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Nomenclature

β Deadrise angle in [radians]

βdeg Deadrise angle in [degrees]

ε Thrust line angle with respect to the keel line (positive upwards) in [radians]

η3, η5 Displacement in heave and pitch respectively from the inertial coordinate xb, zb

λ0 λW at the static equilibrium position

λW Mean wetted length to beam ratio, 0.5(LK + LC)/B

<(σ)max Maximum real part of the eigenvalues of a matrix K as in ẋ = Kx, unit in [1/s]

ρ Water density in [kg/m3]

τ Trim angle of planing area in [radians]

τdeg Trim angle of planing area in [degrees]

ξ3, ξ5 Displacement in heave and pitch respectively from the inertial coordinate xa, za

a Distance between CG and Rv (positive when pitch-down moment results) in [m]

a33 Two-dimensional added mass of a wedge plunging into water in [kg/m]

Aij Hydrodynamic added mass/moment of inertia in the direction of i due to the motion

in the direction of j

AHR Average hull roughness in [µm]

B Beam length (i.e. width) of a float in [m]

Bij Hydrodynamic damping coefficient in the direction of i due to the motion in the

direction of j

c Pitching moment arm of hydrodynamic resultant pressure force N with respect to CG

(positive when pitch-down moment results), lcg − lp
CF Friction coefficient

cf,b Damping coefficients in the flexible support (front and back) in [N s/m]

Cij Hydrodynamic restoring force/moment coefficient in the direction of i due to the

motion in the direction of j

CL0 Lift coefficient for zero deadrise angle (β = 0 [rad.])

CLβ Lift coefficient

d Draft in [m]

f Thrust line distance from CG (positive when pitch-up moment results) in [m]

FL0 Lift force for zero deadrise angle (β = 0 [rad.])

FLβ Lift force

FnB Froude number based on the beam length defined as U/
√
gB, where g is gravitational

acceleration

IA Pitching mass moment of inertia of the aircraft without the floats for the flexible-

support model in [kg m2]
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IB Pitching mass moment of inertia of the floats for the flexible-support model in [kg m2]

I55 Pitching mass moment of inertia of rigidly supported seaplane/model in [kg m2]

kf,b Spring constants in the flexible support (front and back) in [N/m]

LC Wetted chine length measured from the step in [m]

LK Wetted keel length measured from the step in [m]

lp Distance measured along the keel from the step to the center of hydrodynamic pressure

in [m]

lAf ,Ab Attachment locations of flexible supports on the aircraft relative to center of gravity

of the aircraft in [m]

lBf ,Bb Attachment locations of flexible supports on the floats relative to center of gravity of

the floats in [m]

lcg Longitudinal distance of center of gravity along the keel line measured from the step

or transom in [m]

M Mass of the aircraft for the rigid body model in [kg]

mA Mass of the aircraft for the flexible-support model in [kg]

mB Mass of the float for the flexible-support model in [kg]

N Resultant hydrodynamic pressure force acting on the planing surface in [N ]

Nf Number simulation function calls

Ns Number of simulation function calls that satisfied the stability criteria

Rn Reynolds number ULK/ν, where ν is the kinematic viscocity of water

Rv Frictional force acting on the planing hull assumed to act parallel to keel line in [N ]

T Thrust force in [N ]

t Time in [s]

U Planing speed in [m/s]

V Vertical velocity with which the hull impacts the water surface, U tan τ

vcg Vertical distance of CG from the keel line in [m]

xa, za Inertial coordinate moving with the aircraft’s CG’s equilibrium position without floats,

xa pointing horizontally to the stern, za pointing vertically upward

xb, zb Inertial coordinate moving with the aircraft’s CG’s equilibrium position when the

supports are rigid and moving along the floats’ CG’s equilibrium position when the

supports are flexible, xb pointing horizontally to the stern, zb pointing vertically up-

ward

zmax Height above the undisturbed water surface where the maximum pressure on the

V-shaped hull happens due to its impact to the water
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I. Introduction

S
eaplanes and their amphibian versions have been largely a neglected type of aircraft in

recent aviation except for very specific missions and in limited geographic regions. This is

due to higher maintenance costs, less payload, and lower operational reliability (high waves

are an additional weather hazard) compared to land based aircraft. However, recent tech-

nological advances in materials and computational capabilities along with macro-economic

and ecological considerations may render this type of aircraft interesting. Point-to-point

operation in coastal area could alleviate traffic congestion in urban airports and make re-

mote islands more accessible. This in turn should help more balanced economic growth and

better emergency services in smaller cities and rural areas. This paper addresses one of the

drawbacks of seaplanes called porpoising which is a dynamic instability in planing seaplanes

and high-speed boats.1

Porpoising is a coupled oscillatory motion between heaving and pitching that can man-

ifest when seaplanes are travelling on water at planing speed (Figure 1). This motion may

become unstable and can pose significant risk to the safe operation of waterborne aircraft.

