of modeling demands.
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However, in settings without interactions between component effects, one may

refrain from modeling mediator densities altogether, at the expense of additional

working models for the outcome (conditional on a nested set of mediators). This

adaptation is described in further detail in section 5.A.4, in which we also give a

detailed step-by-step overview of the estimation approach described in section 5.3,

accompanied by corresponding R code.

5.A.4 Estimation procedure

The imputation algorithm for fitting natural effect models for two-way decom-

position in single mediator settings (Vansteelandt et al., 2012b) has been imple-

mented in the R package medflex (Steen et al., 2016b), freely available from CRAN:

https://cran.r-project.org/web/packages/medflex/.

Below, we describe how to fit natural effect models for three-way decomposition

in the presence of two sequential mediators, as described in the main text.

5.A.4.1 Dichotomous exposure

In order to illustrate this procedure, we use an artificial data set of sample size

n = 1000 simulated from a linear structural equation model represented in Fig-

ure 5.9. For the sake of illustration, we simulate from strictly linear models without

interactions, so that the component effects are analytically tractable.

A binary exposure A was drawn from a binomial distribution

P(A = 1|C) = expit(α0 + α1C), (5.19)

with α = (0.25,−0.5), C standard normal and expit(x) = exp(x)/{1+exp(x)}. The

first mediator M1 was drawn from a normal distribution

f (M1|A, C) = N(β0 + β1A + β2C, σ2
β), (5.20)

with β = (3, 1.2, 0.8) and σ2
β = 1, as was the second mediator M2

f (M2|A, M1, C) = N(γ0 + γ1A + γ2M1 + γ3C, σ2
γ), (5.21)

with γ = (2, 1.6, 2, 0.9) and σ2
γ = 1. Finally, the outcome Y was also drawn from a
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normal distribution with

E(Y|A, M1, M2, C) = δ0 + δ1A + δ2M1 + δ3M2 + δ4C, (5.22)

with δ = (1.6, 0.4, 0.6, 1.2, 1.4) and σ2
δ = 1. This linear SEM yields component

effects of size

EA→Y(a′, a′′) = δ1 = 0.4

EA→M1Y(a, a′′) = β1(δ2 + γ2δ3) = 1.2(0.6 + 2× 1.2) = 3.6

EA→M2→Y(a, a′) = γ1δ3 = 1.6× 1.2 = 1.92

for all a, a′ and a′′.

A

M1

M2

Y

C

1.2
1.6

2
0.6

1.2

0.4

Figure 5.9: Causal diagram representing the causal data generating mechanism of
the simulated data set.

First, the data set is simulated in R.

expit <- function(x) exp(x)/(1+exp(x))

n <- 10^3

C <- rnorm(n)

A <- rbinom(n, size = 1, prob = expit(0.25 - 0.5*C))

M1 <- rnorm(n, mean = 3 + 1.2*A + 0.8*C, sd = 1)

M2 <- rnorm(n, mean = 2 + 1.6*A + 2*M1 + 0.9*C, sd = 1)

Y <- rnorm(n, mean = 1.6 + 0.4*A + 0.6*M1 + 1.2*M2 + 1.4*C, sd = 1)

dat <- data.frame(id = 1:n, C, A, M1, M2, Y)

head(dat)
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id C A M1 M2 Y

1 1 -1.802 1 2.69 7.23 10.5

2 2 0.316 0 3.94 9.38 15.4

3 3 -0.560 0 2.54 8.21 13.2

4 4 0.524 1 5.48 14.33 23.7

5 5 0.544 0 4.38 11.62 16.9

6 6 -0.664 0 1.82 6.24 8.4

Next, we follow steps 1-6 as described in section 5.3. Since we are ignorant as to the

functional form of the working models, we should ideally do some model building

at this stage. For the sake of illustration, however, we fit models of the form

of models (5.19), (5.20), (5.21) and (5.22), leaving out interactions or polynomials

involving C, but including interactions between A, M1 and M2 in order to ensure

that possible differences between decompositions parameterized in the final natural

effect model appropriately reflect differences dictated by the data.

1. Fit a suitable model for the probability (density) of (one of) the mediators

conditional on A, potential earlier intermediates and C.

fitM1 <- glm(M1 ~ A + C,

family = gaussian("identity"), data = dat)

fitM2 <- glm(M2 ~ A * M1 + C,

family = gaussian("identity"), data = dat)

2. Fit a suitable model for the outcome mean conditional on A, M1, M2 and C.

fitY <- glm(Y ~ A * M1 * M2 + C,

family = gaussian("identity"), data = dat)

3. Construct the extended dataset. Below we illustrate exactly how the suggested

replication procedure in section 5.3 (step 3) can be implemented in R. Let a0, a1

and a2 correspond to a, a′ and a′′ in the main text. Furthermore, let extdat1

and extdat2 correspond to the extended data sets that are extended according

to whether a model for the density of M1 or M2 is selected as working model,

respectively. In practice, only one of the extended data sets is needed.
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# create auxiliary variables

dat$a0 <- dat$A

dat$a1 <- dat$A

dat$a2 <- dat$A

# first duplication

# i.e. extract rownames of the original dataset

# and use two replicates of each rowname as indices to duplicate

extdat1 <- dat[rep(rownames(dat), times = 2), ]

extdat2 <- dat[rep(rownames(dat), times = 2), ]

# create duplication indicator

extdat1$dup <- rep(1:2, each = nrow(dat))

extdat2$dup <- rep(1:2, each = nrow(dat))

# let a0 take on counterfactual exposure level 1-A for the second duplicate

extdat1$a0 <- ifelse(extdat1$dup == 2, 1-extdat1$A, extdat1$A)

extdat2$a0 <- ifelse(extdat2$dup == 2, 1-extdat2$A, extdat2$A)

# second duplication

extdat1 <- extdat1[rep(rownames(extdat1), times = 2), ]

extdat2 <- extdat2[rep(rownames(extdat2), times = 2), ]

# create updated duplication indicator

extdat1$dup <- rep(1:2, each = 2*nrow(dat))

extdat2$dup <- rep(1:2, each = 2*nrow(dat))

# let a1 or a2 take on counterfactual exposure level 1-A for the second duplicate

extdat1$a1 <- ifelse(extdat1$dup == 2, 1-extdat1$A, extdat1$A)

extdat2$a2 <- ifelse(extdat2$dup == 2, 1-extdat2$A, extdat2$A)

# order by id

extdat1 <- extdat1[order(extdat1$id), ]

extdat2 <- extdat2[order(extdat2$id), ]

# check the result

head(extdat1, 4)

id C A M1 M2 Y a0 a1 a2 dup

1 1 -1.8 1 2.69 7.23 10.5 1 1 1 1

1.1 1 -1.8 1 2.69 7.23 10.5 0 1 1 1
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1.2 1 -1.8 1 2.69 7.23 10.5 1 0 1 2

1.1.1 1 -1.8 1 2.69 7.23 10.5 0 0 1 2

head(extdat2, 4)

id C A M1 M2 Y a0 a1 a2 dup

1 1 -1.8 1 2.69 7.23 10.5 1 1 1 1

1.1 1 -1.8 1 2.69 7.23 10.5 0 1 1 1

1.2 1 -1.8 1 2.69 7.23 10.5 1 1 0 2

1.1.1 1 -1.8 1 2.69 7.23 10.5 0 1 0 2

Alternatively, one can use the expand.grid function, as explained below. The

procedure below yields the exact same result as above. Although more technical,

it allows us to more easily generalize data extension to categorical or continuous

exposures (as discussed in section 5.A.4.4).

# remove auxiliary variables from the original data set

dat$a0 <- dat$a1 <- dat$a2 <- NULL

# create extended data set with 4 replicates for each subject

extdat1 <- dat[rep(dat$id, each = 4), ]

extdat2 <- dat[rep(dat$id, each = 4), ]

The rationale behind using the expand.grid function is that, for each subject,

we want to obtain all possible pairwise combinations of hypothetical exposure

levels a and a′ (when weighting for M1) or a and a′′ (when weighting for M2).

Therefore, we need to enumerate all possible exposure levels for each subject

(starting with the observed exposure level Ai, followed by counterfactual exposure

level 1− Ai) and pass this to the expand.grid function, as illustrated below for the

first subject.

levels <- c(dat$A[1], 1-dat$A[1])

expand.grid(levels, levels)

Var1 Var2

1 1 1

2 0 1

3 1 0

4 0 0
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The same result can more generally be obtained by putting levels in a list and

repeating it twice.

expand.grid(rep(list(levels), 2))

Var1 Var2

1 1 1

2 0 1

3 1 0

4 0 0

However, as we need to do this for each subject (dat$id), we pass this to the

lapply function and stack the resulting matrices using the rbind function.

tmp <- lapply(dat$id, function(x) expand.grid(rep(list(c(dat$A[x], 1-dat$A[x])), 2)))

tmp <- do.call(rbind, tmp)

# check result

head(tmp)

Var1 Var2

1 1 1

2 0 1

3 1 0

4 0 0

5 0 0

6 1 0

The resulting stacked matrices can now be merged with the extended data

sets, and Var1 and Var2 can be renamed as a0 and a1 (or a2), respectively. A

third auxiliary variable a2 (or a1) needs to be added that is a copy of the observed

exposure level Ai.

extdat1 <- data.frame(extdat1, a0 = tmp$Var1, a1 = tmp$Var2, a2 = extdat1$A)

extdat2 <- data.frame(extdat2, a0 = tmp$Var1, a1 = extdat2$A, a2 = tmp$Var2)

# check the result

head(extdat1, 4)

id C A M1 M2 Y a0 a1 a2

1 1 -1.8 1 2.69 7.23 10.5 1 1 1
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1.1 1 -1.8 1 2.69 7.23 10.5 0 1 1

1.2 1 -1.8 1 2.69 7.23 10.5 1 0 1

1.3 1 -1.8 1 2.69 7.23 10.5 0 0 1

head(extdat2, 4)

id C A M1 M2 Y a0 a1 a2

1 1 -1.8 1 2.69 7.23 10.5 1 1 1

1.1 1 -1.8 1 2.69 7.23 10.5 0 1 1

1.2 1 -1.8 1 2.69 7.23 10.5 1 1 0

1.3 1 -1.8 1 2.69 7.23 10.5 0 1 0

4. Calculate regression weights W1i or W2i depending on whether a working

model for M1 or M2 is selected. Since both mediators are normally distributed in

the simulated data set, we use the dnorm function in order to obtain the densities

f (M1 = M1i|A = a′, Ci), f (M1 = M1i|A = Ai, Ci), f (M2 = M2i|A = a′′, M1i, Ci)

and f (M2 = M2i|A = Ai, M1 = M1i, Ci).

