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Abstract-Experimental optimization of wireless protocols and 
validation of novel solutions is often problematic, due to limited 
configuration space present in commercial wireless interfaces as 
well as complexity of monolithic driver implementation on SDR­
based experimentation platforms. To overcome these limitations a 
novel software architecture is proposed, called WiSHFUL, devised 
to allow: i) maximal exploitation of radio functionalities available 
in current radio chips, and ii) clean separation between the logic 
for optimizing the radio protocols (i.e. radio control) and the 
definition of these protocols. 

I. INTRODUCTION 

During the last years, research cOlmnunity has achieved 
an impressive evolution of wireless technologies for short 
distance communication (like IEEE 802.11, IEEE 802.15.4, 
Bluetooth Low Energy, etc.) due to the need of coping with 
the heterogeneous requirements of emerging applications, such 
as Internet of things, the Industry 4.0, the Tactile Internet, the 
ambient assistant living, and so on. Indeed, for optimizing the 
technology performance in these scenarios, it is often required 
to support some form of protocol adaptation, by allowing 
the dynamic reconfiguration of protocol parameters and the 
dynamic activation of optional mechanisms, or some targeted 
protocol extensions. In both cases, prototyping, testing and 
experimentally validating potential solutions is a complex task, 
which generally requires significant investment in time and 
resources. On one side, off-the-shelf wireless interfaces are 
based on radio chips which implement only the obligatory parts 
of the standard and arbitrarily selected optional parts, with only 
partially documented interfaces and with drivers being either 
closed or limited in functionality. On the other side, many 
powerful Software Defined Radio (SDR) platforms, while 
offering excellent flexibility at the physical layer, typically 
have limited performance and lack high-level specifications 
and programming tools as well as standard APIs for developing 
protocols. 

The consequence is that testing of new solutions often 
proves problematic, because experimenters can only rely on 
the limited optimization space enabled by the drivers, while 
on open software architectures many functionalities have to be 
written from scratch and are tightly dependent on the specific 
hardware platform. In many cases, different experimentation 
platforms have to be considered for working on specific 
optimizations, because each platform supports a different level 
of complexity and controllability. This heterogeneity further 
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slows down the innovation process, forcing experimenters to 
familiarize themselves first with platform-specific architectures 
and programming tools before prototyping their solutions. 

To overcome the aforementioned shortcomings and reduce 
the threshold for experimentation, a novel approach is pro­
posed within the European project WiSHFUL. The project's 
main goal is the design and development of a software archi­
tecture enabling a flexible radio and network control of het­
erogeneous experimentation platforms, based on standardized 
wireless technologies and SDRs, through unified programming 
interfaces. More specifically, the architecture is devised to 
allow: 

• Maximal exploitation of radio functionalities available 
in current radio chips, as opposed to todays radio 
drivers that restrict radio functionality. For example 
todays radio drivers for IEEE 802.11 do not support 
TDMA (Time Division Multiple Access) operation, 
while the hardware perfectly supports it. 

• Clean separation between radio control and protocol 
logic, as opposed to today's monolithic implementa­
tions, which prevent the ability to separately work on 
the logic for enabling specific protocol features and 
the definition of these features. 

In the paper, we present the platforms integrated into the 
WiSHFUL architecture in §II, the WiSHFUL general archi­
tecture in §III, the functions enabled for radio configuration 
in §IV, and the potentialities of the approach in §V. Finally, 
some conclusions are drawn in §VI. 

II. PROGRAMMABLE PROTOTYPING PLATFORMS 

The WiSHFUL project integrates multiple experimentation 
platforms for which a software architecture designed to sim­
plify MAC or PHY protocol prototyping was already available. 
The platforms are based on heterogeneous hardware: general 
purpose devices with a wireless network interface for local area 
networks (WiFi), microcontroller devices with a radio chip for 
sensor networks and software defined radios (SDR). 

A. WMP 

The Wireless MAC Processor (WMP) architecture has been 
developed for a commercial Broadcom WiFi card and for the 



WARP board [1]. The architecture offers the possibility to easy 
write, load and execute customized MAC protocols, by using 
a platform-independent, high-level programming language [2]. 
This capability is achieved by developing a firmware which 
does not implement a specific protocol, but rather a generic 
protocol executor called MAC Engine. 