Traditionally, the rules of thumb in designing of hulls and physical experiments2–5 (com-

bined with pilot training6,7) have been the methods of mitigating the risk. However, the

phenomenon is poorly understood and sufficient parametric studies applicable to seaplanes

have not appeared in the literature. Current research aims to fill this gap. The objective is

to effectively mitigate or eliminate porpoising by design.

Towing tank experiments8 showed that the moving center of gravity aft, or employing

flexible supports (between the aircraft and the floats) comparable to those of a car could

improve the stability of the planing craft (Figure 2). To understand these observations,

Linear-Time-Invariant models were constructed and the stability of oscillatory motions was

studied. The numerical models were coherent with the experiments and two major design

question were answered, namely 1) the appropriate direction to move the center of gravity

when porpoising is a problem,9 2) whether flexible supports suppress porpoising globally or

under certain conditions.

In the literature, most of the work investigating longitudinal stability of planing seaplanes

is experimental. A large portion of them was conducted before the prevalence of fast personal

computers (i.e., before the ’70s). Parametric investigation of porpoising behavior based on

numerical simulations and investigation of flexible supports for mitigation of porpoising are

two contributions of this work.
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Figure 1: Schematic of porpoising

Figure 2: An implementation of the Flexible Support System in an Ultra Light Plane

II. Methods

The first step in this study was to numerically recreate at least qualitatively the obser-

vation made in the towing tank experiments. Particularly, the objective here is to confirm

that the inception of porpoising occurs at approximately 5 m/s of towing speed with the

original CG location, and that by moving the CG aft stabilizes the towed model. Then,

observe numerically that the flexible support “stabilizes” the towed model. The second step

was to explore different designs by varying parameters in the numerical model. The towed

model consisted of a pair of floats in catamaran configuration and a frame on top of it (Fig-

ure 3). The frame has adjustable weights to roughly simulate the inertia characteristics of

the aircraft that the float was designed for, which is a 1/3 scale Piper Cub. By changing the

location of weights, one can also move the location of the CG backward or forward. In the

following, the numerical model of the conventional rigid case and then the flexibly supported
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case are described.

Figure 3: Experiment with the flexible support at the towing tank of Yokohama National
University

For the numerical analysis, the catamaran configuration was replaced by a mono-hull

representation of prismatic hull as shown in Figure 4. The transom location in this figure

corresponds to the step location in the actual float. The afterbody of the float is neglected

in the modelling and so is the curved front portion of the forebody of the float. The dynamic

stability was computed using small perturbation analysis as presented in Faltinsen.10 The

coordinate systems employed are shown in Figure 6. For the rigidly supported case, the iner-

tial coordinate system xb, zb was set to move along with the towed craft, its origin coincides

with the equilibrium position of the craft’s center of gravity. The x axes point to the stern

of the craft. For the flexibly supported case, separate inertial coordinate systems that move

along the craft were employed for above the support xa, za and the float xb, zb. These are an

approximate way to represent the dynamics (for the frame has surge component of motion

that are neglected) but were done in order to facilitate the analysis. The linear system of

equation for the rigidly supported case is equation (1), and for the flexibly supported case,

equation (2). Added mass Aij, damping force coefficient Bij, and the restoring force coef-

ficient Cij were formulated according to chapter 8 and 9 of Faltinsen’s book.10 A cursory

description of how Aij, Bij, and Cij are computed is given in the appendix. The numbers

in subscripts i, j ∈ {3, 5} denote heaving 3 and pitching 5 respectively. The first subscript

i refers to the resulting force or moment direction and the second subscript j refers to the

motion causing the force or moment. For example, C35 refers to the heaving force coefficient

due to pitching motion. One can also find relevant information on the hydrodynamic forces

for planing crafts in.9,11–13

The flexibly supported case contains additional parameters on the characteristics of the

support, namely the spring constants kf , kb and the damping coefficients cf , cb. The sub-

scripts denote their locations: f for front and b for back. Likewise, the attachment locations
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Figure 4: Diagram of planing hull cut-out.

relative to center of gravity are denoted lAf , lAb for the front and back attachment point on

the aircraft side respectively, and lBf , lBb on the float side. These parameters are visualized

in Figure 5. We have kept the attachment points fixed and varied the spring constants and

damping coefficients in our numerical simulations.