# calculate W1

meanM1a1 <- predict(fitM1, newdata = data.frame(A = extdat1$a1, extdat1),

type = "response")

meanM1A <- predict(fitM1, newdata = data.frame(A = extdat1$A, extdat1),

type = "response")

sdM1 <- sqrt(summary(fitM1)$dispersion)

num1 <- dnorm(extdat1$M1, mean = meanM1a1, sd = sdM1)

denom1 <- dnorm(extdat1$M1, mean = meanM1A, sd = sdM1)

extdat1$W1 <- num1/denom1

# calculate W2

meanM2a2 <- predict(fitM2, newdata = data.frame(A = extdat2$a2, extdat2),

type = "response")

meanM2A <- predict(fitM2, newdata = data.frame(A = extdat2$A, extdat2),

type = "response")

sdM2 <- sqrt(summary(fitM2)$dispersion)

num2 <- dnorm(extdat2$M2, mean = meanM2a2, sd = sdM2)

denom2 <- dnorm(extdat2$M2, mean = meanM2A, sd = sdM2)

extdat2$W2 <- num2/denom2
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# check result

head(extdat1, 4)

id C A M1 M2 Y a0 a1 a2 W1

1 1 -1.8 1 2.69 7.23 10.5 1 1 1 1.000

1.1 1 -1.8 1 2.69 7.23 10.5 0 1 1 1.000

1.2 1 -1.8 1 2.69 7.23 10.5 1 0 1 0.413

1.3 1 -1.8 1 2.69 7.23 10.5 0 0 1 0.413

head(extdat2, 4)

id C A M1 M2 Y a0 a1 a2 W2

1 1 -1.8 1 2.69 7.23 10.5 1 1 1 1.000

1.1 1 -1.8 1 2.69 7.23 10.5 0 1 1 1.000

1.2 1 -1.8 1 2.69 7.23 10.5 1 1 0 0.257

1.3 1 -1.8 1 2.69 7.23 10.5 0 1 0 0.257

5. Impute nested counterfactuals Y(a, M1(a′), M2(a′′, M1(a′))) by Ê{Y|A = a, M1, M2, C}
using predict-functionality.

extdat1$Y <- predict(fitY, newdata = data.frame(A = extdat1$a0, extdat1),

type = "response")

extdat2$Y <- predict(fitY, newdata = data.frame(A = extdat2$a0, extdat2),

type = "response")

6. Fit a natural effect model for E{Y(a, M1(a′), M2(a′′, M1(a′)))|C} by regressing

imputed counterfactuals Ê{Y|A = a, M1, M2, C} on a, a′, a′′ and C, upon weighting

for either W1 or W2.

fitNEM1 <- glm(Y ~ a0 * a1 * a2 + C,

family = gaussian("identity"), data = extdat1, weights = W1)

fitNEM2 <- glm(Y ~ a0 * a1 * a2 + C,

family = gaussian("identity"), data = extdat2, weights = W2)

# obtain parameter estimates

fitNEM1
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Call: glm(formula = Y ~ a0 * a1 * a2 + C, family = gaussian("identity"),

data = extdat1, weights = W1)

Coefficients:

(Intercept) a0 a1 a2 C

12.5898 0.4440 3.6483 2.1909 5.1121

a0:a1 a0:a2 a1:a2 a0:a1:a2

0.1576 -0.0717 0.1437 -0.0027

Degrees of Freedom: 3999 Total (i.e. Null); 3991 Residual

Null Deviance: 159000

Residual Deviance: 34700 AIC: 22000

fitNEM2

Call: glm(formula = Y ~ a0 * a1 * a2 + C, family = gaussian("identity"),

data = extdat2, weights = W2)

Coefficients:

(Intercept) a0 a1 a2 C

12.5475 0.4440 4.0046 2.1579 5.2925

a0:a1 a0:a2 a1:a2 a0:a1:a2

0.1676 -0.0209 -0.0967 -0.0635

Degrees of Freedom: 3999 Total (i.e. Null); 3991 Residual

Null Deviance: 145000

Residual Deviance: 36500 AIC: 22900

Moreover, population-average component effects (rather than effects condi-

tional on C) can be obtained upon multiplying weights by 1/P̂(A = Ai|Ci) for

each subject in the extended data set and fitting a population-average natural effect

model for

E{Y(a, M1(a′), M2(a′′, M1(a′)))}, as illustrated below.

First, a model for the probability of exposure needs to be fitted on the original

data set.

fitA <- glm(A ~ C,

family = binomial("logit"), data = dat)
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Next, updated weights need to be calculated.

meanA1 <- predict(fitA, newdata = extdat1, type = "response")

meanA2 <- predict(fitA, newdata = extdat2, type = "response")

extdat1$W1 <- extdat1$W1 / dbinom(extdat1$A, size = 1, prob = meanA1)

extdat2$W2 <- extdat2$W2 / dbinom(extdat2$A, size = 1, prob = meanA2)

Finally, the population-average natural effect model can be fitted.

fitNEM1 <- glm(Y ~ a0 * a1 * a2,

family = gaussian("identity"), data = extdat1, weights = W1)

fitNEM2 <- glm(Y ~ a0 * a1 * a2,

family = gaussian("identity"), data = extdat2, weights = W2)

# obtain parameter estimates

fitNEM1

Call: glm(formula = Y ~ a0 * a1 * a2, family = gaussian("identity"),

data = extdat1, weights = W1)

Coefficients:

(Intercept) a0 a1 a2 a0:a1

12.5472 0.4189 4.2108 2.2961 0.1619

a0:a2 a1:a2 a0:a1:a2

-0.0235 -0.6336 -0.0206

Degrees of Freedom: 3999 Total (i.e. Null); 3992 Residual

Null Deviance: 321000

Residual Deviance: 281000 AIC: 27800

fitNEM2

Call: glm(formula = Y ~ a0 * a1 * a2, family = gaussian("identity"),

data = extdat2, weights = W2)

Coefficients:

(Intercept) a0 a1 a2 a0:a1

12.5472 0.4189 2.5063 2.2323 0.2010
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a0:a2 a1:a2 a0:a1:a2

-0.0166 1.1347 -0.0666

Degrees of Freedom: 3999 Total (i.e. Null); 3992 Residual

Null Deviance: 305000

Residual Deviance: 269000 AIC: 28300

5.A.4.2 Obtaining bootstrap-based standard errors and confidence in-
tervals

In this section, we demonstrate how to obtain bootstrap-based standard errors and

confidence intervals using the boot library in R.

We basically need to wrap the above code in a function, say bootFun, which has

arguments data and index. Within that function, we need to add a line that makes

sure that the analysis is done on bootstrapped samples dat and request to return

the estimated coefficients of the natural effect model. For simplicity, we restrict

our presentation to the bootstrap for natural effect models weighted by the density

of M1, although the procedure can easily be adopted to obtain bootstrap-based

inference for natural effect models weighted by the density of M2.

library(boot)

bootFun <- function(data, index) {

dat <- data[index, ]

# 1

fitM1 <- glm(M1 ~ A + C,

family = gaussian("identity"), data = dat)

# 2

fitY <- glm(Y ~ A * M1 * M2 + C,

family = gaussian("identity"), data = dat)

# 3

extdat <- dat[rep(dat$id, each = 4), ]

tmp <- lapply(dat$id, function(x) expand.grid(rep(list(c(dat$A[x], 1-dat$A[x])), 2)))

tmp <- do.call(rbind, tmp)
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extdat <- data.frame(extdat, a0 = tmp$Var1, a1 = tmp$Var2, a2 = extdat$A)

# 4

meanM1a1 <- predict(fitM1, newdata = data.frame(A = extdat$a1, extdat),

type = "response")

meanM1A <- predict(fitM1, newdata = data.frame(A = extdat$A, extdat),

type = "response")

sdM1 <- sqrt(summary(fitM1)$dispersion)

num <- dnorm(extdat$M1, mean = meanM1a1, sd = sdM1)

denom <- dnorm(extdat$M1, mean = meanM1A, sd = sdM1)

extdat$W1 <- num/denom

# 5

extdat$Y <- predict(fitY, newdata = data.frame(A = extdat$a0, extdat),

type = "response")

# 6

fitNEM <- glm(Y ~ a0 * a1 * a2 + C,

family = gaussian("identity"), data = extdat, weights = W1)

return(coef(fitNEM))

}

Once this function is defined, apply the boot function as illustrated below. In

order to obtain an acceptable level of precision, use a sufficient number of bootstrap

samples R (i.e. at least 1000).

bootSE <- boot(data = dat, statistic = bootFun, R = 10)

Bootstrap-based standard errors can then readily be obtained by printing

bootSE

bootSE

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
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boot(data = dat, statistic = bootFun, R = 10)

Bootstrap Statistics :

original bias std. error

t1* 12.5898 0.00823 0.2536

t2* 0.4440 -0.00582 0.0700

t3* 3.6483 -0.07565 0.4368

t4* 2.1909 0.11941 0.4282

t5* 5.1121 0.08345 0.2668

t6* 0.1576 -0.01628 0.0722

t7* -0.0717 -0.00805 0.0782

t8* 0.1437 0.07422 0.5816

t9* -0.0027 0.01361 0.0382

Moreover, bootstrap samples of the parameter estimates are stored in bootSE$t

head(bootSE$t)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 12.5 0.386 3.91 2.74 5.48 0.1517 -0.05853 -0.410 0.00709

[2,] 12.3 0.332 2.97 2.01 4.98 0.0963 0.01095 0.967 0.03485

[3,] 12.5 0.529 3.78 3.01 5.11 0.1586 -0.03573 -0.670 -0.03323

[4,] 12.5 0.450 3.68 1.86 4.79 0.0396 -0.17524 0.530 0.02201

[5,] 12.5 0.500 3.68 2.64 5.53 0.0289 0.00263 0.318 0.06715

[6,] 13.0 0.328 2.64 1.76 5.03 0.1614 -0.15113 1.228 0.03482

apply(bootSE$t, 2, sd)

[1] 0.2536 0.0700 0.4368 0.4282 0.2668 0.0722 0.0782 0.5816 0.0382

95% bootstrap-based normal approximation confidence intervals can be ob-

tained by running the code below.

sapply(1:length(bootSE$t0), FUN = function(x)

boot.ci(bootSE, conf = 0.95, type = "norm", index = x)$normal[2:3])

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 12.1 0.313 2.87 1.23 4.51 0.0323 -0.2169 -1.07 -0.0912

[2,] 13.1 0.587 4.58 2.91 5.55 0.3155 0.0896 1.21 0.0586
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Obtaining confidence intervals for linear combinations of the parameter esti-

mates of the natural effect models requires some additional tweaking. For this

purpose, the function linfunCI can be used from the code below.

# function to calculate 95% confidence intervals

# for linear combination of parameter estimates

linfunCI <- function(boot.out, L, conf) {
est <- sum(L %*% boot.out$t0)

se <- diag(sqrt(t(L) %*% var(boot.out$t) %*% L))

bias <- est - L %*% colMeans(boot.out$t)

CI <- est + bias + c(-1,1) * qnorm(1-(1-conf)/2) * se

return(c("LCL" = CI[1], "UCL" = CI[2]))

}

# specify contrast matrix

# e.g. for natural indirect effect wrt M1

# (refer to Table 5.1

# for parameterization)

L <- c(0, 0, 1, 0, 0, 1, 0, 1, 1)

# obtain linear combination of parameter estimates

# and corresponding 95% confidence interval

c(L %*% bootSE$t0, linfunCI(bootSE, L, 0.95))

LCL UCL

3.95 3.32 4.58

Finally, hypothesis testing can be done using a multivariate Wald-type test

based on the bootstrap normal approximation, implemented in the bootChisq

function. Below, this function is illustrated for testing differences between decom-

positions (i.e. testing whether the parameters capturing interactions between a, a′

and a′′ jointly differ from 0) by appropriately specifying the contrast matrix L.

# function for Wald-type Chisquare test

# based on the bootstrap covariance matrix

bootChisq <- function(boot.out, L) {
chisq <- t(boot.out$t0) %*% t(L) %*% solve(L %*% var(boot.out$t)

%*% t(L)) %*% L %*% boot.out$t0
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df <- dim(L)[1]

p <- pchisq(q = chisq, df, lower.tail = FALSE)

return(c("Chisq" = chisq, "df" = df, "p" = p))

}

L <- matrix(c(0, 0, 0, 0, 0, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 1),

nrow = 4, byrow = TRUE)

bootChisq(bootSE, L)

Chisq df p

7.526 4.000 0.111

5.A.4.3 Adapted approach in the absence of interactions

Whenever differences between decompositions are ignorable (i.e. interactions

between a, a′ and a′′ in a natural effect model are close to zero), one can opt to

refit a natural effect model that excludes the corresponding interaction terms to

the extended data (as was done in the application in the main text). Particularly in

settings with a large number of mediators, this may yield a considerable gain in

precision.

i Ai a a′ a′′ Yi(a, M1i(a′), M2i(a′′, M1i(a′)))

1 1 1 1 1 Y1(1, M11(1), M21(1, M11(1))) = Y1

1 0 1 1 Y1(0, M11(1), M21(1, M11(1))) = Y1(0, M11, M21)

1 0 1 0 Y1(0, M11(1), M21(0, M11(1))) = Y1(0, M11)

2 0 0 0 0 Y2(0, M12(0), M22(0, M12(0))) = Y2

0 1 0 0 Y2(1, M12(0), M22(0, M12(0))) = Y2(1, M12, M22)

0 1 0 1 Y2(1, M12(0), M22(1, M12(0))) = Y2(1, M12)
...

...
...

...
...

...
...

Table 5.8: Adapted data extension in the absence of interactions.
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Alternatively, in the absence of interactions, one may resort to a completely dif-

ferent approach. That is, in this specific setting, main effects of a, a′ and a′′ can be es-

timated based on the nested counterfactuals listed in Table 5.8. That is, the main ef-

fect of a can be obtained by contrasting the first and second line within each subject.