The MAC programs are specified as extended finite state 
machines (XFSMs), which are built by composing elementary 
hardware actions, in response of specific hardware events 
and conditions of the hardware internal registers. The set of 
events generated by the hardware, the set of actions coded 
in pre-defined firmware modules and the set of hardware 
registers whose settings can be tuned and verified, represent 
the hardware API that cannot be modified by the user. 

The MAC program is coded into a transition table and 
loaded in a memory space deployed on the hardware. Starting 
from an initial (default) state, the MAC engine fetches the table 
entry corresponding to the state, and loops until a triggering 
event associated with that state occurs. It then evaluates 
the associated conditions on the configuration registers, and 
triggers the associated action and register status updates (if 
any). Next it executes the state transition and fetches the new 
table entry for the destination state. The MAC engine does 
not need to know to which MAC program a new fetched state 
belongs to. Therefore, code switching is achieved by simply 
moving from the current protocol state to a target state in a 
different transition table, with a latency of a few CPU clocks. 

B. TAISC 

TAISC (Time-Annotated Instuction Set Computer) [3] aims 
to simplify the development of new protocols for sensor nodes. 
It consists of a cross-platform MAC protocol compiler and 
an execution engine. This design allows to describe MAC 
protocols in a platform independent language (consisting of 
a radio platform independent instruction set), followed by 
a straightforward compilation step, yielding dedicated binary 
code, optimized for specific radio chips. The cross-compilation 
approach allows developers to design MAC protocols once, 
and then compile them for reuse on different radio platforms. 
To enable time-critical operation, the TAISC compiler adds 
exact time annotations to every instruction of the optimized 
binary code. The execution engine running on the radio plat­
form, will execute the instructions with accurate time control 
thanks to the provided time annotation. 

The overall TAISC workflow to develop and execute a 
MAC protocol is illustrated in Figure 1 and involves the 
following steps: 

• Step 1: device-agnostic MAC protocol creation. First, 
the MAC protocol designer creates a high-level, plat­
form independent radio program to describe the MAC 
logic using predefined commands (instructions) in 
a C-like language, either using high-level C syntax 
or using a more intuitive drag- and-drop interface. 
This human readable code consists of a sequence of 
commands that describe the generic behavior of the 
MAC protocol and is largely independent of the final 
hardware platform where it will be deployed. 

• Step 2: device specific compilation. Next, this human­
readable sequence is compiled by the TA1SC compiler 
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Step 1: device agnostic MAC protocol creation 

Fig. 1. TAISC workflow to develop and execute a MAC protocol. 

into efficient, device-specific binary byte code that can 
be executed by the TAISC execution engine running on 
the radio platform. 

• Step 3: protocol dissemination. Afterwards, the byte 
code is wirelessly transmitted to the target hardware 
platform and added to the MAC application repository 
on the local TAISC execution engine. 

• Step 4: MAC protocol execution. Finally, the TAISC 
core executes the byte code. 

C. IRIS 

The Iris software defined radio framework was developed 
as a part of the doctoral work of Mackenzie in 2004 [4] and is 
currently maintained by Software Radio Systems I. While the 
architecture has been extended, the focus of the Iris concept 
remains on the realization of reconfigurable radio systems. 
Iris achieves such realization by offering a core framework to 
manage the execution of signal processing blocks within user 
defined chains, referred to as flow graphs. Signal processing 
blocks, such as modulators, scramblers, coders, can be defined 
by users or can also be selected from a library. In this manner, 
Iris allows users to define radio transceivers in software, and 
achieve working implementations of the same functionality 
with the addition of a Universal Software Radio Peripheral 
(USRP). As such, Iris is an ideal tool for cutting edge radio 
research and prototyping. 

