
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61
62
63
64
65

EuCNC2016-TBeds&Exper 1570256790

A Unified Radio Control Architecture for
Prototyping Adaptive Wireless Protocols

P. Ruckebusch*, S. Giannoulis*, E. De Poorter*, I. Moerman*, I. Tinnirello+, D. Garlisi+, P. Gallo+, N.

Kaminski*, L. DaSilva*, P. Gawlowiczt, M. Chwaliszt, A. Zubowt

* {name.surname}@intec.ugent.be + {name. surname }@unipa.it *kaminshinldasilval@tcd.ie t {name.surname}@tu-berlin.de
iMinds, Belgium CNIT, Italy TCD, Ireland TUB, Germany

Abstract-Experimental optimization of wireless protocols and
validation of novel solutions is often problematic, due to limited
configuration space present in commercial wireless interfaces as
well as complexity of monolithic driver implementation on SDR­
based experimentation platforms. To overcome these limitations a
novel software architecture is proposed, called WiSHFUL, devised
to allow: i) maximal exploitation of radio functionalities available
in current radio chips, and ii) clean separation between the logic
for optimizing the radio protocols (i.e. radio control) and the
definition of these protocols.

I. INTRODUCTION

During the last years, research cOlmnunity has achieved
an impressive evolution of wireless technologies for short
distance communication (like IEEE 802.11, IEEE 802.15.4,
Bluetooth Low Energy, etc.) due to the need of coping with
the heterogeneous requirements of emerging applications, such
as Internet of things, the Industry 4.0, the Tactile Internet, the
ambient assistant living, and so on. Indeed, for optimizing the
technology performance in these scenarios, it is often required
to support some form of protocol adaptation, by allowing
the dynamic reconfiguration of protocol parameters and the
dynamic activation of optional mechanisms, or some targeted
protocol extensions. In both cases, prototyping, testing and
experimentally validating potential solutions is a complex task,
which generally requires significant investment in time and
resources. On one side, off-the-shelf wireless interfaces are
based on radio chips which implement only the obligatory parts
of the standard and arbitrarily selected optional parts, with only
partially documented interfaces and with drivers being either
closed or limited in functionality. On the other side, many
powerful Software Defined Radio (SDR) platforms, while
offering excellent flexibility at the physical layer, typically
have limited performance and lack high-level specifications
and programming tools as well as standard APIs for developing
protocols.

The consequence is that testing of new solutions often
proves problematic, because experimenters can only rely on
the limited optimization space enabled by the drivers, while
on open software architectures many functionalities have to be
written from scratch and are tightly dependent on the specific
hardware platform. In many cases, different experimentation
platforms have to be considered for working on specific
optimizations, because each platform supports a different level
of complexity and controllability. This heterogeneity further

1

slows down the innovation process, forcing experimenters to
familiarize themselves first with platform-specific architectures
and programming tools before prototyping their solutions.

To overcome the aforementioned shortcomings and reduce
the threshold for experimentation, a novel approach is pro­
posed within the European project WiSHFUL. The project's
main goal is the design and development of a software archi­
tecture enabling a flexible radio and network control of het­
erogeneous experimentation platforms, based on standardized
wireless technologies and SDRs, through unified programming
interfaces. More specifically, the architecture is devised to
allow:

• Maximal exploitation of radio functionalities available
in current radio chips, as opposed to todays radio
drivers that restrict radio functionality. For example
todays radio drivers for IEEE 802.11 do not support
TDMA (Time Division Multiple Access) operation,
while the hardware perfectly supports it.

• Clean separation between radio control and protocol
logic, as opposed to today's monolithic implementa­
tions, which prevent the ability to separately work on
the logic for enabling specific protocol features and
the definition of these features.

In the paper, we present the platforms integrated into the
WiSHFUL architecture in §II, the WiSHFUL general archi­
tecture in §III, the functions enabled for radio configuration
in §IV, and the potentialities of the approach in §V. Finally,
some conclusions are drawn in §VI.

II. PROGRAMMABLE PROTOTYPING PLATFORMS

The WiSHFUL project integrates multiple experimentation
platforms for which a software architecture designed to sim­
plify MAC or PHY protocol prototyping was already available.
The platforms are based on heterogeneous hardware: general
purpose devices with a wireless network interface for local area
networks (WiFi), microcontroller devices with a radio chip for
sensor networks and software defined radios (SDR).