The main effect of a′ can be obtained by contrasting the first (last) line of exposed

subjects (A = 1) with the last (first) line of unexposed subjects (A = 0). Finally, the

main effect of a′′ can be obtained by contrasting the second and third line within

each subject. However, again, these nested counterfactuals are only observed for

subjects i if Ai = a = a′ = a′′. As mentioned in section 5.A.3, the first two nested

counterfactuals for each subject can be predicted by Ê{Yi|A = a, M1i, M2i, Ci} based

on an imputation model for E{Y|A, M1, M2, C} and hence requires no weights and

thus no working model for the density of M1 or M2. Furthermore, relying on

the composition assumption that Y(a, M1(a′), M2(a, M1(a′))) = Y(a, M1(a′)), the

third nested counterfactual can also be predicted by Ê{Yi|A = a, M1i, Ci} based on

an imputation model for E{Y|A, M1, C}.7
This notion leads to fitting strategies for (conditional) natural effect models that

are exclusively based on imputation. Hence, in the absence of interactions between

component effects, one may avoid modeling mediator densities at the expense of

an additional (imputation) model for E{Y|A, M1, C}. Such approach has already

been suggested by VanderWeele et al. (2014) as an alternative to fully parametric

estimation of component effects via a sequential decomposition approach. Note,

however, that for non-linear models, this may induce additional concerns for

incongeniality between models for E{Y|A, M1, M2, C} and E{Y|A, M1, C}.
Below, we illustrate how this approach can be implemented in R (on the simu-

lated data set), given some minor modifications of the code presented above.

1. Instead of fitting a model for the probability (density) of (one of) the mediators,

fit a suitable model for the outcome mean conditional on A, M1 and C.

fitY1 <- glm(Y ~ A * M1 + C,

family = gaussian("identity"), data = dat)

7Note that assumptions (i’)-(vi’) enable obtaining all six possible three-way decompo-
sitions, including the one that involves the natural indirect effect with respect to M1, i.e.
EA→M1Y(1, 1). As identification of this effect relies on identification of E{Y(a, M1(a′))|C},
this expected nested counterfactual is then also identified. It can moreover be estimated by
averaging predicted outcomes Ê{Y|A = a, M1, C} in each stratum of C.
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2. Fit a suitable model for the outcome mean conditional on A, M1, M2 and C.

fitY2 <- glm(Y ~ A * M1 * M2 + C,

family = gaussian("identity"), data = dat)

3. Construct an extended data set as if one were to select a model for the density
of M2 as a working model, but for each subject leaving out the observation for
which a′′ 6= a = a′ (see Figure 5.4).

extdat <- dat[rep(dat$id, each = 4), ]

tmp <- lapply(dat$id, function(x) expand.grid(rep(list(c(dat$A[x], 1-dat$A[x])), 2)))

tmp <- do.call(rbind, tmp)

extdat <- data.frame(extdat, a0 = tmp$Var1, a1 = extdat$A, a2 = tmp$Var2)

extdat <- extdat[extdat$a2 == extdat$a0 | extdat$a2 == extdat$a1, ]

head(extdat)

id C A M1 M2 Y a0 a1 a2

1 1 -1.802 1 2.69 7.23 10.5 1 1 1

1.1 1 -1.802 1 2.69 7.23 10.5 0 1 1

1.3 1 -1.802 1 2.69 7.23 10.5 0 1 0

2 2 0.316 0 3.94 9.38 15.4 0 0 0

2.1 2 0.316 0 3.94 9.38 15.4 1 0 0

2.3 2 0.316 0 3.94 9.38 15.4 1 0 1

4. Skip step 4.

5. Impute nested counterfactuals Y(a, M1(a′), M2(a′′, M1(a′))) for which a′ = a′′

by Ê{Y|A = a, M1, M2, C} (fitY2) and nested counterfactuals for which a′ 6= a′′

by Ê{Y|A = a, M1, C} (fitY1).

ind <- which(extdat$a1 != extdat$a2)

extdat$Y <- predict(fitY2, newdata = data.frame(A = extdat$a0, extdat),

type = "response")

extdat$Y[ind] <- predict(fitY1, newdata = data.frame(A = extdat$a0, extdat)[ind, ],

type = "response")
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6. Fit a natural effect model for E{Y(a, M1(a′), M2(a′′, M1(a′)))|C} by means of

an unweighted regression of imputed outcomes on a, a′, a′′ and C, excluding all

interactions between a, a′ and a′′.

fitNEM <- glm(Y ~ a0 + a1 + a2 + C,

family = gaussian("identity"), data = extdat)

fitNEM

Call: glm(formula = Y ~ a0 + a1 + a2 + C, family = gaussian("identity"),

data = extdat)

Coefficients:

(Intercept) a0 a1 a2 C

12.594 0.491 3.977 1.994 4.995

Degrees of Freedom: 2999 Total (i.e. Null); 2995 Residual

Null Deviance: 103000

Residual Deviance: 26500 AIC: 15100

5.A.4.4 Continuous exposure

Vansteelandt et al. (2012b) suggested a modification of their imputation algorithm

for continuous exposures in the single mediator case. Applying this modification

to the procedure described in section 5.A.4.1 (for three-way decomposition in the

presence of two sequential mediators) mainly entails some slight change to the

data extension step (step 3 in section 5.3). Below, we illustrate how to implement

this modified procedure in R, using a new artificial data set simulated from a linear

SEM. The data-generating SEM is identical to the one used to simulate the data

set in section 5.A.4.1, except that the exposure A is now drawn from a normal

distribution

f (A|C) = N(α′0 + α′1C, σ2
α′), (5.23)

with α′ = (0.25, 0.5), σ2
α′ = 1 and C standard normal.

C <- rnorm(n)

A <- rnorm(n, mean = 0.25 + 0.5*C, sd = 1)

M1 <- rnorm(n, mean = 3 + 1.2*A + 0.8*C, sd = 1)
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M2 <- rnorm(n, mean = 2 + 1.6*A + 2*M1 + 0.9*C, sd = 1)

Y <- rnorm(n, mean = 1.6 + 0.4*A + 0.6*M1 + 1.2*M2 + 1.4*C, sd = 1)

dat <- data.frame(id = 1:n, C, A, M1, M2, Y)

head(dat)

id C A M1 M2 Y

1 1 -1.224 -1.331 0.718 -0.0809 1.32

2 2 -0.117 -1.279 -0.724 -1.5177 -2.97

3 3 1.215 1.222 5.449 14.6282 26.09

4 4 -0.524 -0.431 2.215 6.5245 10.70

5 5 -2.018 -2.282 -0.449 -4.5822 -7.28

6 6 -0.312 -0.493 1.660 2.7780 5.07

Steps 1 and 2 remain unchanged. For simplicity, we restrict our presentation to

natural effect models weighted by the density of M1, although the procedure can

easily be adopted to natural effect models weighted by the density of M2.

fitM1 <- glm(M1 ~ A + C,

family = gaussian("identity"), data = dat)

fitY <- glm(Y ~ A * M1 * M2 + C,

family = gaussian("identity"), data = dat)

In addition, fit a model for the density of the exposure A, given C.

fitA <- glm(A ~ C,

family = gaussian("identity"), data = dat)

In step 3, construct an extended data set by sequentially replicating the original

data set J (instead of 2) times. Again, three auxiliary variables a, a′ and a′′ need to

be created. For the first-stage replications, let a take on the observed exposure level

A for the first replication and different quantiles from the conditional exposure

distribution f (A|C) for the remaining J − 1 replications. Ideally, this should be

equally spaced quantiles extending the whole range of the distribution, e.g. if J
is chosen to be 3, select the 10% and 90% percentiles. Quantiles from the normal

distribution for each subject can be obtained by using the qnorm function, as

illustrated in the code below. Each line i of q contains the 10% and 90% percentiles

from f (A|C) for subject i (with C = Ci).
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meanA <- predict(fitA, type = "response")

sdA <- sqrt(summary(fitA)$dispersion)

q <- sapply(c(0.1, 0.9), FUN = qnorm, mean = meanA, sd = sdA)

# check result

head(q)

[,1] [,2]

1 -1.610 0.888

2 -1.053 1.445

3 -0.383 2.116

4 -1.258 1.241

5 -2.010 0.489

6 -1.151 1.347

Moreover, let both a′ and a′′ take on the observed exposure level A. For the

second-stage replications (i.e. replications of the resulting replicated data set from

the first-stage replication), let either a′ or a′′ take on a different quantile from f (A|C)
for each of the additional J − 1 replications, depending on whether a model for the

density of M1 or M2 is selected as a working model.

Although this replication procedure may seem daunting to apply, as the R code

below illustrates, one can essentially use the same code for data extension as in

section 5.A.4.1. If J is chosen to be 3, we will obtain in total 32 = 9 replicates (instead

of 22 = 4 for a dichotomous exposure) when replicating the original data twice by a

factor J = 3. More generally, in order to obtain a (k + 1)-way decomposition in the

presence of k sequential mediators, we need to replicate the original data k times

by a factor J (with J the total number of exposure levels in case of dichotomous or

polytomous exposures), leading to a total of Jk replicates of the original data set.

extdat <- dat[rep(dat$id, each = 9), ]

tmp <- lapply(dat$id, function(x) expand.grid(rep(list(c(dat$A[x], q[x, ])), 2)))

tmp <- do.call(rbind, tmp)

extdat <- data.frame(extdat, a0 = tmp$Var1, a1 = tmp$Var2, a2 = extdat$A)

# check result

head(extdat, 9)
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id C A M1 M2 Y a0 a1 a2

1 1 -1.22 -1.33 0.718 -0.0809 1.32 -1.331 -1.331 -1.33

1.1 1 -1.22 -1.33 0.718 -0.0809 1.32 -1.610 -1.331 -1.33

1.2 1 -1.22 -1.33 0.718 -0.0809 1.32 0.888 -1.331 -1.33

1.3 1 -1.22 -1.33 0.718 -0.0809 1.32 -1.331 -1.610 -1.33

1.4 1 -1.22 -1.33 0.718 -0.0809 1.32 -1.610 -1.610 -1.33

1.5 1 -1.22 -1.33 0.718 -0.0809 1.32 0.888 -1.610 -1.33

1.6 1 -1.22 -1.33 0.718 -0.0809 1.32 -1.331 0.888 -1.33

1.7 1 -1.22 -1.33 0.718 -0.0809 1.32 -1.610 0.888 -1.33

1.8 1 -1.22 -1.33 0.718 -0.0809 1.32 0.888 0.888 -1.33

The remaining steps (4-6) again remain unchanged.

meanM1a1 <- predict(fitM1, newdata = data.frame(A = extdat$a1, extdat),

type = "response")

meanM1A <- predict(fitM1, newdata = data.frame(A = extdat$A, extdat),

type = "response")

sdM1 <- sqrt(summary(fitM1)$dispersion)

num <- dnorm(extdat$M1, mean = meanM1a1, sd = sdM1)

denom <- dnorm(extdat$M1, mean = meanM1A, sd = sdM1)

extdat$W1 <- num/denom

extdat$Y <- predict(fitY, newdata = data.frame(A = extdat$a0, extdat),

type = "response")

fitNEM <- glm(Y ~ a0 * a1 * a2 + C,

family = gaussian("identity"), data = extdat, weights = W1)

# check result

fitNEM

Call: glm(formula = Y ~ a0 * a1 * a2 + C, family = gaussian("identity"),

data = extdat, weights = W1)

Coefficients:

(Intercept) a0 a1 a2 C

12.81429 0.40228 3.12903 2.31652 5.15891

a0:a1 a0:a2 a1:a2 a0:a1:a2

-0.05298 0.12327 -0.00664 -0.03416
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Degrees of Freedom: 8999 Total (i.e. Null); 8991 Residual

Null Deviance: 856000

Residual Deviance: 76000 AIC: 55400

Note that misspecification of the sampling model for f (A|C) does not induce

bias in the estimated coefficients and standard errors of the natural effect model.

Moreover, we recommend to use a minimum of J = 3 draws. Although finite

sample bias and sampling variability can be reduced to some extent by choosing a

larger number of draws, simulations have shown this gain to be ignorable when

choosing more than J = 5 draws.

