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ABSTRACT 

Silanization is a convenient route to obtain water-soluble quantum dots (QDs) with different structures. Green, 

orange and red emitting CdSe-based QDs were synthesized by varying the number and the material of the wider-

band gap shells and the fluorescent properties of the QDs were characterized before and after silanization. It was 

shown that the structure of the QD influences the quantum yield of the silanized QDs: the better the CdSe core is 

protected with wider-band gap semiconductor shells, the more the fluorescence properties remain present after 

water solubilization. The proposed silanization method allows imparting highly hydrophilic properties to QDs 

with different emission colors. Hence, silica coated QDs have a great perspective for multiplex analysis. 
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1. INTRODUCTION 

Nowadays, the quality of human life is determined by the accuracy of diagnostics, treatment, food control 

and environmental monitoring. This requires availability of sensitive multiplex assays, which simultaneously 

measure multiple analytes in a single cycle of the analysis. Fluorescence-based assays, especially combined with 

immunological techniques, can meet these requirements. A fluorescence analytical method based on quantum 

dots (QDs) can provide advantages over the use of traditional organic dye molecules in term of sensitivity, 

stability, and capability for multiplexing detection. Compared to organic dye molecules, QDs have high 

fluorescence quantum yields (QY), stability against photobleaching, narrow emission bands, high Stokes shifts, 

broad absorption spectra, allowing usage of one excitation source for QDs with different emission wavelength
1
. 

These advantages have been widely applied for the multiplexed simultaneous detection of different targets
2-7

. 

One of the main challenges, encountered in the development of QD-based systems, is the selection of a 

suitable capping ligand in order to achieve adequate solubility of QDs in the dispersion media. Generally, during 

their high-temperature synthesis, the QDs acquire a hydrophobic surface layer. As a result, QDs are intrinsically 

soluble in non-polar media and suitable surface modification must be performed if the dispersant solvent needs 

to be changed. The transfer of QDs to a polar medium, without changing their optical properties and their ability 

to interact with target analytes, is a critical step
5
.  

Encapsulation of hydrophobic QDs into a SiO2 shell is a well-known approach to make QDs soluble in 

water
8
. Silica coated nanoparticles (NPs) have several advantages. In the first place, silica may provide both 

chemical and physical shielding from the direct environment, thereby improving the stability. For example, it 

can reduce the release of (cytotoxic) ions, prevent photooxidation processes and aggregation of the nanocrystals. 

Furthermore, the silica shell is highly hydrophilic and the surface chemistry of colloidal silica is well 

investigated. Therefore, this approach facilitates not only solubilization in different solvents, but it also enhances 

the bioapplicability and it allows modifications of the composite particles for further use. In addition, silica 

spheres can contain multiple nanoparticles per particle (e.g., gold, silver, magnetite), and can as such serve as the 

starting point for the development of a multimodality contrast agent
9
. 

The aim of the current work was to investigate how the structure (and consequently, the emission color) of 

the QDs impacts the fluorescent properties of the silica coated QDs (QD@SiO2), obtained by means of the 

reverse-microemulsion method, in order to obtain stable and bright multicolor labels.  

 

2. EXPERIMENTAL SECTION 



2.1. Chemicals 

Cadmium oxide (CdO, 99,99%), selenium powder (Se, 99,99%), sulfur powder (S, 99%), zinc acetate 

(Zn(OAc)2, 99,99%), oleic acid (OA, 90%), 1-octadecene (ODE, 90%), oleylamine (OLA, 70%), 

octadecylamine (ODA, 90%), trioctylphosphine (TOP), rhodamine 6G, TEOS, surfactant Brij L4 (Mn ̴362) were 

purchased from Sigma-Aldrich (Bornem, Belgium). All organic solvents (ethanol, butanol, toluene, chloroform) 

and ammonium solution (25%) were purchased from Sigma-Aldrich (Bornem, Belgium) and were used without 

further purification. All other chemicals and solvents were of analytical grade. Ultrapure Mili Q water was used 

throughout. 

 

2.2. Synthesis of CdSe core nanocrystals 

CdSe QDs were prepared via the well-known the rapid hot-injection method
10,11

. CdSe cores were 

synthesized as follows: 1 mmol of a Se-precursor solution (0.1 M Se in TOP and ODE) was injected into a three-

neck flask containing 1 mmol of Cd-precursor solution (0.1 M CdO in OA and ODE) at 260 °C. The reaction 

was stopped after 20 s. Next, to isolate the CdSe QDs, a buthanol-ethanol mixture was added and a 

centrifugation was performed. Finally, the precipitate was dissolved in toluene and stored at 4 °C. The size (2.5 

nm) and concentration (8 µM) of the CdSe nanocrystals so obtained were estimated according to the formula 

presented in 
12

.  

 

2.3. Synthesis of core/multishell QDs 

Green-emitting QDs (λ
em

=550 nm, QD
550

) were produced by means of the low-temperature shell growing 

process as described in 
13

. A mixture of Zn-precursor (0.1M Zn(Ac)2 in OLA and ODE), S-precursor (0.1M S in 

ODE) and ODE was flashed with Ar. Next, a 0.3 µmol toluene solution of CdSe was added to the mixture and 

the temperature was increased up to 140
0
C for 2 h. To purify the CdSe/ZnS QDs from unreacted precursors, 

acetone was added to the CdSe/ZnS solution (V(QD solution):V(acetone)=1:2). The samples were left for 10 

min and then centrifuged at 4000 rpm during 5 min. The precipitate was dissolved in a sufficient amount of 

toluene. 

Core/shell red- and orange-emitting QDs were produced by means of the Successive Ion Layer Adsorption 

and Reaction (SILAR) technique described in 
11

 with slight modifications. First, ODE, ODA and 0.3 µmol CdSe 

cores were loaded into a 100 mL three-neck flask and heated at 100 °C under inert atmosphere for 1 hour. Next, 

S-precursor (0.1 M S in ODE), Cd-precursor (0.1 M CdO in OA and ODE) and Zn-precursor (0.1M Zn(Ac)2 in 

OLA and ODE) were successively added, waiting 10 min between each injection at 220
o
C. Upon completion of 

the synthesis, the reaction mixture was purified with acetone addition and centrifugation. Finally, the precipitate 

was dissolved in toluene and stored at 4 °C. By means of this method, orange-emitting QDs with structure 

CdSe/2CdS/2CdZnS/2ZnS (λ
em

=600 nm, QD
600

) and red-emitting QDs with structure CdSe/3CdS/2ZnS (λ
em

= 

630 nm, QD
630

) were synthesized. 

 

 
     Fig. 1. Emission spectra of the synthesized CdSe-based QDs with: ZnS shells (green line), CdS and ZnS shells (red 

line), and CdS and ZnS with an alloy CdZnS layer (orange line) 

 



2.4. Synthesis of QD@SiO2 NPs  

The above mentioned QDs (QD
550

, QD
600

 and QD
630

) were encapsulated in silica NPs through the 

microemulsion process
14

. First, 1 ml of hexane, 0.32 ml Brij L4 as surfactant and 50 µl H2O were mixed and let 

to stir for 30 min to form the microemulsion. Then, 1 nmol of QDs in chloroform was slowly added. 30 min 

later, 30 µl of TEOS was added, following by the addition of 10µl NH3 solution, which acts as the catalyst of the 

hydrolysis process. Subsequently, the reaction mixture was aged for 24 h at room temperature and the NPs were 

precipitated from the microemulsion using ethanol, centrifuged and the resultant precipitate of QD@SiO2 

particles were washed 3 times with hexane and at least 5 times with deionized water. Finally, aqueous 

dispersions of the composite particles were obtained via sonication. 

 

2.5. Characterization techniques 

For the relative QY estimation, the spectrally integrated emission of the QDs solutions was compared to the 

emission of a rhodamine 6G ethanol solution (QY=95% at excitation wavelength 490 nm) of identical optical 

density (~0.05) at the excitation wavelength
15

. UV-vis absorption spectra of the QDs were measured by a 

Shimadzu 1800 spectrophotometer. Photoluminescence (PL) spectra were recorded with a Cary Eclipse 

Fluorescence Spectrophotometer (Agilent Technologies). 

 

3. RESULTS AND DISCUSSION 

CdSe cores were prepared via a rapid hot-injection method in ODE using TOP as a stabilizer. To improve 

their fluorescence intensity and stability, CdSe nanocrystals were covered with several shells of the wider band 

gap semiconductors, such as CdS and ZnS (Fig. 1).  

It is well known that ZnS is the best protecting shell for CdSe QDs because of the considerable differences 

in the values of the band gap energies
16

. Low-temperature (120
o
C) synthesis was used to cover the CdSe cores 

directly with ZnS shells, using OA and OLA as stabilizers. This method allows increasing the QY of the QDs 

(by a factor of 10 on average), while the emission maximum does not significantly shift: 550 nm for the 

CdSe/ZnS QDs compared to 535 nm for the CdSe cores.   

For efficient shell growing it is important to use semiconductors with similar parameters concerning their 

crystalline lattice. In the case of CdSe and ZnS semiconductors, these parameters are quite different. Thus it is 

preferably to introduce the additional middle shell (CdS or ZnSe) between the CdSe core and the ZnS outer shell 

to reduce strain inside the nanocrystal
17

. A high-temperature (230
o
C) SILAR technique was used to cover the 

CdSe core with CdS and ZnS shells, using ODA as stabilizer. The difference between the band gaps of CdSe and 

CdS is not sufficient for a complete confinement of the electrons and holes inside the CdSe core. Therefore, 

formation of an intermediate CdS shell around the CdSe cores resulting in a red shift of both the absorption and 

fluorescence maxima. Due to blocking of electrons and holes inside the core, the fluorescent properties improved 

with each shell. Finally, the fluorescence QY of core-shell particles reached 50%, which is 10 times more than 

the QY of uncovered CdSe cores (Fig. 2).  



     Fig. 2.  Emission spectra of CdSe cores with a varying number of CdS and ZnS shells (intensity is based on relative 

QY values) 

 

The encapsulation of QDs in silica spheres can be achieved through two different methods. The first method 

is via Stöber synthesis, where the QDs act as seeds for silica growth in an ethanol/water mixture. Typically, this 

approach is applicable to initially hydrophilic QDs. This method yields single or multiple QDs per silica sphere, 

but the size and size dispersion of the QD/silica particles are not well-controlled.  

The second method implies using a water-in-oil reverse microemulsion system, where small water droplets 

are stabilized by a nonionic surfactant (e.g., NP-5, Igepal or Brij) in a continuous hydrophobic phase (e.g., 

cyclohexane, hexane, heptane). Hydrolysis and condensation of the silica precursor (e.g., TEOS) take place in 

the water phase, resulting in highly monodisperse silica particles, even at small sizes (>25 nm).   

The best possible mechanism of silanization in microemulsion assumes a ligand exchange: the initial 

hydrophobic ligands (TOP or OA) on the QD’s surface are exchanged by partly hydrolyzed TEOS molecules. It 

results in quenching of the fluorescent properties of the QDs, because the hydrolyzed molecule of TEOS can act 

as an efficient hole or electron acceptor, which introduces a new non-radiative decay pathway for the exciton
9
. 

Also, the rate of the ligand exchange reaction dramatically affects the fluorescence properties of the final 

silanized QDs. Thus, purity of TEOS affects the ligand exchange reaction rate, and, consequently, the QY of the 

silica coated QDs.  

Long chain amines as OLA and ODA were used as a stabilizer, because they are found to be more suitable 

surfactants for the semiconductor nanocrystals
17

. This has been attributed to the close packing (theoretically, 

100% surface coverage) of the ligands on the NP’s surface and the etching of surface defects. Since ligand 

exchange is a key mechanism in the silanization process, it is important that the affinity of amino ligands to the 

QDs’ surfaces allows a successful substitution with TEOS molecules. It was shown that if the affinity of the 

initial ligands to the QD’s surface is too high (when, for example, thiolated ligands are used as stabilizers), the 

possibility of ligand exchange is extremely low, which prohibits successful silica incorporation
19

.     

It is important to mention that the structure of the QDs also affects the fluorescent properties of the 

QD@SiO2 NPs. More specifically, the thinner the wider band gap semiconductor shell, the higher the 

deterioration of the fluorescent properties of silica covered NPs. The synthesized QD
550 

probably
 
do not have a 

uniform ZnS shell to protect the CdSe core from oxidation, thus the fluorescent properties of such QDs covered 

with silica shell quickly deteriorate. Even during one day of storage in a water solution, the QY immediately 

drops from an initial 50% down to 10% and keeps on decreasing with further storage. It may be safely assumed 

that the low temperature does not allow the ZnS lattice to properly build onto the CdSe core, due to the 

considerable differences in lattice parameters. 



In the meantime, the SILAR technology, owing to the high temperature of the shelling process and the 

intermediate CdS layer, allows better protection of the fluorescent CdSe core and prevents a significant drop of 

the QY after silanization. The synthesized QD
630

, with an initial QY of 36%, shows a QY of 22% after silica 

covering. In the case of QD
600

,
 
an alloy layer of CdZnS was added in between the CdS and ZnS shells. It was 

shown before
20

 that addition of such a layer between these shells allows retaining the original QY after the 

silanization process, which was confirmed by our results (Table 1). QD
600 

with an intermediate CdZnS shell, 

synthesized according to the method presented in the experimental part, exhibits a relatively small QY drop from 

53% to 43%, and it remains stable even after several months of storage.  

 

     Table 1. QYs of the synthesized QDs with different amount of shells, before and after silanization. 

 Quantum Yield, % 

 QDs in toluene 
QD@SiO2 

freshly prepared 

QD@SiO2 after 

1 month of storage 

QD
550

 
 
CdSe/ZnS 

50 10 - 

QD
600 

 

CdSe/CdS/CdZnS/Zn

S 

53 43 41 

QD
630

  

CdSe/CdS/ZnS 
36 22 19 

 

 

4. CONCLUSIONS 

Green, orange and red emitting CdSe-based QDs were synthesized by varying the number and the material 

of the wider-band gap shells. In order to receive stable water solutions, all three of them were coated with silica 

shells by means of a reverse microemulsion method. The fluorescent properties of the QDs were characterized 

before and after silanization. It was shown that the structure of the QD influences the QY of the silanized QDs: 

the more shells the QD has, the better the QY. Thus, silanization is a convenient route towards the synthesis of 

water-soluble, stable, bright QD-based labels with different emission colors, yielding a promising outlook for 

multiplex analysis.  

 

ACKNOWLEDGMENT 

The work was supported by the Russian ministry of Science and Education (registration number 

114121670096). 

 

REFERENCES 

[1] Wang, B., Wang, Q., Cai, Z., Ma, M., “Simultaneous, rapid and sensitive detection of three food-borne 

pathogenic bacteria using multicolor quantum dot probes based on multiplex fluoroimmunoassay in food 

samples,” LWT-Food Science and Technology 61, 368-376 (2015). 

[2] Ruedas-Rama, M. J., Walters, J. D., Orte, A., Hall, E. H., “Fluorescent nanoparticles for intracellular 

sensing: a review,” Analytica Chimica Acta 751, 1-23, (2012). 

[3] Brazhnik, K., Sokolova, Z., Baryshnikova, M., Bilan, R., Efimov, A., Nabiev, I., Sukhanova, A., 

“Quantum dot-based lab-on-a-bead system for multiplexed detection of free and total prostate-specific antigens 



in clinical human serum samples,” Nanomedicine: Nanotechnology Biology and Medicine 11, 1065–1075 

(2015). 

[4] Zeng, W.-J., Peng, C.-W., Yuan, J.-P., Cui, R., Li, Y., “Quantum dot-based multiplexed imaging in 

malignant ascites: a new model for malignant ascites classification,” International Journal of Nanomedicine 10, 

1759–1768 (2015). 

 

[5] Costas-Mora, I., Romero, V., Lavilla, I., Bendicho, C., “An overview of recent advances in the application of 

quantum dots as luminescent probes to inorganic-trace analysis,” Trends in Analytical Chemistry 57, 64–72 

(2014). 

[6] Vu, T. Q., Lam, W. Y., Hatch, E. W., Lidke, D. S., “Quantum dots for quantitative imaging: from single 

molecules to tissue,” Cell Tissue Research 360, 71–86 (2015). 