A. WMP

The Wireless MAC Processor (WMP) architecture has been
developed for a commercial Broadcom WiFi card and for the

WARP board [1]. The architecture offers the possibility to easy
write, load and execute customized MAC protocols, by using
a platform-independent, high-level programming language [2].
This capability is achieved by developing a firmware which
does not implement a specific protocol, but rather a generic
protocol executor called MAC Engine.

The MAC programs are specified as extended finite state
machines (XFSMs), which are built by composing elementary
hardware actions, in response of specific hardware events
and conditions of the hardware internal registers. The set of
events generated by the hardware, the set of actions coded
in pre-defined firmware modules and the set of hardware
registers whose settings can be tuned and verified, represent
the hardware API that cannot be modified by the user.

The MAC program is coded into a transition table and
loaded in a memory space deployed on the hardware. Starting
from an initial (default) state, the MAC engine fetches the table
entry corresponding to the state, and loops until a triggering
event associated with that state occurs. It then evaluates
the associated conditions on the configuration registers, and
triggers the associated action and register status updates (if
any). Next it executes the state transition and fetches the new
table entry for the destination state. The MAC engine does
not need to know to which MAC program a new fetched state
belongs to. Therefore, code switching is achieved by simply
moving from the current protocol state to a target state in a
different transition table, with a latency of a few CPU clocks.

B. TAISC

TAISC (Time-Annotated Instuction Set Computer) [3] aims
to simplify the development of new protocols for sensor nodes.
It consists of a cross-platform MAC protocol compiler and
an execution engine. This design allows to describe MAC
protocols in a platform independent language (consisting of
a radio platform independent instruction set), followed by
a straightforward compilation step, yielding dedicated binary
code, optimized for specific radio chips. The cross-compilation
approach allows developers to design MAC protocols once,
and then compile them for reuse on different radio platforms.
To enable time-critical operation, the TAISC compiler adds
exact time annotations to every instruction of the optimized
binary code. The execution engine running on the radio plat­
form, will execute the instructions with accurate time control
thanks to the provided time annotation.

The overall TAISC workflow to develop and execute a
MAC protocol is illustrated in Figure 1 and involves the
following steps:

• Step 1: device-agnostic MAC protocol creation. First,
the MAC protocol designer creates a high-level, plat­
form independent radio program to describe the MAC
logic using predefined commands (instructions) in
a C-like language, either using high-level C syntax
or using a more intuitive drag- and-drop interface.
This human readable code consists of a sequence of
commands that describe the generic behavior of the
MAC protocol and is largely independent of the final
hardware platform where it will be deployed.

• Step 2: device specific compilation. Next, this human­
readable sequence is compiled by the TA1SC compiler

2

Step 1: device agnostic MAC protocol creation

Fig. 1. TAISC workflow to develop and execute a MAC protocol.

into efficient, device-specific binary byte code that can
be executed by the TAISC execution engine running on
the radio platform.

• Step 3: protocol dissemination. Afterwards, the byte
code is wirelessly transmitted to the target hardware
platform and added to the MAC application repository
on the local TAISC execution engine.

• Step 4: MAC protocol execution. Finally, the TAISC
core executes the byte code.

C. IRIS

The Iris software defined radio framework was developed
as a part of the doctoral work of Mackenzie in 2004 [4] and is
currently maintained by Software Radio Systems I. While the
architecture has been extended, the focus of the Iris concept
remains on the realization of reconfigurable radio systems.
Iris achieves such realization by offering a core framework to
manage the execution of signal processing blocks within user
defined chains, referred to as flow graphs. Signal processing
blocks, such as modulators, scramblers, coders, can be defined
by users or can also be selected from a library. In this manner,
Iris allows users to define radio transceivers in software, and
achieve working implementations of the same functionality
with the addition of a Universal Software Radio Peripheral
(USRP). As such, Iris is an ideal tool for cutting edge radio
research and prototyping.