In the rigidly supported case, we also used Self-Organizing Map Based Adaptive Sampling

(SOMBAS)14,15 to search for stable designs. SOMBAS is suitable for the task of searching

for multiple and diverse solutions satisfying certain objective conditions. We searched for

designs with negative values in maximum real part of the eigenvalues. For the two-design-

variable case, we use the longitudinal distance of CG along the keel line lcg measured from

the step or transom, and vertical distance of CG from the keel line vcg. For the seven-design-

variable case, we use the beam length B, the deadrise angle βdeg, the pitching moment of

inertia I55, the thrust line distance f from CG (positive when pitch-up moment results) and

the thrust line angle with respect to the keel line (positive upwards) ε. Figure 4 shows a

diagram describing the design variables except the inertial variable I55.
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III. Results

Figure 7 - Figure 9 and Figure 14 - Figure 15 are for the rigidly supported case and Fig-

ure 10 - Figure 13 are for the flexibly supported case. Nominal conditions for the calculation

are as following unless otherwise specified: the planing speed U = 6.0 [m/s], the mass of

craft for the rigid case M = 16.18 [kg] and for the flexible case mA = 10.79 [kg] (aircraft),

mB = 5.39 [kg] (float), the beam length B = 0.2 [m], the moment of inertia for the rigid case

I55 = 5.981 [kg m2], for the flexible case IA = 4.351 [kg m2] (aircraft), IB = 1.630 [kg m2]

(float), the length along the keel from step to center of gravity lcg = 0.104 [m], the distance

of CG from the keel vcg = 0.453 [m], and the moment arm length from CG to the supports

(Figure 5) are lAf = lAb = lBf = lBb = 0.2 [m]. Froude number is defined based on the beam

length FnB = U/
√
gB. The beam length B and lcg are not reported in Hirakawa’s paper8 and

their values are educated guesses. In the simulation, we use the half body representation.

That means we half the mass and moment of inertia in the calculations, and model as a

mono-hull float plane.

For plots with vertical axis showing the maximum eigenvalue <(σ)max of the linear system,

any positive value of the real part of the eigenvalue signifies divergence of the oscillation mode

and therefore is unstable. The eigenvalues are calculated from the matrix obtained in the

following way. K = M−1(−R), where Mẋ+Rx = 0 and x is the state vector, where M and

R represent the matrices in equation (1) and equation (2).

Figure 7 confirms that moving the CG backwards towards the step helps the craft to

remain stable until a higher velocity. The figure shows the maximum real part of the eigen-

values <(σ)max

√
B/g with respect to Froude number FnB . We kept the beam length B

constant. Thus, Froude number is essentially a non-dimensionalized speed. In the towing

tank experiment, divergence (porpoising) occurred at about U = 5.0 [m/s]8 (FnB = 3.57)

with the nominal lcg/B location of 5.2. Figure 7 shows that, in the numerical simulation,

planing craft with lcg/B = 0.50 turns unstable at just under FnB = 5.0 and with lcg/B = 0.65,

just under FnB = 3.5. Note that in the physical dimensions, the two lcg values differ only

by 0.03 [m] (or 1.95% of the float length of 1.54 [m]8) and the speed limit for stable planing

changed by 2.10 [m/s] (or 42.8% difference). Thus, the planing speed U at which the craft

turns unstable is very sensitive to the CG location. Considering the fact that values for B

and lcg are only approximately known, the numerical results are very reasonable in light of

the experimental evidence.

The trim angles τ corresponding to the two lcg values with respect to FnB are shown

in Figure 8. The trim angles are found by driving the moment equation to have near zero

residue moment. This is done using Brent’s method [16, Ch.3-4] implemented in Scipy

optimize module of the Python programming language. One can let the solutions to have
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small residues so that the trim angles found can be used as a small perturbation in the

subsequent eigenvalue computations.

