

Promotoren: prof. dr. ir. F. De Turck, prof. dr. S. Latré
Proefschrift ingediend tot het behalen van de graden van

Doctor in de ingenieurswetenschappen: computerwetenschappen (Universiteit Gent) en
Doctor in de wetenschappen: informatica (Universiteit Antwerpen)

Vakgroep Informatietechnologie
Voorzitter: prof. dr. ir. D. De Zutter

Faculteit Ingenieurswetenschappen en Architectuur

QoE-beheer van HTTP-gebaseerde adaptieve videodiensten

QoE Management of HTTP Adaptive Streaming Services

Niels Bouten

Departement Wiskunde en Informatica
Voorzitter: prof. dr. C. Blondia

Faculteit Wetenschappen

Academiejaar 2016 - 2017

ISBN 978-90-8578-933-8
NUR 986, 988
Wettelijk depot: D/2016/10.500/66

Promotoren: prof. dr. ir. F. De Turck, prof. dr. S. Latré
Proefschrift ingediend tot het behalen van de graden van

Doctor in de ingenieurswetenschappen: computerwetenschappen (Universiteit Gent) en
Doctor in de wetenschappen: informatica (Universiteit Antwerpen)

Vakgroep Informatietechnologie
Voorzitter: prof. dr. ir. D. De Zutter

Faculteit Ingenieurswetenschappen en Architectuur

QoE-beheer van HTTP-gebaseerde adaptieve videodiensten

QoE Management of HTTP Adaptive Streaming Services

Niels Bouten

Departement Wiskunde en Informatica
Voorzitter: prof. dr. C. Blondia

Faculteit Wetenschappen

Academiejaar 2016 - 2017

Universiteit Gent
Faculteit Ingenieurswetenschappen en Architectuur

Vakgroep Informatietechnologie

Promotoren: prof. dr. ir. F. De Turck, prof. dr. S. Latré
Proefschrift ingediend tot het behalen van de graden van

Doctor in de ingenieurswetenschappen: computerwetenschappen (Universiteit Gent) en
Doctor in de wetenschappen: informatica (Universiteit Antwerpen)

Vakgroep Informatietechnologie
Voorzitter: prof. dr. ir. D. De Zutter

Faculteit Ingenieurswetenschappen en Architectuur

QoE-beheer van HTTP-gebaseerde adaptieve videodiensten

QoE Management of HTTP Adaptive Streaming Services

Niels Bouten

Departement Wiskunde en Informatica
Voorzitter: prof. dr. C. Blondia

Faculteit Wetenschappen

Academiejaar 2016 - 2017

Universiteit Antwerpen
Faculteit Wetenschappen

Departement Wiskunde en Informatica

Promotoren: prof. dr. ir. Filip De Turck
prof. dr. Steven Latré

Universiteit Gent
Faculteit Ingenieurswetenschappen en Architectuur

Vakgroep Informatietechnologie
Technologiepark-Zwijnaarde 15, B-9052 Gent, België

Universiteit Antwerpen
Faculteit Wetenschappen

Departement Wiskunde en Informatica
Middelheimlaan 1, B-2020 Antwerpen, België

Dit werk kwam tot stand in het kader van een
specialisatiebeurs van het IWT-Vlaanderen

(Instituut voor de aanmoediging van Innovatie door
Wetenschap en Technologie in Vlaanderen)

Proefschrift tot het behalen van de graden van
Doctor in de ingenieurswetenschappen:

computerwetenschappen (Universiteit Gent) en
Doctor in de wetenschappen:

informatica (Universiteit Antwerpen)
Academiejaar 2016-2017

Dankwoord

Na vijf jaar is eindelijk het moment aangebroken om dit dankwoord neer te pennen.
Normaliter zou dit het eenvoudigst te schrijven deel van het boek moeten vormen,
maar niets is minder waar. Over de jaren heen heb ik zoveel mensen ontmoet,
met zoveel mensen samengewerkt en van zoveel mensen iets geleerd, dat het bijna
onmogelijk wordt om alles hier neer te schrijven en niemand over het hoofd te zien.
Een doctoraat mag dan wel beschouwd worden als een individueel huzarenstukje,
het resultaat zou niet zijn wat het nu is zonder de steun en inbreng van een groot
aantal personen.

Zonder mijn promotoren, Filip De Turck en Steven Latré, zou dit doctoraat
waarschijnlijk niet tot stand gekomen zijn. Daarom wil ik hen in de eerste plaats
bedanken voor de mogelijkheden die ze mij hebben geboden, hun steun en hun
vertrouwen door de jaren heen. Filip zou ik in het bijzonder willen bedanken voor
het bieden van alternatieve invalshoeken wanneer ik het onbegonnen werk vond
om een review commentaar te tackelen. Daarnaast wens ik Filip ook bedanken om
mij met lichte dwang aan te zetten om eens een dag te skippen op conferentie om
de omgeving te verkennen. De vlucht boven en landing in de Grand Canyon is een
ervaring die ik nooit zal vergeten. De eerste ontmoeting met Steven was op mijn
eerste werkdag, toen hij met grote haast het bureau kwam binnengestormd, enkele
minuten in de lades en kasten zat te rommelen op zoek naar zijn sleutels en zonder
boe of ba terug vertrok. Gelukkig lag dit enkel aan een vermoeiende reis en werd
dit al vlug rechtgezet met een sympathieke babbel. Bedankt voor de uitmuntende
begeleiding tijdens mijn IWT-aanvraag, de balpennen die je hebt leeggeschreven
tijdens het reviewen van mijn papers en de plezante off-topic discussies op en naast
het werk. Ik heb hier ontzettend veel uit geleerd! Naast mijn promotoren, wil ik
ook Jeroen Famaey bedanken voor de vlotte samenwerking die we over de jaren
heen hebben gehad, zowel tijdens het begeleiden van thesissen en projecten als
tijdens het uitwerken van nieuwe paper- en patentideeën.

Zonder de geschikte omkadering, geboden door de onderzoeksgroep IBCN,
was het onmogelijk geweest om zorgeloos mijn doctoraatsonderzoek te verrich-
ten. Vooreerst dien ik dus Piet Demeester te bedanken voor de dagdagelijkse lei-
ding van de toch wel uit de kluiten gewassen onderzoeksgroep. Ook het A-team
(Joeri, Bert, Simon, Vicent en Brecht) verdient een pluim voor de IT-ondersteuning
en het beschikbaar maken van de nodige infrastructuur. Administratief worden we
in de watten gelegd door Martine, Davinia, Bernadette en Joke. Last minute een
vluchtwijziging regelen of een conferentieticket en hotel boeken, vormt voor hen
nooit een probleem en wordt verzorgd onder een leuke koffieklets. Ook Sabrina

ii

verdient een vermelding voor haar poetswerk en de babbels aan de koffiemachine.
Naast de onderzoeksgroep en de Universiteit Gent, dien ik ook het IWT, ondertus-
sen omgedoopt tot VLAIO, te bedanken voor de persoonlijke financiering tijdens
mijn doctoraat. Ook iMinds wens ik te bedanken omdat ze mij de mogelijkheid ge-
boden hebben om mee te werken aan verschillende ICON-projecten en zo kennis
te maken met heel wat Vlaamse bedrijven.

Tijdens mijn doctoraat ben ik geen enkele dag met tegenzin gaan werken. Dat
is voornamelijk te wijten aan de toffe collega’s die rondlopen op de onderzoeks-
groep. In het bijzonder de bureaugenoten van 2.21 en 200.012: Bram G, Jeroen S,
Klaas R, Kristof S, Leandro O, Maxim C, Merlijn S, Niels S, Olivier VL, Philip
L, Piet S, Stefano P, Steven B, Steven VC, Thijs W, Thomas V, Tim V en Wim
VdM. De interessante gesprekken onder de lunch, de uitstapjes naar het Zuider-
poortparkje, de helaas ten onder gegane Friday drinks, de klucht van het aapje en
de banaan, het afscheidsfeest van Olivier met bijhorende gekke Italiaanse dansmo-
ves, het “kindkaartsysteem” dat werd uitgedacht om de klaagzang van papa Philip
in te perken, de IBCN-weekends met onze bureau ... zijn dingen die mij altijd
zullen bijblijven. Daarnaast wil ik ook enkele niet-bureaugenoten bedanken voor
de sympathieke babbels, plezante lunches bij de belastingen en samenwerking tij-
dens project- of onderwijsactiviteiten: Bruno V, Tim W, de Femkes, Stijn V, Jeroen
vdH, Hendrik M, Thomas en Wannes, Pieter B, Jonas A en Cedric DB. Ook Bart
Dhoedt wil ik bedanken voor de praatjes onder een koffietje ’s ochtends vroeg,
hopelijk vind je nieuwe vroege vogels ;).

Een van de punten die een doctoraat aantrekkelijk maken is de mogelijkheid
om de wereld rond te reizen om conferenties of projectmeetings bij te wonen.
Vooreerst wens ik de collega’s van Flamingo te bedanken voor de vele meetings
en social events op locatie: van Oktoberfest tot Barceloneta, ik heb ervan genoten!
Ook op conferentie werden onvergetelijke avonturen beleefd: de tevergeefse zoek-
tocht naar wildlife die pas laat op de avond werd beloond tijdens een noodstop
voor overstekende herten en de ontmoeting in de lift met Doo Doo The Clown
in Canada, de stutjes met vet in de zlotti-bar en de ondergrondse discobar met
breakdance battle in Krakow, de biertram en road trip in de Yeti in Brno, de cock-
tailventers en de onvergetelijke zoektocht naar de Bar in Bar-celona, de onleesbare
menukaarten en lichtrijke karaoke-bars in Seoul, de Cessna-vlucht vanuit pole-
position over de Grand Canyon in Las Vegas ... Bedankt aan de metgezellen op
deze onvergetelijke trips: Bram N, Hendrik M, Jeroen F, Jeroen vdH, Maryam B,
Matthias S, Maxim C, Pieter-Jan M, Rafael DS, Stefano P, Steven L, Thomas V.

Daarnaast wil ik twee collega’s in het bijzonder bedanken. Vooreerst wil ik
Steven Van Canneyt bedanken om mij steeds op te beuren wanneer het druk was,
door je eigen situatie nog wat pessimistischer voor te stellen. We zijn samen aan
dit avontuur begonnen, haalden samen onze IWT-beurs en breien er ook samen
een eind aan deze week. Bedankt om me in mei uit mijn sloffen te doen schieten
door mij het idee te geven dat je eerder ging gedoctoreerd zijn dan ik! Daarnaast
wil ik ook mijn beste collega Maxim Claeys bedanken, of misschien is de term
“vriend” ondertussen beter geschikt? Bedankt maatje, om er steeds te zijn met een
gepaste kwinkslag om mij op te beuren, voor de zalige tijden op Barceloneta, het

iii

economisch verantwoord blijven plakken in de Bikini Bar, de backup wanneer we
werden ondermijnd door een spervuur aan Flamingo-vragen en het vervangen van
Paulien haar autoband in de gietende regen!

Om even het doctoraatswerk te vergeten, kon ik steeds terugvallen op de Ie-
perse vrienden. Bedankt voor de vele overlegmomenten in lokaal d3f00 onder
begeleiding van het noodzakelijke natje en droogje en onder toeziend oog van mo-
derator Dries.

Natuurlijk kan ik geen dankwoord schrijven zonder ook mijn ouders te bedan-
ken: bedankt voor de warme thuis, alle kansen en jullie onvoorwaardelijke steun.
Ook mijn zus Lies verdient een speciale vermelding, dankzij (of ondanks) haar
ervaringen die ze opdeed tijdens haar doctoraat, was ik beter opgewassen tegen de
grillen die de wetenschappelijke onderzoekswereld te bieden heeft. Je schoonfa-
milie kun je kiezen, en gelukkig heb ik dit goed gedaan. Bedankt Kathy en Martin
voor jullie steun en voor het mooiste geschenk dat jullie dochter is! Ook omaatje
wil ik bedanken voor de vele leute die we samen hebben, we gaan daar zeker nog
menig Irish op drinken! Daarnaast wil ik ook mijn grootouders niet vergeten, jullie
kunnen er helaas niet meer bij zijn, maar ik weet dat jullie trots zouden zijn op wat
jullie klein broskopje heeft bereikt.

Tot slot wil ik de belangrijkste persoon in mijn leven bedanken: Paulien, be-
dankt om me de voorbije jaren steeds te steunen toen het even tegen zat. Hoewel
mijn doctoraat handelt over kwaliteitsadaptatie, ben ik blij dat ik reeds de con-
stante in mijn leven heb gevonden die de kwaliteit van mijn leven alleen maar kan
doen toenemen in de toekomst. Liefje, dit boek is geschreven en afgesloten, maar
ik hoop dat wij samen nog nog vele mooie bladzijden kunnen vullen.

Gent, september 2016
Niels Bouten

Table of Contents

Dankwoord i

Samenvatting xxix

Summary xxxiii

1 Introduction 1
1.1 The Rise of Internet Video Streaming 1
1.2 Problem Statement . 6
1.3 Dissertation Outline . 8
1.4 Research Contributions . 12
1.5 Publications . 14

1.5.1 A1: Journal publications indexed by the ISI Web of Sci-
ence “Science Citation Index Expanded” 14

1.5.2 P1: Proceedings included in the ISI Web of Science “Con-
ference Proceedings Citation Index - Science” 15

1.5.3 C1: Other publications in international conferences 16
1.5.4 European patent applications 18

References . 19

2 A Multicast-Enabled Delivery Framework for QoE Assurance of Over-
The-Top Services in Multimedia Access Networks 21
2.1 Introduction . 22
2.2 Related Work . 24

2.2.1 Over-The-Top (OTT) video streaming architectures 24
2.2.2 Management of OTT video services 26
2.2.3 Multicast streaming of multimedia services 27

2.3 HTTP Adaptive Streaming . 28
2.4 A Scalable Architecture for Video Delivery 30

2.4.1 Architectural overview 31
2.4.1.1 Distribution server 32
2.4.1.2 Delivery server 33

2.4.2 Component interaction details 34
2.4.2.1 Handling of packet loss 34
2.4.2.2 Managed multicast-enabled video delivery . . . 34

vi

2.5 Autonomic Management of Multicast Streaming 35
2.5.1 Autonomic delivery management 36
2.5.2 Distribution management 37

2.6 Performance Evaluation . 40
2.6.1 Prototype evaluation . 40

2.6.1.1 Implementation details 40
2.6.1.2 Experimental setup 40
2.6.1.3 Results description 41

2.6.2 Management algorithm evaluation 43
2.6.2.1 Experimental setup 45
2.6.2.2 Results description 45

2.7 Conclusions . 50
References . 52

3 In-Network Quality Optimization for Adaptive Video Streaming Ser-
vices 57
3.1 Introduction . 58
3.2 Related Work . 59
3.3 Formal Problem Description . 63

3.3.1 Definition of variables and assumptions 63
3.3.2 Integer Linear Programming (ILP) formulation 64

3.4 Algorithms . 67
3.4.1 Centralized ILP formulation 67
3.4.2 Distributed ILP formulation 68
3.4.3 Relaxed distributed Linear Programming (LP) formulation 69

3.5 Performance Evaluation . 71
3.5.1 Experiment setup . 71
3.5.2 Implementation details 73
3.5.3 Evaluation details . 73
3.5.4 Impact of number of clients 74
3.5.5 Impact of number of bottlenecks 76
3.5.6 Impact of optimization objective 76
3.5.7 Impact of delay . 79
3.5.8 Impact of multiple servers 79

3.6 Conclusion . 82
References . 83

4 QoE-Driven In-Network Optimization for Adaptive Video Streaming
Based on Packet Sampling Measurements 87
4.1 Introduction . 88
4.2 Related Work . 91
4.3 QoE-Driven Delivery Architecture for Adaptive Video Streaming . 95
4.4 Algorithm Description . 98

4.4.1 Definition of variables and assumptions 98
4.4.2 Packet-based residual capacity estimation 98

vii

4.4.3 QoE-driven quality optimization 101
4.4.4 Distributed QoE-driven quality optimization 103

4.5 Evaluation Results . 104
4.5.1 Experiment setup . 104
4.5.2 Parameter analysis . 109

4.5.2.1 Impact of the decision history 109
4.5.2.2 Impact of the optimization interval 109
4.5.2.3 Impact of the sampling rate 112
4.5.2.4 Impact of the buffer size 113
4.5.2.5 Selected parameter values 114

4.5.3 Impact of the forecasting method 114
4.5.4 Impact of last mile bandwidth fluctuations 116
4.5.5 Overhead of in-network optimization 118
4.5.6 Scalability of the Quality of Experience (QoE)-driven qual-

ity optimization . 120
4.6 Conclusions . 124
References . 125

5 Clustering-Based Adaptation for HAS over Cache Networks 131
5.1 Introduction . 132
5.2 Related Work . 134
5.3 Heuristic Description . 138

5.3.1 Basic quality selection heuristic 139
5.3.2 Cache-aware quality selection heuristic 140
5.3.3 Cache-assisted quality selection heuristic 141

5.4 Detection of Streaming Origin 143
5.5 Estimation of Cache Content . 145
5.6 Evaluation Results . 147

5.6.1 Experiment framework 147
5.6.2 Impact of estimated throughput ageing 151
5.6.3 Characterization of the obtained gain of proposed heuristics 152
5.6.4 Impact of detection and estimation 155
5.6.5 Achieved improvement using inferred knowledge 157
5.6.6 Dynamic network scenarios 159

5.7 Conclusions . 160
References . 162

6 Semantically Enhanced Mapping Algorithm for Affinity Constrained
Service Function Chain Requests 169
6.1 Introduction . 170
6.2 Related Work . 172
6.3 Affinity and Anti-Affinity Constraints 176
6.4 Semantic SFC Request Checker 179
6.5 Model . 183

6.5.1 Network Function Virtualization (NFV) Infrastructure model183

viii

6.5.2 Service Function Chain (SFC) model 186
6.5.3 Assignment variables . 187
6.5.4 General constraints . 187
6.5.5 Affinity and Anti-Affinity constraints 189
6.5.6 Objective functions . 191

6.6 Heuristic Approach . 192
6.7 Evaluation . 193

6.7.1 Simulation framework 193
6.7.2 Scalability of semantic SFC validation 195
6.7.3 Impact of semantic validation on mapping time 197
6.7.4 Performance of heuristic approach 200
6.7.5 Impact of optimization objective 202
6.7.6 Impact of ordering criterion 202

6.8 Conclusion and Future Work . 204
References . 205

7 Conclusion 211
7.1 Resource-aware management of live HTTP Adaptive Streaming

(HAS) services . 211
7.2 Optimization of Video on Demand (VoD) HAS services 212
7.3 Flexible deployment of HAS services 214
7.4 Future perspectives . 214

7.4.1 HAS-aware cache replacement and prefetching strategies . 214
7.4.2 Software Defined Networking (SDN)-enabled delivery op-

timization of HAS services 215
7.4.3 Streaming-aware congestion control 216
7.4.4 Mobile HAS delivery . 216
7.4.5 Automated deployment of HAS SFCs 216

A Minimizing the Impact of Delay on Live SVC-based HTTP Adaptive
Streaming Services 219
A.1 Introduction . 220
A.2 Related Work . 221
A.3 State of the Art Rate Adaptation Heuristics 223

A.3.1 Advanced Video Coding (AVC) Microsoft Smooth Stream-
ing (MSS) heuristic . 223

A.3.2 Scalable Video Coding (SVC) MSS heuristic 223
A.3.3 SVC slope heuristic . 223

A.4 SVC Adaptation Heuristic for Small Buffers 224
A.5 Delay-optimized Download Scheduling 225

A.5.1 Pipelined scheduling . 226
A.5.2 Parallel scheduling . 227

A.6 Experimental Results . 227
A.6.1 Comparison of adaptation heuristics 228
A.6.2 Impact of download scheduling 230

ix

A.6.3 Impact of delay . 231
A.6.4 Impact of parallel threads 231

A.7 Conclusion . 233
References . 234

B Deadline-based Approach for Improving Delivery of SVC-based HTTP
Adaptive Streaming Content 237
B.1 Introduction . 238
B.2 Related Work . 239
B.3 Priority-Based Delivery of HAS 241

B.3.1 Layer-based prioritization 241
B.3.2 Deadline-based prioritization 242

B.4 Evaluation . 243
B.4.1 Prototype implementation 243
B.4.2 Experiment setup . 245
B.4.3 Impact of layer-based prioritization 247
B.4.4 Impact of deadline-based prioritization 249

B.5 Conclusion . 252
References . 253

C Semantic Validation of Affinity Constrained Service Function Chain
Requests 257
C.1 Introduction . 258
C.2 Related Work . 259
C.3 Affinity and Anti-Affinity Constraint Model 261
C.4 Semantic SFC Request Checker 264

C.4.1 NFV architecture for SFC request checking 266
C.4.2 Ontology for SFC request modelling 268
C.4.3 Rules . 268
C.4.4 Conflict detection . 270

C.5 Evaluation . 270
C.5.1 Impact of physical network size 272
C.5.2 Impact of virtual network size 273
C.5.3 Impact of number of constraints 273
C.5.4 Combined impact of relevant parameters 274

C.6 Conclusion . 275
References . 276

List of Figures

1.1 Forecast of Internet data traffic per month for the next years. Video
traffic is expected to exceed 80% of all Internet traffic by 2019 [4]. 3

1.2 HAS traffic exceeded 61% of peak downstream Internet traffic in
March 2016 [9]. 4

1.3 Viewer experience report by Conviva, indicating that buffer star-
vations and quality degradations are still omnipresent [10]. 5

1.4 Overview of PhD dissertation. 9

2.1 Overview of the proposed framework. The framework allows man-
aging OTT services for scalable transportation in the multimedia
access network. 23

2.2 Generic architecture of HAS where a client connects directly to
the HAS server over HTTP. 29

2.3 Overview of a typical consumption pattern of Live TV and Time
Shifted TV (TSTV)-based video services. When the content is first
streamed live, a peak in viewers occur. Additional waves of service
requests can occur depending on the type of the video content. . . 30

2.4 Designed distributed architecture for HAS-enabled content deliv-
ery using multicast (MC), allowing a seamless integration with ex-
isting HAS-based delivery technologies. The lower part shows an
example mapping of the proposed system to a network topology. . 32

2.5 Illustration of the multicast retransmission mechanism at the De-
livery Server. 34

2.6 Illustration of how the management algorithm at the distribution
server selects which content to multicast and decides to which
channels a delivery server should subscribe. 35

2.7 Illustration of the subscription algorithm performed by the Auto-
nomic Delivery Management component, subscribing to a multi-
cast channel if there exists an Sr where Sm − Sr < W 37

2.8 Illustration of the mapping algorithm performed by the Distribu-
tion Management component. 37

2.9 Emulated network topology modeling a tree-based access network
of 1,000+ nodes. 41

xii

2.10 Impact of the different multicast strategies on the bandwidth. De-
pending on the multicast strategy, multicasting content is benefi-
cial starting from 2 delivery servers. Confidence levels are shown
on the graphs. 41

2.11 Impact on the average consumed bandwidth of the different multi-
cast strategies. Next to the graph is a table with the average band-
widths and standard deviations. For the multicast scenario no stan-
dard deviations are shown since they are all zero. 42

2.12 Impact on bandwidth of the different retransmission strategies on
consumed bandwidth at distribution server. Confidence levels are
shown on the graphs. 43

2.13 Impact on bandwidth of the different retransmission strategies on
consumed bandwidth at delivery servers. Confidence levels are
shown on the graphs. 44

2.14 Total average consumed bandwidth on link between distribution
server and delivery servers for various loss settings and retrans-
mission methods. Next to the graph is a table with the average
bandwidths and standard deviations. 44

2.15 Impact of multicast strategy on consumed bandwidth on link be-
tween distribution and delivery servers, measured with 40 delivery
servers, cache sizes of 2,560MB, 20 multicast channels and 20
video channels. 46

2.16 Impact of number of delivery servers (with 50 clients per delivery
server) and multicast management strategy on average consumed
bandwidth, measured with cache sizes of 2,560MB, 20 multicast
channels and 20 video channels. Confidence intervals are shown
on the graphs. 47

2.17 Impact of number of delivery servers and multicast strategy on av-
erage consumed bandwidth, measured with cache sizes of 2,560MB,
20 multicast channels and 20 video channels. 47

2.18 Impact of different multicasting strategies and cache sizes on aver-
age consumed bandwidth, measured with 40 delivery servers, 20
multicast channels and 20 video channels. Confidence intervals
are shown on the graphs. 48

2.19 Impact of different multicasting strategies and cache sizes on aver-
age cache hitrate, measured with 40 delivery servers, 20 multicast
channels and 20 video channels. Confidence intervals are shown
on the graphs. 49

2.20 Impact of different multicasting strategies and number of multi-
cast channels on average consumed bandwidth, measured with 40
delivery servers, 20 video channels and cache sizes of 2,560MB.
Confidence intervals are shown on the graphs. 49

3.1 Graphical representation of variables and assumptions. 63

xiii

3.2 Network topology, modeling a typical video service delivery net-
work. 72

3.3 Impact of number of clients, using a topology with k = 2,BWl−1 =
3Mbps, BF = 0.9. 74

3.4 Impact of number of bottlenecks in the topology on the average
decision time, using a topology with k = 5, BWl−1 = 2Mbps,
|C|= 125 and l = 4. 76

3.5 Impact of the Switching Alpha αs, using a topology with k = 5,
BWl−1 = 4Mbps, BF = 0.8, |C|= 125 and l = logk|C|+ 1 = 4. 77

3.6 Impact of the Round Trip Time (RTT) (ms), using a topology with
k = 5,BWl−1 = 3Mbps,BF = 0.8, |C|= 125 and l = logk|C|+
1 = 4. 78

3.7 Network topology, modeling a typical video service delivery net-
work with multiple servers. 79

3.8 Impact of multiple servers with balanced load and the Number of
clients, using a topology with BWl−1 = 2Mbps, BF = 0.8 and
|C|= 200. 80

3.9 Impact of multiple servers with unbalanced load and the Number
of clients, using a topology with BWl−1 = 2Mbps, BF = 0.8
and |C|= 200. 81

4.1 In-network quality management architecture, showing a central-
ized component gathering monitoring information, estimating resid-
ual bandwidth which serves as input for the QoE-driven quality
optimization and quality selection guidance for the clients. Fur-
ther on in the chapter, also a distributed version is considered. . . . 95

4.2 Distributed optimization process for a node n gathering monitor-
ing information from its upstream link en− to estimate Ren− and
downstream restrictions sn+,c from its successor node set N+. . . 103

4.3 Network topology, modeling a typical video service delivery net-
work. 106

4.4 Example cross traffic trace. 106
4.5 Graphical overview of three example sequences that were used to

assess the end-user subjective quality perception. Gaps in (c) indi-
cate the occurrence of buffer starvations. 108

4.6 Impact of history size |Hc| (RTT = 40ms, r = 100, τ = 2s,
B = 12s, N = 32). These results show a local optimum of |H|c=
128. 110

4.7 Impact of optimization interval τ (RTT = 40ms, r = 100, |Hc|=
128, B = 12s, N = 32). Setting the optimization interval τ at the
segment length of 2s yields the highest QoE at the cost of frequent
optimization. 110

4.8 Impact of sampling size r on packet-based throughtput estimation
for r = 100 showing a high correlation. 111

xiv

4.9 Impact of sampling size r (RTT = 40ms, |Hc|= 128, τ = 2s,
B = 12s, N = 32). Increasing the sampling size r beyond 103

negatively impacts the QoE due to wrong estimations on the future
throughput. Setting r = 100 gives good estimations at a limited
sampling cost of 1%. 112

4.10 Impact of buffer sizeB (RTT = 40ms, r = 100, |Hc|= 128, τ =
2s,N = 32). For a buffer of about 4s, the in-network optimization
is able to achieve a similar QoE as the best performing client-side
heuristic using a buffer of four times that size. 113

4.11 Impact of forecasting method (RTT = 40ms, r = 100, |Hc|=
128, τ = 2s, B = 12s, N = 32) for multiple values of the sam-
pling rate r. 115

4.12 Impact of access network bandwidth fluctuations (RTT = 40ms,
|Hc|= 128, τ = 2s, B = 12s, N = 32). 117

4.13 Impact of total number of clients |C| for various combinations of
network size parameters (K = 32, M ∈ [32, 64, 128, 256] and
N ∈ [512, 1024, 2048, 4096]) on the communication overhead for
distributed ((a) and (b)) and centralized ((c) and (d)) in-network
QoE optimization respectively. 119

4.14 Impact of increasing the number of nodes per level M (RTT =
40ms, r = 100, |Hc|= 128, τ = 2s, B = 12s, N = 16). Since
the calculation delay for the Centralized optimization is quite high,
the practical results differ significantly from the optimal solution,
showing the benefits of the more scalable Distributed optimization. 121

4.15 Impact of number of clients |C| for an uncongested scenario (RTT =
40ms, r = 100, |Hc|= 128, τ = 2s, B = 12s). Even in the
absence of cross traffic, the client-side heuristics are not able to
achieve a comparable quality as in-networks driven optimization
due to the competition between clients. 122

4.16 Impact of number of homes N for a congested scenario (RTT =
40ms, r = 100, |Hc|= 128, τ = 2s, B = 12s). The in-network
optimization also suffers from the congested network (N = 64),
but is able to maintain an average QoE that is 130% higher com-
pared to the client-side heuristics and is still acceptable since the
Mean Opinion Score (MOS) is higher than 3. 123

5.1 Example run of impact of varying streaming origin on QoE achieved
by base heuristic [42]. 140

5.2 State diagram for cache assisted quality selection heuristic. 142
5.3 Experimental setup, representing a delivery network with interme-

diary cache nodes. 148
5.4 Map showing different streaming locations of the dynamic scenario. 149
5.5 Excerpt of collected mobile delay traces using a 4G smartphone

for a moving car (a) and for a stationary environment (b). 150

xv

5.6 Impact of parameter τ of aged Exponentially Weighted Moving
Average (EWMA) estimation on (a) average MOS, (b) average
buffer starvation time, (c) average number of quality switches and
(d) average played quality. 151

5.7 Impact of (a) the bottleneck bandwidth BWS , (b) the delay be-
tween server and proxy dS , (c) the cache size CP and the maxi-
mum buffer size B on the average QoE. 153

5.8 Impact of (a) minimum number of elements in cluster nmin, (b)
minimum distance between clusters dmin and (c) maximum stan-
dard deviation within a cluster σ2 on the clustering accuracy ex-
pressed as percentage of correctly classified elements. Impact of
cache estimation parameter β (d) on average MOS. 156

5.9 Impact of (a) the bottleneck bandwidth BWS , (b) the delay be-
tween server and proxy dS and (c) the cache size CP on the aver-
age QoE. 158

5.10 QoE-improvement (a) and reduction of buffer starvations (b) in a
dynamic scenario. 160

6.1 An example SFC. 178
6.2 An overview of the NFV architecture with support for semantic

SFC request checking. 180
6.3 Graphical representation of ontology. 181
6.4 Graphical representation of the model. 185
6.5 Impact of the infrastructure size on the semantic validation. 195
6.6 Impact of the number of requested Virtual Network Functions (VNFs)

on the semantic validation. 196
6.7 Impact of the number of constraints per SFC on the semantic vali-

dation. 196
6.8 Share of semantic matching and mapping on total execution time

for SFC set mapping. 198
6.9 Share of semantic matching and mapping on total execution time

for individual SFC mapping. 198
6.10 Semantic matching execution time. 199
6.11 Percentage of SFC requests that are mapped. 199
6.12 Total mapping time of Set mapping compared to Individual map-

ping for increasing infrastructure size. 200
6.13 Objective of Set mapping compared to Individual mapping for in-

creasing infrastructure sizes. 201
6.14 Percentage of mapped SFCs when applying Set mapping com-

pared to Individual mapping for increasing infrastructure sizes. . . 201
6.15 Total link bandwidth usage for various optimization objectives. . . 202
6.16 Difference between the maximum and minimum link usage for

various optimization objectives. 203
6.17 Percentage of used nodes for various optimization objectives. . . . 203
6.18 Impact of SFC ordering on acceptance rate. 203

xvi

A.1 Illustration how a steeper slope prioritizes backfilling over prefetch-
ing. 224

A.2 Illustration of the backfilling operation by SVC Cursor when the
quality cursor was improved. 225

A.3 Overview of estimation with pipelining a) accurate estimation b)
overestimation c) underestimation. 226

A.4 Illustration of the delay masking behavior of parallel scheduled
segment layer downloads. 227

A.5 Experimental setup offering a HAS-based video streaming to N
clients. The parameters Bs, Bc, P , R are varied. 228

A.6 Total buffer starvation (s), average played quality level and total
number of switches in function of the buffer size P (s) with Bc =
10Mbps, N = 20, R = 50ms and (a) Bs = 50Mbps (b) Bs =
100Mbps. 229

A.7 Average played quality level and total number of switches in func-
tion of the buffer size P (s) with Bc = 10Mbps, N = 20, R =
50ms and (a) Bs = 50Mbps (b) Bs = 100Mbps. 230

A.8 Average played quality level in function of the RTTR (s) forBs =
100Mbps, Bc = 10Mbps, N = 20 and P = 3.3s. 231

A.9 Impact of the number of parallel threads with Bc = 10Mbps,
N = 20, R = 100ms, P = 4.4s and (a) Bs = 50Mbps (b)
Bs = 100Mbps, for AVC MSS and SVC Cursor in combination
with sequential and parallel scheduling. 232

B.1 Illustration of layer-based prioritization, where lower quality pre-
sentations have higher priority than enhancement layers. 242

B.2 Illustration of deadline-based prioritization, where clients decide
based on their current buffer filling to request segments with higher
priority. 243

B.3 Click-implementation of AF behavior. 244
B.4 Experimental setup showing the Per Hop Behavior (PHB) and in-

troduction of best effort cross traffic on the bottleneck link. 245
B.5 Excerpt of a cross traffic file for a 20Mbps link. 246
B.6 Illustration of the continuous playout under cross traffic when SVC

layer-based prioritization is enabled. With segment length of 1s
and buffer size 2s (a) and 20s (b) for AVC MSS and buffer size 2s
for SVC layer prioritization for a single streaming client. 247

B.7 Impact of the number of parallel DiffServ downloads on the SVC
Layer Prioritization for a buffer of 4 seconds and a prioritized
channel of 100Mbps. 248

B.8 Impact of the buffer size on average freezing time, estimated MOS
and number of switches for a prioritized channel of (a) 150Mbps
and (b) 200Mbps respectively. 250

xvii

B.9 Impact of the number of allowed qualities for Deadline Based
Prioritization on average buffer filling, freezing time, quality rate
and number of switches for a prioritized channel of 200Mbps and
buffer size of 4 seconds. 251

C.1 Open Virtualization Format (OVF) specification extension for mod-
elling Affinity node and link constraints. 263

C.2 An example SFC. 265
C.3 A simplified constraint specification for the example SFC 265
C.4 An overview of the NFV architecture with support for semantic

SFC request checking. 266
C.5 Graphical representation of ontology. 267
C.6 Impact of physical network size. 272
C.7 Impact of virtual network size. 273
C.8 Impact of number of constraints on number of consistent SFC ex-

ecution time. 274
C.9 Combined impact of increasing physical network size, requested

virtual network size and number of constraints. 274

List of Tables

3.1 Variables used for the rate decision. 64
3.2 Overview of the quality layers for the Big Buck Bunny video. . . . 72

4.1 Overview of the quality layers for the Big Buck Bunny video. . . . 107
4.2 Pearson correlation between the estimated throughput for the next

interval τ and the actual cross traffic rate. A sampling size of r =
100 yields a high Pearson correlation of ρ = 0.965. 111

4.3 Pearson correlation and standard deviation for different forecast-
ing techniques for a sampling size of r = 100. 115

5.1 Average one way delays (ms) and variance for fixed connections
between the remote locations. 150

5.2 Probability of predicting a segment to be in the cache for β = 0.75
as a function of the buffer level B. 157

6.1 VNF placement problem notation. 184
6.2 Scenario parameters. 194

B.1 Bitrates of the different video layers. 246

C.1 Overview of the evaluation parameters. 271
C.2 Impact of number of constraints on number of consistent SFC re-

quests. 273

List of Acronyms

A

AF Assured Forwarding

AR Autoregression

AS Autonomous System

AVC Advanced Video Coding

B

BIP Binary Integer Programming

BWA Broadband Wireless Access

C

CAPEX Capital Expenditure

CDN Content Delivery Network

D

DASH Dynamic Adaptive Streaming over HTTP

DC Datacenter

DiffServ Differentiated Services

DPI Deep Packet Inspection

DRM Digital Rights Management

xxii

E

EF Expedited Forwarding

EPC Evolved Packet Core

ET Exponential Trend

ETSI European Telecommunications Standards Institute

EWMA Exponentially Weighted Moving Average

F

FDD Frequency Division Duplex

FDMA Frequency Division Multiple Access

G

GSM Global System for Mobile Communications

H

HAS HTTP Adaptive Streaming

HEVC High Efficiency Video Coding

HG Home Gateway

HW Holt Winters

I

ILP Integer Linear Programming

InP Infrastructure Provider

IPTV Internet Protocol television

ISP Internet Service Provider

IX Internet Exchange

xxiii

K

kbps kilobit per second

L

LP Linear Programming

LRU Least Recently Used

M

MINLP Mixed-Integer Non-Linear Programming

MIQCP Mixed Integer Quadratically Constrained Programming

MLP Multi Layer Perceptron

MOS Mean Opinion Score

MPEG Moving Pictures Experts Group

MPEG-TS Moving Pictures Experts Group (MPEG) Transport Stream

MSS Microsoft Smooth Streaming

N

NFV Network Function Virtualization

NF Network Function

O

OPEX Operational Expenditure

OTT Over-The-Top

OVF Open Virtualization Format

OWL Web Ontology Language

xxiv

P

P2P Peer to Peer

PCN Pre-Congestion Notification

PHB Per Hop Behavior

PoP Point of Presence

PSNR Peak Signal-to-noise Ratio

PUE Power Usage Efficiency

Q

QoE Quality of Experience

QoS Quality of Service

QP Quantization Parameter

R

RED Random Early Detection

RMSE Root Mean Squared Error

RTP Real Time Transport Protocol

RTSP Real Time Streaming Protocol

RTT Round Trip Time

S

SDN Software Defined Networking

SFC Service Function Chain

SLA Service Level Agreement

SMO Sequential Minimal Optimization

SNMP Simple Network Management Protocol

SP Service Provider

SSIM Structural Similarity

xxv

STB Set-Top Box

SVC Scalable Video Coding

SVR Support Vector Regression

SWRL Semantic Web Rule Language

T

TCO Total Cost of Ownership

TE Traffic Engineering

TDMA Time Division Multiple Access

TSTV Time Shifted TV

U

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunications System

V

VBR Variable Bitrate

vCDN virtual Content Delivery Network (CDN)

vCPE virtualized Customer Premises Equipment

VDCNE Virtual Data Center Network Embedding

vEPC virtualized Evolved Packet Core

VM Virtual Machine

VN Virtual Network

VNE Virtual Network Embedding

VNF Virtual Network Function

VNFInP Virtual Network Function Infrastructure Provider

VoD Video on Demand

VoIP Voice over IP

xxvi

W

WAN Wide Area Network

WWW World Wide Web

Samenvatting
– Summary in Dutch –

In de afgelopen decennia is het internet geëvolueerd van een netwerk dat werd
ontworpen voor het verzenden van pakketten tot een aanbieder van een breed scala
aan geavanceerde multimediadiensten. Niet alleen de aangeboden diensten zijn
geëvolueerd, maar ook de toestellen en technologieën die worden gebruikt om er
toegang tot te krijgen zijn drastisch veranderd. Hierdoor kunnen de eindgebrui-
kers hun favoriete services consumeren, gebruikmakend van ieder toestel, gecon-
necteerd via diverse technologieën en op een locatie van hun keuze. Eén van de
diensten die het huidige internetverkeer domineert zijn videodiensten. Het aandeel
van videotraffiek in het totale internetverkeer wordt verwacht om de grens van 80%
te overschrijden tegen 2019. Een belangrijke factor voor het success van een vi-
deodienst is de kwaliteit zoals die wordt ervaren door de eindgebruiker, aangeduid
als Quality of Experience (QoE). In tegenstelling tot traditionele Internet Protocol
television (IPTV)-diensten, worden de Over-The-Top (OTT) videodiensten (zoals
Netflix, YouTube) zonder garanties omtrent de QoE afgeleverd over het internet.
In de loop der jaren zijn ook de technologieën voor het afleveren van video over
het internet sterk geëvolueerd. Real Time Streaming Protocol (RTSP) en Real
Time Transport Protocol (RTP)-gebaseerde video streaming over UDP werd ver-
vangen door HTTP-gebaseerde methoden, afgeleverd via TCP. De gegarandeerde
overdracht van de videopakketten, de naadloze integratie en compatibiliteit met
firewalls en NAT-technologieën en het hergebruik van de bestaande caching in-
frastructuur zijn enkele van de voordelen van HTTP-gebaseerde streaming. Om
dynamisch en op een schaalbare manier te kunnen reageren op veranderende net-
werkcondities, zijn kwaliteitsadaptatietechnieken aan de cliënt-zijde reeds de facto
standaard geworden in de commerciële streaming oplossingen.

In HTTP Adaptive Streaming (HAS), wordt de video temporeel opgesplitst
in segmenten die worden geëncodeerd volgens verschillende kwaliteitsniveaus.
Hierdoor kan de streaming applicatie autonoom beslissen welke kwaliteit wordt
aangevraagd op basis van de gemeten bandbreedte, de huidige buffervulling en
de specificaties van het toestel. Dit stelt de HAS-applicaties ertoe in staat om te
reageren op fluctuaties in het netwerk door het aangevraagde kwaliteitsniveau te
wijzigen. Bij niet-adaptieve HTTP-gebaseerde technologieën zou de buffer uit-
geput raken en uiteindelijk een onderbreking in de videoweergave veroorzaken.
Dankzij de gegarandeerde overdracht via HTTP kan een segment steeds worden
afgespeeld aan de gewenste kwaliteit, waardoor pakketverlies geen artefacten kan

xxx SAMENVATTING

veroorzaken in de video. Aangezien echter de kwaliteit wel dynamisch kan wor-
den aangepast, kunnen oscillaties in het kwaliteitsniveau optreden, of erger nog,
een onderbreking van de weergave. De QoE van de eindgebruiker zal sterk wor-
den beı̈nvloed door dergelijke gebeurtenissen. In het verleden werd het netwerk
sterk overgedimensioneerd om deze QoE degradatie te voorkomen. Aangezien de
kwaliteitseisen van de gebruikers steeds toenemen en ook de populariteit van vi-
deodiensten dit zal blijven doen, zal overdimensionering van het netwerk niet lan-
ger economisch rendabel zijn. Daarom moeten de bestaande middelen efficiënter
worden aangewend door de aflevering van de video intelligenter te beheren. Te-
gelijkertijd moet ook het netwerk flexibeler worden om te blijven voldoen aan de
verhoogde kwaliteitseisen en nieuwe technologieën te blijven ondersteunen. In
deze thesis worden verschillende technieken voorgesteld voor het beheren van de
QoE bij HAS-diensten, zowel voor live als Video on Demand (VoD) streaming.
Bovendien worden uitbreidingen voorgesteld op bestaande Network Function Vir-
tualization (NFV) aanpakken om de flexibele plaatsing van HAS services toe te
laten.

Een eerste manier om dit te bewerkstelligen, is om de druk te verminderen
die wordt uitgeoefend door live HAS diensten op het onderliggende netwerk, door
het toepassen van multicast aflevering. In huidige HAS oplossingen is voor elke
gebruiker een unicast overdracht van de segmenten vereist. Gezien in een live en
Time Shifted TV (TSTV) scenario heel wat segmenten meerdere keren worden
verstuurd langs hetzelfde pad in een korte tijdspanne, lenen multicast technieken
zich perfect tot het optimaliseren van de aflevering van dergelijke diensten. Bij
binnenkomst in het beheerde netwerk, worden meerdere overlappende sessies ge-
groepeerd tot een multicast kanaal. Verderop in het netwerk, dichter bij de eind-
gebruiker, worden deze multicast sessies opgesplitst en worden de oorspronkelijke
HAS unicast sessies gereconstrueerd. Door het toepassen van intelligente algo-
ritmes om te bepalen welke sessies worden gegroepeerd en op welke multicast
kanalen wordt ingeschreven, kan de druk op het netwerk aanzienlijk worden ver-
minderd. Daarnaast kan de gebruikservaring ook worden verbeterd door de tijd
tussen het live moment en de eigenlijke weergave bij de gebruiker drastisch te
verminderen. Huidige HAS-technologieën vereisen een grote buffer aan de cliënt-
zijde om eventuele schommelingen in het netwerk te kunnen opvangen teneinde
kwaliteitsoscillaties en onderbrekingen te vermijden. Door het toepassen van pri-
oritisatie in het netwerk, kan de aflevering van bepaalde segmenten worden gega-
randeerd. Hierdoor wordt het mogelijk om de buffer en dus ook de verstreken tijd
tussen het live moment en de weergave aanzienlijk in te korten.

Het afleveren van HAS VoD-diensten kan worden geoptimaliseerd door de
negatieve impact van concurrerende HAS-applicaties te verminderen. Huidige
HAS-oplossingen bieden geen mogelijkheid tot coördinatie tussen de verschil-
lende adaptatie algoritmes, waardoor ze sterk onderhevig zijn aan ON/OFF-patronen.
Wanneer de buffer van een cliënt voldoende gevuld is, wordt het downloadproces
tijdelijk onderbroken, dit wordt de OFF-toestand genoemd. Andere applicaties in-
terpreteren deze tijdelijke toename in beschikbare bandbreedte foutief en trachten
de kwaliteit te verhogen. Echter, wanneer de OFF-clients het downloaden her-

SUMMARY IN DUTCH xxxi

vatten, wordt de downloadtijd sterk verhoogd en treden er kwaliteitsoscillaties en
zelfs onderbrekingen in de videoweergave op. Door het toevoegen van coördinatie
vanuit het netwerk kunnen de negatieve effecten van deze ON/OFF-patronen wor-
den opgelost. Door het aantal beschikbare kwaliteiten per streaming toepassing te
beperken, kan de algemene QoE worden verbeterd, terwijl de autonome kwaliteits-
adaptatie nog steeds toelaat om te reageren op fluctuaties in het lokale netwerk.

Een derde manier om de QoE te verbeteren, is om de robuustheid te verhogen
tegen fluctuaties veroorzaakt door intermediaire caches in het netwerk. Deze zor-
gen dan wel voor een schaalbare aflevering van de video, maar beı̈nvloeden terge-
lijkertijd ook de kwaliteitsaanpassing. Aangezien segmenten zowel van de server
als van een intermediaire cache kunnen worden verstuurd, kan dit schommelingen
in de gemeten bandbreedte en netwerkvertraging veroorzaken. Deze verkeerde
schattingen kunnen op hun beurt dan weer leiden tot foute kwaliteitsselectie en uit-
eindelijk een reductie van de QoE. Door het includeren van de informatie omtrent
de herkomst en de inhoud van de caches, kan een accuratere inschatting worden
gemaakt van de haalbare kwaliteit. Op deze manier kunnen oscillaties in de kwa-
liteit en onderbrekingen in de videoweergave worden vermeden. Aangezien deze
informatie niet steeds beschikbaar is, worden ook clustering-gebaseerde technie-
ken voorgesteld om de herkomst en inhoud van de caches autonoom te detecteren.

Om de flexibiliteit waarmee nieuwe diensten kunnen worden aangeboden te
verhogen, kunnen de principes van NFV worden toegepast. De verschillende Net-
work Functions (NFs) (bv. caches, prioritisatie functies) kunnen worden gevirtu-
aliseerd en dynamisch geplaatst worden op de gevirtualiseerde infrastructuur. Dit
zorgt ervoor dat de beschikbare middelen kunnen worden verdeeld over verschil-
lende diensten heen. Verder wordt de sterke koppeling tussen de functionaliteit en
de onderliggende apparatuur aanzienlijk verminderd. Hierdoor kunnen dynamisch
nieuwe en innovatieve diensten worden opgezet. Echter, de huidige NFV tech-
nologieën bieden slechts beperkte ondersteuning voor het toevoegen van locatie-
restricties voor deze services. Voor multimediadiensten is dit echter gewenst om-
wille van efficiëntie (bv. caches dicht bij eindgebruikers), wettelijke (bv. data mag
enkel via bepaalde regio’s worden verstuurd) of economische redenen (bv. over-
eenkomsten met providers). Daarom werd een set van affiniteits en anti-affiniteits
restricties gedefinieerd die de plaatsing van dergelijke diensten kan beı̈nvloeden.
Een semantisch raamwerk werd ontwikkeld voor het valideren van groepen van
deze restricties en het optimaliseren van de plaatsing ervan.

De verschillende oplossingen voor het QoE-beheer van HAS-diensten in com-
binatie met de toegenomen flexibiliteit voor het plaatsen van dergelijke diensen
die tijdens dit proefschrift werden ontwikkeld, richten zich op enkele belangrijke
uitdagingen in het veld van HAS. Toekomstig onderzoek kan hier verder op bou-
wen door bijvoorbeeld intelligente caching technieken te ontwikkelen die de in-
formatie inzake de temporele structuur en kwaliteitsaanpassingen aanwenden om
de inhoud van de cache samen te stellen. Ook de inzet van dynamische multi-
mediadiensten kan nog verder worden onderzocht. De verschillende effecten van
QoE-beheersmethodes dienen te worden gemodelleerd teneinde een geautomati-
seerde aanpassing van de diensten toe te laten.

Summary

Over the past decades, the Internet has evolved from a network designed for trans-
ferring packets to a provider of a wide range of advanced multimedia services.
Not only the services offered through the Internet have evolved, but also the de-
vices and technologies that are used to access them have changed. This allows
end users to access their favorite services through the Internet using any device
via different access technologies and at a location of their choice. One of the
services that is dominating the Internet traffic are video streaming services. Key
towards a successful streaming solution is the quality experienced by the end-user,
commonly denoted as Quality of Experience (QoE). In contrast to Internet Pro-
tocol television (IPTV) services, Over-The-Top (OTT) video streaming services
(such as Netflix, YouTube) are provided over the best effort Internet, and as such
unable to provide any guarantees on the delivered QoE. Over the years, the stream-
ing technologies that support the delivery of OTT video have also evolved. Real
Time Streaming Protocol (RTSP) and Real Time Transport Protocol (RTP)-based
streaming over UDP were replaced by HTTP-based streaming methods over TCP.
The reliable transmission of the video, the seamless integration and compatibility
with firewalls and NATs and the reuse of existing Internet caching infrastructure
are some of the advantages offered by HTTP streaming. To be able to adapt in a
scalable way to dynamic network conditions, client-side rate adaptation schemes
are becoming the de facto standard in commercial streaming solutions.

In HTTP Adaptive Streaming (HAS), the video is temporally split into seg-
ments which are encoded at different quality rates and stored at the server. This
allows the client side heuristic to switch between quality representations based on
measured network statistics, buffer filling level and device characteristics. This
enables the HAS streaming clients to respond to throughput fluctuations by reduc-
ing the quality and providing a continuous video playout, whereas non-adaptive
HTTP-based streaming methods would have suffered from buffer starvations. Due
to the reliable transmission over HTTP, a segment is always displayed as it was
encoded, since no video artefacts can be caused by packet loss. However, since
the quality can be adapted, quality oscillations can occur and if a wrong decision
is made by the adaptation heuristic, a buffer starvation can lead to a frame freeze.
The QoE perceived by the end user can be heavily impacted by such events. His-
torically, network providers have been over-provisioning the network resources to
avoid QoE degradation. However, since the quality expectations of the users are
increasing rapidly and also the popularity of streaming services is growing, over-
provisioning the network is no longer economically viable. Therefore, the exist-

xxxiv SUMMARY

ing resources need to be used more efficiently by managing the delivery of video
streaming services. At the same time, to meet the demands and requirements of
new technologies, the network should be made more flexible to be able to sup-
port new and innovative services with short time to market. In this dissertation a
number of QoE management techniques for HAS are proposed, both for live and
Video on Demand (VoD) streaming. Furthermore, extensions to current Network
Function Virtualization (NFV) approaches are proposed to allow the flexible and
location-aware deployment of HAS services.

A first way to reduce the strain of live HAS services on the underlying network,
is to deploy a multicast-enabled delivery framework. In state-of-the-art HAS so-
lutions, each client application requires a unicast transmission of every segment.
Since in live and Time Shifted TV (TSTV) streaming, a lot of segments are trans-
ferred multiple times across the same path, applying multicast techniques can re-
duce the network resource usage. At the ingress, multiple overlapping stream-
ing sessions are grouped onto a multicast channel. Further down the network, an
egress node splits the multicast session and reconstructs the original HAS unicast
sessions. By deploying intelligent algorithms to select which sessions to aggregate
and to which multicast channels the network nodes should subscribe, the resource
usage can be significantly reduced. Additionally, the user experience can be im-
proved for live HAS services by reducing the buffer size and thus shortening the
camera-to-display delay. Current HAS adaptation schemes require a sufficiently
large client-side buffer to protect them from quality oscillations and buffer star-
vations. By deploying in-network prioritization of segments, the assured delivery
of these segments allows to shrink the buffer size to several seconds. Further-
more, adapting the request scheduling to take into account high network Round
Trip Times (RTTs) can also benefit the overall QoE of a live streaming session.

Another way to optimize the delivery of HAS services involves reducing the
negative impact of competing HAS clients on the overall QoE. In state-of-the-art
HAS solutions, there is no coordination between the different client applications
and they suffer from instabilities caused by ON-OFF patterns. When the buffer
of a client is sufficiently filled, the download process is paused and identified as
the OFF-state. Other clients can misinterpret the temporary increase in through-
put as an increase in available resources, causing them to increase their requested
quality. However, when the OFF-clients resume their download process, the down-
load times are increased, causing the buffer to deplete faster than anticipated and
leading to quality oscillations and even buffer starvations. By adding in-network
coordination, the negative effects of these ON-OFF patterns can be mitigated. The
in-network quality optimization nodes measure the available throughput and allo-
cate the resources in order to optimize the QoE. By limiting the set of available
qualities for each client, the overall QoE can be improved, while the autonomous
adaptation at the clients can still react to sudden fluctuations in the local network
resources.

A third way to improve the QoE of HAS services is to increase the robust-
ness of client adaptation heuristics against throughput fluctuations caused by in-
network caching nodes. These nodes reduce the resource usage of HAS VoD ser-

SUMMARY xxxv

vices, but at the same time interfere with the quality adaptation. Since segments
served from the cache are typically served with a lower network delay and higher
throughput, they can cause the throughput estimations to be too high. These op-
timistic estimations lead to increased quality oscillations, thus reducing the QoE.
By considering the information on the streaming origin, the accuracy of the dif-
ferent throughput estimations per origin can be improved. Furthermore, taking
into account the contents of the intermediary caches can reduce the risk of qual-
ity oscillations and improve the overall stream quality. Since this information is
not always available or intermediary caches cannot be adapted, clustering-based
techniques are proposed to autonomously detect the streaming origin at the client.
Furthermore, by deploying probability-based cache content estimation techniques,
the number of buffer starvations and quality oscillations can be reduced signifi-
cantly.

To increase the flexibility with which new services can be deployed, the NFV
paradigm can be applied to streaming service chains. The different Network Func-
tions (NFs) (e.g., caches, prioritization functions) are virtualized and deployed
on top of a virtualized infrastructure. This allows to share the network resources
across different services and reduces the tight coupling of the functionality of NFs
with the physical resources upon which they are deployed. To deploy new services,
the Virtual Network Functions (VNFs) can be deployed onto the NFV infrastruc-
ture and linked using programmable network technologies to support the required
Service Function Chain (SFC). However, current NFV technologies offer only
limited support for adding location constraints to SFC requests. For multimedia
services however, the Service Provider (SP) would want to add location constraints
for efficiency reasons (e.g., caches close to end users), legislative reasons (e.g., cer-
tain content can only be routed through specific regions) or economic reasons (e.g.,
partner agreements with certain providers). Therefore a set of affinity and anti-
affinity constraints are proposed that can steer the deployment of such services. A
semantic framework is proposed to check the validity of such constrained SFCs in
order to improve the performance of mapping the VNFs and interconnections to
the physical network resources.

The different QoE-management extensions to HAS streaming services, to-
gether with the increased flexibility when mapping these services onto the virtual-
ized infrastructure, address some of the major challenges for flexible HAS stream-
ing that were identified during the dissertation. Future research can extend this
work both in the field of QoE-management of HAS services and by improving
the flexible deployment of multimedia services. Other HAS aspects that could be
improved are the development of HAS-aware caching techniques that take into
account both the temporal and adaptation characteristics of HAS streaming dur-
ing the cache replacement. Increased cooperation between the client adaptation
schemes and the caching mechanisms could potentially improve the QoE even
further. Also, the dynamic deployment of multimedia services can be further in-
vestigated. The various aspects of the SFCs and their respective impact on QoE
could be modeled in order to achieve an automated adaptation of the proposed
SFCs to the current resource availability or service usage.

1
Introduction

”The measure of intelligence is the ability to change.”

–Albert Einstein (1879 - 1955)

1.1 The Rise of Internet Video Streaming

In October 1969, the first ARPANET link was established between the University
of California, Los Angeles and the Stanford Research Institute [1]. Albeit the sys-
tem crashed after sending the first two characters of the word login, the Internet
revolution was started that day. A few weeks later, the network had grown to a
4-node network and by 1981, the number of hosts had grown to 213, with new
hosts being added approximately every 20 days. In 1989, Tim Berners-Lee intro-
duced the World Wide Web (WWW) and the first web browser in 1990, laying
the foundations of the Internet as it is known today [2, 3]. Since then, the Internet
became a platform for a multitude of services, such as online shopping and auction
sites (e.g., Amazon, eBay), file sharing systems (e.g., Napster, BitTorrent), social
networks (e.g., LinkedIn, Facebook), Internet communication services (e.g., Hot-
mail, Skype), etc. In 2015, the ITU reported 3.2 billion of Internet users, which
are interconnected via the Internet through roughly 15 billion devices. Not only
the services offered via the Internet have evolved, but also the devices and tech-
nologies that are used to access them have changed. In 1969, a desktop terminal
was used to transfer the first bytes over a fixed line. Today, many devices such

2 CHAPTER 1

as laptops, game consoles, media centers, smartphones and tablets can be used to
access the Internet using wireless connections, both at home and outside.

The first video streaming event took place in 1993, when a live performance of
the band Severe Tire Damage was broadcasted to test Internet based live streaming
developed at Xerox PARC. In 1995, the Moving Pictures Experts Group (MPEG)
released MPEG Transport Stream (MPEG-TS), a standardized container format for
the transmission and storage of audio, video and metadata which is used in broad-
cast systems such as Internet Protocol television (IPTV). This allowed video to
be broadcasted over packet networks. Early 1996, Microsoft released the Active-
Movie media player which allowed to stream video using a proprietary streaming
format. In 1997, RealPlayer released their answer to Microsoft’s application and
in 1999 Apple created their own streaming format and player called Quicktime
4. All formats were adopted by different websites and each required to download
the proprietary applications, causing the users to end up with multiple stream-
ing applications on their devices. The lack of a unified format led to the wide
adoption of the Adobe Flash streaming technology in 2002. Despite the available
applications, the popularity of video streaming was quite limited due to the low
Internet connection speeds at that time. It remained this way until 2005, when
Internet video streaming really took off with the launch of Youtube. This service
allowed users to generate their personal video content and share it globally, but
also offered support for the live streaming of events. The increased popularity of
YouTube attracted other players, such as content providers and broadcasting com-
panies, to hop on the Internet streaming train. Netflix, which originally started as a
DVD-rental service, launched their Video on Demand (VoD) streaming service in
February 2007 and has since grown to be a global provider of streaming services
with over 81 million subscribers worldwide. While YouTube typically offers small
clips of user-generated content, services such as Netflix and Hulu offer full movies
and series in high quality, gradually replacing linear TV. Between 2009 and 2011,
innovation in handheld technologies has led to the development of mobile video
applications by some of the major players (e.g., Netflix, Hulu, YouTube). It is
clear that over the past decades, the importance of video streaming services in-
creased considerably and continues to increase. Figure 1.1 shows the Cisco Visual
Networking Index forecast of May 2015. The growth of video streaming traffic is
projected to exceed 80% of the Internet traffic by 2019, demonstrating that video
streaming will dominate the Internet [4].

The streaming technologies that support the delivery of Over-The-Top (OTT)
video have also evolved. In the past, the Real Time Streaming Protocol (RTSP)
and Real Time Transport Protocol (RTP) were used to deliver video over IP net-
works through UDP. Since these protocols require server-side bit-rate adaptation
schemes, they are not suited to cope with highly heterogeneous and dynamically
changing network conditions and lack the scalability that is required for such sys-

INTRODUCTION 3

0

50000

100000

2014 2015 2016 2017 2018 2019

Petabytes	(PB)	per	Month

Internet	video Web,	email,	and	data File	sharing Online	gaming

Figure 1.1: Forecast of Internet data traffic per month for the next years. Video traffic is
expected to exceed 80% of all Internet traffic by 2019 [4].

tems. Today, the majority of the video streaming traffic is delivered using HTTP
over TCP. The popularity of these HTTP-based streaming services was mainly in-
duced by the advantages offered by HTTP streaming: the reuse of the Internet
caching infrastructure, the reliable transmission over HTTP and the compatibil-
ity with firewalls and NAT-traversal. Furthermore, to increase the scalability of
streaming services and to cope with dynamic network conditions, research and
academia began shifting towards client-side adaptation schemes. HTTP Adaptive
Streaming (HAS) is now becoming the de facto standard for video streaming deliv-
ery. In HAS, the video content is split temporally into segments which are encoded
at different quality rates. The client-side intelligence decides at which quality
rate each segment should be downloaded, based on measured network statistics,
buffer filling level and device characteristics (e.g., screen resolution, computa-
tional abilities). This allows HAS adaptation schemes to respond to throughput
fluctuations by reducing the quality and continuing video playout, whereas non-
adaptive HTTP-based streaming techniques would have run into a buffer starva-
tion. Furthermore, it allows the client to independently choose its playback qual-
ity and eliminates the server-side rate adaptation, which is a major advantage in
large-scale OTT scenarios. The increased popularity of video consumption over
the Internet has led to the development of a range of protocols that allow adaptive
video streaming over HTTP. Some of the major industrial players have introduced

4 CHAPTER 1

HTTP 6%

iTunes 3%

BitTorrent 3%

Facebook 2%

MPEG	- other 2%

SSL	- other 2%

Other 21%

Netflix 37%

YouTube 18%

Amazon	Video 3%
Hulu 3%

HTTP	Adaptive	Streaming	61%

Downstream	traffic	share	of	top	10	applications

Figure 1.2: HAS traffic exceeded 61% of peak downstream Internet traffic in March
2016 [9].

their proprietary protocols such as Microsoft’s Silverlight Smooth Streaming [5],
Apple’s HTTP Live Streaming [6] and Adobe’s HTTP Dynamic Streaming [7].
Furthermore, a standardized solution has been proposed by MPEG, called Dy-
namic Adaptive Streaming over HTTP (DASH) [8]. Sandvine reported the HAS
share to exceed 61% of the total peak downstream Internet traffic in March 2016
as shown in Figure 1.2 [9].

The aforementioned Internet video streaming services can be categorized as
OTT services, as they are delivered using the best-effort Internet. Another cate-
gory of video services are IPTV services. IPTV services are offered as part of
the Triple Play service (telephony, Internet access and IPTV) by a provider over
their managed network. In contrast to IPTV services however, OTT providers offer
their services over the best effort Internet and therefore do not provide any deliv-
ery guarantees to their end-users. IPTV services typically deliver the broadcast
channels over IP based networks and in surplus offer a limited catalogue of VoD
content to their subscribers. IPTV services are typically offered through the set-
top-box at a fixed location in the user’s home. Compared to IPTV services, OTT
streaming services offer a higher flexibility to their customers, as well as a larger
content catalogue. Users can stream any video at any time and at any location us-
ing a device of their choosing. As such, the functionality offered by OTT services
is more and more evolving into an interesting alternative for managed IPTV ser-
vices. Therefore, network providers are interested in deploying OTT technologies
to offer additional services that can be consumed from various devices outside the
customer premises (e.g., YeloTV, TV Overal) and even collaborating with OTT

INTRODUCTION 5

Resolution

Start Failure

28.8%

26.9%

39.3%

58.4%

2.6%

4.8%

4%

56.7%

63%

2014

% of Views Impacted by Low Resolution

% of Views Impacted by Full Start Failure

2012

2013

2014

2012

2013

2014

2012

2013

Figure 1.3: Viewer experience report by Conviva, indicating that buffer starvations and
quality degradations are still omnipresent [10].

providers to optimize the delivery of their services (e.g., Netflix OpenConnect).
Managing the delivery of these OTT-services can potentially increase their qual-
ity to comparable levels as traditional managed video services. However, a recent
consumer survey by Conviva indicated that this is not yet the case, since buffer
starvations and quality degradations are still omnipresent for current OTT HAS
services, as is shown in Figure 1.3.

A video delivery service can be considered as a chain of Network Functions
(NFs) (e.g., caches, load balancers) that are interconnected via the network and
provide the streaming service. In traditional telecommunications networks, net-
work functionality is strongly tied to the physical network device it runs on. To
create or adapt network services, the network operator needs to deploy a dedi-
cated network appliance for each NF. Furthermore, the placement of the NFs has
to adhere to a strict chaining order, which increases the tight coupling of the ser-
vice with the underlaying network topology. Together with the ever increasing
requirements for high quality and stability, this has led to long product cycles, lim-
ited service agility and substantial dependence on specialized hardware. In order
to compete with highly agile OTT services, which typically have much shorter
product development cycles, and at the same time reduce the Capital Expendi-
tures (CAPEX) and Operational Expenditures (OPEX) involved with physical net-
work expansions, network operators needed to devise novel and less expensive

6 CHAPTER 1

ways to meet the increased capacity requirements and at the same time reduce
the time to market of newly developed services. The Network Function Virtual-
ization (NFV)-paradigm [11, 12] has been introduced to alleviate the aforemen-
tioned issues by leveraging IT virtualization technology to decouple the network
functionality from the physical infrastructure. It allows Virtual Network Func-
tions (VNFs) to be deployed on standard high volume servers, storage devices and
switches. The advantages are manyfold. First, there potentially is a significant cost
reduction through more efficient maintenance, which can be performed remotely.
In addition, thanks to the increased flexibility offered by virtualization, resources
can be shared and used more efficiently. Finally, NFV allows network operators to
deploy novel services cheaper and faster with higher service agility.

1.2 Problem Statement
Key towards a successful streaming solution is the quality experienced by the end-
user, commonly denoted as Quality of Experience (QoE). ITU-T defines QoE as
”The overall acceptability of an application or service, as perceived subjectively
by the end-user” and indicates that it ”includes the complete end-to-end system ef-
fects (client, terminal, network, services infrastructure, etc.)” [13]. Since imaging
techniques are continuously improving (e.g., 4K encoding) and user devices are
rapidly following (e.g., 4K smartphone screens), the quality expectations of the
users are also increasing. However, the network in between the content producer
and consumer, supporting the OTT video streaming solutions, is not evolving at
such a rapid pace and, as discussed in the previous section, even supports less
quality reservations than in the past with managed IPTV. As streaming services
gain in popularity, the strain they exert on the underlying network resources grows
rapidly. With its release in Belgium, Netflix already accounted for 10% of the In-
ternet traffic during the first weekend1. To provide streaming services at acceptable
QoE, network providers have grossly over-provisioned the current Internet. But
with the significant growth in popularity of video services and the rapid develop-
ments in multimedia technologies and bandwidth requirements, over-provisioning
the network will no longer be economically viable in the future. Therefore, the
existing resources need to be used more efficiently by managing the delivery of
video streaming services, while at the same time, taking into account the deliv-
ered QoE. Furthermore, to be able to meet the demands of new technologies, the
network should be made more flexible to be able to support new and innovative
services with a short time to market. More specifically the following problems are
tackled in this dissertation:

1Knack - http://datanews.knack.be/ict/nieuws/telenet-zag-dit-weekend-10-procent-van-zijn-
internetverkeer-naar-netflix-gaan/article-normal-431203.html

INTRODUCTION 7

Existing HAS technologies for delivering live video streaming services need
to be improved. To cope with fluctuations in the network, HAS solutions apply
large client-side buffers. This reduces the risk of running into a buffer starvation
and having a forceful interruption of the video playout. However, at the same time,
this introduces large camera-to-display delays for the end users. These should be
as small as possible for a live streaming service if it is expected to achieve compa-
rable QoE to traditional broadcasting services. The client-side buffers should thus
be reduced to shrink the camera-to-display delay without losing in QoE. Further-
more, since in HAS, a dedicated connection is set up for each client, live streaming
of large events can exert a lot of strain on the network resources, reducing the scal-
ability. Since for live and Time Shifted TV (TSTV) streaming there is an overlap
in the streamed data for each user, this is highly inefficient. Another problem with
existing HAS solutions, is the susceptibility to high network delays. Since the seg-
ments are requested in a sequential order, high Round Trip Times (RTTs) lead to
high idle times between consecutive downloads, reducing the efficiency. In HAS,
video segments are delivered over TCP and thus adopt the fair share paradigm.
However, suppose a client is close to buffer starvation and competes for band-
width with another client having a full buffer. Avoiding a frame freeze for the first
client, at the cost of lower throughput for second client can greatly improve the
QoE of the first client, while having no or limited impact on the QoE of the sec-
ond client. This example shows that fairness in terms of perceived QoE does not
always correspond to fairness in terms of bandwidth consumption.

Current HAS VoD streaming techniques still present some flaws. When
multiple clients compete for the same bottleneck bandwidth, the adaptation
heuristics suffer from instabilities due to ON-OFF patterns. When the buffer
of a client is sufficiently filled, the download is paused, freeing the bottleneck link.
Other clients measure an increased throughput during this OFF-period and try to
increase their quality. However, when the OFF-clients resume downloading, the
download time is increased, causing the buffer to deplete and thus leading to qual-
ity fluctuations and even buffer starvations. This significantly reduces the QoE of
the video service. The lack of coordination between the client heuristics renders it
impossible to guarantee the QoE and thus limits the applicability of HAS solutions
in managed networks. Furthermore, caching solutions that are deployed to reduce
the strain of HAS services on the network can also intervene with the quality se-
lection heuristics at the clients. Segments can be served both from the cache and
from the origin server, without the client being able to distinguish between both.
This again can lead to incorrect estimations on the available throughput, causing
optimistic quality decisions that are not sustainable in case of cache misses, lead-
ing to an increased number of quality oscillations and buffer starvations. Without
coordination between the clients and the intermediary caching nodes, the quality
decisions are either suboptimal or unsustainable.

8 CHAPTER 1

The static nature in which current streaming services are deployed, pre-
vents the flexibility that is required of the network to rapidly offer new and
innovative services. Most of the intermediary NFs (e.g., caches provided by Net-
flix OpenConnect) that are used in the delivery of streaming services are imple-
mented on physical devices. As such, their functionality is tightly coupled with
the devices they run on. To deploy new services, these NFs need to be physically
deployed in the network and wired in the correct order. This reduces the flexi-
bility and increases the deployment costs, maintenance costs and time to market.
To allow flexible deployment of new and innovative streaming services, these NFs
could be virtualized and deployed on the virtualized NFV infrastructure. These
VNFs should be deployed in a particular order and at specific locations to bring
about the benefits of the streaming Service Function Chains (SFCs). However,
current NFV-solutions do not take into account location restrictions, reducing the
applicability of NFV techniques for multimedia delivery chains.

1.3 Dissertation Outline

This dissertation consists of a number of selected publications that were written in
the scope of this PhD research. Together, they provide a consistent overview of
the performed work. The various research contributions are detailed in Section 1.4
and the complete list of publications that resulted from this work is presented in
Section 1.5. Figure 1.4 shows a schematic overview of the different contributions
that are presented in each chapter (Ch.) and appendix (App.). The various SFCs
that were optimized in this PhD dissertation are shown at the service layer on
top of the virtualized and physical infrastructure layer. Chapters 2-5 and Appen-
dices A-B focus on the various techniques that were developed to optimize the
QoE and delivery of both live and VoD streaming services, while Chapter 6 and
Appendix C tackle the location-constrained deployment of such SFCs onto the
virtualized physical substrate.

Chapter 2 presents the multicast-enabled delivery framework for live HAS ser-
vices. In standard HAS, each user sets up a unicast connection to the streaming
origin, which for live streaming, leads to many unicast sessions transporting the
same content. By leveraging multicast and caching techniques, the resource us-
age of such live streaming services in the network can be reduced. The proposed
framework automatically transforms the unicast HAS streaming sessions into mul-
ticast sessions at the ingress (Di in Figure 1.4) of the access network. Further down
the network (De in Figure 1.4), the multicast sessions are split to reconstruct the
original HAS sessions. This approach reduces the strain of OTT streaming ser-
vices on the access network. An algorithm is presented to autonomously select
which video streams are grouped into a multicast channel, based on the popular-
ity in a certain timeframe. Furthermore, another algorithm is presented to select

INTRODUCTION 9

S

Ap
p.
	A

M
in
im

izi
ng
	th

e	
Im

pa
ct
	o
f	D

el
ay
	o
n	
Li
ve
	S
VC

-
ba
se
d	
HT

TP
	A
da
pt
iv
e	
St
re
am

in
g	
Se
rv
ic
es
	 C

RT
T

? ? RT
T

RT
T

S

Ch
.	5

Cl
us
te
rin

g-
Ba

se
d	
Ad

ap
ta
tio

n	
He

ur
ist
ic
s	f
or
	

Im
pr
ov
in
g	
St
ab
ili
ty
	o
f	H

TT
P	
Ad

ap
tiv
e	

St
re
am

in
g	
ov
er
	C
ac
he

	N
et
w
or
ks
	

P 1
P 2

C
2

3

?

2
3

3
S

Ch
.	3

In
-N
et
w
or
k	
Q
ua
lit
y	
O
pt
im

iza
tio

n	
fo
r	

Ad
ap
tiv
e	
Vi
de

o	
St
re
am

in
g	
Se
rv
ic
es
	

P
P

C
∑

1	
2	

3	
4

1	
2	 3

∑
1	
2	

VoDStreaming	ServicesLive	Streaming	Services

Virtualized	
Infrastructure

Co
re
	N
et
w
or
k

Ac
ce
ss
	N
et
w
or
k

Ho
m
e	
N
et
w
or
k

Physical	
Infrastructure

D
C

S
P

?
?