The core framework provides functionally to support the
dynamic reconfiguration of the processing blocks. To this
purpose, the scheduling and connection functionality of the
system is built in manner to support the unpredictable variation
of the rate at which individual blocks produce or consume
data. In further support of flexibility, the components of a radio
built within Iris are organized into one or more engines. These
engines support the various operations of a radio system, such
as data passing, on different layers of the network stack to
allow users to organize their radio implementation in a conve­
nient manner that support the reconfiguration of any individual
component. Such a configuration also allows users to share

1 https:llgithub.comlsoftwareradiosystemsliris_core

radio components or incorporate processes and functionality
external to Iris into their radio. Further, this approach provides
users extreme control over their radio system.

To realize its potential for flexibility, Iris provides several
means of interaction.The Iris core framework and the signal
processing elements are implemented in C++, which increases
performance and portability. Alternatively, radio flow graphs
are defined in an XML-based format that allows the description
of radios in a human-readable manner. Naturally, the flexibility
and convenience offered by Iris has the cost of performance,
but the design and approach of Iris supports dynamic research.

D. Atheros-ATH9K

Commodity WiFi devices based on Linux platform, IEEE
802.11n Atheros chipsets (e.g. AR928X) and open source
driver ATH9K [5] are widely used in research and academia.
Indeed, the open source driver permits to configure a wide
set of MACIPHY protocol parameters (such as the contention
window, the antenna diversity scheme or the parameters used
in the 802.11e access categories), to monitor some low-level
parameters (such as the channel busy or idle intervals) and
to modify the upper-MAC protocol mechanisms which do
not depend on time-critical operations (softMAC). Therefore,
in WiSHFUL we also considered the flexibility enabled by
this open source driver for defining a unified radio control
architecture.

III. THE WISHFUL ARCHITECTURE

The WiSHFUL architecture is devised to provide i) unified
interfaces to experimenters for easily prototyping novel and
adaptable wireless solutions on different radio platforms, ii)
a control framework for supporting dynamic on-the-fly re­
configuration of the network nodes according to time-varying
estimates of the network operating condition. To this purpose,
a common programming model is proposed to fit all the
heterogeneous experimentation platforms integrated into the
project, based on the abstraction of the radio architecture
and on the definition of elementary control primitives. In
Figure 2 the proposed architecture is presented, showing how
heterogeneous devices can be supported through a unified
interface.

A. Abstracting Radio Architectures

From the analysis of TAISC, WMP, and IRIS, it is in­
teresting to observe that there is a valuable common set
of functionalities (implemented in different ways) and ap­
proaches that can be abstracted for the definition of a common
programming interface. More into details, each architecture
relies on primitive components, called data processing blocks,
commands or actions, which depend on the hardware capabil­
ities and cannot be programmed. Each architecture abstracts
the hardware systems in a set of configuration parameters,
which may change the hardware operating conditions (e.g. the
transmission channel), events which indicate the occurrence
of specific hardware operations (e.g. the reception of a new
packet), and measurements that can be performed by the
platform (e.g. the SNR of a received packet). Moreover, the
architectures define an execution environment (called PHY
engine, Stack engine, MAC engine, or TAISC engine) able

3

Fig. 2. WiSHFUL general architecture for programming heterogeneous
platforms for radio experimentation.

to run radio programs defined in a high-level programming
language.

A set of radio programs implementing very similar oper­
ations (e.g. CSMA and TDMA access protocols) have been
defined for all the architectures by using the architecture­
specific progranuning languages. Both for IRIS and WMP, a
local controller can reconfigure the hardware parameters or
the radio program itself according to the logic defined in the
control program.

Inspired by these considerations, a similar programming
architecture has also been proposed for the Atheros-ATH9k
platform. A software module (MAC engine) was developed
exposing an API for controlling the driver, by enabling the
possibility to specify the configuration parameters of the card
in a declarative language, such as Python scripts. The API
also allows supporting a time-based channel access scheme by
specifying the time intervals (slots) in which specific packet
flows are allowed to transmit while running the usual DCF
scheme. This was made possible because the developed MAC
engine executes the MAC programs using the Netlink API to
control the ATH9k wireless driver.