Figure 9 indicates that the desirable direction of moving the CG ,i.e. forward or backward,

to stabilize an unstable planing condition depends on the current value of lcg. There is a band

of lcg values at which a non-decaying oscillation manifests with positive <(σ)max

√
B/g. This

band of instability increases in width as FnB increases from 2.86 to 5.71 as seen in Figure 9a

to Figure 9c. The contour plots show that the sensitivity of the stability to changes in vcg

is not as marked as changes in lcg. A small portion of the design space near the transom or

very small value of lcg generates stable designs, and most float planes have this configuration

to facilitate the pitch up at the moment of take off. This means that to make the planing

stable, it is a good idea to shift the CG aft. However, once airborne, it is better to have CG

forward to have enough “static margin” for a stable flight.

Figure 10 checks whether the two simulation codes, one for the rigid-body case and the

other for the flexibly supported case, agree if the flexible support’s spring were extremely

stiff. The plot shows <(σ)max

√
B/g with respect to FnB . The two lines agree very well.

Figure 11 - Figure 13 show the effectiveness of the flexible support in mitigating unstable

oscillations. However, as can be noted from the sharp rise in the real part of eigenvalues at

high Froude numbers, it is not a globally stabilizing solution. Inadequate damping in the

flexible supports can worsen the stability of the seaplane compared with the conventional

rigidly supported ones as seen in Figure 11a or in Figure 11b. This suggests that the damper

should be designed carefully in such a way that no divergent oscillation modes occur in the

planing speeds of the aircraft. Figure 12 shows that if only one of either front or back support

is made flexible, it is the back support that is effective in mitigating instabilities. Similarly,

if damping is applied to either the front or the back support (that are both flexible), it is

the damping of the back support that is more effective (Figure 13). These results show some

similarity with the flutter stability phenomena in Aeroelasticity, in which the elastic axis

location of the wing affects the divergence speed.

Figure 14 shows a contour plot of <(σ)max

√
B/g with respect to lcg and vcg along with

sampled points by SOMBAS in two-design-variable case. SOMBAS was set to search feasible

designs requiring <(σ)max < 0. The sampled points that satisfies that condition are shown

along with the final location of the training samples for Self-Organizing Map (SOM). The

distribution of the training samples indicates the finite sample representation of the feasible

region around which further sampling in the subsequent iterations are expected produce

further space filling effect of the feasible design space, i.e. further stable designs. In this

trivial case (because we already have the contour plot), we see that SOMBAS sampled

diverse combinations of lcg and vcg filling out the stable domain. This feasible region search

capability is useful when the design space is in higher dimensions (many design variables)
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and full-factorial design (or grid sampling) becomes too expensive.

Figure 15a shows the scatter plot matrix of the seven design variable case. Nf is the

number of designs (experiments) computed by SOMBAS and Ns is the number designs that

satisfy the condition, i.e., <(σ)max < 0. The lower triangular cells show the absolute values

of correlation coefficients. Again, it clearly shows the unstable “band” for lcg at the top row

of the scatter plot matrix. Other parameter does not show clear unfeasible regions. Further

restriction was applied by setting <(σ)max < −0.3 and the results are shown in Figure 15b.

It shows some new trends. For example, vcg tends to lower value as the eigenvalue becomes

more negative. On the other hand the beam length B tends to larger value as the eigenvalue

becomes more negative. The lcg concentrates between 0.6 and 1.1, and vcg tends to low

values as lcg becomes longer.

Figure 5: Schematic of a float plane with the flexible support

Figure 6: Coordinate system for the Small Perturbation Method
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Figure 7: Porpoising mitigation by moving the CG aft.
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√
B/g < 0 are stable designs.
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Figure 12: Comparison of longitudinal stability between the rigidly supported case and the
flexibly supported case. Spring applied only to the front kf or to the back kb, with no
damping applied
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Figure 13: Comparison of longitudinal stability between the rigidly supported case and the
flexibly supported case. Fixed spring constant kf,b = 2117[N/m], with damping of 80 [N s/m]
applied to either the front or the back support
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IV. Discussions

It is desirable to conduct further experiments to improve the quality of the model by

calibration and further numerical model refinement. The hull geometry and the flexible-

support model employed in this research were very simple. Inclusion of the afterbody of the

float (the portion after the step) may create another planing surface at larger pitch angles,

and this may create another instability. Further sophistication in the flexible-support model,

including their control may render further insights and new opportunities.