The core framework provides functionally to support the 
dynamic reconfiguration of the processing blocks. To this 
purpose, the scheduling and connection functionality of the 
system is built in manner to support the unpredictable variation 
of the rate at which individual blocks produce or consume 
data. In further support of flexibility, the components of a radio 
built within Iris are organized into one or more engines. These 
engines support the various operations of a radio system, such 
as data passing, on different layers of the network stack to 
allow users to organize their radio implementation in a conve­
nient manner that support the reconfiguration of any individual 
component. Such a configuration also allows users to share 

1 https:llgithub.comlsoftwareradiosystemsliris_core 



radio components or incorporate processes and functionality 
external to Iris into their radio. Further, this approach provides 
users extreme control over their radio system. 

To realize its potential for flexibility, Iris provides several 
means of interaction.The Iris core framework and the signal 
processing elements are implemented in C++, which increases 
performance and portability. Alternatively, radio flow graphs 
are defined in an XML-based format that allows the description 
of radios in a human-readable manner. Naturally, the flexibility 
and convenience offered by Iris has the cost of performance, 
but the design and approach of Iris supports dynamic research. 

D. Atheros-ATH9K 

Commodity WiFi devices based on Linux platform, IEEE 
802.11n Atheros chipsets (e.g. AR928X) and open source 
driver ATH9K [5] are widely used in research and academia. 
Indeed, the open source driver permits to configure a wide 
set of MACIPHY protocol parameters (such as the contention 
window, the antenna diversity scheme or the parameters used 
in the 802.11e access categories), to monitor some low-level 
parameters (such as the channel busy or idle intervals) and 
to modify the upper-MAC protocol mechanisms which do 
not depend on time-critical operations (softMAC). Therefore, 
in WiSHFUL we also considered the flexibility enabled by 
this open source driver for defining a unified radio control 
architecture. 

III. THE WISHFUL ARCHITECTURE 

The WiSHFUL architecture is devised to provide i) unified 
interfaces to experimenters for easily prototyping novel and 
adaptable wireless solutions on different radio platforms, ii) 
a control framework for supporting dynamic on-the-fly re­
configuration of the network nodes according to time-varying 
estimates of the network operating condition. To this purpose, 
a common programming model is proposed to fit all the 
heterogeneous experimentation platforms integrated into the 
project, based on the abstraction of the radio architecture 
and on the definition of elementary control primitives. In 
Figure 2 the proposed architecture is presented, showing how 
heterogeneous devices can be supported through a unified 
interface. 

A. Abstracting Radio Architectures 

From the analysis of TAISC, WMP, and IRIS, it is in­
teresting to observe that there is a valuable common set 
of functionalities (implemented in different ways) and ap­
proaches that can be abstracted for the definition of a common 
programming interface. More into details, each architecture 
relies on primitive components, called data processing blocks, 
commands or actions, which depend on the hardware capabil­
ities and cannot be programmed. Each architecture abstracts 
the hardware systems in a set of configuration parameters, 
which may change the hardware operating conditions (e.g. the 
transmission channel), events which indicate the occurrence 
of specific hardware operations (e.g. the reception of a new 
packet), and measurements that can be performed by the 
platform (e.g. the SNR of a received packet). Moreover, the 
architectures define an execution environment (called PHY 
engine, Stack engine, MAC engine, or TAISC engine) able 
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Fig. 2. WiSHFUL general architecture for programming heterogeneous 
platforms for radio experimentation. 

to run radio programs defined in a high-level programming 
language. 

A set of radio programs implementing very similar oper­
ations (e.g. CSMA and TDMA access protocols) have been 
defined for all the architectures by using the architecture­
specific progranuning languages. Both for IRIS and WMP, a 
local controller can reconfigure the hardware parameters or 
the radio program itself according to the logic defined in the 
control program. 

Inspired by these considerations, a similar programming 
architecture has also been proposed for the Atheros-ATH9k 
platform. A software module (MAC engine) was developed 
exposing an API for controlling the driver, by enabling the 
possibility to specify the configuration parameters of the card 
in a declarative language, such as Python scripts. The API 
also allows supporting a time-based channel access scheme by 
specifying the time intervals (slots) in which specific packet 
flows are allowed to transmit while running the usual DCF 
scheme. This was made possible because the developed MAC 
engine executes the MAC programs using the Netlink API to 
control the ATH9k wireless driver. 

Figure 2 furthermore shows the generalization of the 
WiSHFUL radio programmable architectures (built on top of 
different hardware platforms) in terms of Radio Programs, 
Execution Engine, Radio Monitoring and Configuration Engine 
(MCE) and Control Programs. The Radio Programs specify the 
logic for driving the hardware platforms and implementing 
lower-MAC protocols, modulation/demodulation schemes or 
other processing operations on the hardware platform (e.g. 
spectrum scanning schemes, interference estimation schemes, 
localization schemes). The Execution Engine provides the 
environment for running the Radio Programs. The MCE is 
responsible of configuring the Radio Programs and the hard­
ware platform during the initialization of the radio or during 
the radio activity, according to the rules specified in the 
Control Program. The Control Program configures the platform 
capabilities (e.g. transmission power, channel, radio program 
to be activated, etc.) and the program-dependent capabilities 
(e.g. slot size, contention window, etc.) in a list of parameters 
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and relevant values, which may change as a function of the 
monitored measurements. 

B. Control Framework 

As shown in Figure 2, the WiSHFUL control framework 
is based on a two-tier architecture which enables local, global 
and hierarchical control programs, thus supporting dynamic 
adaptations of the wireless nodes according to the aggregation 
of radio parameters monitored by different nodes and estimates 
of the network state. Nodes can be monitored and controlled 
singularly or in clusters, by exploiting some basic control 
services devised to coordinate the UPI calls. Specific control 
commands for calling the UPIs can be sent to several nodes 
in parallel from the global controller, thanks to the ability of 
the framework to guarantee a timed execution of the function 
calls network wide. 

Services offered by the control framework basically in­
clude node bootstrapping and discovery, time synchronization 
for relying on a common temporal signal, blocking or non­
blocking interface calls, management of control programs on 
the nodes, as well as time-scheduled and remote execution of 
UPI functions. Depending on the expected timings for inter­
acting with nodes, UPI functions can be called synchronously 
or asynchronously. In the first case the control program waits 
until the UPI returns, in the second case the call returns 
immediately and a callback function must be defined to handle 
the asynchronous response of the UPI call. 

The WiSHFUL control framework supports both proactive 
and reactive control approaches, leaving to the experimenter 
the highest flexibility defining his/her control strategy. The 
control program calls UPIs on the system under test in a 
proactive scenario. Nodes receive polling from the controller 
and apply actions defined in the control logic. Conversely, 
under the reactive approach, local control programs can trigger 
messages to the global one when specific conditions locally 
arise on the node. 

IV. UNIFIED INTERFACE FOR RADIO CONTROL 

In this section the functionalities of the unified interface for 
radio control, called UPCR, are presented in detail. This in­
terface is responsible for tuning the radio operating frequency, 
selecting the transmission format, activating wireless links 
towards neighbor nodes, collecting statistics and configuring 
the medium access logic. To this purpose, as a preliminary 
operation, the interface needs to acquire information about 
the platform radio capabilities, because different platforms can 
support different programmability models and configuration 
parameters. Then, according to the available capabilities, the 
interface functionalities can work on three aspects: configuring 
the experimentation platform, at both the hardware and radio 
program levels, monitoring the node and network conditions 
by accessing all the signals and internal state information of 
the experimentation platforms, adapting on-the-fly the node 
behavior by loading and activating context-specific radio pro­
grams. 

A. Radio Capabilities 

Three different types of platform radio capabilities are 
defined: configurable Parameters, low-level Measurements and 
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TABLE l. ABSTRACTION OF RADIO CAPABILTIES. 

Parameters Measurements Events 
Channel RSSI ChUp 
CCA SNR ChDown 
TxPower BusyTime RxPreamble 
TxAntenna TxTime RxMacHead 
RxAntenna LQI RxEnd 
TxFormat FER RxBadCRC 
TDMA_SuperFrame BER QueueOut 
TDMA_NumSlots good Preamble RxQueueOverflow 
TDMA_Slot badPreamble TxQueueUnderfiow 
CSMA_CWmin goodCRC EndTimer 
CSMA CWmax badCRC CSMA BkExpired 

Events. The configurable parameters specify the configuration 
of the hardware platform and the initialization of the global 
variables of the loaded radio program. The low-level measure­
ments are provided by the platform in some internal registers 
which track received signal strength, receiver errors, etc. The 
events are asynchronous signals generated from hardware or 
software state changes, which can be directly exposed to 
the controller or aggregated in a sequence of events whose 
occurrence can be signaled to the controller. 

