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Abstract

We study three related topics in representation theory of classical Lie superalgebras. The
first one is classification of primitive ideals, i.e. annihilator ideals of simple modules, and
inclusions between them. The second topic concerns Arkhipov’s twisting functors on the
BGG category O. The third topic addresses deformed orbits of the Weyl group. These take
over the role of the usual Weyl group orbits for Lie algebras, in the study of primitive ideals
and twisting functors for Lie superalgebras.
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1 Introduction

The problem of classification of all modules over a semisimple finite dimensional Lie algebras is
very well-known to be wild in general. Even the problem of classification of all simple modules
seems to be for the moment out of reach apart from the smallest Lie algebra sl(2). This motivates
the study of general rough invariants of simple modules. One of the most natural such invariants
is the annihilator of a simple module, which is a primitive ideal of the universal enveloping
algebra. By now the structure of the primitive spectrum of the universal enveloping algebra
of a semisimple finite dimensional Lie algebra is well-understood. In [Du2] Duflo proved that
every primitive ideal is the annihilator ideal of a simple highest weight module. Later on Borho,
Dixmier, Garfinkle, Jantzen, Joseph and Vogan completed the classification by describing the
sets of highest weights for which these annihilator ideals coincide, see e.g. Chapter 5 and 14 in
[Ja]. Also all inclusions between primitive ideals have been classified, see e.g. [Vo] or Sections
14.15 and 16.4 in [Ja].

For finite dimensional Lie superalgebras the situation is much less understood, despite the
fact that several of the above results are generalised to some important cases. For classical Lie
superalgebras (see [Ka, Mu4]), an analogue of Duflo’s result was proved by Musson in [Mu1].
For classical Lie superalgebras of type I the classification of primitive ideals was then completed
by Letzter in [Le] who showed that there is a natural bijection between the primitive ideals of a
Lie superalgebra and those of its underlying Lie algebra. For inclusions between primitive ideals
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the situation is even more unclear, so far it has only been studied for the special cases sl(2|1)
and osp(1|2n) in [Mu2, Mu3].

For semisimple Lie algebras, the action of the centre of the universal enveloping algebra
separates simple highest weight modules in different orbits of the Weyl group. Therefore classical
results on primitive ideals are usually formulated in terms of combinatorics of the Weyl group
orbits. For Lie superalgebras, only typical orbits are similarly separated from each other and
from other (atypical) orbits. Atypical central characters correspond, in turn, to an infinite
number of different Weyl group orbits. It is therefore not a priori clear whether the orbits of
the Weyl group are the correct structures to e.g. describe inclusions between primitive ideals.
In [GG], Gorelik and Grantcharov use what they call a star action to deform orbits of the Weyl
group for the Lie superalgebra q(n) in order to classify bounded highest weight modules (the
latter problem is closely connected to the classification of a certain class of “large” primitive
ideals).

In the present paper we introduce analogous star actions for basic classical Lie superalgebras
using different ideas than the ones used in [GG] for q(n), namely, based on Serganova’s notion
of odd reflections and the naturally defined reflection for an even simple root. We show that the
star actions for basic classical Lie superalgebras and for q(n) are naturally related to twisting
functors and inclusions between annihilator ideals of simple highest weight modules. All those
star actions lead in general not to an action of the Weyl group, but to an action of an infinite
Coxeter group which projects onto the Weyl group.

This concept of our star actions for basic classical Lie superalgebras leads to several non-
equivalent star actions for one superalgebra. This indicates that there will exist more inclusions
between primitive ideals for Lie superalgebras than for Lie algebras. An important difference
between basic classical Lie superalgebras of type I and type II is that for those of type I the
usual Weyl group action is a particular choice of the star action, whereas for type II the latter
only holds for typical weights. For both types we prove that, for weights sufficiently far away
from the walls of the Weyl chamber which we call (weakly) generic, all star actions coincide
and lead to an action of the Weyl group. We similarly prove that in the generic region the star
action for q(n) leads to an action of the Weyl group.

We obtain a full classification of primitive ideals and their inclusions in the generic region
based on the star action. For basic classical Lie superalgebras of type II, this implies that
the description of these inclusions is not given by the usual undeformed Weyl group action.
For classical Lie superalgebras of type I, our methods lead to more conclusive results and we
rederive Letzter’s bijection, with the addition that all inclusions between primitive ideals for
the Lie algebras are preserved under this bijection. As noted before, different choices of star
actions provide a means to obtain additional inclusions, which we demonstrate explicitly for
singly atypical characters, confer [VdJ, VHKT]. Therefore star actions are important, on the
one hand, to describe the well-behaved structure in the generic region for type II and, on the
other hand, to explore the more complicated behaviour close to the walls of the Weyl chambers
for both types.

A usual way to study inclusions between annihilator ideals for simple highest weight modules
over Lie algebras is to use Joseph’s completion functors and Arkhipov’s twisting functors, see
[AS, KM, MS2] for more details on various versions of these functors. For example, the results
of [AS] directly connect the study of annihilator ideals with Kazhdan-Lusztig combinatorics.
This will be made explicit in the proof of Proposition 9.6. Twisting functors have already been
introduced in [CMW] for gl(m|n) and the special case of simple even roots, in order to obtain
equivalences of non-integral blocks for category O. In the present paper we study twisting
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functors for classical Lie superalgebras in full generality. In particular, we extend the result in
[CMW] on the equivalence of categories between different non-integral blocks. This is closely
related to the star action mentioned above, as it turns out that in the context of such equivalences
the role of the usual Weyl group is taken over by the new star action. We generalize to the Lie
superalgebra context most of the classical results on twisting functors, including their action
on simple highest weight modules, Verma modules and projective modules; description of the
derived functor and cohomology functors; and applications to the study of the cohomology of
simple highest weight modules.

The paper is organised as follows. In Section 2 we review necessary notions for classical Lie
superalgebras which are relevant to the rest of the paper. In Section 3 we extract some results
of [Ma1, Mu2, Mu3] which provide a full classification for the inclusions between primitive ideals
for the small rank Lie superalgebras osp(1|2), q(2) and sl(2|1). These serve as useful illustrations
but also as part of the derivation of the results for the other Lie superalgebras in further chapters.
In Section 4 we state some general technical facts about annihilator ideals, which are well-known
for Lie algebras and which extend naturally to Lie superalgebras. In Section 5 we define twisting
functors on category O and study their properties. A useful fundamental property, which will
imply that many classical results carry over, is that they intertwine the restriction and induction
functors between category O for the Lie superalgebra and its underlying Lie algebra. We study
the action of twisting functors on simple and Verma modules, prove that the derived functor
leads to an auto-equivalence of the bounded derived category Db(O) and establish their relation
with annihilator ideals. In Section 6 we use the equivalences of categories for (strongly) typical
blocks, proved by Gorelik in [Go3] for basic classical Lie superalgebras, by Serganova in [Se1]
for p(n) and by Frisk and the second author in [FM] for q(n), to classify inclusions between
primitive ideals for typical blocks. In Section 7 we introduce the notion of generic modules
similar to [Pe, PS] and obtain some preliminary results for such modules. Section 8 is devoted
to the star actions. In Subsection 8.1 we give the definition of a star action for basic classical
Lie superalgebras and illustrate their connection with twisting functors and primitive ideals.
Then we prove that all star actions become identical and regular in the generic region. In
Subsection 8.2 we focus on a central example of a star action for osp(m|2n). In Subsection 8.3
we prove that we can extend our results on star actions of basic classical Lie superalgebras to the
one for q(n) as defined in [GG]. In Sections 9 and 10 we study primitive ideals of respectively
q(n) and osp(m|2n). The main result is a full classification of primitive ideals, and all inclusions
between them, in the generic region. In Section 11 we focus on primitive ideals of classical
Lie superalgebras of type I. We reobtain Letzter’s bijection and describe inclusions between
primitive ideals. Finally, we make some remarks on the annihilator ideals of Verma modules
in Section 12. The main conclusion is that inclusions between such annihilators are naturally
described in terms of the usual Weyl group orbits, not by the star action.

2 Preliminaries

We work over C and set N = {1, 2, 3, . . . } and Z+ = {0, 1, 2, 3 . . . }. For a Lie (super)algebra
a, we denote by U(a) the corresponding universal enveloping (super)algebra and by Z(a) the
centre of U(a). Let g = g0 +g1 be a Lie superalgebra. From now on we assume that g is classical
in the sense that g0 is a finite dimensional reductive Lie algebra and g1 is a semi-simple finite
dimensional g0-module. We do not require g to be simple. The concrete subset of the classical
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Lie superalgebras we will consider is given by the following:

gl(m|n), sl(m|n), psl(n|n), osp(m|2n), D(2, 1;α), G(3), F (4), (2.1)

p(n), p̃(n), q(n), sq(n), pq(n) and psq(n).

For the definition of these algebras except the last four, see [Mu4]. The definition of the last
four Lie superalgebras (called superalgebras of queer or Q-type) can be found in Section 3.2 of
[Go4]. When the statements or proofs for the algebras of Q-type differ from the other cases we
will write them only explicitly for q(n). However, they also hold for the other three, where it
should be taken into account that the notion of strong typicality for sq(n) and psq(n) differs
from that for q(n). The Lie superalgebras p(n) and p̃(n) are the ones of strange type.

The classical Lie superalgebras of type I are the ones that possess a Z-gradation of the form

g = g−1 ⊕ g0 ⊕ g1 with g0 = g0 and g1 = g−1 ⊕ g1.

This restricts to gl(m|n), sl(m|n), psl(n|n), osp(2|2n), p(n) and p̃(n). The others are called
the classical Lie superalgebras of type II. Classical Lie superalgebras are called basic if they have
an even invariant form, see e.g. [Ka, Mu4], these are the ones on the first line of the list (2.1).

We fix a Cartan subalgebra h and Borel subalgebra b, see Chapter 3 in [Mu4]. Note that
all algebras we consider, except those of Q-type, have a purely even Cartan subalgebra h = h0.
The set of roots corresponding to h0 is denoted by ∆, so g = h +

∑
α∈∆ gα. The set of positive

(negative) roots corresponding to b is denoted by ∆+ (∆−), the subset of simple positive roots
by Π. The sets of even and odd roots are denoted respectively by ∆0 and ∆1 with similar
notation for positive and negative roots. We have the corresponding triangular decomposition

g = n− ⊕ h⊕ n+

with n+ = ⊕α∈∆+gα, n− = ⊕α∈∆−gα and b = h⊕ n+.
The Weyl group W acting on h∗

0
is the Weyl group W (g0 : h0) of the underlying Lie algebra.

This group is generated by the simple reflections sα for α simple in ∆+
0

. The basis of simple

roots in ∆+
0

is denoted by Π0. This basis is not to be confused with the the subset of simple

roots in ∆+ which are even, since, in general, Π0 6= Π∩∆0. The longest element of W is denoted
by w0.

We define

ρ0 =
1

2

∑
α∈∆+

0

α, ρ1 =
1

2

∑
α∈(∆+

1
∩(−∆−

1
))

α and ρ = ρ0 − ρ1.

We follow the convention of e.g. [Mu3, Mu4] to denote the ρ-shifted action of the Weyl
group by w · λ = w(λ + ρ)− ρ and the ρ0-shifted action by w ◦ λ = w(λ + ρ0)− ρ0. Note that
in the specific case g = q(n) this implies that w · λ = wλ, which leads to a different notational
convention from e.g. [FM, GG].

The Verma module with highest weight λ ∈ h∗
0

is denoted by

M (b)(λ) = U(g)⊗U(b) Lb(λ),

with Lb(λ) a b-module which is a simple h-module with trivial n+-action and on which h∗
0

acts
through the weight λ. This module Lb(λ) is uniquely defined up to parity change and is one
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dimensional if g is not of Q-type. Only for algebras of Q-type and only for certain choices of
λ the module Lb(λ) is invariant (up to isomorphism) under the parity change (see e.g. [Go4]
for details). Except for some algebras of Q-type it is possible to distinguish between a Verma
module and its parity changed by their super-character. Since it is not relevant for the purposes
of this paper, we will not make any explicit distinction between the two Verma modules with
the same highest weight. The unique simple quotient of a Verma module is the simple module
with highest weight λ. It is denoted by L(b)(λ), which is subject to the same parity change
issues as the corresponding Verma module. In most cases we will leave out the explicit reference
to the Borel subalgebra and denote the Verma module and its simple quotient by M(λ) and
L(λ), respectively. We denote by M0(λ) and L0(λ), respectively, the Verma module with highest
weight λ and the corresponding simple highest weight quotient for the Lie algebra g0.

For any α ∈ ∆+
0

we define α∨ = 2α/〈α, α〉. A weight λ ∈ h∗
0

is called integral if there is
a finite dimensional g-module for which the corresponding weight space is nonzero. The set of
integral weights is denoted by P. The subset of integral dominant weights is defined as

P+ = {λ ∈ h∗
0
| dimL(λ) <∞}.

Note that for an integral weight λ, the condition 〈λ, α∨〉 ∈ Z for α ∈ ∆+
0

is always satisfied.

Furthermore, we point out that, contrary to P, P+ depends on b.
For non-integral weights λ we define the subsystem of roots (known as the integral root

system)
∆0(λ) = {α ∈ ∆0 | 〈λ, α

∨〉 ∈ Z}, (2.2)

with corresponding integral Weyl group Wλ ⊂W generated by sα for α ∈ ∆0(λ). This integral
Weyl group can equivalently be defined as

Wλ = {w ∈W |w(λ)− λ ∈ P}, (2.3)

see Section 3.4 in [Hu]. The basis of simple roots in ∆(λ) ∩∆+ is denoted by Πλ. Then the set

W λ = {w ∈W |w(Πλ) ⊂ ∆+} (2.4)

is a set of left coset representatives for Wλ in W , see e.g. Lemma 15.3.6 in [Mu4].
For each classical Lie superalgebra there is a distinguished Borel subalgebra (distinguished

system of positive roots) as defined by Kac in [Ka]. In the distinguished system of positive roots
for Lie superalgebras of type I, each simple root in ∆+

0
is also simple in ∆+.

For α a root simple in ∆+
0

we say that a module M is α-free (respectively α-finite) if for a
non-zero Y ∈ (g0)−α the action of Y is injective (respectively locally finite) on M . Note that
for all algebras in the list (2.1) we have dim(g0)−α = 1. A simple module is either α-finite or
α-free. The following property then follows immediately from reduction to sl(2).

Lemma 2.1. Consider λ ∈ h∗
0

and α a simple root in ∆+
0

. For all classical Lie superalgebras g
we have that

L0(λ) is α-free ⇒ L(λ) is α-free.

This is equivalent to

L(λ) is α-finite ⇒ L0(λ) is α-finite.

If α or α/2 is also simple in ∆+ and (g1)α = 0, the implications can be reversed. In particular,
this is always the case if g is of type I with distinguished system of positive roots.
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As in [Ma1, Mu1, Mu2, Mu3], for any λ ∈ h∗
0

we use the notation

I(λ) = AnnU(g0)L0(λ) and J(λ) = AnnU(g)L(λ)

for primitive ideals of the underlying Lie algebra and the Lie superalgebra, respectively. Note
that the annihilator ideal of a g-module is the same as the annihilator ideal of the parity re-
versed module. The possible ambiguity in the definition of L(λ) is therefore not reflected in the
definition of J(λ).

We mention the following result on primitive ideals for g0, which can be obtained immediately
from Corollary 2.13 in [BJ] or Lemmata 5.4 and 5.6 in [Ja].

Lemma 2.2. Consider two g0-dominant weights Λ1,Λ2 with Λ1 −Λ2 ∈ P and u,w ∈W . Then
we have

I(u ◦ Λ1) ⊆ I(w ◦ Λ1) ⇔ I(u ◦ Λ2) ⊆ I(w ◦ Λ2).

We briefly review the notion of (strong) typicality for basic classical Lie superalgebras and
for q(n). Since we do not need the explicit definitions for atypical roots for Lie superalgebras of
strange type, we just refer to [PS, Se1].