In the current study, the CG location (lcg and vcg) and the pitching moment of inertia

(I55,IA,B) were treated independently. However, in reality, they are not. If you change the

CG location, so do the moments of inertia. Thus, care must be taken to interpret the results

in this paper where both variables are treated independently.

In this paper the aerodynamic effects were not considered. However, seaplanes receive

substantial lift force at planing speeds and the elevator provides a means to control the pitch

angle. Thus the aerodynamics may have a substantial effect on the planing characteristics of

a seaplane. The inclusion of the aerodynamic effects will be the next step in the development

of the numerical simulation of the planing seaplanes.

Active and semi active control of the flexible support17 can be considered to obtain a

desired dynamics in both waveless and wavy conditions. For example Skyhook methods in

which damping is controlled to emulate the dynamics of bodies whose damper is attached

to an imaginary inertial frame (hence Skyhook) could be employed. This may be effective

in eliminating porpoising as well as improving operational reliability in wavy conditions. Of

course, it comes at the cost of added weight and complexities.

Once validated, the parametric models (flexible or rigid) equip us with the means to

conduct various trade-off studies concerning porpoising at early design stages. These should
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Figure 15: Scatter Matrix showing distribution of feasible designs at FnB = 4.28

provide more informed design decisions than the rules of thumbs hitherto available. With

the inclusion of aerodynamic forces, they will be useful in assessing the sizing, location

and incidence angles of the lifting surfaces with respect to planing hulls, and whether the

flexible support would be needed. Eventually, a new set of design standards could be drawn

concerning longitudinal stability of waterborne seaplanes including the design of the flexible

support.

V. Conclusion

The numerical analysis of the Linear-Time-Invariant model revealed useful information

to the questions posed. The computation shows that whether one should move the center of

gravity backward or forward will depend on the position of center of gravity with respect to

the step of the planing hull. If a flexible support is employed one may postpone the inception

of porpoising to a much higher Froude number. The simulation results indicate that damping

coefficients in the flexible supports play an important role and the range of planing speed

will determine their values. The damping in the hind support was more effective than

the damping in the front support. These numerical results can be used to conduct more

dedicated physical experiments to quantitatively assess the numerical models and confirm

physical phenomena. Furthermore, aerodynamic effects must be taken into account. These
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will constitute the future work of this study along with the parametric optimization of the

system.
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Appendix

A. Ovreview of Hydrodynamic Calculations

The computation of stability takes two steps. First, the equilibrium or the trim position

needs to be found given the planing speed. Second, the small perturbation analysis is

performed about the equilibrium position by looking at the increment in force and moment

with respect change in state vector variables. As in Flight Dynamics, the stability derivatives

need to be obtained about this equilibrium point. We will follow closely the procedure given

in Falinsen.10 A big part of the following is due to Savitsky18 and Wagner.19

Trim Determination

For trim determination, the following equilibria hold. Vertical forces,

Mg = N cos τ + T sin(τ + ε)−Rv sin τ. (3)

Horizontal forces,

T cos(τ + ε) = Rv cos τ +N sin τ. (4)

Pitching moments,

Nc+Rva− Tf = 0. (5)
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The N represents the resultant hydrodynamic pressure force (represented to be acting

at a point along and perpendicular to the keel line in the vertical xz plane). The T is the

thrust force from the power plant. These two forces can be expressed with respect to τ , and

Rv using the equations (3) and (4) (ε is given by the design). The Rv is the frictional force

exerted on the planning surface. Then these can be plugged into the moment force equation

(5) to obtain an equation of a, c, τ , and Rv (f is given by the design),

c

cos τ

(
Mg − Mg sin τ +Rv

cos ε
sin(τ + ε) +Rv sin τ

)
+Rva−

Mg sin τ +Rv

cos ε
f = 0. (6)

The frictional force is given by

Rv =
1

2
ρCFS(U cos τ)2 ' 1

2
ρCFSU

2 (7)

where ρ is water density, S is the wetted surface area and CF is the friction coefficient.

CF =
0.075

(log10(Rn)− 2)2
+

44
[(

AHR
LK

)1/3 − 10R−1/3
n

]
+ 0.125

103
. (8)

where AHR is the average hull roughness in micrometers. We set to AHR = 150 [µm]. The

Rn is the Reynolds number based on the characteristic length LK which is the wetted keel

length. The wetted area S is given as following.

S =
tan2 β

sin β

B2

4
(
1 + zmax

V t

)
τ

+
B

cos β
LC , (9)

where 1 + zmax

V t
' π/2 for small β (for large β, see [10, p. 303]), and LC is the wetted chine

length. Note that Rv is a function of τ , LK and LC which we don’t know. The two moment

arm lengths a and c pertaining to the hull frictional force Rv and hydrodynamic pressure

force N respectively can be formulated as following,

a = vcg − B

4
tan(β), (10)

c = lcg − lp. (11)

The a is fixed given CG location, B, and β, but to get c, we need to determine the distance

of center of hydrodynamic pressure from the step lp. To determine lp, we take three steps.

First, we determine CL0 using

CLβ =
FLβ

0.5ρU2B2
= CL0 − 0.0065βdegC

0.60
L0

(12)
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where FLβ = Mg. Second, given FnB we can obtain λW from

CL0 =
FL0

0.5ρU2B2
= τ 1.1deg

[
0.012λ0.5W + 0.0055

λ2.5W
F 2
nB

]
. (13)

Again, we do not know the value for τdeg. Thus, we temporarily assume some value for τdeg.

Third, the following equation gives lp.

lp
λWB

= 0.75− 1
5.21F 2

nB

λ2W
+ 2.39

. (14)

With the λW computed using assumed τ = πτdeg/180, we can also obtain LK and LC from

λW =
LK + LC

2B
, (15)

B

2
=

π

2 tan β
(LK − LC)τ. (16)

These enable us to compute Rv for the assumed τ . We now check if equation (6) holds. We

iterate the process using Brent’s method until we find a good τ .

Stability Derivatives

Based on the trim condition obtained for a given planing speed U , we can now proceed to

the calculation of the stability derivatives. The restoring force coefficients due to heave C33

and pitch C35 are given by

C33

0.5ρU2B
= −B∂CLβ

∂η3

∣∣∣∣
0

= −B∂CL0

∂η3

∣∣∣∣
0

[
1− 0.0039βdegC

−0.4
L0

]
, (17)

C35

0.5ρU2B
= −B∂CLβ

∂η5

∣∣∣∣
0

= −B∂CL0

∂η5

∣∣∣∣
0

[
1− 0.0039βdegC

−0.4
L0

]
, (18)

where |0 denotes “at the static equilibrium position” and

∂CL0

∂η3

∣∣∣∣
0

= τ 1.1deg

[
0.006λ−0.5

0 +
0.01375λ1.50

F 2
nB

]
∂λW
∂η3

∣∣∣∣
0
, (19)

∂CL0

∂η5

∣∣∣∣
0

= 1.1
(

180

π

)1.1

τ 0.1
[
0.012λ0.50 +

0.0055λ2.50

F 2
nB

]

+τ 1.1deg

[
0.006λ−0.5

0 +
0.01375λ1.50

F 2
nB

]
∂λW
∂η5

∣∣∣∣
0
. (20)
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Here, λ0 is the value of λW at the static equilibrium. Furthermore,

∂λW
∂η3

∣∣∣∣
0

= − 1

sin τ

1

B
, (21)

∂λW
∂η5

∣∣∣∣
0

=
−vcg/B

sin2 τ
+
zwl/B

sin2 τ
cos τ +

0.25 tan β

(1 + zmax/V t)τ 2
. (22)

From equation (14), we can write

1

B

∂lp
∂λW

∣∣∣∣
0

= 0.75−
15.63

F 2
nB

λ20
+ 2.39

(
5.21

F 2
nB

λ20
+ 2.39

)2 . (23)

Then, we can compute the pitch moment coefficients due to heaving C53 and due to pitching

C55 as

C53

0.5ρU2B2
= −

[
1

B

∂lp
∂λW

B
∂λ

∂η3
CLβ +

(
lp
B
− lcg
B

)
B
∂CLβ
∂η3

]

0

, (24)

C55

0.5U2B3
= −

[
1

B

∂lp
∂λW

∂λW
∂η5

CLβ +

(
lp
B
− lcg
B

)
∂CLβ
∂η5

]

0

. (25)