Moreover, the above R code can easily be adopted to also accommodate polyto-

mous exposures (with J > 2 exposure levels).
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5.B Empirical analysis

5.B.1 Data set and baseline covariates

Data were collected in the winter and spring of 2002/2003 in a large scale cross-

sectional survey (WHO’s Large Analysis and Review of European Housing and

Health Status project) involving 5,882 adult respondents from 2,983 households in

8 European cities (Angers, France; Bonn, Germany; Bratislava, Slovakia; Budapest,

Hungary; Ferreira do Alentejo, Portugal; Forli, Italy; Geneva, Switzerland; and

Vilnius, Lithuania). Baseline measurements C were available on both respondent

characteristics Cr (age, gender, marital status, education level, employment, smok-

ing and environmental tobacco smoke at home) and household characteristics Ch

(ownership, size, tenure, crowding, ventilation, natural light, heating and city of

residence). This data set is described in greater detail in Shenassa et al. (2007).

5.B.2 Working models

Model selection for each of the working models was done using a backward elim-

ination procedure (except for the exposure model). Each minimal model was

constrained to include all baseline covariates (C) and, where applicable, exposure

to dampness and mold (A) and mediators physical illness (M1) and perception

of control (M2) as predictor terms. The minimal set of predictor terms of the im-

putation model for the outcome depressive symptoms (Y) also included second-

and third-order interactions of A, M1 and M2 in order to ensure that different de-

compositions resulting from the final natural effect model appropriately reflected

differences dictated by the data. Likewise, the minimal working model for M2

included an interaction term between A and M1. Maximal working models addi-

tionally included interactions between each of the baseline covariates (except for

city of residence)8 and each of the remaining predictor terms in the minimal model

(that is, where applicable, A, M1, M2 and their second-order interaction terms).

In order to account for clustering by household, each of the working models was

estimated by generalized estimating equations (GEE), assuming an independent

working correlation structure, and backward elimination of the interaction terms

involving baseline covariates was done via the QIC criterion.9

8Due to sparseness of the data, it was not feasible to include any higher-order interac-
tions with city of residence in any of the working models, especially when refitting these
models to the bootstrapped data sets.

9Note that clustering complicates identification assumptions. Although we do not
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As levels of exposure to dampness and mold (A = 1 for exposed, A = 0 for

non-exposed) were constant within households, corresponding weights resulting

from the working model for exposure probability should be constructed so as to

mimick a cluster-randomized trial. Therefore, only household characteristics Ch

(but no respondent characteristics Cr) were included as predictors in this working

model. Moreover, in contrast to the other working models, it was not subjected to

model selection as it only stratified on a set of baseline covariates. The resulting

model

logitP(A = 1|Ch) = α0 + α>1 Ch, (5.24)

was fitted to the original data set to calculate inverse probability of exposure

weights

W0i =
1

P̂(A = Ai|Chi)
.

The final model for probability of physical illness (M1 = 1 in the presence of at

least one physical condition known to be related to mold exposure or 0 otherwise)

logitP(M1 = 1|A, C) = β0 + β1A + β>2 C, (5.25)

was fitted to the original data set to calculate ratio-of-mediator-probability weights

W1i,a′ =
P̂(M1 = M1i|A = a′, Ci)

P̂(M1 = M1i|A = a′′, Ci)
=

P̂(M1 = M1i|A = a′, Ci)

P̂(M1 = M1i|A = Ai, Ci)

for each row in an extended data set as constructed as described in step 3 in

section 5.3, henceforth referred to as extended data set 1.

Likewise, the final model for the density of perceived control (M2, as measured

on a 5-point Likert scale (reverse coded), and for convenience assumed to be

normally distributed)

f (M2|A, M1, C) = N
(

γ0 + γ1A + γ2M1 + γ3AM1 + γ>4 C, σ2
)

, (5.26)

elaborate on implications for identification in multilevel settings, we would like to refer
the interested reader to Talloen et al. (2016).
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was fitted to the original data set to calculate ratio-of-mediator-probability weights

W2i,a′′ =
f̂ (M2 = M2i|A = a′′, M1i, Ci)

f̂ (M2 = M2i|A = a′, M1i, Ci)
=

f̂ (M2 = M2i|A = a′′, M1i, Ci)

f̂ (M2 = M2i|A = Ai, M1i, Ci)

for each row in an extended data set as constructed as described in step 3 in

section 5.3, henceforth referred to as extended data set 2.

Finally, the final model for probability of depressive symptoms (Y = 1 in

the presence of at least 3 (out of 4) self-reported depressive symptoms or Y = 0

otherwise)

logitP(Y = 1|A, M1, M2, C) = δ0 + δ1A + δ2M1 + δ3M2 + δ4AM1 + δ5AM2 + δ6M1M2

+ δ7AM1M2 + δ>8 C + δ>9 AC1 + δ>10M1C2 + δ>11M2C3

+ δ>12AM1C4 + δ>13 AM2C5 + δ>14M1M2C6 (5.27)

with C1 = (age, marital status, environmental tobacco smoke at home, crowding,

ventilation), C2 = (ownership, size, ventilation), C3 = (marital status, educa-

tion level, ownership, size, tenure, heating), C4 = (ventilation), C5 = (marital

status) and C6 = (ownership, size) was used to impute nested counterfactuals

Yi(a, M1i(a′), M2i(a′′, M1i(a′))) by fitted values

P̂(Yi = 1|A = a, M1i, M2i, Ci)

for each row in extended data set 1 or 2.

5.B.3 Conditional logistic natural effect model

No effect modification by covariates For simplicity of exposition, a simple

logistic natural effect regression model excluding interaction or polynomial terms

involving baseline covariates C

logitP{Y(a, M1(a′), M2(a′′, M1(a′))) = 1|C}
= η0 + η1a + η2a′ + η3a′′ + η4aa′ + η5aa′′ + η6a′a′′ + η7aa′a′′ + η>8 C (5.28)

was fitted either to extended data set 1, weighting by W1i,a′ , or to extended data set

2, weighting by W2i,a′′ . The resulting decomposition of the total effect is described

in the main text and corresponding estimates and 95% confidence intervals for each

of the component effects for each of the six possible three-way decompositions
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are displayed in Figure 5.4.10 Moreover, since different decompositions did not

differ significantly at the 5% significance level, an alternative natural effect model

excluding interaction terms between a, a′ and a′′

logitP{Y(a, M1(a′), M2(a′′, M1(a′))) = 1|C}
= ζ0 + ζ1a + ζ2a′ + ζ3a′′ + ζ ′>4 C (5.29)

was again fitted either to extended data set 1, weighting by W1i,a′ , or to extended

data set 2, weighting by W2i,a′′ . Corresponding component effect estimates and 95%

confidence intervals are listed in Table 5.5.

Allowing for effect modification by covariates In addition, a more elab-

orate logistic natural effect model focusing on effect modification by baseline

covariates C

logitP{Y(a, M1(a′), M2(a′′, M1(a′))) = 1|C}
= ω0 + ω1a + ω2a′ + ω3a′′ + ω4aa′ + ω5aa′′ + ω6a′a′′ + ω7aa′a′′ + ω>8 C

+ ω>9 aC + ω>10a′C + ω>11a′′C (5.30)

was again fitted either to extended data set 1, weighting by W1i,a′ , or to extended

data set 2, weighting by W2i,a′′ . Note that this model still implies some constraints

on how differences in decompositions may vary between strata defined by baseline

covariates, since it excludes interactions between baseline covariates and second-

and higher-order interaction terms involving a, a′ and a′′.
The joint natural direct effect of the presence of dampness or mold expo-

sure on the odds of depression, exp
(
ÊA→Y(0, 0)

∣∣C), was significantly different

(at the 5% significance level) in less crowded homes (< 0.5 residents/room),

medium crowded homes (0.51 − 1 residents/room) and crowded homes (> 1

residents/room) (χ2 = 6.24, P = 0.04), according to model (5.30) fitted to extended

data set 1 weighted by W1i,a′ . Corresponding effect estimates are listed in Ta-

ble 5.9. Fitting model (5.30) to extended data set 2, weighting by W2i,a′′ , led to the

same conclusion (χ2 = 6.31, P = 0.04) and yielded nearly identical estimates (see

Table 5.9).

10Confidence intervals and inference for the natural effect models were based on the
bootstrap covariance matrix of 1000 bootstrap samples. To account for clustering by house-
holds, the data was resampled at the household level instead of individual respondent
level.
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weighting by W1i,a′ weighting by W2i,a′′

Estimate 95% CI Estimate 95% CI

< 0.5 residents/room 1.97 1.03, 3.72 1.97 1.02, 3.72

0.51− 1 residents/room 0.99 0.61, 1.67 0.99 0.61, 1.65

> 1 residents/room 1.28 0.72, 2.23 1.27 0.72, 2.22

Table 5.9: Estimates and 95% confidence intervals of the joint natural direct effect
odds ratio, exp(EA→Y(0, 0)|C) for different levels of crowding. Estimates are based
on model (5.30) fitted either to extended data set 1, weighted by W1i,a′ (left column)
or to extended data set 2, weighted by W2i,a′′ (right column).11

weighting by W1i,a′ weighting by W2i,a′′

Estimate 95% CI Estimate 95% CI

absence of env. tobacco smoke 0.99 0.61, 1.67 0.99 0.61, 1.65

presence of env. tobacco smoke 0.65 0.37, 1.15 0.65 0.37, 1.14

Table 5.10: Estimates and 95% confidence intervals of the joint natural direct effect
odds ratio, exp(EA→Y(0, 0)|C) for different levels of environmental tobacco smoke
at the home. Estimates are based on model (5.30) fitted either to extended data set
1, weighted by W1i,a′ (left column) or to extended data set 2, weighted by W2i,a′′

(right column).12

Moreover, the joint natural direct effect, exp
(
ÊA→Y(0, 0)

∣∣C), in homes without

environmental tobacco smoke significantly differed (at the 5% significance level)

from the joint natural direct effect in homes with environmental tobacco smoke

(χ2 = 3.99, P < 0.05) according to model (5.30) fitted to extended data set 1

weighted by W1i,a′ . Corresponding effect estimates are listed in Table 5.10. Again,

fitting model (5.30) to extended data set 2, weighting by W2i,a′′ , led to the same

conclusion and yielded nearly identical estimates (see Table 5.10).

11Estimates were obtained for a reference group of married, non-smoking men, aged 46
(mean age), living in Bonn, employed outside the home and that own a home sized 50-99
m2 (with ventilation, enough natural light, heating in all rooms and no environmental
tobacco smoke) in which they have lived for 17 years (mean tenure).

12Estimates were obtained for a reference group of married, non-smoking men, aged 46
(mean age), living in Bonn, employed outside the home and that own a home sized 50-99 m2

(with ventilation, enough natural light, heating in all rooms and 0.51− 1 residents/room)
in which they have lived for 17 years (mean tenure).
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weighting by W1i,a′ weighting by W2i,a′′

Estimate 95% CI Estimate 95% CI

male 1.05 1.01, 1.10 0.89 0.69, 1.15

female 1.05 1.01, 1.10 0.99 0.77, 1.26

Table 5.11: Estimates and 95% confidence intervals of the natural indirect ef-
fect odds ratio with respect to physical illness, exp(EA→M1Y(1, 1)|C) for men and
women. Estimates are based on model (5.30) fitted either to extended data set 1,
weighted by W1i,a′ (left column) or to extended data set 2, weighted by W2i,a′′ (right
column).13

According to model (5.30) fitted to extended data set 2, weighted by W2i,a′′ , the

natural indirect effect odds ratio with respect to physical illness, exp(EA→M1Y(1, 1)|C),
differed significanly between men and women (χ2 = 5.06, P = 0.02). However,

effect modification of this effect by gender could not be established upon fitting

model (5.30) to extended data set 1 weighted by W1i,a′ (χ2 = 0.05, P = 0.83). Corre-

sponding effect estimates are listed in Table 5.11. These contrasting findings may

be due to the fact that working model (5.26), used for calculating weights W2i,a′′ ,

is more prone to model misspecification because it makes additional parametric

assumptions on the distribution of M2 and the association between M1 and M2.

We may therefore avoid reliance on working model (5.26), and instead use weights

W1i,a′ (as derived from working model (5.25)), as also highlighted in the main text.

5.B.4 Marginal logistic natural effect model

Finally, a marginal logistic natural effect model

logitP{Y(a, M1(a′), M2(a′′, M1(a′))) = 1}
= θ0 + θ1a + θ2a′ + θ3a′′ + θ4aa′ + θ5aa′′ + θ6a′a′′ + θ7aa′a′′ (5.31)

was fitted either to extended data set 1, weighting by W0i ×W1i,a′ , or to extended

data set 2, weighting by W0i ×W2i,a′′ . Resulting estimates for the marginal odds

13Estimates were obtained for a reference group of married, non-smoking respondents,
aged 46 (mean age), living in Bonn, employed outside the home and that own a home
sized 50-99 m2 (with ventilation, enough natural light, heating in all rooms, 0.51 − 1
residents/room and no environmental tobacco smoke) in which they have lived for 17
years (mean tenure).
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ratios (and corresponding 95% confidence intervals) are displayed in the left panels

of Figure 5.10. These odds ratios could easily be translated into risk ratios, as

displayed in the right panels of Figure 5.10, along with their 95% confidence

intervals.14 Since odds ratio estimates are relatively close to the null, they can be

seen to approximate associated risk ratio estimates quite well.

14Note that such translation is less straightforward when dealing with non-saturated
models (e.g., when dealing with continuous exposures or models that condition on con-
tinuous or high-dimensional covariates) as risk ratios may differ according to reference
exposure or covariate levels even when associated odds ratios are not modelled in such a
way. For this reason, effects from the aforementioned conditional natural effect models
were only expressed in terms of odds ratios. Alternatively, one could resort to log-linear
instead of logistic natural effect models. However, because of ensuing extrapolation in the
presence of even minor misspecification of non-saturated log-linear models (for risk ratios),
these models tend to yield fitted values beyond the range of [0; 1], despite the outcome
being binary. This can be especially problematic when fitting log-linear outcome models
for imputing nested counterfactuals.
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Figure 5.10: The left panels display marginal odds ratio estimates and 95% confi-
dence intervals for each of the component effects listed in Table 5.2 (on the log odds
ratio scale). Components are grouped per decomposition and displayed in the
same order as in Table 5.2. The upper left panel displays estimates and confidence
intervals as obtained from fitting model (5.31) to extended data set 1, weighting
by W0i ×W1i,a′ , whereas the lower left panel displays those obtained from fitting
model (5.31) to extended data set 2, weighting by W0i ×W2i,a′′ . The right panels
display associated risk ratio estimates and 95% confidence intervals as calculated
from the fitted probabilities from model (5.31).
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Chapter 6

Discussion

To further reflect on the previous chapters and sections in this thesis, in this
last chapter, we will, in turn, discuss identifying assumptions for the causal
effects of interest and methods for modeling and estimating these effects. In
addition, we briefly summarize further challenges within the field of causal
mediation analysis.

6.1 Identifying assumptions

6.1.1 Why non-parametric identification?

Because causal inference is often framed as inherently being a missing data
problem (Holland, 1986) – in which unobserved counterfactual outcomes
could be viewed as missing outcomes in a different hypothetical world – a
main concern is whether the observed data carries sufficient information to
infer (and possibly estimate) causal effects; that is, whether causal effects
are identifiable from the data at hand. If the answer is positive, causal effects
can be expressed as some functional of the observed data distribution.

However, in most, if not all, research settings, we need to make certain
causal assumptions in order to make progress. Clearly articulating such
assumptions is of utmost importance in order to be able to assess to what
extent causal claims that follow from these assumptions may or may not
be deemed credible. That is, to strengthen such claims, ideally, we wish
to impose as few assumptions as possible. In particular, one should strive
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to articulate assumptions that are sufficient for identifying the causal ef-
fect of interest without additionally imposing any restrictions on the full
data distribution by means of parametric modeling assumptions. Failing
to do so, may make results become very sensitive to the correctness of the
assumed parametric models. We have therefore focused on non-parametric
identification of natural and path-specific effects, in order to ensure that, if
identification is obtained, it is solely based on sufficient causal assumptions,
without the potential influence or interference of certain parametric restric-
tions, which may compensate for the lack of information in the observed
data under insufficient causal assumptions.

Despite the importance of untangling causal from statistical modeling
assumptions, inevitably, in a later stage – i.e. once non-parametric identifi-
cation is obtained – additional modeling assumptions will typically need
to be imposed to deal with the curse of dimensionality and/or facilitate
interpretable results that are easy to communicate.

6.1.2 Identification via the adjustment criterion

In this thesis, we have mainly focused on non-parametric identification of
natural effects (chapter 4) and, more generally, path-specific effects (chap-
ter 5) by a generalization of the adjustment criterion (Shpitser et al., 2010)
for mediation analysis (Shpitser and VanderWeele, 2011; Steen et al., 2016b).
This generalized adjustment criterion provides a graphical rule that can be
used as a guide to determine whether natural or path-specific effects are
identified in a given graph (interpreted as a NPSEM) by adjustment for a
common set of baseline covariates.

A major appeal of non-parametric identification via the adjustment
criterion, a criterion that is implicitly prescribed in most applied papers,
is that it leads to a standard form of identification result, which, in turn,
allows for general estimation and modeling strategies that can easily be
incorporated into the natural effect modeling framework, as presented in
chapter 4 and chapter 5.

In single mediator settings or settings that aim for two-way effect de-
composition, the identification result has been referred to as the mediation

220



6

6.1. Identifying assumptions

formula (Pearl, 2001) or the adjustment formula for mediation analysis (Sh-
pitser and VanderWeele, 2011). Generalizations of this formula that enable
a more fine-grained effect decomposition along certain path-specific effects
involving multiple mediators readily follow from repeated application of
the adjustment criterion, as pointed out in chapter 5.

Sequential application of the adjustment criterion and its shortcomings

Under Markovian NPSEMs – i.e. in the absence of unmeasured confounding
– the recanting witness criterion is both a sufficient and necessary graphical
criterion for non-parametric identification of path-specific effects (Avin
et al., 2005). From this criterion, it follows that, in settings with k sequential
mediators, the finest identifiable decomposition is characterized in terms
of k + 1 distinct path-specific effects. Because of causal sufficiency under
Markovian NPSEMs, each of these k + 1 path-specific effects are identifiable
by means of covariate adjustment. Sequential application of the adjustment
criterion – henceforth referred to as the sequential adjustment criterion – can
thus be conceived as an aid in finding a (minimal) common set of covariates
that satisfies sufficient ignorability conditions under NPSEMs in order
to obtain this most fine-grained (k + 1)-way decomposition by means of
simultaneous identification of its k + 1 component path-specific effects. It
turns out that, under Markovian NPSEMs, there is always an available set of
covariates that satisfies the adjustment criterion for each of the consecutive
identification steps described in section 5.A.2.

Under semi-Markovian NPSEMs – i.e. in the presence of unmeasured
confounding – on the other hand, the recanting witness criterion, yet still a
necessary criterion, is no longer sufficient for identification of path-specific
effects. As a result, there is no guarantee that the targeted (k + 1)-way de-
compositions are identifiable. Moreover, even if the k + 1 component path-
specific effects turn out to be identifiable, they might not all be identified by
adjustment for a common set of covariates, as in Markovian NPSEMs. We
may therefore need to settle for less fine-grained decompositions that might
necessitate grouping certain path-specific effects in order to recover iden-
tification. The sequential adjustment criterion indicates that such coarser
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decompositions can often be identified by means of adjustment for a com-
mon set of covariates either by ignoring certain mediators that occur later in
the causal chain or by grouping mediators into a joint mediator, as suggested
in section 5.A.2 (also see e.g. VanderWeele and Vansteelandt, 2013).

For instance, in Figure 3.3B, three-way effect decomposition is com-
promised because of unmeasured M − Y confounding, which hampers
separation of EA→Y, i.e. the joint natural direct effect (through neither
L nor M), from EA→M→Y, i.e. the partial indirect effect with respect to
M. Indeed, the sequential adjustment criterion indicates that L(a) ⊥⊥ A
and M(a, l) ⊥⊥ {A, L} but Y(a, l, m) 6⊥⊥ {A, L, M}, because the latter in-
dependence would only hold conditional on unmeasured confounder U.
Nonetheless, a coarser decomposition can be obtained by simply ignoring
M. That is, decomposition into natural effects with respect to mediator L
can be obtained (by means of adjustment for the empty set), since L(a) ⊥⊥ A
and Y(a, l) ⊥⊥ {A, L}.

Fine-grained three-way effect decomposition is also hampered in Fig-
ure 3.3C because unmeasured L−M confounding does not permit to disen-
tangle EA→LY, i.e. the natural indirect effect through L, and EA→M→Y. In
this case, the sequential adjustment criterion indicates that again, L(a) ⊥⊥ A,
but that M(a, l) 6⊥⊥ {A, L} if data on U is unavailable. Treating {L, M} as
a joint mediator leads to a coarser decomposition into natural effects with
respect to {L, M}. This two-way decomposition is identified by means
of covariate adjustment (for the empty set), since {L(a), M(a)} ⊥⊥ A and
Y(a, l, m) ⊥⊥ {A, L, M}.

Finally, in Figure 3.3D, path-specific effects EA→LY and EA→Y cannot
be separated because of unmeasured L−Y confounding, which thus once
more hinders three-way decomposition. Again, non-identification of this
three-way decomposition is indicated by the sequential adjustment crite-
rion, since L(a) ⊥⊥ A and M(a, l) ⊥⊥ {A, L}, but Y(a, l, m) 6⊥⊥ {A, L, M} if
data on U is unavailable. Nonetheless, by the recanting district criterion,
EA→M→Y – and thus a coarser two-way decomposition – remains identi-
fiable, without the need to rely on more general identification strategies
(beyond adjustment for a common set of covariates) (see e.g. Miles et al.,
2014). Interestingly, the sequential adjustment criterion does not seem to
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be able to signal identification of this coarser decomposition by means of
covariate adjustment. This can be appreciated by the fact that the sequential
adjustment criterion adheres to a certain hierarchy of identification. That
is, due to its inherently sequential nature, it prioritizes identification of
natural effects over more generally defined path-specific effects, such as
EA→M→Y. As such, identification of certain generally defined path-specific
effects could be conceived as merely a by-product of identification of spe-
cific natural effects, the contrast of which happens to correspond to these
path-specific effects of interest.

For instance, whereas the partial indirect effect EA→M→Y corresponds to
the contrast of two natural indirect effects1 – i.e. the contrast between the
joint natural indirect effect with respect to {L, M} and the natural indirect
effect with respect to L – in all causal diagrams in Figure 3.3, it is identified
by the sequential adjustment criterion in Figure 3.3A but not in Figure 3.3D,
because only in the former does the sequential adjustment criterion lead to
identification of these two natural indirect effects.

It thus seems that the sequential adjustment criterion falls short of giv-
ing a complete characterization of decompositions that are identified by
adjustment for a common set of covariates under semi-Markovian NPSEMs.
In other words, despite the fact that it can be considered a sufficient crite-
rion for identification of path-specific effects by means of adjustment for
a common set of covariates, it is not a necessary criterion. Moreover, it is
quite an indirect criterion for identification of path-specific effects, in that it
primarily focuses on identification of decompositions. Identification of a
certain path-specific effect of interest can thus only indirectly be assessed
by verifying whether this path-specific effect corresponds to one of the
components of an identified decomposition. Given these limitations and
the fact that empirical studies may rarely aspire to obtain the finest possi-
ble decomposition in settings with multiple sequential mediators, further
development of a complete graphical criterion for (direct) identification of
any given path-specific effect by means of adjustment for a common set of

1Alternatively, EA→M→Y also corresponds to the contrast of two natural direct effects,
i.e. the contrast between the natural direct effect with respect to L and the natural direct
effect with respect to {L, M}.
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Figure 6.1: Causal diagram which allows to exploit certain exclusion restrictions
pertaining to some of the confounders.

covariates may be warranted.

6.1.3 Beyond the adjustment criterion

Furthermore, in the light of more general – both sufficient and necessary –
conditions for non-parametric identification that were outlined in chapter 3,
identification by means of adjustment for a common set of covariates has
been criticised for being too stringent, placing serious limits on identification
power (e.g. Pearl, 2014). The question therefore naturally arises as to what
extent more general identification results can be embedded in the natural
effect modeling framework that we have presented.

In certain settings where natural effects are identified by the adjust-
ment criterion, identification can also be obtained under a weaker set of
conditions associated with an identification strategy sometimes referred
to as ‘piecemeal deconfounding’, which involves adjustment for separate
sets of baseline covariates (e.g. Pearl, 2014). For instance, since {C1, C2, C3}
satisfies the adjustment criterion for natural effects in the causal diagram in
Figure 6.1, we obtain the standard identification result

∑
c1,c2,c3,m

E(Y|A = a, M = m, C1 = c1, C2 = c2, C3 = c3)

× P(M = m|A = a, C1 = c1, C2 = c2, C3 = c3)

× P(C1 = c1, C2 = c2, C3 = c3).