Let g be basic classical. Typical weights λ ∈ h∗ are weights which satisfy 〈λ + ρ, γ〉 6= 0 for
any isotropic root γ ∈ ∆+

1
. Strongly typical weights are those which satisfy 〈λ+ρ, γ〉 6= 0 for any

odd root γ ∈ ∆+
1

, see [Go3]. This implies that for all basic classical Lie superalgebras, except
osp(2d + 1|2n) and G(3), strongly typical and typical are the same concept. An isotropic root
γ for which 〈λ + ρ, γ〉 6= 0 is called an atypical root for λ. It follows from the Harish-Chandra
isomorphism for basic classical Lie superalgebras (see e.g. Section 13.1 in [Mu4]) that the only
weights µ ∈ h∗ for which L(µ) admits the same central character as L(λ) for λ typical are in the
ρ-shifted Weyl group orbit of λ. Therefore the notion of a (strongly) typical central character
arises. In [Go3] Gorelik proved that strongly typical blocks in the category of g-modules are
equivalent to blocks of the category of g0-modules. For a strongly typical central character
χ : Z(g)→ C there exists a perfect mate, which is a central character χ̃ : Z(g0)→ C such that
the functors (

Indg
g0
−
)
χ

and
(

Resgg0
−
)
χ̃

(2.5)

are the functors inducing this equivalence of categories.
Now we consider g = q(n), then ∆+

0
= ∆+

1
= {εi − εj |1 ≤ i < j ≤ n}, so ρ = 0. A weight

λ ∈ h∗
0

is atypical with respect to α ∈ ∆+
1

if 〈λ, α〉 = 0, with εi − εj = εi + εj . The weight λ
is typical if it has no atypical roots. For the explicit definition of strongly typical weights see
e.g. [FM]. In that paper the result from [Go3] on equivalences of categories for strongly typical
blocks of basic classical Lie superalgebras was extended to strongly typical regular blocks of
q(n).

An important role will be played by odd reflections, see e.g. Section 3 in [Se2] or Section
3.5 in [Mu4]. Therefore we briefly review the concept below, we restrict to basic classical Lie
superalgebras here. Two systems of positive roots (of which we denote one by ∆+) which have
the same even positive roots (∆+

0
) are called adjacent if there is an isotropic root γ simple in

∆+ such that the other system of positive roots is equal to (∆+\γ) ∪ {−γ}. Then we also say
that the second system of positive roots is obtained from ∆+ by application of the odd reflection
corresponding to γ.

Now consider two arbitrary systems of positive roots ∆+ and ∆̂+, such that ∆+
0

= ∆̂+
0

.

Correspondingly we have two Borel subalgebras b and b̂, with b0 = b̂0. Theorem 3.1.3 in [Mu4]
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then states that there exists an ordered set of odd isotropic roots {γ(1), · · · , γ(p)} such that
the corresponding sequence of odd reflections is well defined and, starting from ∆+, eventually
yields ∆̂+. In particular, the root γ(1) is positive simple in ∆+, the root γ(2) is positive simple
in the second system of positive roots defined as

(
∆+\γ(1)

)
∪{−γ(1)} and so on. The procedure

is repeated until the odd reflection with respect to γ(p) yields ∆̂+.
How highest weights of the same highest weight module in different systems of positive roots

(with the same ∆+
0

) are related is summarised in the following lemma, confer Lemma 0.3 in
[PS].

Lemma 2.3. Let g be a basic classical Lie superalgebra with two Borel subalgebras b and b̂, such
that b0 = b̂0, which are related by the ordered set of odd isotropic roots {γ(1), · · · , γ(p)} as above.
The highest weight modules of a simple module in the different systems of positive roots,

L(b)(λ) ∼= L(b̂)(λ̂),

satisfies

λ̂ = λ+

q∑
i=1

γi + ρ− ρ̂ = λ−
p∑
j=1

γ(j) +

q∑
i=1

γi,

where the ordered subset {γ1, · · · , γq} ⊂ {γ(1), · · · , γ(p)} is given by the following recursive algo-
rithm. The root γ1 is equal to γ(i1) for i1 the smallest i1 such that 〈λ+ ρ, γ(i)〉 = 0. The root γs
is equal to γ(is) for is the smallest i > is−1 such that 〈λ+ γ1 + · · ·+ γs−1 + ρ, γ(i)〉 = 0.

Proof. Consider the Verma module M (b)(λ). The dimension of the weight space of weight λ−γ(1)

is one, since γ(1) is simple in ∆+. We denote a non-zero vector is this weight space by x. This
x is a highest weight vector if and only 〈λ, γ(1)〉 = 〈λ+ ρ, γ(1)〉 = 0.

Now we consider M (b)(λ) in the system of positive roots given by (∆+\γ(1))∪−γ(1). In this
system, the weight of x is the highest weight of M (b)(λ).

If x is not a highest weight vector (with respect to b), it generates M (b)(λ), showing that
M (b)(λ) is still a Verma module with respect to the new Borel subalgebra, but now with highest
weight λ − γ(1). Since the simple module is isomorphic to the quotient of this Verma module
with respect to its maximal submodule, the new highest weight is λ − γ(1). If x is a highest
weight vector (with respect to b), it is factored out in L(b)(λ), so L(b)(λ) is a quotient of the
module N := M (b)(λ)/(U(g)x). The highest weight of N is still λ in the new system of positive
roots.

From these considerations one obtains that the highest weight of the module L(b)(λ) in the
second system of positive roots is as follows:

• λ− γ(1) if 〈λ+ ρ, γ1〉 6= 0,

• λ if 〈λ+ ρ, γ1〉 = 0;

which corresponds to the proposed expression if p = 1. Then we proceed by induction. We
assume the formula is valid for the system of roots ∆̃+, which is the one obtained from ∆+ by

applying the odd reflections corresponding to {γ(1), · · · , γ(t)} with 1 ≤ t < p. If L(b)(λ) = L(b̃)(λ̃)

with λ̃ = λ+
∑q′

i=1 γi+ρ− ρ̃, then the highest weight in the new system of positive roots depends
on

〈λ̃, γ(t+1)〉 = 〈λ̃+ ρ̃, γ(t+1)〉 = 〈λ+

q′∑
i=1

γi + ρ, γ(t+1)〉,

from which the claim follows.
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Corollary 2.4. Let g be a basic classical Lie superalgebra with two Borel subalgebras b and
b̂ such that b0 = b̂0. If λ ∈ h∗ is typical, then we have the following isomorphism of Verma
modules for the different Borel subalgebras

M (b)(λ) = U(g)⊗U(b) Cλ ∼= U(g)⊗U(b̂) Cλ+ρ−ρ̂ = M (b̂)(λ+ ρ− ρ̂)

and the corresponding isomorphism of simple modules

L(b)(λ) ∼= L(b̂)(λ+ ρ− ρ̂).

We will use the BGG category O for Lie superalgebras, see e.g. [Ma2, Mu4]. One of the
equivalent ways of defining this category is as the subcategory in g-smod consisting of all objects
which are mapped to O0 under Resgg0

, with O0 being the corresponding BGG category for g0,

see [BGG, Hu]. The bounded derived category of O is denoted by Db(O). The indecomposable
projective cover of L(λ) in O is denoted by P (λ).

In the following paragraphs we study decompositions of O into subcategories related to
central characters, we leave out the strange algebras p(n) and p̃(n). The subcategory of O
corresponding to a central character χ : Z(g) → C is denoted by Oχ. For an atypical or a
typical non-integral central character, Oχ is not indecomposable. We introduce

h∗
0,dom

= {λ ∈ h∗
0
|λ is maximal with respect to the ρ-shifted action of Wλ}.

The category Oλ is then defined as the Serre subcategory of O generated by L(µ) ∈ Oχλ with
µ ∈ λ + P. According to the description of the integral Weyl group in equation (2.3) and the
condition on two weights to have the same central character, which can be found in Section 13.1
in [Mu4] for basic classical Lie superalgebras and in [Sv] for the algebras of Q-type, we have

L(µ) ∈ Oλ ⇔ µ = w · (λ−
∑

j kjγj) for some w ∈Wλ and a maximal

set {γj} of mutually orthogonal atypical roots of λ.

This shows that our definition of Oλ coincides with the particular case of gl(m|n) in [CMW].
From the definition and the property Z∆ ⊂ P it is also clear that there are no extensions
between modules in strictly different categories Oλ and Oλ′ .

We define an equivalence relation as follows:

for λ, µ ∈ h∗
0,dom

we set λ ∼ µ if λ− µ ∈ P and χλ = χµ.

In other words λ ∼ µ iff Oµ = Oλ. This yields the decomposition O =
⊕

λ∈h∗
0,dom

/∼Oλ, where

an arbitrary representative in h∗
0,dom

is chosen for each element of the quotient h∗
0,dom

/ ∼. In

particular, we also have

Oχλ =
⊕
w∈Wλ

Ow·λ. (2.6)

If g is a reductive Lie algebra, the equivalence relation ∼ becomes trivial and the usual decom-
position into indecomposable blocks is obtained.

For the superalgebras p(n) and p̃(n), the corresponding universal enveloping algebra does
not have a relevant centre Z(g). Whenever Oχ is used we silently assume that it is just given
by O for those algebras. The subcategory Oλ is thus the Serre subcategory generated by the
simple modules {L(µ) |µ ∈ λ+ P}.
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3 Primitive ideals for osp(1|2), q(2) and sl(2|1)
In this section we review the classification of primitive ideals and inclusions between them for
osp(1|2), q(2) and sl(2|1), as can be found in [Ma1, Mu2, Mu3]. The underlying Lie algebras for
these Lie superalgebras are sl(2) or gl(2), so the Weyl groups are all isomorphic to Z2.

3.1 Primitive ideals for osp(1|2)

The Cartan subalgebra of osp(1|2) is one-dimensional. There is one even positive root α and
one odd positive root α/2. All weights of osp(1|2) are typical, so all inclusions between primitive
ideals can be obtained from the results in the subsequent Section 6. These inclusions also follow
from the results of Musson in Theorem B and Theorem 1.4 in [Mu3] or Pinczon in [Pi].

Proposition 3.1. Consider g = osp(1|2) and s the only non-trivial element of the Weyl group.
The only inclusions between primitive ideals are given by

• AnnU(g)L(µ) = AnnU(g)L(λ) for λ not integral and µ = s · λ,

• AnnU(g)L(µ) ( AnnU(g)L(λ) for λ integral dominant and µ = s · λ.

3.2 Primitive ideals for q(2)

The Cartan subalgebra h of q(2) has super dimension 2|2. There is one even positive root ε1− ε2
which is also an odd root. A weight λ ∈ h∗

0
is integral if 〈λ, ε1 − ε2〉 ∈ Z, it is dominant if

〈λ, ε1 − ε2〉 ∈ N or if λ = 0.
Proposition 8 in [Ma1] classifies primitive ideals for q(2). Even though it is not stated

explicitly in the proposition, inclusions between primitive ideals can also be derived from the
proof. This can be summarised in terms of the star action defined as follows:

s ∗ λ = sλ if 〈λ, ε1 + ε2〉 6= 0 and s ∗ λ = sλ− ε1 + ε2 if 〈λ, ε1 + ε2〉 = 0,

see Section 8.3 for more details on this star action.

Proposition 3.2. Consider g = q(2) and s the only non-trivial element of the Weyl group. The
only inclusions between primitive ideals are given by

• AnnU(g)L(µ) = AnnU(g)L(λ) for λ not integral and µ = s ∗ λ,

• AnnU(g)L(µ) ( AnnU(g)L(λ) for λ integral dominant and µ = s ∗ λ.

Simple modules over pq(2), sq(2) and psq(2) are discussed in Subsections 3.10, 3.11 and 3.12
of [Ma1].

3.3 Primitive ideals for sl(2|1)

The Cartan subalgebra of sl(2|1) is 2-dimensional. The distinguished system of positive roots
has simple roots ε1 − ε2 and ε2 − δ. Weights are given by k1ε1 + k2ε2 + lδ with k1 + k2 + l = 0.
Inclusions between primitive ideals for sl(2|1) were classified by Musson in Theorem 3.1 in [Mu2].

Proposition 3.3. Consider g = sl(2|1) and s the only non-trivial element of the Weyl group.
The only inclusions between primitive ideals are given by

9



• AnnU(g)L(µ) = AnnU(g)L(λ) for 〈λ, ε1 − ε2〉 6∈ Z and µ = s · λ,

• AnnU(g)L(µ) ( AnnU(g)L(λ) for 〈λ+ ρ, ε1 − ε2〉 ∈ N and µ = s · λ and

• AnnU(g)L(ε2 − δ) ( AnnU(g)L(0).

4 Technical tools for primitive ideals

For a central character χ : Z(g)→ C and a module M ∈ O we define

Mχ = {v ∈M | (z − χ(z))kv = 0 for all z ∈ Z(g) for some k depending on z}.

Any module in O decomposes into such modules corresponding to different central characters.
The following result is an immediate generalisation of the ideas in Section 2.7 in [BJ] or Section
5.3 in [Ja].

Lemma 4.1. Consider a g-module M ∈ O and a central character χ : Z(g) → C, with the
corresponding maximal ideal mχ = kerχ ∈ SpecZ(g) and the two-sided ideal Iχ = U(g)mχ in
U(g). If the submodule Mχ admits the central character χ, i.e. mχMχ = 0, then we have the
equality

AnnU(g)Mχ = Iχ + AnnU(g)M.

If the condition mχMχ = 0 is dropped, we have the more general equality√
AnnU(g)Mχ =

√
Iχ + AnnU(g)M,

where
√
X stands for the intersection of all prime ideals containing X.

Proof. The module M decomposes as M = Mχ
⊕
⊕ki=1Mχi for k other central characters χi. If

mχMχ = 0, then Iχ ⊂ AnnU(g)Mχ. Therefore

Iχ + AnnU(g)M = Iχ +
(
∩ki=1AnnU(g)Mχi ∩ AnnU(g)Mχ

)
=

(
Iχ + ∩ki=1AnnU(g)Mχi

)
∩ AnnU(g)Mχ.

The ideal Iχ + ∩ki=1AnnU(g)Mχi contains the entire centre Z(g) since mχ is a maximal ideal.

Since 1 ∈ Z(g), we have
(
Iχ + ∩ki=1AnnU(g)Mχi

)
= U(g) and the first statement follows.

Now we consider the general case and we set χ0 := χ. Let Q be a prime ideal which contains
Iχ + AnnU(g)M . Since AnnU(g)M ⊂ Q, there is an 0 ≤ i ≤ k for which AnnU(g)Mχi ⊂ Q.

Furthermore, there is an l ∈ N such that I l
χi
⊂ AnnU(g)Mχi , thus Iχi ⊂ Q follows. Since

Iχ0 ⊂ Q and Iχ0 + Iχi = U(g) if i 6= 0, we obtain AnnU(g)Mχ ⊂ Q.
If Q is a prime ideal which contains AnnU(g)Mχ, then similarly Iχ ⊂ Q and naturally

AnnU(g)M ⊂ AnnU(g)Mχ ⊂ Q, so Q contains Iχ + AnnU(g)M , which completes the proof.

This leads immediately to the following conclusion.

Corollary 4.2. Assume that for two g-modules we have AnnU(g)M ⊆ AnnU(g)N . If for a central
character χ : Z(g)→ C we have Mχ = 0, then Nχ = 0 follows.

Proof. Lemma 4.1 implies that U(g) ⊆
√

AnnU(g)Nχ. Since AnnU(g)Nχ 6= U(g) would imply
that AnnU(g)Nχ is contained in a non-trivial maximal ideal, the result Nχ = 0 follows.

10



As in Lemma 15.3.17 in [Mu4] or in Section 2.4 in [BJ], we have the following result.

Lemma 4.3. For two g-modules M and E with E finite dimensional and simple, the annihilator
ideal of the tensor product M ⊗ E is given by

∆−1(AnnU(g)M ⊗ U(g) + U(g)⊗AnnU(g)E)

where ∆ : U(g)→ U(g)⊗ U(g) is the comultiplication of the Hopf superalgebra U(g).

The following lemma corresponds to Lemma 7.6.15 in [Mu4] or Lemma 3.8 in [BJ].

Lemma 4.4. Consider a subalgebra a of g. The annihilator ideal of the g-module Indg
aM for an

a-module M satisfies

AnnU(g)Indg
aM = AnnU(g)

(
U(g)/

(
U(g)AnnU(a)M

))
.

In particular, for two a-modules M1 and M2 it follows that

AnnU(a)M1 ⊆ AnnU(a)M2 implies AnnU(g)Indg
aM1 ⊆ AnnU(g)Indg

aM2.

An immediate consequence for classical Lie superalgebras is that annihilator ideals of simple
finite dimensional modules can never coincide.

Corollary 4.5. If Λ ∈ P+ and µ ∈ h∗
0

are such that J(Λ) = J(µ), then Λ = µ.

Proof. The Gelfand-Kirillov dimension immediately implies that L(µ) is finite dimensional as
well, so also µ is integral dominant and we write Λ1 = Λ, Λ2 = µ.

If Λ1 6= Λ2, we can assume without loss of generality that Λ1 6< Λ2. It follows immediately
that

(
Resgg0

L(Λ2)
)
χ0

Λ1

= 0 while
(
Resgg0

L(Λ1)
)
χ0

Λ1

= L0(Λ1). Corollary 4.2 applied to the Lie

algebra g0 therefore yields the inequality J(Λ1) ∩ U(g0) 6= J(Λ2) ∩ U(g0), which concludes the
proof.

The following results are applications of the ideas for primitive ideals of Lie algebras in
Section 15.3 in [Ja] or Section 15.3.2 in [Mu4]. A parabolic subalgebra p of g, see [Ma2, Mu4],
is a subalgebra that contains the Borel subalgebra b = h ⊕ n+. We have the corresponding
parabolic decomposition

g = u− ⊕ l⊕ u+

with p = l⊕u+, where l is the Levi subalgebra and u+ the radical of p. Define ζl : U(g)→ U(l) as
the corresponding partial Harish-Chandra projection with kernel u−U(g) +U(g)u+. The simple
l-module with highest weight λ is denoted by Ll(λ) ∼= L(λ)u

+
, with Mu+

the l-module consisting
of vectors in the g-module M annihilated by all elements of u+, and the corresponding primitive
ideal by Il(λ) = AnnU(l)Ll(λ).

Lemma 4.6. The primitive ideal J(λ) for λ ∈ h∗
0

can be expressed as

J(λ) = {u ∈ U(g)|ζl(u1uu2) ∈ Il(λ) for all u1, u2 ∈ U(g)}.

Proof. Since the augmented ideal U(u−)+ = u−U(u−) is stable under the adjoint l-action,
L(λ)u

+ ∩ u−L(λ) = 0 follows. Therefore we have the decomposition of l-modules

L(λ) = L(λ)u
+ ⊕ u−L(λ).

11



We denote the l-invariant projection of L(λ) onto L(λ)u
+ ∼= Ll(λ), orthogonal to u−L(λ), by P.

If u ∈ J(λ), then, in particular, P(uv) = 0 for every v ∈ L(λ)u
+

. The decomposition above
implies P(uv) = ζl(u)v, so ζl(u) ∈ Il(λ). Since J(λ) is an ideal, u1uu2 is also in J(λ) and we
obtain

J(λ) ⊂ {u ∈ U(g)|ζl(u1uu2) ∈ Il(λ) for all u1, u2 ∈ U(g)}.

Now assume that for an u ∈ U(g) we have that ζl(u1uu2) ∈ Il(λ) for all u1, u2 ∈ U(g) but
u 6∈ J(λ). Then there are nonzero x, y ∈ L(λ) such that y = ux. Since L(λ) is a simple g-module,
we can write x = u2x

′ and y′ = u1y for some u1, u2 ∈ U(g) and nonzero x′, y′ ∈ L(λ)u
+

, which
gives y′ = u1uu2x

′. This leads to a contradiction with ζl(u1uu2) ∈ Il(λ).

Corollary 4.7. Consider g a classical Lie superalgebra with parabolic subalgebra p = l + u+. If
Il(λ) ⊂ Il(µ), then J(λ) ⊂ J(µ).

Proof. According to Lemma 4.6, u ∈ J(λ) implies that ζl(u1uu2) ∈ Il(λ) for all u1, u2 ∈ U(g),
so, in particular, ζl(u1uu2) ∈ Il(µ) for all u1, u2 ∈ U(g). Again by Lemma 4.6, this implies that
u ∈ J(µ).

This implies that Corollary 5.14 in [Ja] on simple reflections for Lie algebras can be gener-
alised to reflections for even simple roots for Lie superalgebras.

Lemma 4.8. Consider g in list (2.1), but not of queer type. If α simple in ∆+
0

and either α or

α/2 is a simple even root in ∆+, then

• J(sα · λ) = J(λ) if 〈λ, α∨〉 6∈ Z,

• J(sα · λ) ⊂ J(λ) if 〈λ, α∨〉 ∈ Z and sα · λ < λ.

Proof. Since α (respectively α/2) is simple we can define a parabolic subalgebra b ⊕ g−α (re-
spectively b ⊕ g−α/2 ⊕ g−α). The Levi subalgebra is given by sl(2) (respectively osp(1|2)), so
the result follows from the combination of Corollary 4.7 and the result for sl(2) or osp(1|2), see
Proposition 3.1.

5 Twisting functors on category O
For each simple root α in ∆+

0
we define an endofunctor Tα on O. This extends, similarly as in

[CMW], the concept of the corresponding functors for semisimple Lie algebras, originally defined
by Arkhipov in [Ar] and further investigated in more detail in [AL, AS, KM, MS2].

For α ∈ Π0, fix a nonzero Y ∈ (g0)−α and let U ′α be the (Ore) localisation of U(g) with
respect to powers of Y . Then U(g) is a subalgebra of the associative algebra U ′α and the
quotient Uα := U ′α/U(g) has the induced structure of a U(g)-U(g)–bimodule. Let ϕ = ϕα be
an automorphism of g that maps (gi)β to (gi)sα(β) for all β ∈ Π and i ∈ {0, 1}, which can
be constructed as in Definition 2.3.4 in [Ar]. Finally, consider the bimodule ϕUα, which is
obtained from Uα by twisting the left action of U(g) by ϕ. The same construction applied to

the underlying Lie algebra g0 leads to the U(g0)-U(g0) bimodule ϕU0
α.

The functors on g-smod and g0-mod corresponding to tensoring with these bimodules are

denoted by Tα = ϕUα ⊗U(g) − and T 0
α = ϕU0

α ⊗U(g0) −. The latter is the twisting functor
on category O0 from [AL, AS, Ar, KM]. The following lemma proves that Tα also defines an
endofunctor of O, which we also call the twisting functor.
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Lemma 5.1. The functor Tα restricts to an endofunctor of O. The induction and restriction
operators intertwine the twisting functors (up to isomorphism of functors):

Tα ◦ Indg
g0

∼= Indg
g0
◦ T 0

α and Resgg0
◦ Tα ∼= T 0

α ◦ Resgg0
.

Proof. The isomorphism of g × g0-modules Uα ∼= U(g) ⊗U(g0) U
0
α implies an isomorphism of

functors as follows:

Uα ⊗U(g) U(g)⊗U(g0) − ∼= Uα ⊗U(g0) − ∼= U(g)⊗U(g0) U
0
α ⊗U(g0) −,

which proves that Tα◦Indg
g0

∼= Indg
g0
◦T 0

α as functors on O0. The proof of the second isomorphism

Resgg0
◦ Tα ∼= T 0

α ◦ Resgg0
is identical to the one of Lemma 3 in [KM]. The fact that Tα takes

elements of O to elements of O then follows from this second property, the definition of O as
the category of g-modules which gets mapped by Resgg0

to O0 and the fact that the functor Tα
0

is an endofunctor of O0.

An interesting case is when α is a simple root of ∆+
0

and α/2 ∈ ∆+
1

. Then one could also
define a twisting functor by using the localisation of U(g) with respect to a non-zero element in
Z ∈ (g1)−α/2. For the algebras in the list (2.1) this can only occur for osp(m|2n) with m odd
and for G(3). For those cases [Z,Z] gives a non-zero element of (g0)α. The following Lemma
then shows that this approach yields an isomorphic twisting functor.

Lemma 5.2. For α simple in ∆+
0

and α/2 ∈ ∆+
1

, the Ore localisation of U(g) with respect
to the powers of a nonzero Y ∈ (g0)−α is isomorphic, as an U(g)-U(g)-bimodule, to the Ore
localisation of U(g) with respect to the powers of a nonzero Z ∈ (g1)−α/2.

Proof. This follows immediately from the fact that up to a non-zero multiplicative constant we
have the relation Z2 = Y in U(g).

As in the classical case, twisting functors satisfy braid relations, in particular, we have the
following statement.

Lemma 5.3. Consider w ∈W with two reduced expressions w = sα1 · · · sαk and w = sβ1 · · · sβk ,
then we have

Tα1 ◦ Tα2 ◦ · · · ◦ Tαk ∼= Tβ1 ◦ Tβ2 ◦ · · · ◦ Tβk .

Proof. Mutatis mutandis Corollary 11 (including Lemma 13 and Theorem 11) in [KM].

Lemma 5.4. The functor Tα is right exact. The left derived functor LTα : Db(O) → Db(O)
satisfies LiTα = 0 for i > 1.

Furthermore, for M ∈ O we have the properties{
TαM = 0, if M is α-finite;

L1TαM = 0, if M is α-free.

Proof. The right exactness is immediate from construction.
The property LiT 0

α = 0 for i > 1 is proved in Theorem 2.2 in [AS]. Also the properties on

α-free and α-finite modules for T 0
α follow from [AS]. Now we look at the right exact functor

Resgg0
◦ Tα = T 0

α ◦ Resgg0
: O → O0.
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Since Resgg0
is exact, Tα sends projective modules to Resgg0

-acyclic modules. Conversely, since

projective modules in O are α-free, Resgg0
sends projective modules to T 0

α-acyclic modules (using

the properties of T 0
α stated earlier). The Grothendieck spectral sequence (see Section 5.8 in

[We]) therefore yields

Resgg0
◦ LiTα = LiT 0

α ◦ Resgg0
(5.1)

for i ∈ N. All properties in the lemma follow from this observation and the corresponding
properties of T 0

α.

Lemma 5.5. Consider α simple in ∆+
0

and λ ∈ h∗
0
, then chTαM(λ) = chM(sα · λ).

Proof. The PBW theorem implies that the g0-module Resgg0
M(λ) has a filtration by Verma

modules for g0, where the set of occurring highest weights is given by

{λ+
∑
β∈I

β|I ⊂ ∆−
1
}.

If g is of Q-type, the weights in the set above appear with a certain constant multiplicity,
otherwise exactly once.

Lemma 5.4 for g0 and Lemma 5.1 then imply that chTαM(λ) is equal to the sum of the

characters of T 0
α acting on the Verma modules in the filtration. Lemma 6.2 in [AL] shows that

chT 0
αM0(µ) = chM0(sα ◦ µ) for any µ ∈ h∗

0
. The character of TαM(λ) is therefore equal to the

sum of the characters of Verma modules of g0 with highest weights

{sα ◦ (λ+
∑
β∈I

β)|I ⊂ ∆−
1
} = {sα · λ+

∑
β∈I

β|I ⊂ ∆−
1
},

which is a standard equality, see e.g. Section 0.5 in [Mu3]. This proves the lemma.

Corollary 5.6. Let g be a Lie superalgebra in the set {sl(2), osp(1|2), q(2)}. Consider λ ∈ h∗
0
,

which is assumed to be strongly typical in case g = q(2), then

TαM(λ) = M(sα · λ) if 〈λ, α∨ + ρ〉 ≥ 0 or 〈λ, α∨〉 6∈ Z.

Proof. In all of these cases the module M(sα ·λ) is simple, see [Ma1] for the case g = q(2). Since
the simple modules are determined (up to possible disregarded parity) by their character, the
property follows from Lemma 5.5.

Lemma 5.7. Consider α simple in ∆+
0

and λ ∈ h∗
0
. Assume that either

• α ∈ Π or α/2 ∈ Π with (g1)α = 0 or

• λ is typical.

Then TαM(λ) = M(sα · λ) if 〈λ+ ρ, α∨〉 ≥ 0 or 〈λ+ ρ, α∨〉 6∈ Z.

Before proving this lemma we note that in the remaining case, namely 〈λ+ρ, α∨〉 ∈ −N, the
module TαM(λ) corresponds to a twisted (or shuffled) Verma module, see [AL]. In this paper
we do not study such modules.
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Proof. First we assume that g is not of Q-type.
If α or α/2 is a simple root, then Verma modules can be defined through a two-step parabolic

induction, as in the equation below. If α is simple, the parabolic subalgebra is pα := b+ g−α, if
α/2 is simple, then pα := b + g−α/2 + g−α. The Verma module is then given by

M (b)(λ) ∼= U(g)⊗U(pα) U(pα)⊗U(b) Lb(λ).

The structure of the module TαM(λ) then follows from the corresponding properties for sl(2)
or osp(1|2) (the Levi algebra of the two types of parabolic subalgebras) in Corollary 5.6 as in
Section 6.6 in [AL].

The situation where α is simple in ∆+
0

but not in ∆+ excludes g to be in the family of
strange algebras p(n), so we are left with basic classical Lie superalgebras. Therefore we choose
a Borel subalgebra b̂ of g containing b0 in which α or α/2 is a simple root. Since λ is typical,

Corollary 2.4 implies that M (b)(λ) = M (b̂)(λ+ ρ− ρ̂). Using the previous result then yields

TsαM
(b)(λ) = M (b̂)(sα(λ+ ρ)− ρ̂), from which the claim follows.

Now let g be of Q-type. Since ∆+
0

= ∆+
1

, the condition (g1)α = 0 is never satisfied. The
statement regarding strongly typical highest weights follows from Lemma 5.1 and the fact that
the equivalence of categories in [FM] maps Verma modules to Verma modules if λ is regular.
The general case follows from reducing to Corollary 5.6 for q(2), through parabolic induction as
for sl(2) and osp(1|2).

Lemma 5.8. Consider λ ∈ h∗
0

with 〈λ, α∨〉 6∈ Z. Then TαL(λ) is simple and T 2
αL(λ) = L(λ).

Proof. Theorem 2.1 in [CMW] implies T 0
αL0(ν) = L0(sα ◦ ν) if 〈ν, α∨〉 6∈ Z. Every simple g0-

module in the Jordan-Hölder decomposition of Resgg0
L(λ) is of the form L0(ν) with 〈ν, α∨〉 6∈ Z

and therefore α-free. The left cohomology functors of T 0
α therefore annihilate any modules

composed with these modules L0(ν), according to Lemma 5.4 applied to g0. Lemma 5.1 then
implies that Resgg0

TαL(λ) has a filtration with subquotients {L0(sα ◦ ν)}, if Resgg0
L(λ) has a

filtration with subquotients {L0(ν)}.
Now assume that the module TαL(λ) has a Jordan-Hölder decomposition with subquotients

{L(λi)|i = 1, · · · , k}, where k > 0 and 〈λi, α∨〉 6∈ Z because of the previous paragraph. Then
each TαL(λi) has a Jordan-Hölder decomposition with subquotients {L(λij)|j = 1, · · · , ki}, with
ki > 0. The previous considerations imply

chL(λ) =

k∑
i=1

ik∑
j=1

chL(λij)

and therefore k = 1 with TαL(λ) = L(λ1) and TαL(λ1) = L(λ).

Lemma 5.9. For V a simple finite dimensional g-module, the endofunctors of O given by
Tα ◦ (−⊗ V ) and (−⊗ V ) ◦ Tα are isomorphic. The same property holds for the functors LiTα.

Proof. Consider an arbitrary M ∈ O. Since the Ore localisation of the beginning of this section
only concerns even elements, the proof of this fact can be completed by considerations for Lie
algebras made in [AS], therefore we only sketch it. The comultiplication of the Hopf superalgebra
U(g) can be extended to U ′α, by the exact same formula as in Lemma 3.1 in [AS]. As in the
beginning of the proof of Theorem 3.2 in [AS], this comultiplication yields an U(g)-isomorphism

U ′α ⊗U(g) (M ⊗ V ) ∼=
(
U ′α ⊗U(g) M

)
⊗ V.
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By factoring out the submodule

U(g)⊗U(g) (M ⊗ V ) ∼= M ⊗ V ∼=
(
U(g)⊗U(g) M

)
⊗ V

on both sides and twisting the action of g by ϕ, one obtains

ϕUα ⊗U(g) (M ⊗ V ) ∼=
(
ϕUα ⊗U(g) M

)
⊗ ϕV.

Since twisting the action of g0 by (the restriction of) ϕ on a simple finite dimensional g0-module
yields an isomorphic module (which follows from the central character), we have that chϕV =
chV . Since V was assumed to be simple, we have ϕV ∼= V , so Tα(M ⊗ V ) = TαM ⊗ V . The
naturality of the construction then yields an isomorphism between Tα◦(−⊗V ) and (−⊗V )◦Tα.

Since the functors (− ⊗ V ) are exact functors, which map projective modules to projective
modules, the isomorphism for the cohomology functors follows from the Grothendieck spectral
sequence, see Section 5.8 in [We].

Denote by S0
α (respectively Sα) the subfunctor of the identity functor on O0 (respectively O)

given by taking the maximal α-finite submodule. Correspondingly we denote by Z0
α (respectively

Zα) the subfunctor of the identity functor on O0 (respectively O) given by taking the maximal
α-finite quotient. These functors also intertwine the functors Resgg0

and Indg
g0

and commute as
functors with taking tensor products with finite dimensional representations.

Proposition 5.10. We have the following isomorphisms of endofunctors on O;

L1Tα ∼= Sα and R1Gα ∼= Zα.

Proof. We use the equivalence of categories of Gorelik in [Go3] (restricted to categoryO) between
Oχ and (O0)χ̃ for a strongly typical central character χ and a matching character χ̃ for the
underlying Lie algebra. The functors for this equivalence are given in equation (2.5). Based on
equation (5.1), we find that on Oχ

L1Tα ∼=
(

Indg
g0
−
)
χ
◦ L1T

0
α ◦
(

Resgg0
−
)
χ̃
,

where Sα is in the same way generated by S0
α. On a strongly typical block the equivalence

therefore follows from the classical case in Theorem 2(2) in [MS2].
In particular, this implies that L1Tα and Sα coincide on the full additive subcategory of O

generated by one integral dominant strongly typical injective module. Every indecomposable
injective module in O is a direct summand of the tensor product of a strongly typical integral
dominant injective module and a finite dimensional representation, which is a consequence of
the fact that the set of strongly typical weights is closed in the Zariski topology, while the set of
integral dominant ones is dense. Since both L1Tα and Sα commute as functors with the functors
corresponding to taking the tensor product with finite dimensional modules, see Lemma 5.9, it
follows that the two functors are isomorphic on the full subcategory of injective modules in O.
Since both are left exact, this suffices to conclude that they are equivalent on O. The proof for
Gα is completely analogous, using projective modules.

We have the following generalisation of Corollary 4.2 in [AS] and Theorem 2.1 in [CMW].

Proposition 5.11. For any central character χ : Z(g)→ C, the left derived functor LTα is an
auto-equivalence of the bounded derived category Db(Oχ).
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Proof. To prove that Tα preserves every block Oχ, it suffices to prove that the action induced
on the Grothendieck group K(O) preserves the blocks K(Oχ). Since the Verma modules in Oχ
induce a basis of the Grothendieck group K(Oχ), the property follows from Lemma 5.5. The
left derived functor LTα therefore defines an endofunctor of Db(Oχ).

Decomposition (2.6) implies a decomposition of categories Oχ = Oα i.
χ ⊕ Oαn.i.

χ , where the

simple modules L(µ) in Oα i.
χ satisfy 〈µ, α∨〉 ∈ Z and the simple modules L(µ) in Oαn.i.

χ satisfy
〈µ, α∨〉 6∈ Z.

Lemma 5.8 implies that Tα yields a bijection of the simple modules in Oα n.i.
χ , while Propo-

sition 5.10 implies that Tα is exact. Similarly to the proof of Theorem 2.1 of [CMW] one then
shows that Tα induces an self-equivalence of Oαn.i.

χ .

Now we prove that LTα is an auto-equivalence of Db(Oα i.
χ ), where Oα i.

χ decomposes into
blocks Oλ with 〈λ, α∨〉 ∈ Z. We denote by Gα the (right) adjoint functor to Tα on O, which

by definition is left-exact. Similarly, denote by G0
α the (right) adjoint functor to T 0

α on O0.
Applying the adjunction automorphism to Lemma 5.1 we get that

Gα ◦ Indg
g0

∼= Indg
g0
◦G0

α and Resgg0
◦Gα ∼= G0

α ◦ Resgg0
. (5.2)

For a projective module P ∈ O, consider the adjunction morphism P → Gα ◦TαP . Applying
Resgg0

and using Lemma 5.1, isomorphisms (5.2), the fact that Resgg0
P is projective in O0 and

Corollary 4.2 in [AS], we get that Resgg0
P → Resgg0

Gα ◦TαP ∼= G0
α ◦T 0

α Resgg0
P is an isomorphism

and thus we also get that P → Gα ◦ TαP is an isomorphism. Similarly one shows that for any
injective module I ∈ O the adjunction morphism Tα ◦GαI → I is an isomorphism.

Similarly to Theorem 5.9 in [MS1] it follows that RGα ◦ LTα is isomorphic to the identity
functor on D−(Oα i.

χ ) and that LTα ◦ RGα is isomorphic to the identity functor on D+(Oα i.
χ ).

Since Db(Oα i.
χ ) is the intersection of D−(Oα i.

χ ) and D+(Oα i.
χ ), the claim follows.

As a consequence of Proposition 5.11, we can generalise the equivalence of categories in
Proposition 3.9 of [CMW]. Since we can describe this result more precisely using the star
action, we postpone this statement to the subsequent Proposition 8.6.

Now we prove how the twisting functor and its left cohomology functors behave with respect
to arbitrary simple modules in O.

Theorem 5.12. Consider λ ∈ h∗
0

and α simple in ∆+
0

.
(i) If L(λ) is α-finite, then

TαL(λ) = 0 and L1TαL(λ) ∼= L(λ).

(ii) If L(λ) is α-free with 〈λ, α∨〉 ∈ Z, then

• L1TαL(λ) = 0,

• TαL(λ) has simple top isomorphic to L(λ),

• the kernel of TαL(λ) � L(λ) is an α-finite module,

• dim HomO (L(µ), TαL(λ)) = dim Ext1
O(L(µ), L(λ)) for all L(µ) which are α-finite.

(iii) If 〈λ, α∨〉 6∈ Z, then L1TαL(λ) = 0 and TαL(λ) is a simple module.
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Proof. First consider L(λ) to be α-finite. The first property is a part of Lemma 5.4. The second
property follows from Proposition 5.10.

Now consider L(λ) to be α-free with 〈λ, α∨〉 ∈ Z. First we study chTαL(λ). For this we can
restrict to the reductive Lie algebra a = h0 ⊕ (g0)α ⊕ (g0)−α, which is isomorphic to the direct
sum of its centre with sl(2). The combination of Lemma 3 in [KM] and Lemma 5.1 implies
ResgaTαL(λ) = T a

αResgaL(λ), with T a
α the twisting functor for sl(2). Since L(λ) is a simple (and

therefore self-dual in O) α-free module, it follows that ResgaL(λ) is a tilting module for sl(2).
Lemma 4 in [KM] therefore yields chTαL(λ) = chL(λ) ⊕ chN with N an α-free module. This
implies that the only α-free simple subquotient of TαL(λ) is L(λ) (occurring with multiplicity
one). The remainder of the proof is identical to the proof of Theorem 6.3 in [AS], by using
Proposition 5.11.

Finally, consider 〈λ, α∨〉 6∈ Z, then L1TαL(λ) = 0 follows from Lemma 5.4 and TαL(λ) is
simple by Lemma 5.8.

Remark 5.13. The highest weight of the simple module TαL(λ) if 〈λ, α∨〉 6∈ Z is given by
the star action of sα on λ, as will be developed in Section 8. If α or α/2 is simple in ∆+ and
(g1)α = 0, then TαL(λ) = L(sα · λ).

Corollary 5.14. For λ ∈ h∗
0

with 〈λ, α∨〉 ∈ Z and L(λ) α-free we have the following isomor-
phisms:

SocTαL(λ) ∼= Soc RadTαL(λ) ∼= Top RadTαL(λ).

Proof. The first isomorphism is trivial. Theorem 5.12(ii) implies there is a short exact sequence
RadTαL(λ) ↪→ TαL(λ) � L(λ). For an arbitrary L(µ), which is α-finite, we apply the left exact
contravariant functor HomO(−, L(µ)) to this exact sequence, yielding a long exact sequence.
The results of Theorem 5.12(ii) imply that this exact sequence reduces to

0→ HomO(RadTαL(λ), L(µ))→ Ext1
O(L(λ), L(µ))→ Ext1

O(TαL(λ), L(µ))→ · · · .

By Theorem 5.12(ii) we have dim Ext1
O(L(λ), L(µ)) = dim HomO(L(µ), TαL(λ)), so it suffices

to prove Ext1
O(TαL(λ), L(µ)) = 0. According to Proposition 5.11, Theorem 5.12(i) and using a

reasoning as in the proof of Theorem 5.12, it follows that this first extension is isomorphic to
HomO(L(λ), L(µ)) = 0.

Now we study how twisting functors are related to annihilator ideals.

Lemma 5.15. If L(λ) is α-free, we have AnnU(g)TαL(λ) = AnnU(g)L(λ). If L(λ) is α-finite,
AnnU(g)TαL(λ) = U(g).

Proof. When L(λ) is α-finite, the result follows from Theorem 5.12(i). Thus from now on we
assume that L(λ) is α-free.

The set Y of powers of Y ∈ g−α used for the Ore localisation then satisfies Y ∩ J(λ) = ∅.
Therefore J(λ)U ′α = U ′α J(λ) is a proper ideal in U ′α. This yields

J(λ)U ′α ⊗U(g) L(λ) = U ′α ⊗U(g) J(λ)L(λ) = 0,

so J(λ) ⊆ AnnU(g)U
′
α ⊗U(g) L(λ). Since Uα ⊗U(g) L(λ) is a quotient of U ′α ⊗U(g) L(λ), we have

AnnU(g)TαL(λ) ⊇ ϕ(J(λ)). (5.3)
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Now if 〈λ, α∨〉 ∈ Z, Theorem 5.12(ii) implies that [TαL(λ) : L(λ)] = 1, so we have the
inclusion AnnU(g)TαL(λ) ⊂ J(λ). Equation (5.3) thus implies ϕ(J(λ)) ⊂ J(λ). The auto-
morphism ϕ−1 of g also satisfies the properties required at the beginning of this section. The
twisting functor could thus also be defined using that automorphism, leading to the conclusion
ϕ−1(J(λ)) ⊂ J(λ), which yields ϕ(J(λ)) = J(λ).

Now if 〈λ, α∨〉 6∈ Z, Proposition 5.8 implies that TαL(λ) = L(µ) for some µ ∈ h∗
0

with
TαL(µ) = λ. Equation (5.3) therefore yields ϕ(J(λ)) ⊂ J(µ) and ϕ(J(µ)) ⊂ J(λ). The result
then follows again from considering ϕ−1.

Lemma 5.16. If L(λ) is α-free with 〈λ, α∨〉 ∈ Z, then TαP (λ) ∼= P (λ).

Proof. First we prove the result for g0. For the particular case of regular integral weights, this
was already proved in Proposition 5.3 in [AS]. Let µ ∈ h∗

0
be a W -maximal weight satisfying

sα · µ = µ, then M0(µ) = P0(µ) is projective in O0. Lemma 5.7 then implies TαP0(µ) = P0(µ).
This result generalises to arbitrary indecomposable projective with α-free top by tensoring with
finite dimensional modules and using Lemma 5.9.

It is checked by a standard argument that Resgg0
P (λ) decomposes into projective modules

in O0 with α-free top. From this, the result above and Lemma 5.1 it follows that TαP (λ) and
P (λ) have the same characters.

Now we determine the top of the module TαP (λ). We denote by Gα the right adjoint
functor to Tα. Below we will twice use that Theorem 4.1 in [AS] and Lemma 5.1 imply that
chGαV = chTαV for V a simple module in O. Consider a simple α-free module L(µ), Theorem
5.12(ii) implies that the only simple α-finite subquotient of GαL(µ) is L(µ), appearing with
multiplicity one. So we have

HomO(TαP (λ), L(µ)) = HomO(P (λ), GαL(µ)) = [GαL(µ) : L(λ)] = δλµ.

Now consider L(ν) to be α-finite. Theorem 5.12(i) then implies GαL(ν) = 0, so

HomO(TαP (λ), L(ν)) = HomO(P (λ), GαL(ν)) = 0.

It follows that TαP (λ) has simple top L(λ) and hence TαP (λ) is a quotient of P (λ). Since
the characters of TαP (λ) and P (λ) coincide, we get TαP (λ) = P (λ).

An important tool to establish equalities between primitive ideals is provided in the following
lemma.

Lemma 5.17. If weights λ, µ ∈ h∗
0

and a root α (simple in ∆+
0

) satisfy the following properties:

• 〈λ, α∨〉 ∈ Z and 〈µ, α∨〉 ∈ Z,

• L(λ) is α-finite and L(µ) is α-free and,

• Ext1
O(L(λ), L(µ)) 6= 0;

then we have the relation AnnU(g)L(µ) ⊆ AnnU(g)L(λ).

Proof. Theorem 5.12 implies that HomO(L(λ), TαL(µ)) 6= 0. The result then follows from
Lemma 5.15.
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6 Primitive ideals for typical blocks

In this section we study inclusions between primitive ideals corresponding to typical highest
weights for classical Lie superalgebras of type I and basic classical Lie superalgebras of type II,
in the list (2.1). The corresponding statements for Lie superalgebras of queer type are slightly
less general and are presented in Section 9.

Theorem 6.1. Let g be a classical Lie superalgebra of type I with distinguished system of positive
roots. Consider λ, µ ∈ h∗ with λ or µ typical, then

J(λ) ⊆ J(µ) ⇔ I(λ) ⊆ I(µ).

Proof. If g is basic classical, the result follows immediately from the subsequent Theorem 6.2,
since the notion of strongly typical coincides with typical for g of type I and the fact that a
perfect mate of χλ is given by χ0

λ, see [Go3]. Therefore we only need to consider the strange Lie
superalgebras.

If g is of the strange type p(n) or p̃(n), then U(g) either has no centre or a centre that acts
by the same central character on each simple representation. After factoring out the Jacobson
radical, the concept of typical central characters does arise. The central characters separate in
particular between typical highest weights in different orbits and separate typical from atypical
highest weights, see Lemma 5.1 in [Se1]. We denote the Jacobson radical by J and the quotient
map by q : U(g) → U(g)/J . If J(λ) ⊆ J(µ), then clearly q(J(λ)) ⊆ q(J(µ)). The typicality of
one of the two weights therefore forces the other one the be in the same orbit of the Weyl group.

For typical weights simple modules are induced, namely, L(λ) = U(g) ⊗U(g0+g1) L0(λ), see
Theorem 5.2 and Lemma 5.4 in [Se1]. Lemma 4.4 therefore implies the “if” part. On the other
hand, L0(λ) =

(
Resgg0L(λ)

)
χ0
λ
, see again Theorem 5.2 in [Se1]. Lemma 4.1 applied to g0 therefore

implies the “only if” part.

Theorem 6.2. Let g be a basic classical Lie superalgebra. Consider a strongly typical central
character χ : Z(g) → C with perfect mate χ̃ : Z(g0) → C. Denote by λ the W -maximal (for

ρ-shifted action) weight that satisfies χλ = χ and accordingly by λ̃ the W -maximal (for ρ0-shifted
action) weight corresponding to χ̃. Then

J(w · λ) ⊆ J(µ) or J(ν) ⊆ J(w · λ)

for w ∈W and ν, µ ∈ h∗
0

if and only if there are w1, w2 ∈W such that µ = w1 ·λ, ν = w2 ·λ and

I(w ◦ λ̃) ⊆ I(w1 ◦ λ̃) and I(w2 ◦ λ̃) ⊆ I(w ◦ λ̃), respectively.

Consider a (not necessarily strongly) typical (regular) dominant weight Λ, then for w,w′ ∈W
we have

J(w · Λ) ⊆ J(w′ · Λ)⇔ I(w ◦ Λ) ⊆ I(w′ ◦ Λ).

Proof. First we consider λ strongly typical. In order to have an inclusion between primitive
ideals they have to admit the same central character. The typicality of one of the highest
weights therefore forces the other one to be typical as well. Moreover, the typicality of λ forces
µ and ν to be in the orbit of λ. According to Theorem 1.3.1 in [Go3], the equalities(

Indg
g0
L0(w ◦ λ̃)

)
χ

= L(w · λ) and
(

Resgg0
L(w · λ)

)
χ̃

= L0(w ◦ λ̃)
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hold for every w ∈W . The statements then follow by application of Lemmata 4.1 and 4.4.
Theorem 1.3 and Theorem 1.4 of [Mu3] imply that the posets of primitive ideals of two

regular typical blocks, for which the difference of the dominant weights in the orbits is in P, are
isomorphic. The results for regular strongly typical characters therefore carry over to regular
typical characters.

Remark 6.3. Theorem 6.2 for regular typical central characters rederives Theorem B in [Mu3]
for osp(1|2n). Theorem 1.4 in [Mu3] describes the poset of primitive ideals corresponding to
a singular typical central character in terms of that of a regular typical central character for
basic classical Lie superalgebras. The combination of Theorem 1.4 in [Mu3] and Theorem 6.2
therefore also yields all inclusions between primitive ideals for singular typical characters for
basic classical Lie superalgebras.

7 Generic weights

As in [Pe, PS], we call weights which are far from the walls of the Weyl chambers generic. How
far weights have to be from the wall for our purposes is determined by the odd roots, therefore
we define the sets

Γ = {
∑
α∈I

α |I ⊂ ∆−
1
} and Γ̃ = {

∑
α∈I

α | I ⊂ ∆1}. (7.1)

Since we might have
∑

α∈I α =
∑

α∈I′ α even when I 6= I ′, we need to stress that we interpret
these sets with multiplicities.

In the following, the notion Weyl chambers refers to the Weyl chambers of the ρ0-shifted
action for the whole Weyl group W (even when non-integral weights are considered).

Definition 7.1. (i) We call a weight λ ∈ h∗
0

weakly generic if all weights in the set λ + Γ̃ are
inside the same Weyl chamber.

(ii)We call a weight λ ∈ h∗
0

generic if each weight in the set λ+ Γ is weakly generic.
(iii)We call a simple highest weight module L(µ) generic if all highest weights ν of the simple

g0-subquotients of Resgg0
L(µ) are weakly generic.

Since the set Γ̃ is invariant under the Weyl group (which is a consequence of the fact that
Λg1 is a finite dimensional g0-module), a weight λ is weakly generic if and only if w ◦λ is weakly
generic for an arbitrary w ∈ W . Furthermore, as in Section 0.5 in [Mu3], we have the equality
of sets

w ◦ (λ+ Γ) = w · λ+ Γ,

which implies that a weight λ is generic if and only if w · λ is generic for an arbitrary w ∈W .

Lemma 7.2. If λ ∈ h∗
0

is weakly generic, then Resgg0
L(λ) is completely reducible and

Resgg0
L(λ) ⊂

⊕
γ∈Γ

(L0(λ+ γ))⊕k

for some k ∈ N.

Proof. If g is of type I, this follows from the morphism Λg−1⊗L0(λ) � Resgg0
L(λ). If g is basic

classical of type II, this follows easily as in the first part of the proof of Lemma 3.4 in [Mu3].
Thus we are left to consider the algebras of Q-type, the following proof covers all cases however.
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We consider the g0-module U(g0)[L(λ)]λ, where [M ]λ stands for the space of vectors with
weight λ in a weight module M . This g0-submodule of Resgg0

L(λ) has a module in its socle of
the form L0(w ◦ λ) for some w ∈W . Thus we have L0(w ◦ λ) ↪→ Resgg0

L(λ).
From the Frobenius reciprocity it then follows that Indg

g0
L0(w ◦ λ) � L(λ) and therefore we

have
Λg1 ⊗ L0(w ◦ λ) � Resgg0

L(λ).

The weights of the highest weight vectors appearing in the left hand side have to be in the
set w ◦ λ + Γ̃ = w ◦ (λ + Γ̃). By assumption, all these weights are in the same chamber, so
Λg1 ⊗ L0(w ◦ λ) is completely reducible, which implies that Resgg0

L(λ) is completely reducible
and w = 1.

By the standard filtration of Resgg0
M(λ) in O0 and the fact that all appearing weights are

in the same chamber, for some k ∈ N we have

Resgg0
M(λ) =

⊕
γ∈Γ

(M0(λ+ γ))⊕k .

Since this projects onto the completely reducible module Resgg0
L(λ), the result follows.

Corollary 7.3. If λ ∈ h∗
0

is generic, then L(λ) is a generic module. For any generic simple

module M in O, the module Resgg0
M is completely reducible.

Lemma 7.4. Consider two weakly generic dominant weights Λ1,Λ2 and w1, w2 ∈W . Then the
inclusion J(w1 · Λ1) ⊆ J(w2 · Λ2) implies Λ1 − Λ2 ∈ P and I(w1 ◦ Λ1) ⊆ I(w2 ◦ Λ1).

Proof. The property U(g0) ∩ J(w1 · Λ1) ⊆ U(g0) ∩ J(w2 · Λ2) is equivalent to

AnnU(g0)Resgg0
L(w1 · Λ1) ⊆ AnnU(g0)Resgg0

L(w2 · Λ2).

Lemma 7.2 and Lemma 4.1 applied to g0 imply that

• w2w
−1
1 ◦ (w1 · Λ1) ∈ w2 · Λ2 + Γ with

• I(w1 · Λ1) ⊆ I(w2w
−1
1 ◦ (w1 · Λ1)).

The first property can be rewritten as Λ1 − Λ2 ∈ w−1
2 (ρ1) − w−1

1 (ρ1) + w−1
2 (Γ) which, in

particular, implies Λ1 − Λ2 ∈ P.
The second property can be rewritten as I(w1 ◦Λ) ⊆ I(w2 ◦Λ) with Λ = Λ1 +w−1

1 (ρ1)− ρ1.
Here Λ is a dominant weight in Λ1 + P, so Lemma 2.2 implies that I(w1 ◦ Λ) ⊆ I(w2 ◦ Λ) is
equivalent to I(w1 ◦ Λ1) ⊆ I(w2 ◦ Λ1).

Lemma 7.5. Consider two weakly generic weights λ, µ in the same chamber. The equality
J(λ) = J(µ) implies λ = µ.

Proof. Mutatis mutandis Corollary 4.5.

Lemma 7.6. If L(λ) is a generic module, then all subquotients in the Jordan-Hölder series of
TαL(λ) are generic.

Proof. If L0(µ) is a subquotient in the Jordan-Hölder series of the g0-module

Resgg0
TαL(λ) = T 0

αResgg0
L(λ),

the fact that T 0
α preserves blocks of O0 implies that µ is weakly generic.
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By definition, subtracting or adding distinct odd roots to weakly generic weights yields
regular weights. Interesting properties of generic weights therefore stem from the following
observations, which will be applied in later sections.

Lemma 7.7. Consider g in the list (2.1) excluding p(n) and p̃(n). If a weight µ ∈ h∗
0

is regular,
then it is not atypical with respect to both of two roots γ, γ′ which satisfy 〈γ, γ′〉 6= 0.

Proof. First consider g to be basic classical, then γ, γ′ are isotropic. For such isotropic roots
either γ + γ′ or γ − γ′ is an element of ∆0 (this follows immediately from the structure of the
roots, see Chapter 2 in [Mu4] for gl(m|n) and osp(m|2n) and Section 1.4 for D(2, 1;α), F (4)
and G(3)). The equalities 〈µ+ ρ, γ〉 = 0 = 〈µ+ ρ, γ′〉 would therefore imply that 〈µ+ ρ, α〉 = 0
for an α ∈ ∆0 which contradicts the regularity of µ.

Now consider g of Q-type (so ρ = 0). The claim amounts to proving that for a regular weight
it is not possible to have both 〈λ, εi + εj〉 and 〈λ, εi + εl〉 equal to zero if j 6= l. This follows
immediately since otherwise we would have 〈λ, εj − εl〉 = 0.

Lemma 7.8. Consider g in the list (2.1) excluding p(n) and p̃(n) and a regular weight λ ∈ h∗
0

which is atypical with respect to a root γ. If λ+ γ (respectively λ− γ) is also regular, then λ+ γ
(respectively λ− γ) has exactly the same atypical roots as λ.

Proof. First consider g to be basic classical and λ+ γ regular. Assume there is an isotopic root
γ′ such that 〈λ+γ+ρ, γ′〉 = 0 with 〈λ+ρ, γ′〉 6= 0. This immediately implies 〈γ, γ′〉 6= 0. Lemma
7.7 therefore implies that 〈λ+ γ + ρ, γ′〉 6= 0 since λ+ γ is regular and 〈λ+ γ + ρ, γ〉 = 0. That
the combination 〈λ+ γ + ρ, γ′〉 6= 0 with 〈λ+ ρ, γ′〉 = 0 is impossible follows similarly. The case
λ− γ follows from the first case by substituting λ→ λ+ γ and λ− γ → λ.

The proof for Q-type is similar.

8 Star actions and deformed Weyl group orbits

In [GG], Gorelik and Grantcharov introduced a deformation of the usual action of the Weyl
group for q(n) called the star action. As is already clear from Proposition 3.2 and Lemma 9.4,
this star action is closely related to inclusions between primitive ideals. We will prove that this
action is also naturally linked to the twisting functors. First we introduce an analogue of this
star action for basic classical Lie superalgebras. Even though the definition is entirely different,
these star action are also closely related to primitive ideals and twisting functors.

In Subsection 8.1 we define star actions for basic classical Lie superalgebras and derive
important properties. In Subsection 8.3 we show that the corresponding properties also hold for
the star action of q(n). The easiest example of a star action for osp(m|2n) is given in Subsection
8.2, the easiest example for gl(m|n) corresponds to the usual ρ-shifted action of the Weyl group.

8.1 Basic classical Lie superalgebras, the general case

For a Borel subalgebra b0 of g0 we define B(b0) as the set of Borel subalgebras for which the
underlying Borel subalgebra of g0 is equal to b0. Throughout this entire section we assume b0

as fixed. Corresponding to b0 we have the basis Π0 of simple roots in ∆+
0

.
A star action map is an arbitrary mapping

B : Π0 → B(b0), α 7→ B(α),
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with the condition that α or α/2 is simple in the system of positive roots corresponding to the
Borel subalgebra B(α). For each star action map, we will define a star action, similar to the one
for q(n) in [GG]. As in [GG], those star actions do not lead to an action of the Weyl group, but

to an action of an infinite Coxeter group, which we denote by W̃ . This group is freely generated
by {sα} for all α simple in ∆+

0
subject to the relation s2

α = 1. Contrary to the Coxeter group for
the star action in [GG], we cannot impose the relation sαsβ = sβsα if 〈α, β〉 = 0. An example
of this follows immediately from the star action defined in the beginning of Section 10.

Definition 8.1. Let g be a basic classical Lie superalgebra with a Borel subalgebra b. For each
star action map B we define the star action ∗B : W̃ ×h∗ → h∗. For α simple in ∆+

0
and λ ∈ h∗

we denote b̃ = B(α) and define λ̃ by the relation L(b)(λ) ∼= L(b̃)(λ̃). The weight sα ∗B λ is then
defined by the relation

L(b)(sα ∗B λ) ∼= L(b̃)(sα(λ̃+ ρ̃)− ρ̃).

If we want to specify the reference Borel subalgebra, the star map is denoted by ∗bB.

Remark 8.2. Both from construction and from the combination of Lemma 2.3 with the de-
scription of central characters through the Harish-Chandra isomorphism, it follows that we have
χλ = χsα∗λ.

The highest weights with respect to different systems of positive roots can be calculated
through the technique of odd reflections, see Lemma 2.3. The property sα ∗B sα ∗B λ = λ follows
easily for any λ ∈ h∗, so the star action is well defined as an action of W̃ . We will use the short
notation sα1 · · · sαk−1

sαk ∗λ for sα1 ∗· · ·∗sαk−1
∗sαk ∗λ. In case λ is typical, Corollary 2.4 implies

that this definition yields
sα ∗B λ = sα · λ = sα(λ+ ρ)− ρ.

So, in particular, the action on typical weights does not depend on the choice of B.
A trivial example of ∗B is given by choosing g to be a basic classical Lie superalgebra of

type I, b the distinguished Borel subalgebra and B(α) := b, for every even simple root α. This
leads to the usual ρ-shifted action.

The connection of such star actions with primitive ideals and twisting functors follows from
the following observations.

Lemma 8.3. For an α-free L(µ) and for any star action mapping B, we have the relation

[TαL(µ) : L(sα ∗B µ)] 6= 0.

Proof. We denote b̃ = B(α). If L(b)(µ) = L(b̃)(µ̃) is α-free, then again a parabolic reduction to
sl(2) or osp(1|2) shows that the highest weight (in the relevant system of positive roots) in the

module TαL
(b̃)(µ̃) is sα(µ̃+ ρ̃)− ρ̃. This means that

[TαL(µ) : L(sα ∗B µ)] = [TαL
(b̃)(µ̃) : L(b̃)(sα(µ̃+ ρ̃)− ρ̃)] 6= 0,

which proves the lemma.

Thanks to the star action we can now give a complete analogue of Corollary 5.14 in [Ja] for
basic classical Lie superalgebras.

Corollary 8.4. Consider λ ∈ h∗ and an arbitrary star action ∗B. We have
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• if 〈α∨, λ〉 6∈ Z, then J(sα ∗B λ) = J(λ);

• if 〈α∨, λ〉 ∈ Z with L(λ) α-finite, then J(sα ∗B λ) ⊆ J(λ).

Proof. We use the notation of Definition 8.1. We have

J(λ) = AnnU(g)L
(b̂)(λ̂) and J(sα ∗B λ) = AnnU(g)L

(b̂)(sα(λ̂+ ρ̂)− ρ̂).

The result then follows from Lemma 4.8.

Corollary 8.5. If 〈α∨, λ〉 6∈ Z, then sα ∗B λ does not depend on the choice of star action map
B, moreover L(sB ∗ λ) = TαL(λ).

Proof. This is an immediate consequence of Lemmata 8.3 and 5.8.

This corollary now allows us to describe the generalisation of Proposition 3.9 in [CMW]
explicitly. We write sα ∗ µ for sα ∗B µ if 〈µ, α∨〉 6∈ Z since there is no dependence on the star
action map B.

Proposition 8.6. Consider g a basic classical Lie superalgebra, λ ∈ h∗ and a positive root
α simple in ∆+

0
such that 〈λ, α∨〉 6∈ Z. Then the functor Tα : Oλ → Osα∗λ = Osα·λ is an

equivalence of categories sending L(µ) to L(sα ∗ µ) for each L(µ) ∈ Oλ.
If α (or α/2) is simple in ∆+ as well, then Tα also maps M(µ) to M(sα ∗ µ) = M(sα · µ).

Proof. The property Osα∗λ = Osα·λ follows from Remark 8.2 and the fact that by definition of
the star action sα ∗ λ− sα · λ ∈ Z∆1 ⊂ P.

The first result follows from Corollary 8.5 and the proof of Proposition 5.11.
If α is simple in ∆+, we can choose a star action map B for which B(α) = α, then by

definition sα ∗B µ = sα · µ. By Corollary 8.5 this equation holds for any star action map if
〈µ, α∨〉 6∈ Z. The result then follows from Lemma 5.7.

Now we prove that Corollary 8.5 can be extended from a reflection with respect to a non-
integral simple root of λ, to the entire set of left coset of representatives W λ for Wλ in W , given
in equation (2.4), as long as only reduced expressions are employed.

Proposition 8.7. Consider λ ∈ h∗, w ∈ W λ and two reduced expressions sα1 · · · sαk and
sβ1 · · · sβk for w. Then we have sα1 · · · sαk ∗B λ = sβ1 · · · sβk ∗B λ. Furthermore, sα1 · · · sαk ∗B λ
does not depend on B.

Proof. The proof of Theorem 15.3.7 in [Mu4] states that 〈α∨i , sαi+1 · · · sαkλ〉 6∈ Z for any 1 ≤ i ≤ k
where the same is true for {βi}. Iteratively applying Corollary 8.5 then yields

• L(sα1 · · · sαk ∗B λ) = Tα1 · · ·TαkL(λ) and

• L(sβ1 · · · sβk ∗B λ) = Tβ1 · · ·TβkL(λ).

The claim then follows from the fact that Tα1 · · ·Tαk = Tβ1 · · ·Tβk , see Lemma 5.3.

In general sα ∗B λ actually depends on the choice of B. We give an easy example.
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Example 8.8. Consider g = gl(2|1). We choose the distinguished system of positive roots, with
simple roots ε1− ε2 and ε2− δ. The Weyl group contains only one nontrivial element s = sε1−ε2 .
Star action mappings B are therefore determined by B(ε1 − ε2). Thus there are two choices for
star actions, the usual dot action and ∗B, with b̂ = B(s) the Borel subalgebra corresponding
to simple positive roots δ − ε1 and ε1 − ε2. We consider the atypical regular, but not (weakly)
generic weight λ = kε1 + kε2 − kδ with k ∈ Z. The usual dot action yields

s · λ = (k − 1)ε1 + (k + 1)ε2 − kδ.

Applying the odd reflections yields λ̂ = λ, thus s(λ̂+ ρ̂)− ρ̂ = (k− 1)ε1 + (k+ 1)ε2 − kδ = s · λ.
Applying the odd reflections again then yields

s ∗B λ = kε1 + (k + 1)ε2 − (k + 1)δ.

Since one Lie superalgebra can have more than one star action, Corollary 8.4 implies that
more inclusions between primitive ideals can be expected compared to the classical case. Based
on the result of Letzter in Theorem 3.7 of [Le] for type I Lie superalgebras, these extra inclusions
should correspond to inclusions between primitive ideals for highest weights not in the same
(usual ρ-shifted) orbit of the Weyl group. In particular, Example 8.8 yields such an extra
inclusion for sl(2|1).

Remark 8.9. For g = sl(2|1), Example 8.8 and Corollary 8.4 imply the inclusion

J(ε2 − δ) ⊆ J(0).

As can be seen from the result of Musson in [Mu2], repeated in Proposition 3.3, this inclusion
is the only inclusion between primitive ideals for highest weights in different (usual ρ-shifed)
orbits for the case sl(2|1). This example immediately illustrates the usefulness of the different
star actions in the study of primitive ideals.

The following theorem shows that such examples can only appear close to the walls of the
Weyl chambers since the star actions become identical and regular in the generic region (see
Definition 7.1).

Theorem 8.10. Consider g equal to gl(m|n) or osp(m|2n) and λ ∈ h∗ a weakly generic weight.
We take an arbitrary Borel subalgebra b and a star action map B : Π0 → B(b0). Consider
w ∈W with two expressions sα1 · · · sαk and sβ1 · · · sβl for w. Then we have

sα1 · · · sαk ∗B λ = sβ1 · · · sβl ∗B λ.

The ∗B-orbit of λ is regular in the sense that it intersects each Weyl chamber exactly once.
Moreover, w ∗B λ does not depend on the choice of B.

Proof. First we prove this for g = gl(m|n). Consider the case where b is the distinguished Borel
subalgebra, thus corresponding to the simple roots

ε1 − ε2, · · · , εm−1 − εm, εm − δ1, δ1 − δ2, · · · , δm−1 − δm,

and B is an arbitrary star action map. We prove that for α ∈ Π0 and a weakly generic λ ∈ h∗,
we have the equality

sα ∗B λ = sα · λ = sα(λ+ ρ)− ρ = sα(λ+ ρ0)− ρ0.
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Without loss of generality we may assume α = εi − εi+1. Now b̂ = B(α) is an arbitrary Borel
subalgebra for which α is a simple root. We have the corresponding ordered set of odd reflections
{γ(1), · · · , γ(k)} linking b to b̂. The combination of Lemma 2.3 and Lemma 7.8 implies that

sα ∗B λ = sα(λ+ ρ+ γ1 + · · ·+ γp)− γ′1 − · · · − γ′q − ρ (8.1)

with

• {γ1, · · · , γp} the set of all roots in {γ(1), · · · , γ(k)} which satisfy 〈λ+ ρ, γ(i)〉 = 0,

• {γ′1, · · · , γ′p} the set of all roots in {γ(1), · · · , γ(k)} which satisfy 〈λ+ ρ, sα(γ(i))〉 = 0.

This implies that, if 〈α, γ(i)〉 = 0, regardless of λ-atypicality with respect to it, this root drops
out of equation (8.1). This means that only isotropic roots of the form ±(εi− δl) or ±(εi+1− δl)
for some l can be relevant. Since εi − εi+1 is simple in b̂, an odd reflection with respect to
εi − δl occurs (in passing from b to b̂) if and only if one with respect to εi+1 − δl occurs. Since
εi+1 − δl = sεi−εi+1(εi − δl), it follows that every atypical root in equation (8.1) is cancelled out.
Thus we have sα ∗B λ = sα ·λ, which implies that all these star actions are equivalent and satisfy
the proposed properties.

Now we consider an arbitrary reference Borel subalgebra b of gl(m|n). We take an arbitrary
α simple in ∆+

0
, star action map B with B(α) = b̂ and weakly generic weight λ. The definition

of the star action implies

L(b)(sα ∗bB λ) = L(b̂)(sα(λ̂+ ρ̂)− ρ̂)).

On the other hand, the result for the distinguished Borel subalgebra (which we denote by bd

now) with L(b)(λ) ∼= L(bd)(λd) ∼= L(b̂)(λ̂), implies

L(bd)(sα(λd + ρd)− ρd) ∼= L(bd)(sα ∗b
d

B ∗λd) ∼= L(b̂)(sα(λ̂+ ρ̂)− ρ̂)).

So, in particular, we obtain L(b)(sα ∗bB λ) ∼= L(bd)(sα(λd + ρd) − ρd) which implies that ∗bB is
independent of B and leads to an action of the Weyl group.

Now we prove the theorem for g = osp(m|2n). The role of the usual dot action for gl(m|n)
will now be played by the example ∗′ in the subsequent Subsection 8.2. We start by assuming
that b is the distinguished Borel subalgebra, with corresponding system of positive roots as
described in the beginning of Subsection 8.2. We only need to prove that for λ generic we have
sα ∗B λ = sα ∗′ λ. The other statements then follow, as for gl(m|n), from the subsequent Lemma
8.13.

We use the notation for the roots of Subsection 8.2. If α is of the form εi− εi−1 or δj − δj+1,
the proof is identical to that of gl(m|n). Now consider α = 2δn. As for gl(m|n) it follows that
for generic weights only odd reflections with respect to isotropic roots γ that satisfy 〈γ, α〉 6= 0
can be relevant, the other ones get cancelled out in expressions as in equation (8.1). Any choice
of Borel subalgebra for which 2δn or δn, depending on m = 2d or m = 2d + 1, is simple is
obtained from b̂ in Subsection 8.2 by odd reflections of the form δi− εj with i < n. This implies
that the corresponding star action s2δn∗B will lead to the same result as the star action s2δn∗′
in Subsection 8.2. Consider α = εd for m = 2d + 1. Since α can never be simple in a system
of roots for which an odd reflection with respect to δj − εd needs to be used (starting from the
distinguished one), the star action of sα on generic weights becomes the usual ρ-shifted action
of α. Finally, let α = εd−1 + εd for m = 2d. The result then follows as before since in any system
of positive roots in which εd−1 + εd is simple, εd−1 − εd is also simple.
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8.2 An important example

In this section we consider g = osp(m|2n). We work with the standard choice of positive roots,
which leads to simple positive roots

δ1 − δ2, · · · , δn−1 − δn, δn − ε1, ε1 − ε2, · · · , εd−1 − εd, εd for m = 2d+ 1,

δ1 − δ2, · · · , δn−1 − δn, δn − ε1, ε1 − ε2, · · · , εd−1 − εd, εd−1 + εd for m = 2d.

The only simple root of ∆+
0

which is not simple in this choice is 2δn. For this root we will

use the Borel subalgebra b̂ corresponding to simple positive roots

δ1 − δ2, · · · , δn−2 − δn−1, δn−1 − ε1, ε1 − ε2, · · · , εd−1 − εd, εd − δn, δn for m = 2d+ 1,

δ1 − δ2, · · · , δn−2 − δn−1, δn−1 − ε1, ε1 − ε2, · · · , εd−1 − εd, εd − δn, 2δn for m = 2d.

The odd reflections that lead b to b̂ are {δn − ε1, δn − ε2, · · · , δn − εd}.
We can then define a star action map B for which B(α) = b if α 6= 2δn and B(2δn) = b̂.

From now on we shorten the notation of the corresponding star action ∗bB for osp(m|2n) to ∗′.
First we prove that, as for q(n) in Statement 4.1.4 in [GG], this star action for osp(m|2n)

can be used as a criterion for α-finiteness.

Lemma 8.11. Consider g = osp(m|2n) with standard Borel subalgebra and α simple in ∆+
0

.
The module L(λ) is α-finite if and only if 〈λ, α∨〉 ∈ Z and sα ∗′ λ < λ.

Proof. By Lemma 2.1, only the case where 〈λ, α∨〉 ∈ Z and α = 2δn is nontrivial. Since δn or

2δn is simple in the system of positive roots for b̂, Lemma 2.1 implies that L(b)(λ) = L(b̂)(λ̂) is
α-finite if and only if sα(λ̂ + ρ̂) < λ̂ + ρ̂ in ∆̂+. Therefore we show that sα(λ̂ + ρ̂) < λ̂ + ρ̂ is
equivalent to sα ∗′ λ < λ (in the relevant systems of positive roots). We write out explicitly

λ̂ =
n∑
i=1

kiδi +
d∑
j=1

ljεj , λ =
n∑
i=1

aiδi +
d∑
j=1

bjεj and sα ∗′ λ =
n∑
i=1

ciδi +
d∑
j=1

djεj ,

with kn ∈ Z, since by assumption 〈λ, α∨〉 ∈ Z. The condition sα(λ̂+ ρ̂) < λ̂+ ρ̂ is then equivalent
to kn > 1 − kn if m = 2d + 1 and kn > 2 − kn if m = 2d. It is clear that ki = ai = ci for
i < n. First we prove that if sα(λ̂+ ρ̂) < λ̂+ ρ̂, then an ≥ cn. If we would have an < cn, then,
after applying one of the odd reflections, say δn− εs, the coefficients of δn in the weights coming
from λ̂ and sα(λ̂ + ρ̂) − ρ̂ should coincide. Since the coeffiients by {ε1, · · · , εs−1} have not yet
been affected, the remaining isotropic roots will be atypical for both weights at the same time,
which implies an = cn. Furthermore, this procedure shows that if an = cn, the coefficients by
{δ1, · · · , δn, ε1, · · · , εs−1} of λ and sα ∗′ λ will coincide and that the coefficient of εs will be one
higher in λ than in sα∗′λ, so λ > sα∗′λ follows. If an > cn, then λ > sα∗′λ follows immediately.
The “only” if part follows similarly.

For weakly generic weights this star action takes a very simple expression, as is shown in the
following lemma.

Lemma 8.12. For λ ∈ h∗ a weakly generic weight for g = osp(m|2n) with d = bm/2c we have

s2δn ∗′ λ =


s2δn · λ, if 〈λ+ ρ, δn ± εi〉 6= 0 for all 1 ≤ i ≤ d;

s2δn · λ− δn − εi, if 〈λ+ ρ, δn − εi〉 = 0 for some 1 ≤ i ≤ d;

s2δn · λ− δn + εi, if 〈λ+ ρ, δn + εi〉 = 0 for some 1 ≤ i ≤ d.
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Proof. Lemma 7.7 implies that for a regular weight only one root in the set {δn±εi|i = 1, . . . , d}
can be atypical. The case where none of the roots are atypical is trivial.

We consider the case where there is an i for which 〈λ + ρ, δn − εi〉 = 0, the other situation
being similar. Lemma 2.3 and the fact that λ + δn − εi has the same atypicalities as λ, see
Lemma 7.8, then imply that λ̂ = λ+ δn − εi + ρ− ρ̂, so

s2δn(λ̂+ ρ̂)− ρ̂ = s2δn · λ − δn − εi + ρ− ρ̂.

The value of

〈s2δn · λ− δn − εi + ρ, δn − εj〉 = −〈λ+ δn − εi + ρ, δn + εj〉

can never be zero by Lemma 7.7, since λ + δn − εi is regular and δn − εi-atypical. Lemma 2.3
therefore implies

L(b)(s2δn · λ− δn − εi) = L(b̂)(s2δn · λ− δn − εi + ρ− ρ̂),

which proves the lemma.

Now we prove that this star action leads to an action of the Weyl group, which is required
for the proof of Theorem 8.10 for the general case.

Lemma 8.13. Consider g = osp(m|2n) and w ∈ W with two expressions sα1 · · · sαk and
sβ1 · · · sβl for w. Then sα1 · · · sαk ∗′ λ = sβ1 · · · sβl ∗′ λ for λ a weakly generic weight. Fur-
thermore, the star orbit of λ is a set of regular weights which intersects each Weyl chamber
exactly once.

Proof. First, we focus on the Weyl group W (sp(2n)) of sp(2n). For i = 1, · · · , n we define the
weight γ(i) as

• 0 if 〈λ+ ρ, δi ± εj〉 6= 0 for all 1 ≤ j ≤ d,

• δi − εl if 〈λ+ ρ, δi − εl〉 = 0,

• δi + εl if 〈λ+ ρ, δi + εl〉 = 0.

We then claim
sα1 · · · sαk ∗

′ λ = sα1 · · · sαk · (λ+ γ(i1) + · · · γ(ik))

where γ(ij) appears if and only if w = sα1 · · · sαk ∈ W (sp(2n)) flips the sign of the coefficient
which originally was in the ij-th position. This statement can be proved by induction using
Lemma 8.12, similarly to the proof of Proposition 8.17.

All these weights are weakly generic. It follows from Lemma 8.12 that for weakly generic
weights, the star action ∗′ of the Weyl group of sp(2n) commutes with that of so(m). This
concludes the proof.
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8.3 The case q(n)

We recall the notation εi − εj = εi + εj for 1 ≤ i < j ≤ n. The star action for q(n) as defined
in Section 4 in [GG] is a mixture of the regular Weyl group action and the ρ0-shifted action for
gl(n), depending on the atypicality of the weight. More precisely, for a simple root α we set

sα ∗ λ =

{
sα · λ = sαλ if 〈λ, α〉 6= 0,
sα ◦ λ = sαλ− α if 〈λ, α〉 = 0,

where sα ◦λ := sα(λ+ρ0)−ρ0. In particular, we have sα ∗sα ∗λ = λ and sα ∗sβ ∗λ = sβ ∗sα ∗λ
if 〈α, β〉 = 0. As for basic classical Lie superalgebras we will write xy ∗ λ for x ∗ y ∗ λ.

The simple q(n)-module L(λ) is α-finite if and only if 〈α, λ〉 ∈ Z and sα∗λ < λ, see Statement
4.1.4 in [GG].

Lemma 8.14. For µ ∈ h∗
0
, we have [TαL(µ) : L(sα ∗ µ)] 6= 0 if L(µ) is α-free.

Proof. We prove that the highest weight of TαL(µ) is sα ∗ µ. By using parabolic induction
this becomes a q(2)-property. The result then follows immediately from the structure of simple
q(2)-highest weight modules, see e.g. [Ma1].

Corollary 8.15. If 〈λ, α∨〉 6∈ Z, we have L(sα ∗ λ) = TαL(λ).

Proof. This follows from the combination of Lemma 8.14 and Lemma 5.8.

For the left coset representatives W λ from equation (2.4), the star action is well behaved, as
follows from the following lemma.

Lemma 8.16. Consider λ ∈ h∗
0
, w ∈W λ and two reduced expressions sα1 · · · sαk and sβ1 · · · sβk

for w. Then we have sα1 · · · sαk ∗ λ = sβ1 · · · sβk ∗ λ.

Proof. Mutatis mutandis Proposition 8.7.

In the following lemma we prove that this action leads to regular orbits for weakly generic
weights. Close to the walls orbits of the star action can take exotic forms, containing more than
one weight which is maximal with respect to the star action, see Example 4.2 (3) in [GG].

Proposition 8.17. Consider w ∈ W with two expressions sα1 · · · sαk and sβ1 · · · sβl. Then we
have sα1 · · · sαk ∗ λ = sβ1 · · · sβl ∗ λ for λ a weakly generic weight. The star orbit of a weakly
generic weight is regular in the sense that it intersects each Weyl chamber exactly once.

Proof. Iteratively using Lemma 7.8 implies that for p distinct {γ1, · · · γp} ⊂ ∆+
1

with 〈λ, γi〉 = 0
and for λ weakly generic, λ+ γ1 + · · ·+ γp has exactly the same atypicalities as λ.

We will prove the following statement by induction on the length k. For k not necessarily
distinct simple elements {α1, · · · , αk} in ∆+

0
we have

sαk · · · sα1 ∗ λ = sαk · · · sα1 (λ+ γ1 + · · ·+ γp) with (8.2)

{γ1, · · · , γp} = {γ ∈ ∆+
1
| 〈γ, λ〉 = 0 and sαk · · · sα1(γ) < 0}. (8.3)

For k = 1 this is exactly the definition of the star action on any λ. We assume equation
(8.2) is valid for k and prove it is true for k + 1. We take {γ1, · · · , γp} as in (8.3) and define
γp+1 := sα1 · · · sαk(αk+1), then we have

{γ ∈ ∆+
1
| 〈γ, λ〉 = 0 and sαk+1

sαk · · · sα1(γ) < 0} =
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{γ1, · · · , γp} if 〈λ, γp+1〉 6= 0 (1)

{γ1, · · · , γp} ∪ {γp+1} if 〈λ, γp+1〉 = 0 and γp+1 > 0 (2a)

{γ1, · · · , γp}\{−γp+1} if 〈λ, γp+1〉 = 0 and γp+1 < 0 (2b)

(8.4)

We consider these three different possibilities. First we note that, as argued in the first para-
graph, sαk · · · sα1(λ + γ1 + · · · + γp) has exactly the same atypicalities as sαk · · · sα1(λ). This
implies that we have 〈λ, γp+1〉 6= 0 if and only if 〈sαk · · · sα1 ∗ λ, αk+1〉 6= 0.

(1) If 〈λ, γp+1〉 6= 0, the definition of the star action and induction step yield

sαk+1
sαk · · · sα1 ∗ λ = sαk+1

sαk · · · sα1 (λ+ γ1 + · · ·+ γp)

with {γ1, · · · , γp} as in equation (8.3), which indeed agrees with equation (8.4).
(2) If 〈λ, γp+1〉 = 0, the definition and induction step yield

sαk+1
sαk · · · sα1 ∗ λ = sαk+1

sαk · · · sα1 (λ+ γ1 + · · ·+ γp)− αk+1

= sαk+1
sαk · · · sα1 (λ+ γ1 + · · ·+ γp + γp+1) ,

with {γ1, · · · , γp} as in equation (8.3). This gives the correct result by equation (8.4) for both
(2a) and (2b).

The obtained expression in equation (8.2) clearly agrees with W̃ � W . Moreover, since
λ+ γ1 + · · ·+ γp is in the same Weyl chamber as λ, w ∗ λ is in the same Weyl chamber as wλ,
which implies the remainder of the lemma.

We repeat Penkov’s result of [Pe] on the structure of modules with integral weakly generic
highest weight.

Lemma 8.18. Consider g = q(n) and a weakly generic integral weight λ ∈ h∗
0
. Define the subset

of roots Sλ = {β ∈ ∆+
1
| 〈β, λ〉 6= 0}. For some k ∈ N, we have

Resgg0
L(λ) =

⊕
I⊂Sλ

L0(λ−
∑
β∈I

β)⊕k.

Proof. This is a translation of the result in Theorem 2.2 in [Pe].

Using this result we can determine the Jordan-Hölder decomposition series of TαL(λ) entirely
for λ generic and integral.

Proposition 8.19. For g = q(n) and an integral dominant generic weight Λ ∈ h∗
0

we have

[TαL(w ∗ Λ) : L(w′ ∗ Λ)] = [T 0
αL0(w ◦ Λ) : L(w′ ◦ Λ)],

for arbitrary w,w′ ∈W .

Proof. We define the set of (g0-integral dominant) weights CΛ as

Resgg0
L(Λ) =

⊕
µ∈CΛ

L0(µ)⊕k

with k from Lemma 8.18. Then for every w ∈W we prove the claim

Resgg0
L(w ∗ Λ) =

⊕
µ∈CΛ

L0(w ◦ µ)⊕k.
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We prove this for w = sα, the full result then follows from iteratively using the same procedure.
If Λ is α-atypical, then sα ∗ Λ = sα ◦ Λ and by Lemma 7.8 we have Ssα∗Λ = SsαΛ. Therefore

Ssα∗Λ = SsαΛ = {β ∈ ∆+
1
| 〈sα(β), λ〉 6= 0} = sα(SΛ),

since for β ∈ ∆+
1

different from α, we have sα(β) ∈ ∆+
1

. The claim then follows immediately
from Lemma 8.18. Now assume that Λ is α-typical. Then we have sα ∗ Λ = sαΛ and similarly
as above

Ssα∗Λ = sα(SΛ)\{−α} ∪ {α}.

Applying Lemma 8.18 then also yields the claim.
One consequence of this claim is that all the modules L(w ∗Λ) are generic. The proposition

then follows from Lemmata 7.6 and 5.1.

9 Primitive ideals for q(n)

For typical weights of q(n), the star action equals the usual unshifted action (since ρ = 0). In
the following lemma we derive all inclusions of primitive ideals corresponding to regular strongly
typical central characters.

Lemma 9.1. Consider g = q(n) and a strongly typical regular dominant weight Λ, then we have
J(wΛ) ⊆ J(w′Λ) for w,w′ ∈W if and only if I(w ◦ Λ) ⊆ I(w′ ◦ Λ).

Proof. Proposition 2 in [FM] states that for k = 2b(n−1)/2c we have(
Indg

g0
L0(w ◦ Λ̃)

)
χ

= k L(wΛ) and
(

Resgg0
L(wΛ)

)
χ̃

= k L0(w ◦ Λ̃).

The statements then follow from Lemma 4.1 applied to g0 and Lemma 4.4.

According to Proposition 8.17, we can unambiguously define w ∗ λ for w ∈W and a weakly
generic weight λ. The main result in this section is the full classification of primitive ideals in
the generic domain, which is given in the following theorem.

Theorem 9.2. Consider a weakly generic dominant weight Λ ∈ h∗
0

with w0 ∗ Λ generic and an
arbitrary µ ∈ h∗

0
. We have

J(w1 ∗ Λ) = J(µ) ⇔ ∃w2 ∈W with µ = w2 ∗ Λ and I(w1 ◦ Λ) = I(w2 ◦ Λ).

Furthermore, if for x1, x2 ∈ W λ and u1, u2 ∈ Wλ there are v1, v2 ∈ Wλ such that v1 is in the
same left cell as u1 and v2 is in the same left cell as u2 and v2 ≤L v1 in the left Bruhat order
then we have J(x1u1 ∗ Λ) ⊆ J(x2u2 ∗ Λ).

Remark 9.3. The condition on v1, v2 ∈ Wλ in the theorem above implies that that v2 ≤ v1 in
left Kazhdan-Lusztig order (see Definition 14.15 in [Ja]), which is equivalent to the condition
I(v1 ◦Λ) ⊆ I(v2 ◦Λ) (see Subsections 14.15 and 16.4 in [Ja] and also [Vo]). For n ≤ 5, these two
conditions are equivalent, see [Ta]. According to Lemma 7.4 and Lemma 2.2, we have therefore
classified all inclusions between generic primitive ideals for q(n) for n ≤ 5. In the subsequent
Proposition 9.6 we classify all inclusions between integral generic weights for q(n) for arbitrary
n.
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Lemma 9.4. Consider g = q(n). For α a simple root and λ ∈ h∗
0

we have the inclusions

• J(sα ∗ λ) = J(λ) if 〈λ, α∨〉 6∈ Z

• J(sα ∗ λ) ⊂ J(λ) if 〈λ, α∨〉 ∈ Z and sα ∗ λ < λ.

Proof. Similarly to the proof of Lemma 4.8, this can be reduced to the corresponding result for
q(2) in Proposition 3.2.

We need the following lemma on the left coset representatives W λ of the integral Weyl group
Wλ ⊂W .

Lemma 9.5. For an arbitrary weight λ ∈ h∗
0

and w ∈W λ with a reduced expression sα1 · · · sαk
we have J(λ) = J(sα1 · · · sαk ∗ λ).

Proof. This is a consequence of Lemma 9.4 as in the proof of Proposition 8.7.

Proof of Theorem 9.2. First, we focus on proving

J(w1 ∗ Λ) = J(w2 ∗ Λ)⇔ I(w1 ◦ Λ) = I(w2 ◦ Λ).

The “if” part follows from Lemma 7.4 and Lemma 2.2, so we prove the “only if” part. First
we note that all the modules L(w ∗ Λ) are generic. This follows from the fact that L(w0 ∗ Λ) is
generic (see Corollary 7.3) and the combination of Lemma 8.14 and Lemma 7.6.

We introduce the notation ∆+
0

(µ) for the positive roots in ∆0(µ) defined in equation (2.2).
All equalities I(w1 ◦ Λ) = I(w2 ◦ Λ) can be derived from those of the form

• I(w′w ◦ Λ) = I(w ◦ Λ) for w ∈W and w′ ∈WwΛ;

• I(sβsαw ◦ Λ) = I(sαw ◦ Λ) for w ∈ W , α, β simple in ∆+
0

(wΛ) with 〈α, β∨〉 = −1,

w−1(α) ∈ ∆+
0

and w−1(β) ∈ ∆+
0

;

see Sections 5.25 and 5.26 in [Ja]. Lemma 9.5 implies that for the first type of classical equalities
we have J(w′w ∗ Λ) = J(w ∗ Λ). So we focus on the second type of equality.

First we assume that α and β are actually simple in ∆+
0
⊃ ∆+

0
(wΛ). Theorems 6.3 and 7.8

in [AS], then imply that

[T 0
βL0(sβsαw ◦ Λ) : L0(sαw ◦ Λ)] = 1 and [T 0

αL0(sαw ◦ Λ) : L0(sβsαw ◦ Λ)] = 1, (9.1)

since dim Ext1
O0

(L0(sβsαw ◦ Λ), L0(sαw ◦ Λ)) = 1.

Lemmata 7.6 and 5.1 therefore imply that there are weights κ1, · · · , κj (with j ≥ 1) inside the
chamber of sαwΛ, such that the generic modules {L(κi), i = 1, · · · , j} are the ones corresponding
to that Weyl chamber appearing in the Jordan-Hölder decomposition of TβL(sβsαw∗Λ). Lemma
8.14 states that we can choose κ1 = sα ∗ Λ. For each of these weights κi, there are similarly
weights κi,1, · · ·κi,ji (with ji ≥ 1) inside the Weyl chamber of sβsαwΛ, such that the generic
modules {L(κil), l = 1, · · · , ji} are the ones corresponding to that Weyl chamber appearing in
the Jordan-Hölder decomposition of TαL(κi). Equation (9.1) implies that

chL(sβsαw ∗ Λ) =

j⊕
i=1

ji⊕
l=1

chL(κil)
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which shows that j = 1, j1 = 1. We conclude that [TαL(sαw ∗ Λ) : L(sβsαw ∗ Λ)] 6= 0 and
[TβL(sβsαw∗Λ) : L(sαw∗Λ)] 6= 0, so Lemma 5.15 implies the equality J(sβsαw∗Λ) = J(sαw∗Λ).

Now we consider the second type of equality with general α, β simple in ∆+
0

(wΛ). According

to Lemma 5.17(b) in [Ja] or Lemma 15.3.24(b) in [Mu4], there exist a u ∈ WwΛ for which
α′ = u(α) and β′ = u(β) are simple in ∆+

0
. This also implies sα = u−1sα′u and sβ = u−1sβ′u.

Lemma 9.5 implies

J(sβsαw ∗ Λ) = J(sβ′sα′uw ∗ Λ) and J(sαw ∗ Λ) = J(sα′uw ∗ Λ).

Since (uw)−1(α′) = w−1(α) ∈ ∆+
0

(and likewise for β), the equality J(sβsαw ∗ Λ) = J(sαw ∗ Λ)
follows from the previous case.

Since we already established the equalities between weights in the same star orbit, Lemma
7.5 implies that there can be no equalities of the form J(w ∗ Λ) = J(µ) for µ weakly generic
but not in the star orbit of Λ. If there would be an equality J(w ∗ Λ) = J(µ) for a non-weakly

generic weight µ, then no module corresponding to χ0
µ can appear in the module Resgg0

L(w ∗Λ)
since L(w ∗ Λ) is generic. Corollary 4.2 for g0 then implies this equality can not appear.

The property on the inclusions follows from Lemmata 9.4 and 9.5.

Now we show that for integral generic modules the inclusions can be classified by using the
consequences of Penkov’s result on the structure of generic modules.

Proposition 9.6. Consider g = q(n), a generic integral dominant Λ ∈ h∗ and w1, w2 ∈ W .
Then we have

J(w1 ∗ Λ) ⊆ J(w2 ∗ Λ) ⇔ I(w1 ◦ Λ) ⊆ J(w2 ◦ Λ).

Proof. According to Subsections 14.15 and 16.4 in [Ja], I(w1 ◦ Λ) ⊆ I(w2 ◦ Λ) if and only if w1

is less than or equal to w2 with respect to the left Kazhdan-Lusztig order. We claim that the
latter condition is equivalent to existence of a sequence {α1, · · · , αp} of simple roots in ∆+

0
and

Weyl group elements {w(0), w(1), · · · , w(p)} with w(0) = w1 and w(p) = w2 such that

[T 0
αiL0(wi−1 ◦ Λ) : L0(wi ◦ Λ)] 6= 0 for i = 1, · · · , p. (9.2)

Indeed, by e.g. Appendix in [MO], the combinatorics of the action of twisting functors (for g0)
is left-right dual to the combinatorics of the action of the usual projective functors. Hence the
above statement is equivalent to a similar statement for projective functors in which the left
Kazhdan-Lusztig order is changed to the right Kazhdan-Lusztig order. In the latter situation
the statement is standard, see for example Lemma 13 in [MM].

Proposition 8.19 states that (9.2) is equivalent to the property

[TαiL(wi−1 ∗ Λ) : L(wi ∗ Λ)] 6= 0 for i = 1, · · · , p.

The result therefore follows from Lemma 5.15.

10 Primitive ideals for osp(m|2n)
In this section we apply the ideas of the previous sections to study the primitive ideals of
g = osp(m|2n), with m > 2. Primitive ideals for osp(m|2n) have not been studied previously,
except for the special cases osp(1|2n) in [Mu3], osp(2|2n) in [Le] and a study of analogues of the
Joseph ideal in [CSS].
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We obtain a classification of primitive ideals and their inclusions in the generic region. This
result states that these inclusions are in correspondence with the ones for the underlying Lie
algebra where the action of the Weyl group is given through the star action. As proved in
Theorem 8.10, it is not important which star action is chosen in this generic region. However,
in contrast to basic classical Lie superalgebras of type I, the star action in the generic region
is not identical to the usual ρ-shifted action of the Weyl group, see Lemma 8.12. The newly
introduced notion of the star action is therefore, as for q(n), an essential concept for the study
of primitive ideals in the generic region.

Although all star actions become equivalent in the generic region, it will be more transparent
to explicitly introduce a star action that is different from the one from Subsection 8.2 for our
purposes. The reference Borel subalgebra remains the standard Borel subalgebra b with system
of positive roots as in the beginning of Subsection 8.2. The second Borel subalgebra we will use
is b̃, with simple positive roots given by

ε1 − ε2, · · · , εd−1 − εd, εd − δ1, δ1 − δ2, · · · , δn−1 − δn, δn for m = 2d+ 1,

ε1 − ε2, · · · , εd−1 − εd, ε1 − δ1δ1 − δ2, · · · , δn−1 − δn, 2δn for m = 2d.

Then we define a star action map B by

B(α) =

{
b if α is a simple root of so(m)

b̃ if α is a simple root of sp(2n).

The corresponding star action ∗B clearly has the property that it leads to an action of
W (so(m)) and W (sp(2n)). Because of this interesting property we refer to ∗B as the star action
for osp(m|2n) and thus denote it by ∗. The reason why it does not correspond to an action of
the full Weyl group is that in general w1w2 ∗µ 6= w2w1 ∗µ for w1 ∈W (so(m)), w2 ∈W (sp(2n))
and µ ∈ h∗. As proved in Theorem 8.10, in the generic region the star action ∗ becomes equal
to ∗′ from Subsection 8.2 and furthermore w1w2 ∗ µ = w2w1 ∗ µ for µ weakly generic.

Theorem 10.1. Consider g = osp(m|2n) and a dominant weakly generic Λ ∈ h∗ with w0 ∗ Λ
generic. If we have the equality J(w ∗ Λ) = J(µ) for some µ ∈ h∗

0
, then µ is in the star orbit of

Λ. Furthermore, we have the equivalence

J(w1 ∗ Λ) ⊆ J(w2 ∗ Λ) ⇔ I(w1 ◦ Λ) ⊆ I(w2 ◦ Λ).

Remark 10.2. If only the displayed equivalence is needed, a sufficient condition is that every
weight in the star orbit of Λ is weakly generic, which is satisfied if an arbitrary element in the
orbit of Λ is generic.

Before proving this, we make a useful remark concerning the primitive ideals for g0. For
g = osp(m|2n) we have g0 = so(m)⊕ sp(2n). Thus we can naturally decompose weights µ ∈ h∗

as µ = µ′ + µ′′ with µ′ a weights for so(m) and µ′′ a weight for sp(2n). We also denote the
corresponding primitive ideals for so(m) and sp(2n) by I ′(µ′) and I ′′(µ′′), respectively.

Lemma 10.3. With notation as above and µ, ν ∈ h∗, we have

I(µ) ⊆ I(ν) ⇔ I ′(µ′) ⊆ I ′(ν ′) and I ′′(µ′′) ⊆ I ′′(ν ′′).
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Proof. As U(g0) ∼= U(so(m))⊗ U(sp(2n)), it follows easily that

I(µ) = I ′(µ′)⊗ U(sp(2n)) + U(so(m))⊗ I ′′(µ′′)

and
I ′(µ′) = I(µ) ∩ (U(so(m))⊗ 1), I ′′(µ′′) = I(µ) ∩ (1⊗ U(sp(2n))).

The claims then follow immediately from these equalities.

Proof of Theorem 10.1. First we prove the second statement. The “if” part follows from Lemma
7.4 and Lemma 2.2. For the “only if” part we decompose the elements of the Weyl group as
w1 = w′1w

′′
1 and w2 = w′2w

′′
2 with w′1, w

′
2 ∈ W (sp(2n)) and w′′1 , w

′′
2 ∈ W (so(m)). According to

Lemma 10.3, the inclusions of primitive ideals can then be refined to

I(w1 ◦ Λ) ⊆ I(w′1w
′′
2 ◦ Λ) ⊆ I(w2 ◦ Λ).

Therefore it suffices to consider cases where w2w
−1
1 is either in the Weyl group of so(m) or

sp(2n). The first case follows immediately from Corollary 4.7 since by definition w∗ = w◦ = w·
for w ∈ W (so(m)). For the second case we denote w′′ := w′′1 = w′′2 . According to Lemma 2.2,

we can replace Λ by (w′′)−1 ◦ w̃′′ ◦ Λ in the inclusions of annihilator ideals of g0 to get

I(w′1 ◦ w̃′′ ◦ Λ) ⊆ I(w′2 ◦ w̃′′ ◦ Λ).

Corollary 4.7 then yields

AnnU(g)L
(b̃)(w′1 ◦ w̃′′ ◦ Λ) ⊆ AnnU(g)L

(b̃)(w′2 ◦ w̃′′ ◦ Λ),

which is equivalent to

J(w′1w
′′ ∗ Λ) = J(w′1 ∗ w′′ ◦ Λ) ⊆ J(w′2 ∗ w′′ ◦ Λ) = J(w′2w

′′ ∗ Λ).

The first statement follows from the second and Lemma 7.5 as in the proof of Theorem 9.2.

11 Primitive ideals for classical Lie superalgebras of type I

We formulate the results in this section in terms of the distinguished system of positive roots,
i.e. the reference Borel subalgebra satisfies b ⊂ g0 ⊕ g1.

11.1 General statements

Theorem 11.1. Consider g a classical Lie superalgebra of type I with distinguished system of
positive roots. For λ, µ ∈ h∗, we have

J(µ) = J(λ) ⇔ I(µ) = I(λ). (11.1)

Furthermore, we have

J(w′ · λ) ⊂ J(w · λ) ⇔ I(w′ · λ) ⊂ I(w · λ) (11.2)

for w,w′ ∈W .
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The first part, which determines the fibres of the surjective mapping of annihilator ideals of
simple highest weight modules onto the set of primitive ideals as introduced by Musson in [Mu1],
recovers the main result of [Le] obtained by Letzter. The remainder of this subsection is mainly
devoted to proving Theorem 11.1. The following lemma implies that equalities of primitive
ideals can only occur between modules with highest weights in the same orbit. Contrary to the
classical case, this does not follow from the consideration of central characters.

Lemma 11.2. If for λ, µ ∈ h∗ we have J(µ) = J(λ), then µ = w · λ for some w ∈W .

Proof. Assume that µ and λ belong to different orbits. Denote by µ̂ and λ̂ the W -maximal
elements in their orbits. Without loss of generality we take λ̂ 6< µ̂. There is always an integral
dominant weight ν such that Λ = λ̂+ ν is typical. This follows from the property

T ∩ (λ̂+ P+) 6= ∅,

with T ⊂ h∗ the open subset of typical weights and λ̂+ P+ a dense set in the Zariski topology.
Based on the standard filtration of the tensor product of a Verma module with a finite

dimensional module, one obtains that

(M(w · µ̂)⊗ L(ν))χΛ
= 0

for any w ∈ W and thus (L(µ)⊗ L(ν))χΛ
= 0. On the other hand, based on the property of

highest weights it follows that
(
L(λ̂)⊗ L(ν)

)
χΛ

6= 0. Lemma 8.3 (for the special case of the

distinguished system of positive roots and B trivial), and Lemma 5.9 imply(
L(w · λ̂)⊗ L(ν)

)
χΛ

is a subquotient of Tα

(
L(sαw · λ̂)⊗ L(ν)

)
χΛ

if sαw > w.

The leads to the fact that
(
L(w · λ̂)⊗ L(ν)

)
χΛ

6= 0 for any w ∈ W . Thus, in particular, we

obtain that (L(λ)⊗ L(ν))χΛ
6= 0. Corollary 4.2 therefore implies that µ̂ = λ̂.

Lemma 11.3. We have J(w′ · λ) ⊂ J(w · λ) ⇒ I(w′ · λ) ⊂ I(w · λ).

Proof. Since it is a statement concerning orbits of the Weyl group, we can assume that λ is
W -maximal without loss of generality. As in the proof of Lemma 11.2 we take a ν ∈ P+ such
that Λ = λ+ ν is typical.

If λ is regular (and therefore Λ as well), then (M(w · λ) ⊗ L(ν))χΛ = M(w · Λ), with the
analogous property also holding for the dual Verma module. This immediately implies that
(L(w · λ)⊗L(ν))χΛ is either L(w ·Λ) or trivial. As in the proof of Lemma 11.2, it is not trivial.
Lemmata 4.3 and 4.1 therefore imply J(w′ · λ) ⊂ J(w · λ) ⇒ J(w′ · Λ) ⊂ J(w · Λ). The result
then follows from Theorem 6.1.

In general λ can be singular and Λ might have less singularities than λ. Therefore the
modules (L(w · λ) ⊗ L(ν))χΛ might be non-simple. They are still non-zero by the proof of
Lemma 11.2 and we denote N(w) := (L(w · λ) ⊗ L(ν))χΛ for any w ∈ W . Then by the same
reason as above we have

J(w′ · λ) ⊂ J(w · λ)⇒ AnnU(g)N(w′) ⊂ AnnU(g)N(w).

Lemma 4.1 applied to g0 then implies

J(w′ · λ) ⊂ J(w · λ)⇒ AnnU(g0)(Resgg0
N(w′))χ0

Λ
⊂ AnnU(g0)(Resgg0

N(w))χ0
Λ
.
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As already noted in the proofs of Theorems 6.1 and 6.2, we have (Resgg0
L(w·Λ))χ0

Λ
= L0(w·Λ)

for any w ∈ W . This implies that, applying the translation functor from (O0)χ0
Λ

to (O0)χ0
λ
, see

chapter 7 in [Hu], takes Resgg0
N(w) to L(w · λ)⊕k for some k ∈ N. According to Lemma 5.4 in

[Ja], these translation functors induce morphisms of the posets of annihilator ideals of modules
belonging to the respective blocks. This also follows from Lemmata 4.3 and 4.1. This concludes
the proof.

Remark 11.4. The proof above for singular weights can be simplified if g is sl(m|n) with m 6= n
or osp(2|2n). Then ν can be chosen as a multiple of ρ1. Since this is orthogonal to all even
roots, singular orbits can always be translated to typical orbits with the same singularities.

Proof of Theorem 11.1. The “if” part of equation (11.1) is given in Lemma 11.2. The “only if”
part in equations (11.1) and (11.2) is exactly Lemma 4.7 for l = g0. The “if” part in equation
(11.2) is Lemma 11.3.

For the remainder of this section we consider g = sl(m|n) with m 6= n or g = osp(2|2n). The
even subalgebras of sl(m|n) and osp(2|2n) (respectively C⊕sl(m)⊕sl(n) and C⊕sp(2n)) have a
one dimensional centre. We choose the element H ∈ z(g0) ⊂ h of this centre which is normalised
by the relation α(H) = 1 for all α ∈ ∆+

1 . This implies, in particular, that [H,Y ] = −Y for
Y ∈ g−1.

Definition 11.5. For any weight λ ∈ h∗ we define dλ ∈ Z+ (with 0 ≤ dλ ≤ dim g1) as

dλ = max{k ∈ Z+ such that there are α1, · · · , αk ∈ ∆+
1 for which Yα1 · · ·Yαkv

+
λ 6= 0},

where v+
λ denotes a highest weight vector of L(λ).

Lemma 11.6. For λ, µ ∈ h∗
0
, the inclusion J(λ) ⊆ J(µ) implies existence of p ∈ Z+ such that

• µ(H) = λ(H)− p

• dµ ≤ dλ − p.

Proof. The condition C[H] ∩AnnU(g)L(λ) ⊆ C[H] ∩AnnU(g)L(µ) implies that the polynomial

(H − λ(H))(H − λ(H) + 1) · · · (H − λ(H) + dλ)

must be divisible by

(H − µ(H))(H − µ(H) + 1) · · · (H − µ(H) + dµ).

Thus we have λ(H) ≥ µ(H) and λ(H)− dλ ≤ µ(H)− dµ.

11.2 Singly atypical characters for sl(m|n) and osp(2|2n)

Singly atypical weights λ have one atypical root γ, 〈λ + ρ, γ〉 = 0, such that all other atypical
roots γ′ satisfy 〈γ, γ′〉 6= 0. Lemma 7.7 implies that regular singly atypical weights therefore have
exactly one atypical root. In this subsection we derive results on inclusions between primitive
ideals for singular atypical characters for sl(m|n) with m 6= n and osp(2|2n), based on the
treatment of these characters by Van der Jeugt et al in [VdJ, VHKT].

38



Theorem 11.7. For integral dominant singly atypical weights Λ1,Λ2 ∈ P+ and elements of the
Weyl group w1, w2 ∈W , the inclusion

AnnU(g)L(w1 · Λ1) ⊆ AnnU(g)L(w2 · Λ2)

implies Λ1 = Λ2.

Proof. According to the Harish-Chandra isomorphism, see Section 13.1 in [Mu4], the condition
χΛ1 = χΛ2 implies that Λ1 must be inside the ρ-shifted Weyl group orbit of Λ2 + kγ, for γ the
atypical root of Λ2, .

Equation (11.2) in Theorem 11.1 implies J(w2 · Λ2) ⊆ J(Λ2), so it suffices to prove the
statement for w2 = 1. Now we can make use of the procedure in [VdJ, VHKT] used to obtain
the character formulae for singly atypical modules. We write d := dim g−1.

Theorem 4.3 in [VHKT] implies that for every singly atypical integral dominant weight Λ,
there is one singly atypical integral dominant weight Λ′ such that we have the short exact
sequence

L(Λ′) ↪→ K(Λ) � L(Λ),

with K(Λ) = Indg
g0+g1

L0(Λ) being the Kac module. Since L(Λ′) contains Λdg−1 L0(Λ), we get
the equality

Λ(H)− d = Λ′(H)− dΛ′ , (11.3)

for dΛ′ as in Definition 11.5.
The procedure in Section 6 of [VHKT] then reveals that starting from Λ′ with atypical root

γ, the weight Λ is given as the dominant weight in the orbit of Λ′ + kγ, for k ∈ N the smallest
k such that Λ′ + kγ is regular. Equation (11.3) implies this minimal k is equal to d− dΛ′ .

Now we make the identification Λ2 = Λ′. Lemma 11.6 and the property χΛ1 = χΛ2 imply
that Λ1 is in the orbit of Λ2 + pγ for 0 < p ≤ dΛ1 − dΛ2 . On the other hand, the procedure
above implies p ≥ d − dΛ2 . This is only possible if dΛ1 = d, but that would imply that Λ1 is
typical.

The next lemma proves that there are extra inclusions between regular and singular singly
atypical highest weights.

Lemma 11.8. Consider a regular singly atypical weight λ, with positive atypical root γ such
that we have 〈λ+ρ, α∨〉 ∈ N for α a simple even root. If 〈λ+γ+ρ, α〉 = 0, then J(λ+γ) ⊂ J(λ).

Proof. We set γ = εj − δi. We choose the case α = εj−1 − εj and 〈λ + γ + ρ, α〉 = 0, the other

case being similar. We consider a Borel subalgebra b̂ with simple roots given by

ε1 − ε2, · · · , εj−3 − εj−2, εj−2 − δ1, δ1 − δ2, · · · , δi−1 − δi, δi − εj−1,

εj−1 − εj , · · · , εm−1 − εm, εm − δi+1, δi+1 − δi+2, · · · , δn−1 − δn.

By carrying out the odd reflections, we obtain sα ∗b̂λ = λ+γ as in Example 8.8. The conclusion
then follows from Corollary 8.4.
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12 Annihilator ideals of Verma modules

The result of Duflo in [Du1] states that

AnnU(g0)M0(w · λ) = U(g0)m0
χ0
λ

,

where χ0
λ : Z(g0) → C is the corresponding central character and m0

χ0
λ

∈ SpecZ(g0) is defined

as kerχ0
λ. This result was extended to strongly typical central characters for basic classical Lie

superalgebras by Gorelik in [Go2]. Below we prove a weaker statement for q(n).

Proposition 12.1. Consider g = q(n) and λ a strongly typical weight. Then the annihilator
ideal of all Verma modules in Oχλ are identical,

AnnU(g)M(λ) = AnnU(g)M(w · λ)

for any w ∈W with w · λ = wλ.

Proof. First we prove the claim for Λ ∈ h∗
0

dominant. One way to prove this is by making use
of Proposition 2 in [FM], which implies that

AnnU(g)M(wΛ) = AnnU(g)

(
Indg

g0
M0(w ◦ Λ)

)
χΛ

.

The claim then follows from Lemmata 4.1 and 4.4 together with Duflo’s result.
Now we consider a singular strongly typical character. Assume that the singular weight λ is

W -maximal in its orbit. As in the proof of Lemma 11.2 we can take ν integral dominant such
that Λ = λ+ ν is strongly typical and dominant. The set of Verma modules {M(wλ) |w ∈W}
is then equal to {(M(wΛ) ⊗ L(ν)∗)χλ |w ∈ W}. The result therefore follows from the regular
case and Lemmata 4.1 and 4.3.

Theorem 12.2. Let g be a classical Lie superalgebra in the list (2.1) with arbitrary Borel
subalgebra. The equality

AnnU(g)M(µ) = AnnU(g)M(λ)

implies there is w ∈W such that µ = w · λ.

Proof. We use central characters in this proof, which therefore does not include g equal to p(n)
or p̃(n). However, as proven in Theorem 3.4 or Theorem 3.6 in [Se1], the Jacobson radical J
of U(g) is included in the annihilator ideal of every Verma module. Thus an inclusion between
annihilator ideals of Verma modules in U(g) or in U := U(g)/J is equivalent. The remainder of
the proof can therefore be applied to those Lie superalgebras by replacing U(g) by U .

Assume AnnU(g)M(µ) = AnnU(g)M(λ). Denote by µ̂ and λ̂ the W -maximal elements in the

orbits (of the ρ-shifted action) of µ and λ respectively. If λ̂ 6= µ̂, without loss of generality we
assume that µ̂ 6≥ λ̂. Then there is an integral dominant weight ν such that Λ = λ̂+ν is strongly
typical, see the proof of Lemma 11.2. Since (M(λ)⊗ L(ν))χΛ

has a non-zero filtration by Verma
modules while (M(µ)⊗ L(ν))χΛ

is trivial, the combination of Lemma 4.1 and Lemma 4.3 leads

to a contradiction. This implies that µ̂ = λ̂, so µ and λ must be inside the same orbit.

Remark 12.3. It is a remarkable feature that inclusions/equalities between primitive ideals
for classical Lie superalgebras follow the structure of the deformed star orbit, while equalities
between annihilator ideals of Verma modules follow the structure of the usual ρ-shifted Weyl
group orbit.
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Theorem 12.4. Let g be a classical Lie superalgebra of type I with distinguished system of
positive roots. For any λ ∈ h∗ and w ∈W , we have the equality

AnnU(g)M(w · λ) = AnnU(g)M(λ).

Furthermore if g is equal to sl(m|n) with m 6= n or osp(2|2n), the inclusion

AnnU(g)M(µ) ⊆ AnnU(g)M(λ)

implies there is a w ∈W such that µ = w · λ.

Proof. Lemma 4.4 and M(µ) ∼= Ind
U(g)
U(g0+g1)M0(µ) imply that

AnnU(g)M(w · λ) = AnnU(g)

(
U(g)/(U(g)m0

χ0
λ
U(g1))

)
,

where we used Duflo’s result, which proves the theorem.
If g is equal to sl(m|n) with m 6= n or osp(2|2n) it follows immediately from the structure of

the odd roots that (Resgg0
M(µ))χ0

µ
= M0(µ). Similarly if λ and µ are in different orbits we have

either (Resgg0
M(µ))χλ = 0 or (Resgg0

M(λ))χµ = 0. The second claim then follows from Lemma
4.1.
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