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The research conducted in the context of this PhD dissertation is situated in the field of ecotoxicology, 

which is concerned with investigating how individuals, populations, communities, and ecosystems 

respond to chemicals. The exponentially increasing human population and the associated rise in 

chemical and nutrient input through ongoing urban, industrial and agricultural activity have exerted 

substantial pressure on aquatic ecosystems. As such, ecotoxicology underpins many important legal 

frameworks related to environmental protection, such as ecological risk assessment (ERA) and the 

setting of environmental quality standards (EQS) for chemicals. Typically, the effects of single 

substances have been tested by means of laboratory toxicity tests, on a few (more or less relevant) 

model test species (algae, zooplankton, fish, see Figure 1.1) (Van Leeuwen and Hermens, 1996).  

 

Figure 1.1. Model phytoplankton (Pseudokircherniella supcapitata), zooplankton (Daphnia magna) and 

fish (Oncorhynchus mykiss) species commonly used in freshwater ecotoxicity testing.  

 

 

1.1 Standard ecotoxicity testing vs. ecological realism 

The main protection goal of ERA is ensuring the sustainability of populations and higher levels of 

organization. Conventional risk assessment is based on ecotoxicity tests with individual chemical 

stressors, measured at the level of the individual (e.g. survival or reproduction). This contrasts with 

ecological reality for two major reasons. Firstly, natural populations are often exposed to a combination 

of chemical and non-chemical stressors, rather than single substances, over many generations (long-

term) under time-variable, non-optimal conditions (Eggen et al., 2004, Altenburger et al., 1996). 
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Box 1.1. Terminology used in ecotoxicology. 

 

 

 

Changes in the environmental factors can cause stress and may affect the performance (i.e. fitness) of 

a species, population or individual in an ecosystem. Non-chemical stressors typically increase 

sensitivity to chemicals and vice versa (Coors and De Meester 2008 ; Heugens et al. 2001). Figure 1.2 

illustrates that is important to bear in mind that the concept of stress is not absolute, in other words, it 

Ecological risk assessment (ERA) is the process for evaluating how likely it is that the 

environment may be impacted as a result of exposure to one or more environmental stressors 

such as chemicals, land change, disease, invasive species and global climate change. 

Environmental Quality Standards (EQS) Water quality standards are legal provisions that 

describe the desired condition of a waterbody or the level of protection or mandate how the 

desired condition will be expressed or established for such waters in the future. 

In this PhD dissertation stress is defined as a condition evoked in an organism by one or more 

environmental factors that bring the organism near to or over the edges of its fundamental 

ecological niche (Van Straalen, 2003 ).  

Optimal conditions are defined as the environmental conditions, which produce maximum 

fitness in an organism. Fitness is defined as an organism’s capacity to survive and reproduce, 

i.e. its contribution to the next generation. 

In the literature stress is used to define (i) the factor causing it (i.e. the stressor) or (ii) the effects 

caused by it (i.e. the resulting physiological state), which can lead to misinterpretation. For 

instance Sibly and Calow (1989) defined stress as “an environmental condition that, when first 

applied, impairs Darwinian fitness” (Sibly and Calow, 1989). Grime (1989) defined stress as 

“external constraints limiting the rates of resource acquisition, growth or reproduction of 

organisms” (Grime, 1989, Ward and Robinson, 2005 ). Throughout the PhD dissertation, to avoid 

confusion, stress will be defined as a change in the physiological state of an organism, while the 

term stressor will be used to describe any factor (chemical or non-chemical) causing stress (i.e. 

a change in the physiological state of an organism).  
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can only be defined with reference to the ecological niche of the species (i.e. the normal range of 

ecological function) (Van Straalen 2003).  

 

Figure 1.2. Graph illustrating the definition of stress based upon the ecological niche of a species, 

population or individual. Ecological stress arises when the intensity of an environmental factor increases 

from 1 (optimal conditions) to 2 (stressful conditions, i.e. becomes a stressor) in such a way that in 

position 2 the organism is placed outside its ecological niche (A). This will evoke stress and stress-

response reactions, until the environmental factor relaxes and the organism returns to its ecological 

niche (B). Another type of response is to move the border of the niche (C) by genetic adaptation in such 

a way that moving the environmental factor from 1 (optimal conditions) to 2 (i.e. 2 is no longer a stressor) 

is not experienced as stress anymore (indicated by the dashed lines). Adapted from Van Straalen 

(2003).  