Figure 2 furthermore shows the generalization of the
WiSHFUL radio programmable architectures (built on top of
different hardware platforms) in terms of Radio Programs,
Execution Engine, Radio Monitoring and Configuration Engine
(MCE) and Control Programs. The Radio Programs specify the
logic for driving the hardware platforms and implementing
lower-MAC protocols, modulation/demodulation schemes or
other processing operations on the hardware platform (e.g.
spectrum scanning schemes, interference estimation schemes,
localization schemes). The Execution Engine provides the
environment for running the Radio Programs. The MCE is
responsible of configuring the Radio Programs and the hard­
ware platform during the initialization of the radio or during
the radio activity, according to the rules specified in the
Control Program. The Control Program configures the platform
capabilities (e.g. transmission power, channel, radio program
to be activated, etc.) and the program-dependent capabilities
(e.g. slot size, contention window, etc.) in a list of parameters

TAISC

Global Control Program

Global MCE
UPI_G

Mon. & Conf. Engine (MCE)

UPI_NUPI_R
Local Control Program

E
Execution Engine
Radio Program

Radio/HW Platform

Radio ProgramRadio Program

Mon. & Conf. Engine (MCE)

UPI_NUPI_R
Local Control Program

E
Execution Engine
Radio Program

Radio/HW Platform

Radio ProgramRadio Program

Mon. & Conf. Engine (MCE)

UPI_NUPI_R
Local Control Program

E
Execution Engine
Radio Program

Radio/HW Platform

Radio ProgramRadio Program

UPI_HC

Contiki Linux Linux

WMP IRIS

Mon. & Conf. Engine (MCE)

UPI_NUPI_R
Local Control Program

E
Execution Engine
Radio Program

Radio/HW Platform

Radio ProgramRadio Program

Linux

ATH

and relevant values, which may change as a function of the
monitored measurements.

B. Control Framework

As shown in Figure 2, the WiSHFUL control framework
is based on a two-tier architecture which enables local, global
and hierarchical control programs, thus supporting dynamic
adaptations of the wireless nodes according to the aggregation
of radio parameters monitored by different nodes and estimates
of the network state. Nodes can be monitored and controlled
singularly or in clusters, by exploiting some basic control
services devised to coordinate the UPI calls. Specific control
commands for calling the UPIs can be sent to several nodes
in parallel from the global controller, thanks to the ability of
the framework to guarantee a timed execution of the function
calls network wide.

Services offered by the control framework basically in­
clude node bootstrapping and discovery, time synchronization
for relying on a common temporal signal, blocking or non­
blocking interface calls, management of control programs on
the nodes, as well as time-scheduled and remote execution of
UPI functions. Depending on the expected timings for inter­
acting with nodes, UPI functions can be called synchronously
or asynchronously. In the first case the control program waits
until the UPI returns, in the second case the call returns
immediately and a callback function must be defined to handle
the asynchronous response of the UPI call.

The WiSHFUL control framework supports both proactive
and reactive control approaches, leaving to the experimenter
the highest flexibility defining his/her control strategy. The
control program calls UPIs on the system under test in a
proactive scenario. Nodes receive polling from the controller
and apply actions defined in the control logic. Conversely,
under the reactive approach, local control programs can trigger
messages to the global one when specific conditions locally
arise on the node.

IV. UNIFIED INTERFACE FOR RADIO CONTROL

In this section the functionalities of the unified interface for
radio control, called UPCR, are presented in detail. This in­
terface is responsible for tuning the radio operating frequency,
selecting the transmission format, activating wireless links
towards neighbor nodes, collecting statistics and configuring
the medium access logic. To this purpose, as a preliminary
operation, the interface needs to acquire information about
the platform radio capabilities, because different platforms can
support different programmability models and configuration
parameters. Then, according to the available capabilities, the
interface functionalities can work on three aspects: configuring
the experimentation platform, at both the hardware and radio
program levels, monitoring the node and network conditions
by accessing all the signals and internal state information of
the experimentation platforms, adapting on-the-fly the node
behavior by loading and activating context-specific radio pro­
grams.

A. Radio Capabilities

Three different types of platform radio capabilities are
defined: configurable Parameters, low-level Measurements and

4

TABLE l. ABSTRACTION OF RADIO CAPABILTIES.