The added mass calculations are divided into two hull regions: the region where the keel is

wet but the chine is not (the triangular planform region) and the region thereafter up to the

step where the planing surface is completely wet (the rectangular planform region). Strip

theory is used to exploit two-dimensional analytical solutions. A two-dimensional added

mass of a wedge can be given using Gamma function,

a33 ≡ ρd2K =
ρd2

tan β

[
π

sin β

Γ(1.5− β
π
)

Γ2(1− β
π
)Γ(0.5 + β

π
)
− 1

]
(26)

where d is the draft and we only consider the real part of K. The d is defined as the draft

from the spray root position,

d =
(

1 +
zmax
V t

)
xτ. (27)

Here, x is on the axis that increases towards the step along the keel line with origin at the

point where the wetting of keel starts. In particular, we denote xs as the point at which

chine wetting starts. The added mass in the heaving of the triangular region is obtained

from

A
(1)
33 = ρK

(
1 +

Zmax
V t

)
τ 2
∫ xs

0
x2dx (28)

where

xs =
B

2

tan β(
1 + Zmax

V t

)
τ

(29)
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After integration, we have

A
(1)
33

ρB3
=
K

24

tan3 β(
1 + Zmax

V t

)
τ
. (30)

For the pitch induced added mass in the triangular region,

A
(1)
35 = A

(1)
53 = −ρK

∫ xs

0
d2(x− xG)dx (31)

where xG = LK − lcg. After inegration, we obtain

A
(1)
35

ρB4
=
A

(1)
53

ρB4
=
A

(1)
33

ρB3

xG
B
− K

64

tan4β
(
1 + Zmax

V t

)2
τ 2
. (32)

We also have

A
(1)
55 = ρK

∫ xs

0
d2(x− xG)2dx, (33)

which results in

A
(1)
55

ρB5
=

K

160

tan5 β
(
1 + Zmax

V t

)3
τ 3
− K

32

xG
B

tan4 β
(
1 + Zmax

V t

)2
τ 2

+
(
xG
B

)2 A
(1)
33

ρB3
. (34)

As for the rectangular region, the heaving induced part is given by

A
(2)
33

ρB3
= C1

π

8

LC
B

(35)

where

C1 =
2 tan2 β

π
K. (36)

The pitching induced added masses of the rectangular portion are

A
(2)
35

ρB4
=
A

(2)
53

ρB4
= −C1

π

16

[(
LK
B

)2

−
(
xs
B

)2
]

+
xG
B

A
(2)
33

ρB3
(37)

and

A
(2)
55

ρB5
=
C1π

24

((
LK
B

)3

−
(
xs
B

)3
)
− C1π

8

(
xG
B

)((
LK
B

)2

−
(
xs
B

)2
)

+
(
xG
B

)2 A
(2)
33

ρB3
. (38)

The resulting added masses are given by Aij = A
(1)
ij + A

(2)
ij .

The damping coefficients Bij are analysed using a quasi-steady approach in which changes

in the angle of attack immediately cause changes in lift. We exclude hydrostatic effects in
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equations (12) and (13) by setting FnB →∞.

CLβ = CL0 − 0.0065βdegC
0.60
L0

, (39)

where

CL0 =
(

180

π

)1.1

τ 1.10.012λ0.5W . (40)

Because of the heave velocity, there is a change in angle of attack (trim)

α = −dη3
dt
/U = − η̇3

U
. (41)

This causes a vertical force

F3 = −1

2
ρU2B2∂CLβ

∂τ

η̇3
U

(42)

where
∂CLβ
∂τ

=
∂CL0

∂τ

[
1− 0.0039βdegC

−0.4
L0

]
(43)

and
∂CL0

∂τ
= 0.0132

(
180

π

)1.1

τ 0.1λ0.5W . (44)

Note the η̇3 in equation (42). This gives the heaving damping force,

B33

ρB3
(
g
B

) 1
2

= 0.5FnB
∂CLβ
∂τ

. (45)

The pitching moment resulting from the heave velocity can be computed using

F5 = F3 (0.75λWB − lcg) (46)

and this gives

B53

B33B
= 0.75λW −

lcg
B
. (47)

The damping coefficients B55 and B35 are studied with respect to dη5/dt,
20 and given as

B55 = U x2Ta33 (xT ) , (48)

B35 = UA33 − U xTa33 (xT ) . (49)

where

a33 (xT ) = ρ

(
B tan β

2

)2

K (50)
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is the two dimensional added mass in heave for the cross section at step xT = lcg.
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