However, because certain exclusion restrictions encoded in this diagram
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imply that Y ⊥⊥ C2|A, M, C1, C3 and M ⊥⊥ C3|A, C1, C2, this result can be
simplified as

∑
c1,c2,c3,m

E(Y|A = a, M = m, C1 = c1, C3 = c3)

× P(M = m|A = a, C1 = c1, C2 = c2)P(C1 = c1, C2 = c2, C3 = c3),

which corresponds to the result one would obtain via piecemeal decon-
founding (as discussed in section 3.4.2). It thus follows that modeling
demands can sometimes be significantly reduced when exploiting exclusion
restrictions encoded in a causal diagram. In this particular case, one may
refrain either from modeling the association between the outcome and C2 –
i.e. when relying on imputation-based estimation – or from modeling the
association between the mediator and C3, i.e. when relying on weighting-
based estimation. As exemplified above, most often, simplified results will
correspond to those obtained by a piecemeal deconfounding identification
approach.

Interestingly, in settings with unmeasured mediator-outcome confound-
ing, where identification of natural effects can be obtained by relying on
mediating instruments, such as in the causal diagrams in Figure 3.5A and
Figure 3.5B, the identification result can be considered to be closely related
to Pearl’s mediation formula. More specifically, since L may substitute for
the mediator of interest M in Figure 3.5A, the natural direct (indirect) effect
with respect to L and the natural direct (indirect) effect with respect to M
coincide. Not surprisingly, E{Y(a, M(a′))} is therefore identified by

∑
l

E(Y|A = a, L = l)P(L = l|A = a′).

Similarly, in Figure 3.5B, Z transmits the direct effect with respect to the
mediator of interest M, such that the natural direct (indirect) effect with
respect to M corresponds to the natural indirect (direct) effect with respect
to Z. Accordingly, E{Y(a, M(a′))} is easily shown to be identified by

∑
z

E(Y|A = a′, Z = z)P(Z = z|A = a).
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Because of their standard form, functionals based on identification by medi-
ating instruments seem, at least to some extent, to be amenable to natural
effect modeling. Further work is needed to further investigate to what
extent identification by mediating instruments can be integrated within the
natural effect models framework.

However, whenever the adjustment criterion does not enable identi-
fication, identification results cannot generally be reduced to simple and
standard expressions such as Pearl’s mediation formula or generalizations
thereof, thereby preventing a generic and elegant approach for estimation.
It can be shown that, often, such identification results involve additional
factors, expressing the need for additional working models that either lead
to more involved calculation of weights or necessitate some form of Monte
Carlo integration. For instance, although, under the NPSEM representation
of the causal diagram G in Figure 3.4, identification of natural effects can be
obtained by piecemeal deconfounding, the result (expression (3.8)) cannot
easily be translated into an imputation- or weighting-based estimator. That
is, at least not without reliance on additional working models.

6.1.4 Dealing with uncertainty about causal structure

It turns out that increased identification power in graphs with hidden
variables (relative to identification by the adjustment criterion) mostly seems
to rely on additional exclusion restrictions, either pertaining to observed
confounders or to mediating instruments (see chapter 2 and chapter 3).

The question then arises whether such exclusion restrictions on observed
variables, in some settings, may perhaps even be considered stronger as-
sumptions than the usual assumption of causal sufficiency, i.e. that of no
unmeasured common causes of any two variables in the graph. There might
indeed be reason to question the extent to which subject matter knowledge
or expert judgment may lead to impose certain exclusion restrictions. Imai
et al. (2014) recently argued that ‘in many substantive research settings,
scholars are unlikely to possess such precise knowledge about the structure
of confounding. ... In most observational research, however, researchers
measure a large number of covariates, and the exact structure between these
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covariates and unobservables is usually highly uncertain.’

Testable implications

However, as argued by the same authors, the data itself may often provide
further guidance in uncovering aspects of the causal structure. As discussed
in chapter 2, conditional independencies encoded in a graph can be consid-
ered to constitute a set of implications that can be tested from observed data,
thus enabling to partially validate a given graphical model. In other words, –
at least certain – exclusion assumptions may thus in theory be refuted. From
this perspective, one could argue that, ideally, subject matter knowledge
and expert judgment should be combined with additional information that
can be extracted from the data itself by model testing procedures and/or
causal induction algorithms.

Imai et al. (2014), however, further point to the potential limitations of
such testing procedures, which are often characterized by inflated Type I
and Type II errors due to multiple testing and small sample size, respec-
tively. Moreover, even if one were to focus on testing a limited set of crucial
exclusion restrictions in a sufficiently large dataset, the potential presence
of hidden variables may significantly reduce the number of testable im-
plications2 such that targeted exclusion restrictions may turn out te be
untestable.

Nonetheless, it has been shown that exclusion restrictions encoded in
such latent variable causal models (such as semi-Markovian models) may
impose different types of non-parametric constraints on the observed data
distribution that cannot be expressed in terms of conditional independen-
cies. These include so-called Verma constraints (Robins, 1986; Shpitser and
Pearl, 2008b; Verma and Pearl, 1991) – another type of equality constraints
that can be conceived of as conditional independencies that arise in in-
terventional distributions – and inequality constraints (Evans, 2012; Pearl,
1995b). Future research will likely be able to further assess whether and
to what extent such additional constraints can aid in uncovering aspects

2That is, since each conditional independence that involves an unmeasured variable is
logically excluded from the set of testable implications

227



Chapter 6. Discussion

6

of the causal structure in the presence of hidden variables (Shpitser et al.,
2009) in order to possibly strengthen exclusion assumptions which may be
crucial for non-parametric identification of natural effects or, more generally,
path-specific effects of interest.

In addition, two alternative strategies have been proposed for dealing
with uncertainty about causal structure when aiming to learn about causal
effects.

Non-parametric bounds

A first, non-parametric, strategy could be considered to invert the problem
by constructing empirical bounds for the causal parameter of interest, un-
der constraints that are solely imposed by the observed data distribution.
As such bounds tend to be uninformative when relaxing all identifying
assumptions – even about the direction of a potential causal effect – more
tight bounds can often be obtained by relaxing only those identifying as-
sumptions that are subject to high uncertainty and/or by relying on certain
monotonicity assumptions.

In the context of mediation analysis, sharp bounds for natural direct and
indirect effects have been derived under assumptions that can be enforced
experimentally, either by single intervention experiments that only ran-
domize treatment (Chiba and Taguri, 2013; Kaufman et al., 2009; Sjölander,
2009) – and thus ensure identification of treatment effects – or by parallel
designs that augment the single intervention with a joint intervention that
randomizes both treatment and mediator – thereby additionally eliminating
mediator-outcome confounding (Imai et al., 2013; Naimi, 2015; Robins and
Richardson, 2010). Corresponding bounds can thus be considered informa-
tive as to the importance of Pearl’s cross-world independence assumption
(Imai et al., 2013; Robins and Richardson, 2010).

Recently, bounds have also been derived under the assumption of no
unmeasured mediator-outcome confounding, accommodating confounders
to be possibly affected by treatment (Miles et al., 2015; Tchetgen Tchetgen
and Phiri, 2014). These bounding methods have proven to give quite infor-
mative results, often allowing to identify the sign of the natural effects of
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interest (at least when unmeasured mediator-outcome confounding can be
excluded).

Nonetheless, bounds have been criticised for still being too uninforma-
tive since they only consider the most extreme possible scenarios, which are
often more extreme than one would usually be willing to consider plausible
(Jiang and VanderWeele, 2015). Furthermore, their applicability is rather
limited as available bounding formulae are restricted to binary – or possibly
multicategorical (Chiba and Taguri, 2013; Miles et al., 2015) – variables.

Sensitivity analysis

A second strategy considers the extent to which certain key identifying
assumptions would need to be violated in order to considerably change
one’s conclusions. Corresponding sensitivity analysis techniques thus aim to
assess the robustness of causal claims in function of the degree of violation of
the identifying assumptions, as captured by certain sensitivity parameters.
Such strategy has been claimed to be more informative than bounds because,
as opposed to bounds, sensitivity analyses allow to consider scenarios that
reflect realistic degrees of violations of the identifying assumptions (Jiang
and VanderWeele, 2015).

Most available sensitivity analyses for mediation analysis (Albert and
Nelson, 2011; Albert and Wang, 2015; Daniel et al., 2015; Imai et al., 2010b;
Imai and Yamamoto, 2013; le Cessie, 2016; Vansteelandt and VanderWeele,
2012; VanderWeele, 2010) are, however, embedded within strictly parametric
frameworks and are therefore often limited in the number of settings in
which they can be applied (although see Ding and VanderWeele, 2016;
Hafeman, 2011; Imai et al., 2010b; Tchetgen Tchetgen and Shpitser, 2012;
VanderWeele and Chiba, 2014, for exceptions).

Unlike bounding methods, there are currently no sensitivity analysis
methods available that quantify the robustness of empirical findings against
violations of cross-world independence in isolation (Jiang and Vander-
Weele, 2015). Moreover, the lack of a generic framework for sensitivity
analysis has long prohibited its integration in the natural effect model
framework. Nonetheless, some promising recent developments, such as the

229



Chapter 6. Discussion

6

non-parametric framework of Ding and VanderWeele (2016), may pave the
way for such integration.

6.1.5 Cross-world contemplations

As pointed out in detail in chapter 3, both the cross-world nature of natural
and path-specific effects and the required cross-world assumptions for their
identification have been the subject of an ongoing debate (see e.g. Robins
and Richardson, 2010; Naimi et al., 2014a), roughly dividing the field into
NPSEM ‘skeptics’ and ‘advocates’. In chapter 3, we have tried to shed some
light on this controversy, and illustrated the important role of mediating
instruments and deterministic expanded graphs (Robins and Richardson,
2010) in elucidating and bridging this conceptual and ontological divide.

In addition, as pointed out by Petersen et al. (2006), even in the absence
of any reference to cross-world quantities or restrictions, the identification
result of the (conditional) natural direct effect (by the mediation formula)
still carries an empirically meaningful interpretation (also see Didelez et al.,
2006; Geneletti, 2007; van der Laan and Petersen, 2008). More specifically,
since, under all remaining assumptions,

∑
m
{E(Y|A = a, M = m, C)− E(Y|A = a′, M = m, C)}P(M = m|A = a′, C)

= ∑
m

E{Y(a, m)−Y(a′, m)|C}P(M(a′) = m|C),

this result can be interpreted as a standardized direct effect; that is, a weighted
average of the controlled direct effect at each possible level m of the mediator
weighted with respect to the distribution of M(a′), i.e. the counterfactual
intermediate outcome under treatment A = a′.

This interpretation has given rise to the more formal definition of so-
called randomized intervention analogs of natural effects (VanderWeele
et al., 2014), which conceive of fixing the mediator at some level that is
randomly assigned from the conditional counterfactual mediator distribu-
tion P(M(a′) = m|C) rather than at the individual counterfactual level (see
Lok, 2016; Naimi et al., 2014b, for related approaches). Importantly, because
their definitions do not employ cross-world counterfactuals, strong and
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untestable assumptions, such as cross-world independence, may be thus
avoided. Such causal quantities may therefore be of particular interest in
settings that typically suffer from issues of intermediate confounding, i.e.
settings with multiple mediators (Vansteelandt and Daniel, 2016) and/or
longitudinal measurements (Vanderweele and Tchetgen Tchetgen, 2016).
Moreover, they tend to correspond more closely to relevant policy measures
that can be estimated from actual interventions.

6.2 Flexible modeling using natural effect models

Along with direct application of Pearl’s mediation formula, the estimators
discussed in chapter 4 can be considered within Tchetgen Tchetgen and
Shpitser (2012)’s more general semi-parametric framework for mediation
analysis. In particular, Tchetgen Tchetgen and Shpitser (2012) showed that
estimation of population-averaged natural effects requires postulating a
correct statistical model for any two of the following quantities:

(i) the expected outcome Y, given mediator, treatment and a sufficient
adjustment set of baseline covariates C,

(ii) the distribution of the mediator M, given treatment and baseline
covariates C

(iii) the distribution of treatment A, given baseline covariates C.

Because of the curse of dimensionality and potential presence of continuous
variables, non-parametric modeling is typically not feasible, so one needs
to rely on possibly misspecified (semi-)parametric working models.

Whereas direct application of the mediation formula (e.g. Imai et al.,
2010a; VanderWeele and Vansteelandt, 2009, 2010) typically relies on (ad-
equate specification of) an outcome model (i) and a mediator model (ii),
weighting- and imputation-based estimators substitute a propensity score
model (iii) for either a model for the outcome (i) or for the mediator dis-
tribution (ii), respectively. In addition, when treatment is randomized3 or

3In this case, the propensity score model (iii) is known exactly.
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interest lies in conditional natural effects given C one does not require a
model for (iii), such that a correct model for either (i) or (ii) suffices.

Similar to marginal structural models offering a modeling framework
for semi-parametric imputation- and weighting-based estimators for total
causal effects, natural effect models offer such a generic and flexible frame-
work for related semi-parametric estimators in the context of mediation
analysis. Moreover, this framework enables to both circumvent potentially
computer-intensive Monte-Carlo integration methods (Imai et al., 2010a)
and simplify results and hypothesis testing because of reliance on a parsi-
monious model structure for the natural effects of interest (also see van der
Laan and Petersen, 2008).

Such parsimonious model structure may prove to be especially useful
for estimation of stratum-specific natural effects when either model (i) or
(ii) involves a non-linear link function, in which case, direct application
of the mediation formula may yield complex results, even when using
simple parametric models for (i) and (ii).4 For instance, marginalization of
a logistic regression model for the outcome with respect to the mediator
distribution only results in a logistic model – and thus simple expressions
for conditional natural effect parameters – if the mediator follows a so-
called bridge distribution (Tchetgen Tchetgen, 2014). Alternatively, simple
expressions can be obtained when the mediator is normally distributed with
constant error variance and, additionally, the outcome is rare, since odds
ratios are then known to approximate risk ratios, which are ‘collapsible’
(VanderWeele and Vansteelandt, 2010).

6.2.1 Strengths and weaknesses of the proposed estimators

Strengths and weaknesses of each of these estimators have been discussed
in detail in chapter 4. In sum, the weighting-based estimator may suffer
from weight instability in the presence of strong associations between the
mediator and either (or both) treatment or baseline covariates or when
dealing with continuous mediators. In particular, besides misspecification of

4These issues may arise for any setting that results in a non-saturated natural effect
model. In this sense, similar issues may arise for population-average natural effects for a
continuous treatment.
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the model for the mediator distribution, extreme weights may also indicate
potential violations of the positivity assumption

P(M = m|A = a, C = c) > 0, for all levels of a, m, c.

This assumption basically states that within each treatment (or exposure)
group and within each stratum defined by baseline covariates C, there is
a nonzero probability of finding subjects with any given mediator level m
along the support of the marginal mediator distribution. Although this
assumption is crucial for identification (e.g. Hong, 2010; Imai et al., 2010b),
it is often, as in this thesis, made implicitly.5

Violations of the positivity assumption due to strong exposure-mediator
or confounder-mediator associations may go unnoticed when using the
imputation-based estimator. This is because, typically, when information
about the effect of the mediator on the outcome is sparse within certain
strata defined by the exposure and covariates, this information is borrowed
across strata, resulting in potential model extrapolation. Apart from the
fact that routine analysis of the estimated weights – as part of model valida-
tion procedures for the weighting-based estimator – may signal potential
violations of the positivity assumption, it has been argued that standard
errors of the weighting-based estimator more honestly reflect extrapolation
uncertainty in general, even under weak indication of violations of the
positivity assumption (e.g. Rubin, 1997; Tan, 2007).

Another main concern with respect to the imputation-based estimator
is the potential failure of the imputation model for the outcome to reflect
the structure of the natural effect model – i.e. model uncongeniality – when-
ever the latter is not saturated. To the extent that this is justified, we have
drawn some reassurance from missing data studies on multiple imputation
which have found that uncongenial model specification in settings with
missingness not only in the outcome, but possibly also in high-dimensional
covariates, yields relatively modest bias (e.g. Van Buuren et al., 2006). To

5For population-averaged natural effect models, or natural effect models conditional
on a subset of confounders, an additional positivity assumption regarding the exposure
distribution is implicitly made, i.e. P(A = a|C = c) for all levels of a, c.
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the best of our knowledge, extensive studies on model congeniality have
not been conducted in the context of mediation analysis, perhaps with the
exception of the aforementioned work of Tchetgen Tchetgen (2014), in which
it was shown that logistic imputation regression models are collapsible over
the mediator – and hence congenial with a logistic natural effect model –
only if the mediator follows a bridge distribution (Wang and Louis, 2003).6

Even though uncongeniality may be less of a concern if the natural effect
model is considered to provide a useful summary result, remaining con-
cerns can be partially alleviated upon fitting a sufficiently rich imputation
model by means of more advanced modeling methods such as generalized
additive models or machine learning techniques. Crucially, a minimal im-
putation model should include exposure-mediator interactions in order not
to attenuate potential interactions – i.e. mediated interaction – in the natural
effect model. Nonetheless, more investigation is required to further assess
the importance of issues surronding uncongeniality and to arrive at a more
formal characterization of ‘sufficiently rich’ imputation models. Alterna-
tively, one could rely on a doubly robust estimator that yields consistent
estimates when either the imputation model (i) or both the mediator model
(ii) and the propensity score model (iii) are correctly specified (Vansteelandt
et al., 2012b).

6.2.2 Multiply robust estimators

More generally, in analogy with doubly robust estimators for total causal
effects – which require either an outcome model or propensity score model
to be adequately specified – a triply robust estimation approach has been
developed that provides consistent estimators for both population-averaged
(Tchetgen Tchetgen and Shpitser, 2012; Zheng and van der Laan, 2012) and
stratum-specific natural effects (Tchetgen Tchetgen and Shpitser, 2014) when
any two of the three aforementioned models are correctly specified.

Despite the theoretical appeal of such estimators, it has been argued
that, as opposed to the imputation- and weighting-based estimator for

6This symmetric distribution has slightly heavier tails than the standard normal distri-
bution when standardized to have unit variance. For more details, see Wang and Louis
(2003).
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natural effect models, their relative complexity may be a barrier to routine
application (Vansteelandt et al., 2012b). Nonetheless, future research might
further extend earlier attempts to integrate such multiply robust estimators
in the natural effect model framework (Vansteelandt et al., 2012b).

6.2.3 Inverse odds weighting

Importantly, Zheng and van der Laan (2012) argued that reliance on the
model for the mediator (ii) may in general be reduced in multiply robust
estimators when, in addition to models for (i), (ii) and (iii), specifying a
model for

(iv) the distribution of treatment A, given the mediator and baseline co-
variates C.

This additional model (iv) can be shown to give rise to another weighting-
based estimator that deserves further consideration, as it can be shown to
easily be incorporated in the natural effect model framework. This inverse-
odds-weighted estimator, as originally suggested by Huber (2014) (although
see Nguyen et al., 2015, 2016; Tchetgen Tchetgen, 2013, for a highly similar
estimator) relies on working models for (iii) and (iv). It can be seen to
arise naturally upon rewriting the population expectation of the ratio-of-
mediator-probability-weighted estimator for stratum-specific natural effects
by application of Bayes rule:

E{Y(a, M(a′))|C} = E
[

Y
P(M|A = a′, C)
P(M|A = a, C)

∣∣∣∣A = a, C
]

= E
[

Y
P(M, A = a′|C)P(A = a|C)
P(M, A = a|C)P(A = a′|C)

∣∣∣∣A = a, C
]

= E
[

Y
P(A = a′|M, C)P(A = a|C)
P(A = a|M, C)P(A = a′|C)

∣∣∣∣A = a, C
]

.

Similarly, for population-average natural effects, we obtain

E{Y(a, M(a′))} = E
[

YI(A = a)
P(A = a|C)

P(M|A = a′, C)
P(M|A = a, C)

]
= E

[
YI(A = a)
P(A = a|C)

P(A = a′|M, C)P(A = a|C)
P(A = a|M, C)P(A = a′|C)

]
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= E
[

YI(A = a)
P(A = a′|C)

P(A = a′|M, C)
P(A = a|M, C)

]
.

This weighting-based estimator may offer a promising alternative to both
the imputation-based estimator and the ratio-of-mediator-probability-weighted
estimator, as in many settings, it may combine the strength of both estima-
tors. As the latter estimator, it circumvents certain incongeniality issues
since it does not rely on a model for the outcome. However, unless treat-
ment is randomized, issues of uncongeniality may still arise between the
two working models for the probability of treatment. Moreover, it may
lessen modeling demands and provide more stable weights than the other
weighting-based estimator, especially when dealing with binary or multicat-
egorical treatments. Furthermore, it may be the preferred estimator when
interest lies in joint mediated effects along multiple mediators because,
similar to the imputation-based estimator, it avoids reliance on a model
for the joint mediator density (Nguyen et al., 2015). Given the strengths of
this estimator, its implementation would be of added value to our medflex

package.

6.2.4 Multiple sequential mediators

The practical appeal of natural effect models becomes even more apparent in
settings with multiple mediators, in which researchers may aim to obtain a
more fine-grained decomposition of the total causal effect into path-specific
effects, as discussed in chapter 5.

In chapter 5, we have focused on an estimator that relies on a model
for the outcome and a model for the distribution of either of two media-
tors, thereby combining the imputation- and weighting-based estimator of
chapter 4. In practice, however, even in settings with only two sequential
mediators M1 and M2, multiple combinations or subsets of working models
are possible in order to construct estimators for the three component effects.

For instance, Lange et al. (2014)’s weighting-based approach for causally
unrelated mediators, which requires a model for the distribution of each of
the involved mediators, could easily be modified in order to also accommo-
date for sequential mediators. Instead of calculating weights based on the
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joint mediator distribution

P(M1|A = a, C)P(M2|A = a, M1, C)
P(M1|A = a, C)P(M2|A = a, M1, C)

,

a weighting-based approach could alternatively rely on inverse odds weights

=
P(A = a|C)P(A = a′|M1, C)P(A = a′′|M1, M2, C)
P(A = a′|C)P(A = a′′|M1, C)P(A = a|M1, M2, C)

,

which requires three different models for the treatment distribution. In
general, if one aims to obtain the most fine-grained decomposition7 that can
be non-parametrically recovered in the presence of k sequential mediators –
i.e. a (k + 1)-way decomposition – the number of nuisance working models
that can be combined to construct estimators for the component effects
can be shown to equal 2k + 2. However, a general theory for multiply
robust estimators in settings with multiple sequential mediators is currently
lacking.

In one of the next releases of the medflex package, we hope to provide
additional functionalities for conducting mediation analyses with multiple
sequential mediators, as discussed in chapter 5.

6.2.5 Finite sample performance

Although finite sample performance of the weighting- and imputation-
based estimators from chapter 4 has been studied by Vansteelandt et al.
(2012b), so far no studies have further compared finite-sample properties of
the inverse-odds-weighted estimator or related estimators for component
effects in settings with multiple sequential mediators; that is, at least not
within the realm of natural effect models (although see Huber et al., 2016,
for a very recent and detailed comparison of estimators outside the realm
of natural effect models).

7It can be argued, however, that, in settings with k multiple sequential mediators, one
may rarely be interested in the finest possible (k+ 1)-way decomposition. Alternatively one
may decide which coarser decomposition would be of most interest, and adopt identifying
criteria and estimation accordingly.
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6.2.6 Measures of precision

A general bootstrap approach can be applied to obtain standard errors or
confidence intervals for any of the natural effect model parameters. More-
over, inference can be based on the bootstrap variance-covariance matrix of
the natural effect model. Since the bootstrap can be computationally inten-
sive, we have additionally derived robust sandwich estimators in chapter 4.
Although derivations may become more involved in the presence of ad-
ditional nuisance working models, similar sandwich estimators could be
constructed for the variance of natural effect model parameter estimates
in settings with sequential mediators, such as those obtained by weighted
imputation, as discussed in chapter 5.

6.3 Further challenges

6.3.1 Mediation analysis with time-to-event outcomes

Although, in this thesis, we have only considered a class of generalized
linear natural effect models, our proposed framework has already proven
useful for mediation analysis in a survival context. However, suggested
approaches for natural effect modeling of time-to-event outcomes have
hitherto only focused on a weighting-based estimator that requires a correct
model for the mediator distribution (Lange et al., 2012, 2014).

Ongoing research therefore aims to extend this work by additionally
incorporating imputation-based and inverse-odds-weighted estimators (see
Tchetgen Tchetgen, 2013; Nguyen et al., 2015, 2016, for applications of this
estimator in a survival context). It merits attention that these different
estimators may have different implications when it comes to dealing with
censoring. That is, using an imputation-based estimator, censoring can be
naturally dealt with via the imputation model, given that one can assume
censoring to be non-informative conditional on treatment, mediator(s) and
baseline covariates C (and possibly additional covariates associated with
both censoring and outcome). More specifically, under this assumption,
censored survival times can simply be predicted based on the imputation
model, in order to eliminate potential selection bias. The weighting-based
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estimators, on the other hand, require additional modeling of the censoring
mechanism in order to construct inverse-probability-of-censoring weights
to tackle potential selection bias via the mediator.

6.3.2 Mediation analysis with longitudinal measurements and latent
constructs

It is known that questions of mediation pose additional challenges in longi-
tudinal studies because the inherent time-varying nature of mediators and
confounders (and possibly treatment) adds to the level of complexity. Apart
from some notable exceptions (Bind et al., 2015; van der Laan and Petersen,
2008; VanderWeele, 2009; Vanderweele and Tchetgen Tchetgen, 2014), few
studies have attempted to approach longitudinal mediation analysis from
a formal perspective, such as the counterfactual framework, which gives
clear definitions of target estimands and enables articulating sufficient iden-
tifying assumptions. When it comes to identifiability, it merits attention that
Shpitser (2013)’s recanting district criterion may be a very helpful guide in
assessing which potential pathways of interest may or may not be identi-
fiable from the data at hand (under NPSEMs), possibly in the presence of
unmeasured confounding between, for instance, repeated measurements of
the same mediator.

Because intermediate confounding may be even more difficult to rule
out in longitudinal studies than in point treatment studies, Vanderweele
and Tchetgen Tchetgen (2016) have suggested switching focus to random-
ized intervention analogs of natural effects, since these estimands require
weaker assumption – i.e. they do not demand the absence of intermediate
confounding – while at the same time allowing meaningful interpretations.

Related, and perhaps more challenging complications arise in the field
of psychology, where interest often lies in mediators or outcomes that are
psychological constructs, such as attitudes or emotional distress (in chap-
ter 4), which are only indirectly observable via certain indicator variables
that are subject to measurement error. The (parametric) structural equation
modeling tradition naturally deals with this by incorporating a measure-
ment model for the latent construct(s). However, this topic has only recently
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been subjected to formal analysis within the counterfactual framework (e.g.
Albert et al., 2016; Loeys et al., 2014; Muthén and Asparouhov, 2015) (also
see earlier, related work on measurement error in a mediation context, e.g.
le Cessie et al., 2012; VanderWeele et al., 2012).

The modeling approaches discussed in this thesis may – at least to some
extent – provide an ad-hoc answer to both of these challenges, insofar that
simultaneously considering all repeated measurements of the same medi-
ator – or all indicators of a latent variable – as a joint mediator enables to
decompose total effects into a natural direct and a natural indirect effect
with respect to this joint mediator. Indeed, the advantage of such an ap-
proach is that, in the likely presence of unmeasured confounding between
multiple measurements of the same mediator, simply treating them as a joint
mediator may render identifying assumptions of the corresponding compo-
nent effects more plausible. Nonetheless, more fundamental solutions are
needed.
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Chapter 7

Samenvatting

Naast het opsporen van oorzakelijke verbanden, poogt men via empirisch
onderzoek vaak tot meer diepgaand wetenschappelijk inzicht te komen
door zich verder toe te spitsen op mogelijke onderliggende processen die
dergelijke oorzaak-gevolg relaties kunnen verklaren. Hiertoe tracht men
via statistische mediatie-analyse na te gaan in welke mate het effect van
een bepaalde blootstelling of behandeling (zoals bv. psychotherapie) op
een bepaalde uitkomst (bv. depressieve symptomen) is toe te schrijven
aan de invloed van vermoedelijke tussenliggende of mediërende factoren
(bv. verandering in attitudes) enerzijds, en/of aan niet nader omschreven
alternatieve processen anderzijds. Stel dat men de onderliggende processen
van een oorzakelijk effect beschouwt als een verzameling van verschillende
mogelijke causale paden in een oorzaak-gevolg ketting. Het doel van mediatie-
analyse bestaat er dan in om inzicht te verschaffen in hoe dit effect precies tot
stand komt, meer bepaald door onrechtstreekse of indirecte paden via één
of meerdere vermoedelijke mediatoren te kwantificeren en te onderschei-
den van alle andere mogelijke paden, welke gemakshalve samengebracht
worden onder de noemer van een direct effect.

Dankzij de ontwikkeling van een formele benadering binnen de causale
inferentie literatuur, zijn er de laatste decennia enorme theoretische en
methodologische bijdrages geleverd op het vlak van mediatie-analyse. In
tegenstelling tot traditionele benaderingen, is deze benadering erin geslaagd
om (i) welomlijnde, interpreteerbare definities van directe en indirecte ef-
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fecten voort te brengen en (ii) de nodige – vaak onuitgesproken en mogelijk
zwak onderbouwde – veronderstellingen waarop conclusies uit mediatie-
analyses gefundeerd zijn, duidelijk in kaart te brengen en te onderwerpen
aan kritische evaluatie.

De aannemelijkheid van dergelijke assumpties hangt veelal af van de
mate waarin bijkomende cruciale variabelen, zoals mogelijke gemeenschap-
pelijke oorzaken of confounders van de blootstelling (of behandeling) en de
uitkomst (bv. de mate waarin men op eigen initiatief in therapie gaat), in
rekening gebracht worden in de uiteindelijke statistische analyse. Om een
onvertekende schatting van zogenaamde natuurlijke directe en indirecte
effecten (Robins and Greenland, 1992; Pearl, 2001) te bekomen via mediatie-
analyse dient men traditioneel niet enkel mogelijke confounders van de
blootstelling en uitkomst in rekening te brengen, maar eveneens deze van
de blootstelling en de vermoedelijke mediator, en deze van de mediator en
de uitkomst (VanderWeele and Vansteelandt, 2009).

Bovendien bevat geobserveerde data geen informatie omtrent natuur-
lijke directe en indirect effecten indien confounders van de mediator en
uitkomst zelf zijn beı̈nvloed door de blootstelling (VanderWeele and Vanstee-
landt, 2009). Gezien het feit dat dergelijke confounders tegelijk fungeren als
mediator, zou statistische controle voor deze confounders immers deel van
het beoogde natuurlijk indirect effect wegcijferen in de uiteindelijke schat-
ting. Mediatie-analyse met meerdere mediatoren brengt op deze manier
bijkomende uitdagingen met zich mee, welke in het verleden vaak onder-
belicht zijn gebleven door een aantal vereenvoudigende, maar vaak zwak
onderbouwde assumpties (zoals bijvoorbeeld de assumptie dat mediators
elkaar niet onderling beı̈nvloeden of de assumpties van lineariteit en/of
effect homogeniteit).

Voorts brengt mediatie-analyse ook een aantal uitdagingen met zich
mee wat betreft statistisch modelleren. Confounders waarvoor statistische
controle vereist is, zijn immers vaak hoog-dimensioneel en bestaan niet
zelden uit een mix van discrete en continue variabelen. De resulterende
vloek van dimensionaliteit die hiermee gepaard gaat, impliceert dat men,
gezien de schaarscheid van data, bij het statistisch modelleren genoodzaakt
is te vertrouwen op vereenvoudigende modelassumpties (voornamelijk
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parametrische assumpties). Het risico op incorrecte modelassumpties, en
dus op vertekende effectschattingen en conclusies, vergroot echter naarmate
meer mediatoren en confounders in rekening worden genomen. Hoewel
dit probleem niet uniek is voor mediatie-analyse, staat de ontwikkeling
van semi-parametrische methoden, die het mogelijk maken om bepaalde
modelassumpties te vermijden, nog in zijn kinderschoenen op het vlak van
mediatie-analyse (Tchetgen Tchetgen and Shpitser, 2012, 2014; Zheng and
van der Laan, 2012).

In het eerste luik van dit proefschrift trachten we een toegankelijk
en volledig overzicht te bieden van minimale causale assumpties voor
mediatie-analyse.

In hoofdstuk 2 bespreken we eerst de theoretische achtergrond omtrent
grafische modellen en gaan we dieper in op recent ontwikkelde grafische
algoritmes uit de artificiële intelligentie literatuur (Huang and Valtorta,
2006; Shpitser and Pearl, 2006a,b, 2008a; Tian and Pearl, 2002, 2003). Het
belang van deze algoritmes is dat ze een volledige beschrijving geven van
grafische modellen waaronder causale effecten geidentificeerd zijn op basis
van geobserveerde data en op deze manier dus zowel noodzakelijke als
voldoende voorwaarden omlijnen voor non-parametrische identificatie. Deze
algoritmes laten onder andere toe om, onder bepaalde assumpties, tot een
onvertekende schatting te komen van causale effecten, zelfs indien men er
niet in slaagt om alle confounders in kaart te brengen.

In hoofdstuk 3 brengen we de lezer meer inzicht in de aard van causale
assumpties waarop mediatie-analyse berust (Robins and Richardson, 2010).
Aan de hand van een aantal uitgewerkte voorbeelden kaderen we de vooraf-
gaande literatuur rond voldoende voorwaarden voor non-parametrische
identificatie (Pearl, 2001) binnen de algemeenheid van een recent voorgesteld
(voldoende en noodzakelijk) grafisch algoritme (Shpitser, 2013) dat voort-
bouwt op de inzichten en algoritmes uit hoofdstuk 2. In dit hoofdstuk
leveren we ook een belangrijke bijdrage aan de huidige literatuur door stil
te staan bij de specifieke implicaties van de algemeenheid van dit algoritme.
Hierbij duiden we op nieuwe identificatie-strategieën die toelaten om on-
vertekende schattingen te bekomen van natuurlijke directe en indirecte (en
meer algemeen gedefinieerde pad-specifieke) effecten onder ongemeten
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confounding van mediator en uitkomst.
In het tweede luik bieden we praktische oplossingen voor het schat-

ten van pad-specifieke effecten met behulp van flexibele statistische mod-
ellen – zogenaamde natural effect models (Lange et al., 2012; Loeys et al.,
2013; Vansteelandt et al., 2012a) – en semi-parametrische methoden. De
flexibiliteit van dergelijke modellen laat ons niet enkel toe om bepaalde
parametrische modelassumpties te vermijden, maar ook om de interpre-
teerbaarheid van resultaten te verbeteren en het toetsen van hypotheses te
vereenvoudigen.

In hoofdstuk 4 bespreken we medflex, een open-source software pakket
in de statistische programmeertaal R, dat we zelf hebben ontwikkeld om
deze recente flexibele mediatie-analyse technieken toegankelijker te maken
voor een breder toegepast publiek (Steen et al., 2016b). In dit hoofdstuk
geven we een uitgebreid overzicht van de mogelijkheden van dit software
pakket aan de hand van een uitgewerkte voorbeeldanalyse, en bespreken
we ook de voordelen ten op zichte van alternatieve software voor mediatie-
analyse.

In hoofdstuk 5 breiden we dit flexibel modelleerkader uit om praktische
oplossingen te bieden voor mediatie-analyse in meer complexe toepassingen
waarbij men pad-specifieke effecten via meerdere mediatoren wenst te ont-
warren (Steen et al., 2016a). We tonen aan dat deze methode onderzoekers
beter in staat stelt mogelijke interacties tussen verschillende mechanismen
in kaart te brengen dan bestaande analytische methodes (VanderWeele and
Vansteelandt, 2013) en bovendien het risico op incorrecte modelassumpties
reduceert ten opzichte van volledig parametrische alternatieven (Daniel
et al., 2015).

In hoofdstuk 6, ten slotte, kaderen we de voorgaande hoofdstukken bin-
nen recente ontwikkelingen in de mediatie-analyse literatuur, belichten we
de voor- en nadelen van de voorgestelde modelleringsaanpak en bespreken
we uitdagingen voor toekomstig onderzoek.
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