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Summary 

Radioactive Ion Beams (RIBs) are used as a tool by physicists to study 

nuclei far from stable nuclei in the nuclide chart (see Figure 0.1). The RIBs 

used in these studies are produced via different methods, among which the 

Isotope Separation Online (ISOL). At current ISOL facilities, part of the 

requested RIBs cannot be delivered because they necessitate R&D. In order 

to meet the requirements of certain experiments, it is necessary to increase 

RIB-intensities by several orders of magnitude. 

 

Figure 0.1: The chart of nuclides, with an excerpt focusing Hg isotopes. 

Hg isotopes 
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The project EURISOL aims at increasing the RIB intensity by up to four 

orders of magnitude. However, because of the substantial technological 

developments required for such a facility, intermediate-generation facilities 

like ISOL@MYRRHA have been planned. A common feature of these 

facilities is their high-power driver beam which results in an increased heat 

deposition in targets. This induces a need for development of a new 

generation of targets capable of operating under this high-power condition. 

A molten metal target concept, capable of addressing this need, was 

proposed within the EURISOL Design Study (see Figure 0.2). Because such 

a target is of interest for different ISOL facilities, a project entitled LIEBE 

(LIquid lEad Bismuth eutectic loop target for EURISOL) was initiated for 

the detail design and construction of a prototype Pb-Bi loop target setup. 

This work comprises the conceptual design and simulations of the target. 

Because the target material flows in a loop equipped with a heat exchanger, 

this target concept is capable of handling high power primary-beams. In 

addition, liquid targets typically have a higher number of target atoms per 

unit area of beam spot, as compared to solid targets. This usually results in 

higher in-target production rates. Also, as in this concept the irradiated 

liquid is fractionated into small droplets, good release properties can be 

envisaged.  
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Figure 0.2: Conceptual view of the molten metal loop target. 

Effects like pressure drop, cavitation, liquid-metal recirculation, instabilities 

and non-uniform flows are studied for the design of this target. These 

phenomena are most crucial inside the irradiation volume, as they can 

significantly affect the performance of the target. A major design 

requirement is a complete evacuation of the irradiated lead-bismuth-eutectic 

(LBE) within 100 ms after the impact of a proton pulse. The dynamics of 

LBE in the irradiation volume was analyzed, with CFD simulations, in order 

to ensure a proper design.  

Starting from a simple cylindrical geometry, several improved 

configurations of the irradiation volume have been studied. In each of the 

proposed satisfactory geometries, the inlet-jet effect was solved with a 

combination of two approaches: (1) increasing the size of the inlet sections 

in order to reduce inlet velocities; (2) positioning one or two feeder grids to 

distribute the inlet jet over the length of the irradiation volume. A 

parallelepiped-shape feeder proved to be the most robust of the satisfactory 

concepts, with regards to risks of clogging.  
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Upon irradiation by a proton pulse, the liquid target material is fractionated 

into droplets inside the release volume. This release volume must be 

optimized for the reference nuclide of interest, 
177

Hg, of which the half-life 

is only 0.118 s. A sound engineering of the release volume is therefore 

crucial in order to minimize decay losses during the release of these 

nuclides. In this objective, a proper modeling of the release of nuclides out 

of the target is a requisite. A computational approach to predict the release 

of nuclides out of the target and assess its efficiency was thus developed. 

The proper test case for validation of the proposed release model is a loop-

type target. However, in the absence of experimental data for the liquid 

loop-target, measured data on several targets operated online were used. 

These are the ISOLDE-SC Pb target and two Ta foil targets with different 

internal geometries. In all these cases, a good match between computed and 

experimental release curves and efficiencies has been observed for a variety 

of isotopes of different elements.  

The method proposed, to predict the release of nuclides, was then applied to 

optimize the design of a molten LBE loop target. Optima of different 

parameters have been determined and it was found that the optimum size of 

the target is species and half-life dependent. In addition, the shorter the half-

life of the isotope of interest, the more compact is the optimum target 

design. 

When passing through the target material, the driver beam can deposit 

significant amounts of energy in the target through Coulomb interactions. 

The energy loss profile was computed with FLUKA, a Monte Carlo code for 

particle transport in matter. This profile was then used to calculate initial 

temperature and pressure distributions in the target using Fluent. These 

calculations provide insight into effects generated by proton-induced shocks 

in this liquid metal target under a highly pulsed beam. The simulations show 
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that strong pressure waves develop in the target but no severe constructive 

interference was found when using the 16.2-μs bunch spacing of the beam. 

The prototype will be constructed and tested at CERN-ISOLDE. Offline 

tests are foreseen this fall and the prototype is planned for online tests in 

November 2016.  
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Samenvatting 

Radioactieve ionenbundels (RIBs) worden door fysici gebruikt om kernen te 

bestuderen die zich op de nuclide-kaart ver van stabiliteit bevinden (zie 

Figuur 0.1). De RIBs die gebruikt worden in deze studies worden 

geproduceerd via verschillende methodes, waaronder de 'Isotope Separation 

Online' (ISOL) techniek. Huidige ISOL faciliteiten kunnen echter een deel 

van de gevraagde RIBs niet of onvoldoende afleveren, waardoor verder 

onderzoek een noodzaak is. Het is namelijk voor sommige experimenten 

nodig om de RIB-intensiteiten van bepaalde isotopen te verhogen met 

verschillende grootte-ordes. 

Om aan deze vereisten tegemoet te komen, is het EURISOL project 

opgestart met als doel om de RIB-intensiteit met vier grootteordes te 

verhogen. Omdat er substantiële technologische ontwikkelingen nodig zijn 

voor zulke faciliteit, zijn er plannen om faciliteiten te bouwen van een 

tussengeneratie, zoals ISOL@MYRRHA. Een gemeenschappelijk kenmerk 

van deze installaties is een primaire bundel met een hoog vermogen, 

waardoor er een verhoogde warmte-afzetting is in de protondoelwitten. Dit 

zorgt ervoor dat het noodzakelijk is om een nieuwe generatie van doelwitten 

te ontwikkelen die in staat zijn om deze hoge vermogens te weerstaan. 

 Om aan deze eis te voldoen werd binnen de ontwerpstudie van EURISOL 

een protondoelwit van gesmolten metaal voorgesteld (zie ook Figuur 0.2). 

Omdat zo een target interessant is voor verschillende ISOL installaties, werd 

een project genaamd LIEBE (LIquid lEad Bismuth eutectic loop target for 

EURISOL) opgestart. Dit project heeft als doel om een prototype van een 

doelwit met een Pb-Bi kringloop te ontwerpen en te bouwen. Dit werk 

omvat het conceptuele ontwerp en de simulaties van dit protondoelwit. 

Omdat het materiaal in een lus met een warmtewisselaar stroomt, kan dit 

ontwerp primaire bundels van een hoog vermogen weerstaan. 

Daarenboven hebben doelwitten van een vloeibaar materiaal meestal een 

hoger aantal atomen per eenheid oppervlakte van de primaire bundel in 

vergelijking met vaste doelwitten. Hierdoor hebben vloeibare doelwitten 

vaak een hogere productiesnelheid van radioactieve isotopen. In dit concept 
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wordt de bestraalde vloeistof ook verstoven in kleine druppels, waardoor 

een efficiënte vrijgave van radio-isotopen mogelijk is. 

Verschillende effecten, zoals drukverlies, cavitatie, recirculatie van 

vloeibaar metaal, instabiliteiten en niet-uniforme stromen, werden 

bestudeerd voor het ontwerp van dit protondoelwit. Deze fenomenen zijn het 

meest cruciaal in het bestraalde volume omdat deze de prestaties van het 

doelwit significant kunnen beïnvloeden. Een belangrijke voorwaarde voor 

het ontwerp is een complete evacuatie van het bestraalde eutectisch lood-

bismut mengsel (LBE) binnen 100 ms na de impact van een proton puls. De 

dynamiek van LBE in het bestraalde volume werd geanalyseerd met CFD 

simulaties om een degelijk ontwerp te realiseren.  

Startend van een simpele cilindrische geometrie werden verschillende 

verbeterde configuraties van het bestraalde volume bestudeerd. In elk van de 

voorgestelde concepten werd het effect van een instromende straal opgelost 

door een combinatie van de volgende twee oplossingen: (1) het vergroten 

van de aanvoerbuizen om de snelheid van de inkomende vloeistof te 

verlagen; (2) het positioneren van één of twee roosters die de inkomende 

vloeistofkolom verdelen over de ganse lengte van het bestraalde volume. 

Een aanvoervolume in de vorm van een parallellepipedum bleek het minste 

risico te hebben op het vormen van klonters in het gesmolten metaal. 

Wanneer het vloeibare metaal wordt bestraald door een protonpuls, wordt 

het verstoven in kleinere druppels zodat isotopen kunnen worden 

vrijgegeven. Het volume waar deze vrijgave plaatsvindt, moet worden 

geoptimaliseerd voor de referentiekern, 
177

Hg, die een halfwaardetijd heeft 

van slechts 0.118 s. Een goed ontwerp van dit volume is daarom cruciaal om 

het verlies door het radioactief verval van deze kernen tijdens hun vrijgave 

te minimaliseren. Een degelijk model van de vrijgave van kernen uit het 

protondoelwit is daarom belangrijk.  Daarom werd een computationele 

aanpak ontwikkeld om dit proces te beschrijven en de bijhorende vrijgave-

efficiëntie te bepalen.  

Ideaal gezien zou dit model getest worden op een protondoelwit met een 

kringloop. In de afwezigheid van experimentele data van zo een 

protondoelwit werd het model getest op verschillende doelwitten die 

momenteel online worden gebruikt. Het gaat hier over het ISOLDE-SC Pb 

doelwit en twee protondoelwitten bestaande uit Ta-folies met verschillende 

interne configuraties. In al deze gevallen werd er een goede overeenkomst 

gevonden tussen berekende en experimentele vrijgave-curves en de 
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bijhorende efficiënties voor verschillende isotopen van verschillende 

elementen. 

Deze methode om de vrijgave van kernen te modelleren werd dan toegepast 

om het ontwerp van het protondoelwit met een kringloop van gesmolten 

LBE te optimaliseren. Het optimum van verschillende parameters werd 

bepaald en er werd vastgesteld dat de optimale grootte van het 

protondoelwit afhankelijk is van zowel het element als de halfwaardetijd 

van de nuclide. Een kortere halfwaardetijd van de desbetreffende kern 

betekent dat het optimale ontwerp van het protondoelwit compacter is. 

Wanneer de primaire bundel door het doelwit beweegt worden er 

significante hoeveelheden energie afgezet in het materiaal door middel van 

Coulomb interacties. Dit energieverlies werd in kaart gebracht met behulp 

van FLUKA, een Monte Carlo code voor deeltjestransport in materie. Deze 

resultaten werden dan gebruikt om de initiële temperatuur- en drukverdeling 

in het doelwit te berekenen met behulp van het programma Fluent. Deze 

berekeningen geven inzicht in de vorming van schokgolven in het vloeibare 

metaal wanneer een sterk gepulste bundel wordt gebruikt. De simulaties 

tonen aan dat sterke drukgolven ontstaan in het protondoelwit, maar ook dat 

er geen zware constructieve interferentie ontstaat door de spatie van 16.2 µs 

tussen twee groepen in een protonpuls. 

Het prototype zal gebouwd en getest worden in CERN-ISOLDE. Offline 

testen zijn voorzien tijdens deze herfst en het prototype zal online worden 

getest in november 2016. 
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1 Introduction 

This introductory chapter aims at framing the research performed here in its 

general background. The nuclides studied in nuclear physics are produced 

artificially as Radioactive Ion Beams (RIBs) if they are not naturally 

occurring. However, while of interest, beams of many nuclides are still 

challenging to produce with sufficient intensity and purity. In order to 

enable production of RIBs of these nuclides, new facilities are currently 

under consideration worldwide. 

The different techniques for production of RIBs are introduced in the first 

section of the chapter. In all the techniques, the production of a RIB first 

requires the interaction of a primary beam of particles with a target. The 

target materials and the reaction-mechanisms used for RIB production with 

the Isotope Separation Online (ISOL) technique are presented in the second 

section.  

In order to improve the production of RIBs of challenging nuclides, future 

ISOL facilities are foreseen with a high intensity primary beam. At these 

facilities, introduced in the third section of the chapter, the high intensity 

primary beam leads to an important heat deposition in the target. The target 

concept studied in this work has been specifically imagined for the 

dissipation of a large amount of deposited heat. 

In the ISOL technique, one of the main factors hindering the production of 

RIBs is the release efficiency of nuclides out of the target. The aim of the 

work reported here is to propose an efficient design of the loop target 

concept. The chapter ends with a description of the research goals. 

 

1.1 Radioactive Ion Beams Production 

1.1.1 Motivation 

Radioactive Ion Beams are a tool for physicists to study nuclei far from 

stability. Based on current knowledge, more than 6000 nuclides are 

expected to exist of which about 3600 have been observed even though 
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many of them are still to be studied in full detail [1]. The systematic study of 

these nuclides is expected to provide significant insight on nuclear physics 

and models. Next to providing nuclear physicists with a detailed 

understanding of many aspects in nuclear interaction and dynamics, 

radioactive beams are useful in other fields of science such as nuclear 

astrophysics, solid-state physics, and nuclear medicine. 

1.1.2 Production 

The RIBs used in the studies mentioned above are mainly produced via two 

complementary techniques schematized in Figure 1.1: the In-Flight 

Separation (IF) [2] and the Isotope Separation Online (ISOL) [3-5]. A third 

technique also used in RIB production is the ion-guide ISOL (IGISOL) [6]. 

In all methods, nuclei of interest are transported from their location of 

production so that they can be studied in dedicated setups well shielded 

from the significant radiation background of the production area. Along the 

transport, the energy, the time structure and the ion optical properties of the 

beam can be adapted for specific experiments. 

 

Figure 1.1: A generic description of the In-Flight and Isotope Separator On Line 

techniques [1]. 
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1.1.2.1 The In-Flight Separation technique 

In the In-Flight Separation technique a primary beam of typically heavy and 

energetic ions is directed on a thin target ( ̴ 0.3 to  ̴ 3 g/cm
2
) [2]. This 

technique relies on the forward emission of reaction products that occurs in 

nuclear reactions induced by heavy and high energy projectiles. In such 

reactions, whether fragmentation, fission or fusion, reaction residues retain 

the initial kinetic energy of the beam. These energetic reaction products then 

recoil out of the thin target with a charge state distribution. This results in 

nuclei having large forward momenta and a relatively sharp forward angular 

distribution. Out of this full momentum and angular distribution, a given 

portion is selected based on magnetic rigidity, which yields a set nuclei with 

a specific momentum-to-charge ratio [2]. If the reaction products recoil at 

nearly the same velocity as the unreacted primary beam particles, this initial 

momentum-to-charge-ratio selection is essentially a mass-to-charge-ratio 

separation, leading to primary beam rejection. 

However, in combination with the in-target reaction kinematics, processes 

like multiple angular scattering and energy loss straggling induce 

unavoidably large beam emittance values. For these reasons, the kinetic 

energy spread of the beam is relatively large and the beam at this step 

consists of a cocktail of nuclei with different masses, atomic numbers, 

momenta and charge states. Further selectivity is therefore required. It can 

be obtained by passing the preselected nuclei through a degrader where the 

energy loss depends on the atomic number [7] and afterward through a 

second momentum-to-charge-ratio selection device [8, 9]. However the use 

of a degrader has the drawbacks of increasing the transverse emittance of 

the beam and generating secondary products through nuclear reactions in the 

degrader. In-flight separated beams are injected in gas cells in order to 

reduce their momenta, or injected in cooler rings to reduce both size and 

momentum spread. This step has the drawback of increasing flight time and 

consequently the decay losses between production and analysis.  

1.1.2.2 The Isotope Separation Online (ISOL) technique 

In the ISOL technique a primary beam of light or heavy particles, generally 

protons, interacts with a thick target (  ̴5 to    ̴200 g/cm
2
). A wide variety of 

primary particles, energies, reactions and target materials combinations are 

available to produce the radionuclides of interest. Reaction mechanisms 

used in the ISOL technique include: spallation, fission, fragmentation and 

fusion evaporation. The appropriate reaction mechanism for the production 

of an ion beam from a particular isotope depends on its position in the 
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nuclide chart as well as its physical and chemical properties. Once produced, 

the radionuclides are thermalized in a solid or gaseous catcher. Often, the 

target material also serves as catcher. The target/catcher is kept at high 

temperature to promote a fast release of the radionuclides. When required, 

physical and chemical properties of the reaction products and the 

target/catcher materials are utilized to enhance or prevent the release of 

desired or unwanted nuclides respectively. 

When solid or liquid catchers are used, the release process typically includes 

diffusion out of the catcher material and effusion towards the ion source. 

Part of the effusion process takes place in a transfer line with a suitably 

controlled temperature, connecting the target/catcher to an ion source. It 

often provides selectivity based on physics and chemistry between the 

effusing elements and the transfer line material. In the ion source, different 

mechanisms are available to ionize the isotopes of interest, depending on the 

ionization potential or electron affinity [3] of the isotopes of interest as well 

as the required charge state and selectivity. Additionally, selectivity is 

obtained with surface ionization and more-so with resonant laser ionization. 

Resonant laser ionization is so chemically selective that it results in a 

significant reduction of isobars or even isomers, when the laser bandwidth is 

narrow enough [4]. 

The ions are subsequently extracted and accelerated in a 30-60 keV electric 

field. This low-energy ion beam is directed into a mass separator where ions 

with a specific mass-over-charge-ratio are selected. When required, the 

beam is post-accelerated. ISOL beams are characterized by high purity and 

small transverse emittance, albeit that, in the absence of a post-accelerator, 

the energies of the ions are low. For exotic RIBs, the high purity constitutes 

a major advantage since studying the exotic nuclei is often hindered if they 

are submerged in a high background of more stable nuclei also produced in 

the target. However, decay losses during the isotope-release and in the ion 

source are the main drawback for the production of very short-lived isotopes 

of half-lives in the millisecond range and below through the ISOL 

technique. 

1.1.2.3 The ion-guide ISOL (IGISOL) technique 

The IGISOL technique has been proposed to overcome the limitation of the 

ISOL technique concerning the production of beams of very short-lived 

isotopes. Similarly to the In-Flight Separation, it relies on the recoil of high 

momentum reaction products out of a thin target, upon the impact of the 
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primary beam. Reaction products, recoiling in a high charge-state are 

however thermalized in a cell filled with noble gas (helium or argon). Along 

with the thermalization process, charge-exchange reactions occurring in the 

cell with the gas atoms induce a reduction in charge state of the reaction 

products. Still, the high ionization potential of noble gases ensures that 

eventually, part of the reaction products end up with a 1+ or 2+ charge state. 

The surviving ions are evacuated with the gas via an exit hole in the cell, 

extracted and mass separated. The formation and survival of the 1+ or 2+ 

ions along the transport through the cell is affected by their residence time in 

the cell, the purity of the gas, the density of electrons and ions in the cell and 

potentially the chemistry of the nuclides. Beside the non-selective 

ionization, recombination and neutralization of ions in the gas are key issues 

with this technique. However in case of significant neutralization, resonant 

laser ionization can be efficiently applied [10]. 

1.1.2.4 Reaction mechanisms for RIB production 

Different reactions mechanisms are used in the RIB production techniques 

presented above: fission, spallation, fragmentation and fusion. The general 

features of these mechanisms are described in this section. 

Fission 

Based on the specific proton to neutron ratios of heavy nuclides in the 

stability valley, neutron-rich nuclei of medium mass (mass number 60 ̴ 170) 

are readily produced from fission of long lived actinides. Primary beams of 

low/high-energy protons, heavy ions, fast/thermal neutrons or electrons 

through photo-fission can be used to induce the fission mechanism. When 

thermal neutrons are required, neutrons from a reactor can be used. 

Alternatively, neutrons are produced in a converter when fast neutrons are 

requested. The converter method for neutrons consists of dumping a high 

power beam of protons or deuterons in a well-cooled neutron production 

target while the generated neutrons induce fission in a separate target with 

less power deposition. Gamma rays can similarly be produced out of an 

electron converter to induce photo-fission. Nuclei with a kinetic energy of 

approximately one MeV/nucleon are created in the fission process [2]. 

When fission is the desired production mechanism for an in-flight or an 

IGISOL facility, the kinetic energy of the fissioning nucleus has to be large 

compared to the fission recoil. Yet, even in this case, only one of the two 

fission products is generally accepted by current in-flight separators. 
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Spallation 

Spallation is one of the reactions induced by the interaction of high energy 

proton beam with a target. It results in the emission of an important number 

of protons, neutrons and α particles from the target nuclei. Spallation 

products are distributed on the neutron-deficient side of the nuclear chart, 

over nuclides having few protons less than the target nuclei. Production 

cross-sections decrease for very neutron deficient isotopes but this can 

partially be compensated by the use of thick ISOL targets with high-energy 

protons. The cross section for production of a nuclide expresses the 

likelihood for the production of this nuclide in the target, through different 

reactions. The type and energy of particles in the primary beam are 

parameters that determine the production cross-section, as well as the target-

material composition. 

Fragmentation 

Two types of fragmentation reactions are distinguished, depending on which 

of the target or projectile nuclei are fragmented. Because of its kinematics 

requirements, in-flight separation mainly makes use of projectile 

fragmentation with a high-energy heavy ion beam, typically above 50 

MeV/nucleon [11]. At ISOL facilities, in addition to projectile 

fragmentation, target fragmentation is also applied whereby a heavy target is 

bombarded with a high-energy proton beam [12, 13]. Both types produce a 

wide variety of isotopes, some lying close to the fragmenting 

target/projectile nucleus in the nuclear chart and others lying in the very 

light nuclei region of the chart. 

Fragmentation is described as an initial peripheral interaction of the 

projectile with a target nucleus followed by a de-excitation step. Few 

nucleons are stripped in the initial interaction and Coulomb deflection 

induces a small recoil of the excited residues (projectile or target). In 

projectile fragmentation, the kinetic energy of the projectile residue is 

typically much larger than both the Coulomb deflection and the isotropic 

recoil from the de-excitation, which explains the forward momentum of 

fragments suitable for in-flight separation. 

Fragment cross-sections have been reported to be relatively constant for 

energies in the range   ̴ 40 MeV/nucleon to   ̴ 2 GeV/nucleon [14], except for 

fragments close in mass with the initial nucleus. Cross-sections are larger 

for these fragments. Neutron-rich nuclei are best produced with heavy 
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production stable targets and proton-rich nuclei near stability are produced 

with the heavy N ∼ Z targets [2]. 

Light- and Heavy-ion Fusion Evaporation Reactions 

Light-ion fusion reactions produce slightly neutron-deficient nuclei and are 

characterized by a high cross section and a high-intensity primary beam. On 

the other hand, lower cross-sections are characteristic of heavy-ion fusion 

evaporation reactions which lead to the production of neutron-deficient 

nuclei. In this case, heavy-ions beams with energies around MeV/u are 

operated with lower intensities due the significant heat deposition in-target. 