Ap
p.
	B

De
ad
lin
e-
ba
se
d	
Ap

pr
oa
ch
	fo

r	I
m
pr
ov
in
g	

De
liv
er
y	
of
	S
VC

-b
as
ed

	H
TT
P	
Ad

ap
tiv
e	

St
re
am

in
g	
Co

nt
en
t	

S
a

Ch
.2

A	
M
ul
tic
as
t-E

na
bl
ed

	D
el
iv
er
y	
Fr
am

ew
or
k	

fo
r	Q

oE
As
su
ra
nc
e	
of
	O
ve
r-T

he
-T
op

	S
er
vi
ce
s	

in
	M

ul
tim

ed
ia
	A
cc
es
s	N

et
w
or
ks
	

Di
a a

De
C

a

De
C

a

De
C

b

b
b

? ??
su
bs
cr
ib
e

M
C

Ch
.	4

Q
oE
-D
riv
en

	In
-N
et
w
or
k	
O
pt
im

iza
tio

n	
fo
r	

Ad
ap
tiv
e	
Vi
de

o	
St
re
am

in
g	
Ba

se
d	
on

	P
ac
ke
t	

Sa
m
pl
in
g	
M
ea
su
re
m
en
ts
	

S
P

P
1	
2	 3

1	
2	

2 C

Se
m
an
tic
al
ly
	E
nh

an
ce
d	
M
ap
pi
ng
	A
lg
or
ith

m
	fo

r	A
ffi
ni
ty
	

Co
ns
tr
ai
ne

d	
Se
rv
ic
e	
Fu
nc
tio

n	
Ch

ai
n	
Re

qu
es
ts
	

Ap
p.
	C
	

&
	C
h.
	6

Figure 1.4: Overview of PhD dissertation.

10 CHAPTER 1

which multicast channels to subscribe to at each location in the network, based on
the history of requests at that location. Since the popularity of content can vary
across geographical locations [14], this avoids having the caches filled with con-
tent that will never be requested by the end-users. For example, in Figure 1.4,
the top location has not received any requests for video a, so it does not subscribe
to the multicast channel for that video. The chapter presents the architecture of
the framework and the required retransmission schemes to ensure that the multi-
casting is robust against packet loss. A prototype was deployed on a large-scale
testbed to characterize the gain of the approach and the possible overhead in terms
of response time. Additionally, a simulation-based framework was implemented
to evaluate the performance of the management algorithms for various scenarios.

Appendix A and B present additional management approaches for QoE-im-
provement of live HAS services. Appendix A tackles the negative impact of high
RTTs on live HAS streaming services. By measuring the RTT and pipelining the
request one RTT before the estimated finish time of the previous download, the
idle time between two consecutive downloads can be removed, while the decision
on the quality selection can be delayed as long as possible to account for any vari-
ations in the network conditions. Appendix B presents a framework to guarantee
a continuous playback for live HAS services without requiring a large play-out
buffer. By leveraging the benefits of scalable video coding and introducing an
intelligent network proxy, the delivery of the base layer can be guaranteed. A dy-
namic deadline-based approach is proposed in which the client can signal which
segments need to be prioritized (indicated with a star in Figure 1.4) based on the
risk of running into a buffer starvation.

Chapter 3 focuses on the managed delivery of HAS services. One of the ma-
jor obstacles for the adoption of HAS services by network providers is the purely
client-driven design, which leads to excessive quality oscillations, suboptimal re-
source usage and the inability to enforce management policies in managed net-
works. Furthermore, when a provider wants to offer paid HAS services to its cus-
tomers, they need to have control over the quality that is provided. This chapter
tackles these challenges by proposing a set of centralized and distributed opti-
mization algorithms which allow network nodes, distributed across the network,
to monitor the requests and steer the client’s quality selection process in order to
optimize the QoE and resource usage. These algorithms allow the provider to en-
force management policies by limiting the set of available qualities for specific
clients as shown in Figure 1.4. Furthermore, a distributed heuristic approach is
proposed to allow scalable in-network management of HAS services. By applying
the proposed approach the number of quality oscillations can be reduced signifi-
cantly while improving the overall QoE of the streaming sessions. This work was
extended in Chapter 4 to allow the application of in-network QoE-management in
dynamic networks as well. By introducing sampling-based measurement probes

INTRODUCTION 11

in the network, the current resource usage can be monitored in a scalable way and
used to estimated the future throughput. Various estimation techniques are pro-
posed and evaluated to make this prediction. Taking this predicted throughput as
input, algorithms are proposed to optimize the global QoE of the various stream-
ing sessions. The proposed hybrid approach allows the client to take into account
the in-network decisions, while still remaining able to react to sudden bandwidth
fluctuations in the local network.

Intermediary caching nodes in HAS delivery networks can compromise the
accuracy of the throughput estimations that are used by the adaptation heuristics.
Chapter 5 mitigates the impact of incorrect estimations by including additional
information on the streaming origin into the adaptation heuristic. Furthermore,
cache content information of intermediary caching nodes is exchanged with the
clients to improve the quality selection. The proposed approaches require an ad-
ditional communication channel to transfer the information to the client applica-
tions. Since adaptations to intermediary network nodes are required, autonomous
approximation methods are proposed as well in case these adaptations are not pos-
sible. By leveraging clustering-based techniques, the different streaming origins
can be detected based on the measured RTT. By using buffer-based probabilistic
prediction techniques, the cache content of intermediary nodes can be predicted
as well. The proposed approaches were evaluated for a wide range of scenarios,
including mobile scenarios with real RTT traces that were collected.

Chapter 2-5 and Appendices A-B present various SFCs and NFs that optimize
the QoE for the delivery of HAS services. Traditionally, these NFs would be im-
plemented on proprietary physical network appliances that need to be placed in a
strict chaining order. To increase the service agility and reduce the time to market
of new services, these NFs can be virtualized into VNFs and by leveraging NFV
technologies, deployed on the fly onto the virtualized substrate. However, many
multimedia service chains have some assumptions on the location of the VNFs
to achieve the expected performance gain (e.g., a cache should be deployed close
to the end-user). Therefore, Appendix C defines a set of affinity and anti-affinity
constraints which allow the Service Provider (SP) to define locality restrictions on
VNFs and interconnecting virtual edges. Since SFCs can be generated automati-
cally or by human operators, a semantic validation framework is proposed to filter
out conflicting constraints. To this end, the substrate and SFCs are modeled using
ontologies and by defining a set of inference rules, the semantic reasoner can detect
inconsistent constraint sets. Chapter 6 extends this approach by defining aditional
algorithms and heuristics to map the SFC sets onto the substrate resources, sub-
ject to the capacity and affinity constraints. Furthermore, the benefits of filtering
out the SFC requests containing conflicting constraint sets prior to embedding can
significantly reduce the total processing time of said embedding requests.

12 CHAPTER 1

1.4 Research Contributions
This dissertation aims to combine various service management techniques to op-
timize the QoE of HAS streaming services. The ultimate goal is to improve the
end-user QoE, while at the same time, reducing the strain multimedia services ex-
ert on the network resources and increasing the flexibility of such services. This
translates into the following contributions:

1. A framework leveraging multicast techniques to reduce the load of HAS live
streaming services on the delivery network. (Chapter 2)

� Implementation of an emulation framework for the multicast-enabled
HAS services, which includes the implementation and evaluation of
retransmission schemes to cope with packet loss.

� Implementation of an NS-3 simulator that supports the simulation of
HAS streaming services for large network topologies.

� Mechanisms to group the various overlapping unicast transmissions
that exist for HAS live and TSTV streaming and deliver them via mul-
ticast to locations closer to the end-user, reducing the strain on the de-
livery network. Mechanisms to transform the multicast sessions into
unicast sessions which realise the video delivery over the last mile.

� Algorithms that autonomously select which video segments are mul-
ticasted and to which multicast channels the geographically dispersed
delivery servers subscribe. These decisions are based on the popularity
of the videos for various groups of service users in the network.

� An evaluation of both the emulation and simulation frameworks for
smaller topologies. An extensive evaluation using simulations for var-
ious topology configurations and network settings, demonstrating the
reduction of the load for the multicast-enabled delivery of HAS live
streaming services.

2. An in-network optimization framework to improve the QoE of VoD HAS
services. The proposed approach mitigates the quality degradation that arises
when multiple autonomous HAS clients compete for bandwidth. (Chapters
3 and 4)

� Extension of the NS-3 simulator with support for VoD streaming and
various alternative HAS adaptation heuristic proposed in literature.

� A formal description of the optimization algorithm which assigns the
most appropriate quality to each client, subject to the available re-
sources and connected users. Next to the optimal algorithms, a set
of heuristics was developed to provide suboptimal solutions within a
reasonable period of time.

INTRODUCTION 13

� The implementation and evaluation of multiple bandwidth prediction
methods that provide input to the aforementioned optimization algo-
rithm. These methods allow the QoE-optimization in a dynamic en-
vironment. By using sampling-based measurement techniques, these
network probes can function in a scalable way.

� Quantitative analysis of the QoE-improvement that can be achieved
by the in-network optimization. First, the performance gain that can
be achieved using the optimal algorithms is evaluated. Second, these
results are compared to the solutions provided by the heuristic ap-
proaches.

3. Novel adaptation heuristics to improve the performance of HAS in the pres-
ence of in-network caches. These heuristics are able to handle varying
throughput estimations caused by different origin locations. (Chapter 5)

� A set of heuristics that take advantage of the knowledge of the stream-
ing origin and upstream cache contents to optimize the quality selec-
tion for HAS services.

� An evaluation of the potential QoE-gain when including perfect knowl-
edge of the streaming origin and cache contents into the quality adapta-
tion heuristic and a comparison with state-of-the art adaptation heuris-
tics for a variety of scenarios.

� A clustering-based origin detection technique which uses features, such
as measured RTT, to differentiate between streaming origins. A prob-
ability-based heuristic to estimate the upstream cache contents when
this information is not provided by the network nodes.

� An evaluation of QoE-gain in the absence of perfect knowledge, us-
ing the proposed approximation techniques for various scenarios. This
includes dynamic scenarios using real-life RTT and throughput traces.

4. Extension of the SFC specification with affinity and anti-affinity constraints
to support restrictions on the placement of VNFs or virtual edges intercon-
necting them for efficiency, economic, legislative, privacy and security rea-
sons. (Chapter 6)

� Formal definition of the affinity and anti-affinity constraints which al-
low the SP to enforce or restrict the colocation of specific VNF in-
stances or all instances of a VNF type to a specific location or a group
of locations with a certain granularity. Furthermore, constraints are
defined that enforce or restrict the interconnecting edges to be routed
through specific locations or to be colocated with other virtual edges
at certain locations.

14 CHAPTER 1

� A semantic framework that supports the validation of sets of affinity
and anti-affinity constraints contained in an SFC request. The semantic
framework models the SFC and virtualized substrate using an ontology
and defines a set of rules that can be used by the semantic reasoner to
infer knowledge. Applying semantic reasoning allows to check the
consistency of the constraint set and filter out inconsistent SFCs.

� Embedding algorithms for affinity-constrained SFC sets to determine
the optimal SFC mapping to the virtualized resources, subject to capac-
ity constraints and optimizing multiple objectives (e.g., minimizing or
balancing the load on the network).

� A quantitative evaluation to identify the impact of filtering out incon-
sistent SFC requests before these are served to the embedding algo-
rithms. The performance of the semantically enhanced embedding
techniques was evaluated for various scenarios and compared to stan-
dard embedding techniques.

1.5 Publications
The research results obtained during this PhD research have been published in
scientific journals and presented at a series of international conferences. Further-
more, for some of the contributions in the field of NFV, patent applications were
submitted. The following list provides an overview of the publications and patent
applications during the PhD research.

1.5.1 A1: Journal publications indexed by the ISI Web of Sci-
ence “Science Citation Index Expanded”

1. Niels Bouten, Steven Latré, Wim Van de Meerssche, Bart De Vleeschauwer,
Koen De Schepper, Werner Van Leekwijck, Filip De Turck. A Multicast-
Enabled Delivery Framework for QoE Assurance of Over-The-Top Services
in Multimedia Access Networks. Published in Journal of Network and Sys-
tems Management, vol. 21, pp. 677-706, December 2013.

2. Niels Bouten, Steven Latré, Jeroen Famaey, Werner Van Leekwijck, Filip
De Turck. In-Network Quality Optimization for Adaptive Video Streaming
Services. Published in IEEE Transactions on Multimedia (TMM), vol. 16,
no. 8, pp. 2281-2293, December 2014.

3. Niels Bouten, Ricardo de O. Schmidt, Jeroen Famaey, Steven Latré, Aiko
Pras, Filip De Turck. QoE-Driven In-Network Optimization for Adaptive
Video Streaming Based on Packet Sampling Measurements. Published in
Computer Networks (COMNET), vol. 81, pp. 96-115, April 2015.

INTRODUCTION 15

4. Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip De
Turck, Raouf Boutaba. Network Function Virtualization: State-of-the-art
and Research Challenges. Published in IEEE Communications Surveys and
Tutorials, vol. 18, no. 1, pp. 236-262, January 2016.

5. Maxim Claeys, Niels Bouten, Danny De Vleeschauwer, Werner Van Leek-
wijck, Steven Latré, Filip De Turck. Cooperative Announcement-based
Caching for Video-on-Demand Streaming. Published online in IEEE Trans-
actions on Network and Service Management (TNSM), March 2016.

6. Niels Bouten, Rashid Mijumbi, Joan Serrat, Jeroen Famaey, Steven Latré
Filip De Turck. Semantically Enhanced Mapping Algorithm for Affinity
Constrained Service Function Chain Requests. IEEE Transactions on Net-
work and Service Management (TNSM), Submitted, 2016.

7. Niels Bouten, Danny De Vleeschauwer, Werner Van Leekwijck, Steven
Latré, Filip De Turck. Clustering-based Quality Selection Heuristics for
HTTP Adaptive Streaming over Cache Networks. International Journal of
Network Management (IJNM), Submitted, 2016.

1.5.2 P1: Proceedings included in the ISI Web of Science “Con-
ference Proceedings Citation Index - Science”

1. Niels Bouten, Steven Latré, Wim Van de Meerssche, Koen De Schepper,
Bart De Vleeschauwer,Werner Van Leekwijck, Filip De Turck. An Au-
tonomic Delivery Framework for HTTP Adaptive Streaming in Multicast-
enabled Multimedia Access Networks. In proceedings of the IEEE Network
Operations and Management Symposium (NOMS 2012), pp. 1248-1253,
April 2012.

2. Niels Bouten, Anna Hristoskova, Femke Ongenae, Jelle Nelis, Filip De
Turck. Ontology-driven Dynamic Discovery and Distributed Coordination
of a Robot Swarm. In proceedings of the International Conference on Au-
tonomous Infrastructure, Management and Security (AIMS 2012), LNCS,
vol. 7279, pp. 2-13, June 2012.

3. Niels Bouten, Steven Latré, Jeroen Famaey, Werner Van Leekwijck, Filip
De Turck. Minimizing the Impact of Delay on Live SVC-based HTTP Adap-
tive Streaming Services. In proceedings of the IFIP/IEEE International Sym-
posium on Integrated Network Management (IM 2013), pp. 1399-1404,
May 2013.

4. Jeroen Famaey, Steven Latré, Niels Bouten, Wim Van de Meerssche, Bart
De Vleeschauwer, Werner Van Leekwijck, Filip De Turck. On the merits

16 CHAPTER 1

of SVC-based HTTP Adaptive Streaming. In proceedings of the IFIP/IEEE
International Symposium on Integrated Network Management (IM 2013),
pp. 419-426, May 2013.

5. Niels Bouten, Maxim Claeys, Robin Bailleul, Jin Li, Jeroen Famaey, Steven
Latré, Jan De Cock, David Lou, Werner Van Leekwijck, Filip De Turck. Im-
proved Delivery of Live SVC-based HTTP Adaptive Streaming Content. In
Proceedings of the IEEE Network Operations and Management Symposium
(NOMS 2014), pp. 1-2, May 2014.

6. Sebastiaan Laga, Thomas Van Cleemput, Filip Van Raemdonck, Felix Van-
houtte, Niels Bouten, Maxim Claeys, Filip De Turck. Optimizing Scalable
Video Delivery Through OpenFlow Layer-based Routing. In Proceedings of
the IEEE Network Operations and Management Symposium (NOMS 2014),
pp. 1-4, May 2014.

7. Niels Bouten, Maxim Claeys, Steven Latré, Jeroen Famaey, Werner Van
Leekwijck, Filip De Turck. Deadline-based Approach for Improving Deliv-
ery of SVC-based HTTP Adaptive Streaming Content. In Proceedings of the
IEEE Network Operations and Management Symposium (NOMS 2014), pp.
1-7, May 2014.

1.5.3 C1: Other publications in international conferences

1. Niels Bouten, Jeroen Famaey, Steven Latré, Rafael Huysegems, Bart De
Vleeschauwer, Werner Van Leekwijck, Filip De Turck. QoE Optimization
Through In-Network Quality Adaptation for HTTP Adaptive Streaming. In
proceedings of the 8th IFIP/IEEE International Conference on Network and
Service Management (CNSM 2012), pp. 336-342, October 2012.

2. Niels Bouten, Steven Latré, Filip De Turck. QoE-centric Management of
Multimedia Networks through Cooperative Control Loops. In proceedings
of the International Conference on Autonomous Infrastructure, Manage-
ment, and Security (AIMS 2013), LNCS, vol. 7943, pp. 69-99, June 2013.

3. Rashid Mijumbi, Joan Serrat, Javier Rubio-Loyola, Niels Bouten, Filip De
Turck, Steven Latré. Dynamic Resource Management in SDN-based Virtu-
alized Networks. In Proceedings of the International Conference on Net-
work and Service Management (CNSM) and Workshops (CNSM 2014), pp.
412-417, November 2014.

4. Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip De
Turck, Steven Davy. Design and Evaluation of Algorithms for Mapping
and Scheduling of Virtual Network Functions. In Proceedings of the IEEE
Conference on Network Softwarization (NetSoft 2015), pp. 1-9, April 2015.

INTRODUCTION 17

5. Niels Bouten, Jeroen Famaey, Rashid Mijumbi, Bram Naudts, Joan Serrat,
Steven Latré, Filip De Turck. Towards NFV-based Multimedia Delivery.
In Proceedings of the IFIP/IEEE Symposium on Integrated Network and
Service Management 2015 (IM 2015), pp. 738 - 741, May 2015.

6. Stefano Petrangeli, Niels Bouten, Jeroen Famaey, Filip De Turck, Philip
Leroux. Design and Evaluation of a DASH-compliant Second Screen Video
Player for Live Events in Mobile Scenarios. In Proceedings of the IFIP/IEEE
Symposium on Integrated Network and Service Management 2015 (IM
2015), pp. 894 - 897, May 2015.

7. Stefano Petrangeli, Niels Bouten, Maxim Claeys, Filip De Turck. Towards
SVC-based Adaptive Streaming in Information Centric Networks. In Pro-
ceedings of the IEEE International Conference on Multimedia and Expo
Workshops 2015 (ICMEW 2015), pp. 1-6, July 2015.

8. Maxim Claeys, Niels Bouten, Danny De Vleeschauwer, Werner Van Leek-
wijck, Steven Latré, Filip De Turck. An Announcement-based Caching Ap-
proach for Video-on-Demand Streaming. In Proceedings of the International
Conference on Network and Service Management (CNSM 2015), pp. 310-
317, November 2015.

9. Jeroen van der Hooft, Stefano Petrangeli, Niels Bouten, Tim Wauters,
Rafael Huysegems, Tom Bostoen, Filip De Turck. An HTTP/2 Push-Based
Approach for SVC Adaptive Streaming. In Proceedings of the IEEE/IFIP
Network Operations and Management Symposium (NOMS 2016), pp. 1-8,
April 2016.

10. Niels Bouten, Maxim Claeys, Rashid Mijumbi, Jeroen Famaey, Steven
Latré, Joan Serrat. Semantic Validation of Affinity Constrained Service
Function Chain Requests. In Proceedings of the IEEE Conference on Net-
work Softwarization (NetSoft 2016), pp. 202-210, June 2016.

11. Maxim Claeys, Niels Bouten, Danny De Vleeschauwer, Koen De Schepper,
Werner Van Leekwijck, Steven Latré, Filip De Turck. Deadline-aware TCP
Congestion Control for Video Streaming Services. Accepted as full paper at
CNSM 2016.

12. Niels Bouten, Maxim Claeys, Bert Van Poecke, Steven Latré, Joan Serrat.
Dynamic Server Selection Strategy for Multi-server HTTP Adaptive Stream-
ing Services. Accepted as full paper at CNSM 2016.

18 CHAPTER 1

1.5.4 European patent applications

1. Niels Bouten, Jeroen Famaey, Rudolf Strijkers, Shuang Zhang. Method for
routing data packets to an instance of a network function. European patent
application EP14200305.2, Submitted December 2014.

2. Niels Bouten, Jeroen Famaey, Rudolf Strijkers, Shuang Zhang. Method for
controlling on-demand service provisioning. European patent application
EP14200309.4, Submitted December 2014.

3. Niels Bouten, Jeroen Famaey. Service provisioning in a communication
network. European patent application, Submitted July 2015.

INTRODUCTION 19

References

[1] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C. Lynch,
J. Postel, L. G. Roberts, and S. Wolff. A brief history of the Internet. ACM
SIGCOMM Computer Communication Review, 39(5):22–31, 2009.

[2] T. Berners-Lee. Information Management: A Proposal, 1989. Available
from: http://www.w3.org/History/1989/proposal.html.

[3] R. C. Tim Berners-Lee. WorldWideWeb: Proposal for a HyperText Project,
1990. Available from: http://www.iis.net/downloads/microsoft/smooth-
streaming.

[4] Forecast, Cisco VNI. Cisco Visual Networking Index: Forecast and Method-
ology, 2014-2019 White Paper. Technical report, Cisco Public Information,
May 2015.

[5] Microsoft. Microsoft Smooth Streaming, 2008. Available from: http://www.
w3.org/Proposal.html.

[6] Apple. Apple HTTP Live Streaming, 2009. Available from: https://tools.ietf.
org/html/draft-pantos-http-live-streaming-19.

[7] Adobe. Adobe HTTP Dynamic Streaming, 2009. Available from: http://
www.adobe.com/products/hds-dynamic-streaming.html.

[8] T. Stockhammer. Dynamic adaptive streaming over HTTP: standards and
design principles. In Proceedings of the second annual ACM conference
on Multimedia systems, MMSys ’11, pages 133–144, New York, NY, USA,
2011. ACM.

[9] Sandvine. Global Internet Phenomena. Technical report, Sandvine, Intelli-
gent Broadband Networks, May 2016.

[10] Conviva. 2015 Viewer Experience Report. Technical report, Conviva, May
2015.

[11] ETSI. Network Functions Virtualization: An Introduction, Benefits, En-
ablers, Challenges and Call for Action. ETSI Document, October 2012.
Available from: http://portal.etsi.org/NFV/NFV White Paper.pdf.

[12] ETSI. Network Functions Virtualization: Network Operator Perspectives on
Industry Progress. ETSI Document, October 2013. Available from: http:
//portal.etsi.org/NFV/NFV White Paper2.pdf.

20 CHAPTER 1

[13] ITU-T Recommendation P.10/G.100 (2006) Amendment 4 (06/15). Vo-
cabulary for performance and quality of service, 2015. Available from:
https://www.itu.int/rec/T-REC-P.10/en.

[14] D. Tuncer, M. Charalambides, R. Landa, and G. Pavlou. More control over
network resources: An ISP caching perspective. In Proceedings of the 9th In-
ternational Conference on Network and Service Management (CNSM 2013),
pages 26–33, Oct 2013.

2
A Multicast-Enabled Delivery

Framework for QoE Assurance of
Over-The-Top Services in Multimedia

Access Networks

N. Bouten, S. Latré, W. Van de Meerssche, B. De Vleeschauwer,
K. De Schepper, W. Van Leekwijck, F. De Turck.

Published in Journal of Network and Systems Management, December 2013.

This chapter focusses on the management of live HTTP Adaptive Streaming
(HAS) services. A loosely coupled architecture is presented that can be seamlessly
integrated into an existing HAS based video delivery architecture. The proposed
approach groups the existing HAS based video connections to be multicasted over
a network’s bottleneck and then splits them again to reconstruct the original HAS
sessions. A prototype of this architecture is presented, which includes the caching
of videos and incorporates retransmission schemes to ensure robust transmission.
Furthermore, an autonomic algorithm is presented that allows to intelligently se-
lect which videos need to be multicasted by making a remote assessment of the
cache state to predict the future availability of content. The proposed approach
can reduce the bandwidth consumption in the network with 25% compared to a
HAS with proxies approach. Other approaches to increase the Quality of Experi-
ence (QoE) of live HAS services will be addressed in Appendices A and B.

22 CHAPTER 2

2.1 Introduction

The consumption of video services over the best effort Internet, often called Over-
The-Top (OTT) video services, has recently gained considerable attention. Typical
OTT providers such as BBC iPlayer [1], YouTube [2], Hulu [3] and Netflix [4]
are still observing a constant growth. Moreover, several reports [5, 6] mention a
double digit growth of OTT video services in recent years.

Compared to traditional managed Internet Protocol television (IPTV) services,
OTT services offer higher flexibility to the customers for video consumption and
often have a larger content catalogue available. While the original OTT video ser-
vices typically offered a Video on Demand (VoD) type of service, other service
types such as live video streaming are more and more being offered as well. For
example, the BBC iPlayer service streams all BBC programs live and YouTube
has recently allowed to stream live events through YouTube as well [7]. More-
over, OTT services are already evolving towards adaptive bitrate streaming mod-
els, where the bitrate of the video is dynamically adapted as a function of the net-
work load. For example, both BBC iPlayer and Hulu support the Adobe HTTP Dy-
namic Streaming protocol, which is an implementation of HTTP Adaptive Stream-
ing (HAS). As such, the functionality offered by OTT services is more and more
evolving into an interesting alternative for managed IPTV services.

For network and service providers, OTT services however introduce important
new revenue opportunities. The increased popularity, greater consumption flexi-
bility and larger content catalogue of OTT services poses a potential threat to the
traditional IPTV services. Network and service providers are therefore showing
interest in integrating OTT services into their current offerings. An example of
this are the paid OTT models that are emerging such as Amazon Instant Video [8].

Although OTT services have several advantages, they differ from managed
IPTV services when concerning scalability and robustness. As OTT services are
delivered over the best effort Internet, they cannot use the managed infrastructure
(e.g., streaming with resource reservation, multicasting) that is used for traditional
IPTV services. This results in a number of issues with today’s OTT services. First,
it is not possible to provide any Quality of Service (QoS) or Quality of Experience
(QoE) guarantees on the consumption of the video: the video is accessed over the
best effort Internet and no resource reservation is made for this. Second, OTT
services are far less scalable than IPTV services: the use of an OTT service by
the customer results in a new unicast connection between the OTT server and the
customer. As such, the amount of bandwidth that is required for an OTT service
is proportional to the number of consumers of that service. Unlike linear TV in a
managed IPTV environment, it is not possible to multicast content over the public
Internet to cope with peaks in the consumption of the service.

In this chapter, a framework is presented that allows providing QoE assur-

A MULTICAST-ENABLED HAS DELIVERY FRAMEWORK 23

Figure 2.1: Overview of the proposed framework. The framework allows managing OTT
services for scalable transportation in the multimedia access network.

ance of OTT services in multimedia access networks. As illustrated in Figure 2.1,
the framework can be deployed in an access network by a network and service
provider and allows transporting OTT services, consumed from the public In-
ternet, over a managed IPTV environment. To address this, a combination of
caching and multicasting is used. The framework can be seamlessly integrated
into an existing HTTP-based delivery framework: this chapter focuses on a HTTP
Adaptive Streaming based delivery framework. In the proposed approach, exist-
ing HAS-based connections that stream the same content in a given time window
are grouped into one multicast connection, which is transported over the managed
network. Afterwards, the received multicast content is split into the original HAS-
based connections to ensure that the consumers of the service do not notice any
change. The result is a lower network load in the access network to provide the
same QoS and QoE levels. This approach allows managing the OTT services and
decreasing the amount of bandwidth that is required for its consumption consider-
ably. As such, the network and service provider can optimize the QoE of the OTT
services and resolve the scalability issues that arise, by using techniques that are
available in a managed environment (i.e. caching, multicasting).

The contributions of this chapter are two-fold. First, an overview is presented
of the architecture for providing QoE assurance of OTT services. The architec-
ture features two component types, a distribution server and a delivery server, that
cooperate with each other to enable the deployment over a managed network envi-
ronment. The proposed architecture contains retransmission mechanisms to ensure
that the multicasting is robust against packet loss. Second, a management algo-
rithm is presented that decides which content is most suited for multicasting and
which connections can be left as unicast HAS-based connections. The algorithm
is deployed on the distribution server and combines an identification of popular
content with an assessment of the remote caches to select the content that will be
responsible for the biggest reduction in peak bandwidth. The proposed framework
is evaluated extensively: a prototype has been designed and deployed on a large

24 CHAPTER 2

scale testbed that characterizes the gain of the approach and its overhead in terms
of response time of the service consumption. Additionally, simulation-based ex-
periments evaluate the performance of the management algorithm as a function of
the system parameters (i.e. cache sizes, number of delivery servers, number of
multicast channels).

The remainder of this chapter is structured as follows. Section 2.2 discusses
relevant work in the area of the management of OTT services and the use of mul-
ticasting for video streaming. In Section 2.3, the HAS technique, which is used as
transport mechanism in the delivery framework, is explained. The proposed frame-
work is presented in Section 2.4 and Section 2.5. Section 2.4 presents the overall
architecture, while Section 2.5 describes the management algorithm. Finally, the
framework is evaluated both through emulations and simulations in Section 2.6.

2.2 Related Work

2.2.1 OTT video streaming architectures

The consumption of video services over the Internet has undergone an important
evolution over the last few years. In the past, video was often streamed through
streaming protocols such as Real-time Transport Protocol (RTP) [9] and Real-time
Streaming Protocol (RTSP) [10]. However, more recently, the popularity of OTT
services has led to a shift in technologies. Therefore, many streaming technolo-
gies today are based on HTTP. These new streaming technologies offer important
advantages to the consumption of video. First, they provide a reliable data-transfer
of the video which eliminates visual artifacts such as blockiness [11] (i.e. caused
by the loss of a packet containing information concerning that encoded block).
Second, they are more suited for traversal through firewalls as they use standard
HTTP connections. And third, they do not require to maintain a state on the server,
which increases their scalability. In [12], Saxena et al. investigate the content de-
livery frameworks of popular OTT services such as YouTube, Dailymotion and
MetaCafe. Besides characterizing the service delay of these services, they investi-
gate the content delivery methods and server locations used by these OTT services.
They show that most content is served from central servers, while only a few per-
cents are served by Content Delivery Networks (CDNs).

Initially, HTTP-based delivery of video required the download of the complete
video before the video could be played. Afterwards, progressive download tech-
niques allowed to commence playback after only a fraction of the video was down-
loaded. When using progressive download, the video is stored in a play-out buffer
at the client and the playback is started once the play-out buffer is sufficiently filled
(typically a few seconds worth of video playback). While visual artifacts such as
blockiness are avoided through progressive downloads, other visual artifacts such

A MULTICAST-ENABLED HAS DELIVERY FRAMEWORK 25

as stuttered playback (i.e. caused by frame freezes) remain. This type of visual
artifacts often occur on lossy or narrowband links: if the throughput achieved by
the HTTP connection is less than the throughput required to stream the video, the
play-out buffer can occasionally deplete. This leads to a halted video playback, as
the buffer is refilled, resulting in a stuttered playback.

HAS [13–17] is the third evolution in HTTP streaming technologies and allows
coping with narrowband and lossy links by downloading and playing a lower bi-
trate of the video. The HAS technique supports dynamic adaptive streaming of the
video. The content is split in small segments of a few seconds long and encoded
into multiple qualities. HAS assumes the presence of an intelligent video client
that decides which quality level to download next based on performance charac-
teristics such as the experienced network throughput, available computing power
etc. A more in depth discussion of HAS is provided in Section 2.3.

In [18] the authors present a proxy agent called Transmission-Rate Adapted
Streaming Server (TRASS) to allow users to obtain adaptive video streams ac-
cording to their varying receiving capabilities in a wireless circumstance. The
multi-rate controller converts the original video stream from the video server to
several different rates according to the feedback of each user concerning network
layer characteristics such as packet receiving rate and packet loss rate. This ap-
proach differs from the proposed architecture since the offered quality rates are
dependent on the users context while in the proposed approach users can select the
quality best suiting their connection characteristics from a list of offered qualities.
Furthermore an algorithm minimizes the consumed bandwidth in the managed net-
work, by grouping sessions requesting the same content into a single multicast
session.

Several Peer to Peer (P2P) streaming systems have been deployed to provide
live and on-demand video streaming services on top of the best-effort Internet at
low server cost. As described in [19] there are several fundamental limitations of
existing P2P streaming solutions. First of all, user QoE in current streaming sys-
tems are not comparable to traditional TV services since users experience longer
channel startup times, channel delays and playback lags among users. Secondly,
the increased popularity of P2P streaming systems pose a big challenge on Inter-
net Service Provider (ISP)’s network capacity, caused by the high traffic volume
without any profit for ISPs. The proposed approach allows higher QoE in terms of
low delay streaming and fast startup times as well as higher quality streaming by
employing HAS techniques. Furthermore, the system allows service and network
providers to control streaming traffic and minimizing it by incorporating caching
and multicasting techniques.

26 CHAPTER 2

2.2.2 Management of OTT video services

The increasing popularity of OTT video services has resulted in much recent re-
search attention. On one hand, important research has been performed in char-
acterizing these OTT video services. By monitoring at the edge of the network,
several studies [20, 21] have characterized the traffic patterns of services such as
YouTube. This work focuses on the management of these important OTT video
services. In [16, 17], Begen et al. provide an overview of the current standardiza-
tion efforts and applications in watching video through OTT services. They argue
that the use of adaptive streaming technologies such as HAS is an important driver
for OTT video services. Moreover, they identify a few important future research
directions. First, they explicitly mention the scalability bottleneck that arises if
clients access OTT services concurrently. Second, they state that it is important
for providers to introduce network elements that improve the performance of OTT
video services. They argue that, for an OTT service, the network should not be
regarded as a black box. Instead, an OTT service should exchange information
with the network and act accordingly if failures arise. The solution proposed in
this chapter makes use of such intelligent network elements: transforming OTT
services for transport in a managed environment in order to achieve higher perfor-
mance.

Such a cooperation between an ISP, representing a managed network, and an
OTT system is studied in [22]. There, the traditional network-aware overlays,
which exploit locality in the network for the underlying routing strategy, are ex-
tended with managed IPTV service delivery mechanisms. The proposed collab-
oration framework allows exchanging QoS requirements such as jitter, delay and
throughput, which can be used to select the appropriate peers in the P2P network
that support those QoS requirements. The proposed approach is similar to [22] as
it targets a closer collaboration between OTT services and managed environments.
However, the proposed approach focuses on OTT services that are delivered di-
rectly from centralized OTT servers or CDNs, while the work in [22] focuses on
the problem of P2P peer selection.

In [23], an architecture is proposed to optimize Live TV services for OTT
video. Moshe et al. propose a multi-layered cache algorithm that aims at reducing
the load in the network by effectively caching the Live TV content. Similar to [23],
the framework proposed in this chapter also incorporates caches to temporarily
store streamed content of an OTT service. However, this work differs from the
work by Moshe et al. in two ways. First, next to caching, the proposed approach
also uses multicasting techniques to further reduce the load in the network. An
autonomic management algorithm is proposed that interacts with the caches to
decide which content needs to be multicasted. Second, the approach proposed
in this chapter does not only focus on Live TV services. Besides Live TV, Time
Shifted TV (TSTV) services are also taken into account in the algorithmic design

A MULTICAST-ENABLED HAS DELIVERY FRAMEWORK 27

and performance evaluation.
This chapter builds further on previous work. In [24], a first preliminary ver-

sion of the architecture is proposed, focusing solely on Live TV services. The con-
tributions of this chapter extend the work presented in [24] in several ways. First,
the scope of supported services is extended to other services besides Live TV such
as TSTV and VoD services. The autonomic management algorithm presented in
Section 2.5 provides a way to select which content to multicast, therefore support-
ing also peaks in user requests for these novel services (i.e. by multicasting other
content than the live moment). Second, the architecture described in Section 2.4
was also modified to support these services. Third, a more extensive performance
evaluation study was carried out, extending both the performance study of the pro-
totype (i.e. by focusing more on the performance of the retransmission schemes)
and introducing extensive simulation-based experiments to evaluate the manage-
ment algorithm.

2.2.3 Multicast streaming of multimedia services

In this chapter, it is proposed to transform several OTT video connections into
a single multicast signal. In a typical managed multimedia architecture, multi-
cast techniques are used for streaming live video as a broadcast signal to multiple
video clients (e.g., for live streaming as part of linear TV). Zhang et. al [25]
provide a survey of VoD streaming techniques. They identify four types of VoD
streaming techniques: (i) CDNs, which reduce the load through caching, (ii) IP
multicast-based schemes, which are mainly used in managed environments such
as IPTV, (iii) multicast-based P2P networks, where the P2P network forms an
application-based multicast tree and (iv) swarming-based P2P networks, where lo-
cal P2P neighbors exchange video data. The proposed solution combines the CDN
approach with the IP-based multicast approach as it multicasts content from CDNs
or regular OTT servers to reduce the load in access networks.

The combination of P2P video multicast streaming with adaptive streaming
technologies has been investigated in [26]. The solution presented there uses a
meshed P2P network where peers are connected to each other by the User Data-
gram Protocol (UDP) connection to stream video. By using Scalable Video Cod-
ing (SVC) [27], different clients receive different video qualities depending on
their link capacity. While their solution focuses on the rate adaptation decision,
the proposed approach uses a provider’s perspective. An autonomic management
algorithm is presented that decides on which content to multicast in order to de-
crease the load on the network and thus to solve the scalability bottleneck that can
arise in a multimedia access network [28].

Also for VoD services (both managed and OTT), P2P-based [29] and multi-
cast streaming [30] solutions have been proposed. Here, the described transfer

28 CHAPTER 2

mechanism uses additional intelligence in the router in order to tackle two prob-
lems: synchronisation of video delivery requests and buffering of video packets.
If a requested video packet is received at a router, it is stored into the video re-
quest synchronisation buffer and only released when enough video data is avail-
able in the buffer. While this approach successfully employs multicast for VoD
services it results in long delays when requesting a video. P2PVR [31] proposes
a P2P-based VoD architecture where peers are organised into a playback offset
aware tree-based overlay. On-demand streaming data is shared among other peers
with similar playback offset. Also a directory assists peers, which are searching
for nodes that contain the expected streaming data. In the proposed approach, a
similar tree-based overlay is used with a fixed number of proxies, called delivery
servers in the architecture, closer to the video clients.

The proposed approach differs from existing work by (i) addressing the scal-
ability bottleneck that arises in the multimedia access network by using a combi-
nation of multicast and caching techniques, (ii) not only considering Live TV set-
tings but Time-Shifted TV as well, while offering support for Video On Demand
services simultaneously and (iii) allowing management of OTT video streaming
by providers while offering seamless integration with existing HAS deployments.

2.3 HTTP Adaptive Streaming

HAS refers to the family of techniques that allow streaming video over HTTP,
while providing the ability to the video client to dynamically alter the received
video bitrate. Several HTTP Adaptive Streaming protocols have been proposed
by industrial players, such as Microsoft’s ISS Smooth Streaming (Microsoft) [13],
Apple’s HTTP Live Streaming [14] and Adobe’s HTTP Dynamic Streaming [15].
Moreover, the Moving Picture Expert Group (MPEG) is currently standardizing
the Dynamic Adaptive Streaming over HTTP (DASH) [32] technique, which is
similar to the industrial proposals. Although differences exist in the details of
the different HAS techniques, all techniques exhibit the same set of architectural
components. First, HAS requires a media encoder and stream segmenter at the
server side, which are responsible for encoding the content in multiple bitrates,
and preparing the segments to be transported over HTTP. Second, a delivery in-
frastructure is required that consists of standard HTTP web servers and optional
proxies. Finally, the video client must support the HAS technique: an intelligent
client is responsible for selecting which video qualities to download.

Figure 2.2 provides an overview of the common operation of HAS. At the en-
coding side, the media encoder encodes the video in several video quality levels,
corresponding with different video bitrates. Next, the stream segmenter splits the
video into different chunks, called segments. Depending on the used HAS tech-
nique, each chunk is between 2 and 10 seconds. Each segment can be downloaded

A MULTICAST-ENABLED HAS DELIVERY FRAMEWORK 29

Figure 2.2: Generic architecture of HAS where a client connects directly to the HAS server
over HTTP.

independently and switching to a different bitrate is easily achieved by download-
ing the next segment in another bitrate than the previous one. To link the different
segments and bitrates with each other, a manifest file is generated as well. This
manifest file can be seen as a semantic description of the high level characteris-
tics of the video: it describes which segments are available, where they can be
downloaded and the associated bitrate. Differences in the currently available HAS
techniques arise by the syntactic difference of these manifest files.

The video clients use the information contained in the manifest file(s) to dis-
cover which segments are available and to which bitrates can be switched. The
clients request the appropriate media segments through HTTP. After downloading
the files, the segments are reassembled so that the media can be represented as a
continuous stream. As manifest files also contain information about the supported
quality levels, the client can decide to download higher or lower quality segments
to ensure a seamless rate adaptation. A video selection heuristic contained in the
video client is responsible for deciding which quality levels are to be downloaded.
Different video selection heuristics exist depending on the implementation of the
video client. Several algorithmic options are available in designing a video se-
lection heuristic: one heuristic can take only network characteristics (e.g., a too
low network throughput) into account when making the decision, while another
can also take device characteristics such as the amount of battery and CPU power
available into account. Although HAS techniques are similar in many ways, differ-

30 CHAPTER 2

Figure 2.3: Overview of a typical consumption pattern of Live TV and TSTV-based video
services. When the content is first streamed live, a peak in viewers occur. Additional waves
of service requests can occur depending on the type of the video content.

ences can be found in the type of manifest files, segment duration, media container
type, supported video codecs, file types on server and end-to-end latency.

2.4 A Scalable Architecture for Video Delivery
The goal of the proposed architecture is to decrease the required peak bandwidth of
an OTT service between HAS server and client through a combination of multicast
streaming and content caching. The architecture supports both Live TV and VoD
services: it is assumed that the OTT video service starts offering the content at
the same time the live broadcasting channel of linear TV is made available. After
the start of the video, consumers can request the video as part of a TSTV or VoD
service as well. For TSTV, the video is again streamed from the start but with an
offset to the broadcasting moment. Hence, the consumption of TSTV and VoD
videos is personalized and there is no synchronisation between the videos.

Figure 2.3 illustrates the typical consumption pattern that can be derived from
such an OTT video service. As shown, for a Live TV service, a first peak of viewers
typically occurs when the video is made available for the first time, possibly in line
with the regular broadcasting of linear TV. This moment in time is referred to as
the live moment. In the next minutes and further, the number of consumers of
the video service decreases through an exponential distribution. This results in
a peak of requests performed by users that were too late to tune in for the live
moment but still want to watch the video from the beginning. This type of service
requests corresponds with a TSTV service: the users consume the video just as

A MULTICAST-ENABLED HAS DELIVERY FRAMEWORK 31

regular Live TV but watch it with a given delay. Depending on the type of video
content, a second and more peaks can occur. For example, the popularity of a
video can suddenly increase drastically because of a discussion on the Internet
or because of a subsequent episode of the same television program, this type of
requests corresponds with a VoD service.

In a standard HAS delivery framework, each of these peaks of requests result
in a peak in the number of HAS connections that are being set up. For each re-
quest for an OTT video, an additional unicast HTTP connection needs to be set up.
This approach is not scalable: although OTT services can have the same request
patterns as regular linear TV, they are not suited for such delivery. However, as
the users typically request the same video with only a marginal difference in the
playback, it is more advisable to try to avoid these peaks by finding commonalities
in the delivery of the video. The approach presented in this chapter detects these
peaks and solves the scalability issues they introduce. For Live TV, all viewers
watch the video in a synchronized way leading to a high number of unicast ses-
sions that can be combined into a single multicast session. With TSTV on the other
hand, viewers tune in at different offsets to the original broadcasting time, leading
to a less synchronized viewing pattern where sessions can be combined withing a
certain time window. A VoD service will lead to even less synchronized viewing
and far less sessions sharing the same content. This will cause the proposed archi-
tecture to leave most of the unicast HTTP sessions unaltered, delivering the video
in the same way as a direct downloading scheme. The proposed approach thus
supports Live TV, TSTV and VoD sessions with decreasing bandwidth consump-
tion benefit: for Live TV, almost all sessions share the same content (depending
on the number of channels and channel popularity), where for VoD, only few of
the sessions share the same content (popular content that is shared among many
viewers). In the remainder of this section, a description is given of the components
of the proposed architecture, followed by the details on their interactions.

2.4.1 Architectural overview

In the proposed framework, two component types are added to the original HAS
delivery architecture: a distribution server that could be deployed at the edge router
and multiple delivery servers which could be deployed at the access routers. The
proposed architecture and a possible mapping to a network topology is shown
in Figure 2.4. To the HAS server, the distribution server acts as a video client:
it downloads manifest files and segments when new content becomes available
and streams it to the connected delivery servers. Depending on the management
algorithm, this streaming is done through standard HTTP or through multicast.
The delivery servers act as proxies for the original HAS server: they store the
content they receive from the distribution server and make it available to the video

32 CHAPTER 2

Figure 2.4: Designed distributed architecture for HAS-enabled content delivery using mul-
ticast (MC), allowing a seamless integration with existing HAS-based delivery technologies.
The lower part shows an example mapping of the proposed system to a network topology.

clients. When clients now request a video, it can be downloaded from the caches of
the delivery server, resulting in a considerable decrease in bandwidth consumption.
In the subsequent sections, the two novel component types are discussed in more
detail.

2.4.1.1 Distribution server

The distribution server is responsible for distributing the video content pro-actively
to the connected delivery servers over multicast. The distribution server con-
nects to the HAS server through the HTTP Client and serves incoming requests
via the HTTP Server component. Video data is provided by the Memory compo-
nent, which acts as a cache. The Manifest Processing continuously polls the HAS
server for new manifests at a configurable rate (e.g., every second). Another ap-
proach would be to deploy a push-based manifest update mechanism at the HAS
Server informing the Manifest Processing when new manifests become available.
This, however, requires adaptations to the HAS Server which would prevent the
architecture to be loosely coupled with existing HAS deployments. When new
segments are available and the channel is currently multicasted, the Ingest compo-
nent will order the Multicast Sender to start multicasting the content in the selected
qualities. Within one multicast tree, segments are pushed onto the tree in a chrono-
logical order as they appear in the video sequence. Whenever a manifest becomes
available, it is pushed upon its associated multicast tree, taking into account the

A MULTICAST-ENABLED HAS DELIVERY FRAMEWORK 33

condition that the first packets of all selected qualities of a segment have to be sent
before sending a manifest first mentioning that segment. This ensures that every
segment is available at the cache of the delivery server before the content can be
requested by a video client. Since multicast over UDP is an unreliable transport
mechanism, resilience measures need to be taken. The Retransmission Sender is
responsible for handling retransmission requests from the delivery servers. The
type of retransmission mechanisms are described later in this section. Each packet
sent by the Multicast Sender is forwarded to the Retransmission Sender history,
allowing the retransmission of a single packet.

The distribution server does not multicast all content. If this would be the case,
this would lead to an explosion of the number of multicast trees that are being set
up and hence a significant overhead. Moreover, multicasting content that is not
being reused by other delivery servers is useless. For such content, it is more ad-
visable to transfer it over HTTP. Instead, the distribution server only multicasts the
most popular content to achieve the biggest decrease in the network load between
distribution server and delivery servers. The Distribution Management and Au-
tonomic Delivery Management components in the distribution server and delivery
servers are responsible for this. The Autonomic Delivery Management components
in the delivery servers send regular reports on the requested content, which is in
turn used by the Distribution Management component in the distribution server.
This component runs an algorithm to predict which segments will be requested in
the future, based on the time dependency between segments from the same video:
this algorithm is described in detail in Section 2.5.

2.4.1.2 Delivery server

At the delivery server, the content received over multicast from the distribution
server is stored locally in its cache by the Memory component. From then on
the delivery server fulfills the role of local proxy for the HAS server towards the
clients. Requests from the connected clients are received through the HTTP Server
component. If a client request can be served from the cache, the segments are
served from the delivery server. If not, the HTTP Client of the delivery server
requests them from the distribution server or HAS server over HTTP.

When packet loss is detected (i.e. a gap in sequence numbers between two
consecutive packets), an error message concerning the packet loss is reported. The
Memory then contacts the Retransmission Receiver to request the retransmission
of the reported packets. An in-depth description of the retransmission mechanism
is provided in the next section.

34 CHAPTER 2

Figure 2.5: Illustration of the multicast retransmission mechanism at the Delivery Server.

2.4.2 Component interaction details

2.4.2.1 Handling of packet loss

As part of the data is multicasted over unreliable UDP-connections, it is crucial
to implement resilience measures to account for packet loss. To address this,
a retransmission mechanism was implemented supporting three different modes:
HTTP fallback, UDP unicast and UDP multicast retransmissions. The HTTP fall-
back mode consists of requesting the complete video segment from the HAS server
over HTTP. Although this guarantees a reliable delivery of the segment, the down-
side of this mechanism is the large overhead it introduces. If only one packet of the
segment is lost, the complete segment needs to be downloaded again. Therefore,
the use of this mechanism will only be benificial in absence of a UDP retransmis-
sion scheme. The UDP unicast retransmission mode implements a unicast-based
retransmission mechanism, where the delivery server requests the retransmission
of a single packet from the distribution server. This mechanism is triggered when
the distribution server receives only a single request for retransmission from the
delivery servers. Figure 2.5 details the handling of packet loss by the multicast
retransmission mechanism. If the distribution server receives requests from mul-
tiple delivery servers, the UDP multicast mode of retransmission is triggered. In
this case, the lost segments are multicasted to the different delivery servers by the
Retransmission Sender. The advantage is of course that each delivery server will
then receive the packets that were marked as lost.

2.4.2.2 Managed multicast-enabled video delivery

Figure 2.6 illustrates how the multicast channel management is introduced into the
framework. Each time a delivery server receives a segment request from a client
via the HTTP Server, this request is forwarded to the Autonomic Delivery Man-
agement component. Periodically, the Multicast Sender will request from the Dis-
tribution Management component which content it needs to multicast during the

A MULTICAST-ENABLED HAS DELIVERY FRAMEWORK 35

Figure 2.6: Illustration of how the management algorithm at the distribution server se-
lects which content to multicast and decides to which channels a delivery server should
subscribe.

next time slot. Each delivery server will be asked to forward the received requests
during the last slot to the Distribution Management component. The management
algorithm will detect the common ranges of these request sequences and select
the most profitable multicast channels (as explained in Section 2.5). After this,
the information concerning the multicasted content is forwarded to the Autonomic
Delivery Management component. The selection algorithm at this component will
then decide to which multicast channels it will subscribe, taking in mind the re-
quests received during the last slot. Subscribing to too many channels will pollute
the cache with segments that will never be requested, while too few subscriptions
will lead to an increase in redundant HTTP-traffic. A more detailed description of
the distribution management is discussed in the next section.

2.5 Autonomic Management of Multicast Streaming

In order to achieve a decrease of the consumed bandwidth between distribution
and delivery servers, it is important to only multicast content that is actually re-
quired by the clients. For a Live TV service, this choice is evident: multicasting
the live signal of the content will result in the targeted load decrease. However,
in a realistic scenario, a mixture of TSTV and VoD will occur besides Live TV
services. In this mix, several unicast TSTV or VoD connections with similar offset
to the live moment can potentially also be mapped onto a single multicast connec-

36 CHAPTER 2

tion if they would also result in important peaks in service consumption. Which
unicast connections are suited for such a multicast grouping depends on the status
of the caches and the future requests at the delivery servers. As such, the map-
ping of unicast connections is far less trivial than that of Live TV. In this section,
a novel management algorithm is proposed to autonomously decide which unicast
flows need to be mapped to a multicast connection and to select to which multicast
groups a delivery server should subscribe. This scenario requires management of
the multicasted content in order to benefit from a reduced bandwidth consumption
in a HAS-based TSTV and VoD scenario since the clients no longer request the
video segments in a synchronized way, as is the case with Live TV.

2.5.1 Autonomic delivery management

The caches located at the delivery servers allow temporal storage of the video
streams and thus relax the need for the video flows to be fully synchronized.
Hence, the requests for video content do not need to occur simultaneously in or-
der to be mapped to a multicast connection, but can occur within a predefined
time window of W segments. The size of W depends on the cache size and re-
placement algorithm used at the delivery servers. In order to find the best value
for W , an autonomous selection algorithm is deployed on the delivery servers.
The Distribution Management component periodically announces which content
is to be multicasted. The Autonomic Delivery Management component is respon-
sible for deciding which channels it subscribes to. Taking into account the limited
cache size at the delivery server, subscribing to multicasted content which is not
requested by clients is not beneficial. These segments substitute other popular
segments that will be requested in the future, deteriorating cache hitrates. The
Autonomic Delivery Management component tackles these problems by making
a prediction of future requests and cache contents based on current requests and
cache assessment.

Figure 2.7 shows how the subscription algorithm compares recent requests for
segments with respect to the multicasted content and the current caching window
W at a certain time t. For video 1, the segment numbers to be multicasted next are
18 and 28, the current caching window is 8 segment durations long and recently,
there were requests for the segments 13, 15 and 23 for video 1. Since the mul-
ticasted segments will still be available when the clients will request these, this
delivery server subscribes to both multicast channels. For video 4, this is however
not the case, the 23th segment will be multicasted next and a request was received
for segment 12. This client will request the 23th segment within 11 segment du-
rations, which exceeds the current caching window, hence the delivery server will
not subscribe to this channel. If Sr are the segment numbers of the request, Sm the
number of the multicasted segment andW the number of segment durations a seg-

A MULTICAST-ENABLED HAS DELIVERY FRAMEWORK 37

Figure 2.7: Illustration of the subscription algorithm performed by the Autonomic Delivery
Management component, subscribing to a multicast channel if there exists an Sr where
Sm − Sr < W .

Figure 2.8: Illustration of the mapping algorithm performed by the Distribution Manage-
ment component.

ment is predicted to reside in the cache, the delivery server subscribes to a specific
multicast channel if there exists a Sr for which Sm − Sr < W holds. This deci-
sion is justified since it is predicted that the clients currently requesting segment
Sr, will probably request segment Sm within Sm − Sr segment durations. When
the current caching window W is larger than this offset to the multicasted content,
the segment Sm will still be available in the cache. The size of W is calculated as
the weighted moving average of the recent cache residing times.

2.5.2 Distribution management

As multicasting video from the distribution server to the delivery servers is only
useful when the video is served by multiple delivery servers, the Distribution Man-

38 CHAPTER 2

agement component requires regular reports from the various delivery servers, to
assess the popularity of the video channels. Figure 2.8 illustrates how this mapping
is performed for each individual video. The requested segments within the assess-
ment period are depicted here per delivery server. As shown, the algorithm maps
multiple unicast video flows to a single multicast channel if (i) these video flows
are requested in a burst (i.e. in the same time window W) and (ii) these requests
are served by multiple delivery servers. As such, two request bursts (A and C)
are mapped onto two distinct multicast channels since the requested segments (15

from delivery server 1, 11 and 13 from delivery server 2, 11 and 14 from delivery
server 3 and 12 from delivery server 4) all lay within the caching window W of
size 5 and the number of requesting delivery servers is 4, thus exeeding 2, fulfilling
both condition (i) and (ii). But the burst in requests for segments (B) is not, since
all requested segments (18, 20 and 22) within the windowW are requested by only
one delivery server, thus condition (ii) does not apply. By mapping to multicast
channels, a bandwidth reduction of D − 1 is achieved between the distribution
server and delivery servers, where D is the number of delivery servers that serve
video flows in the time window W . A description of the algorithm is provided
below in Algorithm 2.1. Each time the multicasted channels are reassessed, the
recent clients request information is gathered from the delivery servers (line 3-5).
Next to this request information, the caching window W of each delivery server
is retrieved. Using these, the Distribution Management can update the mapping
of unicast connections to multicast channels, by multicasting the flows serving
the highest number of delivery servers. For each requested video content, the re-
quested segment numbers are ordered decreasingly in flows F (line 12). These
flows are then grouped into flow ranges Frange with segment number Sf based on
the current caching window W , i.e. flows in F where the requested segment num-
ber Sr satisfies the condition Sr − Sf ≤ W (line 25-36). For each range Frange,
the set delivery servers sharing the common flow range is stored in Drange (line
33). When the cardinality of this set does not exceed two, the range is added to
the unicast flows, otherwise they are grouped into a multicast channel (line 15-19).
The multicast trees that were created this way are communicated to the Autonomic
Delivery Management component, which can now autonomously decide which
multicast trees to join or leave depending on the number of clients requesting that
content. Each update interval, the created multicast trees are re-evaluated, so to
optimize the number of served delivery servers.

A MULTICAST-ENABLED HAS DELIVERY FRAMEWORK 39

function UPDATEMULTICASTMAPPING(R)
R ← φ
for d ∈ D do
R ← R∪ {d→ getRecentRequests()}

5: end for
(U ,M)← updateMulticastMapping(R)

end function
function UPDATEMULTICASTMAPPING(R, U , M)
M← φ

10: U ← φ
for v ∈ R → getV ideos() do
F ← getOrderedOnSegment(Rv)
for f ∈ F do

(Frange,Drange)← getF lowsInRange(f,F)
15: if sizeof(Drange) ≥ 2 then

M←M∪ f
else
U ← U ∪ f

end if
20: F ← F\f

end for
end for
return U ,M

end function
25: function GETFLOWSINRANGE(flow,F ,Frange,Drange)

Frange ← φ
Drange ← φ
Sf = flow → nextSegment
for f ∈ F do

30: Sr = f → nextSegment
d = f → deliveryServer
if Sr − Sr ≤W then
Frange ← Frange ∪ f
Drange ← Drange ∪ d

35: end if
end for
return Frange,Drange

end function

Algorithm 2.1: Popularity-based mapping from unicast to multicast channels, based on
video popularities and cache assessment at the delivery servers.

40 CHAPTER 2

2.6 Performance Evaluation

This section is structured as follows: Section 2.6.1 discusses the implemented pro-
totype and the obtained emulation results in a HAS-based Live TV scenario in a
network topology of 1,000+ nodes. To be able to carry out larger scale experi-
ments, a packet-based simulator was implemented for the extensive evaluation of
the management algorithm which is presented in Section 2.6.2. All of the fol-
lowing results are averaged over 10 iterations, with the graphs showing the 95%
confidence levels. Furthermore, ANOVA-confidence intervals are provided when
the averages are close together. ANOVA (analysis of variance) provides a statisti-
cal test of whether or not the means of several groups are all equal.

2.6.1 Prototype evaluation
2.6.1.1 Implementation details

A prototype of the architecture was implemented using the Apple Live Streaming
protocol as an underlying HAS technique. The quality level selection heuristic
used in the prototype is based upon an existing heuristic called Priority-Based Me-
dia Delivery [33] and decides which quality to download by considering several
previously downloaded fragments through a weighted moving average. In the pro-
posed architecture, caches are used in the Memory components of both distribution
and delivery server. Least Recently Used (LRU) was used as cache replacement
strategy.

The emulations were performed on the iLab.t Virtual Wall infrastructure1,
which consists of 100 servers interconnected by a non-blocking switch. The pro-
totype was deployed on these Linux-based servers with following specifications:
2GHz AMD Dual Core CPU, 4GB RAM and Gbit network interfaces.

2.6.1.2 Experimental setup

The network model illustrated in Figure 2.9 depicts a typical tree based access net-
work of 1,022 nodes consisting of 1 HAS server, 1 distribution server, 20 delivery
servers and 1,000 virtual video clients (mapped onto 20 physical clients) connected
by gigabit links. The distribution server offers 5 live channels, each available in
three qualities: 4Mbit/s, 2Mbit/s and 1Mbit/s. Each delivery server has a cache
size of 1,280MB. A limit is put on the shared client links of 160Mbit/s, so clients
are likely to switch qualities and to make sure all qualities are requested. The dis-
tribution of viewers over the five channels is set according to values measured on
an actual broadcast TV [34] and follows a Zipf distribution with parameter β equal
to 1.7. The distribution of viewers over the different delivery servers is uniformly

1iLab.t Virtual Wall - http://ilabt.iminds.be/iminds-virtualwall-overview

A MULTICAST-ENABLED HAS DELIVERY FRAMEWORK 41

Figure 2.9: Emulated network topology modeling a tree-based access network of 1,000+
nodes.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1 2 5 10 20

C
o
n
su

m
e
d
 b

a
n
d
w

id
th

 (
M

b
p
s)

Number of delivery servers

No Multicast
Multicast all channels all qualities

Multicast all channels highest quality
Multicast most popular channels all qualities

Multicast most popular channels highest quality

Figure 2.10: Impact of the different multicast strategies on the bandwidth. Depending on
the multicast strategy, multicasting content is beneficial starting from 2 delivery servers.
Confidence levels are shown on the graphs.

random, which implies there are no significant local popularity differences. For
these experiments it is investigated what the impact is of the number of delivery
servers on the average consumed bandwidth for the different multicast strategies
without packet loss. Furthermore, the impact is evaluated of the retransmission
strategy on the average retransmission and total consumed bandwidth when the
links are subject to packet loss.

2.6.1.3 Results description

Figure 2.10 shows the impact of the number of delivery servers and the multicasted
channels on the consumed bandwidth between distribution and delivery servers.
The effect of multicasting all channels and all qualities is a reduced bandwidth

42 CHAPTER 2

 0

 200

 400

 600

N
o
 m

u
ltica

st
ch

a
n
n
e
l (a

)

M
o
st p

o
p
u
la

r
b
e
st q

u
a
lity (b

)

M
o
st p

o
p
u
la

r
a
ll q

u
a
litie

s (c)

A
ll ch

a
n
n
e
ls

b
e
st q

u
a
lity (d

)

A
ll ch

a
n
n
e
ls

a
ll q

u
a
litie

s (e
)

A
ve

ra
g
e
 b

a
n
d
w

id
th

 (
M

b
p
s)

Unicast
Multicast

MC x̄ UC x̄ UC σ
Mbps Mbps Mbps

a 0 550.95 4.79
b 4.33 431.28 12.17
c 7.57 338.78 8.04
d 21.63 176.01 8.76
e 37.85 0 0

Figure 2.11: Impact on the average consumed bandwidth of the different multicast strate-
gies. Next to the graph is a table with the average bandwidths and standard deviations. For
the multicast scenario no standard deviations are shown since they are all zero.

when more than two delivery servers request the video content (one-way ANOVA
showed a significant difference between both strategies: ρ = 0, F = 4.327e3).
When only the most popular channel is multicasted, with the other channels still
being served through unicast, the bandwidth reduction is obviously less significant
(one-way ANOVA: ρ = 1.624e−5, F = 36.68). Figure 2.11 shows the average
consumed bandwidth for a variety of multicasting strategies in a network with 20
delivery servers and the standard deviations for these configurations. All differ-
ences in average bandwidth are significant with all ρi,j < 4.85e−11 (where i and j
denote different multicasting strategies). Multicasting all qualities of each channel
uses only 7% of the consumed bandwidth when nothing multicasted. Multicasting
the best quality of the most popular channel results in a 20% bandwidth reduction.

For the following experiments, both multicast and unicast loss is introduced,
respectively for the loss introduced on the link between the distribution server and
the multicast switch and on the links between the multicast switch and the deliv-
ery servers. Multicast loss will cause all delivery servers to experience the same
amount of packet loss, while unicast loss will affect a specific delivery server. The
amount of loss that is introduced in these experiments is set at 1%. Both types of
loss are combined with UDP packet retransmissions over unicast and multicast into
4 test scenarios. The consumed bandwidth on the link between distribution server
and multicast switch is displayed in Figure 2.12. For a single delivery server,
all 4 scenarios are similar, as there is no difference between introducing loss on
both links and between retransmission strategies. Unicast retransmits and multi-
cast retransmits for unicast loss show a linear correlation between the increase in
consumed bandwidth and the number of delivery servers. Multicast retransmits
for multicast loss use a constant bandwidth, independent of the number of deliv-

A MULTICAST-ENABLED HAS DELIVERY FRAMEWORK 43

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10

D
is

tr
ib

u
tio

n
 s

e
rv

e
r

re
tr

a
n
sm

is
si

o
n
 o

ve
rh

e
a
d
 B

W
 (

M
b
it/

s)

Number of delivery servers

Unicast loss - unicast retransmissions
Unicast loss - multicast retransmissions
Multicast loss - unicast retransmissions

Multicast loss - multicast retransmissions

Figure 2.12: Impact on bandwidth of the different retransmission strategies on consumed
bandwidth at distribution server. Confidence levels are shown on the graphs.

ery servers, as duplicate requests are ignored. The bandwidth used for receiving
retransmissions on the link of the first delivery server is shown in Figure 2.13. In
this case, multicast retransmits for unicast loss result in an additional bandwidth
use on this link, as retransmits requested by other delivery servers are received
here as well. These results show that it would be beneficial to adapt the retrans-
mission strategy according to the type of loss, in order to optimise the consumed
bandwidth.

The percentage of loss introduced was changed for some experiments (with 5
delivery servers). Loss can also be handled by discarding the received file, and
not requesting any retransmits, but instead using the HTTP fallback mechanism to
request the entire segment/file again over HTTP. This mechanism was evaluated
for the scenario with 5 delivery servers and all content multicasted. Figure 2.14
compares the total outgoing bandwidth on the distribution server for these HTTP
full-file retransmits with the UDP retransmission methods (both with unicast and
multicast-enabled retransmissions). The bandwidth usage is almost doubled for
the HTTP full-file retransmissions, as, regardless of the loss percentage, almost
all multicasted files have at least one lost packet, which causes the full file to be
downloaded again.

2.6.2 Management algorithm evaluation

In order to evaluate the proposed architecture and management algorithms in a re-
alistic TSTV-scenario, a large amount of nodes need to be emulated. Since the

44 CHAPTER 2

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10

D
e
liv

e
ry

 s
e
rv

e
r

re
tr

a
n
sm

is
si

o
n
 o

ve
rh

e
a
d
 B

W
 (

M
b
it/

s)

Number of delivery servers

Unicast loss - unicast retransmissions
Unicast loss - multicast retransmissions
Multicast loss - unicast retransmissions

Multicast loss - multicast retransmissions

Figure 2.13: Impact on bandwidth of the different retransmission strategies on consumed
bandwidth at delivery servers. Confidence levels are shown on the graphs.

0

20

40

60

80

100

120

HTTP
full file

 retransmit

Unicast UDP
packet

 retransmit

Multicast UDP
packet

 retransmit

A
v
e

ra
g

e
 c

o
n

s
u

m
e

d
 b

a
n

d
w

id
th

 (
M

b
p

s
)

1% Multicast loss
1% Unicast loss

x̄ σ
Mbps Mbps

HTTP retr. 88.92 2.91MC loss
HTTP retr. 112.97 4.35UC loss
UC retr. 40.39 0.50MC loss
UC retr. 40.52 0.49UC loss
MC retr. 40.38 0.51MC loss
MC retr. 38.94 0.51UC loss

Figure 2.14: Total average consumed bandwidth on link between distribution server and
delivery servers for various loss settings and retransmission methods. Next to the graph is
a table with the average bandwidths and standard deviations.

A MULTICAST-ENABLED HAS DELIVERY FRAMEWORK 45

employed testbed does not support such large size topologies, a simulator was im-
plemented using NS-3 [35]. A packet-based simulator has been developed, which
implements all aforementioned functionality of the emulated framework with ad-
ditional support for multicast management, both at the distribution and delivery
server.

2.6.2.1 Experimental setup

Using several studies modelling the behaviour of TSTV-viewers [36, 37] and real
measurements by DVR vendors [5, 38], a client request model was constructed.
The most important assumptions here are: (i) the channel popularity distribution is
Zipf-like, where the top 10% of channels accounts for nearly 80% of the viewers,
(ii) only 20-30% of viewers watch the programs live in prime-time and (iii) more
than 50% of the viewers watches the program the same day. Similar to the exper-
iments carried out in Section 2.6.1, the distribution of viewers over the channels
follows a Zipf distribution with parameter β equal to 1.7 [39], and no local pop-
ularity differences are modeled among delivery servers. The simulation time was
set to 3 hours: this entails the simulation of the consumption of 3 consecutive tele-
vision programs of 1 hour each. The first hour of the simulation was ignored and
solely used to fill the caches with realistic content. Several parameters were varied
during these simulations: cache sizes, number of delivery servers and the number
of available multicast groups. These tests were performed using 20 videos of dif-
ferent qualities (i.e. 4Mbps, 2Mbps and 1Mbps), 50 clients per delivery server and
a bandwidth limit on the link between clients and delivery servers of 160Mbps,
causing congestion and clients switching quality levels, leading to a decrease in
perceived QoE [40]. Four configurations were tested: (i) proxy-enabled HAS,
where all segments are sent to the delivery servers over HTTP-connections (ii) un-
managed delivery, where the live moment of the most popular video channels are
multicasted and all delivery servers subscribe to each of these multicast channels
(iii) unmanaged distribution, where each delivery server autonomously decides to
which multicast channel it subscribes, based on the recent requests and (iv) man-
aged multicast, where the most popular content (Live TV or TSTV) is multicasted
and each delivery server autonomously subscribes to them. For these experiments
it is evaluated what the impact is of the number of delivery servers, the cache sizes
and the number of multicast channels on the average consumed bandwidth for the
different multicast strategies.

2.6.2.2 Results description

Figure 2.15 shows the combined (unicast and multicast traffic) consumed band-
width on the link between the distribution server and the delivery servers and how
this bandwidth consumption can be reduced by taking management measures at

46 CHAPTER 2

 2500

 2750

 3000

 3250

 3500

 3750

 4000

 4250

 4000 5000 6000 7000

C
o
n
su

m
e
d
 b

a
n
d
w

id
th

 o
n
 D

IS
-D

E
L
 li

n
k

(M
b
p
s)

Time (s)

HAS with proxies

Unmanaged delivery multicast

Unmanaged distribution multicast

Managed multicast

Figure 2.15: Impact of multicast strategy on consumed bandwidth on link between distri-
bution and delivery servers, measured with 40 delivery servers, cache sizes of 2,560MB, 20
multicast channels and 20 video channels.

both the delivery and distribution server. The proposed architecture is also com-
pared with a direct downloading scheme where no intermediate servers are present.
Unmanaged Distribution Multicast reduces the bandwidth between distribution
and delivery servers by letting the delivery servers autonomously decide to which
multicast channels they will subscribe, in contrast to Unmanaged Delivery Mul-
ticast, where each delivery server subscribes to all available multicast channels.
For 2,000 clients, the management of delivery subscriptions leads to a bandwidth
reduction of approximately 560Mbps compared to the setup without multicast-
ing. Not only managing delivery subscription, but also proactively deciding which
content to multicast by the Distribution Management, leads to an additional reduc-
tion of approximately 400Mbps. This is an improvement of 25% with respect to
the HAS architecture with proxies and of 70% compared to a direct downloading
scheme.

Figure 2.16 shows the impact of the number of delivery servers in the setup on
the average consumed bandwidth between distribution and delivery servers. When
the number of delivery servers is equal to 2, the original HAS setup with proxies
leads to lower bandwidth consumption than the multicast enhanced solution (one-
way ANOVA: ρ = 2.364e−8, F = 88.01). With only one delivery server, the
managed multicast solution consumes almost equal bandwidth (one-way ANOVA:
ρ = 0.922, F = 9.84e−1), since content is only multicasted when it is requested
by at least 2 delivery servers. But when the number of delivery servers exceeds
5, the managed multicast solution yields lower bandwidth consumption (one-way

A MULTICAST-ENABLED HAS DELIVERY FRAMEWORK 47

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 250 500 750 1000 1250 1500 1750 2000

C
o
n
su

m
e
d
 b

a
n
d
w

id
th

 (
M

b
p
s)

Number of clients

Managed multicast
Unmanaged distribution multicast

Unmanaged delivery multicast
HAS with proxies
Direct Download

Figure 2.16: Impact of number of delivery servers (with 50 clients per delivery server)
and multicast management strategy on average consumed bandwidth, measured with cache
sizes of 2,560MB, 20 multicast channels and 20 video channels. Confidence intervals are
shown on the graphs.

 0

 500

 1000

 1500

 0 5 10 15 20 25 30 35 40

C
o
n
su

m
e
d
 b

a
n
d
w

id
th

 (
M

b
p
s)

Number of delivery servers

Unmanaged distribution multicast - Managed multicast
Unmanaged delivery multicast - Managed multicast

HAS with proxies - Managed multicast

Figure 2.17: Impact of number of delivery servers and multicast strategy on average con-
sumed bandwidth, measured with cache sizes of 2,560MB, 20 multicast channels and 20
video channels.

48 CHAPTER 2

 0

 1000

 2000

 3000

 4000

 5000

 0 2560 5120 7680 10240 12800 15360 17920 20480

C
o
n
su

m
e
d
 b

a
n
d
w

id
th

 (
M

b
p
s)

Cache size (MB)

Managed multicast
Unmanaged distribution multicast

Unmanaged delivery multicast
HAS with proxies

Figure 2.18: Impact of different multicasting strategies and cache sizes on average con-
sumed bandwidth, measured with 40 delivery servers, 20 multicast channels and 20 video
channels. Confidence intervals are shown on the graphs.

ANOVA: ρ = 6.51e−2, F = 3.86 for 5 delivery servers and ρ = 2.36e−12, F =

355.61 for 10 delivery servers). The difference in consumed bandwidth increases
when the number of delivery servers increases as is illustrated in Figure 2.17.

Figure 2.18 shows the impact of the cache sizes at the delivery servers on
the consumed bandwidth. With small caches, the difference in consumed band-
width between the managed multicast scenario and both the unmanaged scenarios
is considerably large (one-way ANOVA: all ρ < 7.32e−13 for 640MB caches), but
when the cache size increases the difference between the managed multicast and
unmanaged distribution (where all content is multicasted but the delivery servers
autonomously subscribe to certain channels) becomes less significant (one-way
ANOVA: ρ = 5.17e−2, F = 4.42 for 10,240MB caches and ρ = 6.94e−1,
F = 0.16 for 20,480MB caches). This can be explained by the fact that the caches
are now large enough to store a considerable part of the video content (approx-
imately 1,024 segments in the highest quality). Since the delivery servers only
subscribe to the content that will be requested, the usage of the available cache
size is optimized. This leads a low number of HTTP requests, comparable to the
number of requests in the managed multicast scenario. Figure 2.19 illustrates the
impact of the cache size on the average cache hitrate for the different manage-
ment scenarios. As the cache sizes grow, the average hitrate at the delivery servers
increases, where the increase is fairly uniform across the different configurations.