[7] Beloglazova, N. V., Speranskaya, E. S., Wu, A., Wang, Z., Sanders, M., Goftman, V. V., Zhang, D., 

Goryacheva, I. Yu., De Saeger, S., “Novel multiplex fluorescent immunoassays based on quantum dot 

nanolabels for mycotoxins determination,” Biosensors and Bioelectronics 61, 59-65 (2014). 

[8] Goryacheva, I. Yu., Speranskaya, E. S., Goftman, V. V., Tang, D., De Saeger, S., “Synthesis and 

bioanalytical applications of nanostructures multiloaded with quantum dots,” Trends in Analytical Chemistry 66, 

53–62 (2015). 

[9] Koole, R., van Schooneveld, M. M., Hilhorst, J., de Mello Donegá, C., Hart, D. C., van Blaaderen, A., 

Vanmaekelbergh, D., Meijerink, A., “On the Incorporation Mechanism of Hydrophobic Quantum Dots in Silica 

Spheres by a Reverse Microemulsion Method,” Chem. Mater. 20, 2503–2512 (2008). 

[10] Hines, M. A., Guyot-Sionnest, Ph., “Synthesis and Characterization of Strongly Luminescing ZnS-Capped 

CdSe Nanocrystals,”  J. Phys. Chem.  100, 468-471 (1996). 

[11] Speranskaya, E. S., Beloglazova, N. V., Lenain, P., De Saeger, S., Wang, Z., Zhang, S., Hens, Z., Knopp, 

D., Niessner, R., Potapkin, D. V. and Goryacheva, I. Yu., “Polymer-coated fluorescent CdSe-based quantum 

dots for application in immunoassay,” Biosensors and Bioelectronics 53, 225–231 (2014). 

[12] Capek, R. K., Moreels, I., Lambert, K., De Muynck, D., Zhao, Q., Van Tomme, A., Vanhaecke, F., Hens, 

Z., “Optical Properties of Zincblende Cadmium Selenide Quantum Dots,” The Journal of Physical Chemistry C 

114, 6371–6376 (2010). 

[13] Beloglazova, N. V., Speranskaya, E. S.,  De Saeger, S., Hens, Z., Abé, S., Goryacheva, I. Yu. , “Quantum 

dot based rapid tests for zearalenone detection,” Analitical and Bioanalitical Chemistry 403, 3013–3024 (2012). 

 

[14] Goftman, V. V., Aubert, T., Vande Ginste, D., van Deun, R., Beloglazova, N. V., Hens, Z., de Saeger, S., 

Goryacheva, I. Yu., “Synthesis, modification, bioconjugation of silica coated fluorescent quantum dots and their 

application for mycotoxin detection”, Biosensors and Bioelectronics 79, 476–481 (2015).  

[15] Grabolle, M., Spieles, M., Lesnyak, V., Gaponik, N., Eychmüller, A., Resch-Genger, U., “Determination of 

the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties,” 

Analytical  Chemistry 81 (15), 6285–6294 (2009). 

[16] Protiere M., Reiss P. // Facile synthesis of monodisperse ZnS capped CdS nanocrystals exhibiting efficient 

blue emission. Nanoscale Res. Lett. 2006. V. 1. P. 62–67. 

[17] Talapin D.V., Mekis I., Götzinger S., Kornowski A., Benson O., Weller H. // CdSe/CdS/ZnS and 

CdSe/ZnSe/ZnS core−shell−shell nanocrystals. J. Phys. Chem. B. 2004. V. 108. № 49. P. 18826–18831. 

[18] Green, M., “The nature of quantum dot capping ligands,” Journal of Materials Chemistry 20, 5797–5809 

(2010). 



[19] Ren, M., Xu, H., Huang, X., Kuang, M., Xiong, Y., Xu, H., Xu, Y., Chen, H., Wang, A., 

“Immunochromatographic assay for ultrasensitive detection of aflatoxin b1 in maize by highly luminescent 

quantum dot beads,” ACS Appl. Mater. Interfaces 6, 2011−2017 (2014). 

[20] Zhang, B., Gong, X., Hao, L., Cheng, J., Han, Y., Chang, J., “A novel method to enhance quantum yield of 

silica-coated quantum dots for biodetection,” Nanotechnology 19(46), 465604-465612 (2008). 

 