For the same reason, thinner targets are required for heavy-ion fusion 

evaporation. However, fusion reactions produce on average a lower number 

of different isotopes (typically 10 for the heavy-ion reactions) than other 

reaction mechanisms discussed above [4]. A property of fusion reactions 

with importance for in-flight separation or IGISOL is that, at the exit of the 

target, the momentum of the reaction products is significantly lower than 

that of the beam particles [2]. 

Additional details on the different reaction mechanisms can be found in the 

following references showing their large application [2, 4, 15, 16]. Even 

though nuclides in different regions of the chart are known to be most 

suitably produced via certain reaction mechanisms, no clear classification is 

currently accepted. Indeed, improvements in target design can, among 

others, affect the suitability of a certain reaction mechanism for the 

production of a specific isotope. A description of ISOL targets is given in 

the next section. 

1.2 ISOL targets 

ISOL facilities provide radioactive beams for a multitude of applications. 

Several parameters influence the yields achievable by an ISOL target. These 

include the geometrical layout of the target and transfer line, along with the 

thermal conductivity, emissivity, range of operational temperature and 

radiation hardness of the target and container materials on the one hand. On 

the other hand, parameters like the cross section, half-life, diffusion 

coefficient and adsorption enthalpy of the nuclei also affect the yields. 

The design of an ISOL target is based on the optimization of both the in-

target production rate and the efficiency of isotope release from the target. 

Typical ISOL targets are cylinders, 10 to 20 cm in length and 1 to 2 cm in 

diameter (see Figure 1.2).  
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Figure 1.2: Schematic representation of a typical solid ISOL target [17]. 

The target is connected via a transfer line to the ion source. After diffusing 

out of the target material, nuclei undergo a succession of adsorption and 

desorption steps that compose the effusion process. This effusion process 

takes place both in the target volume and in the transfer line. When required, 

the temperature of the target can be brought up to 2500 °C to enhance 

diffusion of nuclei out of the target material [3]. At facilities where the 

target heating by the beam is not enough, complementary ohmic heating is 

used. This is the case at ISOLDE (driver beam power < 6 kW). Conversely, 

at TRIUMF-ISAC (driver beam power = 50 kW), the target container is 

equipped with external radiator fins for cooling purposes. 

This section gives an overview of different ISOL targets (liquid metals, 

solid metals, carbides and oxides), pointing out specific pros and cons. 

Solid-metal targets 

Effusion of elements with high adsorption enthalpy requires a high 

temperature in both the target and transfer line. Thus, metals with a high 

melting point, like Ti, Nb, Ta and W are good candidate target materials for 

such cases. To keep the diffusion path short, the solid-metal target material 

is often shaped as thin foils, 2 to 25-μm thick. Different layout of metal 

targets such as annular discs [18], D-shape discs [19], multi-strip foils [20] 

and single-strip rolled-foil [18] have been used or studied. 

The single-strip rolled-foil is the standard Ta target material layout at 

CERN-ISOLDE while D-shape discs are typically used at TRIUMF-ISAC. 

In the ISOLDE target, the foil is embossed to keep separate the layers, 
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avoiding thermal contact between layers. For similar reasons, the D-shape 

discs in the TRIUMF target are cut slightly oversize with respect to the inner 

diameter of the target container and stacked inside it with a tight contact. 

Besides, metal-target materials in powder form have been studied both off-

line [21] and on-line [22, 23]. Still, the number of metals with acceptable 

properties is rather limited. Under the conditions of operation of ISOL 

targets, metals tend to melt or react with the container material. Further, 

slow diffusion has been observed for some elements in solid metals. In such 

cases, refractory compounds like carbides and oxides are considered. 

Carbides 

The chemical properties of metals like actinides, lanthanides, titanium and 

chromium render possible the formation of stable carbides. Uranium and 

thorium carbides [24] have specifically been studied at many ISOL 

facilities. The target material is typically a carbide/graphite mixture in 

pressed-powder form [25], in thin foils [19] or as impregnated graphite cloth 

[26]. A multitude of neutron-rich medium-size nuclei are routinely produced 

with uranium carbide targets at ISOLDE [27]. In the standard ISOLDE 

uranium carbide/graphite targets [28], powders of uranium oxide and high 

purity graphite are mixed and cold-pressed into 1-mm thick pills. The pills 

are then heated in a graphite container under vacuum so that the graphite 

reacts with the uranium oxide, leading to the release of carbon monoxide. 

The open porosities created by the release of the carbon monoxide are of 

significant importance in the release properties of the final material. A 

graphite sleeve, 2-mm thick, is inserted in order to prevent a reaction 

between the pills and the target container. 

At TRIUMF, a different procedure is used for the production of composite 

carbide target material among which the uranium carbide target. In this 

production method, the carbothermal reduction of uranium oxide is followed 

by slip-casting a mixture slurry of uranium dicarbide and graphite on a 

graphite foil. D-shaped thinner foils of fine grains (< 10 μm) are obtained. 

The main operational limitation of carbides is the potential decomposition of 

the compound under ISOL conditions leading to pressure buildup from the 

release of the metal component or impurities. 

Oxides 

Some oxide compounds are also stable enough at high temperatures to serve 

as ISOL target material. Noble gas nuclides like He, Ne, Ar, Kr and Xe have 
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been produced at ISOLDE from MgO, CaO, TiO2, SrO, ZrO2, La2O3, CeO2. 

Oxides from actinides like uranium and thorium have also been studied [28]. 

These oxide target materials were mostly produced either by sintering 

commercial oxide powders or via the decomposition of carbonates under 

vacuum [29]. Note that oxide-powder targets tend to sinter and close open 

porosities over time, at ISOL temperatures. 

Commercial oxide material in the form of felt or cloth has also been used 

with the distinct feature that it contained no binder and did not lead to 

excessive outgassing when operated at high temperatures. Impregnation of a 

commercial felt with the desired target element has also been an option 

when the desired oxide material is not commercially available as a felt. Fast 

diffusion was ensured by the size of the fiber, 5 – 10 μm.  

In both cases, the target material is usually inserted in a thin foil platinum or 

rhenium container in order to avoid a direct contact between the oxide and 

the tantalum target container, thus preventing oxidation risks. Oxide targets 

are however not suitable for the production of isotopes of elements that form 

refractory oxides. 

Liquid targets 

One significant parameter in targetry is the areal thickness (g/cm
2
) of the 

target, deriving from the density of the target element in the target material. 

Contrary to compound targets, bulk-material targets typically offer the 

largest areal thickness values of any ISOL target, but a bulk material of the 

size of an ISOL target would induce long diffusion paths for the produced 

nuclei. Molten metals were studied as they combine a fast diffusion 

coefficient and the large in-target production rates of a bulk material. 

Elements with a relatively low melting point  like tin, lanthanum, lead and 

bismuth have been used, as well as germanium, gold and eutectic alloys. 

The areal thickness of molten metal targets is on average an order of 

magnitude higher than other ISOL targets. They can therefore provide the 

highest intensities for reasonably short-lived isotopes of certain elements: 

Cd from a Sn target, Hg from a Pb target, Xe and Cs from a La target [30]. 

Other liquid targets in the form of molten salts have been studied: ThF4-LiF 

mixture [31], a eutectic mixture of TeO2, KCl and LiCl [32]. 

Currently, liquid target-materials are generally in the form of a static bath 

partially filling the target container. Volatile elements with a low adsorption 

enthalpy are presently released from molten targets even though long release 
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times have been reported [33]. The long release time generated by the 

diffusion step could be reduced by operating the target at higher 

temperatures but vapor pressure of the target material dictates the highest 

usable temperature of the target. An alternative idea to speed up the release 

out of molten targets is to fragment the target material into smaller volumes 

[34], as studied in this work. 

Other materials 

Release studies of other refractory compounds like BaB6, CeB6, CeS, 

Zr5Ge3, Hf5Sn3 and Ta5Si3 can be found in literature [21, 32]. 

1.3 Next-generation ISOL-facility projects 

1.3.1 ISOL@MYRRHA 

Over the past years, the Belgian Nuclear Research Centre SCK•CEN has 

been developing MYRRHA (see Figure 1.3), a Multipurpose hYbrid 

Research Reactor for High-tech Applications [35]. The MYRRHA facility 

is planned to operate as an Accelerator Driven System (ADS) with 

spallation neutrons generated by 600-MeV and 2 to 4-mA proton beam 

impinging on a lead-bismuth target [36]. The high energy and high intensity 

proton beam of this accelerator makes it suitable for the production of 

radioactive ion beams (RIBs). This is the reason why, within the MYRRHA 

project, the ISOL@MYRRHA project (see Figure 1.3) is foreseen with the 

aim of producing intense high purity RIBs based on the ISOL method. 
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Figure 1.3: Conceptual representation of MYRRHA and ISOL@MYRRHA [37]. 
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ISOL@MYRRHA [36] is an ISOL facility foreseen to operate with a 

primary beam consisting of a small fraction (up to 5%) of the proton beam 

from the MYRRHA-ADS accelerator [35]. With this 100 to 200-A x 600-

MeV proton beam for RIB production, 60 - 120 kW proton beam power will 

then be available. This is higher than currently available at operating ISOL 

facilities. ISOL@MYRRHA aims to be complementary to existing and 

future facilities, by focusing on experimental programs in need of long 

uninterrupted beam times [36]. Given the higher primary-beam power at 

ISOL@MYRRHA, as compared to running ISOL facilities, the development 

of new targets is mandatory. Among other ruggedized targets for the RIB 

production at ISOL@MYRRHA, a liquid Pb-Bi target is foreseen. 

1.3.2 EURISOL 

The idea behind EURISOL – a European isotope-separation-on-line (ISOL) 

facility – is to provide a unique ISOL-based facility for European scientists. 

The project aims at the design and subsequent construction of the next-

generation European ISOL-facility. EURISOL is intended to produce RIB 

yields up to four orders of magnitude higher than ISOL facilities in 

operation in Europe [38].  

As a first step toward EURISOL, a Feasibility Study [39] was conducted by 

a collaboration of European laboratories. Following the Feasibility Study, a 

primary proton beam intensity of up to 4 MW was considered to be 

necessary for achieving the goal of 10
15

 fissions per second in the target. It 

also derived from this study that a liquid-metal converter target would be 

required to remove the heat load deposited by this multi-mega-watt beam.  

To undertake further studies identified during the Feasibility Study, a 

Design Study (EURISOL-DS) [40] was initiated. Some technological 

challenges of the project, along with instrumentation and safety issues have 

been investigated during this Design Study. The production of elements not 

available from the fission of uranium was investigated and three 100-kW 

direct target stations were planned, to host different target units. One of the 

target concepts proposed within the EURISOL-DS is an innovative molten 

metal target. 

The concern that current ISOL targets are not suitable for operation with the 

high power primary beams of next generation facilities is relevant for 

EURISOL [40]. For these two facilities in project, ISOL@MYRRHA and 

EURISOL, ISOL targets capable of withstanding high-power primary beams 

without compromising the reliability of the yields and the structural integrity 
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of the target over extended periods of time are requested. Different concepts 

for high-power targets have been proposed and studied in this framework 

[41-44].  

1.3.3 LIEBE 

Because a molten metal target capable of operating efficiently with a high-

power primary beam is of interest for different ISOL facilities, the LIEBE 

(LIquid lEad Bismuth eutectic loop target for EURISOL) project was 

initiated. The project aims at conducting a detailed design and construction 

of a prototype Pb-Bi loop target for RIB production. The loop target concept 

under study for the LIEBE project is illustrated on Figure 1.4, as proposed 

within the EURISOL Design Study [40, 45]. With the flowing liquid target-

material this concept offers the possibility to transport the heat deposited by 

the primary beam to a remotely located heat exchanger. Furthermore, with 

respect to the efficiency for RIB-production, this concept offers the 

possibility of fractionating the irradiated liquid into small droplets. This 

reduces the length of the diffusion path from container dimensions, being a 

few centimeters, to a few hundred micrometers. 

 

Figure 1.4: Conceptual view of the target as proposed within the EURISOL Design 

Study [45, 46]. 

Note that unlike suggested by the conceptual view on Figure 1.4, the 

irradiation volume studied in this work features neither an open upper half 

nor a free surface. The project is conducted in collaboration between several 
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institutes: CEA
1
, CERN

2
, IPUL

3
, PSI

4
, SCK.CEN

5
 and SINP

6
. It is 

organized in nine Work-Packages (WP) and SCK•CEN is responsible for 

the WP-2: Conceptual design and simulations. The prototype should feature 

all components required for operation at a high primary-beam-power and 

will be tested at CERN-ISOLDE. 

Molten Pb-Bi is considered as target material as it is suitable for the 

production of Hg isotopes. Neutron-deficient isotopes in this region of the 

nuclide chart are of interest for studies on shape coexistence in atomic 

nuclei [47]. In addition, both Pb and Bi have been used as target material at 

CERN-ISOLDE in a static bath configuration. In this configuration, the 

target is a cylindrical container partially filled with a static liquid target 

material (see Figure 1.5). The container is 2 cm in diameter and 20 cm long. 

 

Figure 1.5: Static bath target configuration at CERN-ISOLDE [48]. 

1.4 Research goals of the present work 

The production cross-sections of many of the exotic nuclides produced in 

the targets above are higher for high-energy proton beams. Also, since the 

in-target production of nuclides scales with the intensity of the primary 

beam, increasing the beam power on target is one of the options to increase 

RIB intensities. For this reason, ISOL facilities of the next generation such 

as ISOL@MYRRHA [36] and EURISOL [49] are foreseen with a driver 

                                                      
1
 CEA: Commissariat à l’énergie atomique et aux énergies alternatives, 

http://www.cea.fr/  
2
 CERN: European Organization for Nuclear Research, http://home.cern/  

3
 IPUL: Institute of Physics of University of Latvia, http://ipul.lv/main/  

4
 PSI: Paul Scherrer Institute, https://www.psi.ch/  

5
 SCK•CEN: Belgian Nuclear Research Centre, https://www.sckcen.be/  

6
 SINP: Saha Institute of Nuclear Physics, http://www.saha.ac.in/web/  
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16 

 

beam power of   ̴ 100 kW. Current targets are mostly not suitable for 

operation under those conditions and new target designs are required. 

In their current design, molten metal targets operated at CERN-ISOLDE, the 

state of the art ISOL facility in Europe, are facing significant limitations to 

meet both future physics requirements and technical challenges of next 

generation ISOL facilities. Still, molten metal targets are the most efficient 

for the in-target production of some of the isotopes required. The aim of this 

research is to design a liquid Pb-Bi target for next generation ISOL facilities 

and especially for ISOL@MYRRHA. 

In order to ensure that the designed target can handle a very high primary-

beam power, the recently proposed idea of a dynamic molten metal target 

[46] is adopted. The molten Pb-Bi target material flows in a loop equipped 

with a heat exchanger. The molten Pb-Bi is irradiated by a proton beam in a 

dedicated container called the “irradiation volume”. Soon after irradiation, 

liquid Pb-Bi droplets are created, forming a shower inside a release volume. 

Several aspects need to be accounted for in the design of the target, 

including the hydrodynamics of the Pb-Bi flow, the dynamics of isotope 

release, the thermal effects of beam-target interactions and the consequent 

transient structural load.  

The research goals pursued in relation with the hydrodynamics of the Pb-Bi 

flow are listed below: 

 To define initial target geometries and predict the flow pattern in 

these geometries. 

 To optimize the target geometry in order to obtain satisfactory flow 

patterns. 

 To study the stability of the satisfactory flow patterns with respect 

to typical experimental conditions. 

The study of the dynamics of isotope release was structured around the 

following research goals: 

 To define and construct a suitable method to predict the release of 

isotopes from the target. 
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 To validate the developed method against experimental data from 

the most similar target. 

 To study the influence of secondary effects like surface residence of 

effusing nuclides on the predicted isotope-release curve. 

 To define an initial geometry for the release volume and predict the 

release of isotopes from this geometry. 

 To optimize the geometry of the release volume in order to improve 

the release of isotopes. 

Research goals with reference to the thermal effects of beam-target 

interactions and the consequent transient structural load are enumerated 

here: 

 To determine the heat deposition in the target material and container 

due to the impact of the primary beam. 

 To determine the transient thermal response of the target due to the 

proton-target interaction. 
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2 Target design & optimization - Hydrodynamic 

aspects  

Different concepts for high-power targets have been proposed and studied in 

the framework of the preparation for the new-generation RIB facilities. 

Based on radiative heat transfer studies, Zhang and Alton [41] have 

proposed porous and fibrous composite targets, that are expected to operate 

with deposited beam powers of up to 40 kW. Upon testing with both 

resistive and electron-beam heating, the TRIUMF-ISAC high-power target 

equipped with a finned container was shown to be capable of dissipating 

more than 25 kW when operated at 2200 °C [43]. However, these different 

studies concern solid targets, characterized by relatively low thicknesses. 

An alternative approach is the recently proposed liquid-metal-loop target 

[40, 45], which is expected to handle much higher primary-beam power 

because the target material flows in a loop equipped with a heat exchanger. 

In addition, liquid targets typically offer the highest thicknesses of any 

material (  ̴200 g/cm
2
 for Lead Bismuth Eutectic (LBE)). A thicker target 

typically means a higher number of target atoms per unit surface being 

exposed to the primary beam, which leads to higher in-target production 

rates for the isotopes of interest. Concerns for the design of these targets 

include effects like pressure drop, cavitation, liquid-metal recirculation, 

instabilities, non-uniform flows etc. [50-52]. Studies conducted in the past 

by different researchers highlight the importance of these effects on the 

target system [53, 54]. 

The liquid-metal-loop target is one of the foreseen 100-kW EURISOL direct 

targets and is also of interest for the ISOL@MYRRHA facility. The study 

reported in this chapter aims at providing solutions to specific 

hydrodynamics issues of concern for the design of this target. The 

satisfactory concepts will be prototyped and tested at CERN-ISOLDE 

within the LIEBE (LIquid lEad Bismuth eutectic loop target for EURISOL) 

project. The design optimization based on criteria detailed in section 2.1 is 

also presented, followed by a discussion of the hydraulic aspects of different 

optimized concepts. 
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Beam parameters considered for EURISOL, ISOL@MYRRHA and the test 

facility CERN-ISOLDE are given in table 1 for reference. 

Table 2.1: Beam parameters for EURISOL, ISOL@MYRRHA and CERN-ISOLDE 

facilities. 

 Particles Energy Intensity 
Beam 

structure 

Pulse 

length 

Repetition 

rate 

Average 

power 

EURISOL Protons 1 GeV 100 µA CW - - 100 kW 

ISOL@MYRRHA Protons 
0.6 – 1 

GeV 

up to 200 

µA 

Interrupted 

CW 
< 200 µs 250 Hz 

< 120 

kW 

CERN-ISOLDE 

(test facility) 
Protons 1.4 GeV 1 - 2 µA Pulsed 2.4 – 40 µs 0.8 Hz 

1 – 2.8 

kW 

2.1 Target Concept 

Detailed understanding of the time dependence of the release process of 

radioisotopes is necessary for the development of improved targets for 

ISOL-RIB production. Liquid-lead targets have been studied and operated at 

ISOLDE with 600-MeV protons from the SynchroCyclotron (SC) and later 

on, with 1 to 1.4-GeV protons from the Proton-Synchrotron-Booster (PS-

Booster) [55]. The partially-filled liquid-metal-target containers were 20-cm 

long cylinders with a 1-cm radius. At the SynchroCyclotron, the time 

necessary to release half of the isotopes (t50) from molten-metal targets was 

typically 30 to 120 s [33]. At the PS-Booster, the violent shaking of the 

target due to the pulsed beam has induced faster release of isotopes. 

However, the t50 calculated from a fitted release function for mercury atoms 

was still 10 ± 5 s [33], which is long in comparison with the half-lives of 

some short-lived isotopes like 
178

Hg (t1/2 = 0.26 s) and 
177

Hg (t1/2 = 0.118 s). 

The proposed concept for the liquid-metal-loop target is shown in Figure 

2.1. In this concept, a dedicated container, filled with LBE, is used for 

irradiating the target material by the proton beam. This container, called 

“irradiation volume”, is placed in a vacuum chamber, called “diffusion 

volume”. After irradiation by protons, LBE droplets are created, forming a 

shower inside the diffusion volume. The droplets fall under gravity before 

being collected at the bottom of the diffusion volume. Meanwhile, the 

isotopes diffuse to the surface of the droplets, desorb from this surface and 

effuse towards the ion source via the transfer tube. A heat exchanger is 
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foreseen upstream to the pump to cool the LBE. The position of the pump is 

chosen to ensure that the LBE temperature at the pump inlet does not exceed 

maximum acceptable values for the magnets of the pump (  ̴600 °C [56]). 

The pump ensures a constant LBE flow. Heating devices foreseen along the 

loop allow for a better adjustment of the temperature at start-up and during 

operation. 

 

Figure 2.1: Liquid metal loop concept [45]. 

Based on the knowledge derived from operation of the static-bath liquid-

metal targets and in order to improve the efficiency of the release process 

for short-lived isotopes, two major requirements were set prior to the 

detailed design of the liquid-metal-loop target. 

Because the objective of this target is to produce short-lived isotopes like 
177

Hg (t1/2 = 0.118 s), the first requirement is a fast evacuation of all the 

irradiated LBE from the irradiation volume into the diffusion volume. 

Meeting this requirement will decrease decay losses of the isotopes in the 

irradiation volume. In the present design, we aimed at a complete evacuation 

of the irradiated LBE in a shower of droplets within   ̴ 100 ms after a proton-

pulse impact. The 100 ms objective is defined according to the half-life of 

the isotope of interest, 
177

Hg. Meeting this requirement also ensures that hot 

spots will be avoided and constitutes the main subject of the analysis in this 

chapter. 

In order to achieve higher release efficiencies, the second requirement is to 

reduce the characteristic diffusion length of isotopes out of the liquid-metal. 

This is ensured in the present concept by decreasing the size of the LBE 

matrix out of which nuclides have to diffuse. Irradiated LBE will be spread 

into a shower of droplets with radii in the range of few 100 μm, which 
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represents a decrease in the characteristic diffusion length of isotopes of two 

orders of magnitude compared to static-bath ISOLDE liquid-metal targets. 

2.2 Regimes of droplet formation 

Droplet formation is a phenomenon arising from the interplay of different 

forces including gravitational forces, surface tension forces, inertial forces 

and linear as well as non-linear effects of waves generated by turbulent 

conditions, irregularities of apertures and instabilities due to pinch-off. 

Depending on the relative importance of these effects, the pattern of droplet 

formation is different. Different regimes of droplet formation have been 

identified experimentally [57-60]. 

 

Figure 2.2: Droplet formation regimes, a) periodic dripping, b) dripping faucet, c) 

jetting, d) first wind-induced regime, e) second wind-induced regime, f) atomization 

[58]. 

An analysis and selection of the appropriate droplet formation regime is 

required for this target design since each regime has different characteristics 

regarding the droplet size (and thus the release fraction of isotopes), the 

intact length and the time dependence of the droplet formation process.  

The periodic dripping regime is characterized by lower inertial forces than 

surface-tension forces. Pendant droplets are formed, detaching at a constant 

time intervals from the tip of the formation aperture when gravitational 

c) d) e) f) 
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forces become large enough. The range of pinch-off periods for this regime 

is however limited to large values. Droplets of a similar size are obtained. 