 

 

Secondly, natural populations are generally characterized by genetic variability, which provides the 

potential for multi-generational microevolutionary responses, allowing populations to genetically adapt 

to chemical stressors (see response C in Figure 1.2), but potentially at the expense of associated costs 

(Van Straalen and Timmermans, 2002, Medina et al., 2007 ). This mismatch not only complicates the 

extrapolation of results from standard laboratory toxicity tests to realistic field conditions but may, 

moreover, result in misrepresentations of the actual effects on aquatic ecosystems.  
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There is however a pressing need to evaluate the combined effects of stressors, as research suggests 

that mixtures at No-Observed-Effect-Concentration (NOEC) levels of individual substances may cause 

adverse effects when they are combined in mixtures (Breitholtz et al., 2008, Silva et al., 2002, Versieren 

et al., 2016). Ecotoxicology has dealt with mixture toxicity for several decades to overcome some of the 

limitations to environmental realism of simple toxicity testing and enable more accurate predictions of 

the effects to the natural environment (Hermens et al., 1984, Silva et al., 2002, Backhaus et al., 2003, 

Norgaard and Cedergreen, 2010, Altenburger et al., 1996).  

 

 

1.2 Reference models to study the combined effects of stressors 

A variety of statistical methods have been employed to study mixture toxicity, of which two reference 

models are the most widely used and recognized. These are Bliss independence or Independent Action 

(IA) (Bliss, 1939) and Loewe additivity or Concentration Addition (CA) (Loewe, 1926). Their general null 

hypothesis is that the relative toxicity of the mixture equals the relative toxicity of the individual 

components. However, these two reference models differ both conceptually, as well as mathematically. 

 

Independent action (IA, also known as response addition or effects addition) assumes that the 

components of a mixture act independently from each other, usually through dissimilar modes of action 

that do not influence one another. The null-hypothesis of this reference model states the response of 

one component in the mixture is independent of the response of the other component(s) in the mixture 

(Jonker et al., 2005).  

 

Therefore, the effects of each of the components of the mixture are independent of each other from a 

probabilistic point of view:  

������� = 1 − ∏ �1 − ������
� ��               (Equation 1.1) 

where the effect of the mixture E(Cmix) is calculated from the product of the effects of (n) components 

E(ci). Effects are expressed as fractions of a maximum possible effect (0% ≤ E ≤ 100%). 
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Box 1.2. Terminology used in modelling of the combined effects of stressors. 

 

 

 

Concentration Addition (CA) on the other hand assumes that the mixture components only differ in the 

concentrations needed to elicit a toxic effect (i.e. their relative potency). That is, when corrected for their 

relative potency, each component can be replaced by equivalent concentrations (i.e. dilutions) of 

another chemical without changing the overall toxicity of the mixture. Due to this conceptual idea, CA 

is thought to describe the joint action of components that have a similar mode or mechanism of action. 

If the CA model holds, then the sum of the toxic units equals 1 in a mixture resulting in x% effect. It 

looks at mixture effects of chemicals in terms of a ‘dilution” principle. It therefore assumes that a 

component in a mixture can be exchanged partly or completely for another component with an equi-

effective concentration without changing the overall toxicity of the mixture, as long as the sum of the 

toxic units remains the same. 

Combined effects are defined as the overall observed effects of all stressors combined. 

Combined effects can be (i) equal to the combined toxicities of the individual components of the 

mixture (in the case of non-interaction), (ii) more toxic than the combined toxicities of the 

individual components of the mixture (in the case of synergism) ), (iii) less toxic than the 

combined toxicities of the individual components in the mixture (in the case of antagonism).  

Interactive effects of stressors, conversely, can only be inferred by a model if the predicted 

toxicity of the mixture differs in a statistically significant manner from the actual observed toxicity 

of the mixture. Interactive effects can be (i) additive (if the predictions from the reference model 

do not significantly deviate from the observations), synergistic (if the reference model predicts 

significantly lower toxicity of the mixture than the observed combined effects), or antagonistic (if 

the reference model predicts significantly higher toxicity of the mixture than the observed 

combined effects).  