Figure 2.20 displays the impact of the number of available multicast chan-
nels on the consumed bandwidth. When no multicast channels are available, all

A MULTICAST-ENABLED HAS DELIVERY FRAMEWORK 49

 0

 20

 40

 60

 80

 100

 0 2560 5120 7680 10240 12800 15360 17920 20480

C
o
n
su

m
e
d
 b

a
n
d
w

id
th

 (
M

b
p
s)

Cache size (MB)

Managed multicast
Unmanaged distribution multicast

Unmanaged delivery multicast
HAS with proxies

A
ve

ra
ge

 h
it

ra
tio

 (%
)

Figure 2.19: Impact of different multicasting strategies and cache sizes on average cache
hitrate, measured with 40 delivery servers, 20 multicast channels and 20 video channels.
Confidence intervals are shown on the graphs.

 2500

 3000

 3500

 4000

 4500

 5000

 0 5 10 15 20 25 30 35 40

C
o
n
su

m
e
d
 b

a
n
d
w

id
th

 (
M

b
p
s)

Number of multicast channels

Managed multicast
Unmanaged distribution multicast

Unmanaged delivery multicast
HAS with proxies

Figure 2.20: Impact of different multicasting strategies and number of multicast channels
on average consumed bandwidth, measured with 40 delivery servers, 20 video channels and
cache sizes of 2,560MB. Confidence intervals are shown on the graphs.

50 CHAPTER 2

managed scenarios converge to the proxy-enabled HAS solution. With increas-
ing number of multicast channels, the bandwidth consumption keeps decreasing
in the managed multicast solution. With only 5 multicast channels available, all 3
multicast scenarios yield almost equal bandwidth consumption (one-way ANOVA:
ρ = 1.47e−1, F = 2.31 when comparing managed multicast with unmanaged dis-
tribution multicast). But when the number of multicast channels exceeds 5, they
diverge, since non-popular content is now multicasted in the unmanaged distribu-
tion scenario, polluting the caches with unrequested content at the delivery servers
(one-way ANOVA: ρ = 6.15e−9, F = 153.69 for 10 multicast channels). When
the number of multicast channels is equal to the number of video channels both
unmanaged distribution and unmanaged delivery stabilize, since additional multi-
cast channels are not used, while bandwidth consumption in the managed multicast
solution keeps decreasing.

2.7 Conclusions

In this chapter, the merits are characterized of a novel HTTP Adaptive Stream-
ing (HAS)-based multimedia architecture, allowing a decrease of the consumed
bandwidth, through a combination of caching and multicast streaming. Two ad-
ditional component types were added to a traditional HAS-based architecture: a
distribution server and multiple delivery servers. The proposed multicast-enabled
architecture is compared with a traditional HAS set-up, which uses only unicast
connections. The experiments show that the obtained bandwidth reduction factor,
when using multicasting and caching, is proportional to the number of connected
delivery servers, even when multiple HAS qualities are multicasted. For exam-
ple, the proposed architecture requires four times less bandwidth than traditional
HAS-based approaches for a moderate network size consisting of eight delivery
servers. Additionally, retransmission experiments showed that the implemented
multicast retransmission mechanism also provides a retransmission bandwidth re-
duction compared to unicast retransmission, both for multicast and unicast loss. As
such, it is demonstrated how the proposed multicast-enabled architecture is more
scalable without losing robustness in delivering HAS-based Live TV. Furthermore,
the architecture was extended with autonomic multicast management in order to
support Time-Shifted TV and Video on Demand services. The algorithm deployed
at the distribution servers intelligently selects which content needs to be multicas-
ted by making a remote assessment of the cache states at the delivery servers. The
autonomic subscription algorithm at each delivery server makes predictions on fu-
ture cache state and expected requests. Using these predictions they then autonom-
ically decide to which multicast channels they should subscribe. The experiments
show that the obtained bandwidth reduction in a Time Shifted TV (TSTV)-scenario
is higher than in the unmanaged scenario. For example, the managed, multicast-

A MULTICAST-ENABLED HAS DELIVERY FRAMEWORK 51

enabled delivery of TSTV-services requires approximately 23% less bandwidth
compared to the unmanaged multicast-enabled delivery and 25% less when com-
pared to proxy-enabled HTTP HAS delivery, for a network size of 40 delivery
servers, cache sizes of 2,560MB and 20 multicast channels. These differences
even increase when the number of delivery servers grows. Increasing the num-
ber of available multicast channels and cache sizes at the delivery servers also
decreases the bandwidth consumption. Thus, the results show that the proposed
multicast-enabled HTTP Adaptive Streaming framework is able to successfully
eliminate the bottleneck between the video servers and the HTTP proxies.

52 CHAPTER 2

References
[1] BBC iPlayer. www.bbc.co.uk/iplayer - Last Accessed on 24 February 2012.

[2] YouTube - Broadcast Yourself. www.youtube.com - Last Accessed on 24
February 2012.

[3] Hulu. www.hulu.com - Last Accessed on 24 February 2012.

[4] Netflix. www.netflix.com - Last Accessed on 24 February 2012.

[5] Nielsen. State of the Media: Mobile Media Report Q3 2011.
http://www.nielsen.com/us/en/insights/reports-downloads/2011/state-of-
the-media–mobile-media-report-q3-2011.html - Last Accessed on 24
February 2012.

[6] Knowledge Networks. Over-The-Top (OTT) Video viewing surges.
http://www.knowledgenetworks.com/news/releases/2011/090811 ott-
video.html - Last Accessed on 24 February 2012.

[7] Live - YouTube. www.youtube.com/live - Last Accessed on 24 February
2012.

[8] Amazon.com Instant Video. www.amazon.com/gp/video/ontv/ontv - Last Ac-
cessed on 24 February 2012.

[9] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport
Protocol for Real-Time Applications. RFC 3550 (Standard), July 2003. Up-
dated by RFCs 5506, 5761, 6051, 6222. Available from: http://www.ietf.org/
rfc/rfc3550.txt.

[10] H. Schulzrinne, A. Rao, and R. Lanphier. Real Time Streaming Protocol
(RTSP). RFC 2326 (Proposed Standard), April 1998. Available from: http:
//www.ietf.org/rfc/rfc2326.txt.

[11] S. Winkler, A. Sharma, and D. McNally. Perceptual video quality and blocki-
ness metrics for multimedia streaming applications. In Proceedings of the In-
ternational Symposium on Wireless Personal Multimedia Communications,
pages 547–552, 2001.

[12] M. Saxena, U. Sharan, and S. Fahmy. Analyzing video services in Web 2.0:
a global perspective. In Proceedings of the 18th International Workshop
on Network and Operating Systems Support for Digital Audio and Video,
NOSSDAV ’08, pages 39–44, 2008.

[13] Microsoft. Microsoft Smooth Streaming: The Official Microsoft IIS Site.
Available from: http://www.iis.net/download/SmoothStreaming.

A MULTICAST-ENABLED HAS DELIVERY FRAMEWORK 53

[14] E. R. Pantos and W. May. Internet Draft - HTTP Live Streaming, 2011. Avail-
able from: http://tools.ietf.org/html/draft-pantos-http-live-streaming-07.

[15] Adobe. HTTP Dynamic Streaming: Flexible Delivery of on-demand and
live video streaming. Available from: http://www.adobe.com/products/
httpdynamicstreaming/.

[16] A. Begen, T. Akgul, and M. Baugher. Watching Video over the Web: Part 1:
Streaming Protocols. Internet Computing, IEEE, 15(2):54 –63, 2011.

[17] A. Begen, T. Akgul, and M. Baugher. Watching Video over the Web: Part 2:
Applications, Standardization, and Open Issues. Internet Computing, IEEE,
15(3):59 –63, 2011.

[18] J.-S. Leu and S.-F. Chen. TRASS: A transmission rate-adapted streaming
server in a wireless environment. International Journal of Communication
Systems, 24(7):852–871, 2011.

[19] Y. Liu, Y. Guo, and C. Liang. A survey on peer-to-peer video streaming
systems. Peer-to-peer Networking and Applications, 1(1):18–28, 2008.

[20] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. Youtube traffic characterization: a
view from the edge. In Proceedings of the 7th ACM SIGCOMM conference
on Internet measurement, IMC ’07, pages 15–28, 2007.

[21] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon. I tube, you tube,
everybody tubes: analyzing the world’s largest user generated content video
system. In Proceedings of the 7th ACM SIGCOMM conference on Internet
measurement, pages 1–14, 2007.

[22] M. Mushtaq and T. Ahmed. Enabling Cooperation between ISPs and P2P
Systems toward IPTV Service Delivery. In Proceedings of the 7th IEEE Con-
sumer Communications and Networking Conference (CCNC), pages 1–6,
jan. 2010.

[23] B. Ben Moshe, A. Dvir, and A. Solomon. Analysis and optimization of live
streaming for over the top video. In In proceedings of the IEEE Consumer
Communications and Networking Conference (CCNC), pages 60–64, jan.
2011.

[24] N. Bouten, S. Latré, W. Van de Meerssche, K. De Schepper,
B. De Vleeschauwer, W. Van Leekwijck, and F. De Turck. An Autonomic De-
livery Framework for HTTP Adaptive Streaming in Multicast-enabled Multi-
media Access Networks. In Proceedings of the 5th IEEE/IFIP Workshop on
Distributed Autonomous Network Management Systems (DANMS 2012),
pages 1248–1253, april 2012.

54 CHAPTER 2

[25] X. Zhang and H. Hassanein. Video on-demand streaming on the Internet
x2014; A survey. In Communications (QBSC), 2010 25th Biennial Sympo-
sium on, pages 88–91, may 2010.

[26] F. de Ası́s López-Fuentes. P2P video streaming combining SVC and MDC.
Applied Mathematics and Computer Science, 21(2):295–306, 2011.

[27] H. Schwarz, D. Marpe, and T. Wiegand. Overview of the scalable video
coding extension of the H.264/AVC standard. In IEEE Transactions on Cir-
cuits and Systems for Video Technology In Circuits and Systems for Video
Technology, pages 1103–1120, 2007.

[28] A. M. Al-Naamany and H. Bourdoucen. TCP Congestion Control Approach
for Improving Network Services. Journal of Network and Systems Manage-
ment, 13:1–6, 2005.

[29] T. Ahmed and M. Mushtaq. P2P Object-based adaptivE Multimedia Stream-
ing (POEMS). Journal of Network and Systems Management, 15:289–310,
2007.

[30] T. Miyoshi and K. Sekiya. Efficient Transfer Method for On-demand Video
Delivery Based on Streaming Packet Analysis. In Proceedings of the First
ACIS/JNU International Conference on Computers, Networks, Systems and
Industrial Engineering, pages 141–146, may 2011.

[31] Y.-S. Yu, C.-K. Shieh, C.-H. Lin, and S.-Y. Wang. P2PVR: A playback offset
aware multicast tree for on-demand video streaming with VCR functions.
Journal of Systems Architecture, 57:392–403, April 2011.

[32] Information technology MPEG systems technologies. Part 6: Dynamic
adaptive streaming over HTTP (DASH). ISO/IEC DIS 23001-6, 2011.

[33] T. Schierl, Y. Sanchez de la Fuente, R. Globisch, C. Hellge, and T. Wiegand.
Priority-based Media Delivery using SVC with RTP and HTTP streaming.
Multimedia Tools and Applications, 55:227–246, 2011.

[34] T. Wauters, J. De Bruyne, L. Martens, D. Colle, B. Dhoedt, P. Demeester,
and K. Haelvoet. HFC Access Network Design for Switched Broadcast TV
Services. IEEE Transactions on Broadcasting, 53(2):588–594, june 2007.

[35] NS-3. http://www.nsnam.org/ - Last Accessed on 24 February 2012.

[36] M. Cha, P. Rodriguez, J. Crowcroft, S. Moon, and X. Amatriain. Watching
television over an IP network. In Proceedings of the 8th ACM SIGCOMM
conference on Internet measurement, pages 71–84, 2008.

A MULTICAST-ENABLED HAS DELIVERY FRAMEWORK 55

[37] Y. Liu, Liu and G. Simon, Simon. Distributed delivery system for time-
shifted streaming systems. In Proceedings of the 2010 IEEE 35th Conference
on Local Computer Networks, pages 276–279, 2010.

[38] Nielsen. How DVRs Are Changing the Television Landscape.
http://blog.nielsen.com/nielsenwire/media entertainment/how-dvrs-are-
changing-the-television-landscape/ - Last Accessed on 24 February 2012.

[39] L. A. Adamic and B. A. Huberman. Zipf’s law and the Internet. Glottomet-
rics, 3(1):143–150, 2002.

[40] S. Fernandes, J. Kelner, and D. Sadok. An adaptive-predictive architecture
for video streaming servers. Journal of Network and Computer Applications,
34(5):1683 – 1694, 2011.

3
In-Network Quality Optimization for

Adaptive Video Streaming Services

N. Bouten, S. Latré, J. Famaey, W. Van Leekwijck, F. De Turck.

Published in IEEE Transactions on Multimedia, December 2014.

While the previous chapter focussed on the resource optimization for live
HTTP Adaptive Streaming (HAS) delivery, this chapter tackles the quality man-
agement for managed HAS Video on Demand (VoD) delivery. A major obstacle
for the adoption of HAS technologies in managed networks is the purely client-
driven design of current HAS approaches, which leads to excessive quality os-
cillations, suboptimal quality selection, and the inability to enforce management
policies. Moreover, the provider has no control over the quality that is provided,
which is essential when offering a managed service. This chapter tackles these
challenges and facilitates the adoption of HAS in managed networks. Specifically,
several centralized and distributed algorithms and heuristics are proposed that al-
low nodes inside the network to steer the HAS client’s quality selection process.
The algorithms are able to enforce management policies by limiting the set of
available qualities for specific clients. Additionally, simulation results show that
by coordinating the quality selection process across multiple clients, the proposed
algorithms significantly reduce quality oscillations with a factor 5 and increase
the average delivered video quality with at least 14%.

58 CHAPTER 3

3.1 Introduction

The increasing popularity of Over-The-Top (OTT) multimedia services has led
to the widespread adoption of HTTP-based streaming protocols. Such protocols
have many advantages compared to traditional streaming methods, such as reuse
of existing HTTP infrastructure (e.g., servers, proxies and caches), reliable trans-
mission and firewall compatibility. Originally, progressive download techniques
were used, allowing the user to start consuming the content after a few seconds
of buffering. However, progressive download methods cannot cope with conges-
tion, the highly fluctuating throughput of mobile networks or diverging charac-
teristics of devices and networks. To overcome said problems, a new generation
of HTTP-based streaming protocols, collectively referred to as HTTP Adaptive
Streaming (HAS), was introduced. The offered content is split into a set of tem-
poral segments, which are encoded at multiple bit rates. In traditional HAS, a rate
adaptation algorithm, deployed at the client, is then used to select the bit rate of
each segment, based on the current network conditions, buffer status and device
capabilities.

State-of-the-art HAS solutions embed the rate adaptation algorithm inside the
client application. This allows the client to independently choose its playback
quality and prevents the need for intelligent components inside the network, which
are the main reasons HAS is used in OTT scenarios. However, academia and indus-
try are showing a growing interest in the use of HAS in managed networks [1]1,2,
for example by optimizing the delivery by applying in-network bitrate adaptation3

or by deploying IP multicasting to ease the distribution of linear TV HAS ser-
vices [2]4. The extensive content catalogue and increased flexibility in terms of
supported devices of these OTT-services (e.g., YouTube, Hulu, Netflix) but deliv-
ered over the managed network, could greatly benefit both the provider and the
end-user. However, in such environments, a purely client-driven approach has sev-
eral significant disadvantages. First, the lack of coordination among clients leads
to competing behavior among those clients, resulting in incorrect throughput es-
timations, causing excessive quality oscillations and suboptimal decisions [3, 4],
negatively impacting QoE [5]. Second, management policies, such as user sub-
scription constraints and guarantees on the delivered quality, cannot be easily en-
forced [6, 7]. In order to facilitate adoption of HAS for the delivery of multimedia
services in a managed environment, these challenges should be tackled.

A straightforward solution to the resource scarcity affecting streaming services
could be to increase the physical capacity of the delivery network. These up-

1http://www.juniper.net/us/en/local/pdf/solutionbriefs/3510463-en.pdf
2http://www.rgbnetworks.com/pdfs/RGB-Velocix Adaptive Streaming CDN White Paper 0911-

01.pdf
3http://www.cachelogic.com/vx-portfolio/solutions/velocixeve
4http://www.velocix.com/vx-portfolio/solutions/video-optimised-architecture

IN-NETWORK HAS QUALITY OPTIMIZATION 59

dates are however associated with high costs for the service provider, while an
in-network optimization based solution does not affect these infrastructure costs.
Since technologies (e.g. the advent of Ultra High Definition Television streaming)
are constantly evolving, frequent infrastructure updates are required to cope with
the ever increasing traffic demands. Physical infrastructure upgrades are time-
consuming. Therefore, there should be a coexistence of both approaches to deal
with future demand by intelligently managing resources in attendance of physical
capacity updates.

This chapter proposes a hybrid approach where the rate adaptation algorithm
is steered by an in-network component to address the aforementioned challenges.
It is deployed on intermediary proxies and supports client-side rate adaptation al-
gorithms by dynamically limiting the possible set of bit rates to select from. Cur-
rently an operator’s multimedia delivery network typically contains several trans-
parent caches and QoE measurement platforms which interpret HTTP headers and
reconstruct HTTP adaptive streaming sessions in order to evaluate the end-to-end
QoE. These platforms can be extended to not only measure the QoE, but also opti-
mize the QoE by performing in-network quality optimization, thus requiring only
limited extensions to the already available infrastructure. The proposed hybrid
approach allows clients to still react upon sudden network changes or scarcity in
device resources, while increasing the overall quality and stability. Moreover, it
can enforce a wide range of management policies, allowing providers to specify
priorities when allocating resources to a certain group of users. This translates
into several concrete contributions. First, the in-network rate adaptation problem
is formally defined. Second, an optimal centralized algorithm is proposed that
solves the problem as an Integer Linear Programming (ILP). Third, a scalable
variant of the algorithm is introduced that can be distributed across multiple logi-
cally hierarchical intermediary proxies. Finally, a heuristic with significantly lower
computational complexity is proposed.

The remainder of this chapter is structured as follows. Section 3.2 lists and
discusses state of the art research on client-based and in-network HAS rate adap-
tation. Subsequently, the in-network rate adaptation problem is formally defined
in Section 3.3. Sections 3.4 and 3.5 describe and evaluate the three algorithms
proposed to solve this problem respectively. Finally, Section 3.6 concludes the
chapter.

3.2 Related Work

The increased popularity of video consumption over the Internet has led to the
development of a range of protocols that allow adaptive video streaming over
HTTP. Some of the major players have introduced their proprietary protocols such

60 CHAPTER 3

as Microsoft’s Silverlight Smooth Streaming5, Apple’s HTTP Live Streaming6

and Adobe’s HTTP Dynamic Streaming7. More recently, a standardized solution
has been proposed by MPEG, called Dynamic Adaptive Streaming over HTTP
(DASH) [8]. Although differences exist between these implementations they are
based on the same basic principles: a video is split up into temporal segments
which are encoded at different quality rates, the autonomic video client heuristic
then dynamically adapts the quality, based on metrics such as average through-
put, delay and jitter. The drawback of this approach is of course that all control
lays in the hands of the clients which strive to maximize their individual qual-
ity. From the providers perspective however, other factors such as minimization
of costs and prioritization of users with higher subscription levels are of equal im-
portance. Current HAS approaches do not support intervention during the quality
assignment process which is fully dominated by the clients. The approach pre-
sented in this chapter therefore focuses on managing the quality for HAS by the
service provider.

The performance of HAS-based services can be improved by applying changes
both at the client and the delivery network. Each commercial HAS implementa-
tion comes with a proprietary client heuristic. Akhshabi et al. compare several
commercial and open source HAS players and indicate significant inefficiencies
in each of them, such as frequent oscillations and unfairness when the number of
competing clients increases [3]. Several heuristics have been proposed in literature
as well, each focussing on a specific deployment. Liu et al. discuss a video client
heuristic that is suited for a Content Delivery Network (CDN) by comparing the
expected segment fetch time with the experienced segment fetch time to ensure a
response to bandwidth fluctuations in the network [9]. Andelin et al. provide a
heuristic which was specifically designed for Scalable Video Coding (SVC) and
using a slope to define the trade-off between downloading the next segment and up-
grading a previously downloaded segment [10]. In previous work [11] [12], the au-
thors evaluated different client heuristics both for Advanced Video Coding (AVC)
and SVC, applying optimizations such as pipelined and parallel download schedul-
ing. Several of the aforementioned authors indicate the impact of competing HAS
clients on the quality oscillations, which are known to have a negative impact
on Quality of Experience (QoE) [5]. Furthermore, most of the commercial client
heuristics require a considerably large buffer to be able to react to network changes.
This chapter therefore aims at controlling the quality by introducing global QoE
management, reducing drastically the number of quality oscillations and allowing
to reduce the required buffer size. The presented approach is applicable to both
AVC and SVC.

5Microsoft Smooth Streaming - http://www.iis.net/downloads/microsoft/smooth-streaming
6Apple HTTP Live Streaming - http://tools.ietf.org/html/draft-pantos-http-live-streaming-13
7Adobe HTTP Dynamic Streaming - http://www.adobe.com/products/hds-dynamic-

streaming.html

IN-NETWORK HAS QUALITY OPTIMIZATION 61

An autonomic delivery framework for HAS-based Live TV and Time Shifted
TV (TSTV) was presented in previous work [13] [2] which allows to reduce the
consumed bandwidth by grouping unicast HAS sessions sharing the same con-
tent into a single multicast session. However, for Video on Demand (VoD) HAS
sessions, the content is more diverse and only few sessions are potentially shared
among multiple users. This prevents them to be grouped into a shared multicast
session and therefore prevents them from being delivered in a scalable manner.
In [14], an overview of interesting use cases for applying SVC in a network envi-
ronment are presented, among which the graceful degradation of videos when the
network load increases. The authors argue the need for Media Aware Network El-
ements (MANEs), capable of adjusting the SVC stream based on a set of policies
specified by the network provider. Similar to this approach, Latré et al. proposes
an in-network rate adaptation algorithm, responsible for determining which SVC
quality layers should be dropped in combination with a Pre-Congestion Notifica-
tion (PCN) based admission control mechanism [15]. In [16], a prototype of an
intermediary adaptation node is proposed, where the media gateway estimates the
available bandwidth on the client link and extracts the supported SVC-streams.
Similar to this, the WiDASH proxy is responsible for in-network video adaptation
and is able to perform global optimization over multiple concurrent HAS flows
by prioritizing clients which have poor channel quality [17]. Wirth et al. discuss
the optimization of multi-user resource assignment for DASH video transmission
over the LTE downlink [18]. By deploying a cross-layer technique for allocating
the resources at the base station and taking into account the specific information of
the video sessions, the number of playout starvations can be considerably reduced.
In Parakh et al., the authors propose a game theoretic approach towards decen-
tralized bandwidth allocation for video streams in wireless systems, where users
are charged for bandwidth resources proportionally to the requested bit-rate [19].
Situnen et al. propose dropping video layers based on their priority when network
congestion arises for scalable video streaming over wireless networks [20]. Most
of the aforementioned research focuses on the dropping of quality layers when
congestion arises, meaning the quality is limited in the same way for all users.
The proposed approach limits the maximum quality in a per client manner, allow-
ing the service provider to differentiate the delivered video services based on the
clients subscription. This allows the service provider to control the QoE on a per
subscriber level, and thus offering different subscription types for the VoD HAS
services.

Lee et al. describe a three-tier streaming service where multiple clients are
connected through multiple intermediate proxies to a multimedia server [21]. The
authors only consider live streaming, if however VoD streaming would be targeted,
the streaming service can no longer be delivered in an efficient way using multicast
streaming, since a lot of requests are on unpopular content which is infrequently re-

62 CHAPTER 3

quested. This causes the content to be delivered using unicast transport from origin
to regional servers and thus having the risk of running into bandwidth bottlenecks
on these links as well, which is not addressed within the cited paper. Further-
more, videos need to be transcoded in the intermediary proxies, in standard HAS
however, the quality levels are discrete and fixed, causing the objective function
in the proposed solution to change drastically and leading to the inability to use
the max-min composition. Unlike Real Time Streaming Protocol (RTSP) en Real
Time Transport Protocol (RTP) based streaming protocols, there is no server-side
bitrate adaptation required, the client decides autonomously which quality it will
select, based on the current state of the network and from a list of permitted qual-
ities, selected from within the network. This also implies that if a client struggles
to achieve its assigned quality level, for example due to poor wireless connection
quality or limited CPU resources, it can still decide to switch to a lower quality.

In [22] [23], the authors focus on optimizing the allocation of bits of video se-
quences among multiple senders to stream to a single client. Peer-to-peer stream-
ing and multi-server distributed streaming are the main use-cases of this approach,
there is no simple extension of the work when multiple clients need to share
the same server side bottleneck. Furthermore, this requires fine-grained scalable
video streaming to support the allocation of non-overlapping bit ranges to mul-
tiple servers, while for HAS, fixed bitrate representations are available, encoded
using advanced video coding, leading to video segments of which the quality can-
not be improved in a straightforward way by downloading additional bit ranges.
This work however, could also be extended to support scalable video in a straight-
forward way. Akhshabi et al. propose server-side rate adaptation to cope with
unstable streaming players due to ON-OFF patterns when they compete for band-
width [24]. The systems detect sudden rate fluctuations in the client playout and try
to solve them by shaping the sending rate at the server to resemble the bitrate of the
stream. These systems are able to restore the streaming session when oscillation
or freezing occurs and then remove the shaping when the client has stabilized. The
proposed approach is not only able to solve the problems of oscillation or freezes
when they occur, but actively tries to prevent them. This is because the proposed
approach can use more detailed in-network information. This chapter is an exten-
sion to previous work on in-network quality management for HAS [25]. However,
the problem formulation is generalized and the approach is significantly extended
with a centralized, distributed and relaxed optimization. Furthermore, the previous
work only considered simple topologies with a single bottleneck where multiple
clients directly connect to the server. Whereas this chapter supports more complex
topologies with multiple levels, multiple bottlenecks and intermediary proxies, as
well as asymmetric topologies.

IN-NETWORK HAS QUALITY OPTIMIZATION 63

…
…

…

…

…

Legend

…𝑙𝑒𝑣𝑒𝑙 0 𝑙 − 1

Figure 3.1: Graphical representation of variables and assumptions.

3.3 Formal Problem Description

Providers are exploring how they can offer VoD HAS services next to traditional
TV services over their managed network environment. HAS services offer the
same content at multiple qualities, each at their corresponding rate. This allows
providers to perform QoE management by adjusting each sessions quality level,
based on the current network utilization. At peak times, the consequences of an
inadequate amount of resources in the network, can thus be anticipated by reducing
the quality of individual streaming sessions, while still allowing admittance of all
users.

3.3.1 Definition of variables and assumptions

Figure 3.1 gives an overview of the problem variables and assumptions. Let us
consider an access network topology modeled as a graph, consisting of a set of
nodesN , which encompasses servers S ⊂ N , proxiesP ⊂ N , and clients C ⊂ N .
A set of edges E connects the nodes in a logical tree topology which is typically
used for video delivery networks8. Note that typical access networks are using a
logical tree for their delivery, although the underlying physical network is not a tree
due to replication concerns. Every node n ∈ N has an incoming edge en− ∈ E
connecting it to its predecessor n− ∈ N and a set of outgoing edges EN+ ⊆ E
connecting it to its successors N+ ⊂ N . Every edge e ∈ E has an associated

8An example is the Triple Play Service Delivery Architecture from Alcatel-Lucent
(http://goo.gl/4aZVvf), which is used by over 50 operators worldwide (http://goo.gl/kHMY1b)

64 CHAPTER 3

Table 3.1: Variables used for the rate decision.

αs Weighing factor to model the tradeoff between quality and
quality switches

Be Bandwidth reserved for HAS traffic for edge e ∈ E
βq Bitrate associated with layer q ∈ Q
βmax Highest bitrate in Q
C ⊂ N The set of HAS VoD clients
Ce ⊆ C The set of clients in the service delivery tree for which the

VoD traffic traverses edge e ∈ E
Cn ⊆ C The set of clients in the service delivery tree for which the

VoD traffic traverses node n ∈ N
E The set of edges in the service delivery tree
Ec ⊆ E The unique delivery path from server sc to client c ∈ C
en− The edge connecting node n to its predecessor n−

En+ ⊆ E The set of edges connecting node n to its successors Nn+

Hc The history of previous quality decisions for client c ∈ C
hc,q,t ∈ Hc Binary variable indicating wether client c ∈ C was assigned

quality q ∈ Q at time t
N The set of nodes in the service delivery topology
Nn+ ⊂ N The set of successors of node n
n− The predecessor of node n
P ⊂ N The set of proxies in the delivery tree
Q Available quality rates for video
Qv ⊆ Q Available quality rates for video v ∈ V
S ⊂ N The VoD access server
sc ∈ S The VoD access server for client c
V The set of available videos via VoD server S
vc ∈ V The video v ∈ V for which client c is requesting access

bandwidth capacity Be reserved for HAS traffic.
The servers host a set of videos V . Every video v ∈ V has an associated set

of quality representations Qv ⊆ Q. Moreover, every quality representation q ∈ Q
has a bit rate βq . Every client c ∈ C has an associated origin server sc ∈ S, a
unique delivery path Ec ⊆ E from that server, and a video vc ∈ V . The set of
clients that have an edge e ∈ E as part of their delivery path Ec, is represented
by Ce ⊆ C. In summary, Table 3.1 lists the symbols introduced throughout this
section.

3.3.2 ILP formulation

The problem consists of maximizing the QoE over all clients c ∈ C, while adhering
to the edge bandwidth constraints. The solution is characterised by a boolean

IN-NETWORK HAS QUALITY OPTIMIZATION 65

decision matrix A. The element ac,q ∈ A is equal to 1 if quality q ∈ Qvc is
selected for client c ∈ C, and 0 otherwise. The decision variables are subject to the
following two constraints:

∀c ∈ C,∀q ∈ Qvc : ac,q ∈ 0, 1 (3.1)

∀c ∈ C :
∑
q∈Qvc

ac,q = 1 (3.2)

The above constraints state that the decision variables are boolean values and that
only one quality representation can be selected per client.

According to Padhye et al., the maximum achievable throughput B for a TCP
connection subject to a round trip time RTT and maximum window size Wmax,
probability of packet loss p, delayed ACK number of b and average retransmission
timeout T0 can be approximated by the following [26]:

B(p) ≈ min

Wmax

RTT
,

1

RTT
√

2bp
3 + T0 min

(
1, 3
√

3bp
8

)
p(1 + 32p2)

 (3.3)

The maximum achievable TCP throughput for client c is thus limited by its
window sizeWmax,c and itsRTTc. Both parameters can be estimated or measured
at the client and forwarded to the in-network control proxy. When p values are low,
which is the case in fixed networks, the achievable throughput is primarily limited
by the first term. To limit the overhead of acquiring packet loss probabilities for
all clients, only the first part of the TCP estimator is considered. Therefore, the
following constraint is added, limiting the end-to-end achievable throughput for
each client:

∀c ∈ C :
∑
q∈Qc

ac,q × βq ≤
Wmax,c

RTTc
(3.4)

WhenN TCP-connections use the same bottleneck link, Altman et al. state that
the maximum aggregated achievable throughput that can be obtained is a factor of
the link capacity Be [27]:

Bmax ≈
(

1− 1

1 + cN

)
Be (3.5)

Where c = 1+d
1−d with d the fraction with which the send rate is decreased when

congestion arises. This approximation of the maximum achievable throughput is
used to limit the aggregated allocated rate of the different clients:

66 CHAPTER 3

∀e ∈ E :
∑
c∈Ce

∑
q∈Qc

ac,q × βq ≤
(

1− 1

1 + c |C|

)
Be (3.6)

As stated, the objective aims to maximize the global QoE. This is obviously a
broad term that can be interpreted in a multitude of ways. As such, a generic objec-
tive function is proposed that can be adapted to the service provider’s optimization
policy, represented by the function F (·):

max
∑
c∈C

∑
q∈Qvc

F (ac,q) (3.7)

For example, the provider could aim to maximize the total delivered bit rate,
which can be translated into the following objective function:

max
∑
c∈C

∑
q∈Qvc

ac,q × βq (3.8)

The operator could also decide to optimize the fairness among the connected
clients. This can be achieved by adopting proportional fairness, as proposed by
Kelly et al. [28] [29]. A vector of rates Ac = (

∑
q∈Qvc

ac,q × βq, c ∈ C) is pro-
portionally fair if it is feasible, according to Equation (3.4) and (3.6) respectively,
and if for any other feasible vector A∗c , the aggregate of the proportional changes
is zero or negative:

∑
c∈C

A∗c −Ac
Ac

≤ 0 (3.9)

According to Wei et al., the fair bandwidth allocation can be represented by
a local maximum of the logarithmic utility function [30]. Since this function is
differentiable and strictly concave, it has only one maximum, which is therefore
also the global maximum. However, since it is not linear, the model is not longer
an ILP. The objective of a proportionally fair bandwidth allocation can thus be
expressed by:

max
∑
c∈C

log (
∑
q∈Qvc

ac,q × βq) (3.10)

Another objective could be to minimize the number of switches since they
have a negative impact on overall QoE. This requires maintaining a history Hc
of previous quality decisions for each client c ∈ C where hc,q,t = ac,q at time t.
For quality switches, not only the frequency of switching is important, but also the

IN-NETWORK HAS QUALITY OPTIMIZATION 67

distance between quality selections affects the overall quality [5]. Therefore, to
assess the impact of distance in quality, the variation in quality over the historyHc
is taken into account. The following weighted sum is used to model the impact on
switching behavior, where µ represents the average quality, σ introduces a penalty
for quality switching and αs represents a weighing factor used to emphasize either
the impact of quality or the switching behavior:

max αs × µ− (1− αs)× σ (3.11)

Since the decision variables ac,q are binary variables, the calculation of the
objective function can be simplified by calculating µc,q and σc,q for each client c
and it’s associated quality rangeQc. The quality rates are normalized with respect
to the highest quality rate βmax.

∀c ∈ C,∀q ∈ Qv : µc,q =
1

|Hc|+ 1

 βq
βmax

+
∑

hc,t∈Hc

∑
q∈Qc

hc,q,t × βq
βmax

(3.12)

In this way, the use of quadratic terms in the objective function is avoided. The
penalty σ for switching between qualities can be calculated as follows:

∀c ∈ C,∀q ∈ Qv : σc,q =√√√√√ 1

|Hc|+ 1

(q × βq
βmax

− µc,q
)2

+
∑

hc,q,t∈Hc

∑
q∈Qc

(
hc,q,t × βq
βmax

− µc,q
)2

(3.13)

The total objective can then be expressed as:

max
∑
c∈C

∑
q∈Qv

ac,q × (αs × µc,q + (1− αs)× σc,q) (3.14)

3.4 Algorithms

3.4.1 Centralized ILP formulation

The ILP formulation described in Section 3.3.2 can be used to optimize the quality
assignments using a centralized controller. It requires as input the knowledge of
the delivery network topology (N , E), link constraints Be, the set of clients Ce

68 CHAPTER 3

for which the VoD traffic traverses an edge e ∈ E and the characteristics of these
clients (Wmax,c, RTTc). Solving said ILP formulation will yield a set of optimal
quality assignments ac,q for each client c and quality level q. These assignments
are optimal in the sense that they maximize the objective

∑
c∈C
∑
q∈Q F (ac,q)

subject to the constraints described in Equations (3.1), (3.2), (3.4) and (3.6). As it
is assumed that there is a constant bitrate reserved for HAS traffic on each edge,
the Centralized optimization is executed each time a newly joined client requests
a manifest file or if a client becomes inactive by leaving the delivery network.

3.4.2 Distributed ILP formulation

The number of constraints for the centralized ILP grows with an increasing depth
of the service delivery topology tree. Consider a topology tree with k child nodes
per node and l levels (thus l = logk|C| + 1), the total number of edge constraints
is then equal to

∑l−1
i=0 k

i which can be written as 1−kl
1−k . This leads to an exponen-

tially increasing model size with the number of levels in the delivery tree, affecting
the calculation time. Since the proposed approach would be deployed in an opera-
tional setting, the decision process should be able to determine quality allocations
in real-time. Therefore, this chapter also proposes a distributed approach, where
each proxy locally determines the optimal allocation constrained by the local edge
capacities and where the global solution is an aggregation of these local solutions.
The advantages of this approach are threefold. First, each node only needs to have
local information on the properties of the upstream edge en− and the video flows
for clients Cn traversing this node. Second, since each proxy locally solves the op-
timization problem, the number of constraints does not increase with the tree size,
leading to small local ILP models. Third, proxies residing at the same level in
the topology tree can optimize their local ILP models in parallel, leading to faster
global optimization.

The distributed ILP algorithm uses a bottom-up approach for the distributed
solution where each node n locally optimizes the allocation problem and forwards
the solution to its predecessor n− in the delivery tree. The solution at node n
is constrained by the limitations of it’s successors Nn+ . These limitations are
determined by the combination of the optimal solutions an

+

c,q of each node n+ ∈
Nn+ . For each client c ∈ Cn, sqn,c determines the maximum quality a client is
able to receive according to the successors of n. The local ILP formulation is then
constrained by (3.1) and (3.2) as before but only for c ∈ Cn, while the following
determines that the selected quality for a client c is not allowed to violate the
limitations determined by the successors in sqn,c:

∀c ∈ Cn :
∑

q∈Qvc :q>sqn,c

ac,q = 0 (3.15)

IN-NETWORK HAS QUALITY OPTIMIZATION 69

Furthermore, the total consumed bandwidth for the allocation is not allowed to
exceed the HAS capacity Ben− for the edge en− , connecting n to its predecessor
n−. ∑

c∈Cn

∑
q∈Qvc

ac,q × βq ≤ Ben− (3.16)

The calculation time can be limited by taking advantage of some specific
properties of the problem. First, since the distributed optimization is only per-
formed when a client joins or leaves the service delivery network, only the proxies
p ∈ Pc on the delivery path for client c are required to perform local optimization.
For other proxies, the previous optimal solutions remain valid since there are no
changes in (3.15) and (3.16). This limits the number of local optimizations during
the execution of the distributed algorithm to the number of levels l = logk |C|+ 1.
Second, the solutions determined by the predecessors of n are optimal and since
these solutions are independent, their combination is optimal. This means that if
the combination of the solutions an

+

c,q is feasible, there is no need to perform local
optimization. In the best case, where there is only one bottleneck in the network,
the number of local optimization steps is thus reduced to 1. For the worst case sce-
nario, where the upstream bottleneck becomes tighter at every node, the maximum
number of local optimizations is limited by l = logk |C|+ 1 as before.

There is a communication overhead when using the distributed optimization,
which requires sending a list of clients for which the video traffic traverses the node
and the decision on the quality level per client. Since this list (or any combination
made of it by any node) contains at most n entries, with n the number of connected
clients, the number of required bits per client entry is dlog2 ne to uniquely identify
the clients and dlog2 qe to identify their selected quality with q the highest number
of available qualities. For each level in the topology, the information exchanged
will thus be equal to n (dlog2 ne+ dlog2 qe) bits and since logkn+1 is the number
of levels, the total information exchange is n(dlog2 ne+ dlog2 qe) logk n. If there
are 1000000 clients in the network and k is equal to 10, then the total communica-
tion overhead is 16.5 MB per optimization. If the lowest quality representation is
1Mbps, the total amount of traffic flowing through the network per second is in the
order of Tbps, leading to a negligible communication overhead for the optimiza-
tion.

3.4.3 Relaxed distributed Linear Programming (LP) formula-
tion

Solving the distributed ILP optimally in a single node can however lead to exe-
cution times in the order of seconds when the number of VoD flows crossing that
node becomes large. The execution speed can be increased at the expense of a

70 CHAPTER 3

sub-optimal solution by moving from an Integer LP formulation to a Relaxed LP
formulation by relaxing the boolean constraints on the variables ac,q in (3.1) by
only requiring ac,q to belong to the interval [0, 1]:

∀c ∈ C,∀q ∈ Qvc : 0 ≤ ac,q ≤ 1 (3.17)

1: for all c ∈ C do
2: Proximityc ← minq∈Qvc (1− ac,q)
3: Contributionc ←

∑
q∈Qvc

F (ac,q)

4: mqc ← maxq∈Qvc (ac,q > 0)
5: end for
6: Sort(ac,q , P roximityc, Contributionc)
7: sol← 0
8: for all c ∈ C do
9: B ← B +

∑
q∈Qvc

ac,q × βq
10: MaxObj ← 0
11: setq ← 0
12: for all q ∈ {0,mqc} do
13: if B ≥

∑
q∈Qvc

ac,q × βq and
∑

q∈Qvc
F (ac,q) > MaxObj then

14: MaxObj ←
∑

q∈Qvc
F (ac,q)

15: setq ← q
16: end if
17: end for
18: solc,setq ← 1
19: B ← B − βsetq
20: end for

Algorithm 3.1: Overview of the heuristic to transform a floating-point solution to an integer
solution.

This relaxation can be solved in polynomial time but at the cost of optimal-
ity. The variables ac,q do not longer unambiguously define which quality each
client is allowed to download, therefore a heuristic is required to transform the
optimal floating point solution into an integer solution. Algorithm 3.1 shows an
overview of the heuristic procedure. First, the clients of the solution matrix A are
sorted according to two criteria: first on the proximity of the floating point solu-
tion to the integer solution and subsequently on the contribution to the objective
(line6). The proximity of a client solution is defined as Pc = minq∈Qvc (1− ac,q),
where Pc = 0 indicates that the floating point client solution can be immedi-
ately transformed into an integer client solution (line 2). The contribution to the
objective is calculated as

∑
q∈Qvc

F (ac,q) and gives an indication of the weight
of a single client in the global objective (line 3). Second, the maximum qual-
ity each client is allowed to download determined by the solution ac,q , is set to
mqc = maxq∈Qvc (ac,q > 0) (line 4). This assures that the limitations of the
successors Nn+ are not violated which could lead to an infeasible solution further
down the delivery tree. Third, for each client c ∈ Cn their contribution to the

IN-NETWORK HAS QUALITY OPTIMIZATION 71

constraint is calculated as
∑
q∈Qvc

ac,q × βq and added to the budget B (line 9).
Then, the following problem is optimized for client c (line 12 to 19):

max
∑
q∈Qvc

F (ac,q) (3.18)

subject to
∑
q∈Qvc

ac,q × βq < B (3.19)

ac,q ∈ {0, 1}∀q ∈ Qvc . (3.20)

3.5 Performance Evaluation

3.5.1 Experiment setup

A VoD HAS scenario was implemented by using an NS3 based simulation frame-
work, capable of the transmission of HAS video [25]. This framework has been
extended with support for QoE management at both the servers and the proxies.
For the HAS Clients, the AVC MSS algorithm is used, which is based on the im-
plementation of an open source version of the algorithm of the Microsoft Smooth
Streaming (MSS) video player9 and is extensively described by Famaey et al. [11].
The server-based traffic shaping method proposed by Akhshabi et al. was also im-
plemented in combination with AVC MSS and is referred to as AVC MSS Rate
Controlled [24]. This approach tries to reduce quality oscillations when multiple
clients compete for bandwidth, by dynamically adjusting the shaping rate when
oscillations are detected. For further implementation details, the reader is referred
to the paper by Akhshabi et al. [24]. Furthermore, an additional client heuristic was
implemented, which downloads each segment using the QoE management quality
decision and checks if these decisions are feasible, given the measured through-
put at the client. If the measurements indicate that the proposed quality is not
achievable, the proposed client heuristic will select the highest sustainable qual-
ity based on the local throughput measurements. The aforementioned heuristic is
referred to as AVC Steered. Both client heuristics dispose of a buffer of 10 sec-
ond, thus accommodating space for 5 segments. Both client implementations use
persistent connections to avoid the impact incurred by the setup and teardown of
TCP-connections. The congestion window at the server was limited to avoid un-
fair sharing of the bottleneck bandwidth [31]. The configured congestion window
allows transmitting segments at a rate that is two times bigger than the maximum
bitrate of the stream.

As discussed before, the delivery network is modeled as a tree-based topol-
ogy, where a video server S streams videos to a set of clients C. The number of

9Source available from https://slextensions.svn.codeplex.com/svn/trunk/SLExtensions/
AdaptiveStreaming

72 CHAPTER 3

Figure 3.2: Network topology, modeling a typical video service delivery network.

Table 3.2: Overview of the quality layers for the Big Buck Bunny video.

Quality Layer Average Bitrate Average PSNR Average SSIM
Index (kbps) (dB)

0 300 32.04 0.8746
1 427 32.72 0.8861
2 608 34.41 0.9108
3 866 35.71 0.9249
4 1233 36.88 0.9387
5 1636 37.64 0.9469
6 2436 40.07 0.9608

branches on each level was set to k, leading to l = logk|C| + 1 levels in the tree.
For each level the available HAS bandwidth was varied depending on the bottle-
neck factor BF . For each level the bandwidth BWi = (k ∗ BF)l−i−1 ∗ BWl−1,
meaning that if BF = 0.8, l = 4, k = 5, BWl−1 = 4Mbps, the bandwidth for
a edge at level 1 is BW1 = 64Mbps. Figure 3.2 gives a graphical overview of
the service delivery network topology. Clients are started using a Weibull startup
process with shape 2.5 and mean of 300s. The average RTT for each client c is
set to RTTc = 40ms unless stated otherwise [32]. The Big Buck Bunny video10

was encoded at 7 different quality rates and divided into 200 segments with an
average duration of 2 seconds. Table 3.2 gives an overview of the different quality
layers, their associated bitrates, average Peak Signal-to-noise Ratio (PSNR) and
Structural Similarity (SSIM) values. During the evaluations the SSIM metric in-
troduced by Wang et al. is used, which is motivated by the assumption that human
visual perception is highly adapted for extracting structural information. It has
been shown to have a high correlation with image [33] and video quality [34].

10Big Buck Bunny available from http://www.bigbuckbunny.org/

IN-NETWORK HAS QUALITY OPTIMIZATION 73

3.5.2 Implementation details

The IBM CPLEX11 solver was used to implement and solve the proposed binary
ILP-problems for both the centralized and distributed algorithm, as well as the
relaxed distributed LP-problem. Since NS3 is an event-based simulation frame-
work, the execution times of the optimizations were measured as texec and used
to schedule the release of the calculated configuration at tcurrent + texec. The
different experiments are executed using two modes: Delayed ensuring that the
configurations only become available when optimization is finished and Optimal
which is agnostic to execution times and installs the configuration immediately.

However, since executions can take several seconds, clients can join during this
period, leading to two implications for the system: first, since there is no immedi-
ate quality configuration, the Steered Client heuristic will not be able to select the
suited quality and second, new optimizations, which take into account more recent
network configurations are delayed by the execution of the previous one. Both
problems can be solved by performing a heuristic optimization first, allowing to
quickly install a suboptimal quality configuration and replace it with the optimal
configuration when it becomes available. This also allows us to preempt a QoE
optimization when additional requests lead to a changed environment and the opti-
mal solution would be outdated. The heuristic optimization checks if the previous
limitations in combination with the additional client are feasible for each edge e,
if not the client qualities for c ∈ Ce are lowered by one level until the solution is
feasible again.

3.5.3 Evaluation details

The performance of the centralized ILP, distributed ILP and relaxed distributed LP
was evaluated in terms of service assurance, quality delivery and oscillations. Also
the impact of the different approaches on the decision time was quantified. The
network size, the number of bottlenecks, the optimization objective, Round Trip
Time (RTT) and number of servers were varied. During the evaluations, the max-
imization of the video bitrates, defined by (3.8), was used as a network provider’s
objective. The centralized and distributed ILP optimization are referred to as Cen-
tralized Exact and Distributed Exact respectively, while the relaxed optimization
is indicated as Distributed Relaxed. All experiments use the quick optimization
heuristic, providing a preliminary decision on the selected qualities, which is up-
dated when the optimization calculation is finished. Therefore these results are
installed with a delay and are referred to as Delayed decisions. When it is ex-
plicitly stated that the configurations are installed based on the Optimal selection,
the graphs show the results that could be achieved with the optimal configurations

11IBM ILOG CPLEX Optimizer: http://www.ibm.com/software/integration/optimization/cplex-
optimizer/

74 CHAPTER 3

4 8 16 32 64 128
Number Of Clients

0

500

1000

1500

2000

2500

3000

3500

4000

D
e
ci

si
o
n
 T

im
e
 (

m
s)

AVC Steered Distributed Exact

AVC Steered Centralized Exact

AVC Steered Distributed Relaxed

(a) Impact on average decision time

4 8 16 32 64 128
Number Of Clients

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

A
ve

ra
g
e
 P

la
ye

d
 Q

u
a
lit

y
 R

a
te

 (
M

b
p
s)

AVC MSS

AVC MSS Rate Controlled

AVC Steered Centralized Exact Optimal

AVC Steered Centralized Exact Delayed
AVC Steered Distributed Relaxed

(b) Impact on average played quality bitrate

4 8 16 32 64 128
Number Of Clients

0

5

10

15

20

25

N
u
m

b
e
r

o
f
Q

u
a
lit

y
S

w
it
ch

e
s

AVC MSS

AVC MSS Rate Controlled

AVC Steered Centralized Exact Optimal

AVC Steered Centralized Exact Delayed
AVC Steered Distributed Relaxed

(c) Impact on average number of quality switches

4 8 16 32 64 128
Number Of Clients

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

A
ve

ra
g
e
 S

S
IM

AVC MSS

AVC MSS Rate Controlled

AVC Steered Centralized Exact Optimal

AVC Steered Centralized Exact Delayed
AVC Steered Distributed Relaxed

(d) Impact on average SSIM

Figure 3.3: Impact of number of clients, using a topology with k = 2, BWl−1 = 3Mbps,
BF = 0.9.

in the presence of network variations and buffering. All of the following results
are averaged over n = 10 iterations, with the graphs showing the 95% confidence
intervals [X̄ − 1.96 σ√

n
, X̄ + 1.96 σ√

n
] [35].

3.5.4 Impact of number of clients

In this section, the deployment of in-network quality adaptation algorithms is mo-
tivated for HAS delivery networks and the impact of the delivery tree size on the
in-network adaptation performance is quantified. For the following experiments
the number of child nodes is set to k for each node to 2 and the number of clients
|C| is varied in the interval [2, 128], the bandwidth on the first link BWl−1 is set to
3Mbps, while the bottleneck factor is set to BF = 0.9, leading to a bottleneck at
the server S of approximately 184Mbps.

Figure 3.3(a) illustrates the impact of the number of clients on the QoE opti-
mization execution times. For both the Centralized Exact and Distributed Exact
optimization, the execution times show a logarithmic increase with the number
of clients and thus a linear increase with respect to the number of levels in the

IN-NETWORK HAS QUALITY OPTIMIZATION 75

topology tree. For 7 levels, the average optimization time for the Centralized Ex-
act algorithm is 3563.34ms, for the Distributed Exact algorithm it is 1881.75ms,
while the Distributed Relaxed algorithm only requires 23.52ms (including an aver-
age one-way delay of 20ms for forwarding local solutions). These results indicate
that only the distributed heuristic approach is feasible for medium to large size
problems.

The impact of the in-network quality management on the average bitrate, the
number of switches and average quality in terms of SSIM is shown in Figure 3.3(b),
3.3(c) and 3.3(d) respectively. The results show a significant improvement on the
average played bitrate over traditional client-based heuristics ranging from 14%
to 23%, while the number of switches can be reduced with a factor of 1.5 to 5.
Since client-based heuristics have only a local view on the network situation, they
require safety measures to avoid buffer starvations and quality oscillations, result-
ing in underestimations of the available throughput and thus underutilization of the
available bandwidth. Combining a client-driven approach with server-based traf-
fic shaping allows maintaining the same quality as with a client-driven approach,
while reducing the number of switches up to a factor 2.5. In-network quality adap-
tation is able to react more quickly to changing network environments and allows
to fully utilize the available bandwidth. The Distributed Relaxed optimization
is able to reduce the number of switches with a factor 5 compared to the tradi-
tional client-based heuristic and with a factor 2.5 when traditional client-based
approaches are combined with server-based rate shaping. The Centralized Exact
Delayed optimization is able to achieve a slightly higher quality than the Dis-
tributed Relaxed optimization, but shows an increased number of switches which
can be accounted to the longer execution times causing the clients to choose sub-
optimal quality configurations while waiting for the optimal configuration. The
Centralized Exact Optimal optimization shows the theoretical configuration that
could be achieved in absence of the long execution times. These results show a
penalty of about 3% in terms of average quality rate when using the Distributed Re-
laxed optimization due to suboptimal solutions attained by the rounding heuristic.
As shown in Figure 3.3(d), also the achieved average SSIM, is slightly lower for
the Distributed Relaxed optimization. The average number of switches is slightly
higher for the Centralized Exact Optimal optimization when compared to the Dis-
tributed Relaxed heuristic. The Bandwidth optimization objective does not take
into account the switching penalty explicitly, while the Distributed Relaxed opti-
mization reuses local solutions which are still feasible to calculate the next optimal
solution, inherently minimizing the difference between two subsequent solutions.
For further discussion on how this switching penalty could be included during the
optimization, the reader is referred to Section 3.5.6.

The aforementioned results confirm the advantages of adopting in-network
quality adaptation: First, the average played quality can be improved compared

76 CHAPTER 3

0 1 2 3 4
Number Of Bottlenecks

0

200

400

600

800

D
e

c
is

io
n

 T
im

e
 (

m
s)

AVC Steered Distributed Exact

AVC Steered Centralized Exact

AVC Steered Distributed Relaxed

Figure 3.4: Impact of number of bottlenecks in the topology on the average decision time,
using a topology with k = 5, BWl−1 = 2Mbps, |C|= 125 and l = 4.

to the quality delivered by traditional client heuristics. Second, also the number
of quality switches can be significantly reduced. Furthermore, the Distributed Re-
laxed heuristic is able to calculate a suboptimal configuration at low execution cost,
making the approach viable for real-time delivery systems. The fast calculation of
the optimal configuration also leads to fewer quality switches, since the configura-
tions can be installed quickly and there is no need to install suboptimal temporary
configurations as is the case with both Centralized Exact Delayed optimization.

3.5.5 Impact of number of bottlenecks

As indicated in Section 3.4.2, the number of bottlenecks has an impact on the
behavior of the Distributed Exact optimization. The topologies for these experi-
ments were created by introducing bottlenecks in a top-down manner and setting
the bottleneck factor BFl to 1 if there is no bottleneck at level l and BFl = 0.8

otherwise. Figure 3.4 confirms a linear increase in execution time for both the
Exact and Relaxed optimization with an increasing number of bottlenecks. The
Centralized Exact optimization however, takes 300ms to execute, even in the ab-
sence of a bottleneck, while the Distributed optimization is only performed when
the configuration assigning maximum quality to each client becomes infeasible,
leading to an execution time of on average 20ms, consisting solely out of the de-
lay introduced by forwarding the local solutions.

3.5.6 Impact of optimization objective

An operator can optimize different policies when offering a HAS streaming service
such as maximizing the total bitrate over all streams (Equation (3.8)), maximizing
the proportional fairness across the streaming sessions (Equation (3.10)) or maxi-
mizing the QoE as a weighted sum of the total bitrate and bitrate variations (Equa-
tion (3.14)). Decreasing the factor αs puts the emphasis on decreasing the impact

IN-NETWORK HAS QUALITY OPTIMIZATION 77

0.2 0.4 0.6 0.8 1.0

Switching Alpha

0.88

0.90

0.92

0.94

0.96

0.98

1.00

J
a
in

 F
a
ir
n
e
s
s

AVC MSS

AVC MSS Rate Controlled

AVC Steered Centralized Exact Bandwidth

AVC Steered Centralized Exact Proportional Fairness
AVC Steered Centralized Exact Switches

(a) Impact on Jain Fairness

0.2 0.4 0.6 0.8 1.0

Switching Alpha

2.05

2.10

2.15

2.20

2.25

A
ve

ra
g
e
 P

la
ye

d
 Q

u
a
lit

y
 R

a
te

 (
M

b
p
s
)

AVC MSS

AVC MSS Rate Controlled

AVC Steered Centralized Exact Bandwidth

AVC Steered Centralized Exact Proportional Fairness
AVC Steered Centralized Exact Switches

(b) Impact on average played quality bitrate

0.2 0.4 0.6 0.8 1.0

Switching Alpha

0

10

20

30

40

50

60

70

N
u
m

b
e
r

o
f
Q

u
a
lit

y
S

w
it
ch

e
s

AVC MSS

AVC MSS Rate Controlled

AVC Steered Centralized Exact Bandwidth

AVC Steered Centralized Exact Proportional Fairness
AVC Steered Centralized Exact Switches

(c) Impact on average number of quality switches

0.2 0.4 0.6 0.8 1.0

Switching Alpha

0.957

0.958

0.959

0.960

0.961
A

ve
ra

g
e
 S

S
IM

AVC MSS

AVC MSS Rate Controlled

AVC Steered Centralized Exact Bandwidth

AVC Steered Centralized Exact Proportional Fairness
AVC Steered Centralized Exact Switches

(d) Impact on average SSIM

Figure 3.5: Impact of the Switching Alpha αs, using a topology with k = 5, BWl−1 =
4Mbps, BF = 0.8, |C|= 125 and l = logk|C|+ 1 = 4.

of switches, while increasing αs increases the impact of bitrate optimization. To
quantitatively evaluate the fairness degree of the different optimization schemes,
the Jain’s Fairness Index is used [36]. This index states that if a system allocates
resources to |C| users, where user c receives a rate allocation bc, the fairness index
of the system is defined to be:

J =

(
∑
c∈C

bc)
2

|C|
∑
c∈C

bc
2 (3.21)

Figure 3.5(a) shows the impact of these different optimization goals on the av-
erage Jain Fairness in function of the switching factor αs. Optimizing the total
bitrate allocation is able to achieve a fairness index closer to 1 then AVC MSS, in-
dicating a fairer distribution of the available throughput among the clients. Adding
rate shaping at the server allow increasing the fairness for AVC MSS at a slightly
increased quality and a reduction with a factor 1.7 in terms of number of switches.
When optimizing for proportional fairness, the in-network optimization is able

78 CHAPTER 3

0 10 20 30 40 50 60 70 80 90

RTT (ms)

0

10

20

30

40

D
e
ci

si
o
n
 T

im
e
 (

m
s)

AVC Steered Distributed Relaxed

(a) Impact on average buffer starvations

0 10 20 30 40 50 60 70 80 90

RTT (ms)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

A
ve

ra
g
e
 P

la
ye

d
 Q

u
a
lit

y
 R

a
te

 (
M

b
p
s)

AVC MSS

AVC MSS Rate Controlled

AVC Steered Distributed Relaxed

AVC Steered Distributed Relaxed Decision

(b) Impact on average played quality bitrate

0 10 20 30 40 50 60 70 80 90

RTT (ms)

0

2

4

6

8

10

N
u
m

b
e
r

o
f
Q

u
a
lit

y
S

w
it
ch

e
s

AVC MSS

AVC MSS Rate Controlled

AVC Steered Distributed Relaxed

(c) Impact on average number of quality switches

Figure 3.6: Impact of the RTT (ms), using a topology with k = 5, BWl−1 = 3Mbps,
BF = 0.8, |C|= 125 and l = logk|C|+ 1 = 4.

to increase the fairness index at the cost of slightly decreasing the average qual-
ity as indicated in Figure 3.5(b) and 3.5(d) and increasing the average number of
switches from 18 to 26. This indicates the trade-off between maximizing fairness
and total bitrate allocation.

When the impact of the number of switches increases (by decreasing αs), the
fairness index drops. This can be attributed to the fact that the in-network opti-
mization will prefer to retain the same quality level for each client at any moment
in time, leading to a number of clients downloading the highest quality, while
newly arrived streaming sessions are assigned a lower quality, decreasing the total
fairness. As Figure 3.5(c) shows, the in-network adaptation is able to reduce the
number of quality switches compared to AVC MSS for all optimization goals. Ex-
plicitly minimizing the number of switches allows further reduction of the number
of switches from 43% to 30% at the cost of decreasing quality.

IN-NETWORK HAS QUALITY OPTIMIZATION 79

…"

Legend"

Figure 3.7: Network topology, modeling a typical video service delivery network with mul-
tiple servers.

3.5.7 Impact of delay

The in-network optimization uses an approximation of the achievable throughput
as an upper bound for each link. Since RTT has the biggest impact on the avail-
able throughput, the RTT was varied and the impact on streaming performance
was evaluated. Figure 3.6(b) shows how both the client-side and in-network as-
sisted quality decision based clients suffer from a quality degradation when de-
lay increases. For low RTT (10 ms) the in-network approach is able to increase
the quality by 10.8% by deploying in-network quality decisions, while for higher
RTTs (80ms), the gain decreases to 8.9%. This slight performance decrease can be
attributed to the fact that an approximation of the achievable throughput is used.
As discussed in previous work [12], HAS quality decreases quickly when RTTs
increase due to the subsequent download-request cycles. Using HTTP pipelining
can reduce the negative impact of the RTT on quality, by eliminating the idle time
between two successive downloads. Figure 3.6(a) illustrates the impact of RTT
on the decision times. Since the Distributed optimization requires a bottom up
propagation of intermediary solutions, the decision times are also impacted by in-
creasing delays. Figure 3.6(b) shows that for increasing delay, the performance of
the in-network decisions slightly decreases when compared to the optimal deci-
sion, due to the network delay increasing the decision time.

3.5.8 Impact of multiple servers

To analyze the impact of multiple servers on the in-network optimization, a typical
video service delivery network is modeled with multiple servers as illustrated in
Figure 3.7. The Distributed optimization was modified to also support this type of
topologies by first performing two types of bottom-up optimizations, one taking no
limitations as input and a second optimization taking into account the limitations
of performing a local optimization between Gateway gw and servers first. Both

80 CHAPTER 3

0 1 2 3 4 5 6 7 8 9
Number Of Servers

0.00

0.01

0.02

0.03

0.04

0.05

B
u

ff
e

r
S

ta
rv

a
ti
o

n
 (

s
)

AVC MSS

AVC MSS Rate Controlled

AVC Steered Centralized Exact Optimal

AVC Steered Centralized Exact Delayed
AVC Steered Distributed Relaxed

(a) Impact on average buffer starvations

0 1 2 3 4 5 6 7 8 9
Number Of Servers

1.25

1.30

1.35

1.40

1.45

1.50

1.55

A
ve

ra
g

e
 P

la
ye

d
 Q

u
a

lit
y
 R

a
te

 (
M

b
p

s
)

AVC MSS

AVC MSS Rate Controlled

AVC Steered Centralized Exact Optimal

AVC Steered Centralized Exact Delayed
AVC Steered Distributed Relaxed

(b) Impact on average played quality bitrate

0 1 2 3 4 5 6 7 8 9
Number Of Servers

0

5

10

15

20

25

30

35

40

N
u

m
b

e
r

o
f

Q
u

a
lit

y
S

w
it
ch

e
s

AVC MSS

AVC MSS Rate Controlled

AVC Steered Centralized Exact Optimal

AVC Steered Centralized Exact Delayed
AVC Steered Distributed Relaxed

(c) Impact on average number of quality switches

0 1 2 3 4 5 6 7 8 9
Number Of Servers

0.930

0.935

0.940

0.945

A
v
e

ra
g

e
 S

S
IM AVC MSS

AVC MSS Rate Controlled

AVC Steered Centralized Exact Optimal

AVC Steered Centralized Exact Delayed
AVC Steered Distributed Relaxed

(d) Impact on average SSIM

Figure 3.8: Impact of multiple servers with balanced load and the Number of clients, using
a topology with BWl−1 = 2Mbps, BF = 0.8 and |C|= 200.

approaches yield feasible solutions, out of which the optimal one is selected. The
number of servers n was varied and the link bandwidths (BWSG) were scaled to
reflect this situation. 20 content items were created and the clients were distributed
over these content items using a Zipf distribution with α = 0.81 to mimic the
Internet popularity [37]. The content items were then assigned to the different
server instances to evenly distribute the load among them. Figure 3.8(a) illustrates
the average buffer starvation in seconds, showing how the in-network optimization
is able to deliver the video stream without buffer starvations, whereas AVC MSS
suffers some minor frame freezes due to competing behavior.

The average quality is shown in Figure 3.8(b) and 3.8(d) which indicates that
the in-network optimization is able to yield a higher average quality than AVC MSS.
Adding rate shaping at the server, allows increasing the quality for AVC MSS when
the number of servers increases. Up to 4 servers, the Distributed Relaxed optimiza-
tion is able to outperform the Centralized Exact Delayed optimization due to the
installation delay of the former approach, which was discussed earlier. The Dis-
tributed Relaxed decision however is suboptimal compared to the Centralized Ex-
act Optimal decision. This is caused by the rounding heuristic and the distributed

IN-NETWORK HAS QUALITY OPTIMIZATION 81

0 1 2 3 4 5 6 7 8 9
Number Of Servers

0.0

0.1

0.2

0.3

0.4

0.5

B
u

ff
e

r
S

ta
rv

a
ti
o

n
 (

s
)

AVC MSS

AVC MSS Rate Controlled

AVC Steered Centralized Exact Optimal

AVC Steered Centralized Exact Delayed
AVC Steered Distributed Relaxed

(a) Impact on average buffer starvations

0 1 2 3 4 5 6 7 8 9
Number Of Servers

1.0

1.1

1.2

1.3

1.4

1.5

A
ve

ra
g

e
 P

la
ye

d
 Q

u
a

lit
y
 R

a
te

 (
M

b
p

s
)

AVC MSS

AVC MSS Rate Controlled

AVC Steered Centralized Exact Optimal

AVC Steered Centralized Exact Delayed
AVC Steered Distributed Relaxed

(b) Impact on average played quality bitrate

0 1 2 3 4 5 6 7 8 9
Number Of Servers

0

5

10

15

20

25

30

N
u

m
b

e
r

o
f

Q
u

a
lit

y
S

w
it
ch

e
s

AVC MSS

AVC MSS Rate Controlled

AVC Steered Centralized Exact Optimal

AVC Steered Centralized Exact Delayed
AVC Steered Distributed Relaxed

(c) Impact on average number of quality switches

0 1 2 3 4 5 6 7 8 9
Number Of Servers

0.90

0.91

0.92

0.93

0.94

A
v
e

ra
g

e
 S

S
IM

AVC MSS

AVC MSS Rate Controlled

AVC Steered Centralized Exact Optimal

AVC Steered Centralized Exact Delayed
AVC Steered Distributed Relaxed

(d) Impact on average SSIM

Figure 3.9: Impact of multiple servers with unbalanced load and the Number of clients,
using a topology with BWl−1 = 2Mbps, BF = 0.8 and |C|= 200.

approach, which does not propagate multiple identical solutions which could yield
more optimal solutions upwards the stream. Propagating multiple similar solu-
tions, could benefit the distributed approach, at the cost of increased complexity
and network communication. With respect to the number of switches, the Dis-
tributed Relaxed approach outperforms the AVC MSS algorithm, AVC MSS with
rate shaping and Centralized Delayed optimization with approximately a factor
between [2.1, 2.3], [1.5, 1.7] and [3.3, 4.1] respectively.

During the previous experiments the load was evenly distributed across the dif-
ferent servers. During the following experiments, the content items were assigned
to the different server instances following the pareto principle: 80% of the content
items are stored on 20% of the servers. This results in an unevenly distributed
request pattern across the servers. The Distributed approach is not able to achieve
the same performance as the Centralized optimization. This can be attributed to
the fact that an optimal resource allocation upstream of the gateway does not nec-
essarily translate into a feasible and optimal solution downstream of the gateway
and vice versa. Figure 3.9(b) shows the impact of adding multiple servers with
uneven load distribution on the average achieved quality rate. This shows how the

82 CHAPTER 3

performance of the Distributed optimization degrades when the number of servers
increases due to the suboptimal quality decisions. For 8 servers, the performance
of the Distributed optimization drops to about 88% of the optimal solution. Fig-
ure 3.9(a) and (c) show the impact of increasing the number of servers on the buffer
starvations and quality switches respectively. Both in-network approaches are able
to maintain a fluent playout, while for AVC MSS, the average freeze time is about
0.4s. For 8 servers, the average number of switches for AVC MSS amounts to 23,
which can be reduced to 19 when applying server-based rate shaping. Enabling
the Centralized in-network approach allows reducing the number of switches to 6.
The Distributed approach even further decreases the average number of switches
to 3.3, but at the cost of reduced quality compared to the Centralized optimization,
as was mentioned before. This shows that an unbalanced spread across the con-
tent servers impacts the performance of the Distributed approach compared to the
Centralized optimization.

3.6 Conclusion
In this chapter, an in-network Quality of Experience (QoE) management frame-
work is proposed for Video on Demand (VoD) HTTP Adaptive Streaming (HAS)
in a managed network environment. The adaptation algorithms enable the network
providers to control the quality selection at the client. This allows them to increase
the average played quality with at least 14% compared to traditional client-based
heuristics. Moreover, due to the in-network management, the number of quality
oscillations can be reduced with a factor 5 and with a factor 2.5 when traditional
client-based approaches are combined with server-based rate shaping. This chapter
also discussed different variants of the in-network QoE management: an optimal
Centralized ILP, a Distributed ILP and a relaxation of the Distributed algorithm.
The impact of the number of clients, the Absolute Gap for the integer optimization
and the number of bottlenecks were quantified. The impact of the delayed in-
stallation of the configurations showed that, even though the Distributed Relaxed
optimization yields suboptimal configurations, the immediate installation of these
configurations allows them to yield higher average quality at a significantly lower
number of switches compared to the Exact optimization algorithms.

IN-NETWORK HAS QUALITY OPTIMIZATION 83

References

[1] X. Wang. Network-Assistance and Server Management in Adaptive Stream-
ing on the Internet. In Proceedings of the Fourth W3C Web and TV Work-
shop, 2014.

[2] N. Bouten, S. Latré, W. Van de Meerssche, B. De Vleeschauwer,
K. De Schepper, W. Van Leekwijck, and F. De Turck. A Multicast-Enabled
Delivery Framework for QoE Assurance of Over-The-Top Services in Mul-
timedia Access Networks. Journal of Network and Systems Management,
21(4):677–706, 2013.

[3] S. Akhshabi, A. C. Begen, and C. Dovrolis. An Experimental Evaluation
of Rate-adaptation Algorithms in Adaptive Streaming over HTTP. In Pro-
ceedings of the Second Annual ACM Conference on Multimedia Systems
(MMSys), pages 157–168, 2011.

[4] S. Akhshabi, L. Anantakrishnan, A. C. Begen, and C. Dovrolis. What Hap-
pens when HTTP Adaptive Streaming Players Compete for Bandwidth? In
Proceedings of the International Workshop on Network and Operating Sys-
tem Support for Digital Audio and Video (NOSSDAV), pages 9–14, 2012.

[5] D. C. Robinson, Y. Jutras, and V. Craciun. Subjective Video Quality As-
sessment of HTTP Adaptive Streaming Technologies. Bell Labs Technical
Journal, 16(4):5–23, 2012.

[6] S. Benno, J. O. Esteban, and I. Rimac. Adaptive streaming: The network
HAS to help. Bell Labs Technical Journal, 16(2):101–114, 2011.

[7] V. Krishnamoorthi, N. Carlsson, D. Eager, A. Mahanti, and N. Shahmehri.
Helping Hand or Hidden Hurdle: Proxy-Assisted HTTP-Based Adaptive
Streaming Performance. In Proceedings of the IEEE International Sympo-
sium on Modelling, Analysis & Simulation of Computer and Telecommuni-
cation Systems (MASCOTS), pages 182–191, 2013.

[8] T. Stockhammer. Dynamic Adaptive Streaming over HTTP – Standards and
Design Principles. In Proceedings of the Second Annual ACM Conference
on Multimedia Systems (MMSys), pages 133–144, 2011.

[9] C. Liu, I. Bouazizi, M. M. Hannuksela, and M. Gabbouj. Rate adaptation
for dynamic adaptive streaming over HTTP in content distribution network.
Signal Processing: Image Communication, 27(4):288 – 311, 2012.

[10] T. Andelin, V. Chetty, D. Harbaugh, S. Warnick, and D. Zappala. Quality
Selection for Dynamic Adaptive Streaming over HTTP with Scalable Video

84 CHAPTER 3

Coding. In Proceedings of the 3rd Multimedia Systems Conference (MM-
Sys), pages 149–154, 2012.

[11] J. Famaey, S. Latré, N. Bouten, W. Van de Meerssche, B. De Vleeschauwer,
W. Van Leekwijck, and F. De Turck. On the merits of SVC-based HTTP
Adaptive Streaming. In Proceedings of the IFIP/IEEE International Sympo-
sium on Integrated Network Management (IM), pages 419–426, 2013.

[12] N. Bouten, S. Latré, J. Famaey, F. De Turck, and W. Van Leekwijck. Min-
imizing the impact of delay on live SVC-based HTTP adaptive streaming
services. In Proceedings of the IFIP/IEEE International Symposium on Inte-
grated Network Management (IM), pages 1399–1404, 2013.

[13] N. Bouten, S. Latré, W. Van de Meerssche, K. De Schepper,
B. De Vleeschauwer, W. Van Leekwijck, and F. De Turck. An autonomic
delivery framework for HTTP Adaptive Streaming in multicast-enabled mul-
timedia access networks. In Proceedings of the IEEE Network Operations
and Management Symposium (NOMS), pages 1248–1253, 2012.

[14] T. Schierl, C. Hellge, S. Mirta, K. Grneberg, and T. Wiegand. Using
H.264/AVC-based Scalable Video Coding (SVC) for Real Time Streaming in
Wireless IP Networks. In Proceedings of the IEEE International Symposium
on Circuits and Systems (ISCAS), pages 3455–3458, 2007.

[15] S. Latré and F. De Turck. Joint In-network Video Rate Adaptation and
Measurement-Based Admission Control: Algorithm Design and Evaluation.
Journal of Network and Systems Management, 21(4):588–622, 2013.

[16] Y.-M. Hsiao, S.-W. Yeh, J.-S. Chen, and Y.-S. Chu. A design of bandwidth
adaptive multimedia gateway for scalable video coding. In Proceedings of
IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), pages
160–163, 2010.

[17] W. Pu, Z. Zou, and C. W. Chen. Video adaptation proxy for wireless Dynamic
Adaptive Streaming over HTTP. In Proceedings of the International Packet
Video Workshop (PV), pages 65–70, 2012.

[18] T. Wirth, Y. Sánchez, B. Holfeld, and T. Schierl. Advanced Downlink LTE
Radio Resource Management for HTTP-streaming. In Proceedings of the
ACM International Conference on Multimedia (MM), pages 1037–1040,
2012.

[19] S. Parakh and A. Jagannatham. Game theory based dynamic bit-rate adap-
tation for H.264 scalable video transmission in 4G wireless systems. In Pro-
ceedings of the International Conference on Signal Processing and Commu-
nications (SPCOM), pages 1–5, 2012.

IN-NETWORK HAS QUALITY OPTIMIZATION 85

[20] T. Sutinen, J. Vehkaperä, E. Piri, and M. Uitto. Towards ubiquitous video ser-
vices through scalable video coding and cross-layer optimization. EURASIP
Journal on Wireless Communications and Networking, 2012(1), 2012.

[21] H.-C. Lee and S.-M. Guu. On the Optimal Three-tier Multimedia Streaming
Services. Fuzzy Optimization and Decision Making, 2(1):31–39, 2003.

[22] C. Hsu and M. Hefeeda. Optimal bit allocation for fine-grained scalable
video sequences in distributed streaming environments. In Proceedings of
ACM/SPIE Multimedia Computing and Networking Conference (MMCN),
2007.

[23] M. Hefeeda and C.-H. Hsu. Rate-distortion Optimized Streaming of Fine-
grained Scalable Video Sequences. ACM Transactions on Multimedia Com-
puting, Communications, and Applications (TOMM), 4(1):2:1–2:28, 2008.

[24] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen. Server-
based Traffic Shaping for Stabilizing Oscillating Adaptive Streaming Players.
In Proceedings of the ACM Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV), pages 19–24, 2013.

[25] N. Bouten, J. Famaey, S. Latré, R. Huysegems, B. Vleeschauwer, W. Leek-
wijck, and F. Turck. QoE optimization through in-network quality adaptation
for HTTP Adaptive Streaming. In Proceedings of the International Confer-
ence on Network and Service Management (CNSM), pages 336–342, 2012.

[26] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP Through-
put: A Simple Model and Its Empirical Validation. In Proceedings of the
ACM SIGCOMM Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication (SIGCOMM), pages 303–314,
1998.

[27] E. Altman, D. Barman, B. Tuffin, and M. Vojnovic. Parallel TCP Sockets:
Simple Model, Throughput and Validation. In Proceedings of the IEEE In-
ternational Conference on Computer Communications (INFOCOM), pages
1–12, 2006.

[28] F. P. Kelly. Charging and rate control for elastic traffic. European Transac-
tions on Telecommunications, 8(1):33–37, 1997.

[29] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan. Rate Control for Communi-
cation Networks: Shadow Prices, Proportional Fairness and Stability. The
Journal of the Operational Research Society, 49(3):237–252, 1998.

86 CHAPTER 3

[30] W. Li, S. Wang, Y. Cui, X. Cheng, R. Xin, M. Al-Rodhaan, and A. Al-
Dhelaan. AP Association for Proportional Fairness in Multirate WLANs.
IEEE/ACM Transactions on Networking, 22(1):191–202, 2014.

[31] T. Kupka. On the HTTP Segment Streaming Potentials and Performance
Improvements. PhD thesis, University of Oslo, 2013.

[32] L. Plissonneau and E. Biersack. A Longitudinal View of HTTP Video Stream-
ing Performance. In Proceedings of the Multimedia Systems Conference
(MMSys), pages 203–214, 2012.

[33] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE Transactions on Image
Processing, 13(4):600–612, 2004.

[34] Z. Wang, L. Lu, and A. C. Bovik. Video quality assessment based on struc-
tural distortion measurement. Signal Processing: Image Communication,
19(2):121–132, 2004.

[35] M. Hazewinkel. Confidence Estimation. In Encyclopedia of Mathematics.
Springer, 2001.

[36] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe. A Quantitative Measure Of
Fairness And Discrimination For Resource Allocation In Shared Computer
Systems. Technical report, Digital Equipment Corporation, 1984.

[37] L. A. Adamic and B. A. Huberman. Zipf’s law and the Internet. Glottomet-
rics, 3(1):143–150, 2002.

4
QoE-Driven In-Network Optimization

for Adaptive Video Streaming Based
on Packet Sampling Measurements

N. Bouten, R. de O. Schmidt, J. Famaey, S. Latré,
A. Pras, F. De Turck.

Published in Elsevier Computer Networks (COMNET), April 2015.

The previous chapter focussed on the optimization of Video on Demand (VoD)
HTTP Adaptive Streaming (HAS) delivery in managed networks. This chapter ex-
tends this with support for other networks as well by incorporating measurement
and estimation techniques into the in-network optimization. Furthermore, next to
the pure resource optimization, the current chapter optimizes the global Quality
of Experience (QoE). In-network quality optimization agents are deployed, which
monitor the available throughput using sampling-based measurement techniques.
The in-network QoE optimization is achieved by solving a linear optimization
problem both using centralized as well as distributed algorithms. The proposed
hybrid QoE-driven approach allows the client to take into account the in-network
decisions during the rate adaptation process, while still keeping the ability to re-
act to sudden bandwidth fluctuations in the local network. The proposed approach
allows improving existing autonomous quality selection heuristics by at least 30%,
while outperforming an in-network approach using purely bitrate-driven optimiza-
tion by up to 19%.

88 CHAPTER 4

4.1 Introduction

The increased popularity of video consumption over the Internet has led to the
development of a range of protocols that allow adaptive video streaming over
HTTP. Some of the major industrial players have introduced their proprietary pro-
tocols such as Microsoft’s Silverlight Smooth Streaming1, Apple’s HTTP Live
Streaming2 and Adobe’s HTTP Dynamic Streaming3. More recently, a standard-
ized solution has been proposed by MPEG, called Dynamic Adaptive Streaming
over HTTP (DASH) [1]. Although differences exist between these implementa-
tions, they are all based on the same basic principles: a video is split into tem-
poral segments that are encoded at different quality rates, the client rate adap-
tation algorithm then dynamically adapts the quality, based on metrics such as
average throughput and current buffer filling. The popularity of these adaptive
HTTP-based streaming techniques was mainly induced by the advantages offered
by HTTP streaming: the reuse of caching infrastructure, the reliable transmission
over HTTP and the compatibility with firewalls.

State-of-the-art HTTP Adaptive Streaming (HAS) solutions embed the rate
adaptation algorithm inside the client application. This allows the client to in-
dependently choose its playback quality and prevents the need for intelligent com-
ponents inside the network, which are the main reasons HAS is used in Over-The-
Top (OTT) scenarios. However, academia and industry are showing a growing
interest in the use of HAS in managed networks [2]4,5, for example by optimizing
the delivery by applying in-network bitrate adaptation6 or by deploying IP multi-
casting to ease the distribution of linear TV HAS services [3]7. In a recent survey,
Seufert et al. argue that a centralized control unit or client-proxy based commu-
nication can enhance the quality and establish a fair Quality of Experience (QoE)
distribution amongst competing clients [4]. The extensive content catalogue and
increased flexibility in terms of supported devices of these OTT-services (e.g.,
YouTube, Hulu, Netflix) but delivered over the managed network, could greatly
benefit both the provider and the end-user. However, in such environments, a
purely client-driven approach has several significant disadvantages. First, the lack
of coordination among clients leads to frequent quality oscillations and subop-

1Microsoft Smooth Streaming - http://www.iis.net/downloads/microsoft/smooth-streaming
2Apple HTTP Live Streaming - http://tools.ietf.org/html/draft-pantos-http-live-streaming-12
3Adobe HTTP Dynamic Streaming - http://www.adobe.com/products/hds-dynamic-

streaming.html
4Juniper Broadband TV Solution - http://www.juniper.net/us/en/local/pdf/solutionbriefs/3510463-

en.pdf
5Velocix Live Streaming - http://www.rgbnetworks.com/pdfs/RGB-

VelocixAdaptiveStreamingCDNWhitePaper0911-01.pdf
6Velocix Enhanced Video Experience - http://www.cachelogic.com/vx-portfolio/solutions/

velocixeve
7Velocix Optimized Architectures - http://www.velocix.com/vx-portfolio/solutions/video-

optimised-architecture

QOE-DRIVEN IN-NETWORK OPTIMIZATION BASED ON PACKET SAMPLING 89

timal decisions [5–8]. Second, management policies, such as user subscription
constraints (e.g., gold, silver and bronze) and guarantees on the delivered quality,
cannot be enforced [9, 10]. In order to facilitate adoption of HAS for the deliv-
ery of multimedia services in a managed environment, these challenges should be
tackled.

The first drawback of a purely client-driven approach is of course that control
is distributed over the various clients and each client strives to optimize its individ-
ual quality. Several clients for which the video flows traverse the same path in the
network therefore compete for the available bandwidth. This competition leads to
instability in the quality decisions, causing frequent oscillations among different
quality representations, bandwidth underutilization and unfairness between play-
ers. Most of the client heuristics try to maintain a buffer filling between the con-
figured thresholds and use the download time of segments to estimate the available
throughput. If a client has a sufficient buffer filling, the download process is paused
until one of the thresholds is reached. During this pause, other clients can benefit
from the released resources and increase their download rate. This causes their
adaptation heuristic to overestimate the available throughput and wrongfully in-
crease the quality for the next download. When the buffer filling of paused clients
reaches the threshold again, their download process is resumed at the same quality
level as before. This overestimation of available throughput could lead to con-
gestion in the network, causing segments to arrive late, which in turn can lead to
quality oscillations and eventually cause buffer depletion.

A second drawback is the inability for providers to exploit the merits of HAS
in a managed environment, since the quality adaptation component is entirely
controlled by the end-user. This prevents them from offering any type of QoE
guarantees to their subscribers, possibly leading to low QoE and unfair quality
distribution among clients. There is also no opportunity to offer service differen-
tiation among the clients, delivering a higher QoE for a higher subscription fee.
Moreover, since each client independently takes its quality decisions, there is no
opportunity for coordinated management, optimizing the service provider’s goals
globally. The proposed approach allows service providers to impose specific man-
agement policies. In this way, guaranteeing QoE, service differentiation and global
optimization can successfully be deployed.

To alleviate the aforementioned problems caused by wrong estimation of the
available throughput, this chapter proposes a hybrid quality decision process. Sev-
eral in-network decision agents are deployed along the delivery path, which mon-
itor the available throughput and based on this, inform the clients on the optimal
quality selection. This optimal quality selection is achieved by solving a linear
optimization taking as input the monitoring information and the connected sub-
scribers. Clients then take this quality selection as an input to their quality deci-
sion heuristic, together with the current buffer filling and throughput estimations.

90 CHAPTER 4

In this way, the clients can still react to sudden throughput changes in their local
delivery path, while they can react more dynamically and accurately to through-
put changes in the network. To monitor the available throughput, the framework
uses sampling techniques, allowing to make a distinction between HAS and cross
traffic flows in a scalable way. The in-network quality selection can then take this
available HAS throughput as input to its optimization and calculate the optimal
quality assignation. This in-network optimization can take several objectives into
account, based on the management policy of the provider. This chapter proposes
a QoE-driven optimization, where the quality is maximized, while minimizing the
impact of quality oscillations and buffer starvations. As will be shown in this chap-
ter, this approach outperforms the state-of-the-art HAS rate adaptation in terms of
QoE.

The benefits of the proposed approach are threefold. First, since the in-network
optimization has a global view on the connected video clients, it is able to opti-
mally divide the available resources. This reduces the number of quality oscil-
lations, increases the network utilization and reduces unfairness between players,
benefitting the overall QoE of the HAS video delivery service. Second, the sam-
pled monitoring framework allows to accurately forecast future in-network avail-
able bandwidth at low capturing costs. Using these estimations as input to the
optimization process allows the in-network approach to cope with dynamic net-
works. Third, since providers are now able to guide clients to certain quality deci-
sions, they can create new business opportunities when adding subscription based
management policies.

The proposed approach requires the in-network monitoring and QoE-optimiza-
tion components to be deployed in the Internet Service Provider (ISP) network.
There exist several scenarios in which this could be achieved, depending on which
stakeholder deploys the components and offers the HAS streaming service. In a
first scenario, the ISP wants to improve its HAS-based streaming service that is of-
fered as part of its triple-play service. In this case, the ISP deploys the in-network
components and offers the HAS streaming service as well, allowing subscribers to
stream the content offered on the set-top-box, to their own devices (e.g., tablets,
smartphones) as well. The second scenario pertains to an ISP that resells third
party OTT services with better quality as part of a subscription plan. In this case,
the ISP deploys both the in-network components and offers the service, or leases
these components to the OTT or Content Delivery Network (CDN)8 [11] service
providers. ISPs such as Proximus9 and Virgin Media10 are currently offering Net-
flix as an additional service without affecting the home broadband connection. In a

8Akamai Aura Managed CDN - http://www.akamai.com/html/solutions/managed-content-
delivery-network.html

9Netflix on Proximus TV - http://www.proximus.be/en/id cr netflix/personal/our-products/
television/series-movies/proximus-and-netflix.html

10Virgin Media, Netflix on TiVo - http://store.virginmedia.com/digital-tv/channels/netflix.html

QOE-DRIVEN IN-NETWORK OPTIMIZATION BASED ON PACKET SAMPLING 91

third scenario, an OTT provider11 or CDN12 deploys its own hardware components
in the ISP network, which allows them to perform in-network optimization.

The remainder of this chapter is structured as follows. Section 4.2 discusses
the related research on client-based and in-network HAS rate adaptation. Subse-
quently, the delivery architecture is described in Section 4.3. In Section 4.4 the
in-network rate adaptation problem is formally defined, as well as the sampling-
based monitoring. Section 4.5 evaluates the proposed delivery architecture and
optimization algorithms and compares the approach with a client-based solution.
Finally, Section 4.6 concludes the chapter.

4.2 Related Work

At the client side, each commercial HAS implementation comes with a proprietary
client heuristic as discussed in Section 4.1. Several heuristics have been proposed
in literature as well, each focussing on a specific deployment. Miller et al. propose
a receiver-driven adaptation heuristic for DASH that takes into account a history
of available throughput and the buffer level [12]. The quality is adjusted to attain
a buffer level between certain target thresholds, this improves the stability of the
quality and avoids frequent switching as a consequence of short-term throughput
variations. Jiang et al. identified the problems that arise when multiple clients
share a link [13]. The authors propose a variety of techniques that can help avoid
said undesirable behavior, such as harmonic bandwidth estimation, stateful and
delayed bitrate update and randomized scheduling of requests, which are grouped
in the FESTIVE adaptation algorithm. Tian et al. show that there is a trade-off be-
tween responsiveness and smoothness for client-side DASH adaptations [14]. The
proposed rate-switching logic provides a dynamic control of this trade-off accord-
ing to the trend of the buffer growth. The approach uses machine-learning based
TCP throughput prediction to support multiple servers simultaneously. In previous
work [15] [16], the authors evaluated different client heuristics both for Advanced
Video Coding (AVC) and Scalable Video Coding (SVC), applying optimizations
such as pipelined and parallel download scheduling. The approach presented in
this chapter is applicable to both AVC and SVC. Liu et al. discuss a video client
heuristic that is suited for a CDN by comparing the expected segment fetch time
with the experienced segment fetch time to ensure a response to bandwidth fluc-
tuations in the network [17], while Adzic et al. present a client heuristic which is
tailored for mobile environments [18].

Among others [5, 8], Akhshabi et al. compare several commercial and open
source HAS players and indicate significant inefficiencies in each of them, such

11Netflix Open Connect - https://openconnect.itp.netflix.com
12Akamai Accelerated Network Partner - http://www.akamai.com/html/solutions/akamai-

accelerated-network-partner.html

92 CHAPTER 4

as frequent oscillations and unfairness when the number of competing clients in-
creases [6, 7]. Said quality oscillations are known to have a negative impact
on QoE [19] and cause inefficient resource utilization within the bottleneck net-
work [7, 20]. In a recent survey, Seufert et al. argue that a centralized control
unit or client-proxy based communication can enhance the quality and establish a
fair QoE distribution amongst competing clients [4]. This chapter aims at control-
ling the quality by introducing global QoE management, reducing the number of
quality oscillations and allowing to reduce the required buffer size.

By altering the behavior of the streaming server, stability and bandwidth ef-
ficiency can be increased. Akhshabi et al. propose server-side rate adaptation to
cope with unstable streaming players due to ON-OFF patterns when they compete
for bandwidth [21]. The system detects sudden rate fluctuations in the client play-
out and tries to solve them by shaping the sending rate at the server to resemble
the bitrate of the stream. Liu et al. follow a comparable approach where the rate
is shaped according to QoE maximization metrics [22]. These systems are able to
restore the streaming session when oscillation or freezing occurs and then remove
the shaping when the client has stabilized. The proposed approach is not only able
to solve the problems of oscillation or freezes when they occur, but actively tries to
prevent them, while at the same time optimizing the QoE. In previous work, it was
shown that, although the proposed server-side rate shaping can increase stability,
they are not able to achieve the stability offered by in-network quality optimization
due to a reactive, rather than proactive behavior [23]. The current approach is also
able to handle multiple origin servers and intermediate caching nodes.

Li et al. propose a collaboration scheme between CDNs and ISPs and peer-
assisted CDNs to reduce the load on both peering links and internal ISP links [24].
Distributed CDN servers alter the manifests to associate chunks with regional stor-
age servers or by changing or increasing the available video quality levels by
transcoding the video. The approach proposed in this chapter could be comple-
mentary to the distributed CDN case, where intermediary storage servers exist
and client sessions consuming their content are terminated in these nodes. The
proposed approach further increases the efficient use of the ISP’s network by min-
imizing the negative impact of competing sessions on QoE. Famaey et al. assess
the impact of increased latency on QoE caused by the redirection of HAS requests
in CDNs and propose updated request routing schemes in order to reduce the num-
ber of redirects [25].

Network level adaptations allow a more efficient use of the underlying net-
work resources for HAS. Essaili et al. propose a TCP rate shaping mechanism
on a per flow level to enhance the QoE by rewriting client requests and offering
control to the network operator which has better information on the load and ra-
dio conditions in the cell [26]. Houdaille et al. propose to use traffic shaping
in the residential gateway to implement bandwidth arbitration between competing

QOE-DRIVEN IN-NETWORK OPTIMIZATION BASED ON PACKET SAMPLING 93

clients [8]. Others propose to exploit the advantages of Software Defined Net-
working (SDN) in a HAS environment to monitor the streaming sessions and, in
conjunction with a client control plane, dynamically adjust video flow characteris-
tics to ensure QoE [27]. Recently, Mueller et al. proposed to use HTTP/2.0 when
deploying adaptive streaming and evaluate the overhead and impact on link utiliza-
tion when using HTTP/2.0 for HAS [28]. Using new features in HTTP/2.0, such as
server push, persistent connections and pipelining, HAS services can be improved.
Wei et al. show that the increasing protocol overhead that is caused by decreasing
the segment length can be overcome by automatically pushing a number of seg-
ments, allowing them to reduce the live latency [29, 30]. Using the server push
feature proposed in HTTP/2.0 would allow the in-network optimization to force
certain quality decisions onto the clients, increasing the overall QoE.

In previous work, it was proposed to use Differentiated Services (DiffServ) to
guarantee the delivery of certain segments in a live streaming scenario [31]. This
requires altering the relevant priorization fields for these specific segments and
implementing DiffServ routers in the ISP network. An autonomic delivery frame-
work for HAS-based Live TV and Time Shifted TV (TSTV) was presented in
previous work [3, 32] which allows to reduce the consumed bandwidth by group-
ing unicast HAS sessions sharing the same content into a single multicast session.
However, for Video on Demand (VoD) HAS sessions, the content is more diverse
and only few sessions are potentially shared among multiple users. This prevents
them to be grouped into a shared multicast session and therefore prevents them
from being delivered in a scalable manner.

Petrangeli et al. use in-network proxies to determine the overall median chunk
level requested by the clients and disseminates this information towards each client
[33]. A reinforcement learning-based quality selection allows then to achieve fair-
ness among the clients. Krishnamoorthi et al. use a set of intermediary proxies
to evaluate the impact of caching policies on HAS [10]. Furthermore, they ar-
gue that client and proxy should cooperate and exchange information on buffer
filling and cache contents, in order to optimize the delivery of cached segments.
The proposed approach could be extended to incorporate the intelligent caching
mechanism, as it is a mere relocation of the content server. Since the optimization
is performed regularly, the caching dynamics and their impact on link utilization
could be included during the optimization. The current approach extends the re-
lated work by furthermore alleviating instability and inefficiency problems that
arise when multiple HAS clients compete. QDASH is a QoE-aware DASH system
where an in-network measurement proxy is deployed to provide accurate band-
width measurements to the client [34]. This measurement proxy only performs
measurements on a per-client level, the proposed approach supports multi-client
scenarios and estimates upstream available throughput to divide amongst them in
order to maximize QoE.

94 CHAPTER 4

Other approaches limit the available video quality by altering the data trans-
ported over the network. In [35] a graceful degradation of video quality is proposed
when the network load increases. The authors argue the need for Media Aware
Network Elements (MANEs), capable of adjusting the SVC stream based on a set
of policies specified by the network provider. Similar to this approach, Latré et
al. proposed an in-network rate adaptation algorithm, responsible for determining
which SVC quality layers should be dropped in combination with a PCN based
admission control mechanism [36]. In [37], a prototype of an intermediary adapta-
tion node is proposed, where the media gateway estimates the available bandwidth
on the client link and extracts the supported SVC-streams. Situnen et al. propose
dropping video layers based on their priority when network congestion arises for
scalable video streaming over wireless networks [38]. Most of the aforementioned
research focuses on the dropping of quality layers when congestion arises, mean-
ing the quality is limited in the same way for all users. The proposed approach
limits the maximum quality in a per client manner, allowing the service provider
to differentiate the delivered video services based on the client’s subscription. This
allows the service provider to control the QoE on a subscriber level, and thus of-
fering different subscription types for the VoD HAS services.

Lee et al. describe a three-tier streaming service where clients are connected
through multiple intermediate proxies to a multimedia server [39]. The authors
only consider live streaming, whereas the proposed system also supports VoD
streaming. Furthermore, videos need to be transcoded in the intermediary prox-
ies, in standard HAS however, the quality levels are discrete and fixed, causing
the objective function in the proposed solution to change drastically and leading
to the inability to use the max-min composition. In [40] [41], the authors focus
on optimizing the allocation of bits of video sequences among multiple senders
to stream to a single client. Peer-to-peer streaming and multi-server distributed
streaming are the main use-cases of this approach, there is no simple extension
of the work when multiple clients need to share the same server side bottleneck.
Furthermore, this requires fine-grained scalable video streaming to support the al-
location of non-overlapping bit ranges to multiple servers, while for HAS, fixed
bitrate representations are available, encoded using advanced video coding, lead-
ing to video segments of which the quality cannot be improved in a straightforward
way by downloading additional bit ranges. The current work however, could also
be extended to support scalable video in a straightforward way.

This chapter is an extension to previous work on in-network quality manage-
ment for HAS [23, 42]. This previous work only considered managed environ-
ments, where a fixed capacity is available. This approach was extended to al-
low dynamic scenarios where non-HAS traffic is measured to estimate the avail-
able residual capacity. To this end, several throughput forecasting techniques are
presented and evaluated. Additionally, other client-side rate adaptation heuristics

QOE-DRIVEN IN-NETWORK OPTIMIZATION BASED ON PACKET SAMPLING 95

Video&Streaming&Flows&
Cross&Traffic&Flows&
Packet8based&Monitoring&
In8network&Quality&Decision&

Unmanaged&delivery&over&Internet& Managed&delivery&over&MulBmedia&Access&Network&

HTTP&AdapBve&
Streaming&users&

Monitoring&
agent&

QoE8Driven&
Quality&OpBmizaBon&

Quality&
SelecBon&
Guidance&

Residual&
Bandwidth&
EsBmaBon&

Packet8based&
Monitoring&

Video&streaming&
server&

Figure 4.1: In-network quality management architecture, showing a centralized component
gathering monitoring information, estimating residual bandwidth which serves as input for
the QoE-driven quality optimization and quality selection guidance for the clients. Further
on in the chapter, also a distributed version is considered.

were implemented and evaluated. Furthermore, both the model and evaluations
were extended to take into account the impact of freezes, switches and playout
quality on perceived QoE. These improvements over the previous approach allow
a network-wide QoE optimization in a dynamic network environment.

4.3 QoE-Driven Delivery Architecture for Adaptive
Video Streaming

This chapter proposes a hybrid approach, steering the rate adaptation algorithm
at the client by an in-network component. It is deployed on one or multiple in-
termediary proxies and supports client-side rate adaptation algorithms by dynam-
ically limiting the possible set of bit rates to select from. Figure 4.1 shows an
overview of the in-network quality decision architecture and the different flows
of data and information for a centralized deployment. Using a hybrid approach,
where client heuristics take the in-network quality decisions as a maximum bound,
allows clients to still react upon sudden network changes or scarcity in device re-
sources, while increasing the overall quality and stability. One or more adaptation

96 CHAPTER 4

agents can be deployed to optimize the HAS delivery, depending on the size of the
delivery network. Using distributed optimization algorithms, several cooperating
agents can be deployed along the delivery path to achieve a scalable in-network
quality adaptation. The in-network rate adaptation agents are modeled to resemble
an autonomic control loop and consists out of the following steps:

Packet-based Monitoring Controlling the streaming quality from within the
network, requires measuring the current traffic traversing the streaming paths links
via monitoring agents to reconstruct the cross traffic on the delivery path. Opera-
tors estimate this available bandwidth by reading interface counters over specific
time periods (e.g., every 5 to 15 minutes), which could be accomplished by using
Simple Network Management Protocol (SNMP)13. However, these measurements
are of coarse granularity and might lead to very inaccurate estimations of band-
width usage. More accurate approaches are available, but they often demand con-
tinuous packet capturing to calculate traffic statistics [43]. However, due to traffic
rates observed nowadays, continuous packet capturing does not scale and requires
expensive software/hardware. To avoid these issues, packet sampling is deployed
within the monitoring process. Packet sampling provides a trade-off between ac-
curacy and ease-of-use of bandwidth estimation approaches. That is, although
providing only a summary of actual traffic, as compared to continuous packet cap-
turing, sampled packet capturing provides much more granular data than interface
counters at a limited capturing overhead. Schmidt et al. propose a monitoring
technology using packet filtering and sampling to provide scalable packet-based
monitoring in high-speed networks and use it for link dimensioning [44]. The
monitoring architecture consists of agents embedded in switches and routers and
a centralized controller. Several monitoring agents can be grouped to monitor the
traffic along a fraction of the media delivery path. This allows both a centralized
and distributed approach towards packet-based monitoring and in-network quality
decision.

Residual Bandwidth Estimation To achieve dynamic quality adaptation, sev-
eral packet-based monitoring agents are deployed along the HAS delivery paths.
The monitoring information of these monitoring agents is then processed to esti-
mate the bandwidth taken by the different flows. Using these estimations on each
link’s cross traffic, the residual bandwidth available for HAS along the path can
be predicted. This provides the in-network quality control with a prediction of
the future residual bandwidth available for HAS traffic. The packet-based residual
capacity estimation will be discussed in Section 4.4.2. The HAS sessions that are

13Cisco Systems Inc. (2005) - http://www.cisco.com/image/gif/paws/8141/calculate bandwidth -
snmp.pdf

QOE-DRIVEN IN-NETWORK OPTIMIZATION BASED ON PACKET SAMPLING 97

monitored along the delivery path and the predicted residual bandwidth then serve
as input towards the in-network quality decision algorithm.

QoE-Driven Quality Optimization This step takes the predicted residual band-
width along the delivery paths as input and optimizes the selected quality for each
individual HAS flow. In Figure 4.1, a centralized approach is shown, where the
monitoring information of all the monitoring agents is forwarded to a centralized
controller. This controller then has a full view on the delivery network and is able
to optimize the QoE as will be discussed in Section 4.4.3. To provide a more scal-
able solution, multiple intermediate proxies could be deployed within the delivery
network. They have a local view of the network and only require input of a sub-
set of monitoring agents, limiting the communication overhead of the monitoring
data. These intermediate proxies then cooperate to achieve a global policy as will
be discussed in Section 4.4.4. Based on the management policy of the operator,
the objective of this optimization can be altered.

Quality Selection Guidance The result of the aforementioned step is a list of
quality limitations for each individual client. The clients are then guided towards
selecting the optimal quality in order to optimize the objective. This could be
done in several ways. A first method is to throttle the throughput of the client’s
flows [21] at the server which allows to impact the actions of the client decision
heuristic in a transparent way. Since the client will measure a lower or higher
throughput, depending on the configured rate at the server, the decision will be
steered towards the optimal quality. A disadvantage of this approach is that the
quality guidance process is indirect and it could possibly take a while for the client
to converge to the optimal quality. A second approach is to rewrite the manifest
files in a per client way, by leaving out quality representations that are not feasible
under the current circumstances. This allows the client to still autonomously select
the best quality, based on its measurements, while enforcing a certain maximum
quality. Since the manifest is regularly updated, this approach requires the client
to download the manifest frequently. A third way, is to extend HAS protocol to
allow specification of optimal quality guidelines, which are then processed by the
clients. Quality selection information could be embedded in the HAS header of
the segments, causing limited overhead of only a few bytes without requiring the
introduction of additional protocol messages. In this chapter, it was chosen to
add additional information to the segment headers which is then processed by the
proposed client, since the guidance is direct and causes limited overhead.

98 CHAPTER 4

4.4 Algorithm Description

4.4.1 Definition of variables and assumptions

A network topology is considered that is modeled as a graph, consisting of a set
of nodes N , which encompasses servers S ⊂ N , proxies P ⊂ N , and clients
C ⊂ N . A set of edges E connects the nodes in a logical tree topology which
is typically used for video delivery networks, although the underlying physical
network might not be a tree due to replication concerns. Each node n ∈ N has an
incoming edge en− ∈ E connecting the node to its predecessor n− ∈ N as well
as a set of outgoing edges EN+ ⊂ E connecting to its successors N+

n ⊂ N in the
logical tree topology. Every edge e ∈ E has an associated capacity Be as well as
an estimation for the cross traffic Te,t for the next timeslot t. This results in an
estimated residual capacity Re,t which is available to assign to HAS traffic. Each
video v ∈ V has an associated set of quality representations Qv , for which every
quality representation q ∈ Qv has a bit rate βq . Each client c ∈ C has a unique
delivery path Ec ⊆ E from server to client. The set of clients that have an edge
e ∈ E as part of their delivery path Ec, is represented by Ce ⊆ C. Correspondingly,
the set of clients for which the delivery path crosses a node n ∈ N is represented
by Cn ⊆ C.

4.4.2 Packet-based residual capacity estimation

To estimate the future traffic on an edge e, sampled traffic measurements are used.
The HAS traffic needs to be distinguished from unrelated traffic generated by other
services, to estimate the impact of this cross traffic on the edge e. This can be ob-
tained by intercepting packets and inspecting the TCP and HTTP packet headers.
However, due to increasing traffic rates, full packet capturing is often not advised
due to scalability issues. Packet sampling is an attractive alternative to continuous
packet capturing, while still providing highly granular traffic measurements (as
compared to, e.g., interface counters). If the sampled traffic amount Le,t was ob-
tained at time t at a rate 1/r (e.g., r = 100 for 1 : 100 sampling) every τ seconds,
the original amount of traffic Ae,t can be estimated by Equation (4.1). This value
gives an estimate of the actual amount of cross traffic during the interval τ .

Ae,t = r × Le,t (4.1)

Tailoring the decisions of the HAS clients during the next interval, requires a
prediction of the future load. Several forecasting techniques can be used to predict
the future load on e:

• Exponential Weighted Moving Average Exponentially Weighted Moving
Average (EWMA) attempts to forecast the future load Te,t on edge e based

QOE-DRIVEN IN-NETWORK OPTIMIZATION BASED ON PACKET SAMPLING 99

on the packet-based traffic estimation Ae,t using a smoothing factor α as
shown in Equation (4.2) [45].

Te,t = α×Ae,t + (1− α)× Te,t−1 (4.2)

• Holt Winters The non-seasonal Holt Winters (HW) predictor is a varia-
tion of EWMA, attempting to capture trends in time series [46]. A separate
smoothing component T se,t and a trend component T te,t are defined in Equa-
tion (4.4) and (4.5) respectively and depend on the parameters α and β.

Te,t = T se,t + T te,t (4.3)

T se,t = α×Ae,t + (1− α)× Te,t−1 (4.4)

T te,t = β × (T se,t − T se,t−1) + (1− β)× T te,t−1 (4.5)

• Exponential trend method A variation of Holt’s linear trend method is
generated by using multiplicative adjustments to the level and slope, rather
than additive. This leads to an Exponential Trend (ET) T te,t, rather than a
linear trend. These adjustments are shown in Equation (4.6), (4.7) and (4.8).

Te,t = T se,t × T te,t (4.6)

T se,t = α×Ae,t + (1− α)× Te,t−1 (4.7)

T te,t = β × (T se,t/T
s
e,t−1) + (1− β)× T te,t−1 (4.8)

• Autoregressive model In Autoregression (AR), a history of past values of
the measured cross traffic are used to forecast the future load. Using a
AR model of order h, the prediction can be performed as shown in Equa-
tion (4.9), where c is a constant and the random variable εt is white noise.
To determine the order h, the Akaike information criterion can be used [47],
while least median of squares estimation can be used to find the parameters
φi : i = 1..h [48].

Te,t = c+

h∑
i=1

(φi ×Ae,t−i) + εt (4.9)

• Support Vector Regression Time series can also be predicted using a lagged
vector of previous measurements. The basic principle of Support Vector

100 CHAPTER 4

Regression (SVR) is to estimate the output variable Te,t), from φ(Te,t).
Te,t = (Ae,t−h, .., Ae,t−1)ᵀ is an input vector containing h previous mea-
surements [49]. Using a non-linear mapping φ(.), the vector Te,t is pro-
jected to a higher dimensional space. The regression model is then shown
in Equation (4.10), where ω is the weight vector and b the bias term. Us-
ing Sequential Minimal Optimization (SMO), the regression problem can be
solved [50].

Te,t = ωᵀ × φ(Te,t) + b (4.10)

• Multi Layer Perceptron Also a two-layer Multi Layer Perceptron (MLP)
can be used to predict the future load. The network consists of a single
linear output activation (n0) and m hidden sigmoid activations (n1, ..., nm)
and takes as inputs a history of h measurements, normalized with respect to
the available capacity in the interval τ : τ × Be. Each node takes as input
the output of the preceding nodes in the network, a weight vector ωn and a
bias value bn. The linear output and hidden sigmoid activations are shown in
Equation (4.11) and (4.12) respectively, where Oi are intermediary outputs
of the hidden layer nodes. The logistic sigmoid function ϕ(x) = 1

1+exp(−x)
is used as activation function for the hidden layer.

Te,t = τ ×Be × (b0 +

m∑
i=1

ω0
i ∗ Oi) (4.11)

Oi = ϕ

bi +

h∑
j=0

ωij ∗
Ae,t−j
τ ×Be

 (4.12)

The residual capacity at edge e can then be estimated as defined in Equa-
tion (4.13). According to Padhye et al., the maximum achievable throughput B
for a TCP connection subject to a round trip time RTT and maximum window
size Wmax, is limited by Wmax

RTT [51]. This adds an additional constraint on the per
flow achievable throughput a shown in Equation (4.14).

Re = Be −
Te,t
τ

(4.13)

∀c ∈ C :
∑
q∈Qc

ac,q × βq ≤
Wmax,c

RTTc
(4.14)

QOE-DRIVEN IN-NETWORK OPTIMIZATION BASED ON PACKET SAMPLING 101

4.4.3 QoE-driven quality optimization

The problem is modeled as an Integer Linear Programming (ILP) and consists of
maximizing the QoE over all clients c ∈ C, while adhering to the edge bandwidth
constraints. The solution is characterised by a boolean decision matrix A. The
element ac,q ∈ A is equal to 1 if quality q ∈ Qv is selected for client c ∈ C,
and 0 otherwise. The constraints in Equation (4.15) and (4.16), state that the de-
cision variables are boolean values and that only one quality representation can
be selected per client. The total consumed bandwidth of HAS-traffic on every
edge e ∈ E caused by all clients c ∈ Ce should not exceed the estimated residual
bandwidth for HAS traffic Re,t as defined in Equation (4.17).

∀c ∈ C,∀q ∈ Qv : ac,q ∈ [0, 1] (4.15)

∀c ∈ C :
∑
q∈Qv

ac,q = 1 (4.16)

∀e ∈ E :
∑
c∈Ce

∑
q∈Qv

ac,q × βq ≤ Re (4.17)

The provider can choose to optimize video delivery in several ways using a
different objective function. One possibility is to maximize the total video bitrate
over all clients using the following optimization function:

max
∑
c∈C

∑
q∈Qv

ac,q × βq (4.18)

A major drawback of the aforementioned approach is that it neglects the impact
of quality switches on QoE [19]. Therefore, a QoE-metric for HAS was adapted
to include both quality and switching information during the in-network optimiza-
tion. The QoE-driven objective aims to optimize the global QoE over all clients.
For HAS services, the QoE as shown in Equation (4.19) is a weighted combination
of the average delivered quality (µ), the standard deviation of quality (σ) [52, 53]
and a correction factor to incorporate the impact of frame freezes (φ) [54]. The for-
mulas for calculating the values µ, σ and φ are defined in Equation (4.20) to (4.24),
with K the number of played segments, N the number of quality levels for video,
Qk the quality played for segment k ∈ [1,K] and F the set of frame freezes.

102 CHAPTER 4

eMOS = α× µ− β × σ − γ × φ+ δ (4.19)

µ =

∑K
k=1

Qk
N

K
(4.20)

σ =

√∑K
k=1 (QkN − µ)2

K
(4.21)

Ffreq =
|F |
K

(4.22)

Favg =

∑
f∈F duration(f)

|F |
(4.23)

φ =
7

8
max

(
ln(Ffreq)

6
+ 1, 0

)
+

1

8
min

(
Favg
15

, 1

)
(4.24)

The approximation for MOS in Equation (4.19) was used to model the objec-
tive function. The term φ, quantifying the impact of freezes was omitted, since the
constraints of the proposed approach guarantee the delivery of the lowest quality,
thus avoiding freezes. The average quality over time µ includes the decision vari-
ables for each client. The formula to calculate the switching term σ is dependent
on µ and is quadratic in this term. Including the estimated MOS as is, would yield
a non-linear objective function. In order to avoid this, the calculation of µ and σ
values is split into several calculations µc,q and σc,q per client c and per quality
q. Since the decision variables ac,q are modeled as binary values, multiplying this
decision variable with the corresponding µc,q and σc,q values allows a linear ob-
jective function. To this end, a historyHc of previous quality decisions is required
for every client c ∈ C. This history allows calculating the average quality µc,q for
every client c ∈ C and every possible quality decision q ∈ Qv for the next times-
lot in Equation (4.25). The variation in quality σc,q can be calculated for each
client using the set of averages µc,q for each quality decision q ∈ Qv as shown in
Equation (4.26).

∀c ∈ C,∀q ∈ Qv : µc,q =
1

|Hc|+ 1

 q

|Qv|
+

∑
hc,t∈Hc

hc,t
|Qv|

 (4.25)

∀c ∈ C,∀q ∈ Qv : σc,q =√√√√√ 1

|Hc|+ 1

(q

|Qv|
− µc,q

)2

+
∑

hc,t∈Hc

(
hc,t
|Qv|

− µc,q
)2
 (4.26)

QOE-DRIVEN IN-NETWORK OPTIMIZATION BASED ON PACKET SAMPLING 103

…"

…"

…"

…"

…"

Figure 4.2: Distributed optimization process for a node n gathering monitoring information
from its upstream link en− to estimate Re

n− and downstream restrictions sn+,c from its
successor node setN+.

Calculating the specific averages µc,q and deviations σc,q for each possible
decision allows to formulate the objective function without introducing quadratic
terms for the decision variables. Using the decision variable ac,q , the estimated
MOS can then be maximized as follows:

max
∑
c∈C

∑
q∈Qv

ac,q × (α× µc,q − β × σc,q + δ) (4.27)

4.4.4 Distributed QoE-driven quality optimization

The number of constraints for the QoE-driven quality optimization grows signifi-
cantly with the number of proxies and clients in the service delivery tree. Solving
the optimization problem using only one agent will increase the execution times.
Prolonged optimization times endanger the ability to react adequately to sudden
throughput changes along the edges of the delivery network. The problem can be
distributed over the different nodes along the delivery network to obtain a scalable
solution. The proposed approach uses a bottom-up technique, that was described
in the previous chapter.

Figure 4.2 shows a graphical overview of how the distributed optimization
process is performed. Each node n ∈ N monitors the upstream edge en− and
estimates the residual bandwidth Ren− for HAS traffic along that edge. Using
this information the local optimization objective for node n can be formulated as
shown in Equation (4.28). This optimization is constrained by the available HAS
capacity of the upstream edge as detailed in Equation (4.29).

104 CHAPTER 4

max
∑
c∈Cn

∑
q∈Qv

ac,q × (α× µc,q − β × σc,q + δ) (4.28)

∑
c∈Cn

∑
q∈Qv

ac,q × βq ≤ Ren− (4.29)

∀c ∈ Cn,
∑

q∈Qv :q>sn+,c

ac,q = 0 (4.30)

The local optimization is then constrained by (4.15) and (4.16) as before but
only for the subset Cn of clients for which the traffic traverses node n. In order
not to violate any bitrate limitations further downstream the topology, the local
optimization is constrained by the solutions obtained by its set of successor nodes
N+
n . For each client c ∈ Cn, sn+,c determines the maximum quality a client

is allowed to download according to the local optimizations downstream. Equa-
tion (4.30) puts an additional constraint on the optimization determining that the
selected quality for client c is not allowed to violate the downstream limitations.
The aforementioned distributed approach has several advantages. Each node only
requires local information on the upstream edge, while the number of edge con-
straints per local optimization process is equal to one. Furthermore, since the
optimization for different subtrees is independent of subtrees at the same level, the
processes can be executed in parallel.

The complexity of the optimization can be reduced at the expense of optimality
by moving from an ILP formulation towards a Relaxed Linear Programming (LP)
formulation. This can be achieved by removing the boolean constraints on the de-
cision variables ac,q as defined in Equation (4.15) and replacing them by the fol-
lowing floating point decision variables as shown in Equation (4.31). The reader
is referred to the previous chapter on how this floating point solution can be trans-
formed into an integer solution.

∀c ∈ Cn,∀q ∈ Qv : 0 ≤ ac,q ≤ 1 (4.31)

4.5 Evaluation Results

4.5.1 Experiment setup

A VoD HAS scenario was implemented using the discrete-event network simula-
tor NS314, simulating the transmission of HAS-based video [42]. The framework
has been extended with support for packet-based measurements in network routers
and switches. The HAS servers and proxies have been adapted to incorporate

14ns-3 - https://www.nsnam.org

QOE-DRIVEN IN-NETWORK OPTIMIZATION BASED ON PACKET SAMPLING 105

these measurements during the QoE-driven network optimization. For the auto-
nomic HAS Clients, several heuristics found in literature were implemented. A
first implementation uses the Microsoft Smooth Streaming (MSS) algorithm, which
is based on the implementation of an open source version of the algorithm of the
MSS video player15 and is extensively described by Famaey et al. [15]. A second
implementation is based on the heuristic proposed by Miller et al. [12], which is
a receiver-driven adaptation algorithm based on buffer filling level and throughput
estimations. This heuristic is referred to as Miller. A third heuristic, called Fes-
tive, is based on the implementation described by Jiang et al. using randomized
scheduling and stateful bitrate selection [13]. The parameters of the aforemen-
tioned heuristics were optimized to attain the best QoE for a variety of scenarios.

An additional client heuristic was implemented, which downloads each seg-
ment using the QoE management quality decision is proposed in this chapter. This
approach is referred to as AVC Steered. This heuristic takes the signalled quality
decision as an input and decides wether the assigned quality level is feasible under
the current network circumstances. This allows the AVC Steered client to address
local network congestion, which the QoE-driven in-network optimization is unable
to take into account.

The optimization algorithms were implemented using the IBM CPLEX16 solver.
Two versions of the optimization algorithm are used: an Exact calculation, mod-
elled as an ILP and the relaxation of the problem denoted as Relaxed. Both the
QoE-driven optimization and the simpler bitrate optimization were implemented,
which only optimizes the average quality, disregarding quality oscillations [42].
Next to a Centralized, a Distributed heuristic approach was implemented to ad-
dress scalability issues. This Distributed approach requires upstream information
exchange between the different cascading proxies. This exchange is modelled as
network communication to take into account network delays when exchanging
solutions and installing the optimal configuration at the clients. Also the delay in-
troduced by forwarding monitoring information and processing this data to predict
the future bandwidth are taken into account during the simulations.

Figure 4.3 shows a typical tree-structured video service delivery network over-
lay. The first level has K branches, while the second level has M branches, both
with a default value of 4. To each of these branches, a number of connected clients
is assigned randomly within the interval [0, N], representing the number of active
clients out of the number of connected homes N . The links are dimensioned pro-
portionally to the maximum number of clients N per branch. The average Round
Trip Time (RTT) for each client c is set to RTT = 40ms [55]. Clients are started
using a Weibull startup process with shape 2.5 and mean of 300s. The Big Buck

15Source available from https://slextensions.svn.codeplex.com/svn/trunk/SLExtensions/
AdaptiveStreaming

16IBM ILOG CPLEX Optimizer: http://www.ibm.com/software/integration/optimization/cplex-
optimizer/

106 CHAPTER 4

Broadband(
Service(
Router(

DSLAM(Content(
Server(

HTTP(
Adap:ve(
Streaming(
Users(

K(M(N(

2048Mbps(
512Mbps(128Mbps(10Mbps(

RTT(

Figure 4.3: Network topology, modeling a typical video service delivery network.

0 500 1000 1500 2000
Time (s)

0

1

2

3

4

5

6

7

C
ro

st
ra

ffi
c

B
itr

at
e

(M
bp

s)

Figure 4.4: Example cross traffic trace.

Bunny video17 was encoded at 7 different quality rates and divided into 200 seg-
ments with an average duration of 2 seconds. Table 4.1 gives an overview of the
different quality layers and their associated bitrates.

To introduce cross-traffic in the network with a realistic degree of variability,
the cross traffic was modelled based on a set of bandwidth traces described by Ri-
iser et al. [56]. The traces18 provide a highly variable throughput, which makes
the prediction of the future bandwidth challenging. They have a total duration
of about 220 minutes. The available bandwidth fluctuates between 202bps and
6, 335kbps with an average of 2, 192kbps and a standard deviation of 1, 317kbps.
The bandwidth traces were cut in 2, 000 second parts which were used to generate
traffic on different paths during the evaluations. Figure 4.4 shows an example of
such a bandwidth trace excerpt of 2, 000 seconds. As discussed in Section 4.4.2,
several forecasting techniques can be used to predict the future load on an edge.
The parameters of each of the presented prediction techniques were estimated us-
ing a training set of the bandwidth data. For the implementation of AR, SVR and

17Big Buck Bunny available from http://www.bigbuckbunny.org/
18Dataset available from: http://home.ifi.uio.no/paalh/dataset/hsdpa-tcp-logs/bus.ljansbakken-

oslo/

QOE-DRIVEN IN-NETWORK OPTIMIZATION BASED ON PACKET SAMPLING 107

Table 4.1: Overview of the quality layers for the Big Buck Bunny video.

Quality Layer Index Average Bitrate (kbps) Average PSNR (dB)
0 300 32.04
1 427 32.72
2 608 34.41
3 866 35.71
4 1,233 36.88
5 1,636 37.64
6 2,436 40.07

MLP prediction, WEKA 319 was used to perform training and prediction. Unless
otherwise stated MLP prediction is used during the evaluations.

The estimated average Mean Opinion Score (MOS) defined by Equation (4.19)
was used to evaluate the performance of both the purely client-based approaches
and the in-network assisted approach [52–54]. To tune the parameters (α, β, γ and
δ), a set of 15 adaptive streaming scenarios was generated to assess the end-user
perception of bitrate switching and buffer starvations using the Big Buck Bunny
video. Figure 4.5 shows a graphical example of three such test scenarios, where
it is tried to capture the impact of frequent switching (a), gradual switching (b)
and buffer starvations (c). During a subjective screening test with 10 experts
in the field of video streaming, the MOS values for each of the test sequences
(n ∈ [1, N]) were measured [57]. By minimizing the Root Mean Squared Er-
ror (RMSE) between the predicted values MOSpred,n and the actual measured
values MOSsubj,n, the parameters were tuned:

min
∑

n∈[1,N]

(MOSpred,n −MOSsubj,n)
2

N
(4.32)

The following values were obtained: α = 5.67, β = 6.72, γ = 4.95 and
δ = 0.17. The MOS estimation assumes that there is a linear relationship between
the relative quality level of each video representation and the MOS score for that
quality level.

The individual values of each of these QoE-terms are used during the discus-
sion to indicate how the behavior of the evaluated approaches differs. Since frame
freezes have a negative impact on QoE, the total buffer starvation time of each
client was measured and is indicated as the total buffer starvation time in seconds.
Also the total number of quality oscillations each client experiences, as well as the
average played quality bitrate in Mbps was examined. To indicate the buffering
behavior of the different approaches, the average buffer filling is expressed as a
percentage of the maximum allowed buffer. The in-network optimization uses the

19WEKA: Data Mining Software in Java - http://www.cs.waikato.ac.nz/ml/weka/

108 CHAPTER 4

0 10 20 30 40 50 60
Time (s)

0
1
2
3
4
5
6

Qu
al

ity
 L

ay
er

 In
de

x

(a)

0 10 20 30 40 50 60
Time (s)

0
1
2
3
4
5
6

Qu
al

ity
 L

ay
er

 In
de

x

(b)

0 10 20 30 40 50 60
Time (s)

0
1
2
3
4
5
6

Qu
al

ity
 L

ay
er

 In
de

x

(c)

Figure 4.5: Graphical overview of three example sequences that were used to assess the
end-user subjective quality perception. Gaps in (c) indicate the occurrence of buffer star-
vations.

QOE-DRIVEN IN-NETWORK OPTIMIZATION BASED ON PACKET SAMPLING 109

prediction methods discussed in Section 4.4.2 to forecast the available throughput
for HAS during the next timeslot. To indicate the correlation between the actual
values and the estimated values, the Pearson Correlation Coefficient is used. All
of the following results are averaged over n = 20 iterations, using different cross
traffic traces, with the graphs showing the 95% confidence intervals.

To assess the impact of the different parameters on the in-network QoE op-
timization, first, a parameter analysis is carried out where simulations are per-
formed for different values of the history size |Hc|, the optimization interval τ , the
sampling rate r and the buffer size B. The optimal values (as discussed in Sec-
tion 4.5.2.5) for the respective parameters obtained during the analysis are used
further on during the evaluations. Next, the different forecasting techniques are
evaluated in terms of precision and their impact on QoE. The interference between
the in-network optimization and client-side adaptation are discussed afterwards.
Furthermore, the overheads of the proposed approach introduced by exchanging
partial solutions and measurement data are quantified and the scalability of the
proposed approach are evaluated for increasing network size M and number of
homes N .

4.5.2 Parameter analysis
4.5.2.1 Impact of the decision history

In order to optimize the QoE in terms of average quality and quality switches, the
in-network quality optimization maintains a list of previous quality decisions on a
per client basis. The size of this history |Hc| has an impact on the actual quality
perceived by the client in terms of MOS. This is illustrated in Figure 4.6(a) where
the history size |Hc| is varied within [1, 2, 4, 8, 16, 32, 64, 128,∞], with |Hc|=∞
corresponding to the situation where the proposed approach keeps a history of all
decisions for each client c ∈ C. Increasing the size of the maintained history
has a positive effect on the average estimated MOS. A history of only 1 quality
decision will cause the optimization to severely penalize quality switches, leading
to a low number of quality switches as indicated in Figure 4.6(b) but at the same
time preventing the decision algorithm to increase the quality, negatively impacting
the average quality as indicated in Figure 4.6(c). With a history of only 1 decision,
the impact of the current decision will be much higher than with a larger history,
leading to a high variance which heavily increases the switching penalty and thus
prevents the optimization to switch to another quality. There is a local optimum
for a history size |Hc| of 128 previous decisions.

4.5.2.2 Impact of the optimization interval

The in-network optimization calculates the optimal quality for each client when
clients join or leave the network. Additionally, to adapt to the fluctuating cross

110 CHAPTER 4

0 50 100 150
History (segments)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Av
er

ag
e

Es
tim

at
ed

 M
OS

AVC MSS
AVC Miller
AVC Festive
AVC Steered Distributed Relaxed QoE

(a) Impact on average estimated MOS

0 50 100 150
History (segments)

0

10

20

30

40

50

Nu
m

be
r o

f Q
ua

lit
y

Sw
itc

he
s

AVC MSS
AVC Miller
AVC Festive
AVC Steered Distributed Relaxed QoE

(b) Impact on average number of switches

0 50 100 150
History (segments)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Av
er

ag
e

Pl
ay

ed
 Q

ua
lit

y
Ra

te
 (M

bp
s)

AVC MSS
AVC Miller
AVC Festive
AVC Steered Distributed Relaxed QoE

(c) Impact on average bitrate (Mbps)

Figure 4.6: Impact of history size |Hc| (RTT = 40ms, r = 100, τ = 2s, B = 12s,
N = 32). These results show a local optimum of |H|c= 128.

0 5 10 15 20 25 30 35
Optimization Interval (s)

0

5

10

15

20

25

Bu
ffe

r S
ta

rv
at

io
n

(s
)

AVC MSS
AVC Miller
AVC Festive
AVC Steered Distributed Relaxed QoE

(a) Impact on buffer starvations (s)

0 5 10 15 20 25 30 35
Optimization Interval (s)

2.5

3.0

3.5

4.0

4.5

Av
er

ag
e

Es
tim

at
ed

 M
OS

AVC MSS
AVC Miller
AVC Festive
AVC Steered Distributed Relaxed QoE

(b) Impact on average estimated MOS

Figure 4.7: Impact of optimization interval τ (RTT = 40ms, r = 100, |Hc|= 128,
B = 12s, N = 32). Setting the optimization interval τ at the segment length of 2s yields
the highest QoE at the cost of frequent optimization.

QOE-DRIVEN IN-NETWORK OPTIMIZATION BASED ON PACKET SAMPLING 111

Table 4.2: Pearson correlation between the estimated throughput for the next interval τ and
the actual cross traffic rate. A sampling size of r = 100 yields a high Pearson correlation
of ρ = 0.965.

Sampling size (r) Pearson Correlation (ρ)
10 0.970

100 0.965
1,000 0.939
10,000 0.827

0 10 20 30 40 50 60 70
Actual Cross Traffic Throughput (Mbps)

0

10

20

30

40

50

60

70

Es
tim

at
ed

 C
ro

ss
 T

ra
ffi

c
Th

ro
ug

hp
ut

 (M
bp

s)

Figure 4.8: Impact of sampling size r on packet-based throughtput estimation for r = 100
showing a high correlation.

traffic, the optimization is performed periodically. Figure 4.7(a) shows the in-
creased risk of running into buffer starvations when the optimization interval τ is
increased. This can be attributed to the larger timespan between two consecutive
bandwidth estimations, leading to less accurate cross traffic estimations and qual-
ity decisions when traffic fluctuates heavily during that period of time. An interval
of 2s allows the in-network QoE-optimization to completely avoid frame freezes,
positively impacting the QoE, while purely client-driven approaches are suffering
from frequent frame freezing due to wrong estimations of the available through-
put. Figure 4.7(b) shows the impact on the average MOS of these frame freezes.
This shows the tradeoff between optimization frequency and overal QoE. Under
highly fluctuating cross traffic, optimizing the quality decisions every 2s yields a
12% improvement compared to optimizing every 32s. The 2s interval corresponds
to the segment length of the video, indicating that optimizing the quality for each
segment produces optimal results.

112 CHAPTER 4

101 102 103 104

Sampling Size (packets)

2.5

3.0

3.5

4.0

4.5

5.0

Av
er

ag
e

Es
tim

at
ed

 M
OS

AVC MSS
AVC Miller
AVC Festive
AVC Steered Distributed Relaxed QoE MultiLayerPerceptron

(a) Impact on average estimated MOS

101 102 103 104

Sampling Size (packets)

0

5

10

15

20

25

Bu
ffe

r S
ta

rv
at

io
n

(s
)

AVC MSS
AVC Miller
AVC Festive
AVC Steered Distributed Relaxed QoE MultiLayerPerceptron

(b) Impact on buffer starvations (s)

101 102 103 104

Sampling Size (packets)

0

20

40

60

80

100

N
um

be
r

of
 Q

ua
lit

y
Sw

it
ch

es

AVC MSS

AVC Miller

AVC Festive

AVC Steered Distributed Relaxed QoE MultiLayerPerceptron

(c) Impact on number of quality switches

Figure 4.9: Impact of sampling size r (RTT = 40ms, |Hc|= 128, τ = 2s, B = 12s,
N = 32). Increasing the sampling size r beyond 103 negatively impacts the QoE due to
wrong estimations on the future throughput. Setting r = 100 gives good estimations at a
limited sampling cost of 1%.

4.5.2.3 Impact of the sampling rate

When sampling network traffic at a rate 1/r, there is a tradeoff between the scala-
bility of the monitoring and the precision of the estimated bandwidth as illustrated
in Figure 4.8 and Table 4.2. Randomly sampling the traffic with a sampling size
r = 100 as shown in Figure 4.8 yields precise estimations using MLP with very
few outliers and a high correlation of ρ = 0.965. Increasing the sampling size r has
a negative impact on estimation precision and as a result, a negative impact on the
in-network optimization process as illustrated in Figure 4.9(a). Making incorrect
predictions on the estimated throughput of the cross traffic can yield wrong deci-
sions during the optimization, leading to an increased number of frame freezes and
more frequent switching as illustrated in Figure 4.9(b) and Figure 4.9(c) respec-
tively. A sampling size of r = 100 allows accurate predictions of the throughput,
while limiting the overhead to sampling only 1% of the packets.

QOE-DRIVEN IN-NETWORK OPTIMIZATION BASED ON PACKET SAMPLING 113

5 10 15 20
Maximum Buffer Size (s)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Av
er

ag
e

Es
tim

at
ed

 M
OS

AVC MSS
AVC Miller
AVC Festive
AVC Steered Distributed Relaxed QoE
AVC Steered Distributed Relaxed Bitrate

(a) Impact on average estimated MOS

5 10 15 20
Maximum Buffer Size (s)

0

20

40

60

80

100

Av
er

ag
e

Bu
ffe

r F
ill

in
g

(%
)

AVC MSS
AVC Miller
AVC Festive
AVC Steered Distributed Relaxed QoE
AVC Steered Distributed Relaxed Bitrate

(b) Impact on average buffer filling (%))

Figure 4.10: Impact of buffer size B (RTT = 40ms, r = 100, |Hc|= 128, τ = 2s,
N = 32). For a buffer of about 4s, the in-network optimization is able to achieve a similar
QoE as the best performing client-side heuristic using a buffer of four times that size.

4.5.2.4 Impact of the buffer size

Figure 4.10(a) shows the impact of the buffer size on average estimated MOS for
MSS, Miller, Festive, bitrate-based and QoE-based optimization. Depending on
the buffer size, the in-network QoE-driven optimization is able to achieve an im-
provement between 30% and 43% in terms of estimated MOS compared to the best
client-side adaptation heuristic (Miller). The bitrate-based optimization allows in-
creasing the estimated MOS with 10% to 25%. These results show a significant
increase of 13% to 19% in average QoE when also quality oscillations are included
during the optimization process, instead of only optimizing the quality in terms of
average bitrate per client. The maximum improvement over traditional autonomic
adaptation is achieved for a buffer of 8s. Starting from 12s, increasing the buffer
size for the in-network optimization has only a limited effect on the average MOS,
while the client-side algorithms continue to improve. This can be attributed to
the increased quality stability and larger safety margin to cope with bandwidth
changes when the buffer is increased.

The higher quality stability can be achieved by the QoE-driven optimization
for smaller buffer sizes as there is additional knowledge on estimated through-
put and optimal quality decisions from within the network. As shown in Fig-
ure 4.10(b), the in-network optimization almost completely fills the buffer for any
size, while client-side heuristics try to improve the quality when the buffer filling
is sufficiently high and thus trade in a higher buffer filling for a quality increase.
Especially when considering live streaming, small buffers are important since they
allow reducing the latency with respect to the live event. Furthermore, maintain-
ing only a limited buffer reduces the memory costs of the video application. For a
buffer of about 4s, the in-network optimization is able to achieve a similar QoE as

114 CHAPTER 4

the best performing client-side heuristic using a buffer of four times that size. Us-
ing in-network optimization allows shrinking the client-side buffer without com-
promising the QoE.

4.5.2.5 Selected parameter values

Based on the above parameter analysis, the best configuration is determined to be
|Hc|= 128, τ = 2s, r = 100 and B = 12s. These parameter configurations allow
increasing the overall QoE with about 30% compared to pure client-side state-of-
the-art adaptation heuristics. In the previous sections, it was shown that keeping
a history of previous decisions allows the in-network optimization to reduce the
number of quality oscillations, which benefits the overall QoE. Choosing a history
that is too small, will prevent quality switching, but may impact the quality rate.
Setting the history too large, increases storage overhead. Therefore, it is suggested
to keep a history |Hc| of 128 previous decisions. In a highly dynamic network
environment, it is important to frequently reassess the optimal quality allocation.
Not only clients joining or leaving the network can cause suboptimal or infeasi-
ble allocations, also the fluctuating available network throughput can impact the
decisions. Therefore, the optimization interval τ should be sufficiently small in
order to respond to these changes in a timely fashion. Since clients need to make a
decision for every segment they download, it is advised to select τ equal to the seg-
ment length of 2s. Continuously capturing packets is not scalable and increases the
complexity of capturing equipment and thus the overall network cost. Therefore,
packet sampling is deployed within the monitoring process. Sampling packets at
a rate r = 100, allows a high correlation ρ = 0.965, while reducing the capturing
to 1% of total data packets. A buffer storing segments deployed at the client side,
allows resolving temporal throughput fluctuations. A large buffer increases stor-
age requirements at the client device and increases latency with respect to the live
signal. In case of channel switching the prefetched content of this buffer is cleared,
which means that the buffered content was not useful. Therefore, the size of the
buffer should be chosen large enough so that temporal fluctuations can be resolved,
but at the same time sufficiently small to limit the storage, useless prefetching and
live latency. A buffer size of 12s is proposed, since it requires limited storage and
greatly improves QoE over client-side heuristics. The optimal parameter values
deduced during the analysis are used to evaluate the proposed system further on.

4.5.3 Impact of the forecasting method

In Section 4.4.2, several forecasting techniques were proposed to estimate the fu-
ture available capacity for the HAS traffic on each edge e. Table 4.3 gives an
overview of the average Pearson correlation for the different forecasting tech-
niques when using a sampling rate r = 100. More complex techniques, such

QOE-DRIVEN IN-NETWORK OPTIMIZATION BASED ON PACKET SAMPLING 115

Table 4.3: Pearson correlation and standard deviation for different forecasting techniques
for a sampling size of r = 100.

Forecasting Technique Pearson Standard
Correlation (ρ) Deviation (δρ)

Exponential Weighted MA (EWMA) 0.932 0.036
Holt Winters (HW) 0.926 0.037

Exponential Trend (ET) 0.909 0.042
Auto Regression (AR) 0.949 0.034

Support Vector Regression (SVR) 0.939 0.034
Multi Layer Perceptron (MLP) 0.966 0.035

10 100 1000 10000
Sampling Size (packets)

2.5

3.0

3.5

4.0

4.5

5.0

Av
er

ag
e

Es
tim

at
ed

 M
OS

AVC MSS
AVC Miller
AVC Festive

AVC Steered QoE EWMA
AVC Steered QoE HoltWinters
AVC Steered QoE ExponentialTrend

AVC Steered QoE AutoRegression
AVC Steered QoE SupportVectorRegression
AVC Steered QoE MultiLayerPerceptron

(a) Impact on average estimated MOS

10 100 1000 10000
Sampling Size (packets)

0

20

40

60

80

100

120

140

Nu
m

be
r o

f Q
ua

lit
y

Sw
itc

he
s

AVC MSS
AVC Miller
AVC Festive

AVC Steered QoE EWMA
AVC Steered QoE HoltWinters
AVC Steered QoE ExponentialTrend

AVC Steered QoE AutoRegression
AVC Steered QoE SupportVectorRegression
AVC Steered QoE MultiLayerPerceptron

(b) Impact on number of quality switches

Figure 4.11: Impact of forecasting method (RTT = 40ms, r = 100, |Hc|= 128, τ = 2s,
B = 12s, N = 32) for multiple values of the sampling rate r.

as MLP, SVR and AR yield slightly higher correlation then more straightforward
estimation techniques, such as EWMA, HW and ET. The latter only require set-
ting the weighting parameters α and/or β, while the more complex techniques
require a training step, yielding more accurate forecasts. Improved estimation of
the future available bandwidth for HAS also translates in more accurate QoE op-
timization. Figure 4.11(a) shows the impact of the sampling size r for the various
forecasting techniques on QoE. These results show, that although EWMA, HW
and ET have lower correlation values, they still allow an improvement over state-
of-the-art adaptation heuristics in terms of QoE. However, when the sampling
size r increases, these forecasting techniques are more prone to misestimations,
leading to even lower prediction accuracy and eventually lower QoE. Deploying
more complex forecasting techniques allows improving overall QoE, even if the
sampling size r increases. When comparing MLP to EWMA, better estimations
allow an increase of 9% in QoE for a sampling size of r = 100 and 28% if the
sampling size is further increased up to r = 10, 000. MLP is even able to outper-
form EWMA for a higher sampling size r: QoE of 4.24 at r = 1, 000 for MLP
compared to a QoE of 4.14 at r = 100 for EWMA. Even though there is a slight
increase in complexity due to the more sophisticated forecasting, MLP is able to
reduce the sampling overhead with a factor 10 compared to EWMA.

116 CHAPTER 4

4.5.4 Impact of last mile bandwidth fluctuations

In this section, the impact of last mile throughput fluctuations is assessed and how
the in-network optimization and client adaptation heuristic interact in such scenar-
ios. To this end, additional cross-traffic is introduced on the last mile connection to
simulate the network behavior of mobile devices. Several sets of traces were gener-
ated leading to an average available throughput of 0.8Mbps, 1.6Mbps, 2.4Mbps,
3.2Mbps, 4Mbps, 4.8Mbps and 5.6Mbps respectively. Two additional adap-
tation schemes are also evaluated. For the first scheme, the AVC Steered client
side adaptation is used, without the in-network control. This comes down to a
purely client-driven adaptation scheme that only takes into account the estimated
throughput at the client side to select the next quality. In the second scheme (AVC
Distributed Relaxed QoE), only the in-network adaptation is performed, without
taking into account possible throughput fluctuations due to the mobile network.
Here, the client downloads the quality that is suggested by the in-network opti-
mization without checking the feasibility in view of the current network condi-
tions. Furthermore, the combination of both schemes is evaluated (AVC Steered
Distributed Relaxed QoE) together with Miller, which yielded the best results in
the previous sections. This allows us to compare a purely client-driven adaptation,
a purely network-driven adaptation and the combination of both techniques.

Figure 4.12(a) shows the impact on QoE for the different scenarios. If the av-
erage throughput at the last mile is low, the purely network-driven approach is not
able to detect this and overestimates the available throughput, negatively impacting
the QoE. As the last mile throughput increases, the bottleneck shifts to the shared
part of the network and the network-driven adaptation is able to increase the QoE
thanks to additional monitoring information and global view of the subscribers.
The purely client-driven approach shows a similar course as Miller, but about 20%

lower due to the basic adaptation heuristic. Figure 4.12(c) shows the impact of the
different scenarios on buffer starvations. Since the purely network-driven adapta-
tion constantly overestimates the available throughput, most of the segments arrive
late, leading to almost 350s of frame freezing, plunging the QoE as shown before.
In Figure 4.12(d) the results for the purely network-driven approach are left out
for presentation reasons. These results show that the simple client-driven adap-
tation is not able to cope with the ON-OFF behavior that occurs when multiple
HAS clients are connected. Also the adaptation heuristic proposed by Miller et
al. shows an increasing number of frame freezes, when the last mile throughput
increases. This indicates that it is able to cope with throughput fluctuations of the
mobile network, but suffers from the congestion that is induced by other connected
clients in the network. The combination of in-network and client-driven adaptation
is able to overcome both the throughput fluctuations caused by the local network
and those caused by competition between connected clients. When comparing the
number of switches in Figure 4.12(b), a similar behavior is shown, where the ba-

QOE-DRIVEN IN-NETWORK OPTIMIZATION BASED ON PACKET SAMPLING 117

1 2 3 4 5 6
Average Last Mile Throughput (Mbps)

0

1

2

3

4

5

Av
er

ag
e

Es
tim

at
ed

 M
OS

AVC Miller
AVC Steered
AVC Steered Distributed Relaxed QoE
AVC Distributed Relaxed QoE

(a) Impact on average estimated MOS

1 2 3 4 5 6
Average Last Mile Throughput (Mbps)

0

50

100

150

200

250

300

350

Nu
m

be
r o

f Q
ua

lit
y

Sw
itc

he
s

AVC Miller
AVC Steered
AVC Steered Distributed Relaxed QoE
AVC Distributed Relaxed QoE

(b) Impact on number of quality switches

1 2 3 4 5 6
Average Last Mile Throughput (Mbps)

0

50

100

150

200

250

300

350

400

Bu
ffe

r S
ta

rv
at

io
n

(s
)

AVC Miller
AVC Steered
AVC Steered Distributed Relaxed QoE
AVC Distributed Relaxed QoE

(c) Impact on buffer starvations (s)

1 2 3 4 5 6
Average Last Mile Throughput (Mbps)

0

1

2

3

4

5

Bu
ffe

r S
ta

rv
at

io
n

(s
)

AVC Miller
AVC Steered
AVC Steered Distributed Relaxed QoE

(d) Impact on buffer starvations (s), leaving out re-
sults for the purely network-driven approach

Figure 4.12: Impact of access network bandwidth fluctuations (RTT = 40ms, |Hc|= 128,
τ = 2s, B = 12s, N = 32).

118 CHAPTER 4

sic client-driven approach is not able to reach a stable quality level and the purely
network-based adaptation makes wrong estimations on the available throughput,
causing frame freezes, which are interpreted as quality switches. These results
show that a combination of in-network and client-side adaptation is required to
cope with both the competition of HAS clients and the local network fluctuations,
which are not monitored by the in-network adaptation.

4.5.5 Overhead of in-network optimization

When deploying in-network QoE-optimization for HAS, several overheads are in-
troduced, ranging from monitoring data transfers to partial solution exchanges.
The overheads that are incurred differ between the centralized and distributed ap-
proach. To allow a distributed optimization, local subsolutions need to be prop-
agated to their parent nodes. If |C| is the total number of subscriptions, this list
of local solutions, or any combination made by any node, contains at most |C| en-
tries. To be able to uniquely identify each client, the list should contain an ID com-
posed out of at least dlog2 |C|e bits. If the number of available quality rates is |Q|,
there are dlog2 |Q|e bits required to encode the local decision for each client. Fig-
ure 4.13(a) shows how the total network size impacts the communication overhead
incurred by distributed optimization. This graph shows a linear relation (O(|C|))
between the total number of clients (for various configurations of K, M and N)
and the total incurred overhead in MB during each execution of the in-network
optimization. Figure 4.13(b) shows the overhead relatively to the total network us-
age when assuming an average load of 1Mbps induced by each connected client.
With an impact of around 0.0028% on total network usage, the communication
overhead introduced by the distributed optimization can be considered negligible.

The centralized approach does not require the exchange of subsolutions. How-
ever, since a global view of the network is required, the throughput measure-
ments performed at several locations in the network need to be forwarded to the
node performing the centralized optimization. For each edge e, the estimated
amount of traffic (in bits) Ae,t is forwarded to this node every τ seconds. Since
only one value has to be transferred per link every τ seconds, the total overhead
(
∑
e∈E dlog2Ae,te) involved with exchanging these measurements is negligible

compared to the total streaming traffic. Figure 4.13(c) shows the total overhead in
function of the number of connected clients for different values of M . This shows
the (O(log(|C|))) relationship between the measurement data and the total number
of connected clients per interval τ for a specific value of M .

Increasing K or M in the topology shown in Figure 4.3, increases the num-
ber of links that need to be monitored, while increasing N , only increases the
number of connected clients, leaving the number of monitored links unchanged.
This shows that the structure of the topology has an impact on the communication

QOE-DRIVEN IN-NETWORK OPTIMIZATION BASED ON PACKET SAMPLING 119

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Total Number of Clients 1e7

0

10

20

30

40

50

60

To
ta

l O
ve

rh
ea

d
(M

B)

K = 32

(a) Impact on total overhead (MB)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Total Number of Clients 1e7

0.22

0.23

0.24

0.25

0.26

0.27

0.28

Re
la

tiv
e

Ov
er

he
ad

 (*
0.

01
%

)

K = 32

(b) Impact on relative overhead (%)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Total Number of Clients 1e7

0

1

2

3

4

5

6

7

8

9

To
ta

l O
ve

rh
ea

d
(K

B)

K = 32, M = 256
K = 32, M = 128
K = 32, M = 64
K = 32, M = 32

(c) Impact on total overhead (MB)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Total Number of Clients 1e7

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Re
la

tiv
e

Ov
er

he
ad

 (*
0.

01
%

)

K = 32, M = 256
K = 32, M = 128
K = 32, M = 64
K = 32, M = 32

(d) Impact on relative overhead (%)

Figure 4.13: Impact of total number of clients |C| for various combinations of network
size parameters (K = 32, M ∈ [32, 64, 128, 256] and N ∈ [512, 1024, 2048, 4096])
on the communication overhead for distributed ((a) and (b)) and centralized ((c) and (d))
in-network QoE optimization respectively.

120 CHAPTER 4

overhead for the centralized optimization. Figure 4.13(d) shows an inverse loga-
rithmic behavior for the relative impact of measurement communication overhead
when the number of clients increases. Increasing N leads to more clients and thus
higher traffic rates, decreasing the relative impact of the communication overhead.
Increasing K or M , increases the number of links that need to be monitored, so
for the same number of clients |C|, the relative impact is higher when K or M
are increased. Increasing the sampling interval τ can further reduce the impact
of the measurement communication overhead, but at the cost of lower prediction
precision and hence QoE as was shown in Section 4.5.2.2.

To optimize the QoE, a history of prior decisions Hc needs to be maintained
for each client c ∈ Cn. In Section 4.5.2.1, it was established that |Hc|= 128

yields the highest QoE. However, maintaining a history of previous decisions
for each client also comes at the cost of increased memory requirements. The
amount of information that needs to be maintained by each node is in the order of
|Cn|∗|Hc|∗dlog2 |Q|e, where dlog2 |Q|e is the number of bits required to uniquely
represent |Q| quality levels. Concretely, for a client set Cn of 1, 000, 000, a history
size |Hc| of 128 and videos with a quality set |Qv| of maximum 7 representations,
the required storage is 48MB. Using compression techniques, these storage re-
quirements could be further reduced thanks to repetitive character of the quality
values, caused by the avoidance of quality oscillations.

The delay incurred by the network affects the exchange of these partial solu-
tions for the distributed optimization. Since each local optimization requires input
of the previous ones, the communication delay incurred by these partial solutions,
also affects the execution time of the global optimization as was discussed in pre-
vious work [23]. Also the centralized optimization is affected by network delay,
since the global optimization requires input of all link states in the network.

4.5.6 Scalability of the QoE-driven quality optimization

Figure 4.14(a) shows the impact of increasing the number of nodes per level M
and the associated link dimensions on the average execution time of the in-network
optimization. The network delay impacts both the Centralized and Distributed
approach for the distribution of cross traffic information and quality decisions,
respectively. The Centralized optimization times linearly increase with the number
of nodes per level, since the number of connected clients and edge constraints
increase. The Distributed optimization experiences only limited impact thanks
to the parallel optimization, leading to execution times of about 21ms, mostly
caused by the network delay. Increasing the number of nodes per level does not
increase the execution times at that level since the optimizations can be executed
in parallel. For small problem sizes, the Centralized optimization outperforms the
Distributed optimization in terms of optimality, thanks to the complete knowledge

QOE-DRIVEN IN-NETWORK OPTIMIZATION BASED ON PACKET SAMPLING 121

0 20 40 60 80 100 120 140
Number of nodes per level

0

500

1000

1500

2000

2500

3000

3500

Av
er

ag
e

De
ci

si
on

 T
im

e
(m

s)

AVC Steered Distributed Relaxed QoE
AVC Steered Centralized Exact QoE

(a) Impact on the average decision time (ms)

0 20 40 60 80 100 120 140
Number of nodes per level

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.0

Av
er

ag
e

Es
tim

at
ed

 M
O

S

AVC Steered Distributed Relaxed QoE
AVC Steered Centralized Exact QoE

(b) Impact on average estimated MOS

0 20 40 60 80 100 120 140
Number of nodes per level

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.0

Op
tim

iz
at

io
n

So
lu

tio
n

M
OS

AVC Steered Distributed Relaxed QoE
AVC Steered Centralized Exact QoE

(c) Impact on average optimization solution

Figure 4.14: Impact of increasing the number of nodes per level M (RTT = 40ms,
r = 100, |Hc|= 128, τ = 2s, B = 12s, N = 16). Since the calculation delay for
the Centralized optimization is quite high, the practical results differ significantly from the
optimal solution, showing the benefits of the more scalable Distributed optimization.

of the problem. As can be seen from Figure 4.14(b), this optimality is lost when the
number of nodes per level M exceeds 32. Due to the longer solution times (up to
2.9s), suboptimal solutions are installed, leading to occasional buffer starvations
and more frequent switching, negatively impacting the overall QoE. In a real-
life setting, these execution times heavily impact the optimality of the calculated
solution due to delayed availability of the optimal solution. Figure 4.14(c) shows
the resulting QoE for the solutions obtained by the in-network optimization. This
is the theoretical solution that could be achieved by the optimization in absence of
calculation delays and buffering at the client.

The optimal solution for the Distributed relaxation is almost identical to the
results obtained in Figure 4.14(b), since there is little impact of the calculation de-
lay. For the Centralized optimization however, the results are quite different. Since
the calculation delay is quite high, the practical results differ significantly from the
optimal solution. The Centralized ILP optimization outperforms the Distributed
relaxation by 1.4% in terms of theoretical optimality, while in a practical setting,

122 CHAPTER 4

0 10 20 30 40 50 60 70
Number Of Homes Per Branch (N)

3.0

3.5

4.0

4.5

5.0

Av
er

ag
e

Es
tim

at
ed

 M
OS

AVC MSS
AVC Miller
AVC Festive
AVC Steered Distributed Relaxed QoE

(a) Impact on average estimated MOS

0 10 20 30 40 50 60 70
Number Of Homes Per Branch (N)

2.0

2.1

2.2

2.3

2.4

A
ve

ra
ge

 P
la

ye
d

Q
ua

lit
y

R
at

e
(M

bp
s)

AVC MSS

AVC Miller

AVC Festive

AVC Steered Distributed Relaxed QoE

(b) Impact on average quality (Mbps)

0 10 20 30 40 50 60 70
Number Of Homes Per Branch (N)

0.0

0.5

1.0

1.5

2.0

Bu
ffe

r S
ta

rv
at

io
n

(s
)

AVC MSS
AVC Miller
AVC Festive
AVC Steered Distributed Relaxed QoE

(c) Impact on buffer starvations (s)

Figure 4.15: Impact of number of clients |C| for an uncongested scenario (RTT = 40ms,
r = 100, |Hc|= 128, τ = 2s, B = 12s). Even in the absence of cross traffic, the
client-side heuristics are not able to achieve a comparable quality as in-networks driven
optimization due to the competition between clients.

the Centralized optimization is outperformed by 2.4%.

To measure the impact of increasing the number of homes N per branch, two
scenarios were evaluated. In the first scenario, no additional traffic was sent over
the links in the network. This ensures that the competition for throughput among
clients is the sole source of quality adaptations. The first scenario is referred to
as uncongested. For the second scenario, additional cross traffic was introduced
that competes with the video traffic, causing additional quality adaptations. This
additional traffic causes the network to be congested and is referred to as congested
scenario.

In absence of cross traffic, the QoE-driven optimization achieves an average
QoE that is about 7% higher than for Miller as illustrated in Figure 4.15(a). This
can be attributed to the faster startup quality of in-network based quality optimiza-
tion, whereas Miller gradually increases the quality, leading to quality switches.
Increasing the number of connected clients per branch (N), introduces congestion
by creating additional competition between the different clients. This decreases

QOE-DRIVEN IN-NETWORK OPTIMIZATION BASED ON PACKET SAMPLING 123

0 10 20 30 40 50 60 70
Number Of Homes Per Branch (N)

0

1

2

3

4

5

Av
er

ag
e

Es
tim

at
ed

 M
OS

AVC MSS
AVC Miller
AVC Festive
AVC Steered Distributed Relaxed QoE

(a) Impact on average estimated MOS

0 10 20 30 40 50 60 70
Number Of Homes Per Branch (N)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Av
er

ag
e

Pl
ay

ed
 Q

ua
lit

y
Ra

te
 (M

bp
s)

AVC MSS
AVC Miller
AVC Festive
AVC Steered Distributed Relaxed QoE

(b) Impact on average quality (Mbps)

0 10 20 30 40 50 60 70
Number Of Homes Per Branch (N)

0

20

40

60

80

100

120

Bu
ffe

r S
ta

rv
at

io
n

(s
)

AVC MSS
AVC Miller
AVC Festive
AVC Steered Distributed Relaxed QoE

(c) Impact on buffer starvations (s)

Figure 4.16: Impact of number of homes N for a congested scenario (RTT = 40ms,
r = 100, |Hc|= 128, τ = 2s, B = 12s). The in-network optimization also suffers from
the congested network (N = 64), but is able to maintain an average QoE that is 130%
higher compared to the client-side heuristics and is still acceptable since the MOS is higher
than 3.

the average quality in terms of bitrate as shown in Figure 4.15(b) and can even
lead to freezes for the client-side heuristics as shown in Figure 4.15(c). Even in
the absence of cross traffic, the client-side heuristics are not able to achieve a com-
parable quality as in-networks driven optimization due to the competition between
clients and over-estimation of available throughput, potentially leading to quality
oscillations and buffer starvations.

Increasing the number of connected homes N and introducing additional cross
traffic further demonstrates the benefits of in-network quality adaptation. Addi-
tional cross traffic from other sources than video traffic leads to wrong estimations
for autonomic adaptation heuristics such as Miller as is shown in Figure 4.16(a).
This causes some of the clients to switch to a higher quality as is shown in Fig-
ure 4.16(b), but unlike the wrong estimation predicted, this quality cannot be main-
tained and ultimately leads to an increasing number of buffer starvations to as is
shown in Figure 4.16(c). The in-network optimization also suffers from the con-

124 CHAPTER 4

gested network (N = 64), but is able to maintain an average QoE that is 3 times
as high compared to the client-side heuristics and is still acceptable since the MOS
is higher than 3. These results indicate the benefits of the additional knowledge
for the AVC Steered adaptation heuristic provided by the in-network quality adap-
tation. Measuring the cross traffic along the delivery paths and estimating the
achievable quality for each HAS session benefits QoE both in an uncongested
scenario (7% gain) and a heavily congested scenario (340% gain) compared to tra-
ditional adaptation heuristics. This increase can mainly be attributed to a higher
quality stability and the avoidance of buffer starvations. Figure 4.16(c) shows how
the QoE optimization has almost no freezes in the congested scenario, while for
purely client-driven approaches the buffer starvations range from 6s to 102s, seri-
ously degrading the QoE.

4.6 Conclusions
In HTTP Adaptive Streaming (HAS), competing clients impact the behavior of
each other, causing wrong estimations of the available throughput. This leads
to frequent quality oscillations and frame freezes, heavily impacting Quality of
Experience (QoE). This chapter therefore proposes a hybrid alternative, where
in-network proxies monitor the available throughput using packet-based sampling
and estimate the optimal quality selection for each client. The in-network op-
timization is driven by QoE by maintaining a history of previous decisions and
maximizing the QoE in terms of both quality, quality oscillations and buffer star-
vations. This allows the QoE-driven in-network optimization to outperform stan-
dard autonomic quality heuristics by 30% to 43% and bitrate-based in-network
optimization by 13% to 19%. Both a Centralized optimization and a scalable Dis-
tributed heuristic approach are presented. The Centralized optimization allows an
optimal solution of the optimization problem, which is about 1.4% higher than the
solutions obtained by the Distributed optimization. However, due to the longer
execution times, the actual output in terms of QoE for the Centralized optimiza-
tion is outperformed by the Distributed heuristic when the network size grows.
The impact of the historic information as well as the optimization interval were
evaluated, showing that a sufficiently large history (≥ 100) and optimizing with
an interval equal to the average segment length yields significantly better results
when compared to an autonomic quality selection heuristic with the same buffer
size. Sampling the cross traffic with a sampling size of 100 yields a high corre-
lation with the actual traffic, while limiting the overhead of sampling 1% of the
packets. The proposed solution is able to achieve comparable QoE as a purely
client-based quality selection with a buffer that is four times as small.

QOE-DRIVEN IN-NETWORK OPTIMIZATION BASED ON PACKET SAMPLING 125

References

[1] T. Stockhammer. Dynamic adaptive streaming over HTTP: standards and
design principles. In Proceedings of the second annual ACM conference
on Multimedia systems, MMSys ’11, pages 133–144, New York, NY, USA,
2011. ACM.

[2] X. Wang. Network-Assistance and Server Management in Adaptive Stream-
ing on the Internet. In Proceedings of the Fourth W3C Web and TV Work-
shop, 2014.

[3] N. Bouten, S. Latré, W. Van de Meerssche, B. De Vleeschauwer,
K. De Schepper, W. Van Leekwijck, and F. De Turck. A Multicast-Enabled
Delivery Framework for QoE Assurance of Over-The-Top Services in Mul-
timedia Access Networks. Journal of Network and Systems Management,
21(4):677–706, 2013.

[4] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hossfeld, and P. Tran-Gia. A
Survey on Quality of Experience of HTTP Adaptive Streaming. Communica-
tions Surveys Tutorials, IEEE, PP(99):1–1, 2014.

[5] R. Kuschnig, I. Kofler, and H. Hellwagner. An Evaluation of TCP-based
Rate-control Algorithms for Adaptive Internet Streaming of H.264/SVC. In
Proceedings of the First Annual ACM SIGMM Conference on Multimedia
Systems, MMSys ’10, pages 157–168, 2010.

[6] S. Akhshabi, A. C. Begen, and C. Dovrolis. An Experimental Evaluation
of Rate-adaptation Algorithms in Adaptive Streaming over HTTP. In Pro-
ceedings of the Second Annual ACM Conference on Multimedia Systems
(MMSys), pages 157–168, 2011.

[7] S. Akhshabi, L. Anantakrishnan, A. C. Begen, and C. Dovrolis. What Hap-
pens when HTTP Adaptive Streaming Players Compete for Bandwidth? In
Proceedings of the International Workshop on Network and Operating Sys-
tem Support for Digital Audio and Video (NOSSDAV), pages 9–14, 2012.

[8] R. Houdaille and S. Gouache. Shaping HTTP Adaptive Streams for a Better
User Experience. In Proceedings of the 3rd Multimedia Systems Conference,
MMSys ’12, pages 1–9, 2012.

[9] S. Benno, J. O. Esteban, and I. Rimac. Adaptive streaming: The network
HAS to help. Bell Labs Technical Journal, 16(2):101–114, 2011.

[10] V. Krishnamoorthi, N. Carlsson, D. Eager, A. Mahanti, and N. Shahmehri.
Helping Hand or Hidden Hurdle: Proxy-Assisted HTTP-Based Adaptive

126 CHAPTER 4

Streaming Performance. In Proceedings of the IEEE International Sympo-
sium on Modelling, Analysis & Simulation of Computer and Telecommuni-
cation Systems (MASCOTS), pages 182–191, 2013.

[11] B. Frank, I. Poese, Y. Lin, G. Smaragdakis, A. Feldmann, B. Maggs, J. Rake,
S. Uhlig, and R. Weber. Pushing CDN-ISP Collaboration to the Limit. SIG-
COMM Comput. Commun. Rev., 43(3):34–44, July 2013.

[12] K. Miller, E. Quacchio, G. Gennari, and A. Wolisz. Adaptation algorithm
for adaptive streaming over HTTP. In Proceedings of the 19th International
Packet Video Workshop (PV), pages 173–178. IEEE, 2012.

[13] J. Jiang, V. Sekar, and H. Zhang. Improving Fairness, Efficiency, and Stability
in HTTP-based Adaptive Video Streaming with FESTIVE. In Proceedings of
the 8th International Conference on Emerging Networking Experiments and
Technologies, CoNEXT ’12, pages 97–108. ACM, 2012.

[14] G. Tian and Y. Liu. Towards Agile and Smooth Video Adaptation in Dynamic
HTTP Streaming. In Proceedings of the 8th International Conference on
Emerging Networking Experiments and Technologies, CoNEXT ’12, pages
109–120, 2012.

[15] J. Famaey, S. Latré, N. Bouten, W. Van de Meerssche, B. De Vleeschauwer,
W. Van Leekwijck, and F. De Turck. On the merits of SVC-based HTTP
Adaptive Streaming. In Proceedings of the IFIP/IEEE International Sympo-
sium on Integrated Network Management (IM), pages 419–426, 2013.

[16] N. Bouten, S. Latré, J. Famaey, F. De Turck, and W. Van Leekwijck. Min-
imizing the impact of delay on live SVC-based HTTP adaptive streaming
services. In Proceedings of the IFIP/IEEE International Symposium on Inte-
grated Network Management (IM), pages 1399–1404, 2013.

[17] C. Liu, I. Bouazizi, M. M. Hannuksela, and M. Gabbouj. Rate adaptation
for dynamic adaptive streaming over HTTP in content distribution network.
Signal Processing: Image Communication, 27(4):288 – 311, 2012.

[18] V. Adzic, H. Kalva, and B. Furht. Optimized Adaptive HTTP Streaming for
Mobile Devices. In SPIE Optical Engineering+ Applications, pages 81350T–
81350T. International Society for Optics and Photonics, 2011.

[19] D. C. Robinson, Y. Jutras, and V. Craciun. Subjective Video Quality As-
sessment of HTTP Adaptive Streaming Technologies. Bell Labs Technical
Journal, 16(4):5–23, 2012.

QOE-DRIVEN IN-NETWORK OPTIMIZATION BASED ON PACKET SAMPLING 127

[20] J. Esteban, S. A. Benno, A. Beck, Y. Guo, V. Hilt, and I. Rimac. Interactions
Between HTTP Adaptive Streaming and TCP. In Proceedings of the 22Nd In-
ternational Workshop on Network and Operating System Support for Digital
Audio and Video, NOSSDAV ’12, pages 21–26, 2012.

[21] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen. Server-
based Traffic Shaping for Stabilizing Oscillating Adaptive Streaming Players.
In Proceedings of the ACM Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV), pages 19–24, 2013.

[22] X. Liu and A. Men. QoE-aware Traffic Shaping for HTTP Adaptive Stream-
ing. International Journal of Multimedia & Ubiquitous Engineering, 9(2),
2014.

[23] N. Bouten, S. Latré, J. Famaey, W. Van Leekwijck, and F. De Turck. In-
Network Quality Optimization for Adaptive Video Streaming Services. Mul-
timedia, IEEE Transactions on, 16(8):2281–2293, Dec 2014.

[24] Z. Li, M. Sbai, Y. Hadjadj-Aoul, A. Gravey, D. Alliez, J. Garnier, G. Madec,
G. Simon, and K. Singh. Network friendly video distribution. In Network
of the Future (NOF), 2012 Third International Conference on the, pages 1–8,
Nov 2012.

[25] J. Famaey, S. Latré, R. van Brandenburg, M. O. van Deventer, and
F. De Turck. On the Impact of Redirection on HTTP Adaptive Streaming
Services in Federated CDNs. In Proceedings of the 7th IFIP WG 6.6 Interna-
tional Conference on Autonomous Infrastructure, Management, and Security
Volume 7943, AIMS’13, pages 13–24, 2013.

[26] A. El Essaili, D. Schroeder, D. Staehle, M. Shehada, W. Kellerer, and
E. Steinbach. Quality-of-experience driven adaptive HTTP media delivery.
In Communications (ICC), 2013 IEEE International Conference on, pages
2480–2485, June 2013.

[27] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and N. Race. To-
wards Network-wide QoE Fairness using OpenFlow-assisted Adaptive Video
Streaming. In Proceedings of the 2013 ACM SIGCOMM workshop on Fu-
ture human-centric multimedia networking, pages 15–20. ACM, 2013.

[28] C. Mueller, S. Lederer, C. Timmerer, and H. Hellwagner. Dynamic Adaptive
Streaming over HTTP/2.0. In Multimedia and Expo (ICME), 2013 IEEE
International Conference on, pages 1–6, July 2013.

[29] S. Wei and V. Swaminathan. Low Latency Live Video Streaming over HTTP
2.0. In Proceedings of Network and Operating System Support on Digital
Audio and Video Workshop, NOSSDAV ’14, pages 37:37–37:42, 2014.

128 CHAPTER 4

[30] S. Wei and V. Swaminathan. Cost effective video streaming using server push
over HTTP 2.0. In Multimedia Signal Processing (MMSP), 2014 IEEE 16th
International Workshop on, pages 1–5, Sept 2014.

[31] N. Bouten, M. Claeys, S. Latre, J. Famaey, W. Van Leekwijck, and
F. De Turck. Deadline-based approach for improving delivery of SVC-based
HTTP Adaptive Streaming content. In Network Operations and Management
Symposium (NOMS), 2014 IEEE, pages 1–7, May 2014.

[32] N. Bouten, S. Latré, W. Van de Meerssche, K. De Schepper,
B. De Vleeschauwer, W. Van Leekwijck, and F. De Turck. An autonomic
delivery framework for HTTP Adaptive Streaming in multicast-enabled mul-
timedia access networks. In Proceedings of the IEEE Network Operations
and Management Symposium (NOMS), pages 1248–1253, 2012.

[33] S. Petrangeli, M. Claeys, S. Latre, J. Famaey, and F. De Turck. A multi-
agent Q-Learning-based framework for achieving fairness in HTTP Adaptive
Streaming. In Network Operations and Management Symposium (NOMS),
2014 IEEE, pages 1–9, May 2014.

[34] R. K. P. Mok, X. Luo, E. W. W. Chan, and R. K. C. Chang. QDASH: A
QoE-aware DASH System. In Proceedings of the 3rd Multimedia Systems
Conference, MMSys ’12, pages 11–22, 2012.

[35] T. Schierl, C. Hellge, S. Mirta, K. Grneberg, and T. Wiegand. Using
H.264/AVC-based Scalable Video Coding (SVC) for Real Time Streaming in
Wireless IP Networks. In Proceedings of the IEEE International Symposium
on Circuits and Systems (ISCAS), pages 3455–3458, 2007.

[36] S. Latré and F. De Turck. Joint In-network Video Rate Adaptation and
Measurement-Based Admission Control: Algorithm Design and Evaluation.
Journal of Network and Systems Management, 21(4):588–622, 2013.

[37] Y.-M. Hsiao, S.-W. Yeh, J.-S. Chen, and Y.-S. Chu. A design of bandwidth
adaptive multimedia gateway for scalable video coding. In Proceedings of
IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), pages
160–163, 2010.

[38] T. Sutinen, J. Vehkaperä, E. Piri, and M. Uitto. Towards ubiquitous video ser-
vices through scalable video coding and cross-layer optimization. EURASIP
Journal on Wireless Communications and Networking, 2012(1), 2012.

[39] H.-C. Lee and S.-M. Guu. On the Optimal Three-tier Multimedia Streaming
Services. Fuzzy Optimization and Decision Making, 2(1):31–39, 2003.

QOE-DRIVEN IN-NETWORK OPTIMIZATION BASED ON PACKET SAMPLING 129

[40] C. Hsu and M. Hefeeda. Optimal bit allocation for fine-grained scalable
video sequences in distributed streaming environments. In Electronic Imag-
ing 2007, pages 650402–650402. International Society for Optics and Pho-
tonics, 2007.

[41] M. Hefeeda and C.-H. Hsu. Rate-distortion Optimized Streaming of Fine-
grained Scalable Video Sequences. ACM Transactions on Multimedia Com-
puting, Communications, and Applications (TOMM), 4(1):2:1–2:28, 2008.

[42] N. Bouten, J. Famaey, S. Latré, R. Huysegems, B. De Vleeschauwer,
W. Van Leekwijck, and F. De Turck. QoE optimization through in-network
quality adaptation for HTTP Adaptive Streaming. In Proceedings of the Inter-
national Conference on Network and Service Management (CNSM), pages
336–342, 2012.

[43] A. Pras, L. Nieuwenhuis, R. van de Meent, and M. Mandjes. Dimensioning
network links: a new look at equivalent bandwidth. Network, IEEE, 23(2):5–
10, 2009.

[44] R. d. O. Schmidt, R. Sadre, A. Sperotto, and A. Pras. Lightweight Link
Dimensioning using sFlow Sampling. In Proceedings of the 9th International
Conference on Network and Service Management (CNSM), pages 152–155.
IEEE, 2013.

[45] R. G. Brown. Exponential Smoothing for predicting demand. In Operations
Research, volume 5, pages 145–145, 1957.

[46] C. Chatfield. The Holt-Winters forecasting procedure. Applied Statistics,
27(3):264–279, 1978.

[47] R. Shibata. Selection of the order of an autoregressive model by Akaike’s
information criterion. Biometrika, 63(1):117–126, 1976.

[48] P. J. Rousseeuw. Least Median of Squares Regression. Journal of the Amer-
ican statistical association, 79(388):871–880, 1984.

[49] A. J. Smola and B. Schölkopf. A tutorial on Support Vector Regression.
Statistics and computing, 14(3):199–222, 2004.

[50] S. K. Shevade, S. S. Keerthi, C. Bhattacharyya, and K. R. K. Murthy. Im-
provements to the SMO algorithm for SVM regression. Neural Networks,
IEEE Transactions on, 11(5):1188–1193, 2000.

[51] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP Through-
put: A Simple Model and Its Empirical Validation. In Proceedings of the
ACM SIGCOMM Conference on Applications, Technologies, Architectures,

130 CHAPTER 4

and Protocols for Computer Communication (SIGCOMM), pages 303–314,
1998.

[52] J. De Vriendt, D. De Vleeschauwer, and D. Robinson. Model for estimating
QoE of video delivered using HTTP adaptive streaming. In Integrated Net-
work Management (IM 2013), 2013 IFIP/IEEE International Symposium on,
pages 1288–1293. IEEE, 2013.

[53] J. De Vriendt, D. De Vleeschauwer, and D. C. Robinson. QoE Model for
Video Delivered Over an LTE Network Using HTTP Adaptive Streaming.
Bell Labs Technical Journal, 18(4):45–62, 2014.

[54] M. Claeys, S. Latré, J. Famaey, and F. De Turck. Design and Evaluation of
a Self-Learning HTTP Adaptive Video Streaming Client. Communications
Letters, IEEE, 18(4):716–719, April 2014.

[55] L. Plissonneau and E. Biersack. A Longitudinal View of HTTP Video Stream-
ing Performance. In Proceedings of the Multimedia Systems Conference
(MMSys), pages 203–214, 2012.

[56] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen. Commute Path Band-
width Traces from 3G Networks: Analysis and Applications. In Proceedings
of the 4th ACM Multimedia Systems Conference, pages 114–118, February
2013.

[57] M. Claeys, S. Latré, J. Famaey, T. Wu, W. Van Leekwijck, and F. De Turck.
Design and Optimisation of a FAQ-learning-based HTTP Adaptive Stream-
ing Client. Connection Science, 26(1):25–43, January 2014.

5
Clustering-based Quality Selection

Heuristics for HTTP Adaptive
Streaming over Cache Networks

N. Bouten, D. De Vleeschauwer, W. Van Leekwijck, S. Latré, F.
De Turck.

Submitted to International Journal of Network Management, August 2016.

Chapter 3 and 4 considered the Quality of Experience (QoE)-management of
Video on Demand (VoD) HTTP Adaptive Streaming (HAS) services. The impact
of intermediary caches was not considered. However, introducing intermediary
caching nodes on the delivery path can impact the QoE perceived by the end user.
In cache-assisted HAS, segments can be served from different origins based on
the content of the caches, causing highly fluctuating throughput and Round Trip
Time (RTT) measurements, negatively impacting the stability and optimality of the
quality decisions. In this chapter, heuristics are proposed that are able to use
information on the streaming origin and intermediary cache contents to optimize
the quality selection process. Furthermore, approximation techniques based on
unsupervised incremental clustering are proposed to detect the streaming origin
in the absence of an external information channel. Similarly, a probability-based
heuristic is proposed to predict the cache content of the expected delivery location
when this information is not provided.

132 CHAPTER 5

5.1 Introduction

Over the past decades, the importance of multimedia services such as video stream-
ing has increased considerably. This growth is projected to exceed 75 percent of
the mobile data traffic by 2020, causing video streaming to dominate the Inter-
net [1]. Today, popular Over-The-Top (OTT)-services such as YouTube and Net-
flix are offering large catalogues of user generated and professionally created video
content. In the past, the Real Time Streaming Protocol (RTSP) and Real Time
Transport Protocol (RTP) were used to deliver video over IP networks through
UDP. Today, the majority of the video streaming traffic is delivered using HTTP
over TCP. The popularity of these HTTP-based streaming services was mainly in-
duced by the advantages offered by HTTP streaming: the reuse of caching infras-
tructure, the reliable transmission over HTTP and the compatibility with firewalls.
Furthermore, to increase the scalability of streaming services and to cope with
dynamic network conditions, research and academia shifted towards client-side
adaptation schemes. Therefore, HTTP Adaptive Streaming (HAS) is now becom-
ing the de facto standard for video streaming delivery.

In HAS, the video content is split temporally into segments which are encoded
at different quality rates. The client side heuristic decides at which quality rate
each segment should be downloaded, based on measured network statistics, buffer
filling level and device characteristics. This allows HAS to respond to through-
put fluctuations by reducing the quality and continuing video playout, whereas
non-adaptive HTTP-based streaming techniques would run into a buffer starvation.
This allows the client to independently choose its playback quality and prevents
the need for server-side rate adaptation, which is a major advantage in large-scale
OTT scenarios.

The increased popularity of video consumption over the Internet has led to
the development of a range of protocols that allow adaptive video streaming over
HTTP. Some of the major industrial players have introduced their proprietary pro-
tocols such as Microsoft’s Silverlight Smooth Streaming1, Apple’s HTTP Live
Streaming2 and Adobe’s HTTP Dynamic Streaming3. Furthermore, a standard-
ized solution has been proposed by MPEG, called Dynamic Adaptive Streaming
over HTTP (DASH) [2].

The goal of the rate adaptation heuristics is to optimize the quality that is per-
ceived by the end-user of the streaming service. For UDP-based streaming ser-
vices, network impairments such as packet loss can lead to incorrectly decoded
frames resulting in blockiness artefacts. For HAS services, a reliable transport pro-
tocol is used which, by design, prevents the appearance of video artefacts. How-

1Microsoft Smooth Streaming - http://www.iis.net/downloads/microsoft/smooth-streaming
2Apple HTTP Live Streaming - http://tools.ietf.org/html/draft-pantos-http-live-streaming-19
3Adobe HTTP Dynamic Streaming - http://www.adobe.com/products/hds-dynamic-

streaming.html

CLUSTERING-BASED ADAPTATION FOR HAS OVER CACHE NETWORKS 133

ever, due to the fact that the quality can be dynamically adapted, the Quality of
Experience (QoE) is impacted by the quality of the selected representation, as well
as the switching between different quality representations. Furthermore, since the
segment can only be played when it has been received completely and error-free,
buffer starvations can lead to video stallings, negatively impacting the user experi-
ence [3, 4]. Therefore, the aim of the rate adaptation heuristic is to achieve a fluent
video playout at a stable and sufficiently high quality representation with minimal
number of switches.

State-of-the-art HAS solutions use a buffer containing several segments to
cope with dynamic network conditions. Selection of the quality level of the next
segment is done by evaluating the current buffer filling level and the measured
throughput. The achieved throughput is impacted by the perceived delay and bot-
tleneck bandwidth of the end-to-end delivery path. Previous research indicated
that delay and delay variations can have a significant impact on the quality that
can be streamed and eventually on the QoE perceived by the end user [5]. Fur-
thermore, since the bottleneck bandwidth can demonstrate fluctuations over time
(either caused by the the channel quality of the access network and varying con-
gestion further upstream in the network) the throughput estimation is based on a
weighted history of previous measurements.

One of the advantages of HAS streaming is the reuse of existing HTTP caching
infrastructure. Furthermore, with the deployment of Content Delivery Network
(CDN) infrastructure (e.g., Akamai) and collaboration programs between Inter-
net Service Providers (ISPs) and content providers (e.g., Netflix OpenConnect),
intermediary caches are becoming omnipresent. However, the current adaptation
heuristics are not able to cope with the differences in throughput and delay that
exist when segments are downloaded from different streaming origins (e.g., con-
tent server or intermediary caches). Since the throughput estimations are averaged
over time, measurements for segments received from different origins get mixed
up, leading to inaccurate estimations of the achievable throughput. If a client is
served by an intermediary caching proxy with lower delay and possibly higher
throughput, the estimated throughput can be higher than the achievable through-
put to the server, resulting in the possibility that a cache miss leads to a buffer
starvation.

In the current chapter, the aforementioned problems are mitigated by perform-
ing throughput estimations on a per origin basis. In this way, the adaptation heuris-
tic can base its decisions on a more accurate estimation per origin. Furthermore,
the adapation heuristic can use information provided by the different origins on
the availability of certain segments and quality representations at these locations.
A solution is proposed in which the intermediary nodes provide this information
using an additional channel or signalling protocol in resemblance to techniques

134 CHAPTER 5

proposed by Server and Network Assisted DASH4.
However, if such information is not available, this chapter also proposes tech-

niques to estimate the origin based on delay measurements and to predict the
content of intermediary caching nodes. Using unsupervised incremental cluster-
ing techniques, the different throughput measurements are clustered based on the
measured Round Trip Time (RTT). In this way, the client heuristic is able to dif-
ferentiate segment deliveries from multiple origins and can make more accurate
decisions on the quality representation to request. Furthermore, using a history
of origin locations for certain qualities, the proposed approach is able to predict
whether the next segment could also be served by the cache. Using the proposed
estimation techniques, the approach is able to reduce the number and duration of
buffer starvations, while improving the overall quality of the video streaming ses-
sion. To evaluate the impact of the proposed approach in realistic scenarios, a set
of 4G mobile traces was collected and used during the experiments.

The remainder of this chapter is structured as follows. Section 5.2 gives an
overview of relevant research in the field of client-based and network-assisted
HAS techniques. The proposed heuristics using the additional origin and caching
information are presented in Section 5.3. Section 5.4 and Section 5.5 discuss the
clustering-based origin detection and cached content prediction techniques respec-
tively. The evaluation framework and experiments are presented in Section 5.6.
Section 5.7 concludes the chapter and summarizes the most important findings.

5.2 Related Work

At the client side, each commercial HAS implementation comes with a proprietary
client heuristic as discussed in Section 5.1. Several heuristics have been proposed
in literature as well, each focussing on a specific deployment. Miller et al. propose
a receiver-driven adaptation heuristic for DASH that takes into account a history
of available throughput and the buffer level [6]. The quality is adjusted to attain
a buffer level between certain target thresholds, this improves the stability of the
quality and avoids frequent switching as a consequence of short-term throughput
variations. Jiang et al. identified the problems that arise when multiple clients
share a link [7]. The authors propose a variety of techniques that can help avoid
such undesirable behavior, such as harmonic bandwidth estimation, stateful and
delayed bitrate update and randomized scheduling of requests, which are grouped
in the FESTIVE adaptation algorithm. Tian et al. show that there is a trade-off be-
tween responsiveness and smoothness for client-side DASH adaptations [8]. The
proposed rate-switching logic provides a dynamic control of this trade-off accord-
ing to the trend of the buffer growth. The approach uses machine-learning based

4SAND - https://tools.ietf.org/html/draft-begen-webpush-dash-reqs-00

CLUSTERING-BASED ADAPTATION FOR HAS OVER CACHE NETWORKS 135

TCP throughput prediction to support multiple servers simultaneously. In previous
work [9] [5], the authors evaluated different client heuristics both for Advanced
Video Coding (AVC) and Scalable Video Coding (SVC), applying optimizations
such as pipelined and parallel download scheduling. The approach presented in
this chapter is applicable to both AVC and SVC. Liu et al. discuss a video client
heuristic that is suited for a CDN by comparing the expected segment fetch time
with the experienced segment fetch time to ensure a response to bandwidth fluc-
tuations in the network [10], while Adzic et al. present a client heuristic which is
tailored for mobile environments [11].

Among others [12, 13], Akhshabi et al. compare several commercial and open
source HAS players and indicate significant inefficiencies in each of them, such
as frequent oscillations and unfairness when the number of competing clients in-
creases [14, 15]. Those quality oscillations are known to have a negative impact
on QoE [16] and cause inefficient resource utilization within the bottleneck net-
work [15, 17]. In a recent survey, Seufert et al. argue that a centralized control
unit or client-proxy based communication can enhance the quality and establish a
fair QoE distribution amongst competing clients [18]. The present chapter aims
at improving the QoE by providing the client adaptation heuristic with additional
in-network information or by estimating it.

By altering the behavior of the streaming server, stability and bandwidth ef-
ficiency can be increased. Akhshabi et al. propose server-side rate adaptation to
cope with unstable streaming players due to ON-OFF patterns when they compete
for bandwidth [19]. The system detects sudden rate fluctuations in the client play-
out and tries to solve them by shaping the sending rate at the server to resemble
the bitrate of the stream. Liu et al. follow a comparable approach where the rate
is shaped according to QoE maximization metrics [20]. These systems are able to
restore the streaming session when oscillation or freezing occurs and then remove
the shaping when the client has stabilized. The proposed approach is not only able
to solve the problems of oscillation or freezes when they occur, but actively tries to
prevent them, while at the same time optimizing the QoE. In previous work, it was
shown that, although the proposed server-side rate shaping can increase stability,
these techniques are not able to achieve the stability offered by in-network quality
optimization due to a reactive, rather than proactive behavior [21]. Furthermore,
the proposed approach is also able to handle multiple intermediate caching nodes.

Li et al. propose a collaboration scheme between CDNs and ISPs and peer-
assisted CDNs to reduce the load on both peering links and internal ISP links [22].
Distributed CDN servers alter the manifests to associate chunks with regional stor-
age servers or by changing or increasing the available video quality levels by
transcoding the video. The approach proposed in this chapter could be comple-
mentary to the distributed CDN case, where intermediary storage servers exist and
client sessions consuming their content are terminated in these nodes. The current

136 CHAPTER 5

approach further increases the efficient use of the ISP’s network by minimizing the
negative impact of competing sessions on QoE. Famaey et al. assess the impact
of increased latency on QoE caused by the redirection of HAS requests in CDNs
and propose updated request routing schemes in order to reduce the number of
redirects [23].

Network level adaptations allow a more efficient use of the underlying net-
work resources for HAS. Essaili et al. propose a TCP rate shaping mechanism
on a per flow level to enhance the QoE by rewriting client requests and offering
control to the network operator which has better information on the load and ra-
dio conditions in the cell [24]. Houdaille et al. propose to use traffic shaping
in the residential gateway to implement bandwidth arbitration between competing
clients [13]. Others propose to exploit the advantages of Software Defined Net-
working (SDN) in a HAS environment to monitor the streaming sessions and, in
conjunction with a client control plane, dynamically adjust video flow character-
istics to ensure QoE [25]. Recently, Mueller et al. proposed to use HTTP/2.0
when deploying adaptive streaming and evaluate the overhead and impact on link
utilization when using HTTP/2.0 for HAS [26]. Using new features in HTTP/2.0,
such as server push, persistent connections and pipelining, HAS services can be
improved. Wei et al. show that the increasing protocol overhead that is caused
by decreasing the segment length can be overcome by automatically pushing a
number of segments, allowing them to reduce the live latency [27, 28].

In previous work, a Differentiated Services (DiffServ) approach was proposed
to guarantee the delivery of certain segments in a live streaming scenario [29].
This requires altering the relevant priorization fields for these specific segments
and implementing DiffServ routers in the ISP network. An autonomic delivery
framework for HAS-based Live TV and Time Shifted TV (TSTV) was presented
in previous work [30, 31] which allows to reduce the consumed bandwidth by
grouping unicast HAS sessions sharing the same content into a single multicast
session. However, for Video on Demand (VoD) HAS sessions, the content is more
diverse and only few sessions are potentially shared among multiple users. This
prevents them to be grouped into a shared multicast session and therefore prevents
them from being delivered in a scalable manner. Petrangeli et al. use in-network
proxies to determine the overall median chunk level requested by the clients and
disseminates this information towards each client [32].

The effects of intermediary caching proxies on HAS have received limited at-
tention in the research community. Mueller et al. first discussed the negative
impact intermediary caches can have on QoE in HAS [33]. The autonomous qual-
ity adaptation in the clients can lead to uncontrolled distributions of the different
quality representations in the caches which can falsify the throughput estimations
at the clients. Krishnamoorthi et al. evaluate the effects of intermediary proxies
and propose a number of prefetching strategies to aid HAS streaming when there

CLUSTERING-BASED ADAPTATION FOR HAS OVER CACHE NETWORKS 137

is limited bandwidth available on the path between the server and the proxies [34].
By prefetching segments that will be likely requested in the future, the bottleneck
bandwidth can be better utilized and yield substantial benefits. However, prefetch-
ing too many segments clogs the server proxy bottleneck and increases the stalling
time. To aid the prefetching strategies, a client-proxy cooperation is proposed
to align the quality selections with the prefetching. To avoid the impact of bi-
trate oscillations caused by intermediary caching proxies, Lee et al. propose to
shape the outgoing download rate for the clients to avoid quality oscillations due
to wrong estimations on the available throughput [35]. In contrast to the proposed
prefetching method, next to the client-proxy cooperation, the present chapter also
proposes methods to allow the client to autonomously detect the streaming ori-
gin and estimate the cache contents to avoid the impact of throughput oscillations.
The discussed prefetching method could further improve the proposed approach
by prefetching one segment ahead if required. Shaping the outgoing rate at the
server yields suboptimal quality decisions, since the client will request quality
representations that are supported by the bottleneck bandwidth between the server
and the proxy. However, if a large part of the video is cached at higher quality
at the intermediary proxy, the client is still able to stream at higher quality while
avoiding quality oscillations. The proposed approach does not utilize shaping, but
avoids quality oscillations by detecting the streaming origin and estimating the
cache contents.

To determine the streaming origin in absence of an external information chan-
nel, a clustering-based approximation technique is proposed based on the mea-
sured RTT towards the streaming origin. Zhang et al. propose an RTT-based
mechanism to detect web proxies and take advantage of HTTPS connections to
retrieve a page of which the delivery is not subject o proxy interposition [36]. Also
in other application domains RTT measurements are used to detect intermediary
nodes. For example, Trabelsi et al. propose a detection mechanism for sniffers
using differences in RTT measurements [37], while Tun et al. propose a RTT-
based system to detect wormhole attacks [38]. Next to RTT measurements, other
techniques can be used to determine the presence of intermediary caching nodes.
Xu et al. try to take advantage of the fact that many proxies manipulate the header
fields by creating fingerprints based on the header fields to distinguish between
origins [39]. Weaver et al. discuss a variety of proxy detection techniques among
which are HTTP 404 fetches, leveraging the fact that most proxy vendors have
custom HTTP 404 messages [40]. Tracebox is an extension to traceroute that is
capble of detecting various types of middleboxes over almost any path by sending
TCP segments with different TTL values and analyzing the packet encapsulated in
the returned ICMP messages [41]. This chapter relies on RTT measurements for
the estimation of the streaming origin since this information can be easily gathered
without requiring access to lower level packet traces.

138 CHAPTER 5

state← BUFFERING
while SegmentsToDownload do

if state ≡ BUFFERING then
if BufferDecreasing ∨ BufferSlowlyChanging then

5: Limit change to 1 quality level
end if
q ← Calculate Quality According to Bandwidth
if B ≥ Bupper +

Blower
2

then
state← STEADY

10: end if
else if state ≡ STEADY then

if B < Bpanic then
q ← 0
state← BUFFERING

15: else if BufferSlowlyChanging then
if B < Blower then

q ← q − 1
else if B > Bupper then

AttemptIncreasingQuality()
20: end if

else if BufferDecreasing ∧B < Blower then
q ← 0
state← BUFFERING

else
25: AttemptIncreasingQuality()

end if
end if
Download at quality q

end while

Algorithm 5.1: Basic quality selection heuristic.

5.3 Heuristic Description

In this section an overview of the various selection heuristics is presented. First,
a basic quality selection heuristic based on the AVC Microsoft Smooth Stream-
ing (MSS) quality adaptation heuristic is presented. Second, an extension is made
to the aforementioned heuristic to include cache-awareness. This entails that the
heuristic is made aware of the streaming origin (e.g., intermediary caches or con-
tent server) which allows the heuristic to maintain a separate throughput estimator
per origin. Finally, a cache-assisted heuristic is proposed, which is able to include
additional information on the upstream cache contents during the quality selection.

CLUSTERING-BASED ADAPTATION FOR HAS OVER CACHE NETWORKS 139

if TimeSinceLastImprove > ImproveTimeout then
n← q + 1
while BRn < Rs do

TimeSinceLastImprove← 0
5: q ← n

n← n+ 1
end while

end if

Algorithm 5.2: AttemptIncreasingQuality().

5.3.1 Basic quality selection heuristic

The basic quality selection heuristic, which serves as a starting point, does not
take into account additional information that can be deduced or received from the
network elements. It is based on the Microsoft’s Smooth Streaming heuristic of
which an overview is shown in Algorithm 5.1 [9]. The heuristic continuously
evaluates the status of the play-out buffer and makes its decision based on the
comparison of the buffer’s state with 3 thresholds: a lower threshold Blower, an
upper threshold Bupper and a panic threshold Bpanic. The goal of the heuristic is
to maintain a steady state of the play-out buffer and download the highest quality
possible. Every time a new segment is downloaded, the buffer’s state is evaluated
to decide on the next segment. The heuristic starts off in buffering state. This
means that it follows a more aggressive way of increasing the quality. It downloads
the highest possible quality according to the performed throughput measurements
(line 7). This behavior is overridden if the buffer is showing signs of decrease or
slow changes. In that case, the quality is only allowed to increase or decrease with
a single step (lines 4-6). This is done to avoid large oscillations in the decision
of the heuristic: continuous fluctuations in the experienced quality of a video is
known to be annoying to the user. The buffering state continues until the buffer is
sufficiently filled (lines 8-10). In that case, the heuristic moves into a steady state.

In the steady state, the change in quality is more conservative: the quality is
only increased or decreased with one level at a time or increased with multiple
levels if the buffer is sufficiently full and an improvement timer has timed out. To
determine whether to change the quality, the heuristic analyses the buffer state,
how the state evolves over time and the download time history of the previous
segments. If the buffer drops below the panic threshold Bpanic, the lowest quality
is downloaded, and the algorithm goes back into the buffering state (lines 12-14).
This panic mode is used to avoid the occurrence of play-out buffer starvations due
to a sudden buffer underrun.

If the buffer state is sufficiently high (i.e. higher than Bpanic) and no anoma-
lies have occurred, the heuristic evaluates the evolution of the buffer. If it is slowly
changing, the heuristic intervenes by reducing the quality level of the next segment

140 CHAPTER 5

Figure 5.1: Example run of impact of varying streaming origin on QoE achieved by base
heuristic [42].

when buffer levels are decreasing (lines 16-17) or increasing the quality level oth-
erwise (lines 18-19). Note that, in the latter case, the quality is only increased if
bandwidth measurements indicate that there is enough bandwidth to download the
next segment at a higher quality as shown in Algorithm 5.2. If the buffer evolu-
tion is more rapid, the heuristic switches to a panic mode when the buffer is lower
than Blower. The result is that the quality of the next segment is set to the lowest
possible and the heuristic returns to the buffering state (lines 21-23). Note that the
algorithm compares with the lower thresholdBlower and not with the panic thresh-
old Bpanic as it detects a rapid change in the buffer state. If the buffer evolution
is not slowly changing and not decreasing, a quality increase is again attempted
(lines 25). In cases not identified, the quality of the next segment is not modified.
Once the quality has been determined, the segment is downloaded (line 28) and
the whole procedure is repeated when this segment is received.

5.3.2 Cache-aware quality selection heuristic

Figure 5.1 shows an example run performed in previous work [42] where segments
are delivered from different streaming origins. The base adaptation heuristic pre-
sented in the previous section was used to perform this experiment. The 2s seg-
ments were encoded at 1Mbps, 1.4Mbps and 2Mbps, delivered over links ranging
from 0.5Mbps to 5Mbps using a client buffer size of 12s and a video duration of
500s. The dots in the graph are the buffer starvations that occur at the client side.
In total, 19 starvation events occurred and the total starvation time was 48.6s.

As demonstrated in the example, applying the basic quality selection heuris-
tic in a network where caches are present can lead to a number of problems. A
simple throughput estimation mechanism which uses the download times and seg-
ment sizes to calculate a weighted average is not able to cope with the differences
in throughput and delay that are observed when the segments are delivered from
different locations. These inaccurate estimations can cause wrong decisions when
trying to improve the quality and, even worse, when calculating the achievable
quality when the heuristic is in the buffering state. Ultimately, the erroneous deci-

CLUSTERING-BASED ADAPTATION FOR HAS OVER CACHE NETWORKS 141

sions will lead to buffer starvations, detoriating the QoE. Therefore, this chapter
proposes to either deduce the origin location of the segments by inspecting the
measured RTT, or by incorporating additional information that was received from
network elements along the delivery path.

When the streaming application is able to detect whether segments were de-
livered from a cache or not, multiple throughput estimation instances can be cre-
ated for the various delivery locations in the network. In this way, the achievable
throughput and delay towards every delivery location can be estimated more accu-
rately, thus increasing the precision of the quality selection heuristic. As proposed
in previous research [43], an Exponentially Weighted Moving Average (EWMA)
estimator (Equation (5.1)) can be used to calculate the estimated throughput based
on the previous estimation and the last perceived throughput, weighed by a factor
α.

BWt = α ∗BWmeas + (1− α) ∗BWt−1 (5.1)

However, when multiple consecutive segments are served from the same loca-
tion, the estimations for the other locations are no longer reliable since they reflect
the network characteristics in the past. Therefore, it is proposed to replace the sim-
ple weight factor α by an ageing factor α(tn, tn−1) which depends on the time that
has passed between the current and the previous measurement as shown in Equa-
tion (5.2), where tn is the instant that the nth segment was downloaded from the
considered location (i.e., intermediary caches or content server) and τ a tuneable
parameter. This estimation is referred to as A-EWMA.

α(tn, tn−1) = 1− e−
(
tn−tn−1

τ

)
(5.2)

Since the streaming application has no knowledge whether the next segment
will be served from a cache, the selection heuristic uses the estimation for the end-
to-end throughput to the server during the calculations. This reduces the risk of
running into buffer starvations, but comes at the cost of a more conservative quality
adaptation when segments are served from a cache. In that case the achievable
throughput might be higher and would allow a higher quality to be selected.

5.3.3 Cache-assisted quality selection heuristic

In the previous section, it was assumed that no additional knowledge of the cached
content was available. This additional knowledge could however be provided to
the client heuristic by the network nodes. The client heuristic is thus able to com-
bine the accurate throughput estimations per location with cache information when
deciding which quality to download next.

Figure 5.2 illustrates the different states and state transitions of the adapted
client heuristic. An additional state called steady state cached is added. When the

142 CHAPTER 5

Steady State

Steady State
Cached

Buffering

B < Bpanic
B < Blower and B ↘↘

B > Blower + (Bupper – Blower)/2

Segment
Served from
Cache

Segment
NOT Served
from CacheB < Bpanic

B < Blower and B ↘↘

Figure 5.2: State diagram for cache assisted quality selection heuristic.

heuristic is in steady state and a segment was served by a cache, the heuristic enters
the steady state cached. Conversely, when a segment was not served from cache
although the heuristic is in steady state cached, the heuristic returns to the steady
state. The steady state cached cannot be reached directly from the buffering state,
however, the same state transition conditions hold for returning to the buffering
state.

Algorithm 5.3 shows the additional selection intelligence that is added to the
heuristic discussed in Algorithm 5.1. If the buffer filling level is beneath Blower
and the buffer filling is quickly decreasing, then the heuristic selects the lowest
quality and switches to the buffering state. When the buffer filling level is below
Bupper, the buffer filling is at its target state, it is checked whether the current qual-
ity level can be maintained. If the next segment is cached in quality q (Cq = true)
and the throughput of the connection between the client and the cache (Rc) exceeds
the required bitrate (BRq) of that quality level, the quality is selected. Otherwise,
if the segment is not cached in that quality, but the rate of the connection with the
server (Rs) allows streaming at rate BRq , the quality is selected as well. If not,
the quality is decreased with one step until one of the conditions holds or the low-
est quality level is selected. If the buffer filling is greater than Bupper, the buffer
is sufficiently filled and the adaptation heuristic can try to improve the streaming
quality. To avoid frequent quality switching, the time since the last quality im-
provement should be larger than a certain improve timeout. If this is the case, the
heuristic tries to improve the quality based on the knowledge of the content of the
cache and the achievable throughputs to the server and cache. If the cache contains
a higher quality level and the rate Rc is able to support streaming this quality, the
quality is improved to that level (lines 19-21). If the quality is not available in the

CLUSTERING-BASED ADAPTATION FOR HAS OVER CACHE NETWORKS 143

if state ≡ STEADY STATECACHED then
if B < Bpanic then

q ← 0
state← BUFFERING

5: else if B < Blower ∧ BufferQuicklyDecreasing then
q ← 0
state← BUFFERING

else if B < Bupper then
while q > 0 do

10: if (Cq ∧BRq < Rc) ∨ (BRq < Rc ∧BRq < Rs) then
break

end if
q ← q − 1

end while
15: else

if TimeSinceLastImprove > ImproveTimeout then
n← q + 1
while BRn < Rc do

if Cn ∨Rs > BRn then
20: q ← n

end if
n← n+ 1

end while
end if

25: end if
end if

Algorithm 5.3: Cache-assisted quality selection heuristic.

cache, but the rateRs is able to support the quality, the quality is improved as well.

5.4 Detection of Streaming Origin

The streaming origin could be communicated to the adaptation heuristic using
an additional communication channel or by adding header fields which identify
the origin. However, in case there is no support for the in-network or out-of-
band signalling of such information, caches are managed by multiple independent
instances or some of the caches are not supporting this, the client should be able
to autonomously detect the streaming origin. Each time a segment is received,
several characteristics of the download can be derived such as an estimate of the
RTT, the achieved throughput, etc. These can be used as inputs to cluster the
segment downloads based on their estimated origin. The problem of clustering
segment downloads according to their origin has several characteristics. First, the
data to cluster only come available after a segment is downloaded and can thus be
considered as a data stream. Second, there is no priori knowledge of the number of

144 CHAPTER 5

T = (t1, ..., tk)← (x1, ..., xk)
n1, ..., nk = 1
repeat

x← (RTT, Throuthput)
5: if (ti − x) = min(ti − x : ∀i ∈ [1, k]) then

ni ← ni + 1
ti ← ti + (1/ni)(x− ti)

end if
until session closes

Algorithm 5.4: Sequential k-means.

streaming origins in the network. Third, network characteristics can change over
time, impacting both the clusters themselves as well as the criteria to determine if
two clusters are similar/dissimilar.

Since the data is received as a stream and instant classification is required, an
incremental clustering algorithm is best suited. One of the most well-known in-
cremental clustering algorithms is probably sequential k-means, which is an incre-
mental variant of Lloyd’s algorithm [44]. Algorithm 5.4 shows how the k-means
clustering algorithm starts off by setting the cluster centers of the k clusters to the
first k samples. After this, each of the samples is added to the cluster i to which
the distance to the center ti is minimal. Afterwards the cluster center ti is updated
to reflect the new clustering.

One of the assumptions required for incremental k-means is the knowledge of
the number of clusters k. However, since the streaming application has no a priori
knowledge of the number of streaming origins in the network, this condition does
not hold. Therefore, a dynamic incremental k-means algorithm should be used
in which the number of clusters is allowed to change [45]. Clusters with too few
elements might be eliminated, clusters of which the distance between the centers
is small might be merged and clusters with large dispersion might be split. A pos-
sible method for changing the number of clusters can be based on a predetermined
quality threshold on the distortion. The ISODATA algorithm allows the number
of clusters to be adjusted automatically based on pre-specified parameters: K0 the
desired number of clusters, nmin the minimum number of samples in each cluster
(for discarding clusters), σ2

max the maximum variance (for splitting clusters) and
dmin the minimum pairwise distance (for merging clusters) [46]. Algorithm 5.5
shows the heuristic for discarding, splitting and merging clusters adapted to the
incremental k-means clustering procedure.

Network conditions can change over time due to user mobility, flash crowds or
dynamic changes in the streaming topology (e.g., deployment of additional inter-
mediary caches). To cope with gradual shifting of cluster centers due to increases
and decreases of access network delays, a weight factor ω, based on measurement
age is introduced when calculating the cluster centers. The weighing factor ωj for

CLUSTERING-BASED ADAPTATION FOR HAS OVER CACHE NETWORKS 145

Execute sequential k-means
for all ci do

if ni < nmin then
Discard cluster ci

5: Reassign members of ci to other clusters
k ← k − 1

end if
end for
for all ci do

10: Update centers ti = 1/ni

∑
x∈ci x

Update variance σ2
i = 1/ni

∑
x∈ci (x− ti)

2

end for
if K ≤ K0/2 then

for all ci do
15: if σ2

i > σ2
max ∧ ni > 2nmin then

Split into new clusters and reassign
t+i ← ti + σi

t−i ← ti − σi

k ← k + 1
20: end if

end for
else if K > 2K0 then

di,j ← (ti − tj)2
if di,j < dmin then

25: Merge cluster ci and cj into ci
ti ← (niti + njtj)/(ni + nj)
k ← k − 1

end if
end if

Algorithm 5.5: ISODATA algorithm.

each element j in the cluster is calculated as ωj = αt−tj∑
i α

t−ti , decreasing the impact
of older measurements on the center calculation.

5.5 Estimation of Cache Content

In Section 5.3, a cache-assisted quality selection heuristic was introduced which
uses information on the cache content to support the quality decisions. Similar to
the section on the cache-aware quality selection heuristic, this information could
be transferred using additional communication channels. However, in case there is
no such information channel available, the client can still try to estimate whether
the next segment will be in a cache or not. Using the origin detection mecha-
nisms introduced in the previous section, the client is able to determine whether
the previous segments were downloaded from the same origin.

146 CHAPTER 5

The first decision based on the cache content information in the cache-assisted
heuristic is taken when switching between the Steady State and Steady State Cached.
Detecting when a segment was not served from the cache can be done by compar-
ing the current origin with the origin of the previous segment. When the RTT
associated with the new segment is substantially higher than the RTT of previous
downloads, the segment was not served from the cache. Hence the Steady State
Cached state is exited. On the other hand, when a segment is served from a lo-
cation that is closer (i.e., its RTT is smaller) to the one from which the previous
segment was served, the Steady State Cached is entered. Thus, the approach is
able to achieve similar behavior as when the cache state information is transferred
to the clients.

The second time the caching information is used is when evaluating the condi-
tions to switch to a higher quality representation. To this end, it is verified whether
the higher quality representation is available in the cache and the connection to-
wards the cache is able to serve this segment with sufficient throughput. When this
is not the case, the connection towards the server is also considered. Since now
the information on cached quality representations is not available, an estimation
has to be made. If a number of previous segments n was served from the same
origin at the same quality level q, the probability is high that the next segment will
also be served from this origin if the same quality representation is requested. If
the segment is requested in a higher quality, there is less evidence supporting the
argument that the next segment could be served from the cache as well. How-
ever, since the goal is to improve the quality, this decision should be taken once
in a while to avoid getting stuck in a local optimum. Therefore, when sufficient
segments n > nmin were served from the cache at the previous quality q, the
heuristic will randomly estimate wether the next segment will be served from the
same origin in a higher quality. A discrete probability distribution is used with the
following probability mass function:

Prob(notcached) = 1− eBβ

eβ
(5.3)

Prob(cached) =
eBβ

eβ
(5.4)

where B is the current buffer filling and β is a parameter to control the balance
between exploitation and exploration. This allows the heuristic to improve the
selected quality but without the risk of running into a buffer starvation. If β is
small, there is a higher probability that the segment is estimated to be served from
a cache. If β is large, the safer decision is favored and the knowledge that the
previous n segments were served at quality q from the same location is exploited.

CLUSTERING-BASED ADAPTATION FOR HAS OVER CACHE NETWORKS 147

5.6 Evaluation Results

This section discusses the experiment framework that was extended to support the
different heuristics that are under evaluation. First, the possible improvement of
the proposed approach with perfect knowledge of the streaming origin and cache
contents is evaluated. Next, the various parameters of the heuristics for detect-
ing the origin and estimating the cache content are optimized. Subsequently, the
improvement subject to the estimated knowledge is quantified. Finally, different
scenarios, subject to variable network conditions are evaluated.

5.6.1 Experiment framework

A VoD HAS scenario was implemented using the discrete-event network simulator
NS35, simulating the transmission of HAS-based video [47]. For the autonomic
HAS Clients, several heuristics found in literature were implemented. A first im-
plementation uses the MSS algorithm, which is based on the implementation of an
open source version of the algorithm of the MSS video player6 and is extensively
described by Famaey et al. [9]. A second implementation is based on the heuristic
proposed by Miller et al. [6], which is a receiver-driven adaptation algorithm based
on buffer filling level and throughput estimations. This heuristic is referred to as
Miller. A third heuristic, called Festive, is based on the implementation described
by Jiang et al. using randomized scheduling and stateful bitrate selection [7]. The
parameters of the aforementioned heuristics were optimized to attain the best QoE
for a variety of scenarios. The QoE is evaluated by calculating the Mean Opinion
Score (MOS) as defined by Claeys et al. [48].

Next to the state-of-the-art adaptation heuristics, also the proposed heuristics
discussed in Section 5.3 were implemented in the ns-3 simulator. These heuristics
are referred to as MSS (Distinguish Origin) and MSS (Caching Info). Furthermore,
to optimize the different parameters of the unsupervised incremental clustering al-
gorithm offline, a python-based simulation framework was built. This simulation
takes as input a trace generated by an ns-3 simulation containing a list of down-
loads, the corresponding estimated RTT and the actual origin location of the down-
load. This file is then used to perform the clustering algorithm and evaluate the
accuracy of the proposed approach under different parameter configurations. The
ns-3 simulation platform was then extended to incorporate the clustering-based
origin detection (MSS (Clustered Origin) as described in Section 5.4) and cache
content estimation (MSS (Cache Estimation) as described in Section 5.5) as well.

A Least Recently Used (LRU)-cache application was implemented in the ns-3
simulator, which is extended with the functionality to respond to segment avail-

5ns-3 - https://www.nsnam.org
6Source available from https://slextensions.svn.codeplex.com/svn/trunk/SLExtensions/

AdaptiveStreaming

148 CHAPTER 5

!
"#$

%&

'()

*
"#*

B
+
,

-() -*

%1

-(/
…

"#(/ "#()

-0

…

'(/

Figure 5.3: Experimental setup, representing a delivery network with intermediary cache
nodes.

ability queries by the client applications, as well as support for inserting the origin
ID into the HAS header. The cache size is a configurable parameter and sizes are
based on the content catalogue that is available at the server. For the simulations,
a set of 20 videos was used of which the 7 quality representations range between
300kbps and 2436kbps and contain 200 segments with a 2s duration. This leads
to a total content catalogue size of about 7.5GB. For cache sizes of 100MB, 35%

of the videos can be stored in lowest quality, while around 1.3% of the content
catalogue can be stored in all qualities. This is comparable to storage capacities
reported for VoD services such as Netflix [49]. The distribution of viewers over
the content catalogue is set according to a Zipf distribution with parameter α set to
0.81 [50]. Clients are started randomly using a Weibull startup process with shape
of 5 and mean of 250s.

Figure 5.3 shows an example of the topology that is used during the experi-
ments. It interconnects the clients c, using a hierarchical set of caching proxies
P1...Pn, each having their respective cache sizes CP1 ...CPn to a streaming server
S. The client has several values that can be configured: the maximum buffer size
(in seconds) B, the EWMA-parameter α ∈ [0, 1] and the A-EWMA parameter
τ ∈ [0,∞].

For the single-cache level experiments the number of cache levels is n = 1 and
the index for the proxy level is omitted. 4 proxies are connected to the server and
50 client applications are connected to each of the caching proxies. The bandwidth
and delay between server and proxy is indicated as BWS and dS , respectively.
The size of the cache is indicated by CP , while the bandwidth and delay to the
next router are denoted by BWP and dP . Similarly, BWc and dc are used for the
client c connection to the router. Unless otherwise stated, the following parameters
are used: BWS = 250Mbps, dS = 40ms, BWP = 250Mbps, dP = 5ms,
BWc = 10Mbps, dc = 5ms, CP = 50MB and B = 20s.

For the dynamic experiments the number of cache levels is n = 2. To assess

CLUSTERING-BASED ADAPTATION FOR HAS OVER CACHE NETWORKS 149

S

N
O

C

P

G

Cache

Server

G

C

PO
N

S

Figure 5.4: Map showing different streaming locations of the dynamic scenario.

the viability of the proposed approach in dynamic network scenarios, a number
of delay traces were gathered, both for fixed and wireless networks. Using the
jFed-tool7 a number of emulab8 resources across the globe can be accessed from
remote locations. Nodes were reserved at Stanford University (S), Northwestern
University (N), Ohio Metro Data Center (O), Princeton University (P), Clemson
University (C) and Ghent University (G) and used the ping-command to collect the
delay traces between every pair of nodes. Table 5.1 gives an overview of the av-
erage measured one-way delays between the different static locations. Figure 5.4
gives an overview of the resulting topology that was created interconnecting the
streaming server at Ghent University, through a caching proxy at Clemson Univer-
sity to 4 other caching proxies in the US.

Next to the fixed network traces, also 3G/4G traces were collected using a mo-
bile phone that was connected to a node in the iMinds iLab.t testbed9 located at
the Ghent University facilities. These traces were collected for several scenarios:
stationary at work and moving in a car during commuting. The commuting traces
were collected during a 32km drive that was executed multiple times at varying
times of the day and following different routes containing highway, city and rural
sections. Figure 5.5(a) and 5.5(b) show the collected traces for a moving car and
the stationary office environment respectively. These traces were used to config-
ure the latency on the interconnections between the caching proxies and the user
devices.

7jFed - http://jfed.iminds.be
8emulab wiki - https://wiki.emulab.net/wiki
9iMinds iLab.t - http://ilabt.iminds.be

150 CHAPTER 5

Table 5.1: Average one way delays (ms) and variance for fixed connections between the
remote locations.

D
es

tin
at

io
n

Source
Princeton Clemson Northwestern Stanford Ohio Ghent

Princeton d (ms) 0 21.46 12.68 59.76 10.07 43.97
σd 0 5.24 1.05 2.41 0.25 0.4

Clemson d (ms) 18.33 0 20 66.97 19.92 60.56
σd 5.16 0 6.15 7.58 5.01 7.2

Northwestern d (ms) 12.62 21.38 0 50.92 5.74 50.38
σd 1.17 4.88 0 2.61 0.4 1.16

Stanford d (ms) 60.06 58.17 50.83 0 48.54 96.54
σd 2.37 2.7 2.81 0 2.47 2.43

Ohio d (ms) 10.1 22.85 5.76 48.67 0 55.39
σd 0.37 5.24 0.74 2.24 0 1.05

Ghent d (ms) 44.01 60.59 50.34 96.47 55.49 0
σd 0.33 5.07 1.07 2.54 1.07 0

(a) (b)

Figure 5.5: Excerpt of collected mobile delay traces using a 4G smartphone for a moving
car (a) and for a stationary environment (b).

CLUSTERING-BASED ADAPTATION FOR HAS OVER CACHE NETWORKS 151

(a) (b)

(c) (d)

Figure 5.6: Impact of parameter τ of aged EWMA estimation on (a) average MOS, (b)
average buffer starvation time, (c) average number of quality switches and (d) average
played quality.

5.6.2 Impact of estimated throughput ageing

The goal of the proposed heuristics is to be able to cope with streaming over cache
networks. To keep the estimated throughput up to date, an ageing factor was added
to the EWMA estimator. This allows to balance between the current measurement
and previous estimation based on the time that has passed since the previous mea-
surement. Increasing τ decreases the relative impact of the previous estimations.
The α-parameter of the regular EWMA estimator shows a similar behavior, but is
a static value.

Figure 5.6(a) shows the impact of both the α and the τ -parameter on the av-
erage MOS perceived by the end-user for the cache-aware heuristic. Also the
results for a client using the regular EWMA estimation, in function of the static α-
parameter, is shown in these graphs. This client keeps track of the streaming origin

152 CHAPTER 5

and uses additional cache information to select the next quality, but the through-
put estimation does not take into account the age of the collected measurements.
Compared to regular EWMA, adding ageing to the estimations allows the heuris-
tic to improve the average MOS with about 11%. By letting the weight of the
measurements depend on the measurement age, the heuristic is more resistant to
fluctuations in throughput that can occur when a streaming origin was not used for
a period of time. For regular EWMA estimations, these weights are statically con-
figured and do not fit the wide range of scenarios that can occur during the entire
video streaming session.

Increasing τ beyond 30, puts too much weight on the historic data which may
no longer be up to date due to changes in the network conditions, leading to a
rapid increase of buffer starvations as shown in 5.6(b). Setting τ too high causes
the estimations to react too slow to variability in throughput. This can lead to
multiple consecutive quality decisions that are not sustainable under the current
network conditions and ultimately causes buffer starvations. On the other hand,
decreasing τ puts more weight on the recent measurements, reducing the number
of starvations. However, it also causes higher variability in the estimations, leading
to an increased number of quality switches, as is demonstrated in Figure 5.6(c).
Figure 5.6(d) shows the impact of the parameter τ on the played bitrate. Also here
it is clear that setting τ too low or too high, leads to a degradation of quality. The
parameter sweep shows that the optimal value for τ is equal to 10. In the remainder
of this section, this value is used during the evaluations.

5.6.3 Characterization of the obtained gain of proposed heuris-
tics

In this section, it is assumed that the client heuristic is informed by the streaming
origin of its ID and the current cache content. These results show the potential
QoE-improvements that can be achieved when the client is able to distinguish the
different origins, and additionally, when the client has access to additional infor-
mation on the current cache content at the different origin locations. To assess the
possible improvement, the MOS is used as a metric. When required, the text also
refers to the different components that lead to the MOS (i.e. buffer starvations,
quality switches and playout quality rate).

The different heuristics are evaluated using a variety of scenarios where the
server bandwidth (BWS), the one-way delay of the server link (dS), the cache size
of the intermediary proxies (CP) and the client-side buffer size (B) are varied. For
other variables in the scenarios, the previously mentioned fixed values are used.

Figure 5.7(a) shows the impact of the available bandwidth BWS on the shared
link between the server and the proxies for various heuristics. Also a scenario
where no cache is present in the network is shown for the heuristic proposed by

CLUSTERING-BASED ADAPTATION FOR HAS OVER CACHE NETWORKS 153

(a) (b)

(c) (d)

Figure 5.7: Impact of (a) the bottleneck bandwidth BWS , (b) the delay between server and
proxy dS , (c) the cache size CP and the maximum buffer size B on the average QoE.

154 CHAPTER 5

Miller et al., which is referred to as Miller (No cache). For each value of BWS ,
the cache-aware heuristics are able to outperform the cache-agnostic heuristics.
By taking into account the streaming origin, the MOS can be increased by 35% on
average, compared to the best performing cache-agnostic heuristic (Miller). Also
including the information about the upstream cache contents into the decision pro-
cess can further increase the MOS with 15%. MSS and Festive do not perform
well when the bottleneck bandwidth BWS is below 275Mbps. This poor perfor-
mance can be accounted to the high average buffer starvation time ([4.5s, 76.4s] for
MSS and [13.1s, 128s] for Festive) and the high number of switches ([140.3, 223.8]

and [66.5, 192.3] respectively). For BWS ≥ 275Mbps, all three cache-agnostic
heuristics result in a comparable MOS.

By taking into account the streaming origin, the client heuristic is able to
estimate the available end-to-end throughput more accurately. Especially when
the bottleneck bandwidth is small, making wrong estimations on the available
throughput is penalized heavily (e.g., by a buffer starvation or drop in buffer fill-
ing followed by a switch to the lowest quality) when a segment is served from
the server instead of the caching proxy. By using the worst-case estimation (i.e.
the bandwidth to the server) to take the decisions, the MSS (Distinguish Source)
heuristic is able to significantly increase the overall QoE. If the client is further-
more aware of the upstream cache content, it is able to take into account the
throughput estimation for the actual origin which can increase the overal QoE
even more (e.g., for BWS = 150Mbps, an increase of 59% compared to Miller
and 18% compared to MSS (Distinguish Source)).

The impact of the one-way delay between the server and the caching proxy
(dS) on the QoE is shown in Figure 5.7(b). Previous work has shown that an in-
creasing delay has a negative impact on the QoE for HAS-streaming due to the
TCP-based request-reply patterns that are generated [5]. Increasing dS increases
the idle times between two consecutive downloads and thus the efficiency of the
streaming session. The QoE decay with increasing delay is much steeper for the
cache-agnostic heuristics. For increasing delay, the gain of including the streaming
origin and cache information increases from 2% to 32% and 14% to 51% respec-
tively.

Figure 5.7(c) shows the impact of increasing the capacities CP of the in-
network proxy caches on the QoE for the different heuristics. For smaller cache
sizes, more segments will be served from the server, clogging the link between the
server and the caching proxy and leading to a reduction in played quality. Fur-
thermore, the probability increases that for consecutive segments, the streaming
origin will differ, causing wrong estimations of the available throughput and even-
tually, buffer starvations. For a cache size of 100MB, most of the segments can
be served from the cache for the MSS (Cache Info) heuristic since it can exploit
the knowledge of which quality levels that are present in the cache, allowing all

CLUSTERING-BASED ADAPTATION FOR HAS OVER CACHE NETWORKS 155

clients to quickly converge to the highest quality level. For the other heuristics,
the requested quality levels are more dispersed across the available range of rep-
resentations, causing a higher number of cache misses and eventually leading to
lower quality selections based on the throughput that is perceived to the server.
The MSS (Distinguish Source) heuristic is able to distinguish between segments
served from cache and server and allows a more accurate throughput estimation,
leading to a higher average MOS. On average, this allows the QoE to increase
with 0.34, while including the cache information allows a further increase of the
MOS with 0.33. Especially for smaller cache sizes (CP ∈ [37.5MB, 87.5MB]),
the additional knowledge of the cache content allows a significant increase in QoE
with about 28%.

Increasing the buffer size B typically benefits the robustness of the quality
adaptation heuristic since they are more forgiving when an unsustainable quality
is selected. Figure 5.7(d) shows the effects of increasing the maximum buffer
size from 10s to 25s. Smaller buffers allow a shorter time-to-display delay for
live streaming but also in VoD scenarios, smaller buffers can be beneficial. For
example, the initial startup delay can be decreased when the client starts after a
percentage of the buffer is filled. Furthermore, less unnecessary data is transferred
when the client prematurely aborts the video streaming session. Since most adap-
tation heuristics apply some type of panic threshold which is typically 20% of the
buffer size in seconds and during the evaluations a segment size of 2s is used, the
smallest buffer size that was employed during the experiments was 10s. The re-
sults show that the MSS (Distinguish Source) heuristic is able to achieve the same
QoE of a buffer size of 12s as the Miller heuristic for a maximum buffer size of
20s.

5.6.4 Impact of detection and estimation

In the previous section, the proposed heuristics are evaluated assuming that they
are able to retrieve the required information. However, it is possible that this infor-
mation is not available (e.g., when optimizing third-party streaming services, no
access to the proxy implementations) and that this information should be derived
by the client using a combination of clustering techniques to estimate the origin
and probabilistic models to estimate the current cache content. It is obvious that
in such situations, the heuristic is only able to approximate the proposed optimal
heuristics. To optimize the different detection and estimation techniques, traces
were generated for the optimal heuristics in which the streaming origin and the
RTT for that origin are logged. This data is used as ground truth for the origin
clustering optimization which is performed using an offline simulator that is im-
plemented in python. This allows us to quickly evaluate the impact of the different
parameters of the clustering algorithm and select the optimal configuration.

156 CHAPTER 5

(a) (b)

(c) (d)

Figure 5.8: Impact of (a) minimum number of elements in cluster nmin, (b) minimum dis-
tance between clusters dmin and (c) maximum standard deviation within a cluster σ2 on
the clustering accuracy expressed as percentage of correctly classified elements. Impact of
cache estimation parameter β (d) on average MOS.

Several parameters should be configured for the clustering-based detection of
the streaming origin: K0, nmin, σmax and dmin. K0 is the desired number of
clusters and thus depends on the number of streaming origins in the topology that
is used. For a topology including a single cache and a streaming server K0 =

2. Also the cache estimation has a configurable parameter β, which regulates
the balance between exploration and exploitation. The different parameters are
optimized using a set of traces that were generated during the previous experiments
for a configuration of dS = 40ms, BWS = 250Mbps and CP = 50MB.

Figure 5.8(a) shows the impact of increasing the number of required elements
to form a cluster nmin, which is used for discarding clusters. Setting this value
too low, can lead to the creation of many small clusters, while setting it too high
can lead to the wrong classification in case only few segments are downloaded
from that specific origin. The optimal value determined by the parameter sweep is
nmin = 8. The impact of the minimum distance between two clusters (dmin) is
shown in Figure 5.8(b). Since the traces for dS = 40ms were used, the optimal
value is around dmin = 37.5ms, which optimally allows to differentiate between

CLUSTERING-BASED ADAPTATION FOR HAS OVER CACHE NETWORKS 157

Table 5.2: Probability of predicting a segment to be in the cache for β = 0.75 as a function
of the buffer level B.

Buffer Filling (%) Prob(not cached) Prob(cached)
0 0.527633447 0.472366553

10 0.490843579 0.509156421
20 0.451188364 0.548811636
30 0.408444636 0.591555364
40 0.362371848 0.637628152
50 0.312710721 0.687289279
60 0.259181779 0.740818221
70 0.201483781 0.798516219
80 0.139292024 0.860707976
90 0.072256514 0.927743486
100 0 1

the content server and proxy. It is clear that dmin is dependent on dS and could
be configured by using additional information retrieved by the client. However,
in absence of such information, the various settings for dmin ≥ 10ms still allow
to determine the origin with an accuracy between 82% to 88%. Figure 5.8(c)
shows the impact of the standard deviation between the different samples within
the cluster σmax. The optimal value here is σmax = 20, which again can be related
to the value that was set for dS . Also here other settings for σmax will still allow
the clustering to correctly classify the samples with an accuracy between 85% and
88%.

The impact of the parameter β on the average estimated QoE is shown in Fig-
ure 5.8(d). The β parameter regulates the probability that a certain segment is
predicted to be present in the cache for different buffer filling levels B. Setting β
too high decreases this probability, leading to a more conservative quality selection
and ultimately a lower QoE. Setting β too small (β = 0.1) leads to an 95% chance
a segment is predicted to be in the cache, even though the buffer is only half full.
This behavior leads to a more aggressive quality selection and thus a higher risk
of overshooting the actual sustainable quality level. The optimal value for β was
determined to be 0.75, which leads to the probabilities shown in Table 5.2

5.6.5 Achieved improvement using inferred knowledge

Section 5.6.3 showed that for practically every scenario, the heuristic proposed by
Miller et al. outperforms the other cache-agnostic heuristics. In the remainder of
this section, we therefore compare the heuristics using inferred knowledge with
the adaptation heuristic proposed by Miller et al. and the heuristics using perfect
knowledge. Using the parameter configurations inferred in the previous section,
the performance of the proposed heuristics using inferred knowledge will be eval-
uated.

Figure 5.9(a) shows the QoE for varying bandwidth BWS . When using the
clustering-based approach to detect the streaming origin, the client applications

158 CHAPTER 5

(a) (b)

(c)

Figure 5.9: Impact of (a) the bottleneck bandwidth BWS , (b) the delay between server and
proxy dS and (c) the cache size CP on the average QoE.

CLUSTERING-BASED ADAPTATION FOR HAS OVER CACHE NETWORKS 159

are able to increase the MOS with on average 0.19 compared to cache-agnostic
heuristics. This is only 86% of the QoE achieved by the origin-aware heuristic us-
ing perfect knowledge. When also estimating the cache contents in a probabilistic
way, the MOS can be improved further with 0.32, which is 87% of the QoE when
using the exact data. For lower BWS (BWS ≤ 200Mbps), the achieved increase
in QoE is much smaller, this can be assigned to a higher cost of using a wrong
estimation on either the origin or cache content during the decision process. The
heuristic using the estimated cache info is cautious when increasing the quality by
also taking into account the worst-case estimated server bandwidth, reducing the
negative impact of wrong estimations. On average, the QoE can be improved with
32% when estimating the cache contents and 12%, when only detecting the origin.

Since the clustering is based on the perceived RTT, the one-way delay dS be-
tween server and caching proxy can have an impact on the performance of the
clustering algorithm. Figure 5.9(b) shows indeed that for increasing dS , the QoE
decreases much faster than when the actual origin data is received (i.e. from 95%

to 87% for MSS Cache Estimation and from 98% to 83% for MSS Origin Cluster-
ing). The different parameters of the clustering algorithm were optimized based
on traces that were captured for dS = 40ms, which are not optimal for all other
values of dS . This is a drawback of the proposed approximation method since the
clustering configuration impacts the performance of the client adaptation heuristic.
A possible improvement would be to inform the client of the network delays for
different origin locations or to determine them via measurements. These values
could then serve as inputs for the clustering algorithm.

Figure 5.9(c) shows the impact of the cache size CP on the performance of
the heuristics using inferred knowledge. Also here, a more modest performance
increase can be observed when using imperfect origin data, especially for smaller
cache sizes (i.e. CP ≤ 75MB). For larger cache sizes, the performance in-
crease compared to cache-agnostic heuristics is between 1% and 11% when using
clustering-based origin detection and between 4% and 21% when also estimating
the cache contents. The cache-aware heuristic using inferred knowledge using a
cache of 80MB can achieve the same QoE as AVC Miller for a 100MB, thus
leading to a reduction in resources of 20%.

5.6.6 Dynamic network scenarios

Figure 5.10(a) shows the impact of applying the cache-aware heuristics in a dy-
namic scenario. Using perfect information, the QoE can be improved with 16%

on average, compared to the best performing cache-agnostic heuristic, Miller. Us-
ing clustering techniques to detect the origin and the probability-based method to
estimate the cache contents allows to improve the QoE between 3% and 11% on
average. Depending on the configuration of BWS , the achieved QoE is between

160 CHAPTER 5

(a) (b)

Figure 5.10: QoE-improvement (a) and reduction of buffer starvations (b) in a dynamic
scenario.

90% and 97% compared to the heuristics using perfect knowledge. The average
buffer starvations are shown in Figure 5.10(b). There is a significant reduction
in buffer starvations when using the cache-aware heuristics in the dynamic sce-
nario. The buffer starvations can be reduced with a factor 3 to 7 for the estimation
heuristic.

5.7 Conclusions

HTTP Adaptive Streaming (HAS) has become the de-facto standard for multime-
dia streaming over the Internet. One of the advantages of HTTP streaming is the
seamless reuse of existing general purpose HTTP caching infrastructure. How-
ever, one of the drawbacks of current adaptation heuristics is that the decisions are
partially based on throughput estimations. Since the origin for the segment down-
loads is not considered, these throughput estimations cannot be trusted anymore
when multiple consecutive segments are served from different origins. These in-
correct estimations ultimately lead to quality switches and even buffer starvations,
negatively impacting the Quality of Experience (QoE). This chapter proposes to
take advantage of additional information on the streaming origin and use multiple
throughput estimations per origin. Using the worst-case throughput, the adaptation
heuristic is made more robust against streaming over cache networks, reducing
quality switching and buffer starvations. Furthermore, leveraging information on
the current cache contents, more informed quality selection decisions can be made,
increasing the video bitrate that is played. Using the aforementioned optimiza-
tions, the QoE can be improved by up to 60% in the static and with 16% on average
in a dynamic scenario. These solutions require adaptations to the streaming origin
and intermediary proxies, which is not always possible. Therefore, this chapter

CLUSTERING-BASED ADAPTATION FOR HAS OVER CACHE NETWORKS 161

also proposes detection and estimation techniques based on clustering techniques
using the perceived Round Trip Time (RTT) as a feature and probability based so-
lutions to estimate the cache contents. Using these approximation techniques, the
QoE can be improved between 3% and 11%, depending on the scenario.

162 CHAPTER 5

References
[1] Forecast, Cisco VNI. Cisco Visual Networking Index: Global Mobile data

Traffic Forecast Update 2012-2017. Technical report, Cisco Public Informa-
tion, May 2013.

[2] T. Stockhammer. Dynamic adaptive streaming over HTTP: standards and
design principles. In Proceedings of the second annual ACM conference
on Multimedia systems, MMSys ’11, pages 133–144, New York, NY, USA,
2011. ACM.

[3] N. Staelens, J. D. Meulenaere, M. Claeys, G. V. Wallendael, W. V. den
Broeck, J. D. Cock, R. V. de Walle, P. Demeester, and F. D. Turck. Sub-
jective Quality Assessment of Longer Duration Video Sequences Delivered
Over HTTP Adaptive Streaming to Tablet Devices. IEEE Transactions on
Broadcasting, 60(4):707–714, Dec 2014.

[4] J. De Vriendt, D. De Vleeschauwer, and D. Robinson. Model for estimating
QoE of video delivered using HTTP adaptive streaming. In Integrated Net-
work Management (IM 2013), 2013 IFIP/IEEE International Symposium on,
pages 1288–1293. IEEE, 2013.

[5] N. Bouten, S. Latré, J. Famaey, F. De Turck, and W. Van Leekwijck. Min-
imizing the impact of delay on live SVC-based HTTP adaptive streaming
services. In Proceedings of the IFIP/IEEE International Symposium on Inte-
grated Network Management (IM), pages 1399–1404, 2013.

[6] K. Miller, E. Quacchio, G. Gennari, and A. Wolisz. Adaptation algorithm
for adaptive streaming over HTTP. In Proceedings of the 19th International
Packet Video Workshop (PV), pages 173–178. IEEE, 2012.

[7] J. Jiang, V. Sekar, and H. Zhang. Improving Fairness, Efficiency, and Stability
in HTTP-based Adaptive Video Streaming with FESTIVE. In Proceedings of
the 8th International Conference on Emerging Networking Experiments and
Technologies, CoNEXT ’12, pages 97–108. ACM, 2012.

[8] G. Tian and Y. Liu. Towards Agile and Smooth Video Adaptation in Dynamic
HTTP Streaming. In Proceedings of the 8th International Conference on
Emerging Networking Experiments and Technologies, CoNEXT ’12, pages
109–120, 2012.

[9] J. Famaey, S. Latré, N. Bouten, W. Van de Meerssche, B. De Vleeschauwer,
W. Van Leekwijck, and F. De Turck. On the merits of SVC-based HTTP
Adaptive Streaming. In Proceedings of the IFIP/IEEE International Sympo-
sium on Integrated Network Management (IM), pages 419–426, 2013.

CLUSTERING-BASED ADAPTATION FOR HAS OVER CACHE NETWORKS 163

[10] C. Liu, I. Bouazizi, M. M. Hannuksela, and M. Gabbouj. Rate adaptation
for dynamic adaptive streaming over HTTP in content distribution network.
Signal Processing: Image Communication, 27(4):288 – 311, 2012.

[11] V. Adzic, H. Kalva, and B. Furht. Optimized Adaptive HTTP Streaming for
Mobile Devices. In SPIE Optical Engineering+ Applications, pages 81350T–
81350T. International Society for Optics and Photonics, 2011.

[12] R. Kuschnig, I. Kofler, and H. Hellwagner. An Evaluation of TCP-based
Rate-control Algorithms for Adaptive Internet Streaming of H.264/SVC. In
Proceedings of the First Annual ACM SIGMM Conference on Multimedia
Systems, MMSys ’10, pages 157–168, 2010.

[13] R. Houdaille and S. Gouache. Shaping HTTP Adaptive Streams for a Better
User Experience. In Proceedings of the 3rd Multimedia Systems Conference,
MMSys ’12, pages 1–9, 2012.

[14] S. Akhshabi, A. C. Begen, and C. Dovrolis. An Experimental Evaluation
of Rate-adaptation Algorithms in Adaptive Streaming over HTTP. In Pro-
ceedings of the Second Annual ACM Conference on Multimedia Systems
(MMSys), pages 157–168, 2011.

[15] S. Akhshabi, L. Anantakrishnan, A. C. Begen, and C. Dovrolis. What Hap-
pens when HTTP Adaptive Streaming Players Compete for Bandwidth? In
Proceedings of the International Workshop on Network and Operating Sys-
tem Support for Digital Audio and Video (NOSSDAV), pages 9–14, 2012.

[16] D. C. Robinson, Y. Jutras, and V. Craciun. Subjective Video Quality As-
sessment of HTTP Adaptive Streaming Technologies. Bell Labs Technical
Journal, 16(4):5–23, 2012.

[17] J. Esteban, S. A. Benno, A. Beck, Y. Guo, V. Hilt, and I. Rimac. Interactions
Between HTTP Adaptive Streaming and TCP. In Proceedings of the 22Nd In-
ternational Workshop on Network and Operating System Support for Digital
Audio and Video, NOSSDAV ’12, pages 21–26, 2012.

[18] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hossfeld, and P. Tran-Gia. A
Survey on Quality of Experience of HTTP Adaptive Streaming. Communica-
tions Surveys Tutorials, IEEE, PP(99):1–1, 2014.

[19] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen. Server-
based Traffic Shaping for Stabilizing Oscillating Adaptive Streaming Players.
In Proceedings of the ACM Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV), pages 19–24, 2013.

164 CHAPTER 5

[20] X. Liu and A. Men. QoE-aware Traffic Shaping for HTTP Adaptive Stream-
ing. International Journal of Multimedia & Ubiquitous Engineering, 9(2),
2014.

[21] N. Bouten, S. Latré, J. Famaey, W. Van Leekwijck, and F. De Turck. In-
Network Quality Optimization for Adaptive Video Streaming Services. Mul-
timedia, IEEE Transactions on, 16(8):2281–2293, Dec 2014.

[22] Z. Li, M. Sbai, Y. Hadjadj-Aoul, A. Gravey, D. Alliez, J. Garnier, G. Madec,
G. Simon, and K. Singh. Network friendly video distribution. In Network
of the Future (NOF), 2012 Third International Conference on the, pages 1–8,
Nov 2012.

[23] J. Famaey, S. Latré, R. van Brandenburg, M. O. van Deventer, and
F. De Turck. On the Impact of Redirection on HTTP Adaptive Streaming
Services in Federated CDNs. In Proceedings of the 7th IFIP WG 6.6 Interna-
tional Conference on Autonomous Infrastructure, Management, and Security
Volume 7943, AIMS’13, pages 13–24, 2013.

[24] A. El Essaili, D. Schroeder, D. Staehle, M. Shehada, W. Kellerer, and
E. Steinbach. Quality-of-experience driven adaptive HTTP media delivery.
In Communications (ICC), 2013 IEEE International Conference on, pages
2480–2485, June 2013.

[25] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and N. Race. To-
wards Network-wide QoE Fairness using OpenFlow-assisted Adaptive Video
Streaming. In Proceedings of the 2013 ACM SIGCOMM workshop on Fu-
ture human-centric multimedia networking, pages 15–20. ACM, 2013.

[26] C. Mueller, S. Lederer, C. Timmerer, and H. Hellwagner. Dynamic Adaptive
Streaming over HTTP/2.0. In Multimedia and Expo (ICME), 2013 IEEE
International Conference on, pages 1–6, July 2013.

[27] S. Wei and V. Swaminathan. Low Latency Live Video Streaming over HTTP
2.0. In Proceedings of Network and Operating System Support on Digital
Audio and Video Workshop, NOSSDAV ’14, pages 37:37–37:42, 2014.

[28] S. Wei and V. Swaminathan. Cost effective video streaming using server push
over HTTP 2.0. In Multimedia Signal Processing (MMSP), 2014 IEEE 16th
International Workshop on, pages 1–5, Sept 2014.

[29] N. Bouten, M. Claeys, S. Latre, J. Famaey, W. Van Leekwijck, and
F. De Turck. Deadline-based approach for improving delivery of SVC-based
HTTP Adaptive Streaming content. In Network Operations and Management
Symposium (NOMS), 2014 IEEE, pages 1–7, May 2014.

CLUSTERING-BASED ADAPTATION FOR HAS OVER CACHE NETWORKS 165

[30] N. Bouten, S. Latré, W. Van de Meerssche, K. De Schepper,
B. De Vleeschauwer, W. Van Leekwijck, and F. De Turck. An autonomic
delivery framework for HTTP Adaptive Streaming in multicast-enabled mul-
timedia access networks. In Proceedings of the IEEE Network Operations
and Management Symposium (NOMS), pages 1248–1253, 2012.

[31] N. Bouten, S. Latré, W. Van de Meerssche, B. De Vleeschauwer,
K. De Schepper, W. Van Leekwijck, and F. De Turck. A Multicast-Enabled
Delivery Framework for QoE Assurance of Over-The-Top Services in Mul-
timedia Access Networks. Journal of Network and Systems Management,
21(4):677–706, 2013.

[32] S. Petrangeli, M. Claeys, S. Latre, J. Famaey, and F. De Turck. A multi-
agent Q-Learning-based framework for achieving fairness in HTTP Adaptive
Streaming. In Network Operations and Management Symposium (NOMS),
2014 IEEE, pages 1–9, May 2014.

[33] C. Mueller, S. Lederer, and C. Timmerer. A proxy effect analyis and fair
adatpation algorithm for multiple competing Dynamic Adaptive Streaming
over HTTP clients. In Visual Communications and Image Processing (VCIP),
2012 IEEE, pages 1–6, Nov 2012.

[34] V. Krishnamoorthi, N. Carlsson, D. Eager, A. Mahanti, and N. Shahmehri.
Helping Hand or Hidden Hurdle: Proxy-Assisted HTTP-Based Adaptive
Streaming Performance. In 2013 IEEE 21st International Symposium on
Modelling, Analysis and Simulation of Computer and Telecommunication
Systems, pages 182–191, Aug 2013.

[35] D. H. Lee, C. Dovrolis, and A. C. Begen. Caching in HTTP Adaptive Stream-
ing: Friend or Foe? In Proceedings of Network and Operating System Sup-
port on Digital Audio and Video Workshop, NOSSDAV ’14, pages 31:31–
31:36, New York, NY, USA, 2014. ACM.

[36] H. Zhang and D. Choffnes. Client-Side Web Proxy Detection from Unprivi-
leged Mobile Devices. arXiv preprint arXiv:1511.04493, 2015.

[37] Z. Trabelsi, H. Rahmani, K. Kaouech, and M. Frikha. Malicious sniffing sys-
tems detection platform. In Applications and the Internet, 2004. Proceedings.
2004 International Symposium on, pages 201–207. IEEE, 2004.

[38] Z. Tun and N. L. Thein. Round Trip Time based Wormhole Attacks De-
tection. In IEEE Wireless Communications andNetworking Conference-
WCNC, 2008.

166 CHAPTER 5

[39] X. Xu, Y. Jiang, T. Flach, E. Katz-Bassett, D. Choffnes, and R. Govindan.
Investigating transparent web proxies in cellular networks. In International
Conference on Passive and Active Network Measurement, pages 262–276.
Springer, 2015.

[40] N. Weaver, C. Kreibich, M. Dam, and V. Paxson. Here be web proxies.
In International Conference on Passive and Active Network Measurement,
pages 183–192. Springer, 2014.

[41] G. Detal, B. Hesmans, O. Bonaventure, Y. Vanaubel, and B. Donnet. Re-
vealing middlebox interference with tracebox. In Proceedings of the 2013
conference on Internet measurement conference, pages 1–8. ACM, 2013.

[42] S. Petrangeli, N. Bouten, M. Claeys, and F. D. Turck. Towards SVC-based
Adaptive Streaming in information centric networks. In Proceedings of IEEE
International Conference on Multimedia Expo Workshops (ICMEW), pages
1–6, June 2015.

[43] N. Bouten, R. de O. Schmidt, J. Famaey, S. Latré, A. Pras, and F. D. Turck.
QoE-driven in-network optimization for Adaptive Video Streaming based on
packet sampling measurements. Computer Networks, 81:96 – 115, 2015.

[44] S. P. Lloyd. Least squares quantization in PCM. Information Theory, IEEE
Transactions on, 28(2):129–137, 1982.

[45] B. Aaron, D. E. Tamir, N. D. Rishe, and A. Kandel. Dynamic incremental K-
means clustering. In Computational Science and Computational Intelligence
(CSCI), 2014 International Conference on, volume 1, pages 308–313. IEEE,
2014.

[46] N. Memarsadeghi, D. M. Mount, N. S. Netanyahu, and J. Le Moigne. A fast
implementation of the ISODATA clustering algorithm. International Journal
of Computational Geometry & Applications, 17(01):71–103, 2007.

[47] N. Bouten, J. Famaey, S. Latré, R. Huysegems, B. De Vleeschauwer,
W. Van Leekwijck, and F. De Turck. QoE optimization through in-network
quality adaptation for HTTP Adaptive Streaming. In Proceedings of the Inter-
national Conference on Network and Service Management (CNSM), pages
336–342, 2012.

[48] M. Claeys, S. Latre, J. Famaey, and F. D. Turck. Design
and Evaluation of a Self-Learning HTTP Adaptive Video Streaming
Client. IEEE Communications Letters, 18(4):716–719, April 2014.
doi:10.1109/LCOMM.2014.020414.132649.

CLUSTERING-BASED ADAPTATION FOR HAS OVER CACHE NETWORKS 167

[49] W. Bellante, R. Vilardi, and D. Rossi. On Netflix catalog dynamics and
caching performance. In 2013 IEEE 18th International Workshop on Com-
puter Aided Modeling and Design of Communication Links and Networks
(CAMAD), pages 89–93, Sept 2013.

[50] C. Fricker, P. Robert, J. Roberts, and N. Sbihi. Impact of traffic mix on
caching performance in a content-centric network. In Computer Commu-
nications Workshops (INFOCOM WKSHPS), 2012 IEEE Conference on,
pages 310–315. IEEE, 2012.

6
Semantically Enhanced Mapping

Algorithm for Affinity Constrained
Service Function Chain Requests

N. Bouten, R. Mijumbi, J. Serrat, J. Famaey,
S. Latré, F. De Turck

Submitted to Transactions on Network and Service Management (TNSM),
May 2016.

Chapter 2-5 and Appendices A-B present various Service Function Chains
(SFCs) and Network Functions (NFs) that optimize the Quality of Experience
(QoE) for the delivery of HTTP Adaptive Streaming (HAS) services. To increase
the service agility and reduce the time to market of new services, these NFs can
be virtualized into Virtual Network Functions (VNFs) and by leveraging Network
Function Virtualization (NFV) technologies, deployed on the fly onto the virtual-
ized substrate. However, many service chains have some assumptions on the lo-
cality of the VNFs to achieve the expected performance gain. This chapter defines
a set of affinity and anti-affinity constraints which allow the Service Provider (SP)
to define locality restrictions on VNFs and interconnecting virtual edges. Since
SFCs can be generated automatically or by human operators, a semantic valida-
tion framework is proposed in which the substrate and SFCs are modeled using
ontologies. By defining a set of inference rules, the semantic reasoner can detect
inconsistent constraint sets. Additional algorithms are proposed to map the SFC
sets onto the substrate subject to the capacity and affinity constraints.

170 CHAPTER 6

6.1 Introduction

In traditional telecommunications networks, network functionality is strongly tied
to the physical network device it runs on. To adapt or create network services,
the network operator needs to deploy a dedicated network appliance for each Net-
work Function (NF) (e.g., Deep Packet Inspection (DPI), Firewall). Furthermore,
the placement of the NFs has to adhere to a strict chaining order, which increases
the tight coupling of the service with the underlaying network topology. Together
with the ever increasing requirements for high quality and stability, this has led to
long product cycles, limited service agility and substantial dependence on special-
ized hardware. In order to compete with highly agile Over-The-Top (OTT) ser-
vices, which typically have much shorter product development cycles, and at the
same time reduce the Capital Expenditures (CAPEX) and Operational Expendi-
tures (OPEX) involved with physical network expansions, network operators need
to devise novel and less expensive ways to meet the increased capacity require-
ments and at the same time reduce the time to market of newly developed services.

The Network Function Virtualization (NFV)-paradigm [1, 2] has been intro-
duced to alleviate the aforementioned issues by leveraging IT virtualization tech-
nology to decouple the network functionality from the physical infrastructure. It
allows Virtual Network Functions (VNFs) to be deployed on standard high volume
servers, storage devices and switches. The advantages are manyfold. First, there
potentially is a significant reduction in total costs through more efficient main-
tenance, which can be performed remotely. In addition, thanks to the increased
flexibility offered by virtualization, resources can be shared and used more effi-
ciently. Finally, NFV allows network operators to deploy novel services cheaper
and faster with higher service agility.

The concepts of NFV have introduced new business opportunities for Virtual
Network Function Infrastructure Providers (VNFInPs), which act as brokers be-
tween Infrastructure Providers (InPs) and Service Providers (SPs) [3]. InPs can
profit from opening (part of) their infrastructure and providing virtualized access to
remote parties, thereby maximizing resource utilization and optimizing energy us-
age [4]. The VNFInPs act as brokers between SPs and InPs and couple the different
virtualized infrastructures into an end-to-end virtualized infrastructure. The VN-
FInPs lease the infrastructure provided by different InPs and deploy, orchestrate
and interconnect VNFs to create end-to-end Service Function Chains (SFCs) [5],
which are operated by SPs to offer value-added services to their customers. SPs
benefit from the proposed model since it allows rapid deployment and testing in
a real network environment, thus allowing faster time to market of new services.
The offered services benefit from the dynamic nature of the network, computing
and storage resources offered by the NFV infrastructure, which allows them to
dynamically scale based on service requirements and user mobility.

SEMANTICALLY ENHANCED SFC MAPPING 171

Together with these new opportunities and stakeholders, a set of new inter-
actions arises as well. For example, the SPs need a way to express their SFC
requests and requirements to the VNFInP. In traditional network embedding ap-
proaches [6], only node and link restrictions can be specified. However, many
scenarios can be envisioned where a SP might want to attach more detailed con-
straints concerning the placement and routing between NFs as well as constraints
on their colocation. For example, to increase efficiency, the SP may require the
embedding of VNFs at a certain granularity (e.g., within the same datacenter or
even on the same host). Other reasons for more detailed affinity and anti-affinity
constraints could be resilience, economic, legislative and privacy issues. In this
chapter, a set of affinity and anti-affinity constraints is proposed that increases the
control of SPs on the embedding of their SFC requests.

With this newfound ability to add custom constraints, the possibility arises that
conflicting constraints are introduced by SPs in their requested SFCs. Therefore,
the VNFInP requires a method to check the consistency of SFC requests and in-
form the SP on potential conflicts. For example, if the SP states that two VNFs of
certain types need to be embedded on the same host, but also requires that any in-
stances of functions with those VNF types are required to be embedded in distinct
datacenters, a conflict arises. Since SFC requests can contain many VNFs, virtual
edges and constraints, detecting conflicts within these requests is not a straightfor-
ward task, neither for human operators, nor for computer systems. Since conflicts
can arise between sets of constraints, pairwise detection will not suffice. There-
fore, this chapter proposes to take advantage of semantic modelling to define an
ontology and rule set, which can be enriched with individuals based on the spe-
cific SFC request. Using a semantic reasoner, the consistency can be determined
and subsequently the validity of the SFC request can be assessed. Furthermore,
the proposed framework can also be used by SPs to validate the SFC embeddings
made by the VNFInP with respect to the imposed affinity requirements.

Most of the VNF and Virtual Network (VN) embedding approaches focus on
the resource constraints posed by the SFC requests. These approaches do not take
into account other constraints during the embedding. In this chapter, the affinity-
constrained SFC placement problem is formalized. First, the resource and flow
conservation constraints are modeled for the concurrent mapping of SFCs sets.
Second, the affinity and anti-affinity constraints are added to the model. Finally,
to allow scalable SFC mapping, a heuristic procedure is proposed. This heuristic
approach takes advantage of additional knowledge of the SFC set to sort the indi-
vidual SFCs in a way that optimizes the objective. Both the optimal and heuristic
approaches are evaluated considering different metrics and use cases, such as the
number of VNFs in an SFC, the size of the physical infrastructure, the number of
SFCs in a set and the impact of applying semantic filtering to the SFC request set
prior to embedding.

172 CHAPTER 6

The contributions of this chapter are fourfold. First, a set of affinity and anti-
affinity constraints that can be attached to an SFC request by the SP are defined.
Second, this chapter proposes and evaluates a semantic conflict detection mecha-
nism that can be employed by the VNFInP to check the validity of SFC requests.
In this way, SFCs containing inconsistent constraints can be filtered out by the
VNFInP before the embedding step. Third, a mathematical formulation is pro-
posed of the affinity-constrained SFC embedding problem as well as a set of algo-
rithms to solve them. Finally, a heuristic approach to tackle the computationally
expensive task of embedding SFC sets is proposed and evaluated.

The remainder of this chapter is structured as follows: Section 6.2 discusses
the relevant related work in the field of embedding and affinity constraint map-
ping in other research fields. The affinity and anti-affinity constraints are dis-
cussed in Section 6.3, while Section 6.4 describes the semantic modelling for
affinity-constrained SFC requests. The Integer Linear Programming (ILP) model
for affinity-constrained SFC embedding is discussed in Section 6.5. The proposed
heuristic approach is discussed in Section 6.6. Section 6.7 discusses the evaluation
platform, among which the implementation of the semantic SFC request checking
engine and the embedding algorithm, as well as a set of results on the performance
of the proposed approaches.

6.2 Related Work

NFV has been proposed as a paradigm that allows more flexible service deploy-
ment by leveraging IT virtualization technology in combination with programmable
networks [7, 8]. A recent survey on NFV by co-authors of this chapter, identifies
the decoupling of NFs from hardware, flexible NF deployment and dynamic scal-
ing as the main differences between network service provisioning in NFV com-
pared to current practice [9]. The authors provide an overview of the history of
NFV, the NFV architecture proposed by ETSI, the standardization efforts and rel-
evant research and implementation projects. Furthermore, several research chal-
lenges are identified, among which the security, privacy and trust concerns, the
modelling of resources, functions and services and the efficient allocation of NFV
resources [10]. This chapter focuses on defining a set of affinity and anti-affinity
constraints that can be used to impose function placement requirements (e.g., for
privacy or legislative purposes). Furthermore, a framework is provided to model
these constraints and to evaluate their mutual interactions and consistency. Finally,
an alternative optimization model is proposed taking into account the resource and
flow constraints, as well as the affinity constraints imposed by a set of SFC re-
quests.

Next to the management and orchestration challenges, Han et al. identify the
network performance of VNFs to be a major obstacle for the adoption of NFV

SEMANTICALLY ENHANCED SFC MAPPING 173

technologies [8]. The end-to-end networking performance has been shown to be
heavily impacted by the sharing of processors, even when the network is not heav-
ily loaded [11]. To alleviate these performance issues, Hwang et al. propose the
NetVM platform which allows network functions based on the Intel DPDK tech-
nology to be executed at line-speed on top of commodity hardware [12]. Martins et
al. propose a high-performance platform named ClickOS, which allows the execu-
tion of hundreds of concurrent VNFs without incurring significant overhead [13].
This chapter does not focus on a specific VNF implementation platform, but pro-
vides a general approach to embed affinity-constrained SFCs, independent of the
underlying implementations. During the optimization, the packet processing re-
sources required by a certain VNF type are taken into account, as well as the
packet processing resources required by intermediary routing nodes.

Affinity and anti-affinity restrictions have previously been studied in the con-
text of grid and cloud computing. Many argued that the lack of influence on the
placement of workflow or service components is a hindrance for the adoption of
the technology [14, 15]. Even though performance and economical benefits of
cloud computing are clear, potential users hesitate to deploy the technology be-
cause legal, privacy, efficiency and resilience aspects are completely out of their
control. Also, recent media coverage shows an increased concern by end-users,
companies and governments about their data privacy, raising the need for SPs to
take into account these issues when deploying and offering their services1,2. These
concerns also arise for NFV when deploying VNFs at certain locations and trans-
ferring data between them over virtual paths. Therefore, it is argued that also in
NFV, mechanisms should be designed to allow SPs to add constraints concerning
locality and affinity, both to VNFs as well as the interconnecting paths.

The solutions proposed in the affinity and anti-affinity context for cloud com-
puting mostly relate to two aspects: developing models to describe affinity rules
and developing service placement algorithms that can work under the constraints
of these rules. Konstanteli et al. present a set of affinity rules for cloud com-
puting applications which are added to a Mixed-Integer Non-Linear Program-
ming (MINLP) [16]. The authors define constraints that require allocating compo-
nents and services in the same subnet or physical node, or prevent services from
being federated. Larsson et al. and Espling et al. propose a model for defining
Virtual Machine (VM) placement in cloud computing supporting a set of affin-
ity and anti-affinity constraints [17, 18]. This approach is extended by defining
affinity and anti-affinity restrictions for SFCs. To this end support was added for
the specification of constraints on the path between network functions and further-
more, a more expressive syntax was proposed that allows constraints to apply to

1No Safe Harbor: How NSA Spying Undermined U.S. Tech and Europeans’ Privacy - https://
www.eff.org/nl/deeplinks/2015/10/europes-court-justice-nsa-surveilance

2Facebook case may force European firms to change data storage practices - http://www.
theguardian.com/us-news/2015/sep/23/us-intelligence-services-surveillance-privacy

174 CHAPTER 6

specific VNFs, VNF types, locations and location types. A semantic framework is
proposed which allows to check the validity of these constraints.

One of the benefits of NFV is that it supports automated deployment and or-
chestration of services. To achieve this, a number of descriptions are needed for
everything that was configured manually in the past, including VNFs and net-
work requirements [3]. Also, Service Level Agreement (SLA)-related parameters
such as affinity and anti-affinity rules should be transformed into machine-readable
description formats [19]. Huawei mentions the generation of affinity and anti-
affinity policies as a mechanism for fault prevention [20]. In the definition of
Service Quality Metrics by ETSI, special attention is brought to the enforcement
of NFV customer anti-affinity rules which can improve the availability mecha-
nisms [21]. The automatically generated affinity rules for VNFs in combination
with user-specific affinity requirements could lead to conflicting constraints. In
this chapter, a machine-readable format for affinity and anti-affinity constraints is
proposed. Furthermore, an automated way is established to detect conflicting con-
straints based on ontologies. The proposed conflict detection is applicable to both
user-generated as well as automatically generated affinity constraint sets. Further-
more, the proposed framework can also be used to validate SFC embeddings with
respect to the imposed affinity requirements.

To attain the gains promised by NFV, the VNFs and interconnecting virtual
links should be efficiently mapped onto the physical substrate. To achieve this,
several placement algorithms have been proposed in the related fields of Vir-
tual Network Embedding (VNE) [6] and Virtual Data Center Network Embed-
ding (VDCNE) [22, 23], as well as for NFV [9]. A placement algorithm can be
formulated as an optimization problem with a particular objective such as load
balancing, resource utilization, acceptance ratio, etc.

In the context of VNE, Melo et al. provide a node-link formulation for op-
timal VNE and compare their approach to state-of-the-art heuristics in terms of
optimality [24]. Chowdhury et al. propose PolyViNE, which is a policy-based
interdomain VNE framework [25]. The authors define a distributed protocol that
coordinates the VNE process across participating InPs. Dietrich et al. propose
an additional layer of indirection between the SPs and InPs, which is similar to
the concept of a VNFInP. The authors study the problem of VNE with limited
information disclosure and use a traffic matrix based VNE framework that en-
ables request partitioning with limited information [26]. Cheng et al. propose a
topology-aware measure on node resources based on random walks and provide
an ILP formulation and particle swarm optimization algorithm for the VNE prob-
lem [27]. VNE generally involves networks that can be modeled as undirected
graphs, which is not the case for SFCs which have strict directions to adhere to.
In the field of VDCNE, Amokrane et al. propose a holistic resource management
framework for embedding virtual data centers across geographically distributed

SEMANTICALLY ENHANCED SFC MAPPING 175

data centers [28]. Rabbani et al. propose an embedding system for data centers
that distinguishes multiple resource types on multiple equipments and take into
account the relation between switches and links [29]. One of the objectives is to
ensure that the infrastructure is as environment-friendly as possible. Most of the
data center network virtualization approaches focus on specific network topolo-
gies (e.g., clos topology, fat-tree topology) and can therefore not be applied to
more general topologies, which is required in a VNF embedding scenario.

Basta et al. propose a model for placing virtualized Evolved Packet Core
(EPC) functions in a way that minimizes the network overhead introduced by
Software Defined Networking (SDN) control plane interactions [30]. Mehragh-
dam et al. apply Mixed Integer Quadratically Constrained Programming (MIQCP)
to solve the placement problem and conclude that to obtain efficient use of re-
sources, the placement of functions should be different according to the desired
objective [31]. Beck et al. propose a coordinated allocation heuristic based on the
backtracking concept in which they take into account that the structure of SFCs
can be flexible [32]. This allows to reorder some of the VNFs in coordination with
the allocation of the SFC. Also Mehraghdam et al. take into account such flexible
structures [33]. However, they propose a two-step approach without coordination
between the SFC composition and embedding. Moens et al. propose an ILP-
based solution in which hybrid scenarios are considered where part of the func-
tions are provided by dedicated physical hardware and part of them by virtualized
instances [34]. Luizellie et al. formalize the NF placement and chaining problem
and propose an ILP model to solve it [35]. Xia et al. propose a Binary Integer Pro-
gramming (BIP) model for optimal VNF placement subject to minimizing the ex-
pensive optical/electronic/optical conversions for NFV chaining in packet/optical
data centers [36]. The authors also propose a greedy heuristic which sorts VNFs
according to the resource demands and embeds the resource-demanding VNFs
with highest priority. Other authors focus on specific NFV use cases such as the
virtualized Customer Premises Equipment (vCPE) or virtualized Evolved Packet
Core (vEPC). Addis et al. define a NFV network model suitable for vCPE oper-
ations [37]. The authors take into account two forwarding latency regimes (with
and without fastpath), both under Traffic Engineering (TE) and NFV objectives.
Baumgartner et al. propose an ILP formulation for the cost-optimal embedding
of a vCPE which relies on joint embedding of individual core network service
chains [38]. Bouet et al. focuses on the virtualized DPI placement for network op-
erators [39]. The problem is formulated as a multi-commodity flow problem which
is solved as an ILP and takes into account the trade-off between traffic manage-
ment targets and operational costs. Sahhaf et al. propose an algorithm for mapping
SFCs to the network infrastructure while taking into account possible decomposi-
tions of NFs [40]. The authors view a decomposition as a graph of more refined
NFs with the same external interface as the higher-level NF. Yoshida et al. propose

176 CHAPTER 6

a multi-objective resource scheduling algorithm which optimizes simultaneously
possibly conflicting objectives with multifaceted constraints [41]. Vaishnavi et al.
tackle the problem of inter-domain virtual network provisioning by abstracting the
resources of a domain to appear as a single node [42]. This allows to re-use exist-
ing embedding algorithms with minor modifications. In previous work, the online
virtual function mapping and scheduling problem was formulated and a set of al-
gorithms for solving it was proposed [43]. For an extended overview of resource
allocation in NFV, the reader is referred to a survey by Herrera et al. [44]. None of
the aforementioned approaches offers support for attaching affinity or anti-affinity
constraints to the SFCs nor do they take into account such constraints when eval-
uating the embeddings.

This chapter is an extension of previous work [45] in which the affinity and
anti-affinity constraints were first proposed. The previous work proposed a first
version of the semantic framework for affinity-constrained SFCs validation. In
the current chapter, the aforementioned framework was further fine-tuned and ex-
tended with embedding algorithms for affinity-constrained SFCs. Furthermore,
using the ILP model proposed in this chapter, the semantic filtering is validated.
Also the impact of applying semantic filtering prior to the embedding is evaluated
in this chapter.

6.3 Affinity and Anti-Affinity Constraints

Currently, in an NFV context, SPs have limited control over the mapping of VNFs
to physical hosts or SFC edges to physical paths. Nevertheless, many situations
can be envisioned where an SP might want to attach constraints to the placement
of certain functions or on the routing of traffic, such as:

• Efficiency: VNFs that exchange a lot of data may want to be positioned
close to one another (e.g., within the same datacenter, or even on the same
physical host).

• Resilience: The SP might want to spread instances of the same VNF across
multiple datacenters in order to improve resilience in case a failure occurs
in one of the datacenters.

• Legislation: The SP might want to avoid hosting VNFs in certain countries
due to legislative restrictions on the location of the data that is processed or
transferred.

• Privacy: SPs or their customers might not want the traffic to pass through
certain domains due to privacy concerns.

SEMANTICALLY ENHANCED SFC MAPPING 177

• Economic: SPs might have economic reasons (e.g., peering agreements) to
place their functions in or route their traffic through certain domains.

However, currently there is no way to specify or model such requirements in
an SFC template. In this section, the set of affinity and anti-affinity constraints
for VNFs and their interconnecting paths are discussed. The affinity constraints
apply to a set of physical locations P , a set of VNF instances V and a set of
edges E interconnecting them. There are different location granularities g ∈ G

that can be considered (e.g., countries, network domains, datacenters), leading to
a hierarchical structure of locations. Two hosts in a single datacenter represent
different locations at the granularity of hosts, but have the same location at the
granularity of datacenters. P g ⊆ P is the set of locations at a certain granularity
g. Furthermore, each VNF instance has an associated VNF type (e.g., firewall,
DPI), forming subsets V t ⊆ V of VNFs with type t ∈ T . Finally, each virtual
edge e = (a, b) ∈ E connects two VNFs a ∈ V and b ∈ V and maps to a
single (or path of) physical network links. This chapter proposes and defines the
following affinity and anti-affinity constraints:

• Affinity(p ∈ P g, v ∈ V or t ∈ T): A specific instance v or all instances
v ∈ V t of type t ∈ T must be located at a specific location pwith granularity
g.

• Anti-Affinity(p ∈ P g, v ∈ V or t ∈ T): A specific instance v or all in-
stances v ∈ V t of type t ∈ T must not be located at a specific location p
with granularity g.

• Affinity(p ∈ P g or g ∈ G, v ∈ V or s ∈ T,w ∈ V or t ∈ T): A specific
instance v or all instances v ∈ V s of type s ∈ T must be placed together
with a specific instance w or all instances w ∈ V t of type t ∈ T at a specific
location p ∈ P g or at the same location at a specific granularity g ∈ G.

• Anti-Affinity(p ∈ P g or g ∈ G, v ∈ V or s ∈ T,w ∈ V or t ∈ T): A
specific instance v or any instances v ∈ V s of type s ∈ T must not be
placed together with a specific instance w or any instances w ∈ V t of type
t ∈ T at a specific location p ∈ P g or at the same location at a specific
granularity g ∈ G.

• Affinity(p ∈ P g, e ∈ E): A virtual edge e ∈ E must be fully embedded
at a specific location p ∈ P g with a granularity g ∈ G. It does not suffice
to model this as location constraints on the endpoints, since physical nodes
along the virtual path can still be located in other locations q ∈ P g \ {p}.

• Anti-Affinity(p ∈ P g, e ∈ E): The physical links comprising the virtual
edge e ∈ E must not pass through a specific location p ∈ P g with a granu-
larity g ∈ G.

178 CHAPTER 6

f1:Firewall c1:Cache

c2:Cache

d:DPI

f2:Firewall

s:StreamingServer

t:Transcoding

e1

e2e4

e5

e7

e6

e8
c:Cache

e3

Figure 6.1: An example SFC.

• Affinity(e ∈ E, f ∈ E): Two virtual edges e ∈ E and f ∈ E must overlap
(i.e. all physical links comprising the edge e must be the same as those
comprising edge f).

• Anti-Affinity(e ∈ E, f ∈ E): Two virtual edges e ∈ E and f ∈ E must not
overlap (i.e. none of the physical links comprising the virtual edges shall be
part of both e and f). Modelling this as an anti-affinity constraint for the
VNFs of the endpoints of e and f does not achieve this, since the physical
paths can still have overlapping links even though the endpoints are mapped
to distinct physical nodes.

To further clarify the presented constraint formulations, an example of an SFC
request with both affinity and anti-affinity constraints is given here. Given a set
of location types {Autonomous System (AS), Datacenter (DC), Host} and a set of
network function types {Firewall, DPI, Cache, Transcoding, Streaming Server}.
An example SFC is depicted in Figure 6.1, where a Streaming Server is connected
via a DPI function (e.g., for tagging data packets) to a content cache. The DPI
functions may either directly forward requests to the streaming server or may send
them via the Transcoder for transcoding and packaging (e.g., for delivery to mo-
bile devices). The transcoding is preceded by a Cache in the chain to store the
transcoded content. The end-users are connected via a firewall to the service. Sup-
pose a SP wants to offer a Video on Demand (VoD) service in Belgium where
two infrastructure providers are active: Telenet (AS6848) and Proximus (AS6774).
Furthermore, the SP wants to deploy part of the service in an Amazon DC iden-
tified by DC AWS. Let us consider the following set of affinity and anti-affinity
constraints:

• Affinity(AS6848, c1)

• Affinity(AS6774, c2)

SEMANTICALLY ENHANCED SFC MAPPING 179

• Affinity(DC, Transcoder, Streaming Server)

• Affinity(DC AWS, e2)

• Affinity(Host, t, c)

• Anti-Affinity(e1, e3)

Specifically, the first two constraints state that the Caches c1 and c2 need to
be located in the Telenet and Proximus AS respectively (e.g., because they should
be close to the end user and limit uplink traffic through other networks). The third
constraint states that, for efficiency reasons and for reducing the network traffic,
all Transcoder functions should be colocated with the Streaming Server functions.
The next constraint states that the virtual edge e2 should be fully embedded within
the scope of the DC identified by DC AWS. The fifth constraint assures that the
Transcoder t and the Cache c should be located at the same Host. Finally, the last
constraints dictates that none of the physical links that are used for the embedding
of the virtual edges e1 and e3 are allowed to overlap.

6.4 Semantic SFC Request Checker

Since SPs are now free to specify their custom constraints during the SFC re-
quest, it is possible that conflicting constraints are introduced. Extending the
example from the previous section and adding the constraints Affinity(Host, c1,
f1) (i.e. specifying that c1 and f1 should be colocated in the same Host) and
AntiAffinity(DC, Cache, Firewall) (i.e. specifying that a VNF of type Cache can-
not be colocated with a VNF of type Firewall in the scope of a DC) leads to a
conflicting constraint set. Also more complex conflicts can appear when multiple
constraints are involved in the conflicting set that can only be detected as a con-
flict when considering the full set. For example, returning to the base example
from the previous section and adding the constraints Affinity(DC, DPI, Cache) and
Anti-Affinity(DC AWS, d) would lead to a conflict set {Affinity(Host, t, c), Anti-
Affinity(DC AWS, d), Affinity(DC AWS, e2), Affinity(DC, DPI, Cache)}. Since d
and c should be colocated in the same DC due to the VNF type affinity constraint
and t and c are colocated at the Host level, d and t should be colocated at the
DC level as well. Furthermore, since e2 should be fully embedded in DC AWS, t
should also be located in DC AWS. This means that d should be located in DC AWS
as well. However, this inferred knowledge conflicts with the defined constraint
Anti-Affinity(DC AWS, d).

When the VNFInP tries to deploy the requested SFC, none of the resulting
embedding configurations will lead to a feasible realisation of the SFC request.
The VNFInP should however be able to differentiate between a non-acceptance of

180 CHAPTER 6

AS4

AS3

AS2

AS1
AS5

DC2

DC3

DC4

DC1
DC5

NFV	Manager

SFC	
Requests

SFC	Embedding	
Algorithm

SFC	Request	
Checker

SDN	Controller Cloud	
Manager

Figure 6.2: An overview of the NFV architecture with support for semantic SFC request
checking.

SEMANTICALLY ENHANCED SFC MAPPING 181

Lo
ca
tio
n

Lo
ca
tio
nT
yp
e

A
S D
C H
os
t

is
S
ub
Lo
ca
tio
nO
f

ha
sL
oc
at
io
nT
yp
e

V
N
F

V
irt
ua
lE
dg
e

is
V
N
FE
m
be
dd
ed
O
n

is
E
dg
eE
m
be
dd
ed
O
n

V
N
FT
yp
e

ha
sV
N
FT
yp
e

ha
sE
dg
eV
N
F

ha
sE
dg
eI
ng
re
ss
V
N
F

ha
sE
dg
eE
gr
es
sV
N
F

is
E
dg
eE
m
be
dd
ed
W
ith
E
dg
e

V
N
FV
N
FR
es
tri
ct
io
n

V
N
FV
N
FT
yp
eR
es
tri
ct
io
n

V
N
FT
yp
eV
N
FT
yp
eR
es
tri
ct
io
n

ha
sV
N
F

ha
sV
N
FT
yp
e

ha
sV
N
FT
yp
e

is
V
N
FV
N
FE
m
be
dd
ed
O
n

is
V
N
FV
N
FT
yp
eE
m
be
dd
ed
O
n

is
V
N
FT
yp
eV
N
FT
yp
eE
m
be
dd
ed
O
n

is
S
ub
Lo
ca
tio
nT
yp
eO
f

is
V
N
FV
N
FT
yp
eE
m
be
dd
ed
O
nL
oc
at
io
nT
yp
e

is
V
N
FT
yp
eV
N
FT
yp
eE
m
be
dd
ed
O
nL
oc
at
io
nT
yp
e

is
V
N
FV
N
FE
m
be
dd
ed
O
nL
oc
at
io
nT
yp
e

is
D
ire
ct
S
ub
Lo
ca
tio
nO
f

is
D
ire
ct
S
ub
Lo
ca
tio
nT
yp
eO
f

ha
sV
N
F

is
E
dg
eF
ul
ly
E
m
be
dd
ed
O
n

Figure 6.3: Graphical representation of ontology.

182 CHAPTER 6

the SFC request caused by a shortage of appropriate resources and conflicting re-
quest constraints, in order to inform the SP on the reason why the SFC deployment
failed. The previous example shows the need for the VNFInP to check the validity
of an SFC request upon reception in order to exclude any conflicting constraints
when trying to provision the requested SFC.

Figure 6.2 depicts how the SFC request checking system could be integrated
into the NFV Manager. In this architecture, the SFC Embedding Algorithm (which
will be discussed in the next section) is responsible for assigning resources to the
SFC requests. Concretely, it decides on which VNFs should be deployed on which
hosts and how many resources should be assigned to them. The Cloud Manager
performs the management of deployed VNFs and server resources. Moreover,
the algorithm selects the forwarding paths interconnecting the VNFs and assigns
network resources to them through the SDN Controller. Before the SFC request
is forwarded to the SFC Embedding Algorithm it needs to be checked by the SFC
Request Checker to confirm the validity.

Appendix C proposes to exploit ontology representations for the purpose of
modeling the physical substrate, the SFC requests and defining a set of rules that
can be used to infer additional information [45]. Figure 6.3 represents the proposed
semantic model. The SFC requests are modeled as a set of VNFs with a certain
VNFType and VirtualEdges containing an ingress and egress VNF. The physical
resources are modeled at the granularity level of Hosts, DCs and ASs. Each of
these Locations has a certain LocationType (i.e., AS, DC or Host). The hierarchi-
cal relations between these Locations and LocationTypes are modeled by isSubLo-
cationOf and isSubLocationTypeOf respectively. To model affinity (respectively
anti-affinity) constraints for single VNFs and edges, positive (respectively nega-
tive) object property assertions of the type isVNFEmbeddedOn, isEdgeEmbedde-
dOn and isEdgeFullyEmbeddedOn are attached to VNFs and VirtualEdges.

To be able to model more complex affinity and anti-affinity relationships be-
tween two VNFs, two VNFTypes or between a VNF and VNFType, the additional
concepts VNFVNFRestriction, VNFVNFTypeRestriction and VNFTypeVNFTypeR-
estriction were added to the ontology. By adding the respective positive (respec-
tively negative) property isVNFVNFEmbeddedOn or isVNFVNFEmbeddedOnType,
one is able to model affinity (respectively anti-affinity) restrictions for more com-
plex constraints on the Location or LocationType. By using the isEdgeEmbedded-
WithEdge relationship, affinity and anti-affinity constraints between edges can be
modeled.

To infer new information out of existing knowledge, a set of rules is defined.
For example, Rule (6.1) stipulates that if a certain VNF x is embedded on a Lo-
cation y and if y is a sublocation of z, this VNF is also embedded on Location z.
When a VNFType y is embedded on a Location z, each VNF x of that VNFType y
needs to be embedded at the Location z (Rule (6.2)). If a VirtualEdge z contains

SEMANTICALLY ENHANCED SFC MAPPING 183

a VNF x embedded at Location a, this VNF z is embedded at Location a as well
(Rule (6.3)). For a full description of the rules, the reader is referred to Appendix C
which focuses on the semantic validation of SFC requests.

isV NFEmbeddedOn(x, y) ∧ isSubLocOf(y, z)
→ isV NFEmbeddedOn(x, z) (6.1)

hasV NFType(x, y) ∧ isV NFTypeEmbeddedOn(y, z)
→ isV NFEmbeddedOn(x, z) (6.2)

hasEdgeV NF (z, x) ∧ isV NFEmbeddedOn(x, a)
→ isEdgeEmbeddedOn(z, a) (6.3)

When a new SFC request arrives at the VNFInP, this request is parsed and
the set of VNFs and edges are added as individuals to the Web Ontology Lan-
guage (OWL) ontology. Next, the set of affinity and anti-affinity constraints are
also added by either creating new individuals (i.e. VNFVNFRestriction), adding
property assertions (i.e. isVNFEmbeddedOn) or both. For example, the affin-
ity restriction Affinity(AS6848, c1) concerning VNF c1 and AS AS6848, is mod-
eled as a positive property assertion isVNFEmbeddedOn(c1, AS6848). On the
other hand, the negative restriction Anti-Affinity(e1, e3) concerning VirtualEdge
e1 and VirtualEdge e3, is modeled as a negative property assertion isEdgeEmbed-
dedWithEdge(e1, e3).

6.5 Model

In this section the affinity-constrained SFC placement problem is described. First,
the notations for the inputs and variables used throughout the chapter are pre-
sented. Second, the general constraints involved in SFC placement are introduced.
Third, the constraints related to affinity and anti-affinity based placement restric-
tions are explained. Finally, the placement objectives are introduced. Table 6.1
gives an overview of the various notations that are introduced in this section. Fig-
ure 6.4 shows a graphical representation of the variables and their relationships.

6.5.1 NFV Infrastructure model

The topology of an NFV infrastructure can be described as a weighted directed
graph INF = {N,L}, where N is the set of substrate nodes in the infrastructure
and L the set of links interconnecting them. Each substrate node n ∈ N represents
a location where a network function could be deployed. Each substrate node n is
characterized by its available processing capacity Cn, available memory capacity
Mn and its location p ∈ P . This geographic location represents a hierarchical

184 CHAPTER 6

Table 6.1: VNF placement problem notation.

Symbol Definition
INF NFV infrastructure
N Set of substrate nodes
n ∈ N Substrate node
Cn Available processing capacity for node n
Mn Available memory capacity for node n
Qn Available packet processing capacity for node n
P Set of geographic locations
g ∈ G Particular granularity for geographic locations
P g ⊆ P Subset of geographic locations at certain granularity g
Ng
p ⊆ N Subset of nodes at a certain location p with specific granularity g

L Set of substrate links
(m,n) ∈ L Substrate link where m,n ∈ N
B(m,n) Available bandwidth of substrate link (m,n)
D(m,n) Network latency of substrate link (m,n)
SFC SFC request
R Set of SFC requests
Vr Set of requested VNFs for SFC request r ∈ R
v ∈ Vr VNF
V er ⊆ Vr Set of endpoint-VNFs
Tr Set of VNF types in SFC request r ∈ R
V tr ⊆ Vr Subset of requested VNFs with type t ∈ Tr
Cv Requested processing capacity for VNF v
Mv Requested memory capacity for VNF v
Qv Requested packet processing capacity for VNF v
Dv Processing delay incurred by VNF v
Er Set of edges interconnection the VNFs in SFC request r ∈ R
(u, v) ∈ Er Virtual connection between u and v where u, v ∈ Vr
B(u,v) Requested bandwidth capacity of virtual link (u, v)
Sr Set of sections in VNF request r ∈ R
s = {V sr , Esr} Tuple s ∈ Sr representing a section or path of a VNF request
V sr ⊆ Vr Ordered collection of VNFs in a section s
Esr ⊆ Er Ordered collection of virtual links in a section s
Ds Maximum allowed latency associated with a section s ∈ Sr
Ar Set of affinity and anti-affinity constraints defined in r ∈ R
Aar ⊆ Ar Set of affinity-constraints defined in r ∈ R
Aaar ⊆ Ar Set of anti-affinity-constraints defined in r ∈ R

SEMANTICALLY ENHANCED SFC MAPPING 185

𝑎 𝑏

𝑣 𝑤

𝑢

𝑆𝐹𝐶: 	𝑟 ∈ 𝑅

𝑢, 𝑣 ∈ 𝐸0

𝑠 ∈ 𝑆0

𝑐𝑉04 = 𝑎, 𝑏, 𝑐
𝐸04 = { 𝑎, 𝑏 , (𝑏, 𝑐)}

𝑤 ∈ 𝑉0:

𝑅

𝐷4

𝐷(<,=)

𝑆0 = 𝑠
𝑉0 = 𝑢, 𝑎, 𝑏, 𝑐, 𝑣, 𝑤
𝑉0: = 𝑢, 𝑤, 𝑐
𝐸0 = 𝑢, 𝑎 , 𝑎, 𝑏 , 𝑏, 𝑐 , 𝑢, 𝑣 , 𝑣, 𝑤

𝐵(?,<)

𝑚 𝑛

𝑘 l

o

𝐼𝑁𝐹

𝑜 ∈ 𝑁

𝐷(F,G)
𝐵(G,H)

𝑚, 𝑛 ∈ 𝐿

𝑝 𝑞

𝑁 = 𝑘, 𝑙, 𝑚, 𝑛, 𝑜
𝐿 = { 𝑘, 𝑙 , 𝑘,𝑚 , 𝑚, 𝑛 , 𝑛, 𝑜 , 𝑜, 𝑙 , 𝑙, 𝑘 , 𝑚, 𝑘 , 𝑛,𝑚 , 𝑜, 𝑛 , (𝑙, 𝑜)}

ℎN ℎO
𝐷𝐶

ℎ𝑜𝑠𝑡

𝑔 ∈ 𝐺

𝐶G,𝑀G, 𝑄G

ℎU ℎV ℎW

𝑥H<

𝑡,	𝐶<,	𝑀<,	𝐷<,	𝑄<

𝑦(H,G)
(?,<)

𝑧0

𝑃\] = 𝑝, 𝑞
𝑁^\] = 	 𝑘,𝑚

Figure 6.4: Graphical representation of the model.

186 CHAPTER 6

structure where each level of this structure represents a certain geographic granu-
larity (e.g., host, rack, datacenter, network domain, etc.). The subset of geographic
locations P g ⊆ P represents the set of locations at a particular granularity g ∈ G
(e.g., PDC represents the set of all datacenter locations). Similarly, Ng

p represents
the set of all substrate nodes at a geographic location p ∈ P g at a certain granu-
larity g (e.g., NDC

p represents the set of all substrate nodes located at a datacenter
p). It is possible that a certain network node n is not involved directly in map-
ping VNFs for an SFC but is along the path between VNFs and thus participates
in forwarding the traffic for the SFC. Therefore, one needs to take into account
the packet processing capacity of such a node: Qn when deploying SFCs on the
substrate network.

Each link (m,n) ∈ L represents a unidirectional link between two network
nodes m,n ∈ N . Bidirectional links are represented as a pair of unidirectional
links (i.e. (m,n), (n,m)). This allows us to model a variety of network links with
different up/download characteristics. Each link is characterized by an available
bandwidth capacity B(m,n) and latency D(m,n). Similar to network nodes, also
the links are characterized by a geographic location which is the set of locations of
their endpoints {Pm, Pn}.

6.5.2 SFC model

Similarly to the VNF infrastructure model, an SFC request r ∈ R can be described
as a weighted directed graph SFCr = {Vr, Er}, where Vr is the set of VNFs and
Er the set of edges interconnecting them. An SFC typically has two or multiple
endpoint VNFs which terminate the service chain. These are modeled as endpoint-
VNFs V er ⊆ Vr. Tr represents the set of VNF types (e.g., firewall, gateway,
router). Each VNF v ∈ Vr has an associated VNF type t ∈ Tr. V tr forms the set of
VNFs in the SFC that have a type t associated with them. Each VNF v requires a
certain processing capacity Cv and a specific memory capacity Mv . Furthermore,
each VNF v has an associated processing delay Dv .

Each edge (u, v) ∈ Er represents a unidirectional virtual edge between two
VNFs u, v ∈ Vr. These are modeled as unidirectional connections since SFCs can
have different capacity requirements for up-and downstream respectively (e.g., a
video streaming SFC will have higher downstream requirements). An SFC edge
can be composed of one or more substrate links or could be an internal link when
both u and v are mapped onto the same substrate node n. Link aggregation, where
a virtual edge is composed out of multiple distinct underlying paths, is not con-
sidered here. Each edge has a required capacity B(u,v) between the VNFs, this
capacity is also used to account for the packet processing requirements of the for-
warding nodes (i.e. Qn). A section or path s ∈ Sr is a tuple composed of a set of
ordered VNFs V sr and the ordered set of consecutive virtual edges interconnecting

SEMANTICALLY ENHANCED SFC MAPPING 187

these VNFs Esr . An SFC request r can associate a maximum allowed latency Ds

for the end-to-end flow processing of such sections. Ar denotes the affinity and
anti-affinity constraints that are defined in the SFC request r. Aar and Aaar denote
the set of affinity constraint and anti-affinity constraints respectively.

6.5.3 Assignment variables

For every SFC request r ∈ R, a set of node and link mapping variables is defined.
The binary variable zr defines whether the SFC r ∈ R is mapped or not as defined
in Expression (6.4). The binary variable x is used in the mapping of the VNFs to
network nodes and is defined in Expression (6.5), where xvn → N · Vr. Similarly,
the binary variable y is used as defined in Expression (6.6), where y(u,v)(m,n) → L·Er.

zr =

{
1, if r ∈ R is mapped.

0, otherwise.
(6.4)

∀r ∈ R : xvn =

{
1, if v ∈ Vr is mapped to n ∈ N .
0, otherwise.

(6.5)

∀r ∈ R : y
(u,v)
(m,n) =

1, if (u, v) ∈ Er is

mapped to (m,n) ∈ L.
0, otherwise.

(6.6)

6.5.4 General constraints

In order to assure a correct mapping of the requested SFC, a set of constraints
can be defined. Equations (6.7) and (6.8) prevent that VNFs and virtual edges
respectively are mapped when the corresponding SFC to which they belong is not
mapped. Equation (6.9) ensures that if an SFC request r is mapped (zr = 1), each
VNF is assigned and that it is assigned to exactly one node. On the other hand, if
the SFC request r is not mapped (zr = 0), none of the VNFs should be mapped.
Equations (6.10) and (6.11) respectively assure that the available CPU and memory
capacity of each individual node is not exceeded by the capacity requirements of
all VNFs v ∈ V in the request set R (V =

⋃
r∈R Vr).

188 CHAPTER 6

∀r ∈ R : ∀v ∈ Vr : ∀n ∈ N : xvn ≤ zr (6.7)

∀r ∈ R : ∀(u, v) ∈ Er : ∀(m,n) ∈ L : y
(u,v)
(m,n) ≤ zr (6.8)

∀r ∈ R : ∀v ∈ Vr :
∑
n∈N

xvn = zr (6.9)

∀n ∈ N :
∑
v∈V

(xvn · Cv) ≤ Cn (6.10)

∀n ∈ N :
∑
v∈V

(xvn ·Mv) ≤Mn (6.11)

∀(u, v) ∈ E,m ∈ N :∑
n∈N

y
(u,v)
(m,n) −

∑
n∈N

y
(u,v)
(n,m) = xum − xvm (6.12)

∀(m,n) ∈ L :
∑

(u,v)∈E

(
y
(u,v)
(m,n) ·B(u,v)

)
≤ B(m,n) (6.13)

∀n ∈ N :∑
u∈V

(xun ·Qu) +
∑

(u,v)∈E

(
2 · xun · xvn ·B(u,v)

)
+

∑
(u,v)∈E

∑
(m,n)∈L
(n,o)∈L

((
y
(u,v)
(m,n) + y

(u,v)
(n,o)

)
·B(u,v)

)
≤ Qn

(6.14)

∀r ∈ R : ∀s ∈ Sr :
∑
u∈V sr

∑
n∈N

(xun ·Du)+

∑
(u,v)∈Esr

∑
(m,n)∈L

(
y
(u,v)
(m,n) ·D(m,n)

)
≤ Ds

(6.15)

The multi-commodity flow conservation is assured by Equation (6.12). This
ensures that there exist virtual paths between the requested VNFs. Modeling that
no capacity is required for a certain virtual edge (u, v), while a virtual edge (v, u)

exists with non-zero capacity requirements can be achieved by setting B(u,v) = 0

and B(v,u) > 0 respectively. Using the constraint defined in Equation (6.13), it
is ensured that each substrate link has enough capacity to serve all virtual paths
(u, v) ∈ R mapped on it for a request set R (E =

⋃
r∈REr). Equation (6.14)

guarantees that the required processing capacity is available for each of the sub-
strate nodes. The first term sums up the required capacityBu by each VNF u ∈ V .
The second term assures that if a virtual edge is mapped internally within a single
substrate node, the required processing capacity for this edge is added. The last
term sums up the processing capacity of each ingress and egress links of a substrate
node. Finally, Equation (6.15) ensures that the end-to-end latency incurred by the
substrate links comprising the virtual paths s ∈ Sr and the processing delays at the

SEMANTICALLY ENHANCED SFC MAPPING 189

VNFs adhere to the maximum allowed latency Ds specified by the SFC request
r ∈ R.

6.5.5 Affinity and Anti-Affinity constraints

To take into account the required geographic and colocation requirements for a
specific VNF request r, these are modeled as constraints for the optimization prob-
lem. Equation (6.16) stipulates that all VNFs of a certain type t need to be located
at a location p with granularity g, while Equation (6.17) prevents the embedding
of any VNF of type t at this location p. To model the affinity of certain VNF types
s and t at a any location with granularity g, Equation (6.18) guarantees that every
VNF v of type s is embedded with all VNFs of type t (=|V t|) at a single location
p with granularity g. Equation (6.19) prevents a VNF of type s to be embedded
with a VNF of type t at the same location p with granularity g. Similar constraints
were added for the other affinity and anti-affinity constraints involving VNFs and
VNF types defined in Section 6.3.

Next to VNF affinity constraints, link affinity constraints are also modeled.
Equation (6.20) assures that every substrate link (m,n) on which a virtual edge
(v, w) is mapped, is located at a location p ∈ P g . Furthermore, since edges can
be mapped internally (i.e. both VNFs v and w are mapped onto the same substrate
node), Equation (6.21) ensures that also the VNFs v and w are mapped onto a
host at that location n ∈ Ng

p . To prevent the mapping virtual edges (u, v) at a
certain location p ∈ P g , Equation (6.22) ensures that none of the substrate links
(m,n) for which one of the endpoints is located at that location (m ∨ n ∈ Ng

p)
is used. Similarly, Equation (6.23 prevents the internal embedding of the virtual
edge (v, w) at that location.

Equation (6.25) stipulates that two virtual edges need to be mapped onto the
same virtual path. Equation (6.24) ensures that the corresponding endpoints of the
virtual edge are mapped onto the same host. This constraint takes care of the cases
where the virtual edges are mapped internally. Equation (6.26) prevents two virtual
edge mappings of sharing a link. Furthermore, none of the endpoints of these
respective virtual edges should be colocated at the same host (Equation (6.27))

Affinity(p ∈ P g, t ∈ Tr) :

∀v ∈ V tr :
∑
n∈Ngp

xvn = zr (6.16)

Anti-Affinity(p ∈ P g, t ∈ Tr) :

∀v ∈ V tr :
∑
n∈Ngp

xvn = 0 (6.17)

190 CHAPTER 6

Affinity(g ∈ G, s ∈ Tr, t ∈ Tr) :

∀v ∈ V sr : ∀p ∈ P g :
∑
n∈Ngp

(
xvn ·

∣∣V tr ∣∣) =
∑
w∈V tr

∑
n∈Ngp

xwn (6.18)

Anti-Affinity(g ∈ G, s ∈ Tr, t ∈ Tr) :∑
p∈P g

 ∑
n∈Ngp

∑
v∈V sr

xvn ·

 ∑
n∈Ngp

∑
w∈V sr

xwn

 = 0 (6.19)

Affinity(p ∈ P g, e = (v, w) ∈ Er) :∑
(m,n)∈L
m∧n∈Ngp

y
(v,w)
(m,n) ≥

∑
(m,n)∈L

y
(v,w)
(m,n) (6.20)

 ∑
n∈Ngp

xvn = zr

 ∧
 ∑
n∈Ngp

xwn = zr

 (6.21)

Anti-Affinity(p ∈ P g, e = (v, w) ∈ Er) :∑
(m,n)∈L
m∨n∈Ngp

y
(v,w)
(m,n) = 0 (6.22)

 ∑
n∈Ngp

xvn = 0

 ∧
 ∑
n∈Ngp

xwn = 0

 (6.23)

Affinity(e = (v, w) ∈ Er, f = (u, z) ∈ Er) :(∑
n∈N

(xvn · xun) = zr

)
∧

(∑
n∈N

(xwn · xzn) = zr

)
(6.24)

∑
(m,n)∈L

(
y
(v,w)
(m,n) · y

(u,z)
(m,n)

)
≥

∑
(m,n)∈L

y
(v,w)
(m,n)∑

(m,n)∈L

(
y
(v,w)
(m,n) · y

(u,z)
(m,n)

)
≥

∑
(m,n)∈L

y
(u,z)
(m,n)

(6.25)

SEMANTICALLY ENHANCED SFC MAPPING 191

Anti-Affinity(e = (v, w) ∈ Er, f = (u, z) ∈ Er) :∑
(m,n)∈L

(
y
(v,w)
(m,n) · y

(u,z)
(m,n)

)
= 0 (6.26)

(∑
n∈N

(xvn · xun) = 0

)
∧

(∑
n∈N

(xwn · xzn) = 0

)
(∑
n∈N

(xvn · xzn) = 0

)
∧

(∑
n∈N

(xwn · xun) = 0

) (6.27)

6.5.6 Objective functions

When embedding SFC request set R, there are multiple objectives that could be
considered. To maximize the revenue of the VNFInP, the number of accepted SFC
requests should be maximized as shown in Equation (6.28). On the other hand, to
efficiently manage the infrastructure resources, the InP could have other objectives,
such as minimizing the number of substrate nodes and links that are used, mini-
mizing the overall traffic or load balancing the traffic over the full infrastructure.
To achieve this, the problem is first solved by using the acceptance maximization
as an objective function. Afterwards, the solution Zsol, which characterizes the
number of embedded SFC requests is added as an additional constraint by Equa-
tion (6.29).

max
∑
r∈R

zr (6.28)

∑
r∈R

zr ≥ Zsol (6.29)

Afterwards the adapted optimization problem is solved again, this time with the
InP-specified objective. Equation (6.30) minimizes the number of substrate nodes
n ∈ N that are used for embedding the requests. The total bandwidth consumption
is minimized by the objective defined in Equation (6.31). Similar objectives can
be defined for other resource types as well.

min
∑
r∈R

∑
v∈Vr

∑
n∈N

xvn (6.30)

min
∑
r∈R

∑
(u,v)∈Er

∑
(m,n)∈L

(
y
(u,v)
(m,n) ·B(u,v)

)
(6.31)

To balance the bandwidth consumption over the full infrastructure, the dif-
ference between the maximum and minimum load over all links is minimized

192 CHAPTER 6

as shown in Equation (6.32). To model this, two additional continuous decision
variables Loadmin ∈ [0.0, 1.0] and Loadmax ∈ [0.0, 1.0] are added, as well as
constraints stating that the load of each link should be smaller, respectively larger,
than the maximum and minimum load. The objective is then to minimize the dif-
ference Loadmax − Loadmin. The same could be achieved with other resources
than bandwidth as well.

(6.32)

min

 max
(m,n)∈L

∑
r∈R

∑
(u,v)∈Er

y(u,v)(m,n) ·B(u,v)

B(m,n)

− min

(m,n)∈L

∑
r∈R

∑
(u,v)∈Er

y(u,v)(m,n) ·B(u,v)

B(m,n)

6.6 Heuristic Approach

Solving the SFC embedding problem can be computationally expensive, as will be
shown later on during the evaluations. Therefore, a heuristic approach is proposed
in which the SFCs are ordered according to certain criteria and the embedding
algorithm proceeds to map them individually to the infrastructure taking into ac-
count different objective functions. The ILP model that was presented before was
adapted to be able to support such individual mapping of ordered SFC sets. To this
end, the decision variable zr, indicating if SFC request r ∈ R should be mapped is
left out of the model. This ensures that the optimization process tries to embed the
request r if there exists a feasible solution. Similar objectives can be defined as be-
fore, however also the resource usage incurred by previous individual embeddings
should now be taken into account when evaluating the objective functions.

The ordering of the SFCs in the set can be achieved in many ways. A first
ordering criterion could be to order the SFCs based on the number of affinity con-
straints that they contain, resulting in the set Rnc (Equation (6.33)). Another op-
tion is to order the SFC requests based on the requested bandwidth resources as
shown in Equation (6.34).

Rnc :
{
r ∈ R, i ≤ j : |Ari | ≤

∣∣Arj ∣∣} (6.33)

Rbw :

r ∈ R, i ≤ j :
∑

(u,v)∈Ei

B(u,v) ≤
∑

(u,v)∈Ej

B(u,v)

 (6.34)

SEMANTICALLY ENHANCED SFC MAPPING 193

6.7 Evaluation

In this section, the simulation framework that was developed to evaluate the affinity-
constrained SFC embedding is discussed. The implementation details of the se-
mantic validation module are discussed, as well as the implementation of the math-
ematical model. Furthermore, the generation of substrate topologies and SFCs is
discussed. The first set of experiments evaluates the impact of the infrastructure
size, the requested SFC size and the number of affinity and anti-affinity constraints
on the scalability of the semantic validation. Afterwards, the performance gain of
the semantic validation on the SFC embedding is discussed.

6.7.1 Simulation framework

The simulation framework is implemented in Java 83 and allows to generate topolo-
gies, generate random SFCs, validate these SFCs and map them onto the substrate.
The mathematical models presented in the previous sections are implemented us-
ing CPLEX 12.64. The topologies are generated using the BRITE topology gener-
ator5. The ASs and their interconnections are generated using BRITE after which a
number of DCs are added to each of the ASs. The DC topologies that are generated
for the evaluations are two-level fat-tree topologies [46].

The SFCs and their respective constraints are generated randomly. First a set
of VNFs and interconnecting virtual edges is generated. The respective capacity
constraints for VNFs and edges are uniformly distributed between the configured
ranges. Furthermore, end-to-end segments are assigned with a maximum delay.
Second, random affinity/anti-affinity constraints are added and the required VNFs,
virtual edges and VNF types are randomly selected from the ones that are present
in the SFC. When generating these constraints, it is checked whether the same
restriction or its counterpart (affinity or anti-affinity restriction with the same pa-
rameters) is not already present in the set. Finally, the locations are randomly
selected from all available locations and added to the constraints. To select these
locations, a discrete probability distribution with the following probability mass
function is used for affinity restrictions (AS: 0.6, DC: 0.3, host: 0.1) and anti-
affinity restrictions (AS: 0.1, DC: 0.3, host: 0.6). The rationale behind this is
that affinity constraints apply to more general location restrictions while for anti-
affinity constraints, more granular specification of locations apply. The type of the
constraints is uniformly distributed among the constraints defined in Section 6.3.
Table 6.2 lists the set ([x, y]) or ranges ([x− y]) for the various parameters that are
set during the evaluations.

3Java 8 - https://java.com/en/download/faq/java8.xml
4IBM CPLEX - http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
5BRITE - www.cs.bu.edu/brite/

194 CHAPTER 6

Table 6.2: Scenario parameters.

Type Parameter Range

BRITE Topology

#AS [2,3,4,5,8,16,32,64,128,256]
#Neighbour-AS [2]
#AS-Routers [8,16,32]
#Neighbour-Routers [3]
#DC [1,2,4]
Intra-AS BW [5Gbps ... 50Gbps]
Inter-AS BW [1Gbps ... 10Gbps]
Intra-AS delay [5ms ... 10ms]
Inter-AS delay [1ms ... 5ms]

Fat-tree Topology

#Core switches [2,3]
#Pods [1 ... 4]
#Servers per pod [5 ... 10]
Link BW [5Mbps ... 10Mbps]
Link delay [1ms]

SFC

#VNF [2,5,10,20,30,40]
#Affinity constraints [5,10,20,40,60,80]
Link BW [50Mbps ... 500Mbps]
Segment delay [5ms ... 100ms]
Processing delay [0ms ... 5ms]

The Protégé editor6 was used to develop the SFC request modelling ontology
using the OWL API7. Semantic Web Rule Language (SWRL)8 was used to express
the aforementioned rules using concepts from the ontology defined in Section 6.4.
The Protégé editor was also used to define the rules using the Manchester syntax9.
The HermiT OWL Reasoner10 was used to check the consistency and the classi-
fication of the ontology. HermiT is a semantic reasoner for ontologies written in
OWL. It is able to determine whether or not the ontology is consistent, identify
subsumption relationships between classes, etc. The reasoner is based on a hyper-
tableau calculus which provides efficient reasoning. The output of the reasoning
process allows us to determine whether the SFC request at hand is valid or not. In
the case of an invalid request, this is communicated to the requesting SP, otherwise
the request is passed on to the embedding engine.

The evaluations were carried out using the STEVIN Supercomputer Infrastruc-
ture at Ghent University11. The nodes are equipped with 2 Intel Xeon CPU E5-

6Protégé - http://protege.stanford.edu/
7OWL2 - http://www.w3.org/TR/owl-features/
8SWRL - http://www.w3.org/Submission/SWRL/
9Manchester Syntax - http://www.w3.org/2007/OWL/wiki/ManchesterSyntax

10HermiT OWL Reasoner - http://hermit-reasoner.com
11HPC UGent - http://www.ugent.be/hpc

SEMANTICALLY ENHANCED SFC MAPPING 195

Figure 6.5: Impact of the infrastructure size on the semantic validation.

2680 v3 12-core processors and 32GB of physical memory. For the experiments,
a single 2.5GHz core and 16GB of memory were requested. All evaluations were
repeated 20 times with varying seed values, the graphs show the average values
and 95% confidence intervals.

Since none of the existing NFV resource allocation techniques take into ac-
count affinity constraints, it is impossible to compare the proposed approach to a
baseline solution. Therefore, the mathematical model computing the optimal solu-
tion is taken as a benchmark to evaluate the semantic validation and the heuristic
approach.

6.7.2 Scalability of semantic SFC validation

Semantic reasoning times are known to increase exponentially with the number
of individuals in the ontology. In Section 6.4, a semantic SFC request validation
framework was discussed which loads both the substrate topology and requested
SFC into an ontology. Using semantic reasoning, the consistency of the SFC re-
quest can be validated. Figure 6.5 shows the impact of the infrastructure size on the
semantic reasoning process and indicates an exponential increase of the reasoning
time with the size of the infrastructure. However, as mentioned before, the rea-
soning times can be significantly reduced when only including the relevant parts
of the infrastructure in the ontology. To determine these relevant parts, all physi-
cal locations of the substrate topology that are included in the SFC constraints are
modeled. Furthermore, also the parent locations are subsequently modeled. This
set is typically much smaller than the complete infrastructure and can be consid-
ered constant for SFCs of the same size. When only loading relevant individuals,
execution times show a constant trend at about 62ms, even when the infrastructure
size increases. These experiments use a fixed number of 10 VNFs per SFC and 5

196 CHAPTER 6

Figure 6.6: Impact of the number of requested VNFs on the semantic validation.

Figure 6.7: Impact of the number of constraints per SFC on the semantic validation.

randomly generated affinity and anti-affinity restrictions.
Figure 6.6 shows the impact of increasing the requested SFC size on the se-

mantic validation time. As can be expected, the execution time increases expo-
nentially with an increasing number of VNFs per SFC. Validating SFC requests
with 20 VNFs takes about 500 ms. Considering that a standard Hermit reasoner
was used without optimizations on standard off-the-shelve hardware, this could
be considered a reasonable processing overhead. As can be seen from the graph,
only including the relevant substrate nodes has only a limited impact in this con-
figuration, since substrate topologies are considered with 512 nodes and 5 affinity
restrictions per SFC.

To evaluate the impact of the number of affinity constraints on the semantic val-
idation time, substrate topologies with 512 nodes were created and SFC requests

SEMANTICALLY ENHANCED SFC MAPPING 197

with 10 VNFs instances were used. The number of randomly generated affinity
constraints was varied from 5 to 80. With an increasing number of constraints, the
probability of inconsistencies in the SFC requests increases. Therefore, the aver-
age validation times for both groups of inconsistent and consistent SFC requests
are shown separately. Figure 6.7 shows that the average validation times increase
up to a certain point, after which they drop again. This behavior can be accounted
to the fact that the probability of easy-to-detect conflicts (e.g., two contradictory
constraints) increases when the number of constraints increases, quickly terminat-
ing the reasoning process. When the number of constraints is lower, the variety of
constraint types and subjects on which they are posing these constraints is larger,
leading to more complex conflicts that only appear when more information is in-
ferred from the ontology, causing the validation to take more time. None of the
SFCs with over 40 constraints is consistent, leading to an execution time of 0s for
this subgroup.

6.7.3 Impact of semantic validation on mapping time

In this set of experiments, the impact on the mapping time when performing se-
mantic validation on SFC sets prior to running the embedding algorithm, is evalu-
ated. Furthermore, the share of the semantic validation step on the total execution
time is evaluated. To this end, SFC request sets are generated where a certain
percentage of SFCs has conflicting affinity constraints. The substrate topologies
under consideration contain 512 nodes, while the request sets contain 20 SFCs,
of which each SFC contains 10 VNFs and 5 affinity restrictions. During this set
of evaluations, the bandwidth minimization objective defined in Equation (6.31) is
used.

Figure 6.8 shows the positive impact on the total mapping time per SFC re-
quest when semantically filtering the inconsistent SFC requests out of the request
set prior to performing the mapping step. The SFC requests are mapped as a set
and contain 20 SFC requests per set. By validating the SFC request set prior to
mapping it, the total execution time can be reduced by 59% on average. Even
when only 10% of the SFC requests are inconsistent, the execution times can be
reduced with more than 25%. The relative execution time reduction approximately
shows a logarithmic trend between 0% and 100% with an increasing number of in-
consistent requests. These results show that it is beneficial to perform the semantic
matching although it yields a small additional execution overhead when no incon-
sistent SFCs are present.

Figure 6.9 shows the same graph, but for the individual mapping of 100 SFC
requests. On average, semantically filtering the request set reduces the mapping
time with 50%. When no inconsistent SFC requests are present, there is an over-
head incurred by the semantic matching step of 0.4%, which can be considered

198 CHAPTER 6

Figure 6.8: Share of semantic matching and mapping on total execution time for SFC set
mapping.

Figure 6.9: Share of semantic matching and mapping on total execution time for individual
SFC mapping.

SEMANTICALLY ENHANCED SFC MAPPING 199

Figure 6.10: Semantic matching execution time.

Figure 6.11: Percentage of SFC requests that are mapped.

negligible compared to the total mapping time. For a 10% fraction of inconsistent
SFCs per request set, the performance gain is about 11%.

The previous graphs shows both the mapping and matching times. Figure 6.10
shows the matching time per SFC separately, note that the y-axis of this graph
shows the time in ms instead of s. As can be seen from the graph, the semantic
filtering takes about 40ms but yields a benefit which is 28000 times greater in the
case of set mapping and 355 times greater for individual request mapping.

To assess the validity of the proposed semantic SFC validation framework, also
the number of mapped SFC requests was tracked when filtering out inconsistent
SFCs, as well as when the complete SFC request set is considered for mapping.
Figure 6.11 shows that every inconsistent SFC that was filtered out during the
semantic matching process, was indeed impossible to map during the embedding

200 CHAPTER 6

Figure 6.12: Total mapping time of Set mapping compared to Individual mapping for in-
creasing infrastructure size.

phase due to inconsistencies in the request.

6.7.4 Performance of heuristic approach

Mapping the SFC request sets in a single step yields an increase in total execution
time of the mapping process due to an increasing number of decision variables and
constraints in the mathematical model. To alleviate these problems, a heuristic
mapping procedure is proposed in which the different SFCs in the set are first or-
dered using a certain criterion, after which they are individually mapped onto the
infrastructure. Figure 6.12 shows the impact of performing the heuristic procedure
on the total execution time. During the experiments, both approaches are using
the bandwidth minimization objective defined in Equation (6.31), the heuristic ap-
proach orders the SFCs according to the requested bandwidth criterion defined in
Equation (6.34). The total execution time can be reduced with a factor 3378 on
average when performing the heuristic approach. The evaluations were performed
using SFC request sets containing 20 SFCs and each SFC containing on average 5

VNFs and 3 affinity constraints. Mapping the SFC requests individually takes on
average 0.85s, including the semantic matching.

The heuristic approach comes at a cost in optimality, since each request is
considered individually, the global optimum is not achieved. Figure 6.13 shows
the allocated bandwidth as a percentage of the total bandwidth available in the
infrastructure when minimizing the bandwidth usage. On average, the heuristic
approach allocates 2.6% more bandwidth than the optimal solution. Also in terms
of number of mapped SFC requests, the heuristic approach is outperformed by the
optimal set mapping approach. Figure 6.14 shows that in some cases only 97.5%

of the feasible SFC requests are mapped when applying the heuristic approach.
This also implies that the resource consumption for the heuristic approach would
be higher if the same amount of requests could be mapped.

SEMANTICALLY ENHANCED SFC MAPPING 201

Figure 6.13: Objective of Set mapping compared to Individual mapping for increasing
infrastructure sizes.

Figure 6.14: Percentage of mapped SFCs when applying Set mapping compared to Individ-
ual mapping for increasing infrastructure sizes.

202 CHAPTER 6

Figure 6.15: Total link bandwidth usage for various optimization objectives.

6.7.5 Impact of optimization objective

Multiple optimization objectives were proposed in Section 6.5. The bandwidth
minimization objective (MBW) proposed in Equation (6.31) is compared with the
load balancing objective (LBBW) of Equation (6.32). To compare the objectives,
the maximum requested bandwidth for the virtual edges is varied. A set of 40

consistent SFC requests is generated and mapped onto the infrastructure resources.
Figure 6.15 shows the impact of the objectives on the total resource usage. It is
obvious that the LBBW optimization is outperformed in terms of total resource
usage by MBW. Looking at the difference between the maximum and minimum
load, shown in Figure 6.16, it is clear that the proposed balancing objective allows
a better spread of the load compared to pure bandwidth optimization. Figure 6.17
shows the percentage of nodes that is used for the mapping, showing a higher
node usage for LBBW. This graph also confirms that the load is spread across
the infrastructure. The decrease in node usage with increasing bandwidth can be
attributed to a reduced number of SFCs that can be mapped on the infrastructure
due to capacity constraints.

6.7.6 Impact of ordering criterion

To assess the impact of the ordering criteria proposed in Section 6.6, the experi-
ments of the previous section were repeated for different criteria. The objective
used is the bandwidth minimization objective. Each of the SFC requests has the
same amount of affinity constraints attached to them. Figure 6.18 shows the dif-
ference in acceptance rate when ordering based on the requested bandwidth, com-
pared to ordering on the number of constraints. Mapping the SFCs with the lowest
bandwidth requirements first, increases the acceptance rate significantly, since the
load on the infrastructure is minimized.

SEMANTICALLY ENHANCED SFC MAPPING 203

Figure 6.16: Difference between the maximum and minimum link usage for various opti-
mization objectives.

Figure 6.17: Percentage of used nodes for various optimization objectives.

Figure 6.18: Impact of SFC ordering on acceptance rate.

204 CHAPTER 6

6.8 Conclusion and Future Work
This chapter proposes a way for Service Providers (SPs) to attach location and
colocation constraints to the mapping of Service Function Chains (SFCs) onto the
substrate. These affinity constraints can be used to increase efficiency and re-
silience, to adhere to legislative and privacy restrictions or for economic reasons.
First, the different sets of affinity and anti-affinity constraints are formalized. Sec-
ond, a semantic validation framework is proposed, which allows the Virtual Net-
work Function Infrastructure Provider (VNFInP) to check the consistency of the
constraints posed by the SFC requests. To this end, the substrate and the SFC
request are modeled using an ontology of which the consistency is checked us-
ing a semantic reasoner. Finally, the SFC embedding problem subject to affinity
constraints is formalized and an Integer Linear Programming (ILP) formulation
for both set-based SFC and individual SFC mapping is proposed. The semantic
validation and different mapping algorithms were evaluated thoroughly. By only
loading the parts of the infrastructure that are relevant for the SFC request into the
ontology, the number of individuals and thus the semantic reasoning time can be
significantly reduced. Furthermore, by filtering out inconsistent SFC requests be-
fore mapping, the total execution time of the embedding algorithm can be reduced
with more than 50% for the considered scenarios. Next to the set embedding for-
mulation, also a heuristic approach is proposed in which the SFCs requests are
embedded individually. To this end, the SFC requests are ordered based on certain
criteria, after which the embedding is performed by solving the ILP. This heuristic
can significantly reduce the calculation time. Depending on the scenario, a time
reduction up to a factor 3000 can be achieved at the cost of a reduction of the num-
ber of mapped SFCs with 2.5% and an increased resource consumption of about
2.6%.

SEMANTICALLY ENHANCED SFC MAPPING 205

References
[1] ETSI. Network Functions Virtualization: An Introduction, Benefits, En-

ablers, Challenges and Call for Action. ETSI Document, October 2012.
Available from: http://portal.etsi.org/NFV/NFV White Paper.pdf.

[2] ETSI. Network Functions Virtualization: Network Operator Perspectives on
Industry Progress. ETSI Document, October 2013. Available from: http:
//portal.etsi.org/NFV/NFV White Paper2.pdf.

[3] S. Latre, J. Famaey, F. De Turck, and P. Demeester. The fluid internet:
service-centric management of a virtualized future internet. Communica-
tions Magazine, IEEE, 52(1):140–148, January 2014.

[4] R. Mijumbi. On the Energy Efficiency Prospects of Network Function Virtu-
alization. arXiv preprint arXiv:1512.00215, 2015.

[5] S. Boucadair, D. Lopez, I. Telefonica, D. Guichard, and C. Pignataro. Ser-
vice Function Chaining: Framework & Architecture draft-boucadair-sfc-
framework-00. 2014.

[6] A. Fischer, J. Botero, M. Till Beck, H. de Meer, and X. Hesselbach. Virtual
Network Embedding: A Survey. Communications Surveys Tutorials, IEEE,
15(4):1888–1906, Fourth 2013.

[7] M. Chiosi, D. Clarke, P. Willis, A. Reid, J. Feger, M. Bugenhagen, W. Khan,
M. Fargano, C. Cui, H. Denf, et al. Network functions virtualisation: An
introduction, benefits, enablers, challenges and call for action. In SDN and
OpenFlow World Congress, pages 22–24, 2012.

[8] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee. Network function virtualiza-
tion: Challenges and opportunities for innovations. Communications Maga-
zine, IEEE, 53(2):90–97, 2015.

[9] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and R. Boutaba.
Network Function Virtualization: State-of-the-art and Research Challenges.
Communications Surveys Tutorials, IEEE, PP(99):1–1, 2015.

[10] R. Mijumbi, J. Serrat, J.-L. Gorricho, S. Latre, M. Charalambides, and
D. Lopez. Management and orchestration challenges in network functions
virtualization. Communications Magazine, IEEE, 54(1):98–105, January
2016.

[11] G. Wang and T. Ng. The Impact of Virtualization on Network Performance
of Amazon EC2 Data Center. In INFOCOM, 2010 Proceedings IEEE, pages
1–9, March 2010.

206 CHAPTER 6

[12] J. Hwang, K. Ramakrishnan, and T. Wood. NetVM: High Performance and
Flexible Networking Using Virtualization on Commodity Platforms. Network
and Service Management, IEEE Transactions on, 12(1):34–47, March 2015.

[13] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and
F. Huici. ClickOS and the Art of Network Function Virtualization. In Pro-
ceedings of the 11th USENIX Conference on Networked Systems Design
and Implementation, NSDI’14, pages 459–473, 2014.

[14] S. Benkner and C. GEMSS. Report on COTS Security Technologies and
Authorisation Services. Project report, February 2004. Available from: http:
//eprints.cs.univie.ac.at/3311/.

[15] P. Massonet, S. Naqvi, C. Ponsard, J. Latanicki, B. Rochwerger, and M. Vil-
lari. A Monitoring and Audit Logging Architecture for Data Location Com-
pliance in Federated Cloud Infrastructures. In Parallel and Distributed Pro-
cessing Workshops and Phd Forum (IPDPSW), 2011 IEEE International
Symposium on, pages 1510–1517, May 2011.

[16] K. Konstanteli, T. Cucinotta, K. Psychas, and T. Varvarigou. Admission Con-
trol for Elastic Cloud Services. In Cloud Computing (CLOUD), 2012 IEEE
5th International Conference on, pages 41–48, June 2012.

[17] L. Larsson, D. Henriksson, and E. Elmroth. Scheduling and monitoring of
internally structured services in Cloud federations. In Computers and Com-
munications (ISCC), 2011 IEEE Symposium on, pages 173–178, June 2011.

[18] D. Espling, L. Larsson, W. Li, J. Tordsson, and E. Elmroth. Modeling and
Placement of Cloud Services with Internal Structure. Cloud Computing,
IEEE Transactions on, PP(99):1–1, 2014.

[19] H. Basilier, M. Darula, and J. Wilke. Virtualizing network services–the
telecom cloud. Ericsson Review, 2014. Available from: http://www.ericsson.
com/res/thecompany/docs/publications/ericsson review/2014/er-telecom-
cloud.pdf.

[20] H. Technologies. White Paper - Huawei Observation to NFV. 2014. Avail-
able from: www.huawei.com/ilink/en/download/HW 399662.

[21] E. I. S. G. I. NFV. Network Functions Virtualisation (NFV); Service Qual-
ity Metrics. 2014. Available from: http://www.etsi.org/deliver/etsi gs/NFV-
INF/001 099/010/01.01.01 60/gs nfv-inf010v010101p.pdf.

[22] M. Bari, R. Boutaba, R. Esteves, L. Granville, M. Podlesny, M. Rabbani,
Q. Zhang, and M. Zhani. Data Center Network Virtualization: A Survey.
Communications Surveys Tutorials, IEEE, 15(2):909–928, Second 2013.

SEMANTICALLY ENHANCED SFC MAPPING 207

[23] E. Correa, L. Fletscher, and J. Botero. Virtual Data Center Embedding: A
Survey. Latin America Transactions, IEEE (Revista IEEE America Latina),
13(5):1661–1670, May 2015.

[24] M. Melo, S. Sargento, U. Killat, A. Timm-Giel, and J. Carapinha. Optimal
Virtual Network Embedding: Node-Link Formulation. Network and Service
Management, IEEE Transactions on, 10(4):356–368, December 2013.

[25] M. Chowdhury, F. Samuel, and R. Boutaba. PolyViNE: Policy-based Virtual
Network Embedding Across Multiple Domains. In Proceedings of the Sec-
ond ACM SIGCOMM Workshop on Virtualized Infrastructure Systems and
Architectures, VISA ’10, pages 49–56, 2010.

[26] D. Dietrich, A. Rizk, and P. Papadimitriou. Multi-domain virtual network
embedding with limited information disclosure. In IFIP Networking Confer-
ence, 2013, pages 1–9, May 2013.

[27] X. Cheng, S. Su, Z. Zhang, K. Shuang, F. Yang, Y. Luo, and J. Wang. Virtual
network embedding through topology awareness and optimization. Computer
Networks, 56(6):1797 – 1813, 2012.

[28] A. Amokrane, M. Zhani, R. Langar, R. Boutaba, and G. Pujolle. Greenhead:
Virtual Data Center Embedding across Distributed Infrastructures. Cloud
Computing, IEEE Transactions on, 1(1):36–49, Jan 2013.

[29] M. Rabbani, R. Pereira Esteves, M. Podlesny, G. Simon, L. Zam-
benedetti Granville, and R. Boutaba. On tackling virtual data center em-
bedding problem. In Integrated Network Management (IM 2013), 2013
IFIP/IEEE International Symposium on, pages 177–184, May 2013.

[30] A. Basta, W. Kellerer, M. Hoffmann, H. J. Morper, and K. Hoffmann. Apply-
ing NFV and SDN to LTE Mobile Core Gateways, the Functions Placement
Problem. In Proceedings of the 4th Workshop on All Things Cellular: Opera-
tions, Applications, & Challenges, AllThingsCellular ’14, pages 33–38.
ACM, 2014.

[31] S. Mehraghdam, M. Keller, and H. Karl. Specifying and Placing Chains of
Virtual Network Functions. CoRR, abs/1406.1058, 2014.

[32] M. T. Beck and J. F. Botero. Coordinated Allocation of Service Function
Chains. In 2015 IEEE Global Communications Conference (GLOBECOM),
pages 1–6, Dec 2015.

[33] S. Mehraghdam and H. Karl. Placement of services with flexible structures
specified by a YANG data model. In 2016 IEEE NetSoft Conference and
Workshops (NetSoft), pages 184–192, June 2016.

208 CHAPTER 6

[34] H. Moens and F. De Turck. VNF-P: A model for efficient placement of vir-
tualized network functions. In Network and Service Management (CNSM),
2014 10th International Conference on, pages 418–423, Nov 2014.

[35] M. Luizelli, L. Bays, L. Buriol, M. Barcellos, and L. Gaspary. Piecing to-
gether the NFV provisioning puzzle: Efficient placement and chaining of
virtual network functions. In Integrated Network Management (IM), 2015
IFIP/IEEE International Symposium on, pages 98–106, May 2015.

[36] M. Xia, M. Shirazipour, Y. Zhang, H. Green, and A. Takacs. Network Func-
tion Placement for NFV Chaining in Packet/Optical Datacenters. J. Light-
wave Technol., 33(8):1565–1570, Apr 2015.

[37] B. Addis, D. Belabed, M. Bouet, and S. Secci. Virtual network functions
placement and routing optimization. In Cloud Networking (CloudNet), 2015
IEEE 4th International Conference on, pages 171–177, Oct 2015.

[38] A. Baumgartner, V. Reddy, and T. Bauschert. Mobile core network virtual-
ization: A model for combined virtual core network function placement and
topology optimization. In Network Softwarization (NetSoft), 2015 1st IEEE
Conference on, pages 1–9, April 2015.

[39] M. Bouet, J. Leguay, T. Combe, and V. Conan. Cost-based placement of
vDPI functions in NFV infrastructures. International Journal of Network
Management, 25(6):490–506, 2015.

[40] S. Sahhaf, W. Tavernier, D. Colle, and M. Pickavet. Network service chaining
with efficient network function mapping based on service decompositions. In
Network Softwarization (NetSoft), 2015 1st IEEE Conference on, pages 1–5,
April 2015.

[41] M. Yoshida, W. Shen, T. Kawabata, K. Minato, and W. Imajuku. MORSA:
A multi-objective resource scheduling algorithm for NFV infrastructure. In
Network Operations and Management Symposium (APNOMS), 2014 16th
Asia-Pacific, pages 1–6, Sept 2014.

[42] I. Vaishnavi, R. Guerzoni, and R. Trivisonno. Recursive, hierarchical em-
bedding of virtual infrastructure in multi-domain substrates. In Network
Softwarization (NetSoft), 2015 1st IEEE Conference on, pages 1–9, April
2015.

[43] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. D. Turck, and S. Davy.
Design and evaluation of algorithms for mapping and scheduling of virtual
network functions. In Network Softwarization (NetSoft), 2015 1st IEEE Con-
ference on, pages 1–9, April 2015.

SEMANTICALLY ENHANCED SFC MAPPING 209

[44] J. G. Herrera and J. F. Botero. Resource Allocation in NFV: A Comprehensive
Survey. IEEE Transactions on Network and Service Management, PP(99):1–
1, 2016.

[45] N. Bouten, M. Claeys, R. Mijumbi, J. Serrat, J. Famaey, S. Latré, and
F. De Turck. Semantic Validation of Affinity Constrained Service Function
Chain Requests. In Network Softwarization (NetSoft), 2016 2nd IEEE Con-
ference on, pages 1–9, June 2016.

[46] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center
network architecture. ACM SIGCOMM Computer Communication Review,
38(4):63–74, 2008.

7
Conclusions and perspectives

”Success is not final, failure is not fatal: it is the courage to continue that counts.”

–Winston Churchill (1874 - 1965)

In this dissertation, several research challenges were addressed with regard to
the flexible deployment and management of both Video on Demand (VoD) and live
HTTP Adaptive Streaming (HAS) services. These challenges can be subdivided
into three categories: (1) resource-aware management of live HAS services, (2) in-
network optimization of VoD HAS services and (3) flexible deployment of HAS
services. This dissertation argues that in-network management for VoD and live
HAS services is required to meet the Quality of Experience (QoE) requirements
expected by the end users, while at the same time reducing the impact of these
services on the network resources. Moreover, to allow a flexible deployment of
new and innovative streaming services, the different functions that were proposed
should be virtualized to allow the on demand deployment of the proposed Service
Function Chains (SFCs) onto the virtualized network resources.

7.1 Resource-aware management of live HAS ser-
vices

Over-The-Top (OTT) live streaming services using HAS technologies are widely
deployed across the Internet. In HAS, every client requests the content using a
unicast connection to the streaming server. This implies that the network resource

212 CHAPTER 7

usage is directly proportional to the number of connected clients. For large live
streaming events (e.g., the FIFA World Cup), HAS streaming exerts a high strain
on the underlying network resources. In Chapter 2, a multicast-enabled delivery
framework is proposed to reduce the strain of HAS services on the network re-
sources. To this end, intermediary network nodes are deployed at the ingress that
group multiple overlapping unicast sessions into a single multicast channel, which
is delivered to egress nodes closer to the end-users. These nodes transform the
multicast sessions into HAS unicast sessions, significantly reducing the network
resource usage. The proposed algorithms for grouping the unicast into multicast
sessions and to select the multicast channels to subscribe to are able to improve
both live and Time Shifted TV (TSTV) HAS services. The managed multicast-
enabled HAS delivery can reduce the bandwidth usage with up to 60% in a realistic
TSTV scenario compared to unicast cache-assisted HAS delivery.

Another issue with live HAS delivery is the requirement of large client-side
buffers in order to provide an acceptable QoE for the end-user. This increases the
camera-to-display delay significantly, negatively impacting the overall user expe-
rience for live events. Especially in high Round Trip Time (RTT) networks, large
buffers are required to cope with variable network conditions. Appendix A pro-
poses to adopt Scalable Video Coding (SVC) techniques for live HAS streaming in
combination with improved request scheduling techniques to reduce the impact of
RTT on the QoE. This allows eliminating the idle time between two consecutive
downloads and thus more efficient usage of available resources. By applying these
techniques, the required client-side buffer size can be shrunk significantly com-
pared to state-of-the-art Advanced Video Coding (AVC)-based heuristics, while
still offering the same QoE. Appendix B adds in-network delivery management
nodes to further decrease the camera-to-display delay. By adding an intermediary
proxy which prioritizes segments destined for clients which are close to a buffer
starvation, the delivery of the base layer can be guaranteed using Differentiated
Services (DiffServ). By deploying dynamic deadline-based algorithms, the risk of
buffer starvations can be further reduced, allowing the buffer to be shrunk from
multiple dozens to only a few seconds.

7.2 Optimization of VoD HAS services

Multiple autonomous HAS clients competing for bandwidth show frequent qual-
ity oscillations and buffer starvations due to uncoordinated adaptation heuristics.
When offering a HAS service, such QoE-degradations are unacceptable. There-
fore, Chapter 3 mitigates this QoE degradation by proposing an in-network opti-
mization framework for the delivery of HAS VoD services. The in-network proxies
along the delivery path manage the resource usage of the connected client appli-
cations and dynamically limit the possible set of quality representations for each

CONCLUSIONS AND PERSPECTIVES 213

client. The proposed hybrid approach allows clients to still react upon sudden net-
work changes or scarcity in device resources, while increasing the overall quality
and stability. Moreover, it can enforce a wide range of management policies, al-
lowing providers to specify priorities when allocating resources to a certain group
of users. The average quality can be improved with 14%, while the number of
quality oscillations can be reduced with a factor 5.

Chapter 4 extends the aforementioned framework to allow it to be deployed un-
der dynamic network conditions as well. To this end a set of monitoring probes are
deployed that use sampling-based measurement techniques to monitor the avail-
able throughput on the different delivery paths in the network. These measure-
ments are fed to a throughput prediction component of which the output is used
during the in-network optimization. The quality of each client is then optimized
in terms of QoE, allowing the proposed approach to improve the QoE with 19%

compared to the purely resource-driven optimization and with 30% compared to
the autonomous quality selection heuristics. The sampling-based estimation tech-
niques allow a reliable prediction of the future available bandwidth at the limited
cost of sampling 1% of the packets.

Another issue with HAS streaming issues lies in one of its benefits: the seam-
less reuse of existing HTTP caching infrastructure. While the deployment of
caches can significantly reduce the impact of HAS VoD streaming services on
the network resources, at the same time, it increases the quality instability of the
adaptation heuristics. Since the quality decisions of HAS adaptation heuristics
are based on the estimated throughput, incorrect throughput estimations can cause
frequent quality switching and even worse, buffer starvations. In cache-assisted
HAS, segments can be served from different origins based on the content of the
caches, causing highly fluctuating throughput and RTT measurements, negatively
impacting the stability and optimality of the quality decisions.

In Chapter 5, a set of heuristics are proposed which take advantage of ad-
ditional information on the streaming origin and intermediary cache contents to
optimize the quality decisions. Using more accurate and per origin throughput
measurements, the QoE can be significantly improved. Since this information is
not always available or the required changes of the intermediary nodes are not pos-
sible in an OTT scenario, approximation techniques are proposed as well. Using
unsupervised incremental clustering techniques the streaming origin can be de-
tected based on the measured RTT. With an accuracy of above 85%, the streaming
origin can be detected and used to optimize the quality selection, improving the
QoE up to 11%. Furthermore, by using probability-based estimation techniques to
predict the cache contents, the QoE can be improved with up to 21%, compared to
cache-agnostic adaptation heuristics.

214 CHAPTER 7

7.3 Flexible deployment of HAS services

Static deployments of HAS services where intermediary Network Functions (NFs)
(e.g., caches, prioritization proxies) are implemented as middleboxes that need to
be physically deployed, reduce the flexibility which is required to rapidly offer new
and innovative services. The Network Function Virtualization (NFV) paradigm of-
fers a solution to these problems by decoupling the functionality of the NFs from
the physical appliances by virtualizing them and deploying them on high capac-
ity servers, switches and storage equipment. This allows to deploy new SFCs on
demand and reduces the time to market of new services. Unfortunately, current
NFV approaches offer limited control to the Service Provider (SP) on the deploy-
ment locations of the Virtual Network Functions (VNFs) in the SFCs. This may
however be required for efficiency, economic, privacy or legislative reasons.

Chapter 6 defines a set of affinity and ant-affinity constraints, which can be
used to attach location specific requirements to an SFC request. This allows the SP
to attach the desired location requirements (e.g., caching nodes close to end-users)
that enable the full potential of the QoE-management solutions that were proposed
earlier. To check the consistency of the affinity-constrained SFC requests, a se-
mantic validation framework was proposed in Appendix C. By modelling the SFC
requests and virtual resources using an ontology and applying a set of inference
rules, the consistency of the SFC request can be checked. By pre-filtering these
invalid SFC requests, the mapping times can be reduced with more than 50%.

7.4 Future perspectives

This dissertation offers several contributions towards QoE-managed delivery of
HAS services and the flexible deployment of such services. This thesis has identi-
fied further challenges that require the attention of the research community. These
are discussed below:

7.4.1 HAS-aware cache replacement and prefetching strategies

This dissertation proposed mitigation strategies for the negative impact in-network
caches can have on the perceived QoE. However, not only the client-side adapta-
tion can be improved, also the cache replacement and prefetching strategies could
be further improved. Current research within the group is focussing on the op-
timization of cache replacement strategies and cooperative caching mechanisms
for segmented HTTP streaming services. The temporally segmented video content
has some specific characteristics that can be exploited when selecting which seg-
ments to evict from the cache. When a segment was recently requested by a client
application, there is a high probability that it will also request the next segment.

CONCLUSIONS AND PERSPECTIVES 215

Exploiting this knowledge, the replacement strategies can be optimized, both for
a single cache as well as a network of caches. Current research only considered
segmented streaming without adaptation. In HAS however, the quality adaptation
can also have a significant impact on the performance of the caching strategy. Af-
ter all, although there is a high probability the next segment will also be requested,
the quality in which this segment will be requested is not known, meaning that
the current caching strategies for segmented streaming cannot be reused without
adjustments. Increasing the cooperation between the clients and the proxies to
jointly decide which qualities to request based on the current buffer filling and
cache content could potentially improve the QoE. By enabling the prefetching of
segments, the benefits could even be increased further. However, one should take
into account the additional resources that are consumed by the prefetching strate-
gies on the bottleneck links. The impact of prefetching should be minimized as
to not interfere with the delivery of regular HAS traffic, in order not to reduce the
quality of clients which cannot be served by the intermediary caches.

7.4.2 Software Defined Networking (SDN)-enabled delivery op-
timization of HAS services

In Appendix B, a method using DiffServ technologies was proposed to prioritize
the delivery of certain layers or segments of a live SVC HAS streaming service.
More recent technology developments, such as SDN, could be exploited to deploy
an SDN controller in the network which is responsible for prioritizing the delivery
of HAS segments, based on the feedback collected from the network nodes and
the clients. Currently, the research group is investigating how the client status can
be estimated without any explicit communication between the different network
nodes. This would allow to estimate the current buffer status of the connected
clients and decide which segments to prioritize. Using an SDN-based approach in-
creases the flexibility of the DiffServ approach that was proposed in Appendix B,
since it is not limited by the number of Per Hop Behavior (PHB) that are imple-
mented in intermediary routers. In contrast to the proposed DiffServ approach,
an SDN-based solution does not require the deployment of the marking proxies,
since the controller is responsible for applying the specific behavior. Also the ap-
proach proposed in Chapter 2 can be implemented using SDN technologies. SDN
allows to construct and maintain the multicast tree between the distribution and
subscribed delivery servers using a control application running on the logically
centralized SDN controller. Thanks to the global view, this application is able to
select the content that needs to be multicasted, as well as the channels each de-
livery server needs to subscribe to. The programmable nature of SDN allows for
immediate deployability, scalability, adaptability and updatability, traits that are
not associated with the more fixed nature of IP multicast solutions.

216 CHAPTER 7

7.4.3 Streaming-aware congestion control

As mentioned in the introduction, bandwidth fairness at the TCP level does not
necessarily translate into fairness in terms of QoE. A client can define deadlines for
each segment that is requested based on the current buffer filling, i.e. the segment
has to be fully delivered before the buffer depletes to assure a fluent playout. These
deadlines can be taken into account at the sender side to automatically adapt the
aggressiveness of the TCP sessions. By adjusting the level of increase or decrease
of the window size, the relative throughput compared to other sessions can be
increased or decreased. In this way, sessions with a nearer deadline can be granted
more resources than sessions with a deadline further away. This allows to improve
the overall fairness in terms of QoE.

7.4.4 Mobile HAS delivery

Although many of the proposed approaches can also be applied to mobile HAS
streaming, there exist some differences. First, since mobile devices can move
between different locations, also the access technologies that are used can vary
(e.g., 3G/4G, WiFi). Being able to cope with such mobility, is a major challenge
for streaming technologies. The switch in access technology should be seamless
and not interrupting the video playout. Not only the characteristics of the network
(e.g., throughput, RTT) can vary during the streaming session, also the various
VNFs that are included in the SFCs, possibly need to be relocated, reconfigured or
replaced. Furthermore, since these devices have limited battery life, which varies
with the quality that is streamed, streaming solutions should also take into account
the energy consumption of their decisions.

7.4.5 Automated deployment of HAS SFCs

Up until now, the SFCs were statically defined and deployed by the SP. However,
it would be interesting to let the different characteristics (e.g., cache sizes, link
bandwidths) scale according to the number of connected users. If scaling does not
suffice, or resources are scarce, the SFC could be adapted by adding additional in-
stances and load balancing the traffic between these functions. Another approach
could be not to adapt the SFC, but to deploy a totally different SFC. For exam-
ple, the prioritization-based SFC could be replaced by a multicast-enabled delivery
SFC when the number of users increases. To be able to automate this process, the
impact of the different SFCs on the resources subject to the number of users needs
to be used as an input for the decision algorithm. By evaluating the potential gain
of scaling functions, adjusting SFCs or deploying alternative SFCs, the manage-
ment algorithm can decide on how to progress. Further research is required on
how to model the different SFCs and their impact on QoE so that the process can

CONCLUSIONS AND PERSPECTIVES 217

be automated. Furthermore, also migration strategies are required when functions
are duplicated or alternative SFCs are deployed. Since streaming applications are
sensitive to high delays and service interruptions, such migration strategies should
be tailored to reduce the impact of the migration events on the continuity of the
service.

A
Minimizing the Impact of Delay on

Live SVC-based HTTP Adaptive
Streaming Services

N. Bouten, S. Latré, J. Famaey, W. Van Leekwijck, F. De Turck.

Published in Proceedings of the 2013 IFIP/IEEE International Symposium
on Integrated Network Management, May. 2013.

Chapter 2 proposes a multicast-enabled framework to optimize the resource
consumption of live HTTP Adaptive Streaming (HAS) services. This appendix fo-
cuses on mitigating the negative impact on Quality of Experience (QoE) of high
Round Trip Time (RTT) networks for live HAS by leveraging the benefits of Scal-
able Video Coding (SVC). Instead of downloading one file for a certain quality
level, scalable video streaming requires downloading several interdependent lay-
ers to obtain the same quality. This implies that the base layer is always down-
loaded and is available for playout, even when throughput fluctuates and enhance-
ment layers cannot be downloaded in time. This layered video approach can help
in providing better service quality assurance for video streaming. In HAS, request-
ing multiple files over HTTP leads to an increased impact of the end-to-end delay
on the service provided to the client. This is even worse in a Live TV scenario
where the drift on the live signal should be minimized, requiring smaller segment
and buffer sizes. In this appendix, several ways are proposed to overcome the high
RTT issues, such as parallel and pipelined downloading.

220 APPENDIX A

A.1 Introduction

HTTP Adaptive Streaming (HAS) is becoming the de-facto standard for Over-
The-Top (OTT) video streaming services. This shift was mainly induced by the
advantages offered by HTTP-based streaming: reliable transmission over TCP,
reuse of existing caching infrastructure and compatibility with NATs and firewalls.
Initially, the HTTP-based video protocols required downloading the entire video
file before playout. Later, progressive download techniques allowed playout to
begin after a sufficient amount of data was stored in the buffer. However, when
congestion arised in the network, these protocols were not able to cope with buffer
starvations, leading to playout gaps, which have a negative impact on the provided
service quality. The third evolution in HTTP-based streaming, being HAS, tackles
these shortcomings by splitting the content into segments which are encoded at
different quality levels. Client heuristics then decide at which quality rate the
next segment should be downloaded, taking into account network statistics, buffer
filling and device characteristics. HAS therefore provides service assurance, at a
reduced quality, if congestion occurs in the network.

Traditionally, Advanced Video Coding (AVC) is used to encode the different
segments, introducing a significant amount of redundancy across quality repre-
sentations. Scalable Video Coding (SVC) can cope with these issues of content
redundancy by creating dependencies between the base and enhancement layers.
Adopting SVC in HAS significantly improves caching and bandwidth efficiency at
the server side, while reducing the risk of running into frame freezes at the client,
since for every segment the base layer is always downloaded. Furthermore, since
SVC requires multiple layers to be downloaded, quality rate adaptations can be
performed at higher granularity, since throughput fluctuations can now be detected
earlier, allowing heuristics to react faster.

However, there are several drawbacks to adopting SVC in HAS [1, 2]. First,
separating the video flow into several SVC layers introduces a coding penalty,
which leads to an encoding overhead of approximately 10% per enhancement
layer. Second, when downloading multiple layers per segment, more requests are
generated at the client to download subsequent layers of a single segment. These
request-response cycles introduce a wait time between the reception of the last
byte of the previous segment layer and the first byte of the next segment layer,
which is equal to the Round Trip Time (RTT). Third, when considering Live TV
over HAS, the segment sizes should be as small as possible to reduce the latency
on the broadcast signal. These smaller segments increase the decision granularity
even further, but at the same time increase the idle time between two consecutive
downloads, negatively impacting the service quality for the user.

In this appendix several AVC and SVC-based client heuristics are proposed
and compared. Furthermore, their behavior in a Live TV setting is evaluated

MINIMIZING THE IMPACT OF DELAY ON LIVE SVC-BASED HAS 221

where client side buffers need to be small to reduce latency on the broadcast signal,
while still providing service assurance. The heuristics decide on the best quality
to download next, for the video streaming service, based on low level monitoring
data such as bandwidth measurements and the status of the client’s play-out buffer.
Furthermore, this appendix proposes and compares several download scheduling
approaches such as sequential, pipelined and parallel HTTP downloading and their
ability to reduce the impact of latency on service delivery. Additionally, the impact
of high round trip times on SVC-based HAS streaming is investigated in a Live TV
setting.

The remainder of this appendix is structured as follows. Section A.2 pro-
vides an overview of relevant work, followed by an overview of existing adap-
tation heuristics in Section A.3 and of a novel SVC-based heuristic, specifically
designed for small buffers in Section A.4. Section A.5 discusses how adapting the
download scheduling can improve the quality and service assurance. Section A.6
elaborates on the experiment setup and evaluation results, which are summarized
in Section A.7.

A.2 Related Work

The increased popularity of video consumption over the Internet has led to the de-
velopment of a range of protocols that allow adaptive HTTP-based video stream-
ing. Some of the major players have introduced their own protocols, server and
client software such as Microsoft’s Silverlight Smooth Streaming [3], Apple’s
HTTP Live Streaming [4] and Adobe’s HTTP Dynamic Streaming [5]. More
recently, a standardized solution has been proposed by MPEG, called Dynamic
Adaptive Streaming over HTTP (DASH) [6]. Even though differences exist be-
tween these implementations, they adopt the same design principles. The video is
split into several segments, encoded at different quality rates. These segments are
offered by a web server and are transmitted over standard HTTP connections. The
intelligent video client uses a selection heuristic to dynamically adapt the quality,
based on the current network statistics, buffer filling and other device characteris-
tics.

Optimizations of HAS-based delivery can be performed at the server, the net-
work or the client. At the server side, optimizations are focussed on the encoding
scheme. Traditional deployments of HAS use the H.264/AVC codec for creating
the different representations of the video. For each representation a separate file
needs to be stored at the video server, leading to an increased storage penalty due to
the redundant information. Adopting an SVC extension to H.264/AVC [7] or High
Efficiency Video Coding (HEVC) [8], allows alleviating the storage issues with
AVC at the server, while improving caching efficiency. Huysegems et al. discuss
the advantages of using SVC instead of AVC, such as guaranteed playout during

222 APPENDIX A

fluctuations since the base layer is always downloaded and a reduction in band-
width and storage requirements at the server [2]. However, important challenges
for AVC are indicated to be the encoding overhead of SVC and the increased vul-
nerability to high round trip times. This appendix focuses on these high round trip
times and how their negative impact on SVC-based HAS can be reduced.

Liu et al. present an in-network optimization of HAS for 3GPP networks. By
parallelizing the download and request of HAS segments, a better resource utiliza-
tion can be achieved [9]. Bouten et al. have discussed how a network provider
can manage the quality that is offered to the clients in a HAS environment [10].
The solution takes into account subscription parameters and device parameters to
restrict the qualities that are offered to the client. An autonomic delivery frame-
work is presented in previous work [11, 12], which allows to reduce the consumed
bandwidth by grouping unicast HAS sessions sharing the same content into a sin-
gle multicast session. This appendix focuses on measures at the client side rather
than the network with a focus on the scheduling of segment requests in networks
with high round trip times.

Each commercial HAS implementation comes with an existing video client
heuristic of its own. Akhshabi et al. compare several commercial and open source
HAS players and indicate significant inefficiencies in each of them [13]. Several
heuristics have been proposed in literature as well, each focussing on a specific
deployment. Liu et al. discuss a video client heuristic that is suited for Content
Delivery Networks (CDNs) by comparing the expected segment fetch time with
the experienced segment fetch time to ensure a response to bandwidth fluctuations
in the network [14], while Adzic et al. present a client heuristic which is tailored
for mobile environments [15]. Jiang et al. aimed to develop an efficient, fair and
stable heuristic by randomizing chunk scheduling to avoid synchronization, state-
ful bitrate selection and delayed update to avoid instability [16], and compared
their approach to commercial players. Generic algorithms exist for selecting the
next video quality to download, using a priority-based scheme where base lay-
ers receive higher priority in download scheduling compared to the enhancement
layers [17]. Andelin et al. provide a heuristic which was specifically designed
for SVC and using a slope to define the trade-off between downloading the next
segment and upgrading a previously downloaded segment [18].

In this appendix, several heuristics are evaluated that are either based on com-
mercial players, algorithms described in literature or designed from scratch. Fur-
thermore, this appendix focuses on how downloads should be scheduled in net-
works suffering from high round trip times and compares sequential, pipelined
and parallel download schedulers.

MINIMIZING THE IMPACT OF DELAY ON LIVE SVC-BASED HAS 223

A.3 State of the Art Rate Adaptation Heuristics

In this section the state of the art rate adaptation heuristics for AVC and SVC-based
HAS are summarized. For an extensive description of these heuristics, the reader
is referred to [1].

A.3.1 AVC Microsoft Smooth Streaming (MSS) heuristic

The heuristic for AVC video streaming is based on an open source version of the
algorithm of the MSS video player 1. The heuristic can be configured using 3
thresholds: the panic (P), lower (L) and upper (U) threshold. There are two states:
buffering and steady state. During the buffering state, quality decision is based on
measured throughput and can only be increased with one level. When the buffer
level is equal to or exceeds L+ (U − L)/2, the heuristic goes into steady state. If
during the steady state, the buffer filling level is slowly changing but lower than L,
the quality level is decreased. When the buffer filling level is between L and U and
quickly increasing or when the buffer filling level exceeds the upper threshold U ,
the heuristic attempts to improve the quality level if the throughput measurements
indicate that the next segment can be downloaded in time. If the buffer filling level
drops under the panic threshold P or the buffer filling level is quickly decreasing
and lower than L, the next segment is downloaded at the lowest quality level and
the heuristic returns to buffering state.

A.3.2 SVC MSS heuristic

The AVC MSS heuristic can also be used for SVC-based HAS when the quality
decisions are translated into subsequent layer downloads. SVC MSS however,
allows adapting the quality decisions in between two consecutive layer downloads.
Thanks to the finer granularity, SVC MSS is able to cancel the download of one or
more enhancement layers when the measured throughput indicates that they will
not arrive in time for playout.

A.3.3 SVC slope heuristic

The SVC Slope heuristic exploits two main advantages of SVC-based HAS. First,
SVC video streaming allows more fine grained decisions as the quality decision
can be adapted after every download of a layer rather than every segment. Sec-
ond, since SVC video layers are interdependent, the heuristics can decide either
to download the base layer of a new segment or to increase the quality of a previ-
ously downloaded segment by downloading additional enhancement layers. This

1Source available fromhttps://slextensions.svn.codeplex.com/svn/trunk/SLExtensions/
AdaptiveStreaming

224 APPENDIX A

Quality
Level

t (s)

1 3 6 11

52 9

4 8

Max Buffer sizeHistory

7 12

P
layout

10
S1

Figure A.1: Illustration how a steeper slope prioritizes backfilling over prefetching.

backfilling is also possible with AVC, but since the redundant data is downloaded
again, this affects the efficiency of the heuristic drastically.

Andelin et al. proposed a slope-based SVC heuristic [18], where the backfilling
is limited by a moving buffer slope. The slope can be configured to give priority
to either prefetching (downloading lower quality layers for future segments) or
backfilling (downloading additional enhancement layers for buffered segments).
This configuration is done by defining a slope in the heuristic: the steeper the
slope, the more backfilling will be chosen over prefetching. Similarly, the flatter
the slope, the more prefetching will be done for future segments. This filling
behavior is illustrated in Figure A.1, which shows the segment and layer download
order for a configuration S1 of the slope parameter.

A.4 SVC Adaptation Heuristic for Small Buffers

A novel heuristic for scalable video was designed that is able to cope with small
buffer sizes, which are common in a Live TV scenario. To be able to optimize
service quality for the end-user, three factors are important for the client: 1) avoid-
ing frame freezes and gaps in video playout, 2) ensuring quality stability limiting
the number of quality switching occurrences and 3) allowing high quality stream-
ing. The SVC cursor based algorithm is designed to avoid gaps and limit quality
switches while trying to provide the highest possible quality. This is accomplished
by using two distinct cursors: segment cursor and quality cursor, defining which
segment is under consideration for the next decision and the goal quality respec-
tively. Limiting the number of switches is further accomplished by using a timeout
for the quality improvement decision. The segment cursor advances to the next
segment when a) all qualities up to the quality cursor are downloaded for the cur-
rent segment cursor or b) the layer under consideration cannot be downloaded in

MINIMIZING THE IMPACT OF DELAY ON LIVE SVC-BASED HAS 225

Quality
Level

t (s)

1 4 7 10 13 16

52 8 11 1714

3 6 9

Max Buffer sizeHistory

S
egC

ur

12 15 18

19 20 21

P
layout

QualCur

Figure A.2: Illustration of the backfilling operation by SVC Cursor when the quality cursor
was improved.

time. When a layer will not be downloaded in time for playout, the quality cur-
sor is decreased and the improvement timer is reset. The quality cursor can only
be incremented when all lower layers of every segment are downloaded and the
improvement timer has timed out. The segment cursor is then moved based on
the estimations of the arrival times of these enhancement layers and their playout
times, evaluated from right to left. When some of the enhancement layers are es-
timated to be downloaded before their respective playout time, the quality cursor
is incremented and the scheduler starts downloading from left to right as shown in
Figure A.2, after which the improvement timer is reset. So when the quality cursor
is increased, a backfilling operation updates the buffer to the required quality level.

A.5 Delay-optimized Download Scheduling

As discussed, adopting layered video coding has several advantages for HAS. But
at the same time, there is a major drawback when considering networks with high
RTTs. Since multiple layers per segment need to be downloaded, more request/re-
sponse cycles are induced when downloading the subsequent segment layers. As
a result, there is a wait time between receiving the last byte of the previous seg-
ment layer and the first byte of the next segment layer. This idle-time is equal to
the RTT. When HAS is applied to a Live TV scenario, the drift on the broadcast
signal is to be kept as small as possible to enable the streaming for live events and
the use of second screen applications. As a consequence, the segment size should
be as small as possible. When reducing the segment size however, the impact
of the idle-time between downloading two consecutive segments even increases.
When the RTT is 50msec and a 5-layer SVC video representation is used with a
1 second segment size, the idle-time accounts for 250msec when downloading the

226 APPENDIX A

Estim.
RTT

Estim.
RTT too

large

Estim.
RTT too

small

Figure A.3: Overview of estimation with pipelining a) accurate estimation b) overestimation
c) underestimation.

highest quality representation, which is one fourth of the available download win-
dow. This example shows the importance of alleviating the impact of RTT on SVC
HAS in Live TV scenarios. This can be achieved by applying pipelined or parallel
download scheduling, both of which are able to eliminate the incurred idle times.

A.5.1 Pipelined scheduling

HTTP pipelining is a technique in which multiple HTTP requests are sent on a
single TCP connection without waiting for the corresponding responses. Kaspar
et al. proposed Pipelining to improve progressive downloading, the predecessor of
HAS [19]. Pipelining all requests at once will of course not yield a viable solution,
since then the ability for fast response to network changes is sacrificed. This ap-
pendix proposes to estimate the RTT and to schedule the next request RTT seconds
before the current download will be finished. This technique allows postponing the
decision on which segment layer to download as long as possible, while still elimi-
nating the idle time between two consecutive downloads. With perfect estimations
of download time and RTT, the delay could be completely eliminated as shown
in Figure A.3(a). However with varying RTT, this will not be the case and RTT
will be overestimated or underestimated most of the time. When overestimating
the RTT the decision on which segment layer to download is taken too early and
conditions could change during this period. But as illustrated in Figure A.3(b),
the overestimation of the RTT cannot be noticed at the client side which has no
indication of the request being queued at the server. When underestimating the
RTT however, there is a gap between the two consecutive downloads, which can
be measured at the client side. Adding this measurement to the estimated RTT,
yields an accurate estimation for the RTT as shown in Figure A.3(c). The pro-
posed approach for the pipelined scheduling is to linearly decrease the estimated
delay until an underestimation is perceived (tfirst byte s − tlast byte s−1 > 0), and
an accurate estimation for the delay can be established.

MINIMIZING THE IMPACT OF DELAY ON LIVE SVC-BASED HAS 227

L1 L2 L3

Thread 1

L4

L1

L2 L4

Thread 1

L3

Thread 2

Figure A.4: Illustration of the delay masking behavior of parallel scheduled segment layer
downloads.

A.5.2 Parallel scheduling

Another approach to avoid idle time between consecutive downloads is to request
several segments at the same time using parallel TCP connections. This allows re-
quest/response cycles to interleave with active downloads, reducing the idle time.
A simplified example of this masking behavior is shown in Figure A.4. An ad-
ditional advantage of parallel download scheduling is the improved performance
when using parallel TCP connections. However, since now the segment layer
downloads are requested over concurrent TCP connections, they compete for the
available bandwidth and the download times are proportional to the number of
threads. The disadvantage is of course that the base layers take longer to complete
and thus an increased risk of buffer starvations. Therefore, the number of parallel
threads needs to be limited.

A.6 Experimental Results

The performance of the video client heuristics and download schedulers was eval-
uated using the NS-3 network simulator2 in combination with the Network Sim-
ulation Cradle3. Figure A.5 illustrates the used network topology with N clients
connected to the HAS Server via a router. Each client has a playout buffer of P
seconds which is varied during the experiments and has a connection link with
bandwidth Bc. The shared bandwidth Bs and the total RTT R are varied during
the experiments.

The simulations were conducted using the traces of a Variable Bitrate (VBR)

2NS-3 Network Simulator - http://www.nsnam.org/
3WAND Network Research Group: Network Simulation Cradle -

http://research.wand.net.nz/software/nsc.php

228 APPENDIX A

N Clients

Bandwidth

Bc

Bandwidth
Bs

RTT R
Playout
Buffer P

Playout
Buffer P

HAS Client

HAS Client

RouterHAS Server

Figure A.5: Experimental setup offering a HAS-based video streaming to N clients. The
parameters Bs, Bc, P , R are varied.

video file, encoded both for H.264/AVC and H.264/SVC using the JSVM 9.19.15
Encoder. The video has a frame rate of 30fps and GOP size of 32 frames, which
leads to a minimum segment size of 1.06667s when using I-frame segmentation.
The clients were started using a Weibull startup process with average 900 seconds
and shape 2.5.

A.6.1 Comparison of adaptation heuristics

Figure A.6 shows the total buffer starvation in seconds, the average playout qual-
ity level and the total number of switches for an increasing buffer size P . All four
client heuristics are compared using a sequential download scheduler. For a buffer
size of 1 segment (P = 1.1s), AVC MSS remains in panic mode, since only one
segment fits in the buffer and it needs to be played out completely before the next
segment is able to fit in the buffer. This causes AVC MSS to always download the
lowest quality, which explains the low number of switches and buffer starvations.
For a two segment buffer however, AVC MSS constantly switches between buffer-
ing and steady state, constantly switching between representations, which explains
the large increase in the number of switches. One can thus conclude that for AVC
MSS, a minimum buffer size of 3 segments is required to obtain acceptable quality
while avoiding quality oscillations. For small buffers, SVC Slope is able to yield
the highest quality, but at the cost of a high number of switches and buffer starva-
tions, diminishing stability and quality assurance. For buffer sizes of 3 segments
and up, AVC MSS yields higher quality than the SVC algorithms. This can be at-
tributed to two reasons. First, the overhead introduced by the SVC encoding causes
a higher load on the bottleneck Bs. Second, for a larger bottleneck Bs, as illus-
trated in Figure A.6(b), the problems of the SVC-based algorithms persists because
of the vulnerability of SVC to high delays. These delays in combination with the
increased number of request-response cycles of SVC-based algorithms limit the
throughput causing lower efficiency and thus a lower average quality. SVC Cur-

MINIMIZING THE IMPACT OF DELAY ON LIVE SVC-BASED HAS 229

(a) (b)

Figure A.6: Total buffer starvation (s), average played quality level and total number of
switches in function of the buffer size P (s) with Bc = 10Mbps, N = 20, R = 50ms and
(a) Bs = 50Mbps (b) Bs = 100Mbps.

230 APPENDIX A

(a) (b)

Figure A.7: Average played quality level and total number of switches in function of the
buffer size P (s) with Bc = 10Mbps, N = 20, R = 50ms and (a) Bs = 50Mbps (b)
Bs = 100Mbps.

sor is able to minimize buffer starvation time and the number of switches, while
yielding the highest quality for buffer sizes containing 2 or more segments. SVC
Slope tends to yield lower quality, more frequent switches and a higher overall gap
time. This can be attributed to the difficulty of configuring the slope parameter for
the varying situations. Overall, it can be concluded that SVC Cursor outperforms
all other SVC-based heuristics in terms of quality, switches and buffer starvations,
therefore this heuristic is used for the subsequent results.

A.6.2 Impact of download scheduling

As shown in the previous results, SVC-based HAS suffers from high RTTs, lead-
ing to inefficient use of the available throughput and reducing the benefits of SVC-
based HAS in terms of caching efficiency and server bandwidth utilization. There-
foren, this appendix suggests more optimized HAS-scheduling by using HTTP
Pipelining and parallel downloads. Figure A.7 shows the results for the same con-
figurations as before, but with the pipelined and parallel scheduled variants of SVC

MINIMIZING THE IMPACT OF DELAY ON LIVE SVC-BASED HAS 231

(a) (b)

Figure A.8: Average played quality level in function of the RTT R (s) for Bs = 100Mbps,
Bc = 10Mbps, N = 20 and P = 3.3s.

Cursor. Here, one can clearly see the advantages of using optimized scheduling
for SVC-based HAS for high RTTs. SVC Cursor Pipelined and Parallel are able
to improve the quality level, while lowering the number of quality switches at the
same time. When the bottleneck is tight (Bs = 50Mbps), the quality yielded by
SVC based HAS is only slightly lower than when using AVC-based HAS, this is
caused by the encoding overhead of SVC. But when taking a look at the 100Mbps
scenario, SVC-based HAS is able to outperform AVC-based HAS, in terms of
switches and average quality. Even when the buffer only contains 2 segments, the
quality level and number of switches are at an acceptable level.

A.6.3 Impact of delay

Figure A.8 illustrates the impact of high RTTs on the different base algorithms and
on the SVC Cursor algorithm in combination with pipelined and parallel schedul-
ing for a buffer containing 3 segments. These graphs show that parallel scheduling
in combination with SVC Cursor is able to outperform AVC MSS in terms of av-
erage quality when delay increases, while yielding comparable buffer starvations
and a lower number of switches (graphs omitted due to space limitations). This
enables service providers to deploy SVC-based HAS services, benefitting from
higher caching efficiency, while avoiding the drawbacks of SVC-based HAS in a
high delay setting.

A.6.4 Impact of parallel threads

The behavior of AVC MSS and SVC Cursor in combination with parallel schedul-
ing is illustrated in Figure A.9. These results show that with increasing number of
threads, parallel scheduling yields higher quality and lower switches for both AVC

232 APPENDIX A

(a) (b)

Figure A.9: Impact of the number of parallel threads with Bc = 10Mbps, N = 20,
R = 100ms, P = 4.4s and (a) Bs = 50Mbps (b) Bs = 100Mbps, for AVC MSS and
SVC Cursor in combination with sequential and parallel scheduling.

MINIMIZING THE IMPACT OF DELAY ON LIVE SVC-BASED HAS 233

MSS and SVC Cursor. However, AVC MSS suffers from higher gap time with
an increasing number of parallel threads, while SVC Cursor is able to lower the
total buffer starvation time, while increasing quality and minimizing the number
of switches.

It can be concluded that for Live TV, the smallest possible buffer should at
least contain 2 segments to attain acceptable service quality. The evaluations have
shown that the approach was indeed able to reduce the impact of high RTTs on
SVC-based HAS by using parallel downloads. Furthermore, the novel SVC Cursor
heuristic is able to outperform existing heuristics when considering a Live TV
setting with small buffers.

A.7 Conclusion
This appendix quantitatively reveals the drawbacks of using Scalable Video Cod-
ing (SVC) based HTTP Adaptive Streaming (HAS) Live streaming in high de-
lay networks and proposes techniques to tackle these issues. The root causes of
these are 1) the encoding overhead, yielding larger data transfers to attain the
same quality as with Advanced Video Coding (AVC) based HAS and 2) the in-
creased request-response rate in SVC-based HAS, which as a result of the high
Round Trip Times (RTTs), leads to inefficient use of the available bandwidth.
This appendix proposes to overcome the second issue by using HTTP Pipelined
and Parallel download schedulers, eliminating the idle time between two consecu-
tive downloads. Next to the schedulers, this appendix also proposes a cursor based
SVC client heuristic, which outperforms existing SVC-based heuristics for small
buffer sizes. The experimental results have shown that even with small buffer sizes,
the combination of SVC Cursor with parallel scheduling is not only able to over-
come the issues in high delay networks, but is even capable of achieving higher
quality with less frequent switches than AVC-based HAS. For a buffer size of 3
segments, parallel and pipelined scheduling improve the quality with about 14%,
while reducing the number of switches with a factor 4 compared to the sequential
scheduling. Hence, the combination of the proposed novel SVC Cursor heuristic
in combination with parallel download scheduling is able to outperform the state of
the art heuristics by alleviating the drawbacks of SVC-based HAS while retaining
the higher decision granularity and other advantages.

234 APPENDIX A

References

[1] J. Famaey, S. Latré, N. Bouten, W. Van de Meerssche, B. De Vleeschauwer,
W. Van Leekwijck, and F. De Turck. On the Merits of SVC-based HTTP
Adaptive Streaming. In Proceedings of the seventh IFIP/IEEE International
Symposium on Integrated Network Management, pages 419–426, may 2013.

[2] R. Huysegems, B. De Vleeschauwer, T. Wu, and W. Van Leekwijck. SVC-
Based HTTP Adaptive Streaming. Bell Labs Technical Journal, 16(4):25–41,
2012.

[3] Microsoft. Microsoft Smooth Streaming: The Official Microsoft IIS Site.
Available from: http://www.iis.net/download/SmoothStreaming.

[4] R. Pantos and W. May. HTTP Live Streaming, 2012. Available from: http:
//tools.ietf.org/html/draft-pantos-http-live-streaming-10.

[5] Adobe. HTTP Dynamic Streaming: Flexible Delivery of on-demand and
live video streaming. Available from: http://www.adobe.com/products/
httpdynamicstreaming/.

[6] T. Stockhammer. Dynamic adaptive streaming over HTTP: standards and
design principles. In Proceedings of the second annual ACM conference on
Multimedia systems, MMSys ’11, pages 133–144, 2011.

[7] H. Schwarz, D. Marpe, and T. Wiegand. Overview of the scalable video
coding extension of the H.264/AVC standard. In IEEE Transactions on Cir-
cuits and Systems for Video Technology In Circuits and Systems for Video
Technology, pages 1103–1120, 2007.

[8] H. Choi, J. Nam, D. Sim, and I. Bajic. Scalable video coding based on high
efficiency video coding (HEVC). In Proceedings of Communications, Com-
puters and Signal Processing (PacRim), 2011, pages 346 –351, aug. 2011.

[9] C. Liu, I. Bouazizi, and M. Gabbouj. Parallel Adaptive HTTP Media Stream-
ing. In Proceedings of 20th International Conference on Computer Commu-
nications and Networks, pages 1–6, August 2011.

[10] N. Bouten, J. Famaey, S. Latré, R. Huysegems, B. De Vleeschauwer,
W. Van Leekwijck, and F. De Turck. QoE optimization through in-network
quality adaptation for HTTP Adaptive Streaming. In Proceedings of the
8th International Conference on Network and Service Management (CNSM),
pages 336–342, 2012.

MINIMIZING THE IMPACT OF DELAY ON LIVE SVC-BASED HAS 235

[11] N. Bouten, S. Latré, W. Meerssche, B. Vleeschauwer, K. Schepper, W. Leek-
wijck, and F. Turck. A Multicast-Enabled Delivery Framework for QoE As-
surance of Over-The-Top Services in Multimedia Access Networks. Journal
of Network and Systems Management, 21:677–706, 2013.

[12] N. Bouten, S. Latré, W. Van De Meerssche, K. De Schepper,
B. De Vleeschauwer, W. Van Leekwijck, and F. De Turck. An autonomic
delivery framework for HTTP Adaptive Streaming in multicast-enabled mul-
timedia access networks. In Proceedings of the Fifth IFIP/IEEE Workshop on
Distributed Autonomous Network Management Systems (DANMS), 2012,
pages 1248–1253. IEEE, 2012.

[13] S. Akhshabi, A. Begen, and C. Dovrolis. An experimental evaluation of rate-
adaptation algorithms in adaptive streaming over HTTP. Proceedings of
the second annual ACM conference on Multimedia systems, pages 157–168,
2011.

[14] C. Liu, I. Bouazizi, M. M. Hannuksela, and M. Gabbouj. Rate adaptation
for dynamic adaptive streaming over HTTP in content distribution networks.
Signal Processing: Image Communication, 27(4):288 – 311, 2012.

[15] V. Adzic, H. Kalva, and B. Furht. Optimized adaptive HTTP streaming for
mobile devices. In SPIE Optical Engineering+ Applications. International
Society for Optics and Photonics, 2011.

[16] J. Jiang, V. Sekar, and H. Zhang. Improving Fairness, Efficiency, and Stability
in HTTP-based Adaptive Video Streaming with FESTIVE. Technical report,
Carnegie Mellon University, 2012.

[17] T. Schierl, Y. Sanchez de la Fuente, R. Globisch, C. Hellge, and T. Wiegand.
Priority-based Media Delivery using SVC with RTP and HTTP streaming.
Multimedia Tools and Applications, 55:227–246, 2011.

[18] T. Andelin, V. Chetty, D. Harbaugh, S. Warnick, and D. Zappala. Quality
Selection for Dynamic Adaptive Streaming over HTTP with Scalable Video
Coding. In Proceedings of the 3rd Multimedia Systems Conference, pages
149–154. ACM, 2012.

[19] D. Kaspar, K. Evensen, P. Engelstad, and A. Hansen. Using HTTP pipelin-
ing to improve progressive download over multiple heterogeneous interfaces.
In Proceedings of the IEEE International Conference on Communications
(ICC), pages 1–5, 2010.

B
Deadline-based Approach for

Improving Delivery of SVC-based
HTTP Adaptive Streaming Content

N. Bouten, M. Claeys, S. Latré, J. Famaey,
W. Van Leekwijck, F. De Turck.

Published in Proceedings of 2014 IEEE Network Operations and
Management Symposium (NOMS), May. 2014.

While Appendix A focussed on minimizing the impact of Round Trip Time
(RTT) on live HTTP Adaptive Streaming (HAS) services, this appendix focusses
on the optimization of the delivery of live Scalable Video Coding (SVC) HAS. To
guarantee continuous playback, current-generation HAS protocols require a large
play-out buffer. This makes them ill-suited for live television, as it significantly in-
creases the camera-to-display delay. This appendix proposes a novel HAS solution
for live streaming services. A HAS video player was designed that can cope with
buffers as small as 2 seconds. To achieve this, an intelligent network proxy was
developed that guarantees the delivery of the SVC base quality layer using Dif-
ferentiated Services (DiffServ). Furthermore, a more dynamic deadline-based ap-
proach is proposed which allows the client itself to decide which segments should
be prioritized based on the risk of running into a buffer starvation. The combina-
tion of these technologies allows the video player to align its quality adaptation
decisions to the available bandwidth more efficiently and avoid buffer starvations.

238 APPENDIX B

B.1 Introduction

Over the past decades, the importance of multimedia services such as video stream-
ing has increased considerably. This growth is projected to exceed 90 percent of
the Internet traffic by 2017 [1], causing video traffic to dominate the Internet. In
the past, the Real Time Streaming Protocol (RTSP) and Real Time Transport Pro-
tocol (RTP) were used commercially to deliver video over IP networks. Since
these protocols require server-side bit-rate adaptation schemes, they are not ide-
ally suited to deal with highly heterogeneous and dynamically changing network
conditions. Therefore, research and academia began shifting towards client-side
adaptation schemes which have the benefit of distributing the rate decision and
thus requiring significantly less investments in server-side infrastructure. HTTP
Adaptive Streaming (HAS) is now becoming omnipresent in video streaming ser-
vices due to many advantages offered by HTTP-based streaming: reliable trans-
mission over TCP, reuse of existing caching infrastructure and compatibility with
NATs and firewalls.

In HAS, the video content is split temporally into segments which are en-
coded at different quality rates. The client side heuristic decides at which qual-
ity rate each segment should be downloaded, based on measured network statis-
tics, buffer filling level and device characteristics. This allows HAS to respond
to throughput fluctuations by reducing the quality and continuing video playout,
whereas previous HTTP-based streaming techniques would have run into a buffer
starvation. This allows the client to independently choose its playback quality
and prevents the need for intelligent components inside the network, which is a
major advantage in large-scale Over-The-Top (OTT) scenarios. Traditionally, Ad-
vanced Video Coding (AVC) is used to encode the different segments, introducing
a significant amount of redundancy across quality representations. Scalable Video
Coding (SVC) can cope with these issues of content redundancy by creating de-
pendencies between the base and enhancement layers. Adopting SVC in HAS sig-
nificantly improves caching and bandwidth efficiency at the server side and allows
gradual upgrading of the video quality by downloading additional video layers.

Academia and industry are showing a growing interest in the use of HAS for
managed networks. The extensive content catalogue and increased flexibility in
terms of supported devices of OTT-services (e.g., YouTube, Hulu, Netflix) but de-
livered over a managed network, could greatly benefit both provider and end-user.
Delivering such paid HAS services, however, requires the ability for the provider
to offer guarantees in terms of reliability to the end-users. Since HAS services
are originally designed for OTT scenarios, there are some changes required in the
network to allow such guarantees.

To guarantee continuous playback, current-generation HAS protocols require
a large play-out buffer. This makes them ill-suited for live television, as it signifi-

DEADLINE-BASED APPROACH FOR SVC HAS 239

cantly increases the live signal delay. Shrinking the buffer size has however some
implications on the reliability of the streaming service and requires the player to
react in a fast and robust way to changes in the network. Therefore, this appendix
proposes a managed HAS multimedia framework, using SVC and prioritization in
the network, which allows to offer a reliable video streaming service. It takes ad-
vantage of the ability to gradually improve quality which is present in SVC-based
HAS to deliver the base layer with higher priority to the clients. This way, when
congestion arises in the managed network, the continuous playout of the base layer
can be guaranteed, allowing the provider to offer a reliable service. This appendix
also proposes a client-side heuristic that decides which request should be sched-
uled with higher priority based on the playout deadline for that particular segment.
This approach is more dynamic and allows clients to decide for themselves which
segments are more important without introducing additional state in the network.

The remainder of this appendix is structured as follows. Section B.2 provides
an overview of relevant work, followed by an illustration of how differentiated
services can contribute to the reliability and stability of SVC-based adaptation
heuristics in Section B.3. Section B.4 elaborates on the experiment setup and
evaluation results, which are summarized in Section B.5.

B.2 Related Work
The increased popularity of video consumption over the Internet has led to the de-
velopment of a range of protocols that allow adaptive video streaming over HTTP.
Some of the major industrial players have introduced their proprietary protocols
such as Microsoft’s Silverlight Smooth Streaming1, Apple’s HTTP Live Stream-
ing2 and Adobe’s HTTP Dynamic Streaming3. More recently, a standardized solu-
tion has been proposed by MPEG, called Dynamic Adaptive Streaming over HTTP
(DASH) [2]. Although differences exist between these implementations they are
based on the same basic principles: a video is split up into temporal segments
which are encoded at different quality rates, the client rate adaptation algorithm
then dynamically adapts the quality, based on metrics such as average throughput,
delay and jitter.

Optimizations of HAS-based delivery can be performed at the server, the net-
work or the client. At the server side, optimizations are focussed on the encoding
scheme. Traditional deployments of HAS use the H.264/AVC codec for creating
the different representations of the video. For each representation, a separate file
needs to be stored at the video server, leading to an increased storage penalty due

1Microsoft Smooth Streaming - http://www.iis.net/downloads/microsoft/
smooth-streaming

2Apple HTTP Live Streaming - http://tools.ietf.org/html/draft-pantos-http-live-streaming-12
3Adobe HTTP Dynamic Streaming - http://www.adobe.com/products/hds-dynamic-

streaming.html

240 APPENDIX B

to the redundant information. Adopting a scalable extension to H.264/AVC [3] or
High Efficiency Video Coding (HEVC) [4], allows alleviating the storage issues
with AVC at the server, while improving caching efficiency. Huysegems et al. [5]
discuss the advantages of using SVC instead of AVC, such as more stable playout
during fluctuations since the base layer is always downloaded first and a reduction
in bandwidth and storage requirements at the server. Using SVC in HAS also has
some drawbacks caused by the encoding overhead, the need to download multi-
ple layers to increase the quality of a single segment and the vulnerability to high
round trip times [6]. These problems can be avoided by using HTTP pipelining
or parallel downloads to minimize the impact of high round trip times [7]. In this
appendix the reliability of SVC-based HAS systems is further improved by deliv-
ering the base layer segments with high priority allowing the continuous playout
of at least the base layer.

Liu et al. [8] present an in-network optimization of HAS for 3GPP networks.
By parallelizing the download and request of HAS segments, a better resource
utilization can be achieved. An autonomic delivery framework is presented in pre-
vious work [9, 10], which allows to reduce the consumed bandwidth by grouping
unicast HAS sessions sharing the same content into a single multicast session.
Schierl et al. [11] present an overview of interesting use cases for applying SVC in
a network environment, among which the graceful degradation of videos when the
network load increases. The authors argue the need for Media Aware Network El-
ements (MANEs), capable of adjusting the SVC stream based on a set of policies
specified by the network provider. Similar to this approach, Latré et al. [12] pro-
pose an in-network rate adaptation algorithm, responsible for determining which
SVC quality layers should be dropped in combination with a Pre-Congestion No-
tification (PCN) based admission control mechanism. Hsiao et al. [13] propose
a prototype of an intermediary adaptation node, where the media gateway esti-
mates the available bandwidth on the client link and extracts the supported SVC-
streams. Akhshabi et al. [14] propose a server-side traffic shaping approach to
avoid ON-OFF behavior when multiple clients compete to minimize oscillations
during streaming.

Each commercial HAS implementation comes with an existing video client
heuristic of its own. Akhshabi et al. [15] compare several commercial and open
source HAS players and indicate significant inefficiencies in each of them. Several
heuristics have been proposed in literature as well, each focussing on a specific
deployment. Liu et al. [16] discuss a video client heuristic that is suited for CDNs
by comparing the expected segment fetch time with the experienced segment fetch
time to ensure a response to bandwidth fluctuations in the network, while Adzic et
al. [17] present a client heuristic which is tailored for mobile environments. Jiang
et al. [18] aimed to develop an efficient, fair and stable heuristic by randomizing
chunk scheduling to avoid synchronization, stateful bitrate selection and delayed

DEADLINE-BASED APPROACH FOR SVC HAS 241

update to avoid instability, and compared their approach to commercial players.
Generic algorithms exist for selecting the next video quality to download, using
a priority-based scheme where base layers receive higher priority in download
scheduling compared to the enhancement layers [19]. We also use a comparable
scheduling technique at the client and go beyond this, by increasing the priority
of the base layer segments in the network. Andelin et al. [20] provide a heuristic
which was specifically designed for SVC and using a slope to define the trade-off
between downloading the next segment and upgrading a previously downloaded
segment.

B.3 Priority-Based Delivery of HAS

Several clients for which the video flows traverse the same path in the network
are competing with each other, resulting in a fair-share bandwidth between them.
An implication of this TCP behavior is that urgent requests from a client risking
to run into a buffer starvation are treated in the same way as requests of clients
that have already built up a sufficiently large buffer. If congestion arises in the
network, both of the clients will experience a delayed arrival of the requested seg-
ment. For the first client however, this causes the buffer to deplete, resulting in
a frame freeze, which is the main factor responsible for lowering the Quality of
Experience (QoE) [21].

For live TV, also the latency with respect to the live signal is an important
aspect of QoE and interactivity [22, 23]. If a frame freeze occurs, the latency on
the live signal increases with the length of the frame freeze. This emphasizes the
importance of avoiding frame freezes at any time to guarantee an acceptable QoE
for live video streaming. Most of the client rate adaptation heuristics tackle this
problem by requiring a fairly large buffer size (10s-30s). However, at the same
time they increase the latency on the live signal with the buffer length, negatively
impacting QoE. This indicates the trade-off between minimizing the latency on
the live signal and improving reliability that exists in a live streaming framework.
There are however several ways to achieve higher reliability while decreasing the
buffer size, both from within the network and by the client, when allowing in-
network prioritization.

B.3.1 Layer-based prioritization

A first way to improve reliability in SVC-based HAS systems is to apply priori-
tization based on the representation level. This can be established by interpreting
the requests at the proxy, classifying them into different priority classes and mark
the packets based on this priority. If one chooses to deliver the base layer repre-
sentation of the video with highest priority, clients with limited buffer filling will

242 APPENDIX B

Figure B.1: Illustration of layer-based prioritization, where lower quality presentations
have higher priority than enhancement layers.

be able to continue playout at the lowest quality when congestion arises. This is
illustrated in Figure B.1, where the delivery of the base layer for client 1 will have
higher priority than the delivery of the enhancement layers for client 2 and 3 re-
spectively. Although this approach improves reliability, the decision granularity is
limited. The layers that are prioritized are chosen in a static way and the approach
requires sufficient dimensioning of the high-priority bandwidth share.

The SVC-based client heuristic that was presented in previous work [7] was
extended to take advantage of the in-network prioritization. More specifically,
the current approach differentiates between the download behavior of the priori-
tized layers and the best-effort layers by performing them in different download
threads. The prioritized download scheduler starts off by filling the buffer, after
which it goes into steady state and periodically (every segment length) downloads
an additional segment. There are two parameters that can be set for the prioritized
deadline scheduler: the number of representations that will be sent with higher pri-
ority and whether they are downloaded sequentially or in parallel. The best effort
download scheduler uses the SVC Cursor client heuristic to download additional
segments over the best effort channel, taking into account the current network con-
ditions and buffer filling [7].

B.3.2 Deadline-based prioritization

The previous approach requires prioritized representations to be statically con-
figured and implies that the selected segments will always be sent with higher
priority. Although this allows to provide a reliable SVC-based streaming service,
segments are often sent with high priority, while this was not necessary due to a
high buffer filling. Allowing the client to decide for itself which segments should
be downloaded with higher priority can alleviate this problem and guarantee that

DEADLINE-BASED APPROACH FOR SVC HAS 243

Figure B.2: Illustration of deadline-based prioritization, where clients decide based on
their current buffer filling to request segments with higher priority.

the prioritized channel is only used when it is required. This allows more efficient
use of prioritization while still improving the reliability of the streaming service.

Using deadline-based prioritization, the client decides which segments are to
be delivered with higher priority. Figure B.2 illustrates how clients that are close
to running into a buffer starvation, request segments to be delivered with higher
priority leading to a continuous playout. To achieve such behavior, a previously
presented SVC-based client heuristic [7] was extended with several additional fea-
tures. First, downloads that are late for playout due to congestion are cancelled
by closing the TCP-socket. Second, if the buffer filling level is beneath a certain
threshold, the base layer segments are requested with high priority. Third, in par-
allel to the regular downloads, it is checked periodically if the base layer of the
next segment is available for playout and if required download it in parallel with
high priority. These extensions to the previous heuristic allow reliable HAS live
streaming with small buffer sizes while guaranteeing continuous playout.

B.4 Evaluation

B.4.1 Prototype implementation

A proof-of-concept prototype of the priority-based delivery framework has been
implemented. The HAS Server was implemented using Apache4 and allows gen-
erating both VoD and Live streaming manifests. Furthermore, a script was used
to periodically release and synchronize the released manifest files, allowing us to
compare the proposed adaptive streaming framework with existing HAS protocols
which have other settings in terms of, amongst others, buffer size or segment size.

4Apache HTTP server project - http://httpd.apache.org/

244 APPENDIX B

IPClassifier+

BandwidthRated+
Spli5er+

RedQueue+

RedQueue+

PrioSched+

DSCP+10+

DSCP+0+

In=profile+

Out=of=profile+

0+

1+

Figure B.3: Click-implementation of AF behavior.

The proxy is responsible for handling requests from the clients and forward
them to the server. Furthermore, the proxy classifies these requests in different
priority classes and marks the packets accordingly. The classification is based
on regular expressions executed on the HTTP request headers for the layer-based
prioritization and on the port number of the request for the deadline-based pri-
oritization. The deadline-based prioritization could also be embedded into the
HAS protocol. The proxy was implemented using Squid5 version 3.1.6, which
offers support for setting client-side TOS-fields. To prioritize the traffic, Differ-
entiated Services (DiffServ) [24] has been used. DiffServ is a simple, scalable
mechanism for classifying and managing IP network traffic. DiffServ applies the
principle of traffic classification, placing each data packet into a limited number
of traffic classes. For this purpose, the 6-bit DS Field of the IP header is used.
DiffServ-aware routers each implement Per Hop Behaviors (PHBs), defining the
packet forwarding rules for every traffic class. Next to the default PHB, which
is typically best-effort traffic, the Assured Forwarding (AF) [25] and Expedited
Forwarding (EF) [26] PHBs are commonly used with DiffServ. While EF traffic
is often given strict priority queuing above all other traffic classes, inducing low
delay, the AF PHB, allows the operator to assure the delivery of this traffic class
as long as it does not exceed some subscribed rate. When traffic exceeds the sub-
scription rate, it faces a higher drop probability when congestion occurs. The AF
PHB has been implemented in a Click6 router for this proof-of-concept as shown
in Figure B.3. A combination of an IPClassifier, a BandwidthRatedSplitter, two
Random Early Detection (RED) queues and a PrioSched module were used to im-
plement this behavior. As long as the prioritized traffic is lower than the profile
rate, the traffic is marked as in-profile, otherwise it is marked as out-of-profile.
When congestion arises, the out-of-profile traffic is dropped more aggressively
than in-profile traffic. In absence of congestion, the prioritized traffic is allowed to
exceed its profile rate.

The clients were based on a previous implementation [6] and replaced the net-

5Squid cache - http://www.squid-cache.org/
6Click Modular Router - http://www.read.cs.ucla.edu/click/click

DEADLINE-BASED APPROACH FOR SVC HAS 245

Figure B.4: Experimental setup showing the PHB and introduction of best effort cross traffic
on the bottleneck link.

working modules by cURL-based7 components. The clients support both SVC
and AVC video streaming and allow using different client heuristics. Furthermore
they allow configuring the scheduler as well: the number of simultaneous down-
load threads or installing a pipelined download scheduler as described in previous
work [27]. An additional download scheduler was added to be able to take ad-
vantage of the in-network prioritization. At the client, the segments are streamed
to a GStreamer8-based decoding and visualization plugin. The SVC decoding is
handled by an adapted implementation of Open SVC Decoder9.

B.4.2 Experiment setup

Figure B.4 shows the different components of the HAS delivery network and how
they are interconnected. Click has also been used to inject best effort cross traffic
into the network that competes with the best effort video streaming. Using this
cross traffic, an available best-effort bandwidth with a realistic degree of variabil-
ity was modelled, based on a bandwidth trace described by Riiser et al. [28]. The
traces, measured on the bus path between Ljan and Oslo central station, Norway10,
have a total duration of about 220 minutes. The available bandwidth fluctuates be-
tween 202bps and 6335kbps with an average of 2192kbps and a standard deviation
of 1317kbps. In the experiments, the described bandwidth trace has been scaled
to match a fixed upper limit, based on the number of clients, by multiplying the
values with R

6335kbps , with R the bandwidth of the link. The bandwidth trace was
then cut in 400 second parts which were used during the evaluations. Figure B.5
shows an example of such a bandwidth trace excerpt of 400 seconds, which was
inverted to serve as cross traffic on a 20Mbps link.

To allow extended evaluation of the framework, the setup was replicated in

7cURL - http://curl.haxx.se/
8GStreamer - http://gstreamer.freedesktop.org
9Open SVC Decoder - http://sourceforge.net/projects/opensvcdecoder/

10Dataset available from: http://home.ifi.uio.no/paalh/dataset/hsdpa-tcp-logs/bus.ljansbakken-
oslo/

246 APPENDIX B

Figure B.5: Excerpt of a cross traffic file for a 20Mbps link.

Table B.1: Bitrates of the different video layers.

AVC SVC
avg (bps) max (bps) avg (bps) sum (bps) max (bps)

layer 0 806377 4868448 773473 773473 4677288
layer 1 3184253 16118368 2756137 3529610 12626760
layer 2 5809166 28276704 4269023 7798633 18823272

simulation. The simulation framework is based on ns-311 which also offers sup-
port for Click12. The experiments used a Variable Bitrate (VBR) video of 400
seconds encoded in three layers for both AVC and SVC. The video has both slow-
moving scenes and scenes with high motion variability, which results in the bitrate
characteristics shown in Table B.1. The encoding of the AVC and SVC video seg-
ments was perfomed using the reference encoders from the JM13 and JSVM14 test
models respectively, which are provided by the Joint Video Team. Three different
rate points are used, the base layer is encoded at a spatial resolution of 480p, with
a fixed Quantization Parameter (QP) of 35. The first enhancement layer applies
MGS quality scalability at the same resolution with a QP of 25. The highest layer
is a spatial enhancement layer of 720p resolution with a QP of 25. The same res-
olutions, QPs and other encoding configuration parameters were applied to AVC
encoding. This results in the video quality of the AVC and SVC streams being
equal for equivalent rate points. However, because of the overhead introduced by
the scalability in SVC, the bit rate of AVC segments will be slightly lower. The
frame rate for each layer is 25 fps and to achieve the highest coding efficiency for
SVC one I-frame is introduced every 25 frames. This leads to segments with a
length of one second. For AVC, the same configuration was used.

11NS-3 - http://www.nsnam.org
12Ns-3-click and nsclick - http://www.read.cs.ucla.edu/click/nsclick
13H.264/AVC JM Reference Software - http://iphome.hhi.de/suehring/tml/
14JSVM Reference Software - http://www.hhi.fraunhofer.de/de/

kompetenzfelder/image-processing/research-groups/image-video-coding/svc-extension-of-
h264avc/jsvm-reference-software.html

DEADLINE-BASED APPROACH FOR SVC HAS 247

0 50 100 150 200 250 300 350 400
Time (s)

0

2

4

6

8

10

Q
ua

lit
y

(M
bp

s)

AVC MSS

SVC Layer Prioritization

0

5

10

15

20

25

C
ro

ss
 T

ra
ffi

c
(M

bp
s)

(a)

0 50 100 150 200 250 300 350 400
Time (s)

0

2

4

6

8

10

Q
ua

lit
y

(M
bp

s)

AVC MSS

SVC Layer Prioritization

0

5

10

15

20

25

C
ro

ss
 T

ra
ffi

c
(M

bp
s)

(b)

Figure B.6: Illustration of the continuous playout under cross traffic when SVC layer-based
prioritization is enabled. With segment length of 1s and buffer size 2s (a) and 20s (b) for
AVC MSS and buffer size 2s for SVC layer prioritization for a single streaming client.

B.4.3 Impact of layer-based prioritization

During these experiments, the base layer was prioritized over the enhancement
layers. The evaluations used one of the traces mentioned earlier to introduce best
effort cross traffic into the network. Figure B.6 illustrates the benefits of using
a combination of SVC-based HAS and DiffServ for a single client and segment
length of 1s. The SVC layer prioritization allows a continuous playout with a
buffer of only 2s, while the AVC Microsoft Smooth Streaming (MSS) algorithm
freezes for about 27s and 15s respectively for a buffer size of 2s and 20s. Even a
buffer of 20s is not able to protect the client against prolonged throughput changes.
These results show that allowing prioritization of base layer segments in the net-
work can increase the stability of a HAS streaming client, allowing us to shrink
the buffer to only 2 seconds, significantly decreasing the latency on the live signal.

During the following evaluations, the number of clients was increased up to 20,
while the bandwidth for the link between both routers was increased to 400Mbps.
The bandwidth of the prioritized channel was varied during these experiments, as
well as various parameter settings for the algorithms. Each of the experiments was
repeated 30 times, using different parts of the aforementioned bandwidth trace and
averaged the results over these iterations.

Increasing the number of parallel downloads can increase the efficiency of the
SVC Cursor heuristic, especially when network delay increases, as was shown in
previous work [27]. Figure B.7 shows the impact of parallelizing the base layer
downloads on the average buffer size, the average freezing time, the average played
quality rate and the number of switches. The buffer starvations can be reduced to
zero if the number of parallel threads is increased to 3. Since the video bitrate
is highly variable at times, parallellizing downloads smoothens out the download
process over time, preventing sudden video bitrate variations to cause late down-

248 APPENDIX B

1 2 3
Number Of Parallel DiffServ Downloads

3.70

3.75

3.80

3.85

3.90

3.95

4.00

A
ve

ra
ge

 B
uf

fe
r F

ill
in

g
(s

) SVC Layer Prioritization

(a)

1 2 3
Number Of Parallel DiffServ Downloads

4.0

4.5

5.0

5.5

6.0

6.5

A
ve

ra
ge

 P
la

ye
d

Q
ua

lit
y

(M
bp

s)

SVC Layer Prioritization

(b)

1 2 3
Number Of Parallel DiffServ Downloads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

B
uf

fe
r S

ta
rv

at
io

n
(s

)

SVC Layer Prioritization

(c)

1 2 3
Number Of Parallel DiffServ Downloads

0
5

10
15
20
25
30
35
40

N
um

be
r o

f Q
ua

lit
y

S
w

itc
he

s

SVC Layer Prioritization

(d)

Figure B.7: Impact of the number of parallel DiffServ downloads on the SVC Layer Priori-
tization for a buffer of 4 seconds and a prioritized channel of 100Mbps.

DEADLINE-BASED APPROACH FOR SVC HAS 249

loads. The slightly improved playout quality can be accounted to the higher per-
formance of parallel TCP downloads, which also allows a higher average buffer
filling.

B.4.4 Impact of deadline-based prioritization

Although the quality of both the AVC and SVC representations are equal, their
bitrate differs due to the SVC overhead. Therefore, the estimated Mean Opinion
Score (MOS) is used to evaluate the impact on quality as presented by De Vriendt
et al. where the QoE is calculated as a weighted combination of the average de-
livered quality (µ) and the standard deviation of quality (σ) [29], extended with a
correction factor to incorporate the impact of frame freezes (φ) which is a contin-
uous interpolation of the discrete levels proposed by Mok et al. [21].

eMOS = α ∗ µ− β ∗ σ − γ ∗ φ+ δ (B.1)

The parameters (α = 5.67, β = 6.72, γ = 4.95 and δ = 0.17) were tuned by
minimizing the Root Mean Squared Error (RMSE) between what the model pre-
dicts and the measured subjective MOS values obtained by a subjective screening
test with 10 experts in the field of video streaming. The formula’s for calculating
the values µ, σ and φ are calculated as follows, with K the number of played seg-
ments,N the number of quality levels for video,Qk the quality played for segment
k ∈ [1,K] and F the set of frame freezes:

µ =

∑K
k=1

Qk
N

K
(B.2)

σ =

√∑K
k=1 (QkN − µ)2

K
(B.3)

Ffreq =
|F |
K

(B.4)

Favg =

∑
f∈F duration(f)

|F |
(B.5)

φ =
7

8
max

(
ln(Ffreq)

6
+ 1, 0

)
+

1

8
min

(
Favg
15

, 1

)
(B.6)

Figure B.8 shows the impact of the buffer size on the average buffer starva-
tions, estimated QoE as defined by Equation B.1 and number of switches for both
the AVC MSS and SVC prioritization-based heuristics for a prioritized channel
of 150Mbps and 200Mbps respectively. These results show how applying prior-
itization in the network can significantly reduce the number of buffer starvations

250 APPENDIX B

0 5 10 15 20 25
Buffer Size (s)

0

10

20

30

40

50

60

B
uf

fe
r S

ta
rv

at
io

n
(s

)

AVC MSS

SVC Layer Prioritization
SVC Deadline Prioritization

(a)

0 5 10 15 20 25
Buffer Size (s)

0

10

20

30

40

50

60

B
uf

fe
r S

ta
rv

at
io

n
(s

)

AVC MSS

SVC Layer Prioritization
SVC Deadline Prioritization

(b)

0 5 10 15 20 25
Buffer Size (s)

0

1

2

3

4

5

A
ve

ra
ge

 E
st

im
at

ed
 M

O
S

AVC MSS

SVC Layer Prioritization
SVC Deadline Prioritization

(c)

0 5 10 15 20 25
Buffer Size (s)

0

1

2

3

4

5

A
ve

ra
ge

 E
st

im
at

ed
 M

O
S

AVC MSS

SVC Layer Prioritization
SVC Deadline Prioritization

(d)

0 5 10 15 20 25
Buffer Size (s)

0

10

20

30

40

50

60

70

N
um

be
r o

f Q
ua

lit
y

S
w

itc
he

s

AVC MSS

SVC Layer Prioritization
SVC Deadline Prioritization

(e)

0 5 10 15 20 25
Buffer Size (s)

0

10

20

30

40

50

60

70

N
um

be
r o

f Q
ua

lit
y

S
w

itc
he

s

AVC MSS

SVC Layer Prioritization
SVC Deadline Prioritization

(f)

Figure B.8: Impact of the buffer size on average freezing time, estimated MOS and number
of switches for a prioritized channel of (a) 150Mbps and (b) 200Mbps respectively.

DEADLINE-BASED APPROACH FOR SVC HAS 251

0 1 2
Maximum Allowed DiffServ Quality Layer

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

A
ve

ra
ge

 B
uf

fe
r F

ill
in

g
(s

)

SVC Deadline Prioritization

(a)

0 1 2
Maximum Allowed DiffServ Quality Layer

5.0

5.2

5.4

5.6

5.8

6.0

6.2

6.4

A
ve

ra
ge

 P
la

ye
d

Q
ua

lit
y

(M
bp

s)

SVC Deadline Prioritization

(b)

0 1 2
Maximum Allowed DiffServ Quality Layer

0.000

0.005

0.010

0.015

0.020

B
uf

fe
r S

ta
rv

at
io

n
(s

)

SVC Deadline Prioritization

(c)

0 1 2
Maximum Allowed DiffServ Quality Layer

0

5

10

15

20

25
N

um
be

r o
f Q

ua
lit

y
S

w
itc

he
s

SVC Deadline Prioritization

(d)

Figure B.9: Impact of the number of allowed qualities for Deadline Based Prioritization on
average buffer filling, freezing time, quality rate and number of switches for a prioritized
channel of 200Mbps and buffer size of 4 seconds.

both for small and larger buffers. It is also shown that the proposed approach also
increases the average estimated MOS, while at the same time reducing the num-
ber of switches. Furthermore, the deadline-based prioritization outperforms the
layer-based prioritization in terms of average freezes and playout quality. This can
be accounted to the fact that the deadline-based prioritization only requests cer-
tain segments over the prioritized channel when this is really required, while the
layer-based prioritization continuously occupies the prioritized channel. For a pri-
oritized channel of 150Mbps, this can lead to freezes, since the limited bandwidth
is sometimes not sufficient to transfer the high variable video segments for all 20
clients at the same time.

The deadline-based prioritization can be configured to download only the base
layer or various enhancement layers with higher priority when the buffer filling
drops below a certain threshold. Figure B.9 shows the impact of allowing to down-
load enhancement layers with higher priority, leading to a slight improvement in
playout quality and reducing the number of switches from 20 to 12. The higher

252 APPENDIX B

quality stability however comes at a cost. Due to the higher occupation of the
prioritized channel, prioritized base layer segment downloads now also compete
with enhancement layer segment downloads, leading to a slight increase in average
freezing time.

These results show that deadline-based prioritization allows SVC-based clients
to achieve higher quality with less switches, while assuring a reliable HAS service.
Extending the allowed quality range from only the base layer to enhancement lay-
ers has a limited positive impact on the quality and stability of the streaming, but
increases the risk of running into buffer freezes.

B.5 Conclusion
To guarantee continuous playback, current-generation HTTP Adaptive Streaming
(HAS) protocols require a large play-out buffer. This makes them ill-suited for
live television, as it significantly increases the live signal delay. This appendix
tackles the reliability issues that arise when shrinking the buffer by deploying a
combination of Scalable Video Coding (SVC)-based video and prioritization in
the network. A layer-based prioritization scheme is proposed, where only certain
layers of the video are delivered with high priority. This approach allows us to
increase the reliability of HAS services when dimensioning the prioritized channel
appropriately. A more dynamic deadline-based approach allows the client itself to
decide which segments should be prioritized based on the risk of running into a
buffer starvation. This allows more efficient use of the prioritized channel, leading
to less freezes and increased quality and stability.

DEADLINE-BASED APPROACH FOR SVC HAS 253

References

[1] C. V. Forecast. Cisco Visual Networking Index: Global Mobile data Traffic
Forecast Update 2012-2017. Technical report, Cisco Public Information,
May 2013.

[2] T. Stockhammer. Dynamic adaptive streaming over HTTP: standards and
design principles. In Proceedings of the second annual ACM conference on
Multimedia systems, MMSys ’11, pages 133–144, 2011.

[3] H. Schwarz, D. Marpe, and T. Wiegand. Overview of the scalable video
coding extension of the H.264/AVC standard. In IEEE Transactions on Cir-
cuits and Systems for Video Technology In Circuits and Systems for Video
Technology, pages 1103–1120, 2007.

[4] H. Choi, J. Nam, D. Sim, and I. Bajic. Scalable video coding based on high
efficiency video coding (HEVC). In Proceedings of Communications, Com-
puters and Signal Processing (PacRim), 2011, pages 346 –351, aug. 2011.

[5] R. Huysegems, B. De Vleeschauwer, T. Wu, and W. Van Leekwijck. SVC-
Based HTTP Adaptive Streaming. Bell Labs Technical Journal, 16(4):25–41,
2012.

[6] J. Famaey, S. Latré, N. Bouten, W. Van de Meerssche, B. De Vleeschauwer,
W. Van Leekwijck, and F. De Turck. On the Merits of SVC-based HTTP
Adaptive Streaming. In Proceedings of the seventh IFIP/IEEE International
Symposium on Integrated Network Management, pages 419–426, may 2013.

[7] N. Bouten, S. Latré, J. Famaey, W. Van Leekwijck, and F. De Turck. Min-
imizing the Impact of Delay on Live SVC-based HTTP Adaptive Streaming
Services. In Proceedings of the Sixth IFIP/IEEE Workshop on Distributed
Autonomous Network Management Systems (DANMS), 2013, pages 1399–
1404. IEEE, 2013.

[8] C. Liu, I. Bouazizi, and M. Gabbouj. Parallel Adaptive HTTP Media Stream-
ing. In Proceedings of 20th International Conference on Computer Commu-
nications and Networks, pages 1–6, August 2011.

[9] N. Bouten, S. Latré, W. Meerssche, B. Vleeschauwer, K. Schepper, W. Leek-
wijck, and F. Turck. A Multicast-Enabled Delivery Framework for QoE As-
surance of Over-The-Top Services in Multimedia Access Networks. Journal
of Network and Systems Management, 21:677–706, 2013.

[10] N. Bouten, S. Latré, W. Van De Meerssche, K. De Schepper,
B. De Vleeschauwer, W. Van Leekwijck, and F. De Turck. An autonomic

254 APPENDIX B

delivery framework for HTTP Adaptive Streaming in multicast-enabled mul-
timedia access networks. In Fifth IFIP/IEEE Workshop on Distributed Au-
tonomous Network Management Systems (DANMS), 2012, pages 1248–
1253. IEEE, 2012.

[11] T. Schierl, C. Hellge, S. Mirta, K. Gruneberg, and T. Wiegand. Using H.
264/AVC-based scalable video coding (SVC) for real time streaming in wire-
less IP networks. In IEEE International Symposium on Circuits and Systems,
2007. ISCAS 2007, pages 3455–3458. IEEE, 2007.

[12] S. Latré and F. De Turck. Joint In-network Video Rate Adaptation and
Measurement-Based Admission Control: Algorithm Design and Evaluation.
Journal of Network and Systems Management, 21:588–622, 2012.

[13] Y. Hsiao, S. Yeh, J. Chen, and Y. Chu. A design of bandwidth adaptive
multimedia gateway for scalable video coding. In Proceedings of the IEEE
Asia Pacific Conference on Circuits and Systems (APCCAS), pages 160–
163. IEEE, 2010.

[14] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen. Server-based
traffic shaping for stabilizing oscillating adaptive streaming players. In Pro-
ceedings of the 23rd ACM Workshop on Network and Operating Systems
Support for Digital Audio and Video, pages 19–24. ACM, 2013.

[15] S. Akhshabi, A. Begen, and C. Dovrolis. An experimental evaluation of rate-
adaptation algorithms in adaptive streaming over HTTP. Proceedings of
the second annual ACM conference on Multimedia systems, pages 157–168,
2011.

[16] C. Liu, I. Bouazizi, M. M. Hannuksela, and M. Gabbouj. Rate adaptation
for dynamic adaptive streaming over HTTP in content distribution networks.
Signal Processing: Image Communication, 27(4):288 – 311, 2012.

[17] V. Adzic, H. Kalva, and B. Furht. Optimized adaptive HTTP streaming for
mobile devices. In SPIE Optical Engineering+ Applications. International
Society for Optics and Photonics, 2011.

[18] J. Jiang, V. Sekar, and H. Zhang. Improving Fairness, Efficiency, and Stability
in HTTP-based Adaptive Video Streaming with FESTIVE. Technical report,
Carnegie Mellon University, 2012.

[19] T. Schierl, Y. Sanchez de la Fuente, R. Globisch, C. Hellge, and T. Wiegand.
Priority-based Media Delivery using SVC with RTP and HTTP streaming.
Multimedia Tools and Applications, 55:227–246, 2011.

DEADLINE-BASED APPROACH FOR SVC HAS 255

[20] T. Andelin, V. Chetty, D. Harbaugh, S. Warnick, and D. Zappala. Quality
Selection for Dynamic Adaptive Streaming over HTTP with Scalable Video
Coding. In Proceedings of the 3rd Multimedia Systems Conference, pages
149–154. ACM, 2012.

[21] R. K. Mok, E. W. Chan, and R. K. Chang. Measuring the quality of expe-
rience of HTTP video streaming. In Proceedings of the IFIP/IEEE Interna-
tional Symposium on Integrated Network Management (IM), pages 485–492.
IEEE, 2011.

[22] H. Knoche and M. A. Sasse. Getting the big picture on small screens: Quality
of Experience in mobile TV. Multimedia Transcoding in Mobile and Wireless
Networks, pages 31–46, 2008.

[23] R. Stankiewicz and A. Jajszczyk. A survey of QoE assurance in converged
networks. Computer Networks, 55(7):1459–1473, 2011.

[24] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An
Architecture for Differentiated Services. IETF RFC 2475, December 1998.

[25] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured Forwarding
PHB Group. IETF RFC 2597, June 1999.

[26] B. Davie, A. Charny, J. Bennett, K. Benson, J. Le Boudec, W. Courtney,
S. Davari, V. Firoiu, and D. Stiliadis. An Expedited Forwarding PHB (Per-
Hop Behavior). IETF RFC 3246, March 2002.

[27] N. Bouten, S. Latré, J. Famaey, F. De Turck, and W. Van Leekwijck. Min-
imizing the impact of delay on live SVC-based HTTP adaptive streaming
services. In Proceedings of the IFIP/IEEE International Symposium on Inte-
grated Network Management (IM), pages 1399–1404, 2013.

[28] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen. Commute Path Band-
width Traces from 3G Networks: Analysis and Applications. In Proceedings
of the 4th ACM Multimedia Systems Conference, pages 114–118, February
2013.

[29] J. De Vriendt, D. De Vleeschauwer, and D. Robinson. Model for estimating
qoe of video delivered using HTTP adaptive streaming. In Proceedings of
the IFIP/IEEE International Symposium on Integrated Network Management
(IM), pages 1288–1293. IEEE, 2013.

C
Semantic Validation of Affinity

Constrained Service Function Chain
Requests

N. Bouten, M. Claeys, R. Mijumbi, J. Famaey,
S. Latré, J. Serrat.

Published in Proceedings of 2016 IEEE Conference on Network
Softwarization (NetSoft 2016), June. 2016.

Chapter 6 proposes to take advantage of Network Function Virtualization
(NFV) technologies to increase the agility and shorten the time to market of new
HTTP Adaptive Streaming (HAS) services. For various reasons (e.g., legislative,
privacy, economic, efficiency and resilience reasons), the service provider may
want to put constraints on the locality of the Virtual Network Functions (VNFs)
and their interconnecting virtual edges. The chapter proposes a set of affinity and
anti-affinity constraints, a semantic validation framework and embedding algo-
rithms to map affinity-constrained Service Function Chains (SFCs) to the physical
substrate network. In this appendix, more details are provided on the semantic
validation framework which is able to detect conflicts that may arise between the
various affinity and anti-affinity constraints of an SFC. To achieve this, the SFC
request and relevant information on the physical topology are modeled as an on-
tology of which the consistency can be checked using a semantic reasoner. The
ontology and a set of inference rules are presented in detail in this appendix.

258 APPENDIX C

C.1 Introduction

In the traditional telecommunications networking approach, functionality of a net-
work node is strongly tied with the physical network device it runs on. Typically,
the network operator needs to deploy a dedicated network appliance for each Net-
work Function (NF) (e.g., Deep Packet Inspection (DPI), Firewall). In addition,
NFs have a strict chaining that must be adhered to when deploying a specific ser-
vice. Thus, service deployments are tightly coupled to the underlaying network
topology. These reasons, together with the ever increasing requirements for high
quality and stability have led to long product cycles, limited service agility and
considerable dependence on specialized hardware. To be able to compete with
Over-The-Top (OTT) service providers, which typically have much shorter prod-
uct development cycles, and to limit the Capital Expenditures (CAPEX) and Op-
erational Expenditures (OPEX) involved with physical network expansions, the
network operators need to devise novel and less expensive ways to meet the in-
creased capacity requirements and at the same time reduce the time to market of
new services.

The Network Function Virtualization (NFV)-paradigm [1, 2] has been intro-
duced to alleviate the aforementioned issues by leveraging IT virtualization tech-
nology to decouple the network functionality from the physical infrastructure. This
allows NFs to run on standard high volume servers, storage devices and switches.
The advantages are manyfold. First there potentially is a significant reduction in
total costs through more efficient maintenance which can be performed remotely.
In addition, thanks to the increased flexibility offered by virtualization, resources
can be shared and used more efficiently. Finally, NFV has the potential to allow
network operators to deploy novel services cheaper and faster with higher service
agility.

The concepts of NFV open up new business opportunities in the form of Virtual
Network Function Infrastructure Providers (VNFInPs), acting as brokers between
Infrastructure Providers (InPs) and Service Providers (SPs). These VNFInPs lease
the infrastructure offered by different InPs and deploy, orchestrate and interconnect
Virtual Network Functions (VNFs) to create Service Function Chains (SFCs) [3],
that are run by SPs to offer value-added services to their customers. InPs can profit
by maximizing resource utilization and optimizing energy usage by offering their
virtualized infrastructure to remote parties. SPs benefit from the proposed model
since it allows rapid deployment and testing in a real network environment, thus
leveraging faster time to market of new services. The offered services benefit from
the dynamic nature of the network, computing and storage resources offered by the
Virtual Network (VN), which allows them to scale dynamically based on service
requirements and user mobility.

Together with these new opportunities and stakeholders, a set of new interac-

SEMANTIC VALIDATION OF AFFINITY CONSTRAINED SFCS 259

tions arises as well. For example, the SPs need a way to express their SFC requests
and requirements to the VNFInP. In traditional network embedding approaches,
only node and link restrictions can be specified. However, many scenarios can be
envisioned where a SP might want to attach more detailed constraints concerning
the placement and routing between NFs as well as constraints on their affinity.
For example, to increase efficiency, the SP might want to require the embedding
of VNFs within the same datacenter or even on the same host. Other reasons for
more detailed affinity and anti-affinity constraints could be resilience, economic,
legislative and privacy issues. In this appendix, a set of affinity and anti-affinity
constraints is proposed that increases the control of SPs on the embedding of their
SFC requests.

With this newfound ability to add custom constraints, the possibility arises that
conflicting constraints are introduced by SPs in their SFC requests. Therefore, the
VNFInP needs to be provided with a means to check the validity of SFC requests
and inform the SP on potential conflicts. Since SFC requests can contain many
VNFs, virtual edges and constraints, detecting conflicts within these requests is
not a straightforward task, neither for human operators, nor for computer systems.
Since conflicts can arise between sets of constraints, pairwise detection will not
suffice. Therefore, this appendix proposes to take advantage of semantic modelling
to define an ontology and rule set, which can be enriched with individuals based on
the specific SFC request. Using a semantic reasoner, the consistency of this entire
ontology can be determined and subsequently the validity of the SFC request can
be assessed.

The contributions of this appendix are threefold. First, the sets set of affinity
and anti-affinity constraints are defined that can be attached to a SFC request by the
SP. Second, an existing virtualization description language is extended to support
these constraints. Finally, this appendix proposes and evaluates a semantic conflict
detection mechanism that can be employed by the VNFInP to check the validity of
SFC requests.

C.2 Related Work

NFV has been proposed as a paradigm that allows more flexible service deploy-
ment by leveraging IT virtualization technology in combination with programmable
networks [4, 5]. To attain the gains promised by NFV, the VNFs and intercon-
necting virtual links should be efficiently mapped onto the physical substrate. To
achieve this, several placement algorithms have been proposed in the related fields
of virtual network embedding [6] and virtual datacenter embedding [7], as well
as for NFV [8]. A placement algorithm can be formulated as an optimization
problem with a particular objective such as load balancing, resource utilization,
acceptance ratio, etc. Basta et al. propose a model for placing virtualized Evolved

260 APPENDIX C

Packet Core (EPC) functions in a way that minimizes the network overhead in-
troduced by Software Defined Networking (SDN) control plane interactions [9].
Mehraghdam et al. apply Mixed Integer Quadratically Constrained Program-
ming (MIQCP) to solve the placement problem and conclude that to obtain ef-
ficient use of resources, the placment of functions should be different according
to the desired objective [10]. Moens et al. propose an Integer Linear Program-
ming (ILP)-based solution in which hybrid scenarios are considered where part
of the functions are provided by dedicated physical hardware and part of them
by virtualized instances [11]. Others propose a heuristic approach to deal with
the intractability of the aforementioned optimization approaches. Xia et al. pro-
pose a greedy heuristic which sorts VNFs according to the resource demands and
embeds the resource-demanding VNFs with highest priority [12]. Yoshida et al.
propose a multi-objective resource scheduling algorithm which optimizes simulta-
neously possibly conflicting objectives with multifaceted costraints [13]. None of
the aforementioned approaches offers support for attaching affinity or anti-affinity
constraints to the SFCs nor do they take into account such constraints when eval-
uating the embeddings.

Affinity and anti-affinity restrictions have previously been studied in the con-
text of grid and cloud computing. Many argued that the lack of influence on the
placement of workflow or service components is a hindrance for the adoption of
the technology [14, 15]. Even though performance and economical benefits of
cloud computing are clear, potential users hesitate to use the technology because
legal, privacy, efficiency and resilience aspects are completely out of their control.
Also recent media coverage shows an increased concern by end-users about their
data privacy, raising the need for SPs to take into account privacy and legal issues
when offering their services. These concerns also arise for NFV when deploying
VNFs at certain locations and transferring data between them over virtual paths.
Therefore, it is argued that also in NFV, mechanisms should be designed to allow
SPs to add constraints concerning locality and affinity, both to VNFs as well as the
interconnecting paths.

The solutions proposed in affinity and anti-affinity context in cloud comput-
ing mostly relate to two aspects: developing models to describe affinity rules
and developing service placement algorithms that can work under the constraints
of these rules. Konstanteli et al. present a set of affinity rules for cloud com-
puting applications which are added to a Mixed-Integer Non-Linear Program-
ming (MINLP) [16]. The authors define constraints that require allocating com-
ponents/services in the same subnet or physical node or prevent services to be
federated. Espling et al. propose a model for defining Virtual Machine (VM)
placement in cloud computing supporting a set of affinity and anti-affinity con-
straints [17, 18]. This approach is extended by defining affinity and anti-affinity
restrictions for SFCs. To this end support is added for specification of constraints

SEMANTIC VALIDATION OF AFFINITY CONSTRAINED SFCS 261

on the path between network functions and furthermore a more expressive syntax
is defined that allows constraints to apply to specific VNFs, VNF types, locations
and location types. Furthermore, a semantic framework is proposed which allows
to check the validity of these constraints.

One of the benefits of NFV is that it supports automated orchestration of
services. To achieve this, a number of descriptions are needed for everything
that was configured manually in the past, including VNFs and network require-
ments. Also Service Level Agreement (SLA)-related parameters such as affinity
and anti-affinity rules should be transformed into machine-readable description
formats [19]. Huawei mentions the generation of affinity and anti-affinity poli-
cies as a mechanism for fault prevention [20]. In the definition of Service Quality
Metrics by ETSI, special attention is brought to the enforcement of NFV customer
anti-affinity rules which can improve the availability mechanisms [21]. The auto-
matically generated affinity rules for VNFs in combination with user-specific affin-
ity requirements could lead to conflicting constraints. In this appendix, a machine-
readable format for affinity and anti-affinity constraints is proposed. Furthermore,
an automated way to detect conflicting constraints is established based on ontolo-
gies. The proposed conflict detection is applicable for both user-generated as well
as automatically generated affinity constraint sets.

C.3 Affinity and Anti-Affinity Constraint Model
In an NFV context, SPs have no control over the mapping of VNFs to physical
hosts or SFC edges to physical paths. Nevertheless, many situations can be envi-
sioned where an SP might want to attach constraints to the placement of certain
functions or on the routing of traffic, such as:

• Efficiency: VNFs that exchange a lot of data may want to be positioned
close to one another (e.g., within the same datacenter, or even on the same
physical host).

• Resilience: The SP might want to spread instances of the same VNF across
multiple datacenters in order to improve resilience in case a failure occurs
in one of the datacenters.

• Legislation: The SP might want to avoid hosting VNFs in certain countries
due to legislative restrictions.

• Privacy: SPs or their customers might not want the traffic to pass through
certain domains due to privacy concerns.

• Economic: SPs might have economic reasons (e.g., peering agreements) to
place their functions in or route their traffic through certain domains.

262 APPENDIX C

However, currently there is no way to specify or model such requirements in
an SFC template. In this section, a set of affinity and anti-affinity constraints for
VNFs and their interconnecting paths are proposed. The affinity constraints apply
to a set of physical locations P , a set of VNF instances V and a set of edges
interconnecting them E. There are different location granularities g ∈ G that can
be considered (e.g., network domains, datacenters, hosts), leading to a hierarchical
structure of locations. Two hosts in a single datacenter represent different locations
at the granularity of hosts, but have the same location at the datacenter level. P g ⊂
P is the set of locations at a certain granularity g. Furthermore, each VNF instance
has an associated VNF type t ∈ T (e.g., firewall, DPI), forming subsets V t ⊆ V of
VNFs with type t. Finally, each virtual edge e = (a, b) ∈ E connects two VNFs
a ∈ V and b ∈ V and maps to a single or path of physical network links. The
following constraints are proposed:

• Affinity(p ∈ P g, v ∈ V or t ∈ T): A specific instance v or all instances
v ∈ V t of type t ∈ T must be located at a specific location pwith granularity
g.

• Anti-Affinity(p ∈ P g, v ∈ V or t ∈ T): A specific instance v or all in-
stances v ∈ V t of type t ∈ T may not be located at a specific location p
with granularity g.

• Affinity(p ∈ P g or g ∈ G, v ∈ V or s ∈ T,w ∈ V or t ∈ T): A specific
instance v or all instances v ∈ V s must be placed together with a specific
instance w or all instances w ∈ V t at a specific location p ∈ P g or at the
same location at a specific granularity g ∈ G.

• Anti-Affinity(p ∈ P g or g ∈ G, v ∈ V or s ∈ T,w ∈ V or t ∈ T): A
specific instance v or all instances v ∈ V s may not be placed together with
a specific instance w or all instances w ∈ V t at a specific location p ∈ P g
or at the same location at a specific granularity g ∈ G.

• Affinity(p ∈ P g, e ∈ E): A virtual edge e ∈ E must be fully embedded at
a specific location p ∈ P g with a granularity g ∈ G.

• Anti-Affinity(p ∈ P g, e ∈ E): The physical links comprising the virtual
edge e ∈ E may not pass through a specific location p ∈ P g with a granu-
larity g ∈ G.

• Affinity(e ∈ E, f ∈ E): Two virtual edges e ∈ E and f ∈ E must overlap
(i.e. all physical links comprising the virtual edges must be part of both e
and f).

• Anti-Affinity(e ∈ E, f ∈ E): Two virtual edges e ∈ E and f ∈ E may not
overlap (i.e. none of the physical links comprising the virtual edges may be
part of both e and f).

SEMANTIC VALIDATION OF AFFINITY CONSTRAINED SFCS 263

<x s : e l e m e n t name=” A f f i n i t y ” t y p e =” C o n s t r a i n t ”>
<xs:complexType>

<x s : c h o i c e>
<x s : s e q u e n c e>

<x s : c h o i c e>
<x s : e l e m e n t name=” locType ” t y p e =” Loca t ionType ” />
<x s : e l e m e n t name=” l o c ” t y p e =” L o c a t i o n ” />

< / x s : c h o i c e>
<x s : c h o i c e>

<x s : e l e m e n t name=” funcTypeA ” t y p e =” Func t ionType ” />
<x s : e l e m e n t name=” funcA ” t y p e =” Ne tworkFunc t ion ” />

< / x s : c h o i c e>
<x s : c h o i c e minOccurs=” 0 ”>

<x s : e l e m e n t name=” funcTypeB ” t y p e =” Func t ionType ” />
<x s : e l e m e n t name=” funcB ” t y p e =” Ne tworkFunc t ion ” />

< / x s : c h o i c e>
< / x s : s e q u e n c e>
<x s : s e q u e n c e>

<x s : e l e m e n t name=” connC ” t y p e =” C o n n e c t i o n ” />
<x s : c h o i c e>

<x s : e l e m e n t name=” connD ” t y p e =” C o n n e c t i o n ” />
<x s : c h o i c e>

<x s : e l e m e n t name=” locType ” t y p e =” Loca t ionType ” />
<x s : e l e m e n t name=” l o c ” t y p e =” L o c a t i o n ” />

< / x s : c h o i c e>
< / x s : c h o i c e>

< / x s : s e q u e n c e>
< / x s : c h o i c e>

< / xs:complexType>
< / x s : e l e m e n t>

Figure C.1: OVF specification extension for modelling Affinity node and link constraints.

A wide range of languages could be used to define the constraints outlined
above, depending on the language used to define the SFC template. As an SFC
is generally a directed acyclic graph structure, the specification language should
be capable of modelling this. To model the constraints, an extension is used of
the DTMF Open Virtualization Format (OVF) version 2.1.11. The OVF descriptor
is an XML-based language for annotating software to be run in virtual machines,
such as product details, virtual hardware requirements and licensing. Espling et
al. [18] expanded the OVF descriptor with additional constructs for defining con-
straints in structured cloud services. This appendix expands upon this work by
additionally modelling the affinity and anti-affinity constraints for both node and
edge mapping for SFCs. Figure C.1 shows how the affinity constraint subtypes
could be defined.

To further clarify the presented constraint formulations and syntax, an ex-
ample of an SFC request with both affinity and anti-affinity constraints will be
presented next. Given a set of location types {Autonomous System (AS), Data-
center (DC), Host} and a set of network function types {Firewall, DPI, Cache,

1DMTF - OVF Specification - https://www.dmtf.org/sites/default/files/standards/documents/
DSP0243 2.1.1.pdf

264 APPENDIX C

StreamingServer}. An example SFC is depicted in Figure C.2, where a streaming
server is connected to two DPI functions (for tagging data packets), which in turn
are connected to a firewall (for filtering) and a content cache. The DPI functions
may either directly forward content to the cache or may send it to the firewall
for filtering. Suppose a SP wants to offer a Video on Demand (VoD) service in
Belgium where two major telecom providers are active: Telenet (AS6848) and
Proximus (AS6774). Let us consider the following set of affinity and anti-affinity
constraints:

• Affinity(AS6848, c1)

• Affinity(AS6774, c2)

• Affinity(DC, e3)

• Affinity(DC, e6)

• AntiAffinity(e1,e2)

• AntiAffinity(DC, DPI, DPI)

Specifically, the first two constraints state that the caches need to be located
in the Telenet and Proximus AS respectively (e.g., because they should be close
to the end user and limit uplink traffic through other networks). The third and
fourth constraint define that the edges e3 and e6 between firewall and DPI func-
tions should be completely embedded within a single DC, automatically forcing
the DPI and connected firewall to be deployed within that DC. Finally, to improve
fault tolerance, it is stated that edges e1 and e2 cannot have any links in common
and that functions with type DPI should not be deployed within the same DC. Us-
ing the XSD schema defined above, the constraints can be represented as shown in
Figure C.3.

C.4 Semantic SFC Request Checker
Since SPs are now free to specify their custom constraints during the SFC request,
it is possible that conflicting constraints are introduced. For example, extending the
previous example and adding the constraints Affinity(DC, c1, f1) (i.e. specifying
that c1 and f1 should be colocated in the same DC) and AntiAffinity(DC, Cache,
Firewall) (i.e. specifying that a VNF of type Cache can not be colocated with a
VNF of type Firewall in the scope of a DC) leads to a conflicting constraint set.
Also more complex conflicts can appear when multiple constraints are involved
in the conflicting set that can only be detected as a conflict when considering the
full set. For example, returning to the base example from the previous section and
adding the constraints Affinity(AS, c1, f1) and Anti-Affinity(AS6848, d1) would lead

SEMANTIC VALIDATION OF AFFINITY CONSTRAINED SFCS 265

c1:Cache

c2:Cache

f1:Firewall

f2:Firewall

d1:DPI

d2:DPI

s:StreamingServer
e1

e2

e3

e4

e5

e8 e6

e7

Figure C.2: An example SFC.

<A f f i n i t y>
< l o c>AS6848< / l o c>
<funcA>c1< / funcA>

< / A f f i n i t y>
<A f f i n i t y>

< l o c>AS6774< / l o c>
<funcA>c2< / funcA>

< / A f f i n i t y>
<A f f i n i t y>

<locType>D a t a C e n t e r< / locType>
<connC>e3< / connC>

< / A f f i n i t y>
<A f f i n i t y>

<locType>D a t a C e n t e r< / locType>
<connC>e6< / connC>

< / A f f i n i t y>
<A n t i A f f i n i t y>

<connC>e1< / connC>
<connD>e2< / connD>

< / A n t i A f f i n i t y>
<A n t i A f f i n i t y>

<locType>D a t a C e n t e r< / locType>
<funcTypeA>DPI< / funcTypeA>
<funcTypeB>DPI< / funcTypeB>

< / A n t i A f f i n i t y>

Figure C.3: A simplified constraint specification for the example SFC

266 APPENDIX C

AS4

AS3

AS2

AS1
AS5

DC2

DC3

DC4

DC1
DC5

NFV	Manager

SFC	
Requests

SFC	Embedding	
Algorithm

SFC	Request	
Checker

SDN	Controller Cloud	
Manager

Figure C.4: An overview of the NFV architecture with support for semantic SFC request
checking.

to a conflict set {Affinity(DC, c1, f1), Anti-Affinity(AS6848, d1), Affinity(AS6848,
c1), Affinity(DC, e3)}. Since d1 and f1 should be colocated in the same DC due to
the link affinity constraint and f1 and c1 are colocated at the DC level, d1 and c1
should be colocated at the AS level as well. Furthermore, since c1 should be fully
located in AS6848, d1 should be located in the same AS. However, this inferred
constraint conflicts with the defined constraint Anti-Affinity(AS6848, d1).

When the VNFInP tries to deploy the requested SFC, none of the resulting em-
bedding configurations will lead to a feasible realisation of the SFC request. The
VNFInP should however be able to differentiate between a non-acceptance of the
SFC request caused by a shortage of appropriate resources and conflicting request
constraints in order to inform the SP on the reason why the SFC deployment failed.
The previous example shows the need for the VNFInP to check the validity of an
SFC request upon reception in order to exclude any conflicting constraints when
trying to provision the requested SFC.

C.4.1 NFV architecture for SFC request checking

Figure C.4 depicts how the SFC request checking system could be integrated into
the NFV Manager. In this architecture, the SFC Embedding Algorithm is responsi-
ble for assigning physical hardware and resources to the SFC requests. Concretely,

SEMANTIC VALIDATION OF AFFINITY CONSTRAINED SFCS 267

Lo
ca
tio
n

Lo
ca
tio
nT
yp
e

A
S D
C H
os
t

is
S
ub
Lo
ca
tio
nO
f

ha
sL
oc
at
io
nT
yp
e

V
N
F

V
irt
ua
lE
dg
e

is
V
N
FE
m
be
dd
ed
O
n

is
E
dg
eE
m
be
dd
ed
O
n

V
N
FT
yp
e

ha
sV
N
FT
yp
e

ha
sE
dg
eV
N
F

ha
sE
dg
eI
ng
re
ss
V
N
F

ha
sE
dg
eE
gr
es
sV
N
F

is
E
dg
eE
m
be
dd
ed
W
ith
E
dg
e

V
N
FV
N
FR
es
tri
ct
io
n

V
N
FV
N
FT
yp
eR
es
tri
ct
io
n

V
N
FT
yp
eV
N
FT
yp
eR
es
tri
ct
io
n

ha
sV
N
F

ha
sV
N
FT
yp
e

ha
sV
N
FT
yp
e

is
V
N
FV
N
FE
m
be
dd
ed
O
n

is
V
N
FV
N
FT
yp
eE
m
be
dd
ed
O
n

is
V
N
FT
yp
eV
N
FT
yp
eE
m
be
dd
ed
O
n

is
S
ub
Lo
ca
tio
nT
yp
eO
f

is
V
N
FV
N
FT
yp
eE
m
be
dd
ed
O
nL
oc
at
io
nT
yp
e

is
V
N
FT
yp
eV
N
FT
yp
eE
m
be
dd
ed
O
nL
oc
at
io
nT
yp
e

is
V
N
FV
N
FE
m
be
dd
ed
O
nL
oc
at
io
nT
yp
e

is
D
ire
ct
S
ub
Lo
ca
tio
nO
f

is
D
ire
ct
S
ub
Lo
ca
tio
nT
yp
eO
f

ha
sV
N
F

is
E
dg
eF
ul
ly
E
m
be
dd
ed
O
n

Figure C.5: Graphical representation of ontology.

268 APPENDIX C

it decides on which VNFs should be deployed on which physical hosts and how
many resources should be assigned to them. The Cloud Manager performs the
management of deployed VNFs and server resources. Moreover, the algorithm se-
lects the forwarding paths interconnecting the VNFs and assigns network resources
to them through the SDN Controller. Before the SFC request is forwarded to the
SFC Embedding Algorithm it needs to be checked by the SFC Request Checker to
confirm the validity.

C.4.2 Ontology for SFC request modelling

This appendix proposes to exploit ontology representations for the purpose of
modelling the physical substrate, the SFC request and defining a set of rules that
can be used to infer additional information. Figure C.5 represents the proposed
semantic model. The SFC request is modelled as a set of VirtualNodes with a
certain VNFType and VirtualLinks containing an ingress and egress VirtualNode.
The physical resources are modeled at the granularity level of Hosts, DCs and ASs.
Each of these Locations has a certain LocationType (i.e., AS, DC or Host). The
hierarchical relations between these Locations and LocationTypes are modeled by
isSubLocationOf and isSubLocationTypeOf respectively. To model affinity (re-
spectively anti-affinity) constraints for single virtual nodes and edges, positive (re-
spectively negative) object property assertions of the type isNodeEmbeddedOn, is-
LinkEmbeddedOn and isLinkFullyEmbeddedOn are attached to VirtualNodes and
VirtualLinks.

To be able to model more complex affinity and anti-affinity relationships be-
tween two VirtualNodes, two VNFTypes or between a VirtualNode and VNFType,
the additional concepts NodeNodeRestriction, NodeNodeTypeRestriction and Node-
TypeNodeTypeRestriction were added to the ontology. By adding the respective
positive (respectively negative) property isNodeNodeEmbeddedOn or isNodeN-
odeEmbeddedOnType, one is able to model affinity (respectively anti-affinity) re-
strictions for more complex constraints on the Location or LocationType. By using
the isLinkEmbeddedWith relationship, affinity and anti-affinity constraints between
links can be modeled.

The Protégé editor2 was used to develop the SFC request modelling ontology
using the Web Ontology Language (OWL)3.

C.4.3 Rules

To be able to infer new information out of existing knowledge, a set of rules is de-
fined. For example, a new relationship is defined in Rule (C.1) and (C.2), which is
called isSubLocOrEqualOf that checks if a certain Location a is either equivalent

2Protégé - http://protege.stanford.edu/
3OWL2 - http://www.w3.org/TR/owl-features/

SEMANTIC VALIDATION OF AFFINITY CONSTRAINED SFCS 269

to b or a isSubLocationOf b is valid. This relationship will be used later on to infer
knowledge on affinity and anti-affinity characteristics at a certain LocationType.

SameAs(a, b)→ SubLocOrEqualOf(a, b) (C.1)

SubLocOf(a, b)→ SubLocOrEqualOf(a, b) (C.2)

Rule (C.3) stipulates that if a certain VirtualNode x is embedded on a Location
y and if y is a sublocation of z, this node is also embedded on Location z. When
a VNFType y is embedded on a Location z, each VirtualNode x of that VNFType y
needs to be embedded at the Locationz (Rule (C.4)). Rule (C.5) determines that
if two VirtualNodes x and y are both embedded on a Location a, then the NodeN-
odeRestriction z containing x and y is embedded on the same Location a. Similar
rules can be determined for NodeNodeTypeRestriction and NodeTypeNodeType-
Restriction, which are omitted due to space restrictions. Rule (C.6) stipulates the
opposite: if a NodeNodeRestriction z containing VirtualNodes x and y is embedded
on Location a, then both VirtualNode x and y are embedded on Location a. Similar
rules can be determined for NodeNodeTypeRestriction and NodeTypeNodeTypeR-
estriction. Rule (C.7) determines that if VirtualNodes x and y are embedded on Lo-
cation a and Location b respectively and if both a and b are either sublocations of
or equal to Location c with LocationType l and x is not equal to y, then the NodeN-
odeRestriction z containing both x and y is embedded on LocationType l. Similar
rules can be determined for NodeNodeTypeRestriction and NodeTypeNodeTypeR-
estriction. If a VirtualLink z contains a VirtualNode x embedded at Location a, this
VirtualLink z is embedded at Location a as well (Rule (C.8)). Rule (C.9) states that
if two VirtualLinks x and y share a VirtualNode v as Ingressnode and Egressnode
respectively and VirtualLink x should overlap with VirtualLink y, this should lead
to an inconsistency. Several other rules are added to the ontology, but are left out
here due to space restrictions.

isNodeEmbeddedOn(x, y) ∧ isSubLocOf(y, z)
→ isNodeEmbeddedOn(x, z) (C.3)

hasNodeType(x, y) ∧ isNodeTypeEmbeddedOn(y, z)
→ isNodeEmbeddedOn(x, z) (C.4)

hasNode(z, x) ∧ isNodeEmbeddedOn(x, a) ∧ hasNode(z, y)
∧isNodeEmbeddedOn(y, a) ∧Different(x, y)

→ isNodeNodeEmbeddedOn(z, a) (C.5)

isNodeNodeEmbeddedOn(z, a) ∧ hasNode(z, x) ∧ hasNode(z, y)
→ isNodeEmbeddedOn(x, a) ∧ isNodeEmbeddedOn(y, a) (C.6)

270 APPENDIX C

hasNode(z, x) ∧ isNodeEmbeddedOn(x, a) ∧ hasNode(z, y)
∧isNodeEmbeddedOn(y, b) ∧ isSubLocOrEqualOf(a, c)

∧isSubLocOrEqualOf(b, c) ∧ hasLevel(c, l) ∧Different(x, y)
→ isNodeNodeEmbeddedOnType(z, l) (C.7)

hasLinkNode(z, x) ∧ isNodeEmbeddedOn(x, a)
→ isLinkEmbeddedOn(z, a) (C.8)

hasLinkIngressNode(x, v) ∧ hasLinkEgressNode(y, v)
∧isLinkEmbeddedWithLink(x, y)→ SameAs(x, y) (C.9)

Semantic Web Rule Language (SWRL)4 was used to express the aforemen-
tioned rules using concepts from the ontology defined in Section C.4.2. The
Protégé editor was also used to define the rules using the Manchester syntax5.

C.4.4 Conflict detection

When a new SFC request arrives at the VNFInP, this request is parsed and the set
of virtual nodes and links are added as individuals to the OWL ontology using the
OWL API6. Next, the set of affinity and anti-affinity constraints are also added
by either creating new individuals (i.e. NodeNodeRestriction), adding property
assertions (i.e. isNodeEmbeddedOn) or both.

The HermiT OWL Reasoner7 was used to check the consistency and the clas-
sification of the ontology. HermiT is a semantic reasoner for ontologies written in
OWL. It is able to determine whether or not the ontology is consistent, identify
subsumption relationships between classes, etc. The reasoner is based on a hyper-
tableau calculus which provides efficient reasoning. The output of the reasoning
process allows us to determine whether the SFC request at hand is valid or not. In
the case of an invalid request, this is communicated to the requesting SP, otherwise
the request is passed on to the embedding engine.

C.5 Evaluation
A Java-based simulation framework was created in which the physical substrate
and the SFC requests can be modeled. The components contained in the physical
infrastructure are added as individuals to the ontology using the OWL API. Upon
reception of an SFC request, the required individuals for the VNFs and their in-
terconnecting links are added to a copy of this ontology. The affinity constraints

4SWRL - http://www.w3.org/Submission/SWRL/
5Manchester Syntax - http://www.w3.org/2007/OWL/wiki/ManchesterSyntax
6OWL API - http://owlapi.sourceforge.net
7HermiT OWL Reasoner - http://hermit-reasoner.com

SEMANTIC VALIDATION OF AFFINITY CONSTRAINED SFCS 271

Table C.1: Overview of the evaluation parameters.
Network Size # Affinity and # VNFs

#AS #DC #Hosts Anti-Affinity
Constraints

A
ll

In
di

vi
du

al
s

1 4 100 5 5
2 8 200 10 10
4 16 400 20 20
8 32 800 40 40

16 64 1600 80 80
32 128 3200 160 160

R
el

ev
an

t

In
di

vi
du

al
s

5 50 25000 5 5
10 100 50000 10 10
20 200 100000 20 20
40 400 200000 40 40
80 800 400000 80 80
160 1600 800000 160 160
320 3200 1600000 320 320

defined in the SFC request are parsed and the necessary individuals and rules are
instantiated. Using the HermiT OWL Reasoner, the consistency of the resulting
ontology is checked. The execution time and resulting consistency are logged.
Two implementations of the validation component are evaluated. In the first ver-
sion, all locations of the physical topology are instantiated in the ontology. In the
second version, rather than including all physical locations into the ontology, only
the physical locations that occur in the SFC request are added to the ontology as
individuals, as well as the hierarchy of their parent locations. This is done so to
reduce the size of the ontology as it is known that semantic approaches suffer from
scalability issues when ontology sizes increase. The evaluations were performed
using the Flemish Supercomputer Center (VSC) which contains nodes with 2x8-
core Intel E5-2670 (Sandy Bridge @ 2.6 GHz) processors and 32 GB RAM.

Two implementations of the validation component are evaluated. In the first
version, all locations of the physical topology are instantiated in the ontology. In
the second version, for scalability reasons, only individuals are added for locations
and their parent locations that are involved in a location-based affinity constraint.
This reduces the number of individuals in the ontology and improves the perfor-
mance of the SFC validation significantly, as will be demonstrated in the evaluation
section.

To evaluate the performance of the proposed semantic validation framework,
a number of random network topologies and SFC requests are generated. The
topologies that are used during the simulations are generated randomly. First a
number of ASs are generated to which a random number of hosts are added. Next,
inter-AS and intra-AS links are added with a certain degree (between 2 and 10).
Afterwards, a random number of DCs are added to each AS. Each of the hosts has
a specific physical location that can be seen as a hierarchical combination of AS,
DC and host identification. The total number of hosts, DCs and ASs are listed in
Table C.1 for both the experiments where all individuals are included and where
only relevant individuals are considered. The SFCs and their respective constraints

272 APPENDIX C

(a) (b)

Figure C.6: Impact of physical network size.

are generated randomly: first a set of virtual nodes and links is generated, second
a random affinity/anti-affinity constraints is added and the required virtual nodes,
virtual links and VNF types are randomly selected from the ones that are present
in the SFC. Finally, the locations are randomly selected from all available physical
locations and added to the constraints. The type of the constraints is uniformly
distributed among the constraints defined in Section C.3. The parameter values
for both the number of VNFs and the number of constraints per SFC request are
shown in Table C.1. For each parameter configuration, 1000 random SFC requests
are generated and fed to the semantic request checker. The execution times are
averaged and the 95% confidence intervals are shown in the graphs.

C.5.1 Impact of physical network size

To evaluate the impact of the physical network size, a fixed number of 5 virtual
nodes and 5 (affinity or anti-affinity) constraints are used in the requested SFC, and
the number of physical hosts is varied as shown in Table C.1. For the case where
an individual is included in the ontology for each physical location in the topology,
it can be seen from Figure C.6(a) that the execution time grows exponentially with
increasing physical network size as was expected. Even for a network of only 3200

physical hosts, the semantic request validation already takes about 15s. When an
individual is only included if a physical location is used in a constraint, there is
no significant impact on the evaluation time, since the number of constraints is
fixed in this case as demonstrated in Figure C.6(b). These results demonstrate
that it is indeed beneficial to only consider the relevant physical locations when
semantically validating an SFC request.

SEMANTIC VALIDATION OF AFFINITY CONSTRAINED SFCS 273

Figure C.7: Impact of virtual network size.

Table C.2: Impact of number of constraints on number of consistent SFC requests.

#Constraints #Consistent
5 910
10 714
20 296
40 14
80 0

160 0
320 0

C.5.2 Impact of virtual network size

To evaluate the impact of the size of the requested virtual topology in the SFC,
a fixed number of 5 constraints and a network size of 25000 hosts is used, while
the number of virtual nodes in the SFC request is varied as shown in Table C.1.
Figure C.7 shows an exponential increase of the execution time when the number
of requested VNFs in the SFC request increases. For 320 VNFs in a single request,
which is quite high, the execution time is 0.5s, which could be considered as an
acceptable calculation delay for SFC requests of that size.

C.5.3 Impact of number of constraints

To evaluate the impact of the number of constraints in the SFC, a fixed virtual
network size of 5 VNFs and a physical network size of 25000 hosts is used, and
the number of constraints in the SFC request is varied as shown in Table C.1. Fig-
ure C.8 shows how the total execution time is affected by increasing the number of
constraints in the request. Two additional lines are plotted differentiating between
the execution times for consistent and inconsistent SFCs. As can be seen from Ta-
ble C.2, when the number of constraints increases, the number of consistent SFCs
is reduced significantly since the probability of conflicting constraints is increased.
When the number of constraints exceeds 40, all generated SFC requests are incon-
sistent. Figure C.8 shows a linear increase of the execution time when the number
of constraints increases.

274 APPENDIX C

Figure C.8: Impact of number of constraints on number of consistent SFC execution time.

(a) (b)

Figure C.9: Combined impact of increasing physical network size, requested virtual net-
work size and number of constraints.

C.5.4 Combined impact of relevant parameters

Finally the combined impact of all parameters was evaluated as stated in Table C.1,
both for the case when all physical locations are considered and for the case when
only relevant physical locations are taken into account. For both approaches, an
exponential increase can be observed in Figure C.9 when the physical network
size, requested virtual network size and the number of constraints increase. When
considering all physical locations as individuals, Figure C.9(a) shows that for a
physical network of 3200 hosts, a virtual network of 160 VNFs and 160 con-
straints, the execution time is as high as 21.76s. When reducing the ontology size
by only including relevant locations, the execution time can be reduced to 0.34s.
Figure C.9(b) shows the results for larger network topologies and when only rel-
evant locations are added to the ontology. Also here, an exponential increase in
execution times can be observed. However, when considering the size of the SFC
request in both number of virtual nodes (320) and affinity constraints (320), a total
execution time of 1.5s can be considered acceptable. Bearing in mind that in-

SEMANTIC VALIDATION OF AFFINITY CONSTRAINED SFCS 275

creasing the size of the physical topology has a very limited impact on the total
execution time since only the relevant individuals are added.

C.6 Conclusion
In this appendix, a means for Service Providers (SPs) to attach location constraints
to the mapping of Service Function Chains (SFCs) onto the physical substrate, is
proposed. The SP’s main interests to do this are for efficiency, resilience, legisla-
tive, privacy and economic reasons. This appendix proposes and defines a set of
affinity and anti-affinity constraints which allow the SP to define whether certain
Virtual Network Functions (VNFs) or instances of certain VNF types are allowed
to reside in the same host or the same part of the network. Furthermore, spe-
cific locations or sets of locations can be defined where certain VNFs or VNF
types may or may not be placed. To allow the Virtual Network Function Infras-
tructure Provider (VNFInP) to check the validity of these requests, a semantic
request checking framework is proposed. This allows the VNFInP to model both
its physical substrate and the SFC request as an ontology of which the consistency
is checked using a semantic reasoner. This appendix proposes an optimization
where only the relevant physical locations are modeled as individuals of the ontol-
ogy. This ensures that the execution times are not subject to increasing topology
sizes and that for reasonable SFC request and constraint sizes, the validations of
the SFC request can take place in less than a second.

276 APPENDIX C

References

[1] ETSI. Network Functions Virtualization: An Introduction, Benefits, En-
ablers, Challenges and Call for Action. ETSI Document, October 2012.
Available from: http://portal.etsi.org/NFV/NFV White Paper.pdf.

[2] ETSI. Network Functions Virtualization: Network Operator Perspectives on
Industry Progress. ETSI Document, October 2013. Available from: http:
//portal.etsi.org/NFV/NFV White Paper2.pdf.

[3] S. Boucadair, D. Lopez, I. Telefonica, D. Guichard, and C. Pignataro. Ser-
vice Function Chaining: Framework & Architecture draft-boucadair-sfc-
framework-00. 2014.

[4] M. Chiosi, D. Clarke, P. Willis, A. Reid, J. Feger, M. Bugenhagen, W. Khan,
M. Fargano, C. Cui, H. Denf, et al. Network functions virtualisation: An
introduction, benefits, enablers, challenges and call for action. In SDN and
OpenFlow World Congress, pages 22–24, 2012.

[5] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee. Network function virtualiza-
tion: Challenges and opportunities for innovations. Communications Maga-
zine, IEEE, 53(2):90–97, 2015.

[6] A. Fischer, J. Botero, M. Till Beck, H. de Meer, and X. Hesselbach. Virtual
Network Embedding: A Survey. Communications Surveys Tutorials, IEEE,
15(4):1888–1906, Fourth 2013.

[7] M. Bari, R. Boutaba, R. Esteves, L. Granville, M. Podlesny, M. Rabbani,
Q. Zhang, and M. Zhani. Data Center Network Virtualization: A Survey.
Communications Surveys Tutorials, IEEE, 15(2):909–928, Second 2013.

[8] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and R. Boutaba.
Network Function Virtualization: State-of-the-art and Research Challenges.
Communications Surveys Tutorials, IEEE, PP(99):1–1, 2015.

[9] A. Basta, W. Kellerer, M. Hoffmann, H. J. Morper, and K. Hoffmann. Apply-
ing NFV and SDN to LTE Mobile Core Gateways, the Functions Placement
Problem. In Proceedings of the 4th Workshop on All Things Cellular: Opera-
tions, Applications, & Challenges, AllThingsCellular ’14, pages 33–38.
ACM, 2014.

[10] S. Mehraghdam, M. Keller, and H. Karl. Specifying and Placing Chains of
Virtual Network Functions. CoRR, abs/1406.1058, 2014.

SEMANTIC VALIDATION OF AFFINITY CONSTRAINED SFCS 277

[11] H. Moens and F. De Turck. VNF-P: A model for efficient placement of vir-
tualized network functions. In Network and Service Management (CNSM),
2014 10th International Conference on, pages 418–423, Nov 2014.

[12] M. Xia, M. Shirazipour, Y. Zhang, H. Green, and A. Takacs. Network Func-
tion Placement for NFV Chaining in Packet/Optical Datacenters. Lightwave
Technology, Journal of, 33(8):1565–1570, April 2015.

[13] M. Yoshida, W. Shen, T. Kawabata, K. Minato, and W. Imajuku. MORSA:
A multi-objective resource scheduling algorithm for NFV infrastructure. In
Network Operations and Management Symposium (APNOMS), 2014 16th
Asia-Pacific, pages 1–6, Sept 2014.

[14] S. Benkner and C. GEMSS. Report on COTS Security Technologies and
Authorisation Services. Project report, February 2004. Available from: http:
//eprints.cs.univie.ac.at/3311/.

[15] P. Massonet, S. Naqvi, C. Ponsard, J. Latanicki, B. Rochwerger, and M. Vil-
lari. A Monitoring and Audit Logging Architecture for Data Location Com-
pliance in Federated Cloud Infrastructures. In Parallel and Distributed Pro-
cessing Workshops and Phd Forum (IPDPSW), 2011 IEEE International
Symposium on, pages 1510–1517, May 2011.

[16] K. Konstanteli, T. Cucinotta, K. Psychas, and T. Varvarigou. Admission Con-
trol for Elastic Cloud Services. In Cloud Computing (CLOUD), 2012 IEEE
5th International Conference on, pages 41–48, June 2012.

[17] L. Larsson, D. Henriksson, and E. Elmroth. Scheduling and monitoring of
internally structured services in Cloud federations. In Computers and Com-
munications (ISCC), 2011 IEEE Symposium on, pages 173–178, June 2011.

[18] D. Espling, L. Larsson, W. Li, J. Tordsson, and E. Elmroth. Modeling and
Placement of Cloud Services with Internal Structure. Cloud Computing,
IEEE Transactions on, PP(99):1–1, 2014.

[19] H. Basilier, M. Darula, and J. Wilke. Virtualizing network services–the
telecom cloud. Ericsson Review, 2014. Available from: http://www.ericsson.
com/res/thecompany/docs/publications/ericsson review/2014/er-telecom-
cloud.pdf.

[20] H. Technologies. White Paper - Huawei Observation to NFV. 2014. Avail-
able from: www.huawei.com/ilink/en/download/HW 399662.

[21] E. I. S. G. I. NFV. Network Functions Virtualisation (NFV); Service Qual-
ity Metrics. 2014. Available from: http://www.etsi.org/deliver/etsi gs/NFV-
INF/001 099/010/01.01.01 60/gs nfv-inf010v010101p.pdf.