A non exhaustive list of radio capabilities is provided in 
table I. The capability names are somehow auto-explicative. 
Note that the list of radio capabilities is intrinsically extensible 
because they depend on software and hardware releases, which 
are continuously updated. However a core set of basic capa­
bilities is defined, which are represented by a pre-defined list 
of identifiers. Each platform can obviously support the whole 
list of capabilities or a subset of such a list, depending on 
the hardware flexibility and on the loaded radio programs. 
Parameters correspond to the configuration registers of the 
hardware platform and to the variables used in the radio 
programs. For each parameter, a range of valid values can also 
be specified. 

B. Functionalities 

Acquiring Node Information. The information 
about the number of wireless interfaces available on 
an experimentation platform and the relevant radio 
capabilities are retrieved by means of, respectively, the 
getRadioNICsO and getRadioNICinfo(NIC_t) functions. 
The getRadioNICinfoO function is mostly used at bootstrap, 
but also after the loading of a novel radio program. It 
returns the radio list of events, monitor measurements and 
configuration parameters supported by the hardware and by 
the radio program loaded on the node. The returned data are 
structured in three lists of < type, value > couples, which 
enumerate the supported events, measurements, parameters 
and their current values. 

Radio configuration. To configure the experimentation plat­
form, it is possible to work on a parametric configuration 
model which acts on the hardware and on the active radio 
program. The setPammeters(NIC _t, pamm_list) function 
allows to specify the settings of the desired parameters, 
while the getPammeter(NIC_t) function allows to know the 
current configuration of the platform. It is also possible to 
define some rules for identifying the packets of a specific 
traffic flow by using the FlowDescO function. Each flow can 



If RX_type ="0100 { 

while (timer <T1)( 
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Firmware/Driver 
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while(true)( 
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Fig. 3. Examples of dynamic protocol mechanisms: monolithic implemen­
tation (left case) and flexible control programs defined on top of WiSHFUL 
UP,-R (right case). 

be mapped into a specific radio configuration, by calling the 
setPerFlowParameters(fiow_id, param_Iist) function. 

Monitoring. The getMonitor( NIC _t, monitor _id) func­
tion allows to track single measurements specified by the 
identifier monitor _id of the relevant radio capability. Asyn­
chronous events can also be tracked by opportunistically 
defining the conditions for triggering an interrupt signal, and 
the program handler for reacting to such an interrupt. The 
triggering conditions may correspond to the occurrence of an 
event supported by the platform, to a sequence of multiple 
elementary events or to the overcoming of a threshold for 
the counter of elementary events. The function responsible 
of event definitions is the defineEvent function. Finally, the 
getMonitorBounceO function allows to configure periodic 
reports of measurements. 

Changing the Program on the fly. The setActiveO function 
is responsible for activating a specific radio program (among 
the ones loaded on the platform), while the getActiveO func­
tion is responsible for identifying the radio program currently 
in use. 

V. RADIO CONTROL EXAMPLES 

In order to clarify the potentialities of the WiSHFUL 
architecture and UPCR interface, we consider a simple ex­
ample of protocol adaptation in terms of dynamic tuning 
of protocol parameters, and a simple example of protocol 
extension in terms of dynamic activation of an optional feature. 
The goal is not designing a novel optimization logic, but 
rather demonstrating the flexibility of the proposed approach 
by separating the logic for controlling the experimentation 
platform from the transmission mechanisms running on the 
platform. 

Suppose that a given wireless technology implements a 
CSMA access protocol, with the possibility to activate a burst 
of TDMA slots after an explicit signalling phase between the 
stations. The example is actually inspired by different real 
technologies, in which contention-based access mechanisms 
and reservation-based access mechanisms can coexist. 

Current architectures for wireless experimentation plat­
forms impose to work on a monolithic implementation of the 
protocol. As shown in the left case of Figure 3, the logic 
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Fig. 4. MAC protocol adaptations performed by the control program CP2 
under a progressive increment of the number of active stations, and for a CX 
threshold equal to 128. 

for changing the contention parameters and for activating the 
TDMA mode is embedded into the implementation of the 
protocol. Conversely, in WISHFUL, the logic for configuring 
the contention parameters (protocol adaptation) and activating 
the TDMA mode (protocol extension) is completely decou­
pled from the implementation of the two elementary radio 
programs. This implies that such a logic can be easily updated 
or replaced with a new one. Obviously, such a decoupling 
is possible when the control logic operates on a time-scale 
compatible with the latency of the local or global controller, 
which is indeed the case for protocol optimization depending 
on an estimate of network conditions. 

Figure 3 also shows a high-level description of two con­
trol program examples, which work on setting the minimum 
contention window of the CSMA protocol and on activating 
the TDMA protocol. For sake of readability, the names of 
the UPCR functions used in the control programs have been 
shortened. 

The exemplary control program CPl works similarly to 
the logic of the monolithic implementation: when the node 
receives a frame of a specific type, the protocol switches to 
TDMA protocol with 5 slots per superframe. The protocol is 
switched back to CSMA after the expiration of a timer. In 
the case of control program CP2, the contention window is 
tuned as a function of the number of active stations and the 
TDMA protocol is activated when such a number (proportional 
to the CW value) overcomes a given threshold. Note that 
the control programs are platform-independent and can work 
on all WiSHFUL experimentation platforms for which CSMA 
and TDMA radio programs are available. Details about the 
implementation of the control program and the synchronization 
mechanisms available in the WiSHFUL control framework are 
provided in [6]. 

An experiment was run, executing the control program 
CP2 on the WMP experimentation platform. In this experi­
ment, wireless nodes were progressively activated at regular 
intervals of 10 seconds. Each station has a greedy traffic 
source with packets of 1000 bytes size, which are transmitted 
using a physical layer data rate of 6 Mbps. Figure 4 shows 
the number of successful received frames, the total number 



of transnusslOns and the value of the mmllllum contention 
window during the experiment. In the last 10 seconds, when 
the contention window value overcomes the ex threshold set 
to 128, the TDMA mode is activated, as evident from the 
higher stability of the number of transmitted and received 
frames. 

VI. CONCLUSIONS 

In this paper, starting from the presentation of the pro­
grammable radio architectures and prototypes available in 
WiSHFUL (namely, the IRIS, TAISC, Atheros-ATH9K and 
WMP architectures), a first specification of a unified interface 
for radio control has been described. The interface has been 
conceived for offering a unified programming model to experi­
menters willing to work on heterogeneous radio platforms and 
for enabling the definition of platform-independent adaptation 
logic of the MACIPHY stack. 

REFERENCES 

[l] A. Khattab, J. Camp, C. Hunter, P. Murphy, A. Sabharwal, and 
E. W. Knightly, "Warp: A flexible platform for clean-slate wireless 
medium access protocol design," SIGMOBILE Mob. Comput. Commun. 
Rev., vol. 12, no. I, pp. 56-58, Jan. 2008. [Online]. Available: 
http://doi.acm.org/IO.1145/1374512.1374532 

[2] I. Tinnirello, G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, and F. Gringoli, 
"Wireless MAC processors: programming MAC protocols on commodity 
hardware," in INFO COM. 2012 Proceedings IEEE. IEEE, 2012, pp. 
1269-1277. 

[3] B. Jooris, E. De Poorter, P. Ruckebusch, P. De Valek, J. Bauwens, and 
I. Moerman, "Taisc: a cross-platform mac protocol compiler and exe­
cution engine," in Computer Networks Journal,under review. Elsevier, 
2016. 

[4] P. Mackenzie, "Reconfigurable Software Radio Systems," Ph.D. disser­
tation, Trinity College Dublin, Dublin, Ireland, 2004. 

[5] "Atheros Linux wireless driver (ATH9K), 
https:llwireless. wiki. kernel. org/en/usersl drivers/ath9k1." 

[6] E. WiSHFUL, "Deliverable 2.3., results of first set of showcases, eu 
wishful," Tech. Rep., 2016 (http://www.wishful-project.eul), Tech. Rep., 
2016. 

6 