Parameters Measurements Events
Channel RSSI ChUp
CCA SNR ChDown
TxPower BusyTime RxPreamble
TxAntenna TxTime RxMacHead
RxAntenna LQI RxEnd
TxFormat FER RxBadCRC
TDMA_SuperFrame BER QueueOut
TDMA_NumSlots good Preamble RxQueueOverflow
TDMA_Slot badPreamble TxQueueUnderfiow
CSMA_CWmin goodCRC EndTimer
CSMA CWmax badCRC CSMA BkExpired

Events. The configurable parameters specify the configuration
of the hardware platform and the initialization of the global
variables of the loaded radio program. The low-level measure­
ments are provided by the platform in some internal registers
which track received signal strength, receiver errors, etc. The
events are asynchronous signals generated from hardware or
software state changes, which can be directly exposed to
the controller or aggregated in a sequence of events whose
occurrence can be signaled to the controller.

A non exhaustive list of radio capabilities is provided in
table I. The capability names are somehow auto-explicative.
Note that the list of radio capabilities is intrinsically extensible
because they depend on software and hardware releases, which
are continuously updated. However a core set of basic capa­
bilities is defined, which are represented by a pre-defined list
of identifiers. Each platform can obviously support the whole
list of capabilities or a subset of such a list, depending on
the hardware flexibility and on the loaded radio programs.
Parameters correspond to the configuration registers of the
hardware platform and to the variables used in the radio
programs. For each parameter, a range of valid values can also
be specified.

B. Functionalities

Acquiring Node Information. The information
about the number of wireless interfaces available on
an experimentation platform and the relevant radio
capabilities are retrieved by means of, respectively, the
getRadioNICsO and getRadioNICinfo(NIC_t) functions.
The getRadioNICinfoO function is mostly used at bootstrap,
but also after the loading of a novel radio program. It
returns the radio list of events, monitor measurements and
configuration parameters supported by the hardware and by
the radio program loaded on the node. The returned data are
structured in three lists of < type, value > couples, which
enumerate the supported events, measurements, parameters
and their current values.

Radio configuration. To configure the experimentation plat­
form, it is possible to work on a parametric configuration
model which acts on the hardware and on the active radio
program. The setPammeters(NIC _t, pamm_list) function
allows to specify the settings of the desired parameters,
while the getPammeter(NIC_t) function allows to know the
current configuration of the platform. It is also possible to
define some rules for identifying the packets of a specific
traffic flow by using the FlowDescO function. Each flow can

If RX_type ="0100 {

while (timer <T1)(

TDMAwith

10 slots

Firmware/Driver

Radio/HW Platform

while(true)(

CW=get(NSTA) °A

if (CW>CX)

activate(TDMA, NSTA slots)

else

set(CSMA,CW)

Fig. 3. Examples of dynamic protocol mechanisms: monolithic implemen­
tation (left case) and flexible control programs defined on top of WiSHFUL
UP,-R (right case).

be mapped into a specific radio configuration, by calling the
setPerFlowParameters(fiow_id, param_Iist) function.

Monitoring. The getMonitor(NIC _t, monitor _id) func­
tion allows to track single measurements specified by the
identifier monitor _id of the relevant radio capability. Asyn­
chronous events can also be tracked by opportunistically
defining the conditions for triggering an interrupt signal, and
the program handler for reacting to such an interrupt. The
triggering conditions may correspond to the occurrence of an
event supported by the platform, to a sequence of multiple
elementary events or to the overcoming of a threshold for
the counter of elementary events. The function responsible
of event definitions is the defineEvent function. Finally, the
getMonitorBounceO function allows to configure periodic
reports of measurements.

Changing the Program on the fly. The setActiveO function
is responsible for activating a specific radio program (among
the ones loaded on the platform), while the getActiveO func­
tion is responsible for identifying the radio program currently
in use.

V. RADIO CONTROL EXAMPLES

In order to clarify the potentialities of the WiSHFUL
architecture and UPCR interface, we consider a simple ex­
ample of protocol adaptation in terms of dynamic tuning
of protocol parameters, and a simple example of protocol
extension in terms of dynamic activation of an optional feature.
The goal is not designing a novel optimization logic, but
rather demonstrating the flexibility of the proposed approach
by separating the logic for controlling the experimentation
platform from the transmission mechanisms running on the
platform.

Suppose that a given wireless technology implements a
CSMA access protocol, with the possibility to activate a burst
of TDMA slots after an explicit signalling phase between the
stations. The example is actually inspired by different real
technologies, in which contention-based access mechanisms
and reservation-based access mechanisms can coexist.