The droplet size, governed by the radius of the formation aperture is bigger 

than in the other regimes for a given aperture. In addition, in case of 

wettable formation-nozzles, the risk of droplet merging at the exit of an 

array of nozzles is increased [61]. 

The dripping faucet regime is a narrow-range transition regime 

characterized by a quasi-balance between inertial and surface tension forces. 

This results in a variable droplet size, a loss of periodicity in droplet 

formation and a detachment point slightly further away from the droplet-

formation-aperture tip. 

The jetting regime is characterized by inertial forces overcoming surface 

tension forces. The detachment point of droplets is moved downstream and 

a continuous jet is formed between this point and the aperture tip. This 

liquid jet undergoes capillary instabilities leading to the formation of 

droplets. Smaller droplets are obtained. The droplet size is independent of 

the jetting velocity and is only governed by the jet radius for a given liquid. 

It is therefore the favorable regime for production of monodisperse droplets 

with a high throughput [62]. 

The first and second wind-induced regimes [62, 63] are established when 

the inertia force of the environment surrounding the jet reaches a significant 

fraction of the surface tension forces. The breakup process is thus 

accelerated by two effects: the shear stress between the jet and its 

environment and the onset of turbulence in the jet flow. This results in a 

shortening of the distance between the pinch-off point and the aperture tip. 

As inertial forces are further increased, the fragmentation of the liquid jet 

into droplets moves upstream to the nozzle tip, indicating the onset of the 

atomization regime. In the current application, the droplets will be formed in 

a release volume under vacuum. There will therefore be no significant effect 

of the inertia of the surrounding environment. The wind-induced and 

atomization regimes are therefore not relevant for this application. 

Due to the fact that the release fraction of species inside the diffusion 

chamber requires control over the droplet size, the dripping faucet regime is 

not the most suitable for this application. Its narrow range of applicability is 

an additional constraint. In the same way, because of the risks of droplet 

merging and film creation on the outer surface of the irradiation chamber, 

the periodic dripping regime is discarded. Though interesting from the 
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droplet size point of view, regimes beyond the jetting are not applicable. 

The jetting regime was then selected. The region of interest for droplet 

formation inside the release volume is indicated on Figure 2.3 by the dash-

line triangle. It is bounded by a lower limit defined as 𝑊𝑒𝑙𝑖𝑞 =
𝜌𝑙𝑖𝑞𝑣

2𝑟

𝛼
 which 

represents the transition to the jetting regime. The upper limit of the region 

of interest is defined by the requirement to limit the liquid velocity inside 

the apertures to  ̴ 2 m/s. Meeting this requirement will avoid important 

corrosion-erosion damage [63] to the droplet-formation apertures. Indeed, 

the corrosion of structural material in contact with LBE involves several 

processes but its rate is typically controlled by a slow molecular diffusion 

through the boundary film. As the velocity of the liquid is increased, the 

rate-controlling effect of molecular diffusion is restricted to the smaller 

viscous sublayer of the turbulent boundary layer. This results in an increased 

corrosion rate that is avoided here by maintaining relatively low velocities. 

The dash-lines shown on Figure 2.3 correspond to different values of the 

Reynolds Number (𝑅𝑒𝑙𝑖𝑞 =
𝜌𝑙𝑖𝑞𝑣𝑟

𝜇
) of LBE at 600 K, with a density 𝜌𝑙𝑖𝑞 = 

10301.8 kg/m
3
, a viscosity 𝜇 = 1.736 mPa.s and a surface tension 𝛼 = 

0.397 N/m. 

 

Figure 2.3: Classification of droplet formation regimes for LBE discharging from an 

aperture into LBE vapor at a density of 1.87 10
-11

 kg/m
3
, as a function of the jet 

velocity v and aperture radius r (Adapted from [62]). 
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The following sections present the methodology applied to study the 

dynamics of LBE in the irradiation volume of the target and the 

optimization process to meet the first requirement mentioned in section 2.1. 

2.3 Methodology 

Computational Fluid Dynamics (CFD) tools are commonly used for the 

thermal and hydraulic design of facilities planned to operate with a liquid-

metal, e.g., MYRRHA [64], ESS [65] and EURISOL [51, 66]. Furthermore, 

important aspects of CFD analysis such as the turbulence modeling, pressure 

field and pressure drop in a liquid-metal flow have been checked. This was 

done by comparing experimental and computational data in the framework 

of thermal-hydraulics design of the MEGAPIE LBE target [51, 66]. CFD is 

also less expensive and faster to implement for a design-optimization 

procedure than prototyping each optimization step. Also, experimental R&D 

on targets is often complex since post-irradiation analyses are hindered by 

the high intrinsic radiotoxicity of the materials. Fluent (ANSYS, 

Canonsburg, PA, USA), has been used for the work reported in this chapter. 

All the modeled CFD geometries comprise a half-symmetry of the target 

geometry about the XY-plane (see Figure 2.4). This assumption is explained 

by the fact that the distribution of evacuation apertures is symmetric with 

respect to the vertical mid-plane of the flow inlet. The geometries were also 

restricted to the fluid domain for CFD analysis and the fluid-container 

interaction has been modeled by adequate “no slip wall” boundary 

conditions. More than 22,000,000 cells are required to get mesh-

independent results, e.g. in the concept discussed in section 2.4.3. The 

thermal effects of the proton-beam impact have not been taken into account 

in these calculations. This simplifies and speeds up calculations during the 

hydro-dynamical optimization process. Issues related to LBE-temperature 

profile, heat deposition and dissipation, potential occurrence of pressure 

waves and resonance are not treated in the present chapter. While these 

effects are likely to be of concern at highly-pulsed beam facilities, given the 

high pulse repetition rate and long pulse length (see Table 2.1), the 

instantaneous power densities will be rather low at ISOL@MYRRHA. 

Previous calculations for liquid-metal target design, with k-ϵ and k-ω Shear 

Stress Transport (SST) turbulence models, have shown good agreement with 

experimental data (mercury target experiment for  EURISOL and Lead-

Bismuth for MEGAPIE) for average-flow behavior and mean-velocity fields 

[67, 68]. Because these models are less computationally intensive and since 
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no energy-mixing process is accounted for in this design-optimization 

process, the SST k-ω turbulence model has been used for these steady-state 

simulations. The settings of the calculations are summarized in Table 2.2 

and details of the irradiation volume concepts studied in this chapter can be 

found in Appendix A. 

Table 2.2: Settings of the CFD calculations 

Solver Pressure based 

Boundary condition at inlets 
Specified velocity magnitude and 

direction normal to boundary 

Boundary condition at outlets Pressure outlet 

Initial condition for steady state 

calculations 
Hybrid Initialization 

Initial condition for transient 

calculations 

Flow and pressure fields from steady 

state calculations 

Spatial discretization : Gradient Least Squares Cell Based 

Spatial discretization : Pressure Body Force Weighted 

Spatial discretization : 

Momentum 
Third-Order MUSCL 

Spatial discretization : 

Turbulent Kinetic Energy 
Third-Order MUSCL 

Spatial discretization : Specific 

Dissipation rate 
Third-Order MUSCL 

Multiphase modeling No 
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2.4 Results & Discussion 

2.4.1 Starting-case geometry of the irradiation volume 

 

Figure 2.4: Schematic layout of the irradiation volume of concept 1. 

Based on the concept presented on Figure 2.1 and described in section 2.1, 

the starting-case geometry presented on Figure 2.4 was used for LBE-

dynamics simulation inside the irradiation volume. In this initial concept, 

the irradiation volume of the target consists of a 20-cm long and 1-cm 

diameter cylinder. The LBE flows into the irradiation volume through its 

base section and is evacuated through a series of apertures uniformly 

distributed over the lower half of the cylinder mantle. LBE-flow direction is 

indicated on Figure 2.4. The 1-cm diameter is selected to accommodate 

three standard deviations (3σ) of the proton-beam transverse Gaussian 

profile (FWHM   ̴ 3.5x3.5 mm
2
 at the test facility). Potentially larger beam 

profiles at ISOL@MYRRHA would request correspondingly larger cross 

sections of the irradiation volume. The cylindrical irradiation volume and 

the proton-beam direction (Figure 2.4) are coaxial. This concept, called 

concept 1 (Figure 2.6), features 2500 evacuation apertures of 200-μm radius. 

These numbers are derived from the fast-evacuation (within 100 ms) 

requirement and the objective of reaching the jetting regime of droplet 

formation [57]. 

20 cm 

1 cm 
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Figure 2.5: Schematic layout of the irradiation volume of concept 2. 

Considering the fact that the manufacturing of the exit apertures on a 

cylindrical surface is quite challenging, an alternative concept 2, featuring 

the evacuation apertures on a flat surface (see Figure 2.5) was also analyzed. 

In order to accommodate 3σ for the proton beam, the cross-section area and 

flow rate in the irradiation volume of concept 2 are, correspondingly, twice 

the values in concept 1. The geometry of the irradiation volume in concept 2 

is a half cylinder with 2-cm diameter. Because the flow rate is doubled, 

5000 evacuation apertures are required in order to keep the formation of 

droplets in the same regime. Also, due to the larger irradiation volume, the 

average concentration of short-lived isotopes is half of that in concept 1. 

This affects the isotopes-diffusion efficiency. 

The computed static-pressure distributions of concept 1 (Figure 2.6) and 

concept 2 (Figure 2.7) show very low pressure levels in the LBE inside the 

evacuation apertures on the inlet side of the irradiation volume. Some of 

these low-pressure regions have values below experimental values of the 

LBE saturation vapor pressure reported in literature: 10
-6

 Pa at 500 K [50, 

69]. This poses a risk of flow-induced cavitation and erosion damage to the 

target structure. Evidence of cavitation erosion in a pulsed-beam liquid lead 

target has been reported for ISOLDE target containers [70]. While the origin 

of the erosion in these targets was not the flow, the risk of cavitation damage 

in this design should be mitigated to assure sufficient target life. Indeed, 

20 cm 

2 cm 
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cavitation can have the effect of limiting the target container lifetime and 

even lead to its failure. The envisaged lifetime of the prototype at ISOLDE 

is of the order of 1 – 2 weeks while EURISOL is foreseen to operate a target 

for 3 weeks and ISOL@MYRRHA for 4 – 8 weeks. 

 

Figure 2.6: Schematic layout and CFD-analysis results (on symmetry plane) of the 

target design in concept 1. 

 

Figure 2.7: Schematic layout and CFD-analysis results (on symmetry plane) of the 

target design in concept 2. For consistency, pressure and velocity scales are kept the 

same as in Figure 2.6. 
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These low-pressure zones are explained by the fact that high-pressure 

gradients are required to bend the high-momentum LBE streamlines through 

the first apertures on the inlet side. The pressure values computed inside the 

irradiation volume at the inlet were low enough to induce almost no flow 

through the corresponding evacuation apertures (see velocity-vectors plots 

on Figure 2.6 & Figure 2.7), which also means no droplet formation through 

these apertures. Besides, pressure progressively builds up inside the 

irradiation chamber in both concepts while the average horizontal velocity 

decreases from right to left on Figure 2.6 & Figure 2.7. This is due to the 

fact that part of the inlet LBE flow is progressively lost through the 

evacuation apertures, and this leads to a lower flow velocity since the cross 

section of the flow volume is constant along the irradiation volume. 

The negative values on the pressure scales are not only related to the high-

momentum-streamline bending effect described earlier. Because of the 

stream-wise pressure build-up mentioned in the previous paragraph, an 

acceleration of LBE at the entrance in evacuation apertures, mostly on the 

left-hand side of the velocity plots (Figure 2.6 and Figure 2.7), led as well to 

computation of negative pressure values in the corresponding regions. 

Computation of these, however, unphysical negative pressure values occurs 

because cavitation effects were not modeled. Modeling these effects is not 

needed at this stage and would increase the computation time. 

Recirculation zones were also noticed at the stream-wise end of the 

irradiation volume in both concepts because of the sudden direction change 

of the geometry at this end. These zones are marked by the dashed-line 

contours on Figure 2.6 & Figure 2.7. A close-up view on the velocities in 

the recirculation zone is shown on Figure 2.8 for concept 2. When they 

occur in the irradiation volume, these recirculation zones carry produced 

isotopes for extended periods of time, which leads to decay losses. For this 

reason, the effect of recirculation zones was studied by computing, for each 

concept, the portion of irradiated LBE evacuated from the irradiation 

volume within 100 ms after the arrival of a proton pulse. The calculation of 

the evacuation state was conducted in single phase, both irradiated and fresh 

LBE being represented by the same incompressible liquid LBE phase. These 

were transient calculations starting with the steady-state results as initial 

condition. In these calculations, a passive scalar is transported in the 

velocity field, setting its diffusivity to zero. The zero diffusivity corresponds 

to the very limited diffusion range of the isotopes of interest during the time 

span of the evacuation process. The fresh and irradiated LBE volumes were 
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then tracked by tagging them with two different values of the transported 

scalar. 

 

Figure 2.8: Close-up view on the velocity vectors in the recirculation zone of 

concept 2. 

It is shown on the evacuation-state plots (Figure 2.6 and Figure 2.7) that 

100 ms after the arrival of a proton pulse, portions of LBE in the 

recirculation zones have not been evacuated from the irradiation volume to 

the diffusion chamber. The turbulent mixing region at the interface between 

fresh and irradiated LBE is not shown on these plots since it spans over a 

narrow region and does not significantly affect the appreciation of the 

evacuation state. Throughout the chapter, a 50% threshold value is used for 

construction of the two-level scale evacuation-state plots. 

Recirculation zones in the irradiation volume are to be avoided in order to: 

(1) reduce decay losses of short-lived isotopes inside the irradiation volume, 

as much as possible; (2) prevent occurrence of hot spots and (3) ensure a 

proper cooling of the beam window at high proton beam power. 

In summary, the main issues detected for these two concepts are: the 

presence of very low pressure zones, a non-uniform distribution of 

evacuation velocity-vectors along the proton-beam direction and the 

recirculation of LBE inside the irradiation volume. 

Consequently, these simple concepts cannot be used. The design 

optimization that will be discussed in the following sections considered 

successively-improved concepts to overcome these issues. From this point 

on, the half-cylinder design of the irradiation volume in concept 2 has been 
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dropped because its results have not shown any specific advantage to 

compensate for its major disadvantages: a larger irradiation-chamber 

volume, a higher flow rate (i.e. it requires more power at the pump since 

pressure drops are of the same order in concepts 1 and 2) and more 

evacuation apertures per unit surface meaning higher cost for manufacturing 

and higher risks of merging between closer LBE jets. 

2.4.2 Transverse-inlet irradiation volume 

Concept 3 (see Figure 2.10), features a cylindrical irradiation volume with 

two inlets perpendicular to the proton-beam axis. The irradiation volume is a 

20-cm long and 1-cm diameter cylinder, like in concept 1. Hence, it requires 

the same number of evacuation apertures. Since each of the two inlets has 

the same cross-section area as the inlet in concept 1, the inlet velocity in 

concept 3 is half of that in concept 1. 

 

Figure 2.9: Schematic layout of the irradiation volume of concept 3. 

The use of transverse inlets suppresses the need to bend streamlines over 

small radii of curvature at inlet and solves the related issue of low-pressure 

regions observed in concept 1 and 2.  Results are presented in Figure 2.10. A 

more uniform distribution of pressure and evacuation-velocity vectors is 

observed. 
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Figure 2.10: Schematic layout and CFD-analysis results (on symmetry plane) of the 

target design in concept 3. For consistency, pressure and velocity scales are kept the 

same as in Figure 2.6. 

However, there were a few negative-pressure regions determined in this 

case, which are related to the acceleration of LBE at the entrance of few 

evacuation apertures. This indicates that the distribution of the evacuation-

velocity vectors is still not uniform enough. Additionally, extensive 

recirculation zones are noticed (see dashed-line boxes on Figure 2.10). As 

shown on the state-of-evacuation plot of Figure 2.10, the presence of these 

recirculation zones inside the irradiation volume leads to slow evacuation of 

part of the irradiated LBE. This issue is dealt with in the next sections 

through more elaborate concepts. 

2.4.3 Distributed-inlet irradiation volume 

At this point, LBE recirculation in the irradiation volume is the main issue 

left to be solved in order to meet the 100-ms evacuation requirement. For 

this reason, every concept in the following sections is designed with a feeder 

volume (on top of the irradiation volume) that will host the recirculation 

zones and thereby prevent their occurrence inside the irradiation volume. In 

concepts 4 & 5 (Figure 2.11 & Figure 2.14), the double-inlet design of 

concept 3 is maintained. The inlet direction is also kept normal to the 

proton-beam direction, but the inlets feed the irradiation volume through the 

feeder volume. Feeder grids are also foreseen between the inlets and the 

irradiation volume. These feeder grids are designed to oppose sufficient 
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resistance to the inlet jets in order to uniformly distribute the LBE over the 

irradiation volume. This is accomplished through the use of feeder-grid 

apertures with small diameters. 

 

Figure 2.11: Schematic layout (half-symmetry view) and CFD-analysis results (on 

symmetry plane) of the target design in concept 4. For consistency, pressure and 

velocity scales are kept the same as in Figure 2.6. 

In concept 4, a single feeder volume with a feeder grid is used. Under these 

conditions, preliminary simulation results (shown on Figure 2.13) show that 

feeder-grid apertures with radii ≤ 100 μm are required in order to obtain a 

uniform distribution over the irradiation volume. This results in a feeder grid 
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equipped with 10,000 apertures of 100 μm (see Figure 2.12) and a feeder 

volume of 5 cm in height.  

 

Figure 2.12: Sections of feeder grids with apertures of 200 μm and 100 μm in radius 

 

Figure 2.13: Evacuation state of concept 4, fitted with a feeder grid featuring 

apertures of 200 μm in radius. 

1cm 

1cm 

2 cm 

100 μm in 

radius 

200 μm 

in radius 
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Besides, to accommodate the flat feeder grid, the geometry of the irradiation 

volume consists of the lower half of a 20-cm long and 1-cm diameter 

cylinder plus a 20-cm x 1-cm x 0.5-cm parallelepiped on top.  

Another concept studied (concept 5), presents two feeder grids and two 

feeder volumes. Each of these feeder grids is equipped with 2500 apertures 

of 200-μm radii and each of the feeder volumes is 2-cm high. The 

irradiation-volume geometry is the same as for concept 4. In both cases 

(concept 4 & concept 5), 1-mm thick feeder grids are used in the 

computation. 
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Figure 2.14: Schematic layout (half-symmetry view) and CFD-analysis results (on 

symmetry plane) of the target design in concept 5. For consistency, pressure and 

velocity scales are kept the same as in Figure 2.6. 

The results of the CFD-analysis for concepts 4 and 5 are presented in Figure 

2.11 and Figure 2.14, respectively. The static-pressure plots do not display 

any negative pressure region. In both cases, pressure differences vertically 

across the feeder grids are mostly constant along the proton-beam axis. This 

explains the uniform distribution of velocity-vectors, obtained inside the 

irradiation volume and at evacuation in the diffusion volume. Even though 

large recirculation zones have been computed (see dashed-line boxes), these 

have been held in the feeder volumes. Recirculation zones occurring in the 

feeder volume do not affect the fast evacuation of isotopes. Since the feeder 



38 

 

volumes are not subject to direct and intensive irradiation by the proton 

beam, these recirculation zones do not present a risk for occurrence of hot 

spots. 

As a result of the absence of recirculation zones inside the irradiation 

volume, in both concepts 4 and 5 all the irradiated LBE is evacuated from 

the irradiation volume within 100 ms after a proton-pulse impact. These two 

acceptable solutions however imply some degree of complexity for the 

manufacturing, with either a doublet of feeder grids or smaller feeder-grid 

apertures (100 μm instead of 200 μm). 

2.4.4 Prism-shape feeder volume 

The prism-shape feeder volume concept presented here is used as an 

alternative to reduce the complexity of manufacturing mentioned above. It 

allows for larger inlets and consequently lower inlet velocity to provide the 

same flow rate of LBE as in concepts 4 and 5. The required inlet velocity in 

this concept is reduced by almost an order of magnitude compared to 

previous concepts, thereby reducing the strength of the inlet-jet effect. The 

difference between the momentum of LBE in the inlet jet and LBE in the 

rest of the feeder volume is thus reduced. With such a reduced inlet-jet, the 

design of the feeder grid can be relaxed and one single feeder grid of 200-

μm radius apertures is necessary to obtain a uniform distribution of velocity 

vectors through the irradiation volume and at evacuation (Figure 2.15). 2500 

apertures are hosted on the feeder grid which has a thickness of 1 mm, 

similar to concepts 4 and 5. 
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Figure 2.15: Schematic layout (half-symmetry view) and CFD-analysis results (on 

symmetry plane) of the target design in concept 6. For consistency, pressure and 

velocity scales are kept the same as in Figure 2.6. 

Results of the CFD analysis are included in Figure 2.15: Velocity-vectors 

are uniformly distributed in the irradiation volume and at evacuation to the 

diffusion volume. No recirculation zone occurs in the irradiation volume and 

the design meets the 100-ms evacuation requirement. 

2.5 Influence of various operational conditions 

Thin feeder grids have been foreseen in the current design since this reduces 

the pressure drop across the grids. However, the uniform flow computed is 

not negatively affected by the use of thicker feeder grids that may be 

required for the LIEBE prototype in order to make the design more resistant 

to pressure waves generated by the pulsed proton beam at the test facility. 

Thicker feeder grids will simply have the effect of increasing the pressure 

drops. 
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The release of nuclides out of an ISOL target typically shows an exponential 

dependence on temperature, being more efficient at higher temperature. For 

this reason, the satisfactory concepts (4, 5 and 6) have been simulated with 

LBE data at different temperatures ranging from 500 K to 1200 K. It results 

from these calculations that the uniform flow of LBE in the irradiation 

volume is maintained over this range of temperatures for concepts 5 & 6 but 

not for concept 4 (see Figure 2.16). This can be explained since LBE 

viscosity decreases by more than a factor of two with increased temperature 

over this range (0.00223 Pa.s at 500 K and 0.000926 Pa.s at 1200 K [69]). 

More importantly, a reduction in turbulent viscosity is also observed in the 

inlet-jets. The lower viscosity reduces the dissipation of the inlet-jets energy 

to adjacent LBE by momentum diffusion. For temperatures higher than 600 

K this effect disrupts the uniform flow of LBE in concept 4. 

 

Figure 2.16: Evacuation state of concepts 4, 5 and 6 at 1200K. 

The use of smaller feeder-grid apertures (100-μm radii) in concept 4 makes 

it more prone to clogging of the feeder grids than concepts 5 and 6. The 

effect of such a clogging of the feeder grid, due to impurities carried on by 

the inlet flow of LBE, has been assessed. Simulations were run for the three 

concepts (4, 5 and 6) with a partial clogging of the feeder-grid apertures. 

Assuming the impurities are brought in with the inlet stream, only the first 

feeder grid of concept 5 was partially clogged while for concepts 4 and 6 the 

single grid was partially clogged in the simulation. In all the concepts the 

clogged apertures were simulated in line with the inlets, by suppressing the 

apertures over a compact portion of the feeder-grid (i.e. replacing them by a 

Evacuation state after 75 ms Evacuation state after 100 ms 

Irradiated 

LBE 

 

Fresh LBE 
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volume representing a metal piece as shown on Figure 2.17). The results 

have shown that even with 30% clogging of its first feeder grid, the uniform 

flow of LBE in the irradiation volume is maintained for concept 5. Because 

concepts 4 and 6 are only equipped with a single feeder grid, the uniform 

flow of LBE in the irradiation volume as well as the complete LBE 

evacuation determined in nominal conditions are already disrupted with a 

10% clogging. 

 

Figure 2.17: Feeder grid with 10% clogged apertures in line with the inlets. 

Out of the three concepts that meet the preset design requirements, concept 

5 proves to be the most robust. However, it is quite demanding in terms of 

complexity in manufacturing. On the other hand, concept 6 can be made 

more robust through the use of a filter on the feeder line. These two 

concepts will be prototyped for tests at CERN-ISOLDE. Because, unlike 

ISOL@MYRRHA the proton beam at CERN-ISOLDE is highly pulsed, 

specific issues improbable in CW mode and related to the pulsed-beam time 

structure of ISOLDE will therefore be studied for the prototype. 

2.6 Conclusion 

The CFD simulations presented in this chapter have been carried out in 

support of the design and optimization process of a molten-LBE target loop 

for the production of beams of short-lived radioactive ions at high-power 

ISOL facilities. A CFD analysis was used since it has been successfully 

compared in the past with experimental data for liquid-metal flow. This 
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analysis allowed us to avoid a lengthy and costly process of prototyping and 

testing every investigated design.  

 The target-design optimization reported here was conducted with the aim of 

a complete evacuation of the irradiated LBE from the irradiation volume 

within 100 ms after the impact of a proton pulse. Unforeseen issues have 

been revealed through simulations of the starting-case geometries proposed 

for the irradiation volume. The available amount of data resulting from these 

initial simulations provided a unique insight on the causes and potential 

solutions of these issues. As a result, a key feature of the optimized concepts 

is the need for a set of feeder volumes and feeder grids. 

Three designs meeting this requirement have been developed. In each of 

these cases the inlet-jet effect was solved with a combination of two 

approaches: (1) increasing the size of inlet sections in order to reduce inlet 

velocities; (2) opposing one or two high-resistance feeder grids to the inlet 

jet. With this strategy, within a compact geometry, the jet flow with high-

momentum that enters at the inlets is transformed into a uniform flow in the 

irradiation volume and at evacuation. Issues of low-pressure zones have 

been solved by avoiding unnecessary bending of the flow inside the compact 

geometry of the target. 

Out of the three concepts that meet the pre-set design requirements, 

concept 5 proved to be the most robust with regards to risks of clogging.  
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3 Isotope-Release calculations – the method  

The production of RIBs of nuclides away from the valley of stability is often 

confronted with very low production cross sections, the massive production 

of undesirable species and the short half-lives of the nuclides of interest. In 

this chapter, a computational approach to predict the release of nuclides out 

of a dynamic liquid metal target is presented. The chapter is divided in two 

parts. In the first part, an overview of the overall release of nuclides from 

production to delivery for an experiment is given, for current ISOL targets. 

The computational approach developed and used through this thesis to 

predict the efficiency of isotope release from production to ionization is 

explained in the second part. This method combines the advantages of an 

analytical solution with the benefits of the supporting detailed Monte Carlo 

(MC) calculations. One of the objectives for studying the dynamic target is 

to improve on the release efficiencies achievable with the current static bath 

liquid targets. In this objective, all the processes occurring in the target shall 

be properly modelled. 

3.1 Modeling the release from the dynamic liquid 

target 

In the ISOL technique, the isotopes of interest are produced and released 

from a thick target, kept at high temperature. The reaction products are 

subsequently ionized, extracted in the form of a RIB and mass separated. 

The production of RIBs of nuclei away from the valley of stability through 

the ISOL technique is confronted with decay losses between the production 

target and the experimental setup. 

The figures of merit of a RIB for users are: the availability of isotope beams 

along with the intensity and purity. The RIB intensity 𝐼𝑅𝐼𝐵, in particles per 

second at an ISOL facility is typically described as the product of the in-

target production rate with an overall efficiency characterizing the transport 

of the nuclides from their location of production to an experimental setup 

(see expression (3.1)) [71, 72]. 

  
 

𝐼𝑅𝐼𝐵  ≡  𝐼 𝜎 𝑁𝑡𝑎𝑟𝑔𝑒𝑡  𝜀𝑟𝑒𝑙  𝜀𝑖𝑜𝑛 𝜀𝑠𝑒𝑝 𝜀𝑡𝑟𝑎𝑛𝑠𝑝 𝜀𝑠𝑡𝑜𝑟 𝜀𝑝𝑜𝑠𝑡−𝑎𝑐𝑐 
(3.1)  
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The product of 𝐼 the intensity of the driver beam [particles/s], 𝜎 the cross 

section for production of a nuclide [m
2
] and 𝑁𝑡𝑎𝑟𝑔𝑒𝑡, the number of target 

atoms per unit area of beam spot [atoms/m
2
] defines the in-target production 

rate. Both 𝜎 and 𝐼 actually evolve with the longitudinal target depth, as a 

result of the stopping power and scattering in dense targets. This indicates 

that the in-target production rate as expressed is a simplification. 

Several processes, undergone by the isotopes of interest from nuclear 

production until delivery to the experimental setup, contribute to the overall 

efficiency of the technique. These processes are: 

 the release of nuclides from  their production location to the ion 

source represented by 𝜀𝑟𝑒𝑙, 

 the ionization of the nuclides in preparation of an electromagnetic 

transport represented by 𝜀𝑖𝑜𝑛, 

 the electromagnetic mass separation of the ions represented by 𝜀𝑠𝑒𝑝, 

 the ion-optical transport of the selected ions through the beam line 

system represented by 𝜀𝑡𝑟𝑎𝑛𝑠𝑝, 

In addition, if necessary the ion beam can be stored, cooled, bunched of 

post-accelerated. Note that no storage or post-acceleration is currently 

foreseen for ISOL@MYRRHA. 

While the ionization process efficiency varies between 0.1 % and 90 %, the 

efficiencies of all the processes that follow ionization would typically be 

above 10 %. In contrast, the efficiency of nuclide release from the target to 

the ion source is often as low as 10
-6

 or less [72]. In some cases, this step 

can fully prevent the production of a RIB, even at high temperatures and 

with in-target production rates of the order of 10
11

 s
-1

. Therefore, the main 

research goal of this work is to improve the efficiency of this crucial step in 

the dynamic molten-metal target. 

At a specific facility, 𝑁𝑡𝑎𝑟𝑔𝑒𝑡 and 𝜀𝑟𝑒𝑙 are the parameters to be tuned in 

order to optimize the design of a certain target. Together, these two 

parameters constitute a figure of merit for the target that ought to be the aim 

of the target design and optimization. Among others, 𝑁𝑡𝑎𝑟𝑔𝑒𝑡 depends on the 

length of the target. 
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In current ISOL targets, the produced nuclides undergo two processes 

during their release from the target to the ion source. These processes are: 

the diffusion from the target material inside which the nuclides are produced 

and the following effusion in the target container and transfer line. In this 

target there is an extra process prior to the two mentioned, consisting of the 

evacuation of the nuclides from the irradiation volume to the release 

volume. All three processes contribute to 𝜀𝑟𝑒𝑙 and are to be accounted for in 

optimizing the release of nuclides out of the target. Note that these processes 

are often linked and it is therefore not possible to optimize them 

independently. 
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Figure 3.1: Release model for the dynamic molten metal target. 𝐭𝟎 represents the creation time of nuclides in the irradiation volume, 𝐭𝐞𝐯 is 

the time of evacuation of nuclides into droplets, 𝐭𝐝𝐬 is the time of arrival of nuclides at the droplets surface and 𝐭𝐢𝐬 is the time of arrival of 

nuclides at the ion source. 
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The sketch on Figure 3.1 illustrates the method developed and implemented 

to model the release of nuclides out of the target. Each of the processes 

contributing to 𝜀𝑟𝑒𝑙 is modelled separately to capture its specific features. 

For each process, the probability density function (pdf) that a nuclide spends 

a specific time duration in the process is modelled and expressed 

analytically. Analytical descriptions of the pdfs for evacuation diffusion 

denoted 𝑅𝑒𝑣 and 𝑅𝑑𝑖 are then convoluted into a pdf for arrival of nuclides at 

the droplets surface indicated by 𝑅𝑑𝑠. This function is in turn convoluted 

with the analytical description of the effusion pdf denoted 𝑅𝑒𝑓 to obtain an 

overall delay-time distribution indicated by 𝑅𝑖𝑠. The convolution is a 

mathematical operation on two functions that gives the integral of the 

pointwise multiplication of the two initial functions. In probability [73], it 

defines the density function of two independent random variables. In 

isotope-release calculations for classical ISOL targets [74-76], the 

convolution operation has been proposed to combine diffusion and effusion 

distributions. 

At most ISOL facilities the pulse length is in the order of few tens of 

microseconds (  ̴32 μs at CERN-ISOLDE and 200 μs at ISOL@MYRRHA). 

In comparison, the complete evacuation time and the half-life of the isotopes 

of interest are of the order of 100 ms. Therefore the effect of either 

radioactive decay or evacuation of isotopes is negligible on this time scale. 

It can be considered that all the nuclides are still present in the irradiation 

volume at the end of the proton pulse. As illustrated on Figure 3.1, 𝑅𝑖𝑠 

describes the release of nuclides after a single proton pulse. 

 

Figure 3.2: Time structure of a proton beam. 

Multiple proton pulses are typically directed on a target for RIB production. 

In case the pulse period at a facility is very large, compared to either the 

mean release time or the half-life of the isotope of interest, the release curve 
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for multiple pulses will simply be a repetition in time of the single-pulse 

release curve (i.e. with a different value of 𝑡0, Figure 3.1). This will be the 

case for 
177

Hg (t1/2 = 118 ms) isotopes produced at CERN-ISOLDE which 

has a super-cycle period of 14.4 s, composed of several 1.2-s spaced pulses. 

Recall that this is the facility where the prototype of this loop-type molten 

metal target will be tested. 

In contrast, at ISOL@MYRRHA the pulse period being 2  ̴ 4 ms. This pulse 

period is significantly smaller than both the mean release time and the half-

life of the isotope of interest. Therefore, convolution operations have to be 

carried out between the beam structure and the single-pulse release curve in 

order to obtain the release curve for multiple pulses. Indeed, in this case, the 

nuclides of interest would pile up in the irradiation volume at each pulse 

until the depletion effect of radioactive decay and LBE evacuation 

compensates the buildup effect of the quasi continuous production of these 

nuclides. A dynamic equilibrium concentration of the nuclides of interest 

will then be reached in the irradiation volume, depending on the half-life, 

the LBE flow rate and pulse period. 

3.1.1 Evacuation of the freshly-irradiated LBE 

The irradiation chamber is designed to operate under a constant flow rate of 

LBE (see chapter 2) determined by its volume 𝑉𝑖𝑟𝑟 and the required duration 

∆𝑡𝑓𝑒𝑣 for full-evacuation of irradiated LBE. Within any element of time 

[𝑡 ; 𝑡 + 𝑑𝑡] with 𝑡0  ≤ 𝑡 <  𝑡0 + ∆𝑡𝑓𝑒𝑣, the amount of any produced nuclide 

that exits the irradiation volume is proportional to the flow rate of LBE and 

defined as 
𝐶𝑉𝑖𝑟𝑟

∆𝑡𝑓𝑒𝑣
𝑑𝑡. Here, 𝑡0 represents the time right at the end of a proton 

pulse and 𝐶 is the average concentration of a specific nuclide in the 

irradiation volume after arrival of a proton pulse. 

In the following, the total amount of a specific nuclide present in the 

irradiation volume at 𝑡0 is called the “initial amount” of the nuclide. Since 

the volume of irradiation is fully evacuated in a time period ∆𝑡𝑓𝑒𝑣, the 

fraction of the initial amount of any nuclide that is evacuated within the time 

period [𝑡𝑒𝑣  ; 𝑡𝑒𝑣 + 𝑑𝑡] with 𝑡0  ≤ 𝑡𝑒𝑣  <  𝑡0 + ∆𝑡𝑓𝑒𝑣 is: 

 𝑑𝐸𝑣𝑎𝑐 =
1

𝐶𝑖𝑉𝑖𝑟𝑟
×

𝐶𝑖𝑉𝑖𝑟𝑟

∆𝑡𝑓𝑒𝑣
𝑑𝑡𝑒𝑣 =

1

∆𝑡𝑓𝑒𝑣
𝑑𝑡𝑒𝑣, 𝑡0 < 𝑡𝑒𝑣 ≤ 𝑡0 + ∆𝑡𝑓𝑒𝑣 (3.2)  

The subscript 𝑒𝑣 used on the time parameter relates to the evacuation time 

of a nuclide. Because the irradiation volume is fully evacuated within ∆𝑡𝑓𝑒𝑣, 

for a nuclide present in the irradiation volume at 𝑡0, the probability of being 
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evacuated from the irradiation volume within a time period [𝑡𝑒𝑣  ; 𝑡𝑒𝑣 + 𝑑𝑡] 

is zero if 𝑡𝑒𝑣 ≥ 𝑡0 + ∆𝑡𝑓𝑒𝑣. Thus, the pdf for the process of nuclide 

evacuation from the irradiation volume can be derived as: 

 

𝑅𝑒𝑣 𝑡𝑒𝑣 =
𝑑𝐸𝑣𝑎𝑐

𝑑𝑡𝑒𝑣
= {

1

∆𝑡𝑓𝑒𝑣
   ,     𝑡0 < 𝑡𝑒𝑣 ≤ 𝑡0 + ∆𝑡𝑓𝑒𝑣

0,   𝑡𝑒𝑣 ≤ 𝑡0 𝑜𝑟 𝑡𝑒𝑣 ≥ 𝑡0 + ∆𝑡𝑓𝑒𝑣

 (3.3)  

Also known as the delay time distribution, in this case for the irradiated-

LBE evacuation process, this density function is constant while evacuation 

is occurring and drops to zero afterward (Figure 3.3). 

 
Figure 3.3: Evacuation pdf. 

Once evacuated from the irradiation volume, the nuclides diffuse out of 

LBE droplets falling in the release volume. This process is the subject of 

next section. 

3.1.2 Diffusion 

In current liquid targets, diffusion is commonly the main delaying process 

between the production of nuclides in the target and arrival at the ion source. 

Diffusion is the process by which particles of matter (liquids, gases, or 

solids) are transported from one region of a system to another as a result of 

random molecular motion. In case of dissolved substances, this random 

motion results in a net transfer of solute particles from regions of higher to 

those of lower concentration. In gases, diffusion coefficients are typically 

around 10
−5

 m
2
s 

−1
. In liquids, diffusion coefficients are about 10

−9
 m

2
s 

−1
. In 

solids, diffusion is usually even slower [77, 78]. The release of nuclides out 

of this loop-target takes advantage of this faster diffusion in the liquid 
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droplets produced after evacuation of the irradiated LBE. Whence the need 

for a thorough understanding and modeling of diffusion in order to estimate 

and improve the efficiency of this process. 

3.1.2.1 Mechanisms of diffusion in liquids 

Molecules and atoms in a liquid randomly move and interact with each 

other, which complicates the understanding of the mechanisms of diffusion 

in liquids. Early descriptions of diffusion in liquids were based on the idea 

that matter rearranges after surmounting a potential energy barrier [79]. In 

this description, it is assumed that the diffusing atom/molecule must have 

enough energy at some point in time, to move its neighbors. Because of 

inconsistencies between these activation-energy based models and 

experiments [80], a free-volume based description was proposed [81, 82]. 

The latter is based on the idea that in a liquid, molecules or atoms are 

normally closely surrounded by other atoms or molecules preventing their 

motion. Still, because these atoms/molecules are also in constant Brownian 

motion with a frequency of the order of 10
12

 – 10
13

 Hz [83], random 

fluctuations may momentarily create an adjacent vacancy large enough for a 

step motion of the diffusing species [84]. It is thus assumed in a free volume 

based description that in liquids, free volume is constantly being 

redistributed. This description was later extended [84, 85] in order to include 

the fact that the diffusing atom/molecule first needs to break free from the 

rest of its neighbors before it can make the diffusion step. 

3.1.2.2 Fundamentals of diffusion 

This section presents the relevant laws and hypothesis required for 

describing the transport of nuclides through the diffusion step in a liquid 

droplet. Diffusion in matter is a common phenomenon that has amply been 

studied in literature [78, 86-91]. The mathematical formalism to describe 

diffusion was pioneered by Fick [92]. In isotropic substances, this theory 

derives from the initial hypothesis that the rate of transfer of diffusing 

species through a unit section of the substance is proportional to the 

concentration gradient normal to this section. This hypothesis translates 

mathematically in the following expression, known as Fick’s first law of 

diffusion: 

 
𝐹 =  −𝐷

𝜕𝐶

𝜕𝑥
 , (3.4)  

where 𝐹 is the rate of transfer per unit area of section, 𝐶 the concentration of 

diffusing nuclide, 𝑥 the space coordinate normal to the section and 𝐷 is the 
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diffusion coefficient. In our case, because of their limited production rates, 

the produced isotopes are in a dilute solution with LBE, which means that 

the diffusion coefficient can reasonably be considered constant in space 

[86]. Combined with equation (3.4), mass-conservation law applied to an 

elementary volume results in a second fundamental equation for diffusion. 

This is the Fick’s second law of diffusion, expressed as follows:   

 𝜕𝐶

𝜕𝑡
= [

𝜕

𝜕𝑥
(𝐷

𝜕𝐶

𝜕𝑥
)  + 

𝜕

𝜕𝑦
(𝐷

𝜕𝐶

𝜕𝑦
) + 

𝜕

𝜕𝑧
(𝐷

𝜕𝐶

𝜕𝑧
)] , (3.5)  

with 𝑥, 𝑦, and 𝑧 the space coordinates and 𝑡 the time coordinate. Other 

forms of the second law can be obtained by transformation of coordinates. 

Thus, the equation corresponding to diffusion in spherical droplets follows 

by putting 

 𝑥 =  𝑟 sin𝜃 cos∅ , (3.6)  

 𝑦 = 𝑟 sin𝜃 sin∅ , (3.7)  

 𝑧 = 𝑟 cos 𝜃 , (3.8)  

where 𝑟, 𝜃 and ∅ are respectively the radial coordinate, the zenith angle and 

the azimuthal angle. Considering the diffusion coefficient in the dilute 

solution as constant in space, Fick’s second law of diffusion can be written 

in spherical coordinates as: 

 𝜕𝐶

𝜕𝑡
=  𝐷 [

1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝐶

𝜕𝑟
) + 

1

𝑟2 sin 𝜃

𝜕

𝜕𝜃
(sin𝜃

𝜕𝐶

𝜕𝜃
) 

+ 
1

𝑟2 sin2 𝜃

𝜕2𝐶

𝜕∅2
] . 

(3.9)  

Because production rates only gradually change with space, 𝐶 can be 

considered initially uniform within a 200-μm radius droplet. Also, as the 

droplet fall in vacuum, the rate of desorption per unit area should be uniform 

over the droplet surface. Spherical-symmetry conditions can therefore be 

assumed, allowing the restriction of the case to a pure radial-diffusion 

problem. Equation (3.9) is then simplified to: 

 𝜕𝐶

𝜕𝑡
 =  𝐷 (

𝜕2𝐶

𝜕𝑟2
+

2

𝑟

𝜕𝐶

𝜕𝑟
) . (3.10)  

The solution of this equation under relevant initial and boundary conditions 

is the subject of next section. 
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3.1.2.3 Modeling diffusion 

Provided the constant diffusion coefficient stated earlier, solutions to the 

partial differential diffusion equation can in general be found for different 

initial and boundary conditions [86]. Such a solution can be found in two 

different forms. Solutions presented in the form of a series of error functions 

or related integrals are meant for numerical evaluations of diffusion yields in 

the early stages of diffusion. When converging solutions at later stages of 

diffusion are of interest, they are more suitably presented in the form of a 

trigonometrical series. This second presentation of the solution, obtained 

through the method of separation of variables, is adopted in this work.  

On putting 𝑢 = 𝑟𝐶, equation (3.10) becomes  

 𝜕𝑢

𝜕𝑡
= 𝐷

𝜕2𝑢

𝜕𝑟2
 . (3.11)  

Obtaining a particular solution to equation (3.11) requires setting the initial 

and boundary conditions of the problem. The gradual change in space of the 

production rates induces a fairly uniform initial concentration of a specific 

nuclide in a 200-μm radius droplet. The initial condition of the diffusion 

problem is therefore set to: 

 𝑢 = 𝑟𝐶𝑖 ,        𝑡 = 0 ,        0 < 𝑟 < 𝑎 (3.12)  

At the surface of the droplet 𝑟 = 𝑎, the boundary condition applied, the 

constant surface concentration 𝐶𝑠 is expressed as:  

 𝑢 = 𝑎𝐶𝑠 ,        𝑟 = 𝑎 ,        𝑡 > 0 (3.13)  

This condition signifies that upon reaching the surface of the droplet, 

diffusing nuclides are desorbed nearly immediately. Extensive studies on 

diffusion of radioisotopes from several irradiated targets [21, 87, 93, 94] 

indicate this is a suitable condition. The applicability of the constant surface 

concentration in this case can be checked by comparing the mean diffusion 

time of nuclides in the droplets to their average residence time at the surface 

of the droplets. The mean diffusion time 〈∆𝑡𝑑𝑖〉 for Cd atoms out of a 200-

μm radius sphere of Pb with constant surface concentration is given by [87]: 

 
〈∆𝑡𝑑𝑖〉 =

𝑎2

15 𝐷
= 0.68 𝑠 (3.14)  

The diffusion coefficient of Hg in Pb-Bi was not found in literature. Instead, 

the diffusion coefficient of the chemical equivalent Cd in Pb, 3.9 10
-9

 m
2
/s at 
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723 K [95] is used in this work. Similar values of diffusion coefficients have 

been reported for several solutes (Au, Ag, Cu, Sn) in Pb [95, 96]. 

Based on its exponential dependence on temperature [74, 97, 98], the mean 

surface residence time 𝜏𝑎 of Hg on Pb was determined as: 

 
𝜏𝑎 = 2.4 10−15exp (

11605∆𝐻𝑎

𝑇
) (3.15)  

where ∆𝐻𝑎 = 0.685 eV is the adsorption enthalpy taken from [99] for Hg 

on Pb, and 𝑇 is the temperature in [K]. Applying this, one obtains mean 

surface residence time of 4.75 10
-8

 s at 473 K and 2.16 10
-11

 s at 873 K. The 

application of the constant-surface-concentration boundary-condition is 

justified by the several orders of magnitude between 𝜏𝑎 and 〈∆𝑡𝑑𝑖〉. 

Applying these boundary conditions to solve equation (3.11), the following 

solution is obtained [86]: 

 𝐶 − 𝐶𝑖

𝐶𝑠 − 𝐶𝑖

= 1 +
2𝑎

𝜋𝑟
∑

 −1 𝑚

𝑚
sin

𝑚𝜋𝑟

𝑎
exp (−

𝑚2𝜋2𝐷

𝑎2
𝑡)

∞

𝑚=1

 (3.16)  

The amount per unit area of diffusing substance that has left the droplet at 

any time 𝑡 is defined as [86]:  

 𝑑𝑀 𝑡 

𝑑𝑡
= −(𝐷

𝜕𝐶

𝜕𝑟
)
𝑟=𝑎

 (3.17)  

The ratio of 𝑀 𝑡  to 𝑀 ∞  the corresponding amount at infinite time 

determines the fraction of diffusing nuclides that have left a droplet. On 

substituting for 𝐶 the expression obtained from equation (3.16) one obtains 

[86, 89]: 

 𝑀 𝑡 

𝑀 ∞ 
= 1 −

6

𝜋2
∑

1

𝑚2
𝑒
− 

𝑚2𝜋2𝐷
𝑎2 𝑡

∞

𝑚=1

 (3.18)  

For any time period ∆𝑡𝑑𝑖 elapsed since the start of diffusion in the droplet, 

the fraction of the initial amount of a nuclide still remaining inside the 

droplet is then: 

 
𝑓 ∆𝑡𝑑𝑖 =

6

𝜋2
∑

1

𝑚2
𝑒
− 

𝑚2𝜋2𝐷
𝑎2 ∆𝑡𝑑𝑖

∞

𝑚=1

 (3.19)  

The fraction of nuclide diffusing out through a droplet surface in a time 

period [∆𝑡𝑑𝑖 ; ∆𝑡𝑑𝑖 + 𝑑𝑡], called 𝐷𝑖𝑓𝑓 ∆𝑡𝑑𝑖  is then: 
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𝐷𝑖𝑓𝑓 ∆𝑡𝑑𝑖 = 𝑓′ ∆𝑡𝑑𝑖  𝑑𝑡 =

6𝐷

𝑎2
∑ 𝑒

− 
𝑚2𝜋2𝐷

𝑎2 ∆𝑡𝑑𝑖

∞

𝑚=1

 × 𝑑𝑡 (3.20)  

Eventually, the droplets and the nuclides still contained inside reach the 

surface of the LBE bath at the bottom of the release chamber. This LBE 

volume is subsequently pumped out of the release chamber. It then flows for 

few seconds in the piping and through the heat exchanger and the pump. For 

the short-lived isotopes this typically represents more than 10 half-lives and 

indicates a nearly zero probability of survival to decay in the rest of the 

loop. Thus, the main contribution of diffusion to the release of nuclides 

occurs essentially while the droplets are still falling in the release volume. 

For this reason, diffusion is only considered in the droplets and the pdf of a 

nuclide reaching the surface of droplet after diffusing for a period ∆𝑡𝑑𝑖 can 

be defined as: 

 

𝑅𝑑𝑖 ∆𝑡𝑑𝑖 = {

6𝐷

𝑎2
∑ 𝑒

− 
𝑚2𝜋2𝐷

𝑎2 ∆𝑡𝑑𝑖

∞

𝑚=1

 ,    ∆𝑡𝑑𝑖 < ∆𝑡𝑓𝑎𝑙𝑙  

                    0                   ,     ∆𝑡𝑓𝑎𝑙𝑙 ≤ ∆𝑡𝑑𝑖    

, (3.21)  

with ∆𝑡𝑓𝑎𝑙𝑙 the time it requires a droplet to fall from an evacuation-aperture 

tip to the bath surface at the bottom of the release volume. 

 
Figure 3.4: Diffusion pdf for droplets of 200 μm in radius. The second portion of 

expression (3.21) is not represented. 

This delay time distribution for diffusion (Figure 3.4) is convoluted with 𝑅𝑒𝑣 

in the following section, to model the combined delay induced by the 

evacuation and diffusion processes.  
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3.1.2.4 Delay time distribution at droplets surface 

The separate pdfs for the evacuation and diffusion processes can be 

convoluted in the following combined delay time distribution for a nuclide 

reaching at 𝑡 the surface of the droplet in which it was evacuated: 

 

𝑅𝑑𝑠 𝑡𝑑𝑠 = ∫ 𝑅𝑒𝑣 𝑡𝑒𝑣 × 𝑅𝑑𝑖 𝑡𝑑𝑠 − 𝑡𝑒𝑣 𝑑𝑡𝑒𝑣

𝑡𝑒𝑣 𝑚𝑎𝑥

𝑡𝑒𝑣 𝑚𝑖𝑛

 (3.22)  

In equation (3.22), 𝑅𝑒𝑣 𝑡𝑒𝑣 × 𝑅𝑑𝑖 𝑡 − 𝑡𝑒𝑣 𝑑𝑡𝑒𝑣 can be interpreted as the 

probability density of a nuclide to reach the droplet surface  at 𝑡, knowing 

that the nuclide was evacuated from the irradiation volume in the interval 

[𝑡𝑒𝑣  , 𝑡𝑒𝑣 + 𝑑𝑡𝑒𝑣], and consequently spent 𝑡 − 𝑡𝑒𝑣 in the diffusion process. 

The integral 𝑅𝐷𝑆 can thus be viewed as the summation of this probability 

over all the possible evacuation times of a nuclide that can lead to this 

nuclide reaching at time 𝑡, the surface of the droplet in which it was 

evacuated. The upper limit of the integration 𝑡𝑒𝑣 𝑚𝑎𝑥, is 𝑡𝑑𝑠 the arrival time 

of the nuclide at the droplet surface as long as the freshly-irradiated LBE is 

not fully evacuated. Also, only droplets formed before 𝑡0 + ∆𝑡𝑓𝑒𝑣 contain 

short-lived nuclides that can contribute to populating a droplet surface. 

𝑡𝑒𝑣 𝑚𝑎𝑥 is thus defined as: 

 
𝑡𝑒𝑣 𝑚𝑎𝑥 = {

𝑡𝑑𝑠       ,                        𝑡0 ≤ 𝑡𝑑𝑠 ≤ 𝑡0 + ∆𝑡𝑓𝑒𝑣           

𝑡0 + ∆𝑡𝑓𝑒𝑣 , 𝑡0 + ∆𝑡𝑓𝑒𝑣 ≤ 𝑡𝑑𝑠 ≤ 𝑡0 + ∆𝑡𝑓𝑒𝑣 + ∆𝑡𝑓𝑎𝑙𝑙
 (3.23)  

The lower limit on the other hand is defined by the fact that once the 

droplets merge with the release-volume-bath, the nuclides that are still 

contained in cannot contribute to populating a droplet surface. In this model, 

the potential contribution from the release-volume bath is ignored and 

𝑡𝑒𝑣 𝑚𝑖𝑛 is defined as: 

 
𝑡𝑒𝑣 𝑚𝑖𝑛 = {

           𝑡0        ,         𝑡0 < 𝑡𝑑𝑠 ≤ 𝑡0 + ∆𝑡𝑓𝑎𝑙𝑙                            

𝑡𝑑𝑠 − ∆𝑡𝑓𝑎𝑙𝑙 ,    𝑡0 + ∆𝑡𝑓𝑎𝑙𝑙 ≤ 𝑡𝑑𝑠 ≤ 𝑡0 + ∆𝑡𝑓𝑎𝑙𝑙 + ∆𝑡𝑓𝑒𝑣
 (3.24)  

Neither 𝑡𝑒𝑣 𝑚𝑎𝑥 nor 𝑡𝑒𝑣 𝑚𝑖𝑛 is defined for 𝑡𝑑𝑠 > 𝑡0 + ∆𝑡𝑓𝑎𝑙𝑙 + ∆𝑡𝑓𝑒𝑣 since all 

the droplets containing short lived nuclides have already merged with the 

release-volume-bath.  

In light of this, the delay time distribution at droplets surface can be 

evaluated. From this point on, we will consider the end of a proton pulse as 

the origin of time, i.e. 𝑡0 = 0. The distributions for arrival of Hg isotopes at 

the droplets surface are shown on Figure 3.5. The distributions start from 

zero initially. In both cases the curve rises fast, mostly due to evacuation of 

irradiated LBE (shown in yellow on the inserts). A smaller contribution to 
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this rise comes from diffusion of isotopes to the droplets surface. In case 

∆𝑡𝑓𝑎𝑙𝑙 > ∆𝑡𝑓𝑒𝑣, after full evacuation, diffusion is the only process populating 

the droplets surfaces with nuclides. This explains the shape of the second 

portion of the curve. Then, the first freshly-irradiated-LBE droplets merge 

with the bath below and are pumped away. This is the reason for the steeper 

slope of the third section. In case ∆𝑡𝑓𝑒𝑣 > ∆𝑡𝑓𝑎𝑙𝑙, the initial rise of the curve 

stops when the first freshly-irradiated-LBE droplets merge with the bath at 

the bottom of the release volume. It is followed by a second portion where 

the steady evacuation of irradiated LBE compensates the effects of diffusion 

and the merger of droplets with the release volume bath. This flat portion of 

the curve stops as soon as all the irradiated LBE is evacuated. The shape of 

the curve on the third portion is thus defined only by diffusion and the 

merger of droplets with the bath. Eventually, in both cases, all the droplets 

formed with irradiated LBE will merge with the bath at the bottom of the 

release volume and get pumped away, explaining that both curves drop to 

zero. 
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Figure 3.5: Delay time distribution for nuclides reaching the surface of the droplet 

in which they were evacuated. The top picture corresponds to the case ∆𝐭𝐟𝐚𝐥𝐥 >
∆𝐭𝐟𝐞𝐯 and the bottom picture represents the case ∆𝐭𝐟𝐞𝐯 > ∆𝐭𝐟𝐚𝐥𝐥. 

3.1.3 Effusion 

Upon reaching the boundaries of the diffusing medium, nuclides undergo 

another transport process called effusion [74, 98, 100-104]. This section 

describes the mechanism of effusion as well as its basics. A numerical 

solution based on Monte Carlo modeling is presented. The modeling of 
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effusion as implemented in this work is also described, which includes 

fitting the output of the Monte Carlo simulation with an analytical model. 

3.1.3.1 Mechanisms of effusion 

Effusion is the random migration of atoms or molecules in the vacuum 

volumes of a target and a transfer line. Due to a very low pressure, these 

volumes are under rarefied-gas conditions and the flow behavior cannot be 

treated with the continuum-media assumption. Indeed, different flow 

regimes can be distinguished according to the value of the Knudsen number 

of the system [105, 106]. 

 
𝐾𝑛 =

𝜆

𝐿𝑐
 (3.25)  

where 𝜆 is the molecular mean free path and 𝐿𝑐 is the characteristic scale of 

the gas flow often taken as the transversal dimension of the flow section. 

From the kinetic theory of gases, using the Maxwell-Boltzmann distribution 

and the ideal gas law, 𝜆 is given by: 

 
𝜆 =

𝑘𝐵𝑇

√2𝜋𝑑2𝑝
 , (3.26)  

where 𝑑 𝑚  is the molecular diameter in meters, 𝑘𝐵 is the Boltzmann 

constant, 𝑇 𝐾  is the temperature and 𝑝 𝑃𝑎  is the pressure. For a target 

(𝐿𝑐~ 1 cm) at a pressure of   ̴ 5 10
-5

 Pa, a temperature above 400 K, and a 

molecular diameter of  ̴ 1.5 Å [107], a Knudsen number above 10
3
 is 

obtained which classifies the effusion flow in typical ISOL targets as a 

molecular flow. This indicates that the collisions of the atoms or molecules 

with the walls of the target and transfer line occur much more frequently 

than the collisions between atoms or molecules. As a result, atoms or 

molecules move independent of each other. 

Approaches to analytically describe the effusion process, albeit each with 

different limitations, have been proposed in literature [94, 100, 102, 108]. In 

reference [102], effusion is described with diffusion models resulting from 

Fick’s laws. This description implies the definition of a diffusion coefficient 

for the effusion process, the value of which was determined by fitting the 

model to experimental data. Such a description is not applicable for the 

design and optimization of new targets since it requires experimental data on 

that particular target. A different approach to analytically describe the 

effusion process is proposed in [94, 100, 108]. This approach is based on the 

vacuum-theory description of the flow rate through cylindrical tubes. This 
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very simplified geometry is not representative of the internal structure of 

ISOL targets which are too complex for analytical formulation and, 

therefore, require numerical solutions. 

Depending on the value of the Knudsen number of the system, different 

numerical schemes have been proposed for rarefied gas flow calculations. 

For a system in the transition regime, 0.01 < 𝐾𝑛 < 1, the Direct Simulation 

Monte Carlo (DSMC) method [109, 110] is typically applied. Recently, an 

extension of the Test Particle Monte Carlo (TPMC) method has been 

proposed to solve transition-regime flow problems as well [111]. For a 

system in the free molecular flow regime,  𝐾𝑛 > 10 as in this case, two 

main approaches are available. The first is a deterministic approach called 

Angular Coefficient (AC) method [112]. In this method the boundary 

defining the gas flow is subdivided into a network of surface elements, 

depending on their relative orientations defined by angular coefficients. The 

second approach is the probabilistic TPMC method [113, 114] by which 

virtual test particles from a statistically significant ensemble are tracked 

from the gas source to a pumping location. 

The AC method requires meshing of the gas-flow boundaries and the 

creation of a matrix to store angular coefficients defining the view factor of 

each mesh element with respect to all the other elements. Ensuring a mesh-

independent result of a calculation then generally requires a large-memory 

especially for complex geometries with many curved surfaces. In contrast, 

in the TPMC method, only the coordinates of the vertices and normal 

vectors of the surfaces bounding the gas flow need to be stored. In addition, 

because no meshing is required on planar surfaces in the TPMC method 

[115], its memory requirement is significantly lower than that of the AC 

method. Besides, the TPMC method is more easily parallelized and 

applicable to time-dependent calculations. It also offers the possibility to 

define many different gas-surface interaction models, representative of 

different surface conditions. However, with the TPMC method, long 

computations can be required in case of complex geometries. 

For these reasons, the TPMC method was applied in this work through the 

use of the Molflow+ code [116]. The TPMC method implemented in the 

code follows the algorithm described in Figure 3.6.Since molecular-flow 

conditions are assumed in the code, intermolecular collisions are discarded 

and the trajectories of particles are rectilinear between two points of 

interaction with the system walls. The test particles representing the effusive 

atoms or molecules are individually and sequentially desorbed according to 
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the space and time distributions set by the user. Upon generation of a test 

particle, the emission direction of the particle is sampled from a user-

defined angular distribution. This distribution can be uniform, or follow a 

cosine law. In the cosine law, the zenithal and azimuthal angles of the 

emission direction, denoted 𝜃 and ∅ are defined as [115]: 

 𝜃 = cos−1(√1 − 𝑟𝑛𝑑) (3.27)  

 

 ∅ = 2𝜋. 𝑟𝑛𝑑 (3.28)  

where 𝑟𝑛𝑑 is a random number generated uniformly between 0 and 1, with a 

period of (2
19937

 – 1) [115]. Based on the sample emission direction of the 

particles the location of the next collision with the boundaries of the 

computational domain is determined. From the collision location the flight 

duration is determined and stored among other parameters. The sticking 

probability defined by the user on the surface on which the particle has 

collided, is used by the code to determine if the tracking of the particle 

should be terminated or continued. After each collision with the walls of the 

system, the speed and direction of effusing atoms are generated according to 

statistical distributions. The speed distribution follows the Maxwell-

Boltzmann distribution or its average value [117], while the distribution of 

the re-emission direction can be described with different models [101, 103] 

depending on the system-walls surface-structure. 

The steps in Figure 3.6 are repeated for several hundred thousands of test 

particles. The stored flight duration all the simulated particles can then be 

used to construct the effusion pdf. Some basic concepts on modeling 

particle-wall interactions in rarefied gas flow calculations are outlined 

below. 
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Figure 3.6: Implementation algorithm for TPMC in Molflow+, information from 

[115]. 

3.1.3.2 Fundamentals of effusion – Accounting for sticking times 

Upon interaction with a surface, atoms or molecules can undergo sorption 

phenomena by which they get temporarily attached on the sorbent surface. 

Two separate sorption mechanisms can be distinguished: adsorption and 

absorption [118, 119]. While absorption means that the atom or molecule is 

dissolved by or permeates the structure of the sorbent, adsorption is a 

surface interaction and is generally a faster process. Sorption effects apply 

to both solid and liquid surfaces, and under certain energy and temperature 

conditions, the adsorbate can re-desorb. 

Depending on the interaction energy between the surface atoms and gas 

particles, the binding can be considered weak or strong. This differentiation 

stems from the nature of the interaction which can be either physical or 

chemical. The process is termed physisorption when based on physical 

Generate new particle 

Sample particle direction from 

user-defined angular distribution 

Sample particle speed 

Determine location of next 

interaction with boundary 

On collision, register location, 

flight duration, surface hit… 

Particle 

pumped on the 

boundary? 

No Yes 



62 

 

interactions and chemisorption when based on chemical interactions. 

Physisorption is due to weak Van der Waals or electrostatic attractive 

forces. It is an exothermic process and the adsorbate can interact either with 

a single adsorbent atom or diffusely with the adsorbate substrate. In contrast, 

when covalent bonds between adsorbate and adsorbent atoms are involved, 

as in chemisorption, larger energies are involved. 

The nature and strength of the adsorption interaction is reflected in the rate 

of re-desorption of adsorbates through the desorption activation energy. A 

mean sticking time 𝜏𝑠 before re-desorption of adsorbate is expressed by the 

Frenkel Equation [120, 121]:  

 𝜏𝑠 = 𝜏0exp 𝐸𝑑𝑒𝑠/𝑘𝐵𝑇𝑠  (3.29)  

where the pre-exponential factor 𝜏0 is the vibration period of adsorbent 

surface atoms, 𝐸𝑑𝑒𝑠 is the activation energy for desorption and 𝑇𝑠 is the 

surface temperature. 

3.1.3.3 Fundamentals of effusion – Desorption models 

An accurate description of the distribution of directions for re-desorbed 

particles requires the knowledge of the general bidirectional reflectance 

probability distribution for a specific atom or molecule on the specified 

adsorbent surface. This function that describes the re-desorption direction as 

a function of the incident particle direction is difficult to measure and hence 

scarcely available in literature. Different approximations of this function are 

therefore implemented in MC codes depending on the potential loss of 

energy during the interaction.  

If elastic, the kinetic energy of the test particle is conserved and the 

interaction is described as a specular reflection [120]. In the interaction, the 

component of the velocity vector that is perpendicular to the adsorbent 

surface is inverted while the tangential component is conserved. It is thus a 

mirror-like reflection where the angle of reflection is defined by the angle of 

incidence. An elastic description of the collision is best suitable for cases 

where the projectile does not chemically interact with the adsorbent surface. 

Additionally, elastic reflections at the macroscopic level as described in MC 

codes are only valid for micro-polished adsorbent surfaces. However, the 

hotter the adsorbent surface, the closer the reflection is to being specular. 

In contrast, if the interaction is inelastic, it is described as a diffuse 

reflection. This inelastic nature of the interaction can be due to either the 

chemical nature of the interaction or the roughness of the surface. A specific 
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case of diffuse reflection occurs when the atom is considered to thermalize 

fully with the adsorbate. In this case, the Lorentz-Lambert model [122] or 

cosine law [123] is applied. This means that the probability of test particle to 

be re-desorbed at a certain angle with the normal vector to the adsorbate 

surface scales with the cosine of this angle. Unless otherwise stated, this 

re-desorption law was used in all the effusion calculations of this work. 

Apart from pure specular and ideally diffuse reflection descriptions, other 

models have been proposed. These are mostly models mixing properties of 

the specular and diffuse reflections and circumstantially tend to either of the 

two. Most of these descriptions are adapted from light transport studies. 

They include the Maxwell model [124], the Phong model [125], the 

Torrance-Sparrow model [126], the Blinn model [127] and the Inelastic 

semi classical model [128]. While the Phong model is based on a weighted 

combination of the pure specular and diffuse models, the others are mostly 

based on combining a specular reflection description with a surface-

orientation probability-distribution. However, the application of these 

models to gas dynamics often suffers from missing and unknown 

parameters. 

3.1.3.4 Modeling effusion 

For modelling effusion, the release volume is simulated with droplets inside 

as illustrated on Figure 3.7. Nuclides desorbed from the surface of the 

droplets are tracked until the entry of the transfer line, shown here by the red 

circle. Note that effusion in the transfer line is not modeled in this work 

because at this point, the ion source to be operated with this target is not yet 

defined. However, for the validation calculation (see section 4.2), effusion 

in the transfer line was modeled as the ion source operated in the online 

experiments was known. 
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Figure 3.7: Illustration of particle tracking in the release volume. 

The release volume shown on Figure 3.7 is a parallelepiped with a flat 

horizontal grid at the top, used for evacuation of irradiated LBE out of the 

irradiation volume. For reasons of a simpler manufacturing, this geometry is 

the one foreseen for the prototype of the target. A flow rate of 160 cm
3
/s of 

LBE coming out of the irradiation volume corresponds to   ̴600 000 droplets 

of 200-μm diameter. Geometries in Molflow+ are defined with elementary 

constituents that are polygons and called facets. This means that the simplest 

representation of droplets as tetrahedra would yield a model with 2 000 000 

facets, which could not be handled by the code because of issues with 

memory allocation. Indeed, on a Windows operating system, such a 32-bit 

application can only allocate up to 4 GB of RAM. In addition, because of 

the ray tracing algorithm implemented in the code, the calculation speed per 

particle is inversely proportional to the number of facets. 

For these reasons, each vertical string of droplets in the model was 

approximated as a cylinder with an opacity factor defined by the ratio of 

droplets to cylinder volume. The speed of calculation was also improved by 

modeling only the vertical half symmetry of the release volume. Validation 

of these approximations is shown in chapter 4. 

On average, a nuclide makes few tens of thousands of collisions on its 

effusion track. The main output of the calculation is a set of points 

representing the effusion delay time distribution (see Figure 3.8). Zooming 

on the first microseconds of the distribution, one can notice a time period 

with a probability density equal to zero. This time period represents the time 

required for the first nuclide to reach the pumping surface in the calculation. 

Transfer 

Line 

Initial 

Desorption 
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An increase of this zero-probability time-period is observed if effusion in 

the transfer line is modeled. 

  

Figure 3.8: Effusion delay time distribution. 

The numerical effusion delay time distribution computed with Molflow+ is 

fitted with expression (3.30) in order to obtain an analytical model for 

effusion. 
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 𝑅𝑒𝑓(∆𝑡𝑒𝑓)

= {

0

𝑖(1 − 𝑒−𝑗(∆𝑡𝑒𝑓−∆𝑡0𝑒𝑓))𝑒−𝑘(∆𝑡𝑒𝑓−∆𝑡0𝑒𝑓)
      

0 ≤ ∆𝑡𝑒𝑓 ≤ ∆𝑡0𝑒𝑓

∆𝑡𝑒𝑓 ≥ ∆𝑡0𝑒𝑓

 
(3.30)  

The first portion of the expression reflects the zero-probability time-period 

∆𝑡0𝑒𝑓 determined from the Monte Carlo calculation. The rest of the 

distribution is typically fitted with a combination of a rising and a 

decreasing exponentials with 𝑖, 𝑗 and 𝑘 the fitting parameters. In most 

calculations the rise of the distribution is too fast (  ̴10
-6

 s) to be captured in 

the MC calculation with a low enough uncertainty within reasonable 

calculation time. Because the figure of merit in these calculations is the area 

below these pdfs, such a sharp rise could be treated as a step in the 

analytical description. The function fitted to those calculations thus 

becomes: 

 
𝑅𝑒𝑓(∆𝑡𝑒𝑓) = {

0

𝑖𝑒−𝑘(∆𝑡𝑒𝑓−∆𝑡0𝑒𝑓)

           

0 ≤ ∆𝑡𝑒𝑓 ≤ ∆𝑡0𝑒𝑓

∆𝑡𝑒𝑓 ≥ ∆𝑡0𝑒𝑓

 (3.31)  

The idea behind this process is to combine the accuracy of modeling of a 

numerical MC tool with the simplicity of an analytical description. It also 

enables comparing the results of the time dependent MC simulation with 

approximations proposed in literature (see section 4.1.6). 

3.1.3.5 Delay time distribution at transfer line 

The last step in the construction of the overall delay time distribution of the 

target is the convolution of the pdf of the effusion process with the delay 

time distribution for nuclides reaching the surface of the droplets in which 

they were evacuated: 

 

𝑅𝑖𝑠 𝑡𝑖𝑠 = ∫ 𝑅𝑑𝑠 𝑡𝑑𝑠 × 𝑅𝑒𝑓 𝑡𝑖𝑠 − 𝑡𝑑𝑠 𝑑𝑡𝑑𝑠

𝑡𝑖𝑠

0

 (3.32)  

The different calculations required in evaluating the overall delay time 

distribution (see Figure 3.9) of the target are performed by Python scripts. 
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Figure 3.9: Delay time distribution for nuclides reaching the inlet of the transfer 

line. The release volume dimensions are: 20 cm x 12 cm x 2 cm. 

The probability of nuclides surviving radioactive decay during the time 𝑡𝑖𝑠 

required for their release can then be assessed, resulting in the fractional-

release function defined as: 

 
𝐹 𝑡 = ∫ 𝑅𝑖𝑠 exp −𝜆 × 𝑡𝑖𝑠  𝑑𝑡𝑖𝑠

𝑡

0

 (3.33)  

In expression (3.33), 𝜆 is the decay constant of the nuclide of interest and 

𝐹 𝑡  is the fraction of atoms of this nuclide produced at 𝑡 = 0 that has 

survived decay and already reached the ion source at a time 𝑡. Since both the 

delay time distribution and the survival rate to radioactive decay decrease 

exponentially with time, the fractional-release function illustrated on Figure 

3.10 shows an asymptotic behavior at large time values. 
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Figure 3.10: Fractional release function with an asymptote value of   ̴2%. The 

release volume dimensions are: 20 cm x 12 cm x 2 cm. 

The asymptote value of the fractional release function corresponds to the 

overall release efficiency defined as: 

 
𝜀𝑟𝑒𝑙 = ∫ 𝑅𝑖𝑠 exp −𝜆 × 𝑡𝑖𝑠  𝑑𝑡𝑖𝑠

∞

0

 (3.34)  

The overall release efficiency is the parameter used in the optimization 

process (see chapter 4) to compare different design options. 

3.2 Conclusion 

Beside the development of a high power target for next generation ISOL 

facilities, the second objective of the LIEBE prototype is to improve the 

yield of nuclides in comparison with the current static bath targets operated 

at CERN/ISOLDE. This target specifically aims at the production of short-

lived Hg isotopes with a half-life in the order of 100 ms. For this reason, a 

very efficient release of nuclides is crucial in order to minimize decay 

losses. 

In order to model the release of nuclides out of the target and assess its 

efficiency, the comprehensive model presented in this chapter was 

constructed. In the method developed, existing analytical descriptions of the 

diffusion process are used, in combination with an analytical fit of the 

numerical distribution obtained from Monte Carlo simulations of the 

effusion process. This gives as output an analytical model that is supported 

by detailed Monte Carlo calculations when required. 
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The analytical approach used has the advantage that it implies no cutoff of 

the distribution tail as it is the case with a numerical convolution or the 

diffusion sampling approach. This renders more accurate the computation of 

release efficiency. 
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4 Target design & optimization – Isotopes-release 

aspects  

In the previous chapter, the method developed to model the release of 

nuclides out of the LBE-loop target was presented. The method includes a 

Monte Carlo simulation of the effusing nuclides, the results of which are 

potentially affected by the simulation settings and approximations. In the 

first section of this chapter, the validity of approximations made to simplify 

or speed up the simulations is investigated. In this section, the sensitivity of 

the MC simulation to parameters such as the desorption or reflection 

distributions, that are not precisely known is also studied. 

Before the method developed for modeling the release of nuclides is applied 

to the optimization of the LBE loop target, it first had to be validated. For 

this purpose, the method is applied to three different cases and its results 

compared with experimental data. This is discussed in the second section. 

Since no loop-type target has been operated online yet, the selection of cases 

for validation is limited to static targets. The first case is a validation of the 

method against experimental data for the liquid-Pb target operated at 

ISOLDE-SC. The other cases show the possibilities of this method by 

applying it to two thin-foils solid targets with different internal layouts. 

As mentioned before, a crucial point with a thick target for the production of 

short-lived nuclei is to design it with good release properties. Indeed, 

isotope release is known to be slow out of a static thick liquid target [33]. To 

circumvent this issue, a so-called release volume is foreseen in the current 

design, inside which the target material is spread into a shower of small 

droplets. The efficiency of the release of isotopes will be affected by 

parameters including the size and number of droplets as well as the size and 

geometry of the release volume. Design and optimization studies are 

therefore required in order to maximize the yields out of this novel target. In 

the third section of the chapter, the influence of key geometrical parameters 

on the release efficiency of the target is presented. 
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4.1 Effects not specifically modelled with the effusion 

process 

4.1.1 Transparent cylinders approximation of the droplets  

One crucial aspect of Molflow+, the Monte Carlo code used for the effusion 

calculations, is the limitation on memory allocation related to the 32-bit 

format of this Windows application. Additionally, it is intrinsic to the ray 

tracing algorithm implemented in the code that the calculation speed per 

particle is inversely proportional to the number of facets. The reason for this 

is that, following each interaction of a test particle with a facet, the code first 

determines its re-emission direction and then looks for the next interaction 

in this direction. To do so, the code first searches for potential collisions 

with all facets of the geometry and then selects the closest as the next 

interaction point. 

Because of the large number of droplets ( ̴ 600 000 droplets of 200-μm 

diameter for a flow rate of 160 cm
3
/s), modeling the release volume even 

with a tetrahedral representation of the droplets requires the code to allocate 

more than its maximum memory and results in the code crashing. To solve 

this problem and at the same time speed up the simulations, vertical strings 

of droplets were approximated as cylinders with an opacity factor defined by 

the ratio of droplets to cylinder volume. The opacity factor of a facet is 

defined as the probability (0 - 1) that a particle with a flight direction 

intersecting the facet makes a collision with the facet. This factor defines a 

transparent facet through which particles will pass without interaction with a 

probability equal to one minus the opacity value. The vertical motion of 

falling droplets, assumed here and throughout the chapter, corresponds to 

droplets formed at the tip of vertical apertures distributed over a flat 

horizontal surface as present in the prototype. 
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Figure 4.1: Transparent cylinders approximation of the droplets. The 21x21x21 

array of 32-facet polyhedra is approximated by a 21x21 array of 24-facet 

transparent cylinders with an opacity defined by the ratio of droplets to cylinder 

volume. 

To validate this approximate representation of the geometry, the test 

illustrated on Figure 4.1 was set. A 21x21x21 array of 32-facet polyhedra 

representing the droplets is approximated by a 21x21 array of 24-facet 

transparent cylinders. This array size was selected, not to exceed the 

memory limitation. To visualize the influence of the opacity factor, the 

21x21 array of 24-facet cylinders geometry is all simulated with an opacity 

factor equal to one for the facets of the cylinders. Both the droplets and 

cylinders are 200 μm in radius. In all cases, the probability density function 

(pdf) of particles reaching a pumping aperture that mimics the entrance of a 

transfer line is computed. The test was run for different values of droplets 

spacing, ranging from 500 μm to 5 mm and covering potential values of 

interest for the optimization of the target design. The same value of spacing 

is applied to the corresponding cylinders simulations. 

24-facet cylinder 32-facet polyhedron 
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Figure 4.2: Effusion pdfs for the 500-μm spaced droplets case. 

 
Figure 4.3: Effusion pdfs for the 1000-μm spaced droplets case. 

10

15

20

25

30

35

40

45

50

55

0 0.01 0.02 0.03 0.04 0.05

Ef
fu

si
o

n
 p
d
f 

[s
-1

] 

Time [s] 

500-μm spaced droplets 

500-μm spaced cylinders with 
opacity = 0.533 

500-μm spaced cylinders with 
opacity = 1 

y = 40.513e-39.78x 
R² = 0.9939 

0

5

10

15

20

25

30

35

40

0 0.05 0.1 0.15 0.2

Ef
fu

si
o

n
 p
d
f 

[s
-1

] 

Time [s] 

1000-μm spaced droplets 

1000-μm spaced cylinders with 
opacity = 0.273 

1000-μm spaced cylinders with 
opacity = 1 

Expon. (1000-μm spaced cylinders 
with opacity = 0.273) 



75 

 

 
Figure 4.4: Effusion pdfs for the 2000-μm spaced droplets case. 

 
Figure 4.5: Effusion pdfs for the 3000-μm spaced droplets case. 

y = 5.7784e-5.751x 
R² = 0.9912 

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

Ef
fu

si
o

n
 p
d
f 

[s
-1

] 

Time [s] 

2000-μm spaced droplets 

2000-μm spaced cylinders with 
opacity = 0.138 

2000-μm spaced cylinders with 
opacity = 1 

Expon. (2000-μm spaced droplets) 

y = 1.7173e-1.732x 
R² = 0.9871 

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 0.2 0.4 0.6 0.8 1

Ef
fu

si
o

n
 p
d
f 

[s
-1

] 

Time [s] 

3000-μm spaced droplets 

3000-μm spaced cylinders with 
opacity = 0.093 

3000-μm spaced cylinders with 
opacity = 1 

Expon. (3000-μm spaced droplets) 



76 

 

 
Figure 4.6: Effusion pdfs for the 4000-μm spaced droplets case. 

 
Figure 4.7: Effusion pdfs for the 5000-μm spaced droplets case. 
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Figure 4.6, the fit of expression (3.31) to the data, with ∆𝑡0𝑒𝑓 = 0 is 

displayed. These cases have the particularity that the pumping surfaces are 

of the same size, 3 mm in diameter like the ISOLDE transfer line. It is 

shown on Figure 4.8 that both 𝑖 and 𝑘 parameters of expression (3.31) scale 

with the inverse of the simulation volume. 

 
Figure 4.8: Fit parameters from expression (3.30) fit to the data on Figure 4.3 

through Figure 4.6. 

4.1.2 Half-symmetry approximation 

An additional approximation implemented to speed up the calculations is to 

take advantage of symmetry in the geometry. Due to the gravitational 

acceleration of the droplets and the position of the transfer line, the 

symmetry implemented in this case is the mirror symmetry relative to the 

vertical mid-plane of the chamber perpendicular to the beam. The symmetry 

is illustrated in Figure 4.9. The circular pumping surface at the entrance of 

the transfer line in the full geometry is replaced in the approximate half 

geometry by a half circle. 
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Figure 4.9: Half symmetry approximation. 

The full geometry includes 2520 cylinders of 200-μm radius uniformly 

spaced by 1.2 mm in each horizontal direction. In both geometries, the mean 

free path of MC particles was 6.3 mm and, on average a particle travels 

188 m from its initial desorption to its arrival at the transfer line entrance. It 

derives from this that on average a particle makes ̴ 30 000 surface 

interactions on its effusion track. Given by the average of the Maxwell-

Boltzmann distribution, the mean flight velocity of the particles is 236 m/s 

at 473 K and 320 m/s at 873 K. From this, the mean flight time between two 

surface interactions can be determined to be   ̴ 27 μs at 473 K and    ̴20 μs at 

873 K. 

The effusion delay time distribution of the half symmetry is compared to the 

distribution obtained for the full geometry case on Figure 4.10. The 

comparison shows that the half symmetry geometry with specular reflection 

on the symmetry plane is a valid representation of the full geometry. 

Transfer Line 

Entrance 

20 cm 10 cm 

12 cm 
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Figure 4.10: Effusion pdfs for the half symmetry approximation. 

4.1.3 Gravitational acceleration 

Because of the gravitational acceleration, falling droplets will be vertically 

more spaced as they get closer to the bottom of the release volume. The 

vertical velocity 𝑣 𝑡  and position 𝑧 𝑡  of a droplet in such a free fall 

condition can be expressed as 𝑣 𝑡 = 𝑔𝑡 + 𝑣0 and 𝑧 𝑡 =
1

2
𝑔𝑡2 + 𝑣0𝑡 + 𝑧0 

respectively. In these expressions 𝑡 represents the time elapsed since the 

droplet detached from the tip of the evacuation aperture while 𝑣0 and 𝑧0 are 

the respective initial vertical velocity and position. 

The mean evacuation velocity can be derived from the flow rate, the size 

and number of evacuation apertures. It is used here as an approximate of the 

initial vertical velocity 𝑣0. In addition, by combining the average size of the 

droplets and the flow rate one finds the average time period 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 between 

two consecutive droplets formed at a single aperture. The value of this time 

spacing between two consecutive droplets formed at a single aperture is kept 

constant along the fall of the droplets, provided the droplets are formed with 

the same initial vertical velocity. 

During their fall, the vertical distance between two consecutive droplets 

formed at a single aperture can then be approximated as the product of 𝑣 𝑡  

and 𝑡𝑝𝑒𝑟𝑖𝑜𝑑. Also, the number density of droplets along such a vertical 

structure scales inversely with the vertical distance between two consecutive 
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droplets which means that it inversely scales with 𝑣 𝑡 . It can be derived 

from this that the opacity factor defined in section 4.1.1 and introduced for 

the transparent-cylinder approximation scales linearly with 1
𝑣 𝑡 ⁄  as well. 

Because the Molflow+ code only allows the definition of a single opacity 

value per facet, accounting for this effect of gravity in modeling the release 

volume would induce models with larger memory requirement and runtime 

than envisaged in sections 4.1.1 and 4.1.2. 

To check the influence of the gravitational acceleration effect on the 

effusion delay time distribution and thus evaluate whether a valid 

approximation can be obtained while neglecting this effect, a validation test 

was conducted. The half symmetry geometry (similar to Figure 4.9) of a 

30-cm high release volume was simulated both with and without accounting 

for the vertical density change due to gravity. For the simulation with 

vertical density change, the single vertical cylinders shown on Figure 4.9 are 

broken vertically into multiple sections as shown on Figure 4.11. 

 

Figure 4.11: A 30-cm long cylinder sectioned in 5 portions. The corresponding 

opacity values are mentioned for an initial vertical velocity of 0.56 m/s. 

Each of the equal-size sections is characterized by a different value of 

opacity. To determine the opacity value of a section, as defined in paragraph 

4.1.1, it is required to compute the volume of droplets in suspension inside 

the section. To this end, the number of droplets in suspension inside the 

section is determined by multiplying the rate of droplet formation at an 

aperture by the time it takes a droplet to fall the length of the section. The 

volume of droplets in the section can subsequently be determined, knowing 

the volume of a single droplet. To ensure that the result is independent of the 
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number of vertical sections, different simulations were run, each with a 

different number of vertical sections. 

 

Figure 4.12: Effusion pdfs, accounting or not for the vertical density change due to 

gravity. 

The results, on Figure 4.12, show that the effusion pdfs agree with each 

other within the statistical uncertainty, independently of the number of 

vertical sections. It is also noticeable on this figure that a valid effusion 

delay time distribution is obtained even when the vertical density change 

due to gravity is not accounted for. In addition, since a coarser 

representation was required for the cases with many vertical sections, the 

5-vertical-sections case was simulated both with a fine and a coarser 

representation of the cylinders. Whether simulated with 24-facet or 16-facet 

cylinders, the results are consistent within the statistical uncertainty of 

about ± 4%. 

4.1.4 Non-uniform spatial desorption 

One more source of complexity in the simulation of the release volume is 

induced by diffusion. The pdf of a nuclide diffusing to the surface of the 

droplet in which it was evacuated presents an exponential decrease over 

time. Because diffusion occurs during the fall of the droplets, this means 

that the rate at which diffusing nuclides populate the surface of a droplet at 
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of the same droplet was populated when it was close to the irradiation 

volume. Since no surface accumulation of nuclides is assumed (see section 

3.1.2.3), it follows that the rate of nuclide desorption from the surface of a 

droplet decreases as the droplet falls in the release volume. 

In addition, the period between two consecutive proton-pulses irradiating 

the target can be large with respect to the time it takes to fully evacuate the 

irradiated LBE from the irradiation volume. In this case, situations where 

the release volume is filled partially with irradiated and partially with non-

irradiated LBE droplets will occur. Short-lived nuclides are not present in 

the non-irradiated LBE droplets and the spatial distribution of nuclides-

desorption rates can be even further away from a uniform distribution. This 

effect is not relevant for ISOL@MYRRHA since the pulse period of 

2  ̴  4 ms is smaller than the 100 ms it takes to fully evacuate the irradiated 

LBE. In order to model these dynamic effects occurring on a time scale 

similar with the effusion process itself, the desorption rate of the transparent 

cylinders should be varied both in space and time during the simulation in 

order to reproduce the evolution illustrated on Figure 3.5, page 57. 

Accounting for the effects mentioned above in this section would inevitably 

lead to models complex to setup and long to run. To assess the potential loss 

of accuracy induced by not accounting for these effects, their influence on 

the effusion delay time distribution was checked. The half-symmetry 

geometry (Figure 4.9) of a 30-cm high release volume was simulated with 

different spatial configurations of desorption. With respect to situations 

where the release volume is filled partially with irradiated and partially with 

non-irradiated LBE droplets, two simulations were run. In the first, particles 

are only initially desorbed from the first 5 mm at one extremity of the 

cylinders. In the second simulation, particles are only desorbed from a 5-mm 

section located vertically at center of the cylinders. With respect to the 

diffusion effect, a third simulation was run with relative desorption rates 

following the trend described in expression (3.21). In this case, transparent 

cylinders with 15 vertical sections are used, each section with a different 

value of desorption rate. 
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Figure 4.13: Effusion pdfs, accounting or not for different effects affecting the space 

and time distributions of desorption rates. 

The results of these simulations are compared on Figure 4.13 with the output 

of an approximate simulation where particles are desorbed from the full 

length of the cylinders. No change in desorption rate is accounted for. Apart 

from the first time bin, all the pdfs on Figure 4.13 are consistent within 

statistical uncertainty. The probability density value of the first bin is higher 

in case the desorbing particles only come from the middle sections of the 

cylinders while lower values are computed if particles are only desorbed 

from the extremities of the cylinders. This is expected since desorbing facets 

at an extremity of the cylinders see the entrance of the transfer line under a 

solid angle smaller than the angle under which desorbing facets in the 

middle of the cylinders see the same transfer-line-entrance. Note that this 

effect only significantly affects particles flying straight from their initial 

desorption-site to the entrance of the transfer line, like particles recorded in 

the first time bin. Understandably, when a uniform desorption rate along the 

cylinder length is used, the probability density value of the first bin is 

between the value for desorption only at an extremity and the value for 

desorption from the middle section. In the simulation case where non-

uniform desorption rates induced by diffusion are applied, most of the 

particles are initially desorbed off-centered and close to the cylinders 

extremity at the top of the release volume. This explains why the value of 

the probability density in the first time bin is consistent with results for the 

case where desorption only occurs at an extremity. 
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4.1.5 Effect of sticking 

Between their initial desorption and their potential arrival at the transfer 

line, atoms and molecules undergo a succession of flight steps and surface 

interactions in the release volume. The two sorption mechanisms that can 

occur upon interaction of a particle with a surface have been introduced in 

section 3.1.3.2. These mechanisms are currently not accounted for in 

Molflow+ simulations so, the effusion delay time distributions shown 

throughout this chapter are computed assuming that the particles 

immediately re-desorb after each surface adsorption. 

An expression to account for the sticking time induced by 

adsorption/desorption is given in section 3.1.3.2 (see expression (3.15)). 

Applied to Hg adsorption on Pb, this expression gives a mean sticking time 

per surface interaction of 𝜏𝑠 = 4.75 10−8 s at 473 K and 𝜏𝑠 = 2.16 10−11 s 

at 873 K. To obtain an effusion delay time distribution accounting for 

surface sticking, each abscissa coordinate on the pdf output from Molflow+ 

should be increased by a shifting parameter. The shifting parameter is the 

product of 𝜏𝑠 with the mean number of collisions of particles completing 

their effusion track within the time bin corresponding to the abscissa value. 

The mean number of collisions for each time bin is obtained by dividing the 

abscissa value corresponding to the time bin by the mean flight time 

between two surface interactions (see section 4.1.2). However, because the 

mean sticking time in this case is lower by several orders of magnitude than 

the mean flight times given in section 4.1.2, they have been neglected and 

the uncorrected effusion delay time distributions are used throughout the 

work. 

Apart from adsorption which is a surface interaction, particles interacting 

with a surface can also undergo absorption, meaning that the particle 

dissolves in or permeates the structure of the sorbent. In the worst case, an 

atom/molecule can dissolve in the sorbent for long enough to be considered 

permanently absorbed. Permanent dissolution in this context means that the 

time scale for dissolution is very long in comparison with the half-life of the 

nuclide. Depending on the probability of permanent dissolution for each 

surface interaction, absorption might significantly affect the effusion delay 

time distribution. Such a probability is called a sticking factor in Monte 

Carlo codes for particle tracking. The sensitivity of the effusion delay time 

distribution to the sticking factor was thus studied and the results are 

displayed on Figure 4.14 and Figure 4.15.  
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Figure 4.14: Sensitivity of the effusion delay time distribution to the sticking factor 

of particles on the walls of the release volume. 

The half-symmetry geometry with a 30-cm high release volume was 

simulated with on one side, different values of the sticking factor of particles 

on the walls of the release volume and on the other side, different values of 

the sticking factor of particles on the surfaces of the transparent cylinders. It 

can be derived from the data on Figure 4.14 that the permanent retention of 

particles is only significant if the corresponding sticking factor is higher 

than 10
-5

. Similarly, from Figure 4.15, the permanent dissolution of particles 

in the droplets would become significant as the sticking factor rises above 

10
-6

. The more stringent condition for particles sticking on the surfaces of 

the transparent cylinders can be explained by the fact that in this geometry, 

about 80% of the surface interactions occur on the surfaces of the cylinders. 

Unable to find any straightforward method to determine the sticking factor, 

the probability of permanent dissolution is judged here through the ratio 

between sticking time before re-desorption  𝜏𝑠 = 2.16 10−11 s at 873 K, and 

the diffusion time in the droplets 〈∆𝑡𝑑𝑖〉 = 0.44 s at 823 K. In the absence 

of more precise data, based on this first order analysis, the permanent 

dissolution of Hg atoms in the droplets is not expected to significantly 

influence the effusion delay time distribution.  
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Figure 4.15: Sensitivity of the effusion delay time distribution to the sticking factor 

of particles on the surfaces of the transparent cylinders. 

4.1.6 Comparison of the fit parameter k with approximations 

evaluated from expressions proposed in literature 

By analogy with evacuation of a volume through an orifice, the delay 

induced by effusion was described [74, 98] as 𝑃𝜈 𝑡 = 𝜈𝑒−𝜈𝑡 with 1 𝜈⁄ =

𝑁𝑐𝑜𝑙(𝜏𝑠 + 𝜏𝑓). In this expression, 𝑁𝑐𝑜𝑙 is the mean number of collisions a 

particle makes with the target material surfaces and container walls before 

leaving the target, 𝜏𝑠 is the mean sticking time of particles per surface 

interaction and 𝜏𝑓 is the mean flight time between two consecutive surface 

interactions. A variant of this description is given in [100], where the time 

characteristic of the exponential is defined as 1 𝜏𝑐⁄  with 𝜏𝑐 ≅ 3 4⁄ [𝑁𝑐𝑜𝑙𝜏𝑠 +

𝐿 𝜐⁄ ]. 𝐿 in this other description is the mean length of nuclide paths from 

initial desorption to exit from the target while 𝜐 is the mean value of the 

Maxwell-Boltzmann speed distribution. None of these descriptions accounts 

for the zero-probability time-period ∆𝑡0𝑒𝑓 or the rising section of the 

effusion distribution shown on Figure 3.8, but applying any of these in this 

work would still have required Monte Carlo calculations to determine 𝑁𝑐𝑜𝑙, 

𝜏𝑓 or 𝐿. To check the validity of their possible application, the time 

characteristics 𝜈 and 1 𝜏𝑐⁄  are compared to the fit parameter 𝑘 in expression 
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(3.31). In this comparison, the sticking part is neglected. The comparison 

shown on Figure 4.16 refers to the data in Figure 4.2 through Figure 4.7 and 

shows that though the trend seems to be reproduced, significant differences 

can be observed. The same conclusion can be drawn from Figure 4.17, 

referring to data on Figure 4.24. None of these descriptions is suitable for 

this study. 

 
Figure 4.16: Comparison of the fit parameter k in expression (3.31) with 

approximations evaluated from expressions proposed in literature, for cases 

described in section 4.1.1. 
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Figure 4.17: Comparison of the fit parameter k in expression (3.31) with 

approximations evaluated from expressions proposed in literature, for cases 

described in section 4.3.2. 

4.2 Validation of the method 

The methodology described in chapter 3 for modeling the release of nuclides 

out of the target is validated in this section by comparing its outputs to 

experimental data. However, no loop target has yet been operated online at 

an ISOL facility. The following validation cases have been selected. 

4.2.1 ISOLDE SC static Pb bath 

In this section, the release of nuclides out of the static bath Pb target used at 

ISOLDE-SC is modeled. The computed release efficiencies of different Hg 

isotopes are compared to experimental data [33]. A schematic drawing of 

the target and transfer line layout is presented on Figure 4.18 (top) along 

with a diagram of the simplified geometry defined in the simulation. 
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Figure 4.18: (Top) Target and transfer line layout for the static bath ISOLDE-SC Pb 

target. (Bottom) Diagram of the simulated geometry. 

Diffusion of Hg isotopes in the Pb target was simulated with the following 

conditions: 

Impermeability condition at the bottom surface of the bath (𝑥 = 0): 

𝜕𝐶

𝜕𝑥
= 0 

Constant surface-concentration condition at the free surface of the bath 

(𝑥 = 𝑙): 

𝐶 = 𝐶𝑠 ,        𝑥 = 𝑙 ,        𝑡 > 0 

Uniform-concentration condition initially 𝑡 = 0:  

𝐶 = 𝐶𝑖 ,        𝑡 = 0 ,        0 < 𝑥 < 𝑙 

Applying these boundary conditions to the solution of the one-dimensional 

version of Fick’s second law of diffusion [86], one finds: 

 
𝐶 𝑥, 𝑡 = ∑

 −1 𝑚4𝐶𝑖

𝜋 2𝑚 + 1 
𝑐𝑜𝑠 [ 2𝑚 + 1 

𝜋𝑥

2𝑙
] exp [− 2𝑚 + 1 2

𝜋2

4𝑙2
𝐷𝑡]

∞

𝑚=1

 (4.1)  

Target 
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For any time period ∆𝑡𝑑𝑖 elapsed since the start of diffusion in the bath, the 

fraction of the initial amount of a nuclide still remaining inside the liquid 

bath is  [86]: 

 
𝑓 ∆𝑡𝑑𝑖 = (

8

𝜋2 − 8
) ∑

1

 2𝑚 + 1 2
exp [− 2𝑚 + 1 2

𝜋2

4𝑙2
𝐷∆𝑡𝑑𝑖]

∞

𝑚=1

 (4.2)  

The fraction of the initial amount of this nuclide diffusing out through the 

free surface in a time period [∆𝑡𝑑𝑖 ; ∆𝑡𝑑𝑖 + 𝑑𝑡] is then: 

 
𝐷𝑖𝑓𝑓 ∆𝑡𝑑𝑖 = (

8

𝜋2 − 8
) ∑

𝜋2𝐷

4𝑙2
exp [− 2𝑚 + 1 2

𝜋2

4𝑙2
𝐷∆𝑡𝑑𝑖]

∞

𝑚=1

 × 𝑑𝑡 (4.3)  

The pdf of a nuclide reaching the free surface of the bath after diffusing for 

a period 𝑡𝑏𝑠 is derived as: 

 
𝑅𝑑𝑖 𝑡𝑏𝑠 = (

8

𝜋2 − 8
) ∑

𝜋2𝐷

4𝑙2
exp [− 2𝑚 + 1 2

𝜋2

4𝑙2
𝐷𝑡𝑏𝑠]

∞

𝑚=1

 (4.4)  

Describing effusion with expression (3.30), the overall delay time 

distribution for this target is obtained by convoluting expressions (3.30) and 

(4.4) in: 

 

𝑅𝑖𝑠 =

{
 
 
 
 
 
 

 
 
 
 
 
 
∫ 𝑅𝑑𝑖 𝑡𝑏𝑠 × 0𝑑𝑡𝑏𝑠

𝑡𝑖𝑠

0

                                                0 ≤ 𝑡𝑖𝑠 ≤ ∆𝑡0𝑒𝑓

∫ 𝑅𝑑𝑖 𝑡𝑏𝑠 × 𝑖(1 − 𝑒−𝑗(∆𝑡𝑒𝑓−∆𝑡0𝑒𝑓))𝑒−𝑘(∆𝑡𝑒𝑓−∆𝑡0𝑒𝑓)𝑑𝑡𝑏𝑠

𝑡𝑖𝑠−∆𝑡0𝑒𝑓

0

+ ∫ 𝑅𝑑𝑖 𝑡𝑏𝑠 × 0𝑑𝑡𝑏𝑠

𝑡𝑖𝑠

𝑡𝑖𝑠−∆𝑡0𝑒𝑓

                                          𝑡𝑖𝑠 ≥ ∆𝑡0𝑒𝑓

 (4.5)  

⇒  
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 𝑅𝑖𝑠

=

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
                                                  0,                                                    0 ≤ 𝑡𝑖𝑠 ≤ ∆𝑡0𝑒𝑓

(

 
 
(

8𝑖

𝜋2 − 8
)

× (
𝜋2𝐷

4𝑙2
)

)

 
 

∑

[
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
(𝑒

−( 2𝑚+1 2
𝜋2𝐷
4𝑙2

−𝑗−𝑘)(𝑡𝑖𝑠−∆𝑡0𝑒𝑓) − 1)

×
𝑒− 𝑗+𝑘 (𝑡𝑖𝑠−∆𝑡0𝑒𝑓)

( 2𝑚 + 1 2
𝜋2𝐷
4𝑙2

− 𝑗 − 𝑘) )

 
 
 

−

(

 
 
 
(𝑒

−( 2𝑚+1 2
𝜋2𝐷
4𝑙2

−𝑘)(𝑡𝑖𝑠−∆𝑡0𝑒𝑓) − 1)

×
𝑒−𝑘(𝑡𝑖𝑠−∆𝑡0𝑒𝑓)

( 2𝑚 + 1 2
𝜋2𝐷
4𝑙2

− 𝑘) )

 
 
 

]
 
 
 
 
 
 
 
 
 
 
 

∞

𝑚=1

, 𝑡𝑖𝑠 ≥ ∆𝑡0𝑒𝑓

 
(4.6)  

The release efficiency of any nuclide can then be obtained, applying 

expression (3.34). For Hg isotopes, the efficiencies computed with 𝐷 =

2 10−9 m
2
/s are compared in Table 4.1 with experimental data [33]. Note 

that the experimental efficiencies as published in [33] are normalized values 

while the initially computed values (second column of Table 4.1) are not. 

Because the normalization constant is not specified in  [33], a direct 

comparison with the experimental efficiencies was not possible. 

Nonetheless, a good match (within a factor 1.3) is observed between 

normalized, computed and experimental release efficiencies for the different 

Hg isotopes. 

Table 4.1: Computed and experimental release efficiencies for different Hg 

isotopes. The obtained values are normalized for comparison. 

Isotopes 
Computed 

Efficiencies 

Normalized 

Computed 

Efficiencies 

Normalized 

Experimental 

Efficiencies 

[33] 

Re-Normalized 

Experimental 

Efficiencies 

190
Hg (20 min.) 54.83% 100.00% 96.80% 100.00% 

180
Hg (2.58  s) 2.99% 5.46% 6.00% 6.20% 

179
Hg (1.05  s) 1.67% 3.05% 2.60% 2.69% 

178
Hg (0.266 s) 0.44% 0.81% 0.60% 0.62% 

177
Hg (0.118 s) 0.27% 0.49% 0.40% 0.41% 

 

4.2.2 RIST ISOLDE and Ta129 targets 

The method was also validated on other targets. The computed release 

curves are compared on Figure 4.20 with experimental data for solid targets 

with two different internal structures [129]. In both cases, the target material 

is contained in a 20-cm long Ta cylinder with a radius of 1 cm and operated 
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at T = 2400 K [129]. The first geometry (Ta129) shown in a simplified way 

in Fig. 2a consists of 200 Ta foils (2-μm thick, 15-cm long and 1-cm high) 

placed in the direction of the proton beam with 50-μm spacing between 

them. The second geometry (RIST-ISOLDE) shown in Fig. 2b consists of 

3600 Ta annular discs( 25-μm thick, 9.5 mm external diameter and 2.5 mm 

internal diameter), placed perpendicular to the proton beam and spread over 

the entire length of the container. 

 

Figure 4.19: Representation of the different Ta-foils target geometries. The proton 

beam impinges parallel to the foils in geometry (a) and perpendicular in case (b). 

The number of foils and annular discs is reduced for visualization purposes. 

In these two geometries, the thickness of each foil is much smaller than its 

other dimensions. Therefore, diffusion is only considered in the direction 

perpendicular to the surface of the foil. Similar to the previous section, the 

boundary and initial conditions are a constant surface-concentration and a 

uniform initial-concentration. Applying these in the solution of the one-

dimensional form of Fick's second law of diffusion, one finds [86]: 

 
𝐶 =

4𝐶𝑖

𝜋
∑

1

2𝑚 + 1

∞

𝑚=0

𝑒𝑥𝑝 [−
 2𝑚 + 1 2𝜋2𝐷

𝑙2
𝑡] sin [

 2𝑚 + 1 𝜋𝑥

𝑙
]. (4.7)  

In this expression, 𝑥 is the position along the main diffusion axis, 

perpendicular to the foils and 𝑙 is the foils thickness. The flux of particles at 

the surface of a foil 𝐽 is then derived as: 

(a) Ta129 target geometry. (b) RIST-ISOLDE target geometry. 
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𝐽(𝑡𝑓𝑠) =

4𝐶𝑖𝐷

𝑙
∑ 𝑒𝑥𝑝 [−

 2𝑚 + 1 2𝜋2𝐷

𝑙2
𝑡𝑓𝑠] ,

∞

𝑚=0

 (4.8)  

where 𝑡𝑓𝑠 is the diffusion time to the foil surface. The Monte carlo 

calculations for effusion are fitted as described in section 3.1.3.4 by the 

expression (3.30) with ∆𝑡0𝑒𝑓 = 0. Combining the diffusion and effusion 

models, the following expression is derived for the current of a stable 

nuclide at the ion source; 

 

𝐼 𝑡𝑖𝑠 =
8𝐶𝑖𝐷𝑖

𝑙

{
 
 
 

 
 
 

∑ [
𝑒𝑥𝑝 [−

 2𝑚 + 1 2𝜋2𝐷
𝑙2

𝑡𝑖𝑠] − 𝑒𝑥𝑝 −𝑘𝑡𝑖𝑠 

𝑘 −
 2𝑚 + 1 2𝜋2𝐷

𝑙2

]

∞

𝑚=0

− ∑ [
𝑒𝑥𝑝 [−

 2𝑚 + 1 2𝜋2𝐷
𝑙2

𝑡𝑖𝑠] − 𝑒𝑥𝑝 − 𝑗 + 𝑘 𝑡𝑖𝑠 

𝑗 + 𝑘 −
 2𝑚 + 1 2𝜋2𝐷

𝑙2

]

∞

𝑚=0 }
 
 
 

 
 
 

, (4.9)  

with 𝑡𝑖𝑠 the release time to the ion source, while 𝑖, 𝑗 and 𝑘 are effusion fit 

parameters defined with expression (3.30). A formulation in terms of current 

is used here rather than a probability density function as it is more suitable 

for comparison with experimental measurements which give as output a 

count rate. The release efficiency of nuclides out of the targets is then 

obtained as: 

 
𝜀𝑟𝑒𝑙 =

∫ 𝐼 𝑡𝑖𝑠 𝑒
−𝜆𝑡𝑖𝑠𝑑𝑡𝑖𝑠

∞

0

∫ 𝐼 𝑡𝑖𝑠 
∞

0
𝑑𝑡𝑖𝑠

 (4.10)  

For both of these geometries, experimental release curves were available in 

literature for the same isotope, 
8
Li. However, the diffusion coefficient for Li 

in Ta was not found in literature. As a consequence, the diffusion coefficient 

was considered a free parameter in the comparison with the experimental 

release curve of 
8
Li in the case of the Ta129 target and was determined by 

fitting the data. In the case of the RIST-ISOLDE target, the release curve 

was found to be much less sensitive to the value of the diffusion coefficient 

as compared to the Ta129-target geometry. A reliable determination of the 

diffusion coefficient through the same procedure was therefore prohibited. 

The diffusion coefficient value of 5.4 10
-14

 m
2
/s determined for the Ta129 

target was thus applied to the RIST-ISOLDE target (see Figure 4.20). 

In both cases, a good match was obtained between the modelled release 

curve and the experimental points. 
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Figure 4.20: Computed and experimental normalized release curve of 8Li, (top) for 

the Ta129 target and (bottom) for the RIST-ISOLDE target using a diffusion 

coefficient (D = 5.4 10-14 m
2
s

-1
). Plots reproduced from [129]. 
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4.3 Influence of geometrical parameters on the release 

efficiency 

The influence the target geometry on the release efficiency of short lived Hg 

isotopes is investigated in this section. 

4.3.1 Target length 

In chapter 3, the nuclide-production rate inside an ISOL target is shown to 

scale with different parameters. Among these, cross sections are nature-

given values for a specific target beam configuration and little can be done 

concerning the primary-beam intensity at a given facility. Still, an increase 

of the in-target production rate of nuclides can be achieved through an 

increase of the number of target atoms exposed to the primary beam. Such 

an increase of the number of target atoms exposed to the primary beam can 

be obtained by increasing the length of the target. 

However, while passing through a dense target material, both the mean 

energy and fluence of a proton beam decrease due to the stopping power and 

scattering in dense target material. The production rate per unit volume of a 

constant-density target material is therefore expected to gradually diminish 

along the target. This phenomenon is visible in the plot of the in-target 

production-density of Hg isotopes along the target-length, shown on Figure 

4.21. These calculation results, obtained with two different Monte Carlo 

codes (FLUKA and MCNP [130]) are shown for comparison. Even though 

at high energies, different models are used in these codes for proton-induced 

reaction cross sections, the results are in good agreement. This means that 

the gain in in-target production of Hg isotopes per unit length of the 

irradiation volume decreases as well for long targets, see Figure 4.22 (left). 

On the other hand longer targets result in correspondingly larger release 

volumes which will increase the effusion path and thus the delay losses of 

short-lived nuclei. Combined, these two effects imply that an optimum 

target length exists. This optimum depends, among other factors, on the 

beam energy, the density of the target material and the energy dependence 

of the production cross sections. By increasing the length of the irradiation 

volume and hence the length of the release volume, the efficiency of the 

target is decreased as shown on the right hand side of Figure 4.22 for short-

lived Hg isotopes. 



96 

 

Combining the evolution of both the in-target production with release 

efficiencies as a function of the target length, the optimum length of the 

target for production of 
177

Hg and 
178

Hg was found to be about 10 cm. Even 

though the optimum is half-life dependent, in these cases, a target optimized 

for one isotope would still produce significant amounts of the second. 

 

Figure 4.21: Fraction of several Hg isotopes produced per bins of 1 cm, along the 

length of the target. Results from FLUKA and MCNP [130] are given for 

comparison. 
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Figure 4.22: (Left) Cumulative in-target production of 

178
Hg isotopes along the 20-

cm long irradiation chamber. (Right) 
177, 178

Hg release efficiency of the target for 

different values of release-volume length. 

 
Figure 4.23: Normalized intensity of 

178
Hg (left) and 

177
Hg (right) RIBs for different 

lengths of the irradiation and release volumes. 
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A second parameter of interest is the height of the diffusion chamber. A 

smaller height of the diffusion chamber increases the effusion efficiency as 

it means a smaller release volume. However a smaller height of the diffusion 
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less fall-time for the droplets. This explains the presence of an optimum 

diffusion-chamber height on Figure 4.24. For the production of 
179

Hg 

(t1/2 = 1.05 s) an optimum diffusion-chamber height of  ̴ 9 cm was 

determined while the optimum values for 
178

Hg (t1/2 = 0.266 s) and 
177

Hg 

(t1/2 = 0.118 s) are around 3 cm. 

 
Figure 4.24: 

177-179
Hg Release efficiency of the target for different values of release 

volume height. 

4.3.3 Droplets radii 

A third parameter studied is the radii of the droplets. Larger droplets reduce 

the diffusion efficiency but are expected to increase the effusion efficiency 

by reducing the number of droplets in the release volume. Indeed, a larger 

number of droplets means more obstacles on the track of particles which 

will increase the mean number of collisions. Simulations were therefore run 

for droplet radii ranging from 200 to 50 μm. The number of evacuation 

apertures is adapted in these simulations in order to keep the overall area of 

the evacuation apertures, and thus the flow rate and full-evacuation time of 

LBE out of the irradiation volume constant. The results shown in Table 4.2 

indicate that the release efficiency of 
177

Hg increased while reducing the 

droplets radii from 200 to 50 μm. This monotonous increase is explained by 

the fact that the pdf of the effusion process is not significantly affected by 

the radii of the cylinders on this range (see Figure 4.25), while the diffusion 

efficiency is increased for smaller droplets. 
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Figure 4.25: Effusion pdfs, with droplet radii ranging from 200 to 50 μm. The larger 

uncertainties on the data for droplet radii ranging from 150 to 50 μm are related to 

the fact that the computation time scales inversely with the square of the 

transparent-cylinders radii. 

Indeed, though the simulation of more droplets significantly increases the 

mean number of collisions during effusion, this increase is compensated in a 

great part by the reduced values of the mean free path between two 

consecutive collisions (see Table 4.2). These results seem to indicate that the 

optimum droplet radius is below 50 μm.  

Table 4.2: Simulation results for droplet radii ranging from 200 to 50 μm. 
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4.4 Improved geometry of the release volume 

From the studies presented in the previous section, a more compact 

geometry of the release volume (Figure 4.26) has been investigated. A 

release efficiency of 9.6 % is computed for the target with this release 

volume. It corresponds to an increase of a factor 3.4 of the target yield as 

compared to the initial geometry. However the formation of 50-μm radius 

droplets constitutes a major challenge for the feasibility of this target 

geometry. 

 

Figure 4.26: Compact geometry for the release volume. The initial geometry is 

shown for comparison. 

 

4.5 Conclusion 

In this chapter, the method described in chapter 3 for modeling the release 

of nuclides out of an ISOL target is applied. Validation of the method 

through comparison of its outputs to experimental data is conducted. In the 

absence of experimental data for a loop target the validation cases were the 

static-bath ISOLDE-SC Pb target and two solid Ta foils targets with 

different internal geometries. In all these cases, a good match between 

computed and experimental release curves and efficiencies has been 

observed for a variety of isotopes of different elements. 

In the proposed method, the effusion step is modeled through Monte Carlo 

simulations which are typically long to run. Because of its large size and 

complexity, the simulation case for the loop target required different 
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simplifications and approximations of which the validity was checked in this 

chapter. Beside studying the influence of several effects not specifically 

modelled, this section also provided some insight into the physics behind the 

effusion-fit parameters. An attempt to further understand this physics would 

require a more systematic study of the effusion process than possible within 

the framework of this thesis. 

In the last part of the chapter, the proposed method is applied to optimize the 

design of a molten LBE loop target. Optima of different parameters have 

been determined and it was found that the optimum size of the target is 

species and half-life dependent. In addition, the shorter the half-life of the 

isotope of interest, the more compact is the optimum target design. 

However, to obtain a globally optimum design, a multi-dimensional study is 

required where all the design parameters will be allowed to vary.   
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5 CFD analysis of beam-target interactions 

In the context of the next generation of RIB facilities based on the ISOL 

method, development of production targets capable of dissipating the high 

power deposited by the primary beam is a major, ongoing task. These 

targets should withstand the high-power primary beams without 

compromising the reliability of the yields and the structural integrity of the 

target itself over extended periods of time. The LBE loop target studied in 

this work is one such target developed e.g. for the EURISOL and 

ISOL@MYRRHA facilities. 

Since this target is of interest for different institutes, its detail design and 

prototyping is conducted within the Liquid Eutectic Lead Bismuth Loop 

Target for EURISOL (LIEBE) project. The pump and heat exchanger are 

designed by the Institute of Physics of the University of Latvia (IPUL) and 

CERN respectively. Online tests of the prototype will be conducted at 

CERN-ISOLDE. However, EURISOL envisages a CW beam while 

ISOLDE operates with a pulsed beam. Specific issues related to the pulsed-

beam of ISOLDE are studied in this chapter for the prototype. 

As a consequence of interaction of the highly pulsed 1.4-GeV protons at 

ISOLDE with the target, heat powers of the order of 2 GW would be 

instantaneously deposited in the target during a bunch. This sudden insertion 

of significant amounts of heat in the target is expected to result into pressure 

waves, propagating in the liquid target material and potentially reflecting at 

its boundaries. The reflection of pressure waves at different boundaries 

encountered in the geometry of the irradiation volume is studied in the first 

part of the chapter. 

Because the propagation of pressure waves in the target material induces 

dynamic loads on the target container, the safe operation of the target 

requires the demonstration of its structural integrity under the conditions of 

the online test. As a first step in this direction, conjugate flow (CFD) and 

heat deposition (Monte Carlo) calculations have been conducted, not 

accounting for fluid-structure interactions. 
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5.1 Wave reflection at boundaries 

In chapter 2, LBE flow calculations inside the irradiation volume of the 

target have been presented. In these calculations, the LBE domain is limited 

by boundaries including rigid walls, velocity inlets and pressure outlets. 

Because of the computational cost, especially in complex geometries, these 

CFD simulations have been limited to the most relevant regions of the flow 

domain. The velocity inlets and pressure outlets are therefore not real 

physical boundaries of the LBE flow. If this modeling of the computational 

boundaries is compatible with the LBE flow calculations, its applicability to 

beam target interaction calculations has to be checked. 

To investigate wave reflection at the three boundaries mentioned above, 

simulations were run to model the Joukowski pressure jump resulting from 

the sudden closure of a valve in the middle of a tube. A velocity inlet 

boundary condition was set at one end of the tube while the other end was 

modeled as a pressure outlet. The valve at the middle of the tube represents 

a wall. Via the method of the characteristics [131], the expected velocity and 

pressures in the wave after reflection at these boundaries can be estimated 

for comparison with the computed values. The influence of friction is not 

included in these calculations. The mesh and initial conditions of the 

calculations are shown on Figure 5.1. 

 

Figure 5.1: Mesh and initial conditions of the Joukowski pressure jump calculations. 
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The sudden closure of the valve at the center generates two pressure waves, 

a compression wave travelling toward the velocity inlet at the left end of the 

tube and an expansion wave travelling in the direction of the pressure outlet 

at the right end of the tube. From the method of the characteristics, the 

pressures in the compression 𝑃𝐿1 and expansion 𝑃𝑅1 waves are estimated to 

be: 

 𝑃𝐿1 = 𝑃𝐿0 + 𝜌𝑐𝑒𝑓𝑓𝑣𝐿0    &    𝑃𝑅1 = 𝑃𝑅0 − 𝜌𝑐𝑒𝑓𝑓𝑣𝑅0 (5.1)  

With 𝑃𝐿0 = 𝑃𝑅0 the pressure at the center of the tube before closure of the 

valve, 𝑃𝐿1  &  𝑃𝑅1 the respective pressures on the left and right hand side of 

the closed valve, 𝑣𝐿0 = 𝑣𝑅0 the velocity at the center of the tube before 

closure of the valve, 𝜌 the density of LBE and 𝑐𝑒𝑓𝑓 the propagation speed of 

the waves which in this case is the speed of sound since rigid tube walls are 

considered. The velocities 𝑣𝑅1 and 𝑣𝐿1 in the wave after closure of the valve 

are considered equal to zero. The values of 𝑃𝐿1 = 1.829 105 Pa & 𝑃𝑅1 =

−1.829 105 Pa derived from expression (5.1) for LBE at 500 K match well 

the results obtained with the CFD calculations (see Figure 5.2). 
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Figure 5.2: Centerline pressure & velocity distribution (node values) 5 μs after valve 

closure. 

At the pressure outlet, right end of the tube, the expansion wave is expected 

to reflect as a compression wave with a velocity 𝑣𝑅2 = 2𝑣𝑅1 − 𝑣𝑅0 and a 

pressure 𝑃𝑅2 = 𝑃𝑅0. This simulates an open end where the pressure is 

prescribed. As a velocity is imposed at the velocity inlet of the tube, the 

compression wave is expected to reflect at this end as a compression wave 

with a velocity 𝑣𝐿2 = 𝑣𝐿0 and a pressure 𝑃𝐿2 = 2𝑃𝐿1 − 𝑃𝐿0. Figure 5.3 

shows that the CFD calculations agree well with the pressure values 
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𝑃𝑅2 = 103 Pa and 𝑃𝐿2 = 3.659 105 Pa. The reflection at the velocity inlet is 

the same as one would expect from a physically closed end. 

 
Figure 5.3: Centerline pressure & velocity distribution (node values) 95 μs after 

valve closure. 

The two compression waves resulting from reflection at the ends of the tube 

travel back toward the valve. After reflection of these on the valve, two 

compression waves in the opposite direction are expected, with 𝑃𝑅3 =

2𝑃𝑅2 − 𝑃𝑅1 and 𝑃𝐿3 = 2𝑃𝐿2 − 𝑃𝐿1. The comparable results obtained with 

CFD calculations are shown on Figure 5.4. 
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Figure 5.4: Centerline pressure & velocity distribution (node values) 150 μs after 

valve closure. 

On Figure 5.2 through Figure 5.4, a discrepancy can be observed in the 

velocity distribution around x = 0 m.  This discrepancy is explained by the 

use of a pressure interpolation scheme that is not monotonicity preserving. 
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EURISOL (1 GeV). The proton beam energy is an important parameter for 

the choice of the online test facility as the spatial distribution of the in-target 

production rate of exotic Hg isotopes depends significantly on it. Indeed, 

calculations of the spatial distribution of the in-target production rate of 
180

Hg at 0.5, 1, 1.5 and 2 GeV [132] indicate that the spatial distribution at 

1 GeV is most closely reproduced by results at 1.5 GeV. In addition, 

virtually no production of Hg isotopes lighter than 
179

Hg is expected at 

0.5 GeV [132] while 
177

Hg is the reference isotope for this target. 

Furthermore, because of the larger beam spot foreseen for EURISOL 

(σ = 3 - 20 mm [49]), energy-deposition-density values are closer at the two 

facilities than one can infer simply from beam intensities (see Figure 5.5). 

The beam parameters used in the simulations correspond to the staggered 

mode at ISOLDE. Energy deposition was computed with FLUKA [133] and 

a peak value around 8 10
-2

 GeV/(cm
3
.proton) was determined. As a 

comparison, the energy deposition from a 1 GeV EURISOL proton beam 

(σ = 3 & 20 mm) is also shown on Figure 5.5. It shows that because the peak 

energy-deposition-density per proton is one to three orders of magnitude 

lower under EURISOL conditions, ISOLDE beam conditions are 

comparable in energy-deposition-density to those at EURISOL although the 

proton intensity is two orders of magnitude lower. 
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Figure 5.5: ISOLDE Staggered mode beam parameters (top) & Heat deposition 

(bottom). Computed heat-deposition plots for EURISOL are also shown. 

The resulting power densities were imported in Fluent and applied with a 

trilinear interpolation method as an input internal energy load for the 

computation of pressure waves. The scoring bins in FLUKA are rectangular 

cuboids while a tetrahedral meshing is used in Fluent. The power density is 

assumed constant with time within a bunch. Temperature profiles similar to 

the heat deposition are obtained as shown on Figure 5.6 at the end of a 

bunch. The maximum temperature-increase due to a single bunch of 8 10
12

 

protons amounts to    ̴ 60 K. The following linear equation of state with 

pressure and temperature dependence is used: 
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where the reference parameters 𝜌0 = 10496.4 kg/m
3
, 𝑐0 = 1762.5 m/s, 

𝑇0 = 453 K, 𝑝0 = 105 Pa and (
𝜕𝜌

𝜕𝑇
)
0
= −1.3236 kg/m

3
K from [69] were 

used. The temperature dependence from reference [69] is implemented for 

both density and viscosity. The inlet sections are modeled with a 

characteristic boundary condition so that waves leave the computational 

domain without reflection. At the outlet sections, the pressure-outlet 

boundary is maintained. 

 

Figure 5.6: Temperature profile (on symmetry plane), shown in the geometry of 

concept 5 defined in chapter 2. 

Figure 5.7 presents the pressure profiles computed in the LBE after each 

bunch for concepts 5 and 6 (Chapter 2). The energy deposition from each 

proton bunch generates a compression wave inside the irradiation volume. 

These waves travel in the LBE with a peak pressure value decreasing mostly 

as a function of the distance from the proton beam center line. The initial 

compression waves are also closely followed by expansion waves. 

The peak value of the pressure profile at the end of a bunch is increased by 

~43% (resp. ~30%) after the second bunch as compared to the first in the 

parallelepiped-shape feeder volume concept (resp. the prism-shape feeder 

volume concept). Between proton bunches 2 and 3, the increase in peak 

pressure value is of ~3% and 18% respectively. These values indicate no 

sign of severe constructive interference with the 16.2-μs bunch spacing 

used. Indeed, by the time a bunch arrives, the pressure wave generated by 

the previous bunch has already travelled into the feeder volume. 

It can be noticed on Figure 5.7 that pressure values below the vapor pressure 

of LBE (~ 10-6 Pa at 600 K) are reached in the expansion waves. These low 

pressures would initiate cavitation, not modeled in this study.  
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Figure 5.7: Pressure profile inside the LBE for both concepts (on symmetry plane) 

in Pa. 
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 Cavitation in this case will have the dual effect of changing the time 

structure of wave propagation while reducing the amplitude of subsequent 

waves travelling through such a zone. Modeling cavitation in a later stage 

would therefore modify the computed percentages of increase in peak 

pressure value. 

As the container is not explicitly modeled in these CFD simulations, it is 

treated as a rigid body for the flow calculations. Calculations of stresses and 

strains in the container require fluid structure interactions calculations that 

fall out of the scope of the work reported in this chapter. 

5.3 Conclusion 

This chapter presents pressure waves simulations for the LIEBE prototype 

of the LBE loop target. These calculations provide insight into effects 

generated by proton-induced shocks in this liquid metal target under a 

highly pulsed beam. These simulations show that strong pressure waves 

develop in the target but no severe constructive interference is expected 

from the 16.2-μs bunch spacing of the beam. The latter conclusion however 

needs to be further investigated in more comprehensive calculations 

accounting for potential cavitation effects as well as fluid structure 

interactions.   
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6 Conclusion and Outlook 

6.1 Synthesis and conclusions 

Judging from the imbalance between the average numbers of requested and 

delivered RIB hours per year, ISOL facilities are significantly 

oversubscribed [72]. Part of this imbalance can be explained by the need for 

significant R&D in order to deliver RIBs of certain nuclides. Indeed, though 

of high interest, RIBs of nuclides in several regions of the nuclear chart are 

currently not or very poorly produced (see Figure 6.1). 

 

Figure 6.1: (Reproduced from [72]) RIB intensity distribution over the nuclear chart 

as reported in the ISOLDE Yield Database [134]. If several yields are reported for 

one isotope the maximum entry was used. 

As a consequence, new facilities are under design and construction all over 

the world, e.g. ARIEL-TRIUMF (Canada) [135], HIE-ISOLDE CERN 

(Switzerland) [136], RISP-IBS (Korea) [137], SPES-INFN (Italy) [138], 

SPIRAL 2- GANIL (France) [139]. 

In order to increase the intensity of RIBs by the several orders of magnitude 

requested for certain experiments, a new generation of ISOL-based RIB 

facilities is currently under study worldwide. A distinct feature of these 

facilities is their foreseen high-power driver beam which indicates a need for 
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development of a new generation of targets capable to operate under this 

high-power condition. 

The proposed concept of a liquid-metal-loop target is therefore of interest 

for EURISOL and ISOL@MYRRHA. This target concept is expected to 

handle the high primary-beam power because the target material flows in a 

loop equipped with a heat exchanger. In addition, liquid targets typically 

offer the highest thicknesses of any material (  2̴00 g/cm
2
 for Lead Bismuth 

Eutectic (LBE)), leading to higher in-target production rates for the isotopes 

of interest. Concerns for the design of this target include effects like 

pressure drop, cavitation, liquid-metal recirculation, instabilities and non-

uniform flows. These concerns are most crucial inside the irradiation 

volume of the target, as they can significantly affect the performance of the 

target. Indeed, the main design requirement of the irradiation volume of the 

target is a complete evacuation of the irradiated LBE from the irradiation 

volume within 100 ms after the impact of a proton pulse. To ensure a proper 

design meeting this requirement, the dynamics of LBE in the irradiation 

volume was studied with CFD simulations. CFD simulation was used as the 

method avoids the lengthy and costly process of prototyping and testing 

every investigated design. 

Starting from a simple cylindrical geometry, several improved layouts of the 

irradiation volume have been studied. Several issues have been revealed 

through simulations of the LBE-flow inside the starting-case geometries 

proposed for the irradiation volume. The available amount of data resulting 

from these initial simulations provided a unique insight on the causes and 

potential solutions of these issues. As a result, a key feature of the optimized 

concepts is the need for a set of feeder volumes and feeder grids. In each of 

the proposed satisfactory geometries, the inlet-jet effect was solved with a 

combination of two approaches: (1) increasing the size of inlet sections in 

order to reduce inlet velocities; (2) opposing one or two feeder grids to 

distribute the inlet jet over the length of the irradiation volume. With this 

strategy, within a compact geometry, the jet flow with high-momentum that 

enters at the inlets is transformed into a uniform flow in the irradiation 

volume and at evacuation. Issues of low-pressure zones have been solved by 

avoiding unnecessary bending of the flow inside the compact geometry of 

the target. The concept with a parallelepiped-shape feeder proved to be the 

most robust of the satisfactory concepts, with regards to risks of clogging. It 

has been constructed at CERN as part of the LIEBE prototype. 
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Upon irradiation by a proton pulse, the liquid target material is spread into a 

shower of droplets inside the release volume. The need to optimize the 

release volume of the target derives from the fact that the main objective of 

this target is the production of RIBs of short-lived Hg isotopes with 
177

Hg 

(t1/2 = 0.118 s) as reference. The production of RIBs of such exotic nuclides, 

away from the valley of stability, is often confronted with several issues 

stemming from the very low production cross sections, the massive 

production of undesirable species and the short half-lives of the nuclides of 

interest. A sound engineering of the release volume is therefore crucial in 

order to minimize decay losses during the release of these nuclides. In this 

objective, a proper modeling of the release of nuclides out of the target is a 

requisite. A computational approach to predict the release of nuclides out of 

the target and to assess its efficiency has been developed. In this method, 

existing analytical descriptions of the diffusion process are used, in 

combination with an analytical fit of the numerical distribution obtained 

from Monte Carlo simulations for the effusion process. This gives as output 

an analytical model supported by detailed Monte Carlo calculations. This 

approach therefore combines the advantages of an analytical solution with 

the benefits of the supporting detailed Monte Carlo (MC) calculations. The 

analytical description used has the advantage that it implies no cutoff of the 

distribution tail as it is the case with a numerical convolution or the 

diffusion sampling approach. This results in a more accurate computation of 

the release efficiency. 

The proper test case for validation of the proposed release model is a loop-

type target. In the absence of experimental data for such a target, the 

validation cases were the static bath ISOLDE-SC Pb target and two solid Ta 

foils targets with different internal geometries. In all these cases, a good 

match between computed and experimental release curves and efficiencies 

has been observed for a variety of isotopes of different elements. 

In the proposed method, the effusion step is modeled through Monte Carlo 

simulations which are typically long to run. Because of its large size and 

complexity, the simulation case for the loop target required different 

simplifications and approximations of which the validity was checked. 

Besides, through the study of the influence of these effects, insight can be 

gained into the physics behind the effusion fit parameters. The proposed 

method was then applied to optimize the design of a molten LBE loop 

target. Optima of different parameters have been determined and it was 

found that the optimum size of the target is species and half-life dependent. 

The shorter the half-life of the isotope of interest, the more compact the 
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optimum target design has to be. However, to obtain a globally optimum 

design of the release volume, a multi-dimensional study is required where 

all the design parameters are allowed to vary. 

When passing through the target material, the driver beam can deposit 

significant amounts of energy in the target through Coulomb interactions. 

The energy loss profile was computed with FLUKA, a Monte Carlo code for 

particle transport in matter. This profile was then used to calculate initial 

temperature and pressure distributions in the target using Fluent. These 

calculations provide insight into effects generated by proton-induced shocks 

in this liquid metal target under a highly pulsed beam. The simulations show 

that strong pressure waves develop in the target but no severe constructive 

interference is expected from the 16.2-μs bunch spacing of the beam. 

6.2 Outlook 

Effusion is a crucial process typically present in all ISOL targets. Modeling 

this process in the complex geometries of ISOL targets requires the use of 

Monte Carlo tools. Also, these MC calculations often need to be long in 

order to achieve decent uncertainty levels. In addition, in the design & 

optimization process of targets, several design options need to be evaluated 

and the long MC calculations are to be repeated every time. One solution to 

reduce the time requirement of target design & optimization would be to 

propose accurate analytical descriptions of the process without a need to go 

through the MC calculations. As a first step in this direction, the analytical 

fit to numerical effusion delay time distribution developed in this work can 

provide insight into simple dependencies of the effusion process on some 

geometrical parameters. The repeated MC calculations for some design 

options would then become unnecessary to assess the changes in the 

effusion delay time distribution for these design options. This, however, 

requires a systematic study of the dependence of the effusion delay time 

distribution on parameters like the effusion volume and the pumping 

aperture size. Eventually, enough knowledge could be gained on the 

effusion process to predict the parameters in expressions (3.30) and (3.31) 

without going through a fitting to the MC calculations results. Besides, a 

global optimum design of the release volume of the LBE loop target for the 

production of a given isotope is still to be found. 

Despite this optimization work, the production of RIBs of elements like Au 

and Pt out of an LBE target will still remain a challenge due 

physicochemical properties of these elements. Similarly to other liquid 



119 

 

targets, the LBE targets suffer from a limited release of elements less 

volatile than the target material, even though some isotopes of some of these 

elements are produced in large amounts in the target. The typical solution 

for this issue is to find molecular compounds of these elements that are more 

volatile than the target material and are stable enough at elevated 

temperatures. The search for molecular compounds gains in interest now 

that an improved design of a liquid target is available. By supplying the 

proper reactant through the target, transfer line or container material, 

significant gains in performance could be achieved for the production of 

RIBs of non-volatile elements out of a loop target. Besides, the maximum 

operating pressure of the ion source used (10
-4

 – 10
-2

 mbar, [140, 141]) is 

often the limiting factor for operation of molten metal targets at high 

temperatures. Indeed, the maximum operation temperature of these targets is 

defined by the rate of evaporation of the target material that along with the 

flow of radioactive nuclei should not exceed 10
-8

 mol.s
-1

 [140]. For this 

reason, molten lead targets at ISOLDE were equipped with a temperature 

controlled chimney between the target container and the ion source to 

prevent large amounts of target material from reaching the ion source [30]. 

However to our knowledge, the geometry of the gas flow inside this 

chimney has never been studied in detail and optimized. Since an increase in 

the flow of radioactive nuclei is expected with the LBE loop target, the 

optimization of the design of this chimney becomes more crucial. Such an 

optimization can be performed with the help of MC codes for 

molecular/transitional flow calculations. 

The target design should also ensure that during operation, the target and 

container are sufficiently strong to withstand stresses without the onset of 

failures. Since in liquid targets the disruption of the liquid is not as such of 

structural concern the main requisite is the structural integrity of the 

container. As a first step toward assessing the stress level in the container, 

the pressure waves generated in the liquid target and resulting from primary 

beam impact have been computed. Potential cavitation effects as well as 

fluid structure interactions should now be included in this calculation to 

determine the evolution of stresses in the target container. In addition, 

strain-rate dependent failure criteria and material modeling are required. 

From the application point of view, one major perspective of this LBE loop 

target is the production of isotopes of At, one of the rarest elements 

naturally occurring on earth [142]. The isotope 
211

At (t1/2 = 7.2 h) is of 

significant interest for pharmaceutical use as an agent for targeted alpha 

therapy in cancer treatment. The knowledge of basic chemical properties is 



120 

 

absolutely necessary for this medical application, but their measurement is 

hindered as the estimated total abundance of At on earth is 0.07 g [142]. The 

study of the fundamental atomic properties of the element thus relies on 

artificially produced At. 
211

At is typically produced in a batch process 

through irradiation of solid Bi with alpha beams, followed by dry distillation 

for extraction. However, At being a halogen with high volatility, an 

alternative method could be the online separation of At isotopes from a 

liquid Bi or Pb-Bi target irradiated with an alpha beam. This method has the 

potential of upscaling the production due to the convective cooling of the 

liquid target. In addition, if irradiated with 
6,7

Li beams, such a target could 

lead to the production of 
211

Rn as a generator for 
211

At. Beside this 

application, a molten salt loop target is also envisaged for the production of 
18

Ne isotopes [143]. The neutrino/antineutrino beams coming from the 

decay of such β active isotopes is of interest for fundamental studies. 

The construction, offline tests and online operation of the LBE loop target 

will also open perspectives for other liquid targets. As introduced in chapter 

1, different molten metals and salts have been studied and operated in the 

past as ISOL target material. In the favor of faster release times, some of 

these have however been replaced over the years by solid targets [72]. 

However, unlike some solid targets, high durability and stability can be 

achieved with liquid targets under ISOL heat and radiation conditions. 

Additionally, some solutions have been proposed to corrosion issues, such 

as a corrosion-resistive nickel-rich alloy container for a molten LiF:NaF 

eutectic [144] or a dedicated Y2O3 container for the highly aggressive liquid 

uranium metal [145]. A renewed interest for molten targets can therefore be 

expected from improving the release of isotopes from molten targets. 

However, prior to the outlook points mentioned above, the prototype will be 

constructed and tested at CERN-ISOLDE. Offline tests are foreseen this fall 

and the prototype is planned for online tests in November 2016. 
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Appendix A 

Details of the irradiation volume concepts studied in section 2.4. 

 
Inlet 

velocity 

magnitude 

Number 

of 

evacuation 

apertures 

Evacuation 

apertures 

radius 

Evacuation 

apertures 

spacing 

Number 

of feeder 

grid 

apertures 

Feeder 

grid 

apertures 

radius 

Feeder 

grid 

apertures 

spacing 

Mesh 

size 

Required 

flow rate 

Concept 

1 
2 m/s 2496 200 μm 0.9 mm 

No 

feeder 

grid 

No 

feeder 

grid 

No feeder 

grid 

7 10
6
 

cells 
0.157 l/s 

Concept 

2 
2 m/s 4998 200 μm 0.6 mm 

No 

feeder 

grid 

No 

feeder 

grid 

No feeder 

grid 

1 10
7
 

cells 
0.314 l/s 

Concept 

3 
1 m/s 2496 200 μm 0.9 mm 

No 

feeder 

grid 

No 

feeder 

grid 

No feeder 

grid 

7 10
6
 

cells 
0.157 l/s 

Concept 

4 
1.5 m/s 2496 200 μm 0.9 mm 11044 100 μm 0.4 mm 

1.3 10
7
 

cells 
0.178 l/s 

Concept 

5 
1.5 m/s 2496 200 μm 0.9 mm 2496 200 μm 0.9 mm 

2.3 10
7
 

cells 
0.178 l/s 

Concept 

6 
0.4 m/s 2496 200 μm 0.9 mm 2496 200 μm 0.9 mm 

1.9 10
7
 

cells 
0.178 l/s 
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