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Abstract: Organic Rankine Cycle (ORC) technology has demonstrated to be a suitable tool for
recovering waste heat at low temperatures. The fluctuating nature of the waste heat source (varying
temperature and mass flow) makes of waste heat recovery applications a challenging task. In this
contribution Model Predictive Control (MPC) and more classical PID-like controllers are investigated,
where special attention is paid to the analysis of the control performance for heat source profiles coming
from different applications. A dynamic model of a real regenerative ORC unit equipped with a single
screw expander developed in the Modelica language is used to test and compare the PID and MPC based
control strategies. Results show that for low amplitude variations PID and MPC can perform equally
good, but in case of large variations MPC is a more effective control strategy as it allows a safer and
more efficient operation, operating close to the boundary conditions where production is maximized.

Keywords: Model Predictive control, Renewable energy systems, Process control, organic Rankine
Cycle.

1. INTRODUCTION

Reducing the world-wide industrial energy consumption is
a major concern in order to ensure guarantee a sustainable
development. Despite all efforts to achieve a more efficient
production, waste heat losses are still an important concern. An
attractive technology able to recover heat at low temperatures
is the Organic Rankine Cycle (ORC) system.

ORC power units stand out for their reliability and cost-
effectiveness Verneau (1979),Angelino et al. (1984). Replacing
the water by an organic compound opened new challenges,
regarding the cycle design, selection of the fluid, modeling,
simulation and control design Sun and Li. (2011); Colonna and
Van Putten. (2007). Such thermodynamic units are designed
to operate around certain steady-state conditions, however due
to the highly fluctuating nature of the heat source, they are
forced to operate at part-load conditions. Control design plays
an essential role to enable a safe and optimal performance of
the ORC unit. Safe operation is achieved by an accurate reg-
ulation of the superheating, since it is already recognized that
low values for superheating maximize the cycle efficiency Her-
nandez et al. (2014) and avoid the formation of liquid droplets
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at expander inlet that can damage the expansion machine Wei
et al. (2007).

Most of the current studies are restricted to guarantee safety
conditions by regulating the superheating (see Grelet et al.
(2015) and the references therein), but little attention has been
paid to the performance of the power unit in terms of energy
production. In order to maximize the output power the evap-
orating temperature is usually considered as the most relevant
controlled variable Quoilin et al. (2011). In Feru et al. (2014),
the modeling and control of a waste heat recovery system for a
Euro-VI heavy-duty truck engine was achieved through the use
of a switching model predictive control strategy to guarantee
safe operation of the WHR system and to maximize output
power. Also in the automotive field, the problem of maximizing
the power produced by an ORC waste heat recovery system on
board a diesel-electric railcar is tackled using dynamic real-time
optimization Peralez et al. (2015). In Hernandez et al. (2015),
an experimental study is conducted using an 11kWel pilot plant,
showing that the constrained Model Predictive Control (MPC)
outperforms PID based strategies, as it allows to accurately
regulate the evaporating temperature with a lower control effort
while keeping the superheating in a safer operating range.

In this study we investigate the performance of MPC and PID
based strategies to optimally recover waste heat through ORC
technology. Using existent components from the ThermoCycle
library Quoilin et al. (2014), a dynamic model of an ORC
system is built for simulation purposes. The model dynamics
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are coherent with those observed on real systems as presented
in Desideri et al. (2014), where the dynamic models is exper-
imentally validated using a low-capacity (11kWe) waste heat
recovery unit equipped with a single screw expander. Using
the developed dynamic model, insight on the system dynamics
and optimal operation is achieved, resulting in the development
of a real-time optimizer to compute the optimal evaporating
temperature which maximizes the power generation. The con-
troller’s task is to track the optimal set-point generated by the
optimizer while ensuring a minimum superheating value for
safely operation.

The paper is structured as follows. Section 2 introduces the
architecture and main characteristics of the ORC system. Next,
in section 3 the Extended Prediction Self-Adaptive (EPSAC)
approach to MPC used in this study is briefly described. A
low-order model suitable for prediction is then developed using
parametric identification as described in section 4. The control
structure, design and tuning of the proposed PID and MPC
based strategies is described in section 5, followed by the
simulation results in section 6. Finally a conclusion section
summarizes the main outcome of this contribution.

2. PROCESS DESCRIPTION

This section describes the architecture and main characteristics
of the ORC system used for evaluating the performance of the
developed control strategies.

2.1 The Organic Rankine Cycle System

In order to assess the performance of the different developed
control strategies, a dynamic model of the ORC system pre-
sented in Fig. 1 has been developed in the Modelica language
using existent components from the Thermo Cycle library
Quoilin et al. (2014). The developed model is then exported
into Simulink/Matlab environment by means of the Functional
Mock-Up Interface (FMI) open standard.

Fig. 1. Schematic layout of the pilot plant available at Ghent
University, campus Kortrijk (Belgium)

The system based on a regenerative cycle and solkatherm
(SES36) as working fluid, shows a nominal power of 11kWe.
The expander is originally a single screw compressor adapted
to run in expander mode. It drives an asynchronous generator
connected to the electric grid through a four-quadrant inverter,
which allows varying the generator rotational speed (Nexp).

During the simulations performed in this paper, the generator
rotational speed is kept constant at 3000rpm to emulate an
installation directly connected to the grid. The circulating pump
(Npp) is a vertical variable speed 14-stage centrifugal pump
with a maximum pressure of 14 bar and 2.2kWe nominal
power.

Starting from the bottom of the scheme it is possible to rec-
ognize the liquid receiver (b) installed at the outlet of the
condenser (a) where the fluid is collected in saturated liquid
condition. From the receiver outlet, the fluid is pumped (c)
through the regenerator (d) cold side, and the evaporator (e),
where it is heated up to superheated vapor, reaching its maxi-
mum temperature at the evaporator outlet. The fluid, after being
expanded in the volumetric machine (f), enters the regenerator
hot side, and then it flows into the condenser (a) to close the
cycle.

In order to assess the performance of the different devel-
oped control strategies a dynamic model of the ORC system
(Fig. 1) has been developed in the Modelica language using
existent components from the ThermoCycle library Quoilin
et al. (2014). The developed model is then exported into
Simulink/Matlab R© environment by means of the Functional
Mock-Up Interface (FMI) open standard.

2.2 Conditions for optimal operation of an ORC unit

In order to optimally operate an ORC unit, two main conditions
need to be satisfied: i) keep the cycle in a safe condition
during operation and ii) maximize the net output power. Safe
operation of the ORC unit is important as it allows a longer
life expectancy in all components. In this concern, an accurate
regulation of superheating (∆Tsh), is the main priority since a
minimum value of superheating has to be guaranteed in order to
avoid a wet expansion (i.e., formation of liquid droplets at the
expander inlet that can damage the expansion machine). The
superheating is defined as:

∆Tsh = Texp,in−Tsat,ev (1)

where Texp,in is the temperature measured at the inlet of the
expander and Tsat,ev the evaporating temperature, corresponding
to the temperature at which the fluid undergoes the phase
transition from saturated liquid to saturated vapor at the fixed
evaporating pressure psat,ev.

In order to maximize the output power the evaporating tem-
perature represents the most relevant control variable Quoilin
et al. (2011), which needs to be adapted depending on the heat
source conditions Hernandez et al. (2015). The main terms to
assess the performance of the ORC system are the net output
power and the cycle efficiency, which are defined as:

Ẇel,net = Ẇexp−Ẇpump (2)

ηcycle =
Ẇel,net

Q̇in,ORC
(3)

where Ẇexp is the expander electrical power, Ẇpump is the pump
electrical power and Q̇in,ORC is the thermal power supplied to
the ORC system in the evaporator.

2.3 Optimal evaporating temperature

Previous studies have demonstrated the existence of an optimal
evaporating temperature which maximizes the output power for
a given heat source conditions, where a real-time optimizer
(RTO) can be built using a steady-state model Quoilin et al.
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(2011) or by means of extremum-seeking algorithm Hernandez
et al. (2016). In this paper the first approach is chosen, thus
leading to the following correlation used in the RTO:

Tsat,opt =−290.915+183.33∗ log10(Th f )+10.636∗ ṁh f (4)

Equation (4) is valid in the range of 0.5 ≤ ṁh f ≤ 1.5kg/s and
90 ≤ Th f ≤ 125 ◦C given a constant saturation temperature in
the condenser of psat,cd = 1.4bar.

3. MODEL PREDICTIVE CONTROL

A brief introduction to EPSAC algorithm is presented in this
section. For a detailed description the reader is referred to De
Keyser (2003); Hernandez et al. (2015).

3.1 Computing the Predictions

Using EPSAC algorithm, the measured process output can be
represented as:

y(t) = x(t)+n(t) (5)

where x(t) is the model output which represents the effect
of the control input u(t) and n(t) represents the effect of the
disturbances and modeling errors, all at discrete-time index
t. Model output x(t) can be described by the generic system
dynamic model:

x(t) = f [x(t−1),x(t−2), . . . ,u(t−1),u(t−2), . . .] (6)

Notice that x(t) represents here the model output, not the state
vector. Also important is the fact that f can be either a linear or
a nonlinear function.

Furthermore, the disturbance n(t) can be modeled as colored
noise through a filter with the transfer function:

n(t) =
C(q−1)

D(q−1)
e(t) (7)

with e(t) uncorrelated (white) noise with zero-mean and C, D
monic polynomials in the backward shift operator q−1. The
disturbance model must be designed to achieve robustness of
the control loop against unmeasured disturbances and modeling
errors Maciejowski. (2002).

A fundamental step in the EPSAC methodology consists of the
prediction. Using the generic process model (5), the predicted
values of the output are:

y(t + k|t) = x(t + k|t)+n(t + k|t) (8)

x(t + k|t) and n(t + k|t) can be predicted by recursion of the
process model (6) and by using filtering techniques on the noise
model (7), respectively De Keyser (2003).

3.2 Computing the optimal control action

A key element in linear MPC is the use of base (or free) and
optimizing (or forced) response concepts Maciejowski. (2002).
In EPSAC, the future response can be expressed as:

y(t + k|t) = ybase(t + k|t)+ yoptimize(t + k|t) (9)

The two contributing factors have the following origin:

• ybase(t + k|t) is the effect of the past inputs, the a priori
defined future base control sequence ubase(t +k|t) and the
predicted disturbance n(t + k|t).
• yoptimize(t + k|t) is the effect of the additions δu(t + k|t)

that are optimized and added to ubase(t + k|t), according
to δu(t + k|t) = u(t + k|t)− ubase(t + k|t). The effect of

these additions is the discrete time convolution of ∆U =
{δu(t|t), . . . ,δu(t +Nu−1|t)} with the impulse response
coefficients of the system (G matrix), where Nu is the
chosen control horizon.

The control ∆U is the solution to the following constrained
optimization problem:

∆U =arg min
∆U∈RNu

N2

∑
k=N1

[r(t + k|t)− y(t + k|t)]2

sub ject to |M.∆U ≤ N

(10)

where N1 and N2 are the minimum and maximum prediction
horizons, Nu is the control horizon, r(t + k|t) is a future set-
point or reference sequence. The various process input and
output constraints can all be expressed in terms of ∆U , resulting
in matrices M, N. Since (10) is quadratic with linear constraints
in decision variables ∆U , then the minimization problem can
be solved by a quadratic programming (QP) algorithm Ma-
ciejowski. (2002).

4. SYSTEM IDENTIFICATION

A trade-off between complexity of the model and prediction
accuracy has to be made, in order to ensure the correct per-
formance of the MPC strategy. In this work we have chosen a
pragmatic approach by performing a parametric identification
based on experimental data recorded in the available setup.

The model has been identified from the manipulated variable,
pump speed (Npp) to the evaporating temperature (Tsat,ev) and
superheating (∆Tsh). The identification has been performed
using a multisine excitation signal and the prediction error
method (pem) Ljung (2007). The sampling time Ts = 1s has
been chosen according to the fastest dynamics of the system.

It is important to notice that in practice it is also possible to
measure the temperature and mass flow rate of the heat source
(Th f ) and (ṁh f ), making possible to use them as measured dis-
turbances. Therefore, models from these variables to evaporat-
ing temperature (Tsat,ev) and superheating (∆Tsh) are also built.
The nominal operating conditions of the system are presented
in table 1.

Table 1. Nominal operating conditions considered
for the Identification Procedure

Parameter Description Value Unit

Npp Pump rotational speed 1680 rpm
Nexp Expander rotational speed 3000 rpm

Tsat,ev Evaporating temperature 100 ◦C
∆Tsh Superheating 20 ◦C
Th f Temperature hot fluid 120 ◦C
ṁh f Mass flow rate hot fluid 1.0 kg/s
Tc f Temperature cold fluid 15 ◦C
ṁc f Mass flow rate cold fluid 3.0 kg/s

Ẇel,net Net output power 11 kW
ηcycle Cycle efficiency 6 %

The identified model is presented in (11) in the form of discrete-
time transfer functions using the backwards shift operator q−1.
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∆Tsh(t)
Npp(t)

=
−0.063q−1 +0.059q−2

1−2.44q−1 +1.955q−2−0.51q−3 (11a)

∆Tsh(t)
Th f (t)

=
0.47q−1

1−0.51q−1 (11b)

∆Tsh(t)
mh f (t)

=
−2.98q−1 +4.29q−2−1.31q−3

1−1.35q−1−0.11q−2 +0.46q−3 (11c)

Tsat(t)
Npp(t)

=
0.066q−1−0.063q−2

1−2.42q−1 +1.91q−2−0.49q−3 (11d)

Tsat(t)
Th f (t)

=
0.0017q−11−0.0017q−12

1−3.6q−1 +4.88q−2−2.95q−3 +0.67q−4 (11e)

Tsat(t)
mh f (t)

=
2.43q−1−6.16q−2 +5.33q−3−1.6q−4

1−2.93q−1 +3.12q−2−1.42q−3 +0.23q−4 (11f)

5. CONTROL STRUCTURE AND TUNING

In this section the control structure and tuning procedure of the
proposed strategies are discussed.

Three control strategies are developed in order to control the
ORC unit, two based on PID and one based on MPC. In all
strategies we make use of the real-time optimizer (RTO) to
compute, as a function of the varying heat source conditions,
the optimal evaporating temperature Tsat,opt which will be used
as reference to the controller, as illustrated in Fig. 2.

Fig. 2. Control structure of the proposed closed loop including
the real-time optimizer (RTO).

An important element on the control design are the physical
constraints and the safety conditions of the system. For which,
the controller is required to respect the input (pump speed) and
output (superheating) constraints, summarized in table 2.

Table 2. Operation constraints of the ORC unit

Variable max min ∆
Pump Speed Npp 1320rpm 2100rpm 60rpm/s

Superheating ∆Tsh − 10◦C -

5.1 PI strategy

This strategy is based on a PI controller which is used to track
the optimal evaporating temperature Tsat,opt . The PI controller is
tuned using the transfer function which relates the speed in the
pump to the evaporating temperature (11) for the following de-
sign specifications: settling time Tset = 60s, overshoot percent
OS% = 0 and robustness Ro = 0.7, obtaining the PI parameters:

PITsat,ev = Kp

(
1+

1
Ti s

)
= 0.189

(
1+

1
1.7813s

)
(12)

During the implementation phase the clamping anti-reset
windup scheme is used to clip the control action into the per-
missible range of the pump (table 2).

5.2 Switching PIs

In order to improve the performance of the PI strategy, essen-
tially to what refers to safety conditions, an override control
(here called switching PI strategy) is implemented. In this strat-
egy the PITsat,ev controller is used to follow the optimal evapo-
rating temperature set-point unless that superheating value goes
below a threshold value ∆Tsh < 10 ◦C, in which case another
PI controller for superheating PIDTsh , is used with set-point at
∆Tsh,re f = 10 ◦C, in order to bring the system back to a safe
stage.

While the PI controller for the evaporating temperature is the
same used on the basic PI strategy (12), the PI controller
for superheating is tuned using the transfer function which
relates the speed of the pump to the superheating found in
(11), for the following design specifications: settling time Tset =
60s, overshoot percent OS% = 0 and robustness Ro = 0.7, the
following PI parameters are obtained:

PI∆Tsh = Kp

(
1+

1
Ti s

)
=−1.1

(
1+

1
0.98s

)
(13)

5.3 MPC-EPSAC

In this strategy a constrained MPC-EPSAC controller is imple-
mented to track the optimal evaporating temperature Tsat,opt ,
while ensuring superheating will remain above 10 ◦C.

In MPC, a balance between acceptable control effort and ac-
ceptable control error can be obtained via many tuning pa-
rameters (e.g., the reference trajectory design parameter α; the
prediction horizon N2 and the control horizon design parameter
Nu). Closed loop performance is designed using the N2 param-
eter, whereas larger values provide a more conservative and
robust control. The control horizon Nu is used to structure the
future control scenario, reducing the degrees of freedom from
N2 to Nu. Structuring leads to simplified calculations and has
generally a positive effect on robustness. The design parameter
α in the reference trajectory can vary in the range of: 0≤α ≤ 1.
A value of α closer to 1 means a smoother variation of the set-
point and hence a less aggressive control action.

A trade-off between closed loop speed and robustness has been
obtained for N2 = 15, Nu = 1 and α = 0.5. The main goal is
to achieve a response without overshoot OS% = 0 and settling
time of about 60s. Another important element in the design of
the controller is the choice of the disturbance model (7), during
this study the ‘default’ filter C(q−1) = 1 and D(q−1) = 1−q−1

has been chosen leading to zero steady-state error Maciejowski.
(2002). Notice that this filter choice acts like the integral action
for PID controllers.

6. SIMULATION RESULTS AND DISCUSSION

The present study focuses on investigating which are the advan-
tages of using advanced controllers such as MPC compared to
PID-like strategies for the optimal operation of an ORC system
in waste heat recovery applications. The control strategy task
is to accurately regulate the evaporating temperature (given by
the RTO), in order to maximize the energy production, while
avoiding formation of liquid droplets that could damage the
expander by ensuring an small amount of superheating ∆Tsh.
Thus in this study we will focus on answering two questions:

• which are the heat source conditions which represent the
main challenge for any controller? and
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Fig. 3. Heat source profiles due to temperature Th f and mass flow rate mh f variations. Case I: slow and low amplitude variations.
Case II: fast and low amplitude variations. Case III: slow and large amplitude variations. Case IV: fast and large amplitude
variations.

• which controller produces the highest output power while
keeping the safety conditions?

In order to answer those questions, we introduce four different
scenarios depicted in figure 3, in which the controllers will be
tested. The heat source variations are due to the combination of
slow, fast, low or large transitions in temperature Th f and mass-
flow-rate mh f :

• Case I: slow and low amplitude transitions. Th f = ±5 ◦C
and ṁh f =±0.1kg/s
• Case II: fast and low amplitude transitions. Th f = ±5 ◦C

and ṁh f =±0.1kg/s
• Case III: slow and large amplitude transitions. Th f =
±15 ◦C and ṁh f =±0.3kg/s
• Case IV: fast and large amplitude transitions. Th f =
±18 ◦C and ṁh f =±0.4kg/s

The three strategies tested for cases I and II (not shown here)
result on good closed-loop performance, i.e., the difference
in terms of tracking capabilities and control effort is negli-
gible. During those heat source conditions the controllers are
able to track correctly the quick transitions, meaning that the
controllers have a high enough bandwidth and superheating
remains into the desired limits.

Large amplitude variations in the heat source cause sudden
drops in the superheating value, as depicted in Fig. 4 at time in-
stant 1350s. The switching mechanism avoids the superheating
to decrease dramatically compared to the PI strategy, neverthe-
less, it still undergoes the threshold value of 10 ◦C. For the case
of MPC, the most important element to highlight is the fact that
this control strategy always respects the hard-output-constraint
of ∆Tsh > 10 ◦C. Because it uses a model for prediction, it is
able to better compensate possible sudden drops in the super-
heating, thus resulting in a higher net output power and higher
life expectancy of the actuator, both due to the smoother control
effort (i.e., lower pump speed Npp variations).

Previous observations are more evident when analyzing the
results for case IV, (i.e., fast and large amplitude variations),
where sudden drops in the superheating value are observed
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Fig. 4. Controllers comparison for Case III. Solid green- PI
strategy; solid blue- Switching PI and solid red- represents
MPC-EPSAC strategy.

at time instants 1038s, 1350s, 2080s, 2664s and 3080s as
depicted in Fig. 5.

The simulation results obtained suggest that MPC outperforms
the PI based strategies for the case of large amplitude varia-
tions in the heat source. Hence, resulting in a desirable strat-
egy regarding safety conditions. In a real industrial context,
using a single PI would be an unsafe and therefore unusable
strategy. Instead, the switching PI (in solid blue line) regulate
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Fig. 5. Controllers comparison for Case IV. Solid green- PI
strategy; solid blue- Switching PI and solid red- represents
MPC-EPSAC strategy.

both evaporating temperature and superheating, thus enabling
a safer operation while keeping smooth transition between the
controllers. However, there is no direct control on how much
can superheating decrease, as observed in for cases III and IV
where superheating values close to 5◦C were observed.

7. CONCLUSION

In the present contribution three different PI and MPC based
strategies have been designed and tested in simulation, with the
goal of optimizing the working conditions of an ORC unit for
WHR applications.

Results suggest that large amplitude variations in the waste
heat source (e.g. cases III and IV), represent the most chal-
lenging situation for control design. Hence, implementation
of advanced controllers such as MPC is highly recommended
as it generates the same or higher net electrical output power
compared to PID-based strategies while offering a safer op-
eration. This is achieved by more accurately regulating the
optimal evaporating temperature generated by the optimizer,
while keeping the superheating at safe values, resulting also in
a higher efficiency of the system. On the other hand, for the
case of low amplitude variations (e.g. cases I and II), PID-like
strategies might offer a satisfactory performance.

Future work includes adding more degrees of freedom by
manipulating the expander speed, or by acting on the mass flow
rate and/or temperature of the heat sink.

REFERENCES

Angelino, G., Gaia, M., and Macchi., E. (1984). A review
of italian activity in the field of organic rankine cycles. In

proceedings of the International VDI-Seminar, 465–482.
Colonna, P. and Van Putten., H. (2007). Dynamic modeling of

steam power cycles.: Part i modeling paradigm and valida-
tion. Applied Thermal Engineering, 27(2-3), 467 – 480.

De Keyser, R. (2003). Model based Predictive Control for
Linear Systems, chapter invited in UNESCO Encyclopaedia
of Life Support Systems (EoLSS). Article contribution
6.43.16.1, Oxford, 35 pages.

Desideri, A., van den Broek, M., Gusev, S., Lemort, V., and
Quoilin, S. (2014). Experimental campaign and modeling
of a low-capacity waste heat recovery system based on a
single screw expander. In 22nd International Compressor
Engineering Conference. Purdue, USA.

Feru, E., Willems, F., de Jager, B., and Steinbuch, M. (2014).
Modeling and control of a parallelwaste heat recovery system
for euro-vi heavy-duty diesel engines. energies, 7, 6571–
6592.

Grelet, V., Dufour, P., Nadri, M., Lemort, V., and Reichel, T.
(2015). Explicit multi-model predictive control of a waste
heat rankine based system for heavy duty trucks. In In IEEE
Conference on Decision and Control, Osaka, Japan.

Hernandez, A., Desideri, A., Ionescu, C., De Keyser, R.,
Lemort, V., and Quoilin, S. (2016). Real-time optimization of
organic rankine cycle systems by extremum-seeking control.
Energies, 9(5), 334.

Hernandez, A., Desideri, A., Ionescu, C., Quoilin, S., Lemort,
V., and De Keyser, R. (2014). Increasing the efficiency of
organic rankine cycle technology by means of multivariable
predictive control. In Proc. of the 19th World IFAC Congress
(IFAC 2014).

Hernandez, A., Desideri, A., Ionescu, C., Quoilin, S., Lemort,
V., and De Keyser., R. (2015). Experimental study of
predictive control strategies for optimal operation of organic
rankine cycle systems. In Proceedings of the European
Control Conference (ECC15). Linz, Austria.

Ljung, L. (2007). System identification: theory for the user.
Prentice-Hall.

Maciejowski., J. (2002). Predictive Control: With Constraints.
Pearson Education. Prentice Hall.

Peralez, J., Tona, P., Nadri, M., Dufour, P., and Sciarretta, A.
(2015). Optimal control for an organic rankine cycle on
board a diesel-electric railcar. Journal of Process Control,
33, 1 – 13.

Quoilin, S., Aumann, R., Grill, A., Schuster, A., and Lemort., V.
(2011). Dynamic modeling and optimal control strategy for
waste heat recovery organic rankine cycles. Applied Energy,
Vol. 88, 2183–2190.

Quoilin, S., Desideri, A., Wronski, J., Bell, I., and Lemort., V.
(2014). Thermocycle: A modelica library for the simulation
of thermodynamic systems. In Proceedings of the 10th
International Modelica Conference. Lund, Sweden.

Sun, J. and Li., W. (2011). Operation optimization of an organic
rankine cycle (orc) heat recovery power plant. J. Applied
Thermal Engineering, Vol. 31, 2032–2041.

Verneau, A. (1979). Waste heat recovery by organic fluid
rankine cycle. In In Proceedings from the First Industrial
Energy Technology Conference, 940–952. Houston, TX.

Wei, D., Lu, X., Lu, Z., and Gu., J. (2007). Performance
analysis and optimization of organic rankine cycle (orc) for
waste heat recovery. J. Energy Conversion and Management,
Vol. 48, 1113–1119.

CHAPTER 9. NEW ENERGIES

285


	ARTIFICIAL INTELLIGENCE
	Automatic Face Recognition in Thermal Images Using Deep Convolutional Neural Networks
	Classification of emotions by Artificial Neural Networks: a comparative study
	Detection and Diagnosis of Breast Tumors using Deep Convolutional Neural Networks
	Dynamic clustering for process supervision

	AUTOMATION
	Coloured Petri Nets for Implementation of Safety Instrumented Systems in Critical Production Systems
	Comparación del Lenguaje VHDL-AMS con los Métodos de Simulación OrcadPspice y MatlabSimulink a través de un Sistema de Distribución de Energía Eléctrica con Carga no Lineal
	Modeling of a Variable-BVR Rotary Valve Free Piston Expander/Compressor
	Models for Planning and Supervisory Control for the feeding raw material in cement production

	BIOMEDICAL - BIOENGINEERING
	Desarrollo de la etapa tobillo-pie de un sistema de rehabilitación de marcha para niños con PCI
	Drive System Development for Gait Rehabilitation Exoskeleton
	Output-Feedback Model Predictive Control for Tight Glycaemic Control in Patients at the Intensive Care Unit
	Sistema vestible para detección de estados fisiológicos y emocionales en entornos industriales

	BIOPROCESSES
	Advanced Control of a fed-batch reaction system to increase the productivity in the polyhydroxyalkanoates production process
	Dissolved Oxygen Dynamic Model for Endospore-Forming Bacteria batch bioprocess
	Nonlinear State Estimation for Batch Process with Delayed Measurements
	Output-Feedback Model Predictive Control for Dissolved Oxygen Control in a Biological Wastewater Treatment Plant

	GREEN PROCESS CONTROL
	An Automated Indoor Low-Cost Greenhouse System for Research and Domestic Usage
	Greenhouse Temperature Modeling and Control Based on Timed Continuous Petri Nets

	INTELLIGENT CONTROL
	Methods for General Motor Skills based on Neuroevolution to Stabilize a Biped Robot Simulation
	Metodología para el Control Difuso de una Planta Desalinizadora por Ósmosis Inversa
	Trajectory Following of Truck-Trailer Mobile Robots Integrating Linear and Fuzzy Control

	LINEAR SYSTEMS
	An Integral Sliding Mode Observer for Linear Systems
	Cálculo numérico de matrices de Lyapunov de sistemas integrales con retardo
	Condiciones de estabilidad para un tipo de sistemas inestables de alto orden con retardo que contienen ceros
	Control a Distancia de un Actuador Aerodinámico Mediante Predicción de Estados
	Design of preserving order observers-based controllers for discrete-time linear systems
	Graph Transfer Function Representation to Measure Network Robustness
	Modified PI control for the Stabilization and Control of a class of High-order System with Delay
	Non-Singular Predefined-Time Stable Manifolds
	Parameter-Dependent Filter with Finite Time Boundedness Property for Continuous-Time LPV Systems
	PID Optimal Controller with Filtered Derivative Part for Unstable First Order Plus Time Delay Systems
	SISO Pole Placement Algorithm: A Linear Transformation Approach

	MOBILE ROBOTS
	A Performance Evaluation Approach for Embedded Controllers of Mobile Robots
	Delayed Observer Control for a Leader-Follower Formation with Time-gap Separation
	Kinematic control for an omnidirectional mobile manipulator
	Navigation Assistance System for the Visually Impaired People Using the Modified Fictitious Force Algorithm
	Null-space based control for human escorting by using Mobile Robots

	NEW ENERGIES
	A Hamiltonian approach for stabilization of Microgrids including Power converters dynamic
	Control Basado en Pasividad para MPPT en Sistemas Fotovoltaicos Conectados a la Red Eléctrica
	Control of Sustainable Industrial Processes
	Educational Microgrid Testbed with Advanced Measurment Infrastructure and Demand Response
	Modeling and Event-Driven Simulation of a Photovoltai System Controlled with Two Configurations of Perturb & Observe Maximum Power Point Tracking
	Neural Control for Photovoltaic Panel Maximum Power Point Tracking
	Performance evaluation of MPC for Waste Heat Recovery applications using organic Rankine cycle systems

	NONLINEAR SYSTEMS
	Control of underactuated unmanned surface vessels with linear flatness-based filters
	Estabilización de una Bicicleta sin Conductor mediante el Enfoque de Control por Rechazo Activo de Perturbaciones
	Modelado y diseño de un control predictivo para un levitador neumático
	Nonlinear state estimation using online FTIR spectroscopy in polymerization processes
	On Optimal Predefined-Time Stabilization
	Reducción de dimensionalidad para sistemas de ecuaciones diferenciales parciales con geométrica irregular usando el método de descomposición ortogonal propia y elementos finitos

	OBSERVERS
	A Soft Sensor for Biomass in a Batch Process with Delayed Measurements
	Control y estimación de par en un motor Diésel con turbocompresor y recirculación de gases de escape
	Fixed-Time Convergent Unknown Input Observer for LTI Systems
	Observer Designs for a Turbocharger System of a Diesel Engine

	OPTIMIZATION
	Evolutionary selection of optimal weighting matrices for LQR controllers and parameters of robust PID on benchmark plants
	Evolutive Extension: A biological approach to heuristic algorithms
	Parameter Optimization of Sliding Mode Observer-based Controller for 2 DOF Stewart Platform
	Synthesis of Four-bar Mechanisms for Trajectory Control Using the Modified Brainstorm Optimization Algorithm and Linkage Normalization

	POWER SYSTEMS
	Condiciones de existencia de estado estacionario en circuitos eléctricos con CPL
	Control Adaptativo por Modelo de Referencia para la Posición Angular de un Balancín Impulsado por un Motor Brushless
	Control de Ángulo Para Sistemas Eléctricos de Potencia
	Control No Lineal Basado en Pasividad para Motores de Inducción Minimizando Pérdidas de Potencia
	Dynamic Characterization of Typical Electrical Circuits via Structural Properties
	Energy Price and Load Estimation by Moving Horizon Estimator with Holt-Winters Model
	Estrategia Dinámica de Regulación de Voltaje para Convertidores Conmutados
	Load Balancing System to Low Voltage Grid using Petri Nets
	Load Frequency Control of a Multi-area Power System Incorporating Variable-speed Wind Turbines
	Modelado y Propiedades de Pasividad de Sistemas Fotovoltaicos con MPPT Distribuido
	Optimal Power Dispatch in a Microgrid
	Percolation Theory Approach to Transient Stability Analysis of Power Systems

	PROCESS CONTROL
	Adaptive Trajectory Tracking Control of a Boiler-Turbine Adopting an Algebra Approach
	An Approach of a Numerical Methods Controller for Nonlinear Chemical Processes
	Bioprocesses Control Based on Linear Algebra
	Diseño y construcción de dispositivo portátil y de bajo costo para análisis de calidad en granos de café tostado
	Experimental Error in Control Sets Calculation: Implementation of low-discrepancy deterministic and stochastic sequences
	Model Based Fault Detection and Isolation of a Reverse Osmosis Desalination Plant
	Monitoramento e Avaliação de Desempenho de Sistemas MPC Utilizando Métodos Estatísticos Multivariados
	Reducción de orden del modelo de un gasificador ante incertidumbre paramétrica
	Stencil computation for the approach to the numerical solution heat transfer problems on SoC FPGA
	Trajectory tracking controller for a nonlinear bioprocess

	ROBOTICS
	Consenso en la dinámica de los estados de robots móviles tipo (3,0)
	Control de Seguimiento de Trayectorias para un AR.Drone 2.0 Utilizando Observadores de Estados
	Control Robusto QFT Sobre un Robot Móvil de Autobalance Basado en Péndulo Invertido Empleando un Sistema Embebido
	Control Servovisual No Calibrado De Robots Planares Sin Modelo Dinámico
	Diseño de trayectorias caóticas en robots móviles
	Formacíon en grupos de robots móviles
	Generalized Proportional Integral Control for Aperiodic Gait Stabilization of a Bipedal Robot with Seven Degrees of Freedom
	Método de optimización para la sintonización del control PD de un robot móvil
	Sistema para el control de trayectoria de un robot diferencial
	Utilización de un sistema embebido para la teleoperación de un manipulador movil, utilizando un control discreto

	SIGNAL PROCESSING
	Análisis de la Respuesta en Frecuencia de La Señal de Caıda de Presión en el Proceso de Transporte de Fluidos
	Cifrado caótico simétrico de ECG y EEG para aplicaciones en telemedicina
	Observador adaptable en tiempo real de edificios mediante propagación de ondas

	SYSTEM IDENTIFICATION
	Determinación del coeficiente de dispersión en reactores de gasificación
	Methodology and proposal of control applied to a distillation column binary
	Modeling and parameter estimation of a 4-wheel Mobile Robot
	Modelo ARMAX para un mezclador oxígeno-aire para pediatría e incubadoras neonatales

	TRAFFIC CONTROL
	A Comparison Between Macroscopic and Microscopic Urban Traffic Simulation Including Motorcycle Dynamics
	Generalized Predictive Traffic Control for Isolated Intersections
	Nonlinear Model Predictive Control of a Passenger Vehicle for Lane Changes Considering Vehicles in the Target Lane