Current architectures for wireless experimentation plat­
forms impose to work on a monolithic implementation of the
protocol. As shown in the left case of Figure 3, the logic

5

Fig. 4. MAC protocol adaptations performed by the control program CP2
under a progressive increment of the number of active stations, and for a CX
threshold equal to 128.

for changing the contention parameters and for activating the
TDMA mode is embedded into the implementation of the
protocol. Conversely, in WISHFUL, the logic for configuring
the contention parameters (protocol adaptation) and activating
the TDMA mode (protocol extension) is completely decou­
pled from the implementation of the two elementary radio
programs. This implies that such a logic can be easily updated
or replaced with a new one. Obviously, such a decoupling
is possible when the control logic operates on a time-scale
compatible with the latency of the local or global controller,
which is indeed the case for protocol optimization depending
on an estimate of network conditions.

Figure 3 also shows a high-level description of two con­
trol program examples, which work on setting the minimum
contention window of the CSMA protocol and on activating
the TDMA protocol. For sake of readability, the names of
the UPCR functions used in the control programs have been
shortened.

The exemplary control program CPl works similarly to
the logic of the monolithic implementation: when the node
receives a frame of a specific type, the protocol switches to
TDMA protocol with 5 slots per superframe. The protocol is
switched back to CSMA after the expiration of a timer. In
the case of control program CP2, the contention window is
tuned as a function of the number of active stations and the
TDMA protocol is activated when such a number (proportional
to the CW value) overcomes a given threshold. Note that
the control programs are platform-independent and can work
on all WiSHFUL experimentation platforms for which CSMA
and TDMA radio programs are available. Details about the
implementation of the control program and the synchronization
mechanisms available in the WiSHFUL control framework are
provided in [6].

An experiment was run, executing the control program
CP2 on the WMP experimentation platform. In this experi­
ment, wireless nodes were progressively activated at regular
intervals of 10 seconds. Each station has a greedy traffic
source with packets of 1000 bytes size, which are transmitted
using a physical layer data rate of 6 Mbps. Figure 4 shows
the number of successful received frames, the total number

of transnusslOns and the value of the mmllllum contention
window during the experiment. In the last 10 seconds, when
the contention window value overcomes the ex threshold set
to 128, the TDMA mode is activated, as evident from the
higher stability of the number of transmitted and received
frames.

VI. CONCLUSIONS

In this paper, starting from the presentation of the pro­
grammable radio architectures and prototypes available in
WiSHFUL (namely, the IRIS, TAISC, Atheros-ATH9K and
WMP architectures), a first specification of a unified interface
for radio control has been described. The interface has been
conceived for offering a unified programming model to experi­
menters willing to work on heterogeneous radio platforms and
for enabling the definition of platform-independent adaptation
logic of the MACIPHY stack.

REFERENCES

[l] A. Khattab, J. Camp, C. Hunter, P. Murphy, A. Sabharwal, and
E. W. Knightly, "Warp: A flexible platform for clean-slate wireless
medium access protocol design," SIGMOBILE Mob. Comput. Commun.
Rev., vol. 12, no. I, pp. 56-58, Jan. 2008. [Online]. Available:
http://doi.acm.org/IO.1145/1374512.1374532

[2] I. Tinnirello, G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, and F. Gringoli,
"Wireless MAC processors: programming MAC protocols on commodity
hardware," in INFO COM. 2012 Proceedings IEEE. IEEE, 2012, pp.
1269-1277.

[3] B. Jooris, E. De Poorter, P. Ruckebusch, P. De Valek, J. Bauwens, and
I. Moerman, "Taisc: a cross-platform mac protocol compiler and exe­
cution engine," in Computer Networks Journal,under review. Elsevier,
2016.

[4] P. Mackenzie, "Reconfigurable Software Radio Systems," Ph.D. disser­
tation, Trinity College Dublin, Dublin, Ireland, 2004.

[5] "Atheros Linux wireless driver (ATH9K),
https:llwireless. wiki. kernel. org/en/usersl drivers/ath9k1."

[6] E. WiSHFUL, "Deliverable 2.3., results of first set of showcases, eu
wishful," Tech. Rep., 2016 (http://www.wishful-project.eul), Tech. Rep.,
2016.

6

