
sensors

Article

Bindings and RESTlets: A Novel Set of CoAP-Based
Application Enablers to Build IoT Applications

Girum Ketema Teklemariam 1,2,*, Floris Van Den Abeele 1, Ingrid Moerman 1, Piet Demeester 1

and Jeroen Hoebeke 1

1 Department of Information Technology (INTEC), Ghent University—iMinds,
Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium; floris.vandenabeele@intec.ugent.be (F.V.D.A.);
ingrid.moerman@intec.ugent.be (I.M.); piet.demeester@intec.ugent.be (P.D.);
jeroen.hoebeke@intec.ugent.be (J.H.)

2 Information Communication Technology Development Directorate, Jimma University, P.O. Box 378,
Jimma, Ethiopia

* Correspondence: girum.ketema@intec.ugent.be; Tel.: +32-485-167-384

Academic Editor: Leonhard M. Reindl
Received: 19 June 2016; Accepted: 29 July 2016; Published: 2 August 2016

Abstract: Sensors and actuators are becoming important components of Internet of Things (IoT)
applications. Today, several approaches exist to facilitate communication of sensors and actuators in
IoT applications. Most communications go through often proprietary gateways requiring availability
of the gateway for each and every interaction between sensors and actuators. Sometimes, the gateway
does some processing of the sensor data before triggering actuators. Other approaches put this
processing logic further in the cloud. These approaches introduce significant latencies and increased
number of packets. In this paper, we introduce a CoAP-based mechanism for direct binding of
sensors and actuators. This flexible binding solution is utilized further to build IoT applications
through RESTlets. RESTlets are defined to accept inputs and produce outputs after performing some
processing tasks. Sensors and actuators could be associated with RESTlets (which can be hosted
on any device) through the flexible binding mechanism we introduced. This approach facilitates
decentralized IoT application development by placing all or part of the processing logic in Low
power and Lossy Networks (LLNs). We run several tests to compare the performance of our solution
with existing solutions and found out that our solution reduces communication delay and number of
packets in the LLN.

Keywords: Internet of Things; CoAP; sensor/actuator binding; RESTlets; IoT application; in-network
processing; resource observation

1. Introduction

In the information age that we are living in, we have witnessed remarkable advances in
electromechanical technologies, miniaturization and wireless communication. It is not uncommon to
see tiny and very powerful electromechanical devices that can be integrated in our environment by
embedding them in everyday objects around us and are capable of doing things that were unimaginable
a few decades ago. Sensor and actuator nodes are best examples of such tiny devices that have become
parts of our daily life for quite some time. Sensor nodes are devices that capture events in the physical
world and transfer them into the virtual world as raw data so that they can be processed and acted
upon. Actuators, on the other hand, alter the real world based on data obtained from the physical
world or cyber world, periodically or spontaneously. It is very common to see sensors and actuators
working together. Motion activated doors, air conditioners, environmental monitoring systems, and
voice activated security systems are some examples which involve both sensors and actuators. The

Sensors 2016, 16, 1217; doi:10.3390/s16081217 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2016, 16, 1217 2 of 29

communication arena has also seen remarkable changes in the past couple of decades. Billions of
devices are being interconnected with each other around the globe.

These advancements of both communication and electromechanical technologies have led to
new possibilities for those tiny devices. Sensors can be connected to other actors such as services that
process the raw data and subsequently interact with actuators without regard for physical proximity.
In the beginning, these solutions were characterized by proprietary solutions implemented by different
vendors. Such solutions either involve proprietary intermediary devices between the sensors and
actuators for data processing or require static configuration to be done to allow direct interactions.
The former approach forces users to stick to one vendor due to lack of interoperability. In addition,
when using multiple vendors, it results in several vertical silos for different applications. The latter
approach also has its own limitation such as limited reuse, complexity in programming, and limited
integration with applications.

Since the last decade, diverse initiatives have been launched by various organizations in order to
make these devices an integral part of the Internet. The Internet Engineering Task Force (IETF) has been
the pioneer by establishing a number of focused working groups that address various aspects of the
integration. Due to the constraints of the tiny devices such as limited processing, storage, transmission
and reception capacity and limited power availability, existing Internet networking protocols were
not directly suitable. Therefore, various solutions have been proposed at the different layers of the
Open Systems Interconnection (OSI) model. For instance, IPv6 packets are too big to be processed,
transmitted, and received in an energy efficient way by the constrained devices. To this end, the
6LoWPAN adaptation layer has been developed for compression/decompression and transmission of
IPv6 packets so that they can be transported over constrained networks [1]. Another issue that needs
to be addressed is routing. The routing protocols used in today’s Internet are all designed to find
optimal paths to destinations by considering the routers to be powerful enough to store and process
large routing tables. This makes them not suitable for constrained multi-hop networks. Moreover, the
metrics that should be considered in constrained networks are considerably different from those in
non-constrained networks. As a result, a new routing protocol named Routing Protocol for LLN (RPL)
has been proposed [2].

Finally, also the application layer needs some adaptations to enable efficient integration.
As described in [3], web services are ideal for machine to machine communication. Unfortunately, the
existing protocols, such as HTTP, used for web services are too heavy and verbose for constrained
nodes. For this reason, a lightweight RESTful application protocol, Constrained Application Protocol
(CoAP), has been proposed [4]. CoAP provides similar functionality for constrained networks as the
one HTTP provides for conventional networks. CoAP uses PUT, POST, GET, and DELETE methods to
communicate, update or remove resources hosted by the sensor/actuator nodes.

To maximize the benefit of web services using CoAP, a number of extensions are proposed.
The most relevant extension to our work is resource observation [5]. One of the application areas of
Sensor/Actuator Networks is monitoring of different environmental phenomena. In such systems,
sensors gather information and send it to a monitoring station so that the appropriate action can
be taken. The communication between the sensor and the monitoring station can be done through
frequent polling, but results in several unnecessary request/response pairs if the values do not change
frequently. By adding an observe mechanism, sensors can inform interested parties about any state
changes of resources they want to observe. Communication can be optimized further by sending
notification criteria while registering for observation. This way only changes that have significant
importance to the observer are communicated. Details of this method, called Conditional Observation,
can be found in [6]. All in all, CoAP and its extensions enable the interaction with constrained devices
in a RESTful way over IP networks. This interaction can be utilized further to build IoT applications
that make use of sensor data or steer actuators. This can be achieved by interacting with constrained
devices within browsers [7] or services running in the cloud.

Sensors 2016, 16, 1217 3 of 29

This paper focuses on novel enablers on top of CoAP to facilitate the creation and configuration
of IoT applications with low creation and configuration overhead. The first step in building such
IoT applications is to enable direct interactions between constrained devices without the need or
continuous presence of an intermediary. This option is not yet available in CoAP and represents one of
the contributions of this paper, namely binding sensors and actuators so that they can directly interact
with each other, eliminating the need for external devices to continuously coordinate communication
between them. We show how the CoAP protocol and the observe option (along with the conditional
observe extension) can be used to create such direct interactions, also called bindings, between sensors
and actuators in a flexible way. The interactions themselves are fully RESTful CoAP-based interactions,
allowing anything to be bound to anything. This offers a lot more flexibility than other binding
solutions presented so far. On top of that, we propose configurable, connectable and reusable building
blocks with CoAP interfaces, called RESTlets that perform some processing of data at different levels.
The processing can be done inside the constrained network, at the edge of the constrained network
or in the Cloud. It acts as an enabler to build IoT applications that consist of modular processing
steps, potentially distributed along the path between the sensors and the Cloud. The RESTlets can
accept inputs and produce outputs after performing basic processing and can be configured through
control parameters. To link sensors and actuators to RESTlets or to create chains of RESTlets, we build
upon the binding concept. This contribution shows that creation of (part of) an IoT application can be
reduced to linking together devices and processing blocks, demonstrating feasibility of the approach.
In addition, we investigate the performance in terms of overhead and how this can by optimized by
looking at different options such as location of RESTlets, in-network processing, etc.

This paper is organized in seven sections. The underlying protocol, CoAP is discussed in more
detail in the next section and related work will be discussed after that. The binding concept will
be discussed in Section 4 followed by a discussion of the RESTlet concept. Section 6 shows the
implementation and evaluation of the two concepts. The paper ends by discussing main findings and
giving concluding remarks.

2. Constrained Application Protocol (CoAP)

Recently, IETF approved the Constrained Application Protocol (CoAP) [4] as an open standard
suitable for machine-to-machine communication or IoT interactions. As it implements a subset of
the Representational State Transfer (REST) paradigm, it is referred to as the lightweight counterpart
of HTTP. CoAP employs the same four methods, namely GET, PUT, POST and DELETE, as HTTP
when sending requests from a client to a server. However, unlike HTTP, CoAP uses UDP as transport
layer protocol in order to avoid the message overhead and extensive resource requirements of TCP.
Reliability is provided through confirmable messages, allowing a client to specify whether a message
should be acknowledged or not.

CoAP client/server communication takes place in the same way as any REST-based
communication. Clients send a request to a specific resource identified by a URI to retrieve the
current resource representation or to modify it. The server then replies with the current representation
or a status message. For instance, as shown in Figure 1a, if a client would like to receive the current
light intensity in a room, it just sends a GET request to the specific resource representing the light
intensity. Upon receipt, the sensor responds with the current value. Figure 1a shows this client/server
interaction where the resource is represented by /s/l and the current value, which is 80 Lux, is sent
back to the client. The responses could be piggybacked or separate. Piggybacked responses contain the
data along with the acknowledgement to a confirmable request. However, if the data is not available
during the request, for various reasons, the acknowledgement is sent alone and the response follows
when the node is ready to send the data. The other methods may not require data to be sent back, but
responses that indicate the outcome of message will be returned. Figure 1b shows, a client that sends
PUT to a resource, represented by /a/l, on a device such as a Dimmer to change the light intensity

Sensors 2016, 16, 1217 4 of 29

to 60 Lux. After adjusting the value, the dimmer responds with a status code, stating that the value
is changed.
Sensors 2016, 16, 1217 4 of 28

Figure 1. (a) CoAP GET Operation; (b) CoAP PUT Operation.

CoAP requests and responses use a fixed four bytes header followed by zero or more compact
binary options and an optional payload (Figure 2). The VER field (2 bits) in the header indicates
CoAP version number and is always set to 1. The T field (2 bits) indicates message type. Message
type 0 indicates CON (confirmable) request; and is used if reliability is required. Requests sent as
CON must be acknowledged by setting the message type to ACK (value = 2). On the other hand,
non-confirmable (NON) messages (Value 1), are used if reliability is not a requirement. Token length
(TKL) field is part of the four bytes CoAP header and indicate the length of the token which
immediately follows the fixed CoAP header. The Token is used to match requests with responses.
Code (8 bits) field is used to indicate request method in requests and response code in responses.
Message ID (16 bits) is used to detect duplicates and also match requests with responses. CoAP
packets may contain one or more options to specify different aspects of the message such as URI and
message format. Options are inserted in packets in ascending order and specified as option delta,
length and value. If the message contains payload to be transmitted, an eight bit Payload Marker
field is inserted followed by the payload. Refer to the CoAP RFC [4] for detailed explanation of the
fields and CoAP operations.

Figure 2. CoAP Header.

As mentioned above, CoAP is designed following the REST architecture and is optimized for
M2M communication in constrained environments. One of the application areas where M2M
communication is widely used is resource monitoring. In such applications, clients need to have an
up-to-date representation of data from servers. Polling (sending periodic requests to servers) is not
optimal in constrained environments since the values may not change as often as the polling request
frequency resulting in unnecessary packet transmissions. Introducing a mechanism that triggers
transmissions only if changes occur improves the communication significantly. Resource
Observation [5] is an interesting extension of the CoAP protocol that introduces such a mechanism.
With the observe extension, clients can inform servers about their interest in getting an up-to-date
representation of a resource by adding the observe option along their GET request. As a result, the

Figure 1. (a) CoAP GET Operation; (b) CoAP PUT Operation.

Responses can also be cached at intermediaries to improve efficiency. This feature is especially
important for constrained devices as proxying will allow other devices to respond in place of the
constrained node which might be sleeping or to limit traffic in the constrained network.

CoAP requests and responses use a fixed four bytes header followed by zero or more compact
binary options and an optional payload (Figure 2). The VER field (2 bits) in the header indicates CoAP
version number and is always set to 1. The T field (2 bits) indicates message type. Message type 0
indicates CON (confirmable) request; and is used if reliability is required. Requests sent as CON must
be acknowledged by setting the message type to ACK (value = 2). On the other hand, non-confirmable
(NON) messages (Value 1), are used if reliability is not a requirement. Token length (TKL) field is
part of the four bytes CoAP header and indicate the length of the token which immediately follows
the fixed CoAP header. The Token is used to match requests with responses. Code (8 bits) field is
used to indicate request method in requests and response code in responses. Message ID (16 bits) is
used to detect duplicates and also match requests with responses. CoAP packets may contain one or
more options to specify different aspects of the message such as URI and message format. Options are
inserted in packets in ascending order and specified as option delta, length and value. If the message
contains payload to be transmitted, an eight bit Payload Marker field is inserted followed by the
payload. Refer to the CoAP RFC [4] for detailed explanation of the fields and CoAP operations.

Sensors 2016, 16, 1217 4 of 28

Figure 1. (a) CoAP GET Operation; (b) CoAP PUT Operation.

CoAP requests and responses use a fixed four bytes header followed by zero or more compact
binary options and an optional payload (Figure 2). The VER field (2 bits) in the header indicates
CoAP version number and is always set to 1. The T field (2 bits) indicates message type. Message
type 0 indicates CON (confirmable) request; and is used if reliability is required. Requests sent as
CON must be acknowledged by setting the message type to ACK (value = 2). On the other hand,
non-confirmable (NON) messages (Value 1), are used if reliability is not a requirement. Token length
(TKL) field is part of the four bytes CoAP header and indicate the length of the token which
immediately follows the fixed CoAP header. The Token is used to match requests with responses.
Code (8 bits) field is used to indicate request method in requests and response code in responses.
Message ID (16 bits) is used to detect duplicates and also match requests with responses. CoAP
packets may contain one or more options to specify different aspects of the message such as URI and
message format. Options are inserted in packets in ascending order and specified as option delta,
length and value. If the message contains payload to be transmitted, an eight bit Payload Marker
field is inserted followed by the payload. Refer to the CoAP RFC [4] for detailed explanation of the
fields and CoAP operations.

Figure 2. CoAP Header.

As mentioned above, CoAP is designed following the REST architecture and is optimized for
M2M communication in constrained environments. One of the application areas where M2M
communication is widely used is resource monitoring. In such applications, clients need to have an
up-to-date representation of data from servers. Polling (sending periodic requests to servers) is not
optimal in constrained environments since the values may not change as often as the polling request
frequency resulting in unnecessary packet transmissions. Introducing a mechanism that triggers
transmissions only if changes occur improves the communication significantly. Resource
Observation [5] is an interesting extension of the CoAP protocol that introduces such a mechanism.
With the observe extension, clients can inform servers about their interest in getting an up-to-date
representation of a resource by adding the observe option along their GET request. As a result, the

Figure 2. CoAP Header.

As mentioned above, CoAP is designed following the REST architecture and is optimized for M2M
communication in constrained environments. One of the application areas where M2M communication
is widely used is resource monitoring. In such applications, clients need to have an up-to-date
representation of data from servers. Polling (sending periodic requests to servers) is not optimal in
constrained environments since the values may not change as often as the polling request frequency

Sensors 2016, 16, 1217 5 of 29

resulting in unnecessary packet transmissions. Introducing a mechanism that triggers transmissions
only if changes occur improves the communication significantly. Resource Observation [5] is an
interesting extension of the CoAP protocol that introduces such a mechanism. With the observe
extension, clients can inform servers about their interest in getting an up-to-date representation of
a resource by adding the observe option along their GET request. As a result, the server registers
the client as an observer and sends the current representation. After that, the server only sends
values, called notifications, when there is change in the resource representation. This method of
communication is proposed based on the well-known observer design model. Figure 3 shows this
communication model by taking the light sensor example discussed above. Instead of repeatedly
requesting for the current representation, the client sends a GET with an observe option. This is called
registration at the server. The server responds by including the current representation and registering
the client as an observer. Subsequent changes in the resource representation will trigger notifications
to be sent back to the client.

Sensors 2016, 16, 1217 5 of 28

server registers the client as an observer and sends the current representation. After that, the server
only sends values, called notifications, when there is change in the resource representation. This
method of communication is proposed based on the well-known observer design model. Figure 3
shows this communication model by taking the light sensor example discussed above. Instead of
repeatedly requesting for the current representation, the client sends a GET with an observe option.
This is called registration at the server. The server responds by including the current representation
and registering the client as an observer. Subsequent changes in the resource representation will
trigger notifications to be sent back to the client.

Figure 3. CoAP Observe Operation.

In this communication model, the original request and subsequent notifications are matched
using the Token. In frequently changing environments, the representations may arrive out of order
at the client. The observe option value is incremented each time to identify the latest value. For a
resource to be observed by clients, it must be defined as observable, also indicated by the obs
attribute in the resource definition.

A significant performance gain is obtained by using resource observation instead of polling.
Nevertheless, not every event change might be significant enough for the client to store it or to
trigger any action. Therefore, all those insignificant messages will be dropped after being
transmitted over the constrained network. Those unnecessary transmissions can be suppressed by
combining resource observation with server side filtering. Conditional Observation [6] provides a
mechanism for clients to specify notification criteria during registration. As a result, servers will
filter notifications and send only those that meet the notification criteria. Detailed implementation
and evaluation of Conditional observation is given in [6]. The core-interfaces draft [8] also allows
server side filtering by allowing clients to specify notification criteria in URI-Queries.

3. Related Work

3.1. Sensor-Actuator Interaction

The traditional approach for applications that require sensor-actuator interaction was to
statically associate related devices at the time of deployment. This approach lacks flexibility. One of
the earliest works that attempts flexible binding is the ZigBee End Device binding [9]. As stated in
the specification, devices with similar End Device Profile and matching cluster ID can be bound.
This dynamic binding method places many strict requirements on the devices that will be bound
and, as a result, lacks the flexibility of binding any device with any other device that our solution

Figure 3. CoAP Observe Operation.

In this communication model, the original request and subsequent notifications are matched
using the Token. In frequently changing environments, the representations may arrive out of order
at the client. The observe option value is incremented each time to identify the latest value. For a
resource to be observed by clients, it must be defined as observable, also indicated by the obs attribute
in the resource definition.

A significant performance gain is obtained by using resource observation instead of polling.
Nevertheless, not every event change might be significant enough for the client to store it or to trigger
any action. Therefore, all those insignificant messages will be dropped after being transmitted over
the constrained network. Those unnecessary transmissions can be suppressed by combining resource
observation with server side filtering. Conditional Observation [6] provides a mechanism for clients to
specify notification criteria during registration. As a result, servers will filter notifications and send
only those that meet the notification criteria. Detailed implementation and evaluation of Conditional
observation is given in [6]. The core-interfaces draft [8] also allows server side filtering by allowing
clients to specify notification criteria in URI-Queries.

Sensors 2016, 16, 1217 6 of 29

3. Related Work

3.1. Sensor-Actuator Interaction

The traditional approach for applications that require sensor-actuator interaction was to statically
associate related devices at the time of deployment. This approach lacks flexibility. One of the earliest
works that attempts flexible binding is the ZigBee End Device binding [9]. As stated in the specification,
devices with similar End Device Profile and matching cluster ID can be bound. This dynamic binding
method places many strict requirements on the devices that will be bound and, as a result, lacks the
flexibility of binding any device with any other device that our solution provides. Another notable
work that attempts to improve the limitation of ZigBee End Device Binding is given on [10]. This work
avoids the requirement of matching cluster ID by matching sensor events with actuator actions.
However, this solution is also based on ZigBee and devices that are not compatible with ZigBee cannot
be included in the binding process and hence still lacks the flexibility we desire. To achieve maximum
flexibility of binding any two devices, working on open standards is preferable. In line with this,
the CoRE Interfaces draft [8] specifies how CoAP methods can be used to achieve flexible binding.
The mechanism proposed in the draft allows end devices to establish a binding relationship between
two resources through discovery mechanisms or through human intervention and then synchronizes
the content of the involved resources. This solution has its advantages as it provides a generic solution
that can be used in interface descriptions. However, the solution focuses on synchronizing the contents
of two resources on different end devices. It is not possible to execute a specific action on the other
device. Additional programming logic is still required to send the appropriate trigger to the same or
different actuator.

3.2. In-Network Processing

Different developers have suggested different IoT application development models. Some prefer
WS-* such as SOAP using HTTP while others argue that RESTful approaches are better suited for
IoT [11]. A survey conducted among developers [12] concluded that RESTful web services were
the preferred choice of most developers. However, even RESTful IoT applications have different
development approaches. Traditional applications have been running at the edge of the constrained
network or on the gateway. In recent years, many applications are moving into the cloud [13].
Actinium [13] is one such solution. Actinium divides the whole IoT application into Thin Servers
that provide hardware functionality through RESTful interfaces and scripted apps, which run in the
cloud and implement the IoT application logic. This allows developers to focus on programming their
application to run on the cloud without dealing with the constrained environment. This approach is
significantly different from our approach which attempts to do as much processing as possible inside
the LLN e.g., in order to reduce latency, to limit the amount of data going to the Cloud or to remain
operational in the absence of connectivity.

There are other initiatives, similar to ours, which attempt to keep some or all of the processing
logic inside the LLN. Ref. [14] presents a programming abstraction known as T-Res which models
processing tasks as resources that sit on a constrained device and can be manipulated by CoAP
methods. Each T-Res resource stores URIs of the input and output devices as sub-resources. The
last output and the compiled processing function (originally written in Python) are also stored as
sub-resources. The processing function internally connects the input sources and output destinations
by reading data from the input source(s) and sending out new outputs to devices identified by the
URLs, if any. The last output is stored to allow concatenation of tasks. T-RES also provides getter and
setter functions as programing APIs to be used in processing functions. Even though this system has
some similarities to our solution, there are quite many significant differences, the first one being the
overall approach. This solution represents processing tasks as resources while we model RESTlets
to be independent IoT application building blocks that may run anywhere in the network (inside
LLN, on Gateway or in the Cloud). We also store input that may arrive from any device and send

Sensors 2016, 16, 1217 7 of 29

stored output to any other device after processing, but take a different approach regarding the way
processing is done. In case of T-Res, the processing function is responsible for getting the inputs from
the sensors and sending the output, if any. Our solution separates input retrieval and task processing
by using flexible binding for the interaction with sensors. Another difference, which is also a significant
limitation of this solution, arises from the very architecture of the solution. Every task resource stores
URLs of input sources and destination outputs. This means if the application requires doing the same
processing task (e.g., Average) on different sets of sensors and/or sends output to different actuators,
multiple task resources needs to be defined and the same function will have to be stored in each
resource. Our system enables reuse of processing functionalities as long as the processing logic remains
the same.

In [15], virtual sensors and actuators are defined as resources to provide a mechanism to move part
of the IoT application processing logic into the LLN. The virtual resources are defined hierarchically as
template, instance and configuration resources. Whenever a new virtual resource is created on a device,
the template must be posted on the virtual resource directory and the corresponding sub-resources.
The input is pulled and calculation and generation of notification is done only when GET is issued
by a component of the code in the cloud. Our solution interconnects the devices to talk to each other
automatically without the need for external commands. Further, this solution still has its components in
the cloud while ours tries to avoid putting the application code in cloud as much as possible. LooCi [16]
is another model for IoT applications. It uses an event-based binding model and standardized event
types that allow easy component interactions and re-use of components. This approach uses Remote
Protocol Call (RPC) for communication.

4. Flexible Direct Binding

In many IoT applications, sensors and actuators are deployed to work together. Examples of
such applications include temperature sensors and thermostats, a light switch (sensor) and light bulb
(actuator) in smart lighting solutions, and motion sensors and automatic door controls. Some old
installations use static configurations where sensors are associated with fixed actuator(s) before or
during deployment. This solution allows direct interaction between devices but has serious flexibility
issues. If we need to change the association made during deployment, we need to reconfigure the
devices all over again. Another solution often used in many applications is introducing an, often
proprietary, intermediary between the sensor and actuator. In such solutions, the sensor sends the data
to the intermediary device and the device sends the trigger to the actuator. This indirect communication
involves too many unnecessary transmissions of packets between the three devices. In addition to
this, every communication needs to move to the edge of the LLN (or even further into the cloud),
resulting in delayed response due to higher latency. Moreover, if the intermediary device is down for
any reason, the whole communication between the devices will not take place.

In this section, we introduce the concept of flexible direct bindings, which solves the
aforementioned problems by allowing direct interaction of smart objects without losing flexibility.
To avoid vendor lock-in and allow devices from different vendors to communicate with each other,
the implementation of this concept is realized as an extension of the CoAP protocol and Observe
option. To illustrate this, we consider a simple smart lighting system that uses a light switch (the
sensor) as a sensor, triggering a light bulb (the actuator) whenever pressed. This association may be
made or modified at any time without the need for complete reconfiguration. We will use RESTful
web services for the application and, represent the sensor resource by /gpio/btn and the actuator by
/lt/on following the IPSO naming convention [17].

In traditional intermediary-based solutions, all activities are coordinated by an intermediary
device. As shown in Figure 4a, the communication begins by establishing an observation relationship
between the intermediary, labelled Initiator, and the sensor. After that, whenever there is an event
that results in a state change of the button resource (i.e., whenever there is a button press), the sensor
sends a notification to the intermediary. Upon receiving the notification, the intermediary triggers

Sensors 2016, 16, 1217 8 of 29

the actuator. This can be even applied to dimmers where the light intensity of the bulb is related
to the value sent from the switch as payload during notification. As can be seen in the figure, the
intermediary must be always available for the system to work.

Sensors 2016, 16, 1217 8 of 28

The existing CoAP protocol does not support establishing binding relationship between two
devices through a third device. When a device sends an observe request to another device, the
relationship that will be established is between the sender and the receiver. A mechanism that allows
the receiver to differentiate between a binding request and a traditional observation request needs to
be introduced for our solution to work. In addition to this, some details of the actuator have to be
communicated along with the binding request. In line with this, we modified the CoAP protocol by
introducing four additional options, namely BIND_URI_HOST, BIND_URI_PORT,
BIND_URI_PATH and BIND_PAYLOAD. BIND_URI_HOST and BIND_URI_PORT (optional in
case default port is used) are defined to indicate the IP address and port number of the device that
needs to be notified when events arrive. BIND_URI_PATH is the resource representation on the
device through which it is triggered. When the request is stored on the sensor, the presence of these
options is used to differentiate between a binding relationship and a traditional observation
relationship. The optional BIND_PAYLOAD option may be used in a request if we wish a specific
value to be sent during notification. In its absence, the new resource representation will be sent to the
actuator. The method used for the notification will be PUT.

Figure 4. Sensor-Actuator Interaction. (a) Indirect; (b) Direct Binding.

Figure 5. Flow Chart Showing Binding Relationship Establishment.

Figure 5 shows the flow chart that describes how a binding relationship is established while
Figure 6 shows the notification process. As shown in Figure 5, when a new request from the initiator
that contains the observe option arrives at the sensor, it checks for the presence of one of the newly

Figure 4. Sensor-Actuator Interaction. (a) Indirect; (b) Direct Binding.

On the other hand, using the flexible direct binding approach that we propose, the initiator
is only required to establish the relationship between the sensor and the actuator. After successful
establishment of the binding relationship, the initiator is no longer required to take part in any of the
subsequent communication between the sensor and the actuator (Figure 4b). This means, the initiator
could be any IP capable device, such as a smart phone, that will just establish a relationship and then
leaves and re-enters the network anytime. This relationship exists as long as the sensor and actuator
are functional or until we exclusively change the binding.

The existing CoAP protocol does not support establishing binding relationship between two
devices through a third device. When a device sends an observe request to another device, the
relationship that will be established is between the sender and the receiver. A mechanism that allows
the receiver to differentiate between a binding request and a traditional observation request needs to
be introduced for our solution to work. In addition to this, some details of the actuator have to be
communicated along with the binding request. In line with this, we modified the CoAP protocol by
introducing four additional options, namely BIND_URI_HOST, BIND_URI_PORT, BIND_URI_PATH
and BIND_PAYLOAD. BIND_URI_HOST and BIND_URI_PORT (optional in case default port is
used) are defined to indicate the IP address and port number of the device that needs to be notified
when events arrive. BIND_URI_PATH is the resource representation on the device through which
it is triggered. When the request is stored on the sensor, the presence of these options is used to
differentiate between a binding relationship and a traditional observation relationship. The optional
BIND_PAYLOAD option may be used in a request if we wish a specific value to be sent during
notification. In its absence, the new resource representation will be sent to the actuator. The method
used for the notification will be PUT.

Figure 5 shows the flow chart that describes how a binding relationship is established while
Figure 6 shows the notification process. As shown in Figure 5, when a new request from the initiator
that contains the observe option arrives at the sensor, it checks for the presence of one of the newly
defined options to identify whether the request is a binding request or not. If so, the information
contained in the newly defined options will be used as details to define the observer. If not, the source
IP address, source port number and source URI_PATH will be taken as IP address, port number and
URI path of the observer. For binding requests, we may optionally store the address of the initiator too.
Once this is done, the initiator will not be involved in any event notification communications.

Sensors 2016, 16, 1217 9 of 29

Sensors 2016, 16, 1217 8 of 28

The existing CoAP protocol does not support establishing binding relationship between two
devices through a third device. When a device sends an observe request to another device, the
relationship that will be established is between the sender and the receiver. A mechanism that allows
the receiver to differentiate between a binding request and a traditional observation request needs to
be introduced for our solution to work. In addition to this, some details of the actuator have to be
communicated along with the binding request. In line with this, we modified the CoAP protocol by
introducing four additional options, namely BIND_URI_HOST, BIND_URI_PORT,
BIND_URI_PATH and BIND_PAYLOAD. BIND_URI_HOST and BIND_URI_PORT (optional in
case default port is used) are defined to indicate the IP address and port number of the device that
needs to be notified when events arrive. BIND_URI_PATH is the resource representation on the
device through which it is triggered. When the request is stored on the sensor, the presence of these
options is used to differentiate between a binding relationship and a traditional observation
relationship. The optional BIND_PAYLOAD option may be used in a request if we wish a specific
value to be sent during notification. In its absence, the new resource representation will be sent to the
actuator. The method used for the notification will be PUT.

Figure 4. Sensor-Actuator Interaction. (a) Indirect; (b) Direct Binding.

Figure 5. Flow Chart Showing Binding Relationship Establishment.

Figure 5 shows the flow chart that describes how a binding relationship is established while
Figure 6 shows the notification process. As shown in Figure 5, when a new request from the initiator
that contains the observe option arrives at the sensor, it checks for the presence of one of the newly

Figure 5. Flow Chart Showing Binding Relationship Establishment.

Sensors 2016, 16, 1217 9 of 28

defined options to identify whether the request is a binding request or not. If so, the information
contained in the newly defined options will be used as details to define the observer. If not, the
source IP address, source port number and source URI_PATH will be taken as IP address, port
number and URI path of the observer. For binding requests, we may optionally store the address of
the initiator too. Once this is done, the initiator will not be involved in any event notification
communications.

Referring to Figure 6, event notification of both binding and observation relationship is
conducted in a similar way. The notification process starts when the state of an observed resource
changes, which causes a packet to be sent to all observers. The notification process is almost the same
for both binding and observation relationships except two steps. The first difference is the method.
In case of a normal observation, a response packet is created while in case of a binding a PUT
message is prepared. The payload to be used for binding relationships can be modified by the
BIND_PAYLOAD option, which is the second difference. Apart from these two differences the
notification process is the same.

Figure 6. Flow Chart Showing Notification of Events.

Management of the binding relationships can be facilitated by introducing binding directories.
Binding directories are similar to resource directories but list existing binding relationships.
Through the binding directory, we may find out which binding relationships exist and perform
reconfiguration by sending other binding requests, if necessary.

5. RESTlets

More and more IoT applications are moving into the Cloud. Many others reside at the gateway
running proprietary protocols. Both options require movement of all data generated by sensors to
the edge of the LLN or to the Cloud. As discussed in the previous section, this approach puts heavy
burden on the border devices and some of the data that traverses the LLN might not be useful for the

Figure 6. Flow Chart Showing Notification of Events.

Sensors 2016, 16, 1217 10 of 29

Referring to Figure 6, event notification of both binding and observation relationship is conducted
in a similar way. The notification process starts when the state of an observed resource changes,
which causes a packet to be sent to all observers. The notification process is almost the same for both
binding and observation relationships except two steps. The first difference is the method. In case of a
normal observation, a response packet is created while in case of a binding a PUT message is prepared.
The payload to be used for binding relationships can be modified by the BIND_PAYLOAD option,
which is the second difference. Apart from these two differences the notification process is the same.

Management of the binding relationships can be facilitated by introducing binding directories.
Binding directories are similar to resource directories but list existing binding relationships. Through
the binding directory, we may find out which binding relationships exist and perform reconfiguration
by sending other binding requests, if necessary.

5. RESTlets

More and more IoT applications are moving into the Cloud. Many others reside at the gateway
running proprietary protocols. Both options require movement of all data generated by sensors to
the edge of the LLN or to the Cloud. As discussed in the previous section, this approach puts heavy
burden on the border devices and some of the data that traverses the LLN might not be useful for the
IoT applications. Performing some (pre) processing activities inside the constrained network can help
to reduce the number of packets transmitted to the cloud or the edge.

In this section we will introduce a novel solution that breaks down IoT applications into smaller
and manageable units in order to simplify IoT application development and resolve the problems
mentioned above. The solution is based on what we call RESTlets. RESTlets can be defined as IoT
application building blocks that use RESTful web services to process data inside the constrained
network. RESTlets have one or more data and control inputs, processing logic and outputs (Figure 7).
Internal wiring connects the data inputs, control inputs and the processing logic to generate new
outputs. In the context of sensor/actuator interactions the data inputs could be sensor readings or
outputs of other RESTlets. The processing that will be done inside the RESTlet may vary depending
on the requirement of the application. The processing could be as complex as sending an SMS or as
simple as a logical AND. If the processing results in new data, the output could be used to trigger
an actuator or sent to another RESTlet as an input. The control inputs are configuration parameters
that can be used to control how the RESTlet operates and how or what outputs must be produced.
For example, the control parameters may define the threshold value for generating new outputs,
or even the computation interval. By modifying the control parameters during runtime, we can control
how a specific RESTlet behaves. After a RESTlet is defined on a specific device, it can be instantiated
multiple times.

Sensors 2016, 16, 1217 10 of 28

IoT applications. Performing some (pre) processing activities inside the constrained network can
help to reduce the number of packets transmitted to the cloud or the edge.

In this section we will introduce a novel solution that breaks down IoT applications into smaller
and manageable units in order to simplify IoT application development and resolve the problems
mentioned above. The solution is based on what we call RESTlets. RESTlets can be defined as IoT
application building blocks that use RESTful web services to process data inside the constrained
network. RESTlets have one or more data and control inputs, processing logic and outputs (Figure 7).
Internal wiring connects the data inputs, control inputs and the processing logic to generate new
outputs. In the context of sensor/actuator interactions the data inputs could be sensor readings or
outputs of other RESTlets. The processing that will be done inside the RESTlet may vary depending
on the requirement of the application. The processing could be as complex as sending an SMS or as
simple as a logical AND. If the processing results in new data, the output could be used to trigger an
actuator or sent to another RESTlet as an input. The control inputs are configuration parameters that
can be used to control how the RESTlet operates and how or what outputs must be produced. For
example, the control parameters may define the threshold value for generating new outputs, or even
the computation interval. By modifying the control parameters during runtime, we can control how
a specific RESTlet behaves. After a RESTlet is defined on a specific device, it can be instantiated
multiple times.

Figure 7. RESTlet Block Diagram.

Implementation of RESTlets using RESTful web services can be achieved by representing each
RESTlet instance as a resource and each component (data input, control input and output) as
sub-resources. Instantiation of RESTlets is achieved by sending POST requests to the device that is
selected to host the RESTlet. Since multiple RESTlets can be defined on a single device, the POST
request must contain the name of the RESTlet along with the number of data inputs, control inputs
and outputs. Whenever a POST request is received, the RESTlet resource and its sub-resources will
be created dynamically and will be referenced using hierarchical naming convention as:

/r/<RESTletNo>/<in|out|con>/<SubResourceNumber>

For instance, /r/0/in/0 refers to the first data input of the first RESTlet while /r/1/out/0 and
/r/0/con/1 respectively refer to the first output of the second RESTlet and the second control input of
the first RESTlet. Please note that RESTlets are numbered as per the sequence of the POST request.
This means the first RESTlet is the one created by the first POST request and so on. Alternatively, we
can name them by passing the RESTlet name with the request for creation.

The combination of the RESTlet concept and the flexible direct binding concept can be used to
build simple web-based IoT applications. To show how this works, we consider a simple smart
home application that turns on or off the air conditioner based on the average temperature in an
occupied room. The temperature values are obtained from three temperature sensors and occupancy
of the room can be identified by a motion sensor. In traditional Web based IoT applications, the data
from the sensors is sent to the LLN gateway to be processed there and the result will be sent back
into the LLN for the actuator (in this case attached to the air conditioner) to act upon it. The data
transmission from the sensors takes place in various ways. One possible way is by periodically
polling for new values (shown in Figure 8). This would result in a lot of unnecessary data transfers in
case the frequency at which temperature values change is much lower than the frequency of the

Figure 7. RESTlet Block Diagram.

Implementation of RESTlets using RESTful web services can be achieved by representing each
RESTlet instance as a resource and each component (data input, control input and output) as
sub-resources. Instantiation of RESTlets is achieved by sending POST requests to the device that
is selected to host the RESTlet. Since multiple RESTlets can be defined on a single device, the POST
request must contain the name of the RESTlet along with the number of data inputs, control inputs

Sensors 2016, 16, 1217 11 of 29

and outputs. Whenever a POST request is received, the RESTlet resource and its sub-resources will be
created dynamically and will be referenced using hierarchical naming convention as:

/r/<RESTletNo>/<in|out|con>/<SubResourceNumber>

For instance, /r/0/in/0 refers to the first data input of the first RESTlet while /r/1/out/0 and
/r/0/con/1 respectively refer to the first output of the second RESTlet and the second control input of
the first RESTlet. Please note that RESTlets are numbered as per the sequence of the POST request.
This means the first RESTlet is the one created by the first POST request and so on. Alternatively,
we can name them by passing the RESTlet name with the request for creation.

The combination of the RESTlet concept and the flexible direct binding concept can be used to
build simple web-based IoT applications. To show how this works, we consider a simple smart home
application that turns on or off the air conditioner based on the average temperature in an occupied
room. The temperature values are obtained from three temperature sensors and occupancy of the
room can be identified by a motion sensor. In traditional Web based IoT applications, the data from the
sensors is sent to the LLN gateway to be processed there and the result will be sent back into the LLN
for the actuator (in this case attached to the air conditioner) to act upon it. The data transmission from
the sensors takes place in various ways. One possible way is by periodically polling for new values
(shown in Figure 8). This would result in a lot of unnecessary data transfers in case the frequency at
which temperature values change is much lower than the frequency of the polling interval. Another
option would be to establish an observation relationship between the gateway and each sensor so that
only new changes are communicated to the gateway. In both cases, data from all sensors is transferred
to the gateway and triggers for the actuator, if any, have to be sent back into the LLN.

Sensors 2016, 16, 1217 11 of 28

polling interval. Another option would be to establish an observation relationship between the
gateway and each sensor so that only new changes are communicated to the gateway. In both cases,
data from all sensors is transferred to the gateway and triggers for the actuator, if any, have to be
sent back into the LLN.

Figure 8. Sample Code Executed on Non-constrained Devices.

Using RESTlets we can move some or all of the processing logic inside the LLN to reduce the
number of packets transmitted. A block diagram showing the breakdown of the application into
RESTlets is given in the diagram (Figure 9). The three temperature sensors send their data to the
RESTlet which implements the AVERAGE function. The output of this RESTlet is sent to another
RESTlet which implements the logical AND operator that combines this with the readings of the
motion sensor to finally send the trigger to the actuator. One of the benefits of the RESTlet approach
is that, any of the existing sensor or actuator nodes can be used to host the RESTlets. Alternatively,
we can distribute the RESTlets among different nodes. Yet another alternative may be placing a
more capable node inside the LLN that does all the processing. For simplicity, lets select node S1 to
host the AVERAGE RESTlet and the motion sensor, M, to host the AND RESTlet. The figure below
(Figure 10) shows the nine steps that can be used to program this application.

Figure 9. RESTlet block diagram for the smart home scenario.

As shown in the above listing, the first two messages create the AVERAGE and the AND
RESTlets on nodes S1 and M, respectively. The numbers indicate the number of data inputs, control
inputs and output in that order. In this case, the AVERAGE RESTlet contains 3 data inputs while the
AND RESTlet only has two. Both RESTlets have one control and one output each. The third
statement sets the control parameter of the AVERAGE RESTlet to be 25 so that only average values
greater than 25 °C are sent as output. Statements 4 through 6 establish binding relationships between
each temperature sensor and the three data inputs of the AVERAGE RESTlet. After receiving these
messages, the sensors send all temperature changes to the RESTlets data inputs. The seventh
statement associates the motion sensor to the first input of the AND RESTlet by establishing a
binding relationship between them. The output of the AVERAGE RESTlet and the second data input

Figure 8. Sample Code Executed on Non-constrained Devices.

Using RESTlets we can move some or all of the processing logic inside the LLN to reduce the
number of packets transmitted. A block diagram showing the breakdown of the application into
RESTlets is given in the diagram (Figure 9). The three temperature sensors send their data to the
RESTlet which implements the AVERAGE function. The output of this RESTlet is sent to another
RESTlet which implements the logical AND operator that combines this with the readings of the
motion sensor to finally send the trigger to the actuator. One of the benefits of the RESTlet approach
is that, any of the existing sensor or actuator nodes can be used to host the RESTlets. Alternatively,
we can distribute the RESTlets among different nodes. Yet another alternative may be placing a more
capable node inside the LLN that does all the processing. For simplicity, lets select node S1 to host the
AVERAGE RESTlet and the motion sensor, M, to host the AND RESTlet. The figure below (Figure 10)
shows the nine steps that can be used to program this application.

Sensors 2016, 16, 1217 12 of 29

Sensors 2016, 16, 1217 11 of 28

polling interval. Another option would be to establish an observation relationship between the
gateway and each sensor so that only new changes are communicated to the gateway. In both cases,
data from all sensors is transferred to the gateway and triggers for the actuator, if any, have to be
sent back into the LLN.

Figure 8. Sample Code Executed on Non-constrained Devices.

Using RESTlets we can move some or all of the processing logic inside the LLN to reduce the
number of packets transmitted. A block diagram showing the breakdown of the application into
RESTlets is given in the diagram (Figure 9). The three temperature sensors send their data to the
RESTlet which implements the AVERAGE function. The output of this RESTlet is sent to another
RESTlet which implements the logical AND operator that combines this with the readings of the
motion sensor to finally send the trigger to the actuator. One of the benefits of the RESTlet approach
is that, any of the existing sensor or actuator nodes can be used to host the RESTlets. Alternatively,
we can distribute the RESTlets among different nodes. Yet another alternative may be placing a
more capable node inside the LLN that does all the processing. For simplicity, lets select node S1 to
host the AVERAGE RESTlet and the motion sensor, M, to host the AND RESTlet. The figure below
(Figure 10) shows the nine steps that can be used to program this application.

Figure 9. RESTlet block diagram for the smart home scenario.

As shown in the above listing, the first two messages create the AVERAGE and the AND
RESTlets on nodes S1 and M, respectively. The numbers indicate the number of data inputs, control
inputs and output in that order. In this case, the AVERAGE RESTlet contains 3 data inputs while the
AND RESTlet only has two. Both RESTlets have one control and one output each. The third
statement sets the control parameter of the AVERAGE RESTlet to be 25 so that only average values
greater than 25 °C are sent as output. Statements 4 through 6 establish binding relationships between
each temperature sensor and the three data inputs of the AVERAGE RESTlet. After receiving these
messages, the sensors send all temperature changes to the RESTlets data inputs. The seventh
statement associates the motion sensor to the first input of the AND RESTlet by establishing a
binding relationship between them. The output of the AVERAGE RESTlet and the second data input

Figure 9. RESTlet block diagram for the smart home scenario.

Sensors 2016, 16, 1217 12 of 28

of the AND RESTlet are conveniently associated through observation relationship by the eighth
statement. The last statement finally associates the output of the AND RESTlet to the actuator so that
changes at the output will trigger the actuator. For the binding process to work properly, all outputs
of RESTlets are made observable.

Figure 10. CoAP Messages used to create the required Binding Relationship.

Interestingly, this simple concept reduces the whole IoT application development to a series of
CoAP message transmissions that may be sent from anywhere in the network or over the Internet.
Management of the IoT applications is also made easy. Sending simple GET messages to the RESTlet
nodes and using binding directories to list out all available bindings gives us enough information to
inspect and, if needed, reprogram the entire application or to modify some aspect of it.

6. Implementation and Evaluation

6.1. Implementation

The selection of a good implementation platform is crucial to demonstrate the feasibility of new
concepts and to show performance gains obtained through the proposed solutions. We used
Contiki 2.7 [18] as a base system for all experiments, which was the latest stable version available at
the time of starting our experiments. Contiki is an open-source embedded operating system suitable
for constrained systems. Its innovative IP implementation, uIP, makes it a good solution for
experiments that involve IP-based communications in the constrained world. In addition to this, all
required features for our tests such as 6LoWPAN, RPL, and CoAP have all been implemented. The
CoAP implementation of Contiki is known as Erbium [19].

Next to this, we also need to run some tests on non-constrained devices for comparison
purposes. This requires a CoAP implementation that runs on non-constrained devices (e.g.,
gateways, Cloud servers, etc.). For this, we have used our own C++ based implementation of CoAP
and its extensions, named CoAP++. Since both Erbium and CoAP++ do not support the proposed
binding and RESTlet concepts, some modifications have been made, including the addition of new
CoAP options and the introduction of a mechanism to define and instantiate RESTlets.

6.1.1. Flexible Direct Binding

As explained earlier, to support the binding concept, four new options were introduced. These
new options have been added to Erbium and CoAP++ with the following option numbers 42, 46, 50,
and 54 for BIND_URI_HOST, BIND_URI_PORT, BIND_URI_PATH and BIND_PAYLOAD
respectively. In addition to this, the required functionality for serializing and parsing those options
has been added. Apart from this, two other modifications have been made in order for the binding
solution to work properly. The first major modification included an extension of the registration
mechanism in order to differentiate between normal observers and binding observers as shown
Figure 5. The second major change was the way notifications were sent to observers, as for binding

Figure 10. CoAP Messages used to create the required Binding Relationship.

As shown in the above listing, the first two messages create the AVERAGE and the AND RESTlets
on nodes S1 and M, respectively. The numbers indicate the number of data inputs, control inputs and
output in that order. In this case, the AVERAGE RESTlet contains 3 data inputs while the AND RESTlet
only has two. Both RESTlets have one control and one output each. The third statement sets the control
parameter of the AVERAGE RESTlet to be 25 so that only average values greater than 25 ˝C are sent as
output. Statements 4 through 6 establish binding relationships between each temperature sensor and
the three data inputs of the AVERAGE RESTlet. After receiving these messages, the sensors send all
temperature changes to the RESTlets data inputs. The seventh statement associates the motion sensor
to the first input of the AND RESTlet by establishing a binding relationship between them. The output
of the AVERAGE RESTlet and the second data input of the AND RESTlet are conveniently associated
through observation relationship by the eighth statement. The last statement finally associates the
output of the AND RESTlet to the actuator so that changes at the output will trigger the actuator.
For the binding process to work properly, all outputs of RESTlets are made observable.

Interestingly, this simple concept reduces the whole IoT application development to a series of
CoAP message transmissions that may be sent from anywhere in the network or over the Internet.
Management of the IoT applications is also made easy. Sending simple GET messages to the RESTlet
nodes and using binding directories to list out all available bindings gives us enough information to
inspect and, if needed, reprogram the entire application or to modify some aspect of it.

6. Implementation and Evaluation

6.1. Implementation

The selection of a good implementation platform is crucial to demonstrate the feasibility of
new concepts and to show performance gains obtained through the proposed solutions. We used

Sensors 2016, 16, 1217 13 of 29

Contiki 2.7 [18] as a base system for all experiments, which was the latest stable version available at the
time of starting our experiments. Contiki is an open-source embedded operating system suitable for
constrained systems. Its innovative IP implementation, uIP, makes it a good solution for experiments
that involve IP-based communications in the constrained world. In addition to this, all required
features for our tests such as 6LoWPAN, RPL, and CoAP have all been implemented. The CoAP
implementation of Contiki is known as Erbium [19].

Next to this, we also need to run some tests on non-constrained devices for comparison purposes.
This requires a CoAP implementation that runs on non-constrained devices (e.g., gateways, Cloud
servers, etc.). For this, we have used our own C++ based implementation of CoAP and its extensions,
named CoAP++. Since both Erbium and CoAP++ do not support the proposed binding and RESTlet
concepts, some modifications have been made, including the addition of new CoAP options and the
introduction of a mechanism to define and instantiate RESTlets.

6.1.1. Flexible Direct Binding

As explained earlier, to support the binding concept, four new options were introduced. These
new options have been added to Erbium and CoAP++ with the following option numbers 42, 46, 50,
and 54 for BIND_URI_HOST, BIND_URI_PORT, BIND_URI_PATH and BIND_PAYLOAD respectively.
In addition to this, the required functionality for serializing and parsing those options has been added.
Apart from this, two other modifications have been made in order for the binding solution to work
properly. The first major modification included an extension of the registration mechanism in order to
differentiate between normal observers and binding observers as shown Figure 5. The second major
change was the way notifications were sent to observers, as for binding relationships, the PUT method
is being used, optionally in combination with a payload as indicated by the BIND_PAYLOAD option.

6.1.2. RESTlets

The RESTlet concept, as discussed above, makes use of bindings to build (parts of) IoT applications
by performing processing tasks and exchanging raw values and (semi) processed data between devices.
In order to enable nodes to support RESTlets, some modifications have been made to both Erbium and
CoAP++. The main modifications are discussed below.

The application logic of RESTlet, which acts on the data inputs (and the control inputs) to produce
outputs, has been implemented for every node that potentially hosts the RESTlet. Every RESTlet
defines its own processing function and hence one processing function per RESTlet is defined. Generic
functions that manipulate the data and control inputs have also been defined. A POST request to
a specific resource initiates the instantiation of the RESTlet instances and the dynamic creation of
associated resources. The /r resource is defined for this purpose. Moreover, since Erbium does not
support the dynamic creation of resources, this functionality has been added. In order to differentiate
one RESTlet instance from the other, detailed information about every instantiated RESTlet needs to be
stored. Therefore, a data structure for storing the RESTlet name, the number of data inputs, the number
of control inputs, the number of outputs, and the memory address of the processing function has been
defined. This data structure may also store the latest values of the data inputs, control inputs and
outputs if required. Finally, a callback function that is called for further manipulation of the resources
and sub-resources has been defined. The flow chart of this callback function is shown in Figure 11.

Each time a request for the /r resource arrives, it is forwarded to the callback function in order
to see which sub-resource is referenced and an appropriate action is taken. Based on the URI-PATH
of the request, the function will be able to identify for which sub-resource the request has been sent.
A PUT request for the data input (in) initiates execution of the processing logic, which, in turn, notifies
observers in case the output changes. Sending a PUT request to the control input (con) results in
changing the identified control input. GET requests to any of the sub-resources may be used to retrieve
the current value. All outputs have been made observable in order to allow binding relationship
between the RESTlet and devices (or other RESTlets).

Sensors 2016, 16, 1217 14 of 29

Sensors 2016, 16, 1217 13 of 28

relationships, the PUT method is being used, optionally in combination with a payload as indicated
by the BIND_PAYLOAD option.

6.1.2. RESTlets

The RESTlet concept, as discussed above, makes use of bindings to build (parts of) IoT
applications by performing processing tasks and exchanging raw values and (semi) processed data
between devices. In order to enable nodes to support RESTlets, some modifications have been made
to both Erbium and CoAP++. The main modifications are discussed below.

The application logic of RESTlet, which acts on the data inputs (and the control inputs) to
produce outputs, has been implemented for every node that potentially hosts the RESTlet. Every
RESTlet defines its own processing function and hence one processing function per RESTlet is
defined. Generic functions that manipulate the data and control inputs have also been defined. A
POST request to a specific resource initiates the instantiation of the RESTlet instances and the
dynamic creation of associated resources. The /r resource is defined for this purpose. Moreover,
since Erbium does not support the dynamic creation of resources, this functionality has been added.
In order to differentiate one RESTlet instance from the other, detailed information about every
instantiated RESTlet needs to be stored. Therefore, a data structure for storing the RESTlet name, the
number of data inputs, the number of control inputs, the number of outputs, and the memory
address of the processing function has been defined. This data structure may also store the latest
values of the data inputs, control inputs and outputs if required. Finally, a callback function that is
called for further manipulation of the resources and sub-resources has been defined. The flow chart
of this callback function is shown in Figure 11.

Figure 11. Flowchart Showing Interaction with RESTlet Instances using CoAP Messages.

Each time a request for the /r resource arrives, it is forwarded to the callback function in order to
see which sub-resource is referenced and an appropriate action is taken. Based on the URI-PATH of
the request, the function will be able to identify for which sub-resource the request has been sent. A
PUT request for the data input (in) initiates execution of the processing logic, which, in turn, notifies
observers in case the output changes. Sending a PUT request to the control input (con) results in

Figure 11. Flowchart Showing Interaction with RESTlet Instances using CoAP Messages.

Putting it all together, once all logic for a particular RESTlet has been defined and implemented,
applications may instantiate RESTlets on a specific node by sending a POST request to the /r resource
and specifying the name of the RESTlet, the number of data inputs, control inputs and outputs in the
payload as follows:

RN = <RESTlet Name>; IN = <# Data inp>; CON = <# Control inp.>; OUT = <# Output>

For example, a POST request sent to a node with RN = AND; IN = 2; CON = 2; OUT = 1; as payload,
creates the AND RESTlet with two data input, two control input and out output resources. The five
resources will be referenced as /r/0/in/0, /r/0/in/1, /r/0/con/0, /r/0/con/1, and /r/0/out/0 in
all further communications. Subsequent POST requests create RESTlet resources that are identified by
changing the number next to the /r.

6.2. Experiment Setup

For all experiments involving constrained nodes, we simulated Zolertia (Z1) nodes in Cooja.
The basic scenario we tried to simulate is the interaction between a temperature sensor (as sensor),
identified by the /s/temp resource, and a thermostat (as actuator), identified by /a/t. The temperature
values are periodically read from a random sequence of 100 values stored in an array. If two
consecutive readings result in different values, a notification to the observers will be sent. Whenever a
non-constrained node is involved, we use the CoAP++ code running on the laptop.

6.3. Functional Evaluation

In this subsection the details of the proposed solutions and their implementation are discussed.

6.3.1. Bindings

As explained earlier, binding a sensor and an actuator can be done by any device from anywhere
in the Internet. Figure 12 shows the CoAP++ GUI screenshot when a GET request is used to establish a

Sensors 2016, 16, 1217 15 of 29

binding between the /gpio/btn resource on a sensor with IP address [aaaa::c30c:0:0:2] and an actuator
with address [aaaa::c30c:0:0:3]. The specific resource of interest on the actuator is /a/t.

Sensors 2016, 16, 1217 14 of 28

changing the identified control input. GET requests to any of the sub-resources may be used to
retrieve the current value. All outputs have been made observable in order to allow binding
relationship between the RESTlet and devices (or other RESTlets).

Putting it all together, once all logic for a particular RESTlet has been defined and implemented,
applications may instantiate RESTlets on a specific node by sending a POST request to the /r
resource and specifying the name of the RESTlet, the number of data inputs, control inputs and
outputs in the payload as follows:

RN = <RESTlet Name>; IN = <# Data inp>; CON = <# Control inp.>; OUT = <# Output>

For example, a POST request sent to a node with RN = AND; IN = 2; CON = 2; OUT = 1; as
payload, creates the AND RESTlet with two data input, two control input and out output resources.
The five resources will be referenced as /r/0/in/0, /r/0/in/1, /r/0/con/0, /r/0/con/1, and /r/0/out/0 in all
further communications. Subsequent POST requests create RESTlet resources that are identified by
changing the number next to the /r.

6.2. Experiment Setup

For all experiments involving constrained nodes, we simulated Zolertia (Z1) nodes in Cooja.
The basic scenario we tried to simulate is the interaction between a temperature sensor (as sensor),
identified by the /s/temp resource, and a thermostat (as actuator), identified by /a/t. The temperature
values are periodically read from a random sequence of 100 values stored in an array. If two
consecutive readings result in different values, a notification to the observers will be sent. Whenever
a non-constrained node is involved, we use the CoAP++ code running on the laptop.

6.3. Functional Evaluation

In this subsection the details of the proposed solutions and their implementation are discussed.

6.3.1. Bindings

As explained earlier, binding a sensor and an actuator can be done by any device from
anywhere in the Internet. Figure 12 shows the CoAP++ GUI screenshot when a GET request is used
to establish a binding between the /gpio/btn resource on a sensor with IP address [aaaa::c30c:0:0:2]
and an actuator with address [aaaa::c30c:0:0:3]. The specific resource of interest on the actuator is /a/t.

Figure 12. Creation of Binding Using CoAP++ GUI from Non-constrained Device.

Figure 12. Creation of Binding Using CoAP++ GUI from Non-constrained Device.

Once the binding relationship has been established, all further interactions take place directly
between the sensor and the actuator. One such an interaction can be seen in Figure 13, which is
Screenshot of the Simulation in Cooja. The Cooja Visualizer at the left of the picture shows the direct
communication (the notification and the ACK) in blue arrows. The shaded part of the simulation script
editor window confirms the route the packets followed after data is generated at the sensor (Node 2)
until received by the actuator.

Sensors 2016, 16, 1217 15 of 28

Once the binding relationship has been established, all further interactions take place directly
between the sensor and the actuator. One such an interaction can be seen in Figure 13, which is
Screenshot of the Simulation in Cooja. The Cooja Visualizer at the left of the picture shows the direct
communication (the notification and the ACK) in blue arrows. The shaded part of the simulation
script editor window confirms the route the packets followed after data is generated at the sensor
(Node 2) until received by the actuator.

Figure 13. Direct Interaction of Sensor and Actuator Nodes in Cooja.

6.3.2. RESTlets

RESTlets are application building blocks that may be defined once on devices and that can be
instantiated a number of times to build (part of) IoT applications by interconnecting them with
devices and each other using flexible bindings. This process can also be accomplished using any
device connected to the Internet. To illustrate this, we consider the example of a simple LESS-THAN
RESTlet in order to send notifications to the actuator shown above in case the temperature drops
below 25 degrees. Figure 14 shows the Copper screenshot of this operation. Sending a POST request
to the /r resource of the node selected to host the RESTlet, in this case [aaaa::1], creates the resource
and its sub-resources. The payload shows the name of the RESTlet, LT indicating less than, which
has one data input and one control input. The control input is initialized to 25. The default number
of outputs is 1. Upon reception of the POST request the RESTlet is being instantiated and further
referenced as /r/0. In addition, 3 sub-resources identified as /r/0/con/0, /r/0/in/0 and /r/0/out/0 are
created representing the control input, data input and output, respectively.

To achieve the desired result, the input /r/0/in/0 is bound to the sensor node and the output
/r/0/out/0 is bound to the actuator. This way, sensor readings are being transmitted to the RESTlet
and the output of the RESTlet triggers the actuator. For this, the binding functionality shown in the
previous sub-section is applied twice. Subsequent updates of the control parameter can be easily
performed by sending a PUT request to the /r/0/con/0 resource.

This solution can be used to build complex IoT applications by distributing the RESTlets at
different devices inside the LLN, at the LLN Gateway or even in the cloud. Irrespective of the
complexity of the application or the location of the RESTlet nodes, we send a series of CoAP requests
to the devices to program the application. To simplify the development even further, we can employ

Figure 13. Direct Interaction of Sensor and Actuator Nodes in Cooja.

Sensors 2016, 16, 1217 16 of 29

6.3.2. RESTlets

RESTlets are application building blocks that may be defined once on devices and that can
be instantiated a number of times to build (part of) IoT applications by interconnecting them with
devices and each other using flexible bindings. This process can also be accomplished using any
device connected to the Internet. To illustrate this, we consider the example of a simple LESS-THAN
RESTlet in order to send notifications to the actuator shown above in case the temperature drops below
25 degrees. Figure 14 shows the Copper screenshot of this operation. Sending a POST request to the
/r resource of the node selected to host the RESTlet, in this case [aaaa::1], creates the resource and its
sub-resources. The payload shows the name of the RESTlet, LT indicating less than, which has one
data input and one control input. The control input is initialized to 25. The default number of outputs
is 1. Upon reception of the POST request the RESTlet is being instantiated and further referenced as
/r/0. In addition, 3 sub-resources identified as /r/0/con/0, /r/0/in/0 and /r/0/out/0 are created
representing the control input, data input and output, respectively.

Sensors 2016, 16, 1217 16 of 28

visual programming tools to simply drag-and-drop components to instantiate RESTlets and perform
the binding.

Figure 14. Creation of RESTlet Instances in Copper.

6.4. Performance Evaluation

The proposed modifications may affect some aspects of the network or the device itself.
Memory footprint, number and size of packets transmitted, and communication delay are some of
the parameters that might be affected positively or negatively. The outcomes of several tests
showing these impacts are discussed below.

6.4.1. Performance Evaluation of Bindings

A. Memory Footprint

As described above the original Erbium code has been modified in order to support the binding
concept. This modification induces a slight increase in memory space, mainly in the code (text)
segment. Table 1 shows the increased memory footprint of the binding solution compared to
gateway or cloud-based solutions. As every observer’s information needs to be stored in memory,
the memory required in the BSS section increases proportionally to the number of observers.
However, the difference between the two approaches is only 38 bytes per observer for the two cases.

Table 1. Memory Foot Print.

Num. Observers
Binding Sensor Non-Binding Sensor

Text Data BSS Total Text Data BSS Total
0 47,829 306 5324 53,459 46,453 306 5166 51,925
1 47,829 306 5580 53,715 46,453 306 5384 52,143
2 47,829 306 5836 53,971 46,453 306 5602 52,361
3 47,829 306 6092 54,227 46,453 306 5820 52,581
4 47,829 306 6348 54,483 46,453 306 6058 52,797

Despite the slight increase in memory footprint, the code can still fit in constrained devices.
Given the advantage of the binding solution, the increase in memory footprint is acceptable and the
binding solution is viable to be applied in constrained devices. However, this does not come without
a limitation. An increased number of bindings leads to an increase in memory space requirement.
The BSS section of both solutions in the table shows that when the number of observers increases,
the size of the BSS increases as well because at boot time the program always reserves the maximum
amount of memory needed to store all potential observers. As memory is a very scarce resource of

Figure 14. Creation of RESTlet Instances in Copper.

To achieve the desired result, the input /r/0/in/0 is bound to the sensor node and the output
/r/0/out/0 is bound to the actuator. This way, sensor readings are being transmitted to the RESTlet
and the output of the RESTlet triggers the actuator. For this, the binding functionality shown in the
previous sub-section is applied twice. Subsequent updates of the control parameter can be easily
performed by sending a PUT request to the /r/0/con/0 resource.

This solution can be used to build complex IoT applications by distributing the RESTlets at
different devices inside the LLN, at the LLN Gateway or even in the cloud. Irrespective of the
complexity of the application or the location of the RESTlet nodes, we send a series of CoAP requests
to the devices to program the application. To simplify the development even further, we can employ
visual programming tools to simply drag-and-drop components to instantiate RESTlets and perform
the binding.

6.4. Performance Evaluation

The proposed modifications may affect some aspects of the network or the device itself. Memory
footprint, number and size of packets transmitted, and communication delay are some of the
parameters that might be affected positively or negatively. The outcomes of several tests showing
these impacts are discussed below.

Sensors 2016, 16, 1217 17 of 29

6.4.1. Performance Evaluation of Bindings

A. Memory Footprint

As described above the original Erbium code has been modified in order to support the binding
concept. This modification induces a slight increase in memory space, mainly in the code (text)
segment. Table 1 shows the increased memory footprint of the binding solution compared to gateway
or cloud-based solutions. As every observer’s information needs to be stored in memory, the memory
required in the BSS section increases proportionally to the number of observers. However, the
difference between the two approaches is only 38 bytes per observer for the two cases.

Table 1. Memory Foot Print.

Num. Observers
Binding Sensor Non-Binding Sensor

Text Data BSS Total Text Data BSS Total

0 47,829 306 5324 53,459 46,453 306 5166 51,925
1 47,829 306 5580 53,715 46,453 306 5384 52,143
2 47,829 306 5836 53,971 46,453 306 5602 52,361
3 47,829 306 6092 54,227 46,453 306 5820 52,581
4 47,829 306 6348 54,483 46,453 306 6058 52,797

Despite the slight increase in memory footprint, the code can still fit in constrained devices.
Given the advantage of the binding solution, the increase in memory footprint is acceptable and the
binding solution is viable to be applied in constrained devices. However, this does not come without
a limitation. An increased number of bindings leads to an increase in memory space requirement.
The BSS section of both solutions in the table shows that when the number of observers increases,
the size of the BSS increases as well because at boot time the program always reserves the maximum
amount of memory needed to store all potential observers. As memory is a very scarce resource
of constrained devices, this will limit the number of observers allowed to register simultaneously
and thus the number of bindings that can be supported. Here the gateway/cloud solution has an
advantage since it may achieve scalability by aggregating multiple observe requests at the gateway
avoiding one to one relationships between multiple actuators and a sensor.

B. Packet Size

LLNs have a low Maximum Transmission Unit (MTU). Large packets whose size exceeds the MTU
go through a fragmentation/defragmentation cycle from the source all the way to their final destination.
This behaviour negatively affects the performance of the network. Therefore, the resulting packet
size is a very important parameter when discussing the performance of new solutions. Moreover,
fragmentation also comes at the expense of an increased delay. The packet size at the application layer
for CoAP based communication can be calculated as:

Packet Size “ Size of pCoAP´Headerq ` Size of pTokenq ` Size of poptionsq ` Size of ppayloadq

where:
Size of pCoAP´Headerq “ 4 bytes, Size of pTokenq “ 0 to 8 bytes

Size of (Options) differs from packet to packet depending on the number and type of CoAP
options being included in the packet. For example, Observation requests include the Observe Option,
which has a maximum length of four bytes. The Uri-Path option and payload greatly vary depending
on the resource identifier and the data to be communicated. For the URI path, we assume the simplified
IPSO Application Framework [17] resource names. For instance, for a button associated with a light
switch (sensor)the URI path becomes /gpio/btn, which will be transmitted as two Uri-Path options

Sensors 2016, 16, 1217 18 of 29

with a total length of nine bytes (one byte for every option plus the length of both segments “gpio”
and “btn” in the URI).

Most of these values are common for all types of communication so they do not impact the
comparison between the two methods. The real difference between the two solutions can be seen at the
relationship initiation packet. In case of the non-binding solution the options that are minimally needed
are Observe (one byte) and Uri-Path (nine bytes for /gpio/btn). Including the CoAP header (four bytes)
and the token (one byte in this example), the total packet size will be 15 bytes. However, for direct
bindings, the initial packet includes four additional binding options containing the information on
how to trigger the actuator. Therefore, the number of additional bytes required, BByte is given by:

BByte = Size of (BIND_URI_HOST) + Size of (BIND_URI_PORT)

+ Size of (BIND_URI_PATH) + Size of (BIND_PAYLOAD)

where:
Size of pBIND_URI_HOSTq “ O ` 16 { ˚ IPv6 address ˚ {

Size of pBIND_URI_PORTq “ O ` 2 { ˚Optional. Default CoAP Server port is used ˚ {

Size of pBIND_URI_PATHq “ Sum of pO ` size of ppath_segment iqq

with i going from 1 to # of path segments:

Size of pBIND_PAYLOADq “ O ` X

In the above formula, O is the number of bytes needed for encoding the option delta and option
length (between one and five bytes, but one in most cases). The value X depends on what we want to
transmit in the payload. In our example, we send a single byte information and hence X is equal to 1.
Further, we assume the actuator uses the default CoAP server port. Using this formula, the additional
number of bytes required for our example is given by BByte = 19 + 6 + 2 = 27 Bytes. Considering the
15 common bytes, the total packet size for the binding solution will be 42 bytes. Even if the packet
size of the binding solution is bigger than the one of the gateway-based solution, it does not affect the
network performance at all. First, this request is sent only once in order to establish the relationship.
Once the binding has been established, there is no further communication of this size. Had it been the
packet size of the notification, it would, indeed, impact the network negatively. In addition, the packet
size is yet in the limit of the LLNs MTU, being 127 bytes at the MAC layer. Hence, no fragmentation
will be applied that negatively affects the network performance.

C. Communication Delay (Latency)

Delay is an important parameter to compare the performance of different solutions. The route
packets take to reach destination plays an important role in determining the communication delay.
The route, in turn, depends on the network topology. Therefore, we need to consider different
topologies to compare latencies between the two approaches. In this experiment, we considered four
topologies as shown in Figure 15.

Sensors 2016, 16, 1217 19 of 29

Sensors 2016, 16, 1217 18 of 28

does not affect the network performance at all. First, this request is sent only once in order to
establish the relationship. Once the binding has been established, there is no further communication
of this size. Had it been the packet size of the notification, it would, indeed, impact the network
negatively. In addition, the packet size is yet in the limit of the LLNs MTU, being 127 bytes at the
MAC layer. Hence, no fragmentation will be applied that negatively affects the network performance.

C. Communication Delay (Latency)

Delay is an important parameter to compare the performance of different solutions. The route
packets take to reach destination plays an important role in determining the communication delay.
The route, in turn, depends on the network topology. Therefore, we need to consider different
topologies to compare latencies between the two approaches. In this experiment, we considered
four topologies as shown in Figure 15.

Figure 15. Topologies: (a) Sensor and actuator in different branch of the tree; (b) Actuator between
Sensor and Gateway—directly connected; (c) Actuator between Sensor and Gateway after 1 hop;
(d) Sensor between Actuator and Gateway after 1 hop.

For all topologies the latency is computed as the time difference between the occurrence of the
event at the sensor and the reception of the PUT packet by the actuator. From the results depicted in
Figure 16, we can see that in all cases the gateway/cloud based solution has a significantly higher
latency compared to the binding solution. This is expected as all sensor events are sent all the way to
the gateway and triggers come down to the actuator in the non-binding solution. This increased
number of hops introduces significant delay in the overall notification/trigger cycle. The delay will
be even more pronounced for larger networks.

Figure 16. Communication Delay (ms) vs. Topology.

Figure 15. Topologies: (a) Sensor and actuator in different branch of the tree; (b) Actuator between
Sensor and Gateway—directly connected; (c) Actuator between Sensor and Gateway after 1 hop;
(d) Sensor between Actuator and Gateway after 1 hop.

For all topologies the latency is computed as the time difference between the occurrence of the
event at the sensor and the reception of the PUT packet by the actuator. From the results depicted in
Figure 16, we can see that in all cases the gateway/cloud based solution has a significantly higher
latency compared to the binding solution. This is expected as all sensor events are sent all the way
to the gateway and triggers come down to the actuator in the non-binding solution. This increased
number of hops introduces significant delay in the overall notification/trigger cycle. The delay will be
even more pronounced for larger networks.

Sensors 2016, 16, 1217 18 of 28

does not affect the network performance at all. First, this request is sent only once in order to
establish the relationship. Once the binding has been established, there is no further communication
of this size. Had it been the packet size of the notification, it would, indeed, impact the network
negatively. In addition, the packet size is yet in the limit of the LLNs MTU, being 127 bytes at the
MAC layer. Hence, no fragmentation will be applied that negatively affects the network performance.

C. Communication Delay (Latency)

Delay is an important parameter to compare the performance of different solutions. The route
packets take to reach destination plays an important role in determining the communication delay.
The route, in turn, depends on the network topology. Therefore, we need to consider different
topologies to compare latencies between the two approaches. In this experiment, we considered
four topologies as shown in Figure 15.

Figure 15. Topologies: (a) Sensor and actuator in different branch of the tree; (b) Actuator between
Sensor and Gateway—directly connected; (c) Actuator between Sensor and Gateway after 1 hop;
(d) Sensor between Actuator and Gateway after 1 hop.

For all topologies the latency is computed as the time difference between the occurrence of the
event at the sensor and the reception of the PUT packet by the actuator. From the results depicted in
Figure 16, we can see that in all cases the gateway/cloud based solution has a significantly higher
latency compared to the binding solution. This is expected as all sensor events are sent all the way to
the gateway and triggers come down to the actuator in the non-binding solution. This increased
number of hops introduces significant delay in the overall notification/trigger cycle. The delay will
be even more pronounced for larger networks.

Figure 16. Communication Delay (ms) vs. Topology. Figure 16. Communication Delay (ms) vs. Topology.

For our solution, the number of hops, and hence the delay, depends on the routing protocol.
As we mentioned earlier, we used RPL as routing protocol. In RPL, the furthest the packets travel is
until the common parent of the sensor and actuator. The closer the sensor and actuator, the less delay
is introduced. The Cooja screenshots (Figure 17a,b) confirms this statement. The blue arrows in the left
of Figure 17a shows that the interaction is direct between node 2 and 3 while that of Figure 17b shows
that the interaction goes through the border router. The shaded part in the right shows the route the
packets take from the sensor to its ultimate destination (the actuator).

Sensors 2016, 16, 1217 20 of 29

Sensors 2016, 16, 1217 19 of 28

For our solution, the number of hops, and hence the delay, depends on the routing protocol. As
we mentioned earlier, we used RPL as routing protocol. In RPL, the furthest the packets travel is
until the common parent of the sensor and actuator. The closer the sensor and actuator, the less
delay is introduced. The Cooja screenshots (Figure 17a,b) confirms this statement. The blue arrows
in the left of Figure 17a shows that the interaction is direct between node 2 and 3 while that of
Figure 17b shows that the interaction goes through the border router. The shaded part in the right
shows the route the packets take from the sensor to its ultimate destination (the actuator).

Figure 17. Sensor-Actuator Interactions. (a) Binding (b) Gateway/Cloud-Based Solution.

D. Number of Packets

An increased number of packets in constrained networks lead to an increased power
consumption at each router node and more delay. Therefore, looking at the number of packets

Figure 17. Sensor-Actuator Interactions. (a) Binding (b) Gateway/Cloud-Based Solution.

D. Number of Packets

An increased number of packets in constrained networks lead to an increased power consumption
at each router node and more delay. Therefore, looking at the number of packets generated by the two
solutions that strive to achieve the same goal is a good performance measure to compare both solutions.
As every notification goes through the gateway, the gateway-based solution creates one additional
packet for every notification. If the packets are sent as confirmable requests, this number will be
doubled. As the number of sensors and actuators increases, the number of packets generated will also
increase significantly. In dynamic systems where notifications are generated frequently, the number of
packets being generated gets higher and higher.

Sensors 2016, 16, 1217 21 of 29

6.4.2. Performance Evaluation of RESTlet

Several tests were conducted to evaluate the performance of RESTlets. In all tests, we considered
latency to be the most important performance factor that needs to be compared. We used different
topologies, number of nodes, and data processing entities.

A. Impact of RESTlets

Data processing performed in the LLN by RESTlets introduces delay but reduces the number of
packets in the network. We used a fixed topology (Figure 18) to mathematically evaluate the impact of
RESTlets at the RESTlet node (labeled RN in the figure). In this scenario, data may be sent from the
sensor nodes, labeled S, and pass through the RESTlet node before going out to the LLN gateway or the
cloud. We compared the RESTlet case, where processing is done by the RESTlet node and No-RESTlet
case, where the processing is done elsewhere (at the gateway or in the cloud). In the No-RESTlet case,
node RN is used as a router only. Whenever a packet arrives, it just processes it in order to determine
the next hop address after which it is forwarded to the next hop.

Sensors 2016, 16, 1217 20 of 28

generated by the two solutions that strive to achieve the same goal is a good performance measure to
compare both solutions. As every notification goes through the gateway, the gateway-based solution
creates one additional packet for every notification. If the packets are sent as confirmable requests,
this number will be doubled. As the number of sensors and actuators increases, the number of
packets generated will also increase significantly. In dynamic systems where notifications are
generated frequently, the number of packets being generated gets higher and higher.

6.4.2. Performance Evaluation of RESTlet

Several tests were conducted to evaluate the performance of RESTlets. In all tests, we
considered latency to be the most important performance factor that needs to be compared. We used
different topologies, number of nodes, and data processing entities.

A. Impact of RESTlets

Data processing performed in the LLN by RESTlets introduces delay but reduces the number of
packets in the network. We used a fixed topology (Figure 18) to mathematically evaluate the impact
of RESTlets at the RESTlet node (labeled RN in the figure). In this scenario, data may be sent from
the sensor nodes, labeled S, and pass through the RESTlet node before going out to the LLN gateway
or the cloud. We compared the RESTlet case, where processing is done by the RESTlet node and
No-RESTlet case, where the processing is done elsewhere (at the gateway or in the cloud). In the
No-RESTlet case, node RN is used as a router only. Whenever a packet arrives, it just processes it in
order to determine the next hop address after which it is forwarded to the next hop.

Figure 18. Network Topology.

Therefore, in the No-RESTlet case, the total packet processing and forwarding time at the node
RN is given by:

Tp = Tx + TF1 + (TD1 + Tx + TF2) + … + (TDn + Tx)

where:

 Tp is total packet processing and forwarding time.
 Tx is packet processing time (from the experiment we found out that this value is 6 ms)
 TDi is time delta between the arrival of two consecutive data packets from two different senders

(if only 1 data sender, this value is 0). This value is variable.

Figure 18. Network Topology.

Therefore, in the No-RESTlet case, the total packet processing and forwarding time at the node
RN is given by:

Tp “ Tx ` TF1 ` pTD1 ` Tx ` TF2q ` . . . ` pTDn ` Txq

where:

‚ Tp is total packet processing and forwarding time.
‚ Tx is packet processing time (from the experiment we found out that this value is 6 ms)
‚ TDi is time delta between the arrival of two consecutive data packets from two different senders

(if only 1 data sender, this value is 0). This value is variable.
‚ TFi is Packet forwarding time (calculated as the arrival time of the packet at the next hop minus

the time the packet was ready to be sent out). This value is also variable.

Sensors 2016, 16, 1217 22 of 29

So for n data generating nodes;

Tp “

$

&

%

Tx ` TF0, n “ 1

Tx ˆ n`
n
ř

i“2
TDi `

n
ř

i“1
TFi, n ą 1

On the other hand, in the RESTlet case, the node is expected to do other processing too. First of
all, it has to unpack the CoAP packet to get the data and store it provisionally. Secondly, it waits for
subsequent packets if more than one data sender node exists. Thirdly, it has to perform processing and
generate output. Finally, a new packet is generated and forwarded to the next hop.

Therefore, the total packet processing and forwarding time at the RESTlet node, Tp, is given by:

Tp “ Tx ` pTD1 ` Txq ` . . . ` pTDn ` Txq ` TNPG ` TF

where:

‚ Tp is total packet processing and forwarding time.
‚ Tx is packet processing time. (From the experiment, we found out that this value is 22 ms

and the RESTlet function we considered was AVERAGE. Other processing functions may yield
different results).

‚ TDi is time delta between arrivals of two consecutive data packets from two different senders (if
only 1 data sender, this value is 0). This value is variable.

‚ TF is packet forwarding time (calculated as the arrival time of the packet at the next hop minus
the time the packet was ready to be sent out). This value is also variable.

‚ TNPG is time required to generate new packet (from the experiment we found out that this value
is 14 ms).

So for n data generating nodes,

Tp “

$

&

%

Tx ` TNPG ` TF, n “ 1

Tx ˆ n`
n
ř

i“2
TDi ` TNPG ` TF, n ą 1

In order to compare both results, we can say that TDi is the same for both cases and can use an
average constant number for simplicity. However, the value of TFi is different among different packet
transmissions. From the experiments, we observed that the data forwarding interval ranges between
20 ms and 140 ms. Moreover, all experiments showed that the processing time at node RN, Tx, is 6 ms
and 22 ms for the No-RESTlet case and the RESTlet case, respectively. The new packet generation
time, TNPG, for the RESTlet case was also found to be 14 ms. In order to see the difference in terms
of processing time, we used the following simplified formula by using the aforementioned values as
an average:

For No-RESTlet case (for n number of data generating nodes): Tp “ 6ms ˆ n` TD` pTFi ˆ nq

For RESTlet case (for n number of data generating nodes): Tp “ 22ms ˆ n` TD` 14ms` TFi

This enables us to calculate the resulted packet processing them for a varying number of data
generating nodes (1, 2, 3, 4 and 5). Figure 19 depicts the result in graphs for both approaches using
different TFi values.

Sensors 2016, 16, 1217 23 of 29Sensors 2016, 16, 1217 22 of 28

Figure 19. Packet Processing and Forwarding time at RESTlet Node for Various Number of Data
Generating Nodes.

Figure 19 shows that when the number of data generating nodes becomes more than one, the
delay introduced by processing incoming packets by RESTlets becomes less important. For
congested networks, which are characterized by larger TFi values, the advantage will become more
pronounced. This is due to the fact that the RESTlets only generate a single packet after processing
(or no packet at all depending on the type of processing) whereas the No-RESTlet case blindly
forwards all the packets it receives which will be subject to large forwarding times.

B. End to End Latency with Multiple Data Nodes (Impact of Number of Nodes)

In the previous sub-section we mathematically showed that the reduced number of packets that
results from the aggregation process by RESTlets compensates for the processing delay introduced
by the RESTlets and result in better latency. To prove this concept, we measured the actual
end-to-end delay from data generating nodes all the way to the border router. We used the topology
shown in Figure 18 (above). The data nodes generate data every five seconds that will go to the

Figure 19. Packet Processing and Forwarding time at RESTlet Node for Various Number of Data
Generating Nodes.

Figure 19 shows that when the number of data generating nodes becomes more than one, the
delay introduced by processing incoming packets by RESTlets becomes less important. For congested
networks, which are characterized by larger TFi values, the advantage will become more pronounced.
This is due to the fact that the RESTlets only generate a single packet after processing (or no packet at
all depending on the type of processing) whereas the No-RESTlet case blindly forwards all the packets
it receives which will be subject to large forwarding times.

B. End to End Latency with Multiple Data Nodes (Impact of Number of Nodes)

In the previous sub-section we mathematically showed that the reduced number of packets that
results from the aggregation process by RESTlets compensates for the processing delay introduced by
the RESTlets and result in better latency. To prove this concept, we measured the actual end-to-end

Sensors 2016, 16, 1217 24 of 29

delay from data generating nodes all the way to the border router. We used the topology shown
in Figure 18 (above). The data nodes generate data every five seconds that will go to the border
router. In the RESTlet case, all data is sent to the RESTlet node (RN) which processes the data and
generates a new packet destined to the border router. The new packet is generated either upon arrival
of data from all data nodes or within five seconds interval, depending on which condition is met first.
The end-to-end latency is calculated as the difference between the data generation time of the first
node and the arrival of the new packet at the border router. On the other hand, for the No-RESTlet
case, all data is sent directly to the border router by traversing the RESTlet node as a router. In this
case, the end-to-end latency is computed by taking the difference between the data generation time of
the first data node and the arrival time of the last data packet at the border router. We run the tests by
sending the packets as CONfirmable and NON-confirmable requests. Figure 20 shows the results.

Sensors 2016, 16, 1217 23 of 28

border router. In the RESTlet case, all data is sent to the RESTlet node (RN) which processes the data
and generates a new packet destined to the border router. The new packet is generated either upon
arrival of data from all data nodes or within five seconds interval, depending on which condition is
met first. The end-to-end latency is calculated as the difference between the data generation time of
the first node and the arrival of the new packet at the border router. On the other hand, for the
No-RESTlet case, all data is sent directly to the border router by traversing the RESTlet node as a
router. In this case, the end-to-end latency is computed by taking the difference between the data
generation time of the first data node and the arrival time of the last data packet at the border router.
We run the tests by sending the packets as CONfirmable and NON-confirmable requests. Figure 20
shows the results.

(a) (b)

Figure 20. Impact of Number of Data Generating Nodes on End-to-End Latency. (a) Confirmable
Communication; (b) NON-Confirmable Communication.

For both CON and NON transactions, the RESTlet case results in a reduced latency compared to
the No-RESTlet case. The difference is significantly higher for the confirmable case when the number
of data nodes is higher. In the no-RESTlet case, all data packets are forwarded to the border router
which is expected to produce ACKs for all. This results in an increased load on the border router and
hence increased latency. Even if the processing is done by an external more powerful device such as
the gateway, still all requests, acknowledgements and responses have to go through the border
router and contribute to the increased overall latency of the NON-RESTlet case.

In the experiments we conducted, we made two interesting observations. When the transaction
is CON, there were a number of duplicate packets and out of order arrivals especially when the data
nodes are more than three. This is much more visible for the NO-RESTlet case where, out of 75 packets
sent, there were 28 duplicate packets while for the RESTlet case there were only 13 duplicates when
the number of data generating nodes is five. The other observation is the difference in packet loss
between NON and CON transactions. As expected, the NON transactions suffer from packet loss in
both RESTlet and NO-RESTlet cases with staggering 15% and 30% loss, respectively when the
number of data generating nodes is four.

Finally, comparing the CONfirmable and NON-confirmable transmissions of packets, it is not
surprising to see that the CONfirmable messages result in a higher latency as compared to
NON-confirmable transactions. However, when there is large number of data generating nodes, the
latency difference gets smaller for NON-confirmable transactions. The reason is the higher rate of
packet loss forces the processing of packets to be made at the end of the five second interval.

C. Impact of Other Nodes

Under normal working conditions, other communications may take place inside the LLN that
may interfere with the interactions under consideration. To study the impact of such side traffic, we
added another node that sends packets every 500 ms to the border router (Figure 21). The result is

Figure 20. Impact of Number of Data Generating Nodes on End-to-End Latency. (a) Confirmable
Communication; (b) NON-Confirmable Communication.

For both CON and NON transactions, the RESTlet case results in a reduced latency compared to
the No-RESTlet case. The difference is significantly higher for the confirmable case when the number
of data nodes is higher. In the no-RESTlet case, all data packets are forwarded to the border router
which is expected to produce ACKs for all. This results in an increased load on the border router and
hence increased latency. Even if the processing is done by an external more powerful device such as
the gateway, still all requests, acknowledgements and responses have to go through the border router
and contribute to the increased overall latency of the NON-RESTlet case.

In the experiments we conducted, we made two interesting observations. When the transaction is
CON, there were a number of duplicate packets and out of order arrivals especially when the data
nodes are more than three. This is much more visible for the NO-RESTlet case where, out of 75 packets
sent, there were 28 duplicate packets while for the RESTlet case there were only 13 duplicates when
the number of data generating nodes is five. The other observation is the difference in packet loss
between NON and CON transactions. As expected, the NON transactions suffer from packet loss in
both RESTlet and NO-RESTlet cases with staggering 15% and 30% loss, respectively when the number
of data generating nodes is four.

Finally, comparing the CONfirmable and NON-confirmable transmissions of packets, it is
not surprising to see that the CONfirmable messages result in a higher latency as compared to
NON-confirmable transactions. However, when there is large number of data generating nodes,
the latency difference gets smaller for NON-confirmable transactions. The reason is the higher rate of
packet loss forces the processing of packets to be made at the end of the five second interval.

Sensors 2016, 16, 1217 25 of 29

C. Impact of Other Nodes

Under normal working conditions, other communications may take place inside the LLN that may
interfere with the interactions under consideration. To study the impact of such side traffic, we added
another node that sends packets every 500 ms to the border router (Figure 21). The result is depicted
in Figure 22. As expected, due to the additional packets at the border router, the latency has shown
some increase.

Sensors 2016, 16, 1217 24 of 28

depicted in Figure 22. As expected, due to the additional packets at the border router, the latency has
shown some increase.

Figure 21. Network Topology including a Node Generating Side Traffic.

(a) (b)

Figure 22. Impact of Side Traffic on Latency. (a) CONfirmable; (b) NON-Confirmable transaction.

D. Impact of Difference of Data Arrival Time

All the above tests showed that, the higher the number of packets that are being generated and
transmitted inside the constrained network, the performance of both solutions, especially the
NO-RESTlet solution, suffers. We run additional tests to observe the impact of the data arrival time
difference on the latency by inserting an artificial gap in the data generation at the sensor nodes. All
data generation nodes are made to generate data randomly between 0 ms and a maximum interval
(this represent real world cases where multiple sensors observe the same physical phenomenon
almost simultaneously). We used 500, 1000, 1500 and 2000 ms as maximum interval. The topology
used is the same as the first test (Figure 18). We also run the experiment to observe the impact for
number of data generation nodes.

As can be seen in Figure 23, when there is no data generation gap (0 ms gap), the NO-RESTlet
solution has much higher latency in most cases. The frequent arrival of packets at the border router
creates congestion at the node. Due to the limited queue size of the constrained nodes, some packets
will be dropped requiring retransmissions. This is the reason for the significantly high latency at
0 ms gap. When we look at the general trend in all graphs, the latency for both cases reduces until
1000 ms data generation gap and starts rising slightly after that. The reason is simple. The
introduction of artificial delays at the sensor node results in an additional delay in the end-to-end
transmission. This means, the performance gain obtained by separating the arrival times will be
countered by the artificial delay and as a result the overall latency starts to rise.

Figure 21. Network Topology including a Node Generating Side Traffic.

Sensors 2016, 16, 1217 24 of 28

depicted in Figure 22. As expected, due to the additional packets at the border router, the latency has
shown some increase.

Figure 21. Network Topology including a Node Generating Side Traffic.

(a) (b)

Figure 22. Impact of Side Traffic on Latency. (a) CONfirmable; (b) NON-Confirmable transaction.

D. Impact of Difference of Data Arrival Time

All the above tests showed that, the higher the number of packets that are being generated and
transmitted inside the constrained network, the performance of both solutions, especially the
NO-RESTlet solution, suffers. We run additional tests to observe the impact of the data arrival time
difference on the latency by inserting an artificial gap in the data generation at the sensor nodes. All
data generation nodes are made to generate data randomly between 0 ms and a maximum interval
(this represent real world cases where multiple sensors observe the same physical phenomenon
almost simultaneously). We used 500, 1000, 1500 and 2000 ms as maximum interval. The topology
used is the same as the first test (Figure 18). We also run the experiment to observe the impact for
number of data generation nodes.

As can be seen in Figure 23, when there is no data generation gap (0 ms gap), the NO-RESTlet
solution has much higher latency in most cases. The frequent arrival of packets at the border router
creates congestion at the node. Due to the limited queue size of the constrained nodes, some packets
will be dropped requiring retransmissions. This is the reason for the significantly high latency at
0 ms gap. When we look at the general trend in all graphs, the latency for both cases reduces until
1000 ms data generation gap and starts rising slightly after that. The reason is simple. The
introduction of artificial delays at the sensor node results in an additional delay in the end-to-end
transmission. This means, the performance gain obtained by separating the arrival times will be
countered by the artificial delay and as a result the overall latency starts to rise.

Figure 22. Impact of Side Traffic on Latency. (a) CONfirmable; (b) NON-Confirmable transaction.

D. Impact of Difference of Data Arrival Time

All the above tests showed that, the higher the number of packets that are being generated
and transmitted inside the constrained network, the performance of both solutions, especially the
NO-RESTlet solution, suffers. We run additional tests to observe the impact of the data arrival time
difference on the latency by inserting an artificial gap in the data generation at the sensor nodes.
All data generation nodes are made to generate data randomly between 0 ms and a maximum interval
(this represent real world cases where multiple sensors observe the same physical phenomenon almost
simultaneously). We used 500, 1000, 1500 and 2000 ms as maximum interval. The topology used is the
same as the first test (Figure 18). We also run the experiment to observe the impact for number of data
generation nodes.

As can be seen in Figure 23, when there is no data generation gap (0 ms gap), the NO-RESTlet
solution has much higher latency in most cases. The frequent arrival of packets at the border router
creates congestion at the node. Due to the limited queue size of the constrained nodes, some packets

Sensors 2016, 16, 1217 26 of 29

will be dropped requiring retransmissions. This is the reason for the significantly high latency at
0 ms gap. When we look at the general trend in all graphs, the latency for both cases reduces until
1000 ms data generation gap and starts rising slightly after that. The reason is simple. The introduction
of artificial delays at the sensor node results in an additional delay in the end-to-end transmission.
This means, the performance gain obtained by separating the arrival times will be countered by the
artificial delay and as a result the overall latency starts to rise.Sensors 2016, 16, 1217 25 of 28

Figure 23. Impact of Packet Arrival Time Gap on Latency.

E. Impact of Noise

Under normal working conditions, sensor and actuator nodes suffer from interference from
other sources. This might create loss of packets requiring retransmissions in case of CONfirmable
transmissions which, in turn, leads to increased latency. NON-confirmable transactions also suffer
from increased latency since every lost packet leads to processing to be delayed until the 5 s interval
is reached. To study the impact of lossy networks on latency, we run tests by setting the
Transmission/Reception (TX/RX) loss from 0% (no loss), 5% and 10% losses. The topology we used is
given in Figure 24. As the figure shows, there are three data generating nodes that send packets
every five seconds without any time gap between the data generations. We selected three nodes to
avoid the impact of having too many or too few data nodes which might skew the result to either side.
Too little data generating nodes may influence the result in favor of NO-RESTlet case while too many
nodes favor the other. The test is done both for CONfirmable and NON-Confirmable transactions.

Figure 24. Network Topology for Noisy Networks.

Figure 23. Impact of Packet Arrival Time Gap on Latency.

E. Impact of Noise

Under normal working conditions, sensor and actuator nodes suffer from interference from
other sources. This might create loss of packets requiring retransmissions in case of CONfirmable
transmissions which, in turn, leads to increased latency. NON-confirmable transactions also suffer
from increased latency since every lost packet leads to processing to be delayed until the 5 s
interval is reached. To study the impact of lossy networks on latency, we run tests by setting the
Transmission/Reception (TX/RX) loss from 0% (no loss), 5% and 10% losses. The topology we used is
given in Figure 24. As the figure shows, there are three data generating nodes that send packets every
five seconds without any time gap between the data generations. We selected three nodes to avoid the
impact of having too many or too few data nodes which might skew the result to either side. Too little
data generating nodes may influence the result in favor of NO-RESTlet case while too many nodes
favor the other. The test is done both for CONfirmable and NON-Confirmable transactions.

Sensors 2016, 16, 1217 27 of 29

Sensors 2016, 16, 1217 25 of 28

Figure 23. Impact of Packet Arrival Time Gap on Latency.

E. Impact of Noise

Under normal working conditions, sensor and actuator nodes suffer from interference from
other sources. This might create loss of packets requiring retransmissions in case of CONfirmable
transmissions which, in turn, leads to increased latency. NON-confirmable transactions also suffer
from increased latency since every lost packet leads to processing to be delayed until the 5 s interval
is reached. To study the impact of lossy networks on latency, we run tests by setting the
Transmission/Reception (TX/RX) loss from 0% (no loss), 5% and 10% losses. The topology we used is
given in Figure 24. As the figure shows, there are three data generating nodes that send packets
every five seconds without any time gap between the data generations. We selected three nodes to
avoid the impact of having too many or too few data nodes which might skew the result to either side.
Too little data generating nodes may influence the result in favor of NO-RESTlet case while too many
nodes favor the other. The test is done both for CONfirmable and NON-Confirmable transactions.

Figure 24. Network Topology for Noisy Networks. Figure 24. Network Topology for Noisy Networks.

It is not a surprise that the results of the experiments in Figure 25 show higher overall latency for
the NO-RESTlet case in both CON and NON communications. However, it is quite interesting to see
that the difference between the NO-RESTlet and the RESTlet cases gets higher at higher TX/RX loss
ratios. This indicates that, our solution is relatively more robust under lossy conditions for both CON
and NON transactions.

Sensors 2016, 16, 1217 26 of 28

It is not a surprise that the results of the experiments in Figure 25 show higher overall latency
for the NO-RESTlet case in both CON and NON communications. However, it is quite interesting to
see that the difference between the NO-RESTlet and the RESTlet cases gets higher at higher TX/RX
loss ratios. This indicates that, our solution is relatively more robust under lossy conditions for both
CON and NON transactions.

(a) (b)

Figure 25. Impact of TX/RX Reception Ratio on Latency. (a) CONfirmable Communication;
(b) NON-Confirmable Communication.

7. Conclusions and the Way Forward

In this paper we presented two novel concepts that simplify sensor and actuator interactions
and IoT application development by leveraging on CoAP as a protocol in combination with the
Resource Observation extension. The binding concept effectively enables flexible direct interactions
between sensors and actuators making gateway/cloud based solutions where intermediary devices
accept input from sensors in order to trigger actuators redundant. The proposed solution, reduces
the packet flow to the gateway and hence reduces latency and number of packets in the LLN
compared to gateway or cloud based solutions. Through experiments we showed that the overhead
(e.g., memory footprint) introduced by the binding solution is not significant compared to the
gateway/cloud based solutions. In fact, regarding many aspects such as communication delay and
number of packets, the binding solution outperforms traditional solutions. We also showed that
this flexibility can be achieved by only making minor changes to the CoAP protocol and the
observe extension.

The other novel concept, RESTlets, builds upon this binding concept. RESTlets are IoT
application building blocks with data and control inputs, processing logic and data output. We
showed that by using RESTlets as IoT application building blocks, we can do in-network processing
and aggregation in order to reduce the number of packets that traverse the whole LLN to the edge of
the network and/or to the cloud which otherwise would lead to higher latency. We also showed that
by interconnecting the data inputs and outputs of RESTlets to sensor outputs, actuator inputs or
other RESTlets, we can build a complete IoT application within the LLN. Since the RESTlet approach
allows distributed deployment of the processing logic at different nodes, there will not be too many
resource hungry processes on one single node. It also gives greater flexibility in developing IoT
applications by placing simple processing functionality inside the LLN and more complex one at the
gateway or in the cloud. We ran several experiments in order to evaluate the performance of our
solution by comparing it to traditional gateway-based or cloud solutions by using a different
number of data generating nodes, data generating gap and TX/RX ratio. In all cases, our solution is
capable of outperforming traditional solutions in terms of latency. Interestingly, the RESTlet solution
provides a very good opportunity to use visual programming techniques to reduce the IoT
application development to a set of drag-and-drop or point-and-click activities.

We do realize that this solution can be optimized further. One possible optimization could be
achieved by looking at cross-layer processing activities. This is one of the potential areas of work in
the future. In this paper, we stored the RESTlet code in the nodes at compile time which makes it

Figure 25. Impact of TX/RX Reception Ratio on Latency. (a) CONfirmable Communication;
(b) NON-Confirmable Communication.

7. Conclusions and the Way Forward

In this paper we presented two novel concepts that simplify sensor and actuator interactions and
IoT application development by leveraging on CoAP as a protocol in combination with the Resource
Observation extension. The binding concept effectively enables flexible direct interactions between
sensors and actuators making gateway/cloud based solutions where intermediary devices accept input
from sensors in order to trigger actuators redundant. The proposed solution, reduces the packet flow
to the gateway and hence reduces latency and number of packets in the LLN compared to gateway or
cloud based solutions. Through experiments we showed that the overhead (e.g., memory footprint)
introduced by the binding solution is not significant compared to the gateway/cloud based solutions.
In fact, regarding many aspects such as communication delay and number of packets, the binding
solution outperforms traditional solutions. We also showed that this flexibility can be achieved by only
making minor changes to the CoAP protocol and the observe extension.

The other novel concept, RESTlets, builds upon this binding concept. RESTlets are IoT application
building blocks with data and control inputs, processing logic and data output. We showed that by
using RESTlets as IoT application building blocks, we can do in-network processing and aggregation in
order to reduce the number of packets that traverse the whole LLN to the edge of the network and/or
to the cloud which otherwise would lead to higher latency. We also showed that by interconnecting

Sensors 2016, 16, 1217 28 of 29

the data inputs and outputs of RESTlets to sensor outputs, actuator inputs or other RESTlets, we
can build a complete IoT application within the LLN. Since the RESTlet approach allows distributed
deployment of the processing logic at different nodes, there will not be too many resource hungry
processes on one single node. It also gives greater flexibility in developing IoT applications by placing
simple processing functionality inside the LLN and more complex one at the gateway or in the
cloud. We ran several experiments in order to evaluate the performance of our solution by comparing
it to traditional gateway-based or cloud solutions by using a different number of data generating
nodes, data generating gap and TX/RX ratio. In all cases, our solution is capable of outperforming
traditional solutions in terms of latency. Interestingly, the RESTlet solution provides a very good
opportunity to use visual programming techniques to reduce the IoT application development to a set
of drag-and-drop or point-and-click activities.

We do realize that this solution can be optimized further. One possible optimization could be
achieved by looking at cross-layer processing activities. This is one of the potential areas of work in
the future. In this paper, we stored the RESTlet code in the nodes at compile time which makes it
inefficient in case that node is not selected to host that particular RESTlet. A more optimized solution
would consist of the dynamic deployment of selected RESTlets at run-time. This is another area for
future work. Optimal placement of RESTlet nodes in the network is also another future research
topic. From the experiments we conducted, we found out that whenever the RESTlet is closer to the
data generating nodes, the RESTlet solution performs better. In the future, we will come up with
mathematical models which will lead to optimal placement of the RESTlet nodes.

Acknowledgments: The research leading to these results has received funding from VLIR-UOS as a Ph.D.
Scholarship to Girum K. Teklemariam through the Inter University Collaboration (IUC) Program at Jimma
University, Ethiopia.

Author Contributions: Girum K. Teklemariam wrote this paper as part of a Ph.D. thesis under the supervision
of Jeroen Hoebeke, Ingrid Moerman, and Piet Demeester. Floris Van den Abeele put forward several ideas and
comments while defining the binding solution.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Montenegro, G.; Kushalnagar, N.; Hui, J.; Culler, D. RFC4944—Transmission of IPv6 Packets Over IEEE
802.15.4 Networks. Available online: http://tools.ietf.org/html/rfc4944 (accessed on 2 May 2016).

2. Brandt, A.; Hui, J.; Kelsey, R.; Levis, P.; Pister, K.; Struik, R.; Vasseur, J.P.; Alexander, R. RFC6550—RPL:
Routing Protocol for Low Power and Lossy Networks. Available online: http://tools.ietf.org/html/rfc6550
(accessed on 13 June 2016).

3. Shelby, Z. Embedded Web Services. IEEE Wirel. Commun. 2010, 17, 52–57. [CrossRef]
4. Shelby, Z. RFC 7252—The Constrained Application Protocol (CoAP). Available online: https://datatracker.

ietf.org/doc/rfc7252/ (accessed on 13 May 2016).
5. Hartke, K. RFC 7641: Observing Resources in the Constrained Application Protocol (CoAP). September 2015.

Available online: http://datatracker.ietf.org/doc/rfc7641 (accessed on 13 May 2016).
6. Teklemariam, G.K.; Hoebeke, J.; Moerman, I.; Demeester, P. Facilitating the creation of IoT applications

through conditional observations in CoAP. EURASIP J. Wirel. Commun. Netw. 2013, 177. [CrossRef]
7. Kovatsch, M. Demo Abstract: Human—CoAP Interaction with Copper. In Proceedings of the 7th IEEE

International Conference on Distributed Computing in Sensor Systems (DCOSS 2011), Barcelona, Spain,
27–29 June 2011.

8. Shelby, Z.; Vial, M.V. CoRE Interfaces (Draft-Shelby-Core-Interfaces-05) (Work in Progress). March 2013.
Available online: https://tools.ietf.org/html/draft-shelby-core-interfaces-05 (accessed on 14 May 2016).

9. ZigBee Alliance. Zigbee Specification; ZigBee Standards Organization: San Ramon, CA, USA, 2008.
10. Lee, Y.; Liu, H.-S.; Wei, M.-S.; Peng, C.-H. A Flexible Binding Mechanism for Zigbee Sensors. In Proceedings

of the 5th International Conference on, Intelligent Sensors, Sensor Networks and Information Processing
(ISSNIP), Melbourn, Australia, 7–10 December 2009; pp. 273–278.

http://tools.ietf.org/html/rfc4944
http://tools.ietf.org/html/rfc6550
http://dx.doi.org/10.1109/MWC.2010.5675778
https://datatracker.ietf.org/doc/rfc7252/
https://datatracker.ietf.org/doc/rfc7252/
http://datatracker.ietf.org/doc/rfc7641
http://dx.doi.org/10.1186/1687-1499-2013-177
https://tools.ietf.org/html/draft-shelby-core-interfaces-05

Sensors 2016, 16, 1217 29 of 29

11. Pautasso, C.; Zimmermann, O.; Leymann, F. RESTful Web Services vs. ‘Big’ Web Services: Making the Right
Architectural Decision. In Proceedings of the 17th International World Wide Web Conference (WWW 2008),
Beijing, China, 21–25 April 2008.

12. Guinard, D.; Ion, I.; Mayer, S. In Search of an Internet of Things Service Architecture: REST or WS-*?
A Developers’ Perspective. In Mobile and Ubiquitous Systems: Computing, Networking, and Services; Springer:
Berlin, Germany, 2011; pp. 326–337.

13. Kovatsch, M.; Lanter, M.; Duquennoy, S. Actinium: A RESTful Runtime Container for Scriptable Internet
of Things Applications. In Proceedings of the 3rd International Conference on the Internet of Things (IoT),
Wuxi, China, 24–26 October 2012; pp. 135–142.

14. Alessandrelli, D.; Patracca, M.; Pagano, P. T-Res: Enabling Reconfigurable in-Network Processing in
IoT-Based WSNs. In Proceedings of the IEEE International Conference on Distributed Computing in
Sensor Systems, Cambridge, MA, USA, 20–23 May 2013; pp. 337–344.

15. Azzara, A.; Mottola, L. Virtual Resources for the Internet of Things. In Proceedings of the IEEE 2nd World
Forum on Internet of Things (WF-IoT), Milan, Italy, 14–16 December 2015.

16. Hughes, D.; Thoelen, K.; Horré, W.; Matthys, N.; Del Cid, J.; Michiels, S.; Huygens, C.; Joosen, W. LooCI:
A Loosely-coupled Component Infrastructure for Networked Embedded Systems. In Proceedings of the 7th
International Conference on Advances in Mobile Computing and Multimedia (MoMM2009), Kuala Lampur,
Malaysia, 14–16 December 2009.

17. Shelby, Z.; Chauvenet, C. The IPSO Application Framework (Draftipso-App-Framework-04). Available
online: http://www.ipso-alliance.org/wp-content/uploads/2016/01/draft-ipso-app-framework-04.pdf
(accessed on 1 August 2016).

18. Dunkels, A.; Gronvall, B.; Voigt, T. Contiki—A Lightweight and Flexible Operating System for Tiny
Networked Sensors. In Proceedings of the 29th Annual IEEE International Conference on Local Computer
Networks, Tampa, FL, USA, 16–18 November 2004; pp. 455–462.

19. Kovatsch, M.; Duquennoy, S.; Dunkels, A. A Low-Power CoAP for Contiki. In Proceedings of the 8th
IEEE International Conference on Mobile Ad-Hoc and Sensor Systems (MASS 2011), Valencia, Spain,
17–22 October 2011; pp. 855–860.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.ipso-alliance.org/wp-content/uploads/2016/01/draft-ipso-app-framework-04.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Constrained Application Protocol (CoAP)
	Related Work
	Sensor-Actuator Interaction
	In-Network Processing

	Flexible Direct Binding
	RESTlets
	Implementation and Evaluation
	Implementation
	Flexible Direct Binding
	RESTlets

	Experiment Setup
	Functional Evaluation
	Bindings
	RESTlets

	Performance Evaluation
	Performance Evaluation of Bindings
	Performance Evaluation of RESTlet

	Conclusions and the Way Forward