The terms mixture toxicity and interactive effects are often used synonymously in the 

literature, despite the fact that a mixture can be toxic without interactive effects of the individual 

components (or stressors). In this PhD dissertation, to avoid confusion, the term mixture toxicity 

is avoided and combined effects of stressors is used throughout this PhD dissertation.  
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It can be expressed as: 

∑ ��� = ∑ ������
��
���
� = 1                 (Equation 1.2) 

Where n is the number of components of the mixture, TU is the toxic unit of the ith component of the 

mixture defined as the ratio between ci, the concentration of the ith component of the mixture, and ECxi, 

the x% effective concentration of the ith component of the mixture (as under a single exposure). 

 

 

1.2.1 Deviations from additivity (i.e. non-interaction) 

Any theoretical model of additivity (i.e. non-interaction) assumes that neither of the mixture components 

influences another component’s action. Interaction is inferred if the level of response produced by any 

combination of different substances differs from the response expected on the basis of a theoretical 

model of additivity (i.e. non-interaction) (McCarty and Borgert, 2006). CA and IA are two reference 

models that can be used to calculate the theoretical combined additive effects. The difference between 

the calculated expected effects is defined in quantitative terms in relation to the observed combined 

effects of the mixture components (van Gestel et al., 2010). Synergism is inferred if the observed 

combined effects of the mixture components are greater than those predicted by either IA, CA or any 

other reference model. Antagonism is inferred if the components in the mixture produce smaller 

observed combined effects than predicted by any reference model. 

 

 

1.2.2 Comparison of the reference models and their limitations  

From section 1.2.1 it is obvious that the CA and the IA reference models differ both conceptually and 

mathematically. Both reference models also require different input to accurately estimate the ECxi. The 

IA reference model requires a minimum of a response of the individual components tested at the same 

concentrations as those concentrations present in the mixture. The CA reference model requires a full 

dose response curve for each individual component, making it more data intensive.  

 

However it is also important to stress the fact that both reference models assess the effects of mixtures 

at low (more environmentally relevant) concentrations differently. The IA model assumes no effect of a 

mixture, if each of the components are present at a concentration that would not cause any effect 
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individually. In other words only components present at concentration higher than the NOEC contribute 

to the toxicity of the mixture. On the contrary, according to the CA reference model all components 

(even those present at concentrations below the NOEC) contribute to the combined effects 

proportionally to the toxic units of the mixture.  

 

Theoretically both concepts seem equally valid, but the question arises which reference model to select, 

especially if the models produce contrasting predictions of the mixture effects. A mechanistic approach 

would be to base the choice of the model on the known modes of toxic action of the mixture components. 

CA is recommended for mixture components with similar toxic action, while IA tends to be applied for 

mixture components with different modes of toxic action (Loewe, 1926, Cedergreen et al., 2008, 

Backhaus et al., 2000, Bliss, 1939). Aside from limited knowledge on the known toxic modes of action 

of many chemicals, a key issue lies in the exact definition of a “similar mode of action”, as two similar 

phenomenological effects could arise from two very dissimilar molecular mechanisms (van Gestel et 

al., 2010). Strictly pharmacologically speaking, similar modes of toxic action can be defined as 

interacting with the same molecular target site. However more broadly speaking similar mechanisms of 

toxic action can also be defined as leading to a common toxicological response and it has therefore 

been suggested that the CA model is universally applicable (Berenbaum, 1989 ). In the majority of 

studies to date CA has yielded more conservative predictions of the combined effects for chemicals 

with dissimilar modes of toxic action, even if the predictions yielded with the IA have been more accurate 

(Backhaus et al., 2000, Faust et al., 2003, Cedergreen et al., 2008). 

 

Regardless of the choice of the model, there are also some general limitations in terms of applicability. 

A central goal in the study of mixture toxicity is to predict the effects of a mixture based on the toxicity 

of its individual components. Currently the use of the CA and IA reference models can only infer 

interaction by comparing the model predictions to the empirical observations (Belden and Lydy, 2006). 

This is a major drawback for risk assessment as interactive effects can only be pragmatically resolved 

through experimental validation and quantitatively comparing the effects predicted by both models with 

observed effects. Another limitation of these models is that the mixture toxicity of mixture treatments 

should be investigated simultaneously with those of the single components, as the conclusions drawn 

about the mixture effects may otherwise be erroneous (De Laender et al., 2009 ).  
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1.3 From individuals over one generation to populations over multiple generations 

A major shortcoming of conventional ecotoxicology is that it still primarily focuses on determining short-

term (typically less than one generation) toxicological responses of organisms to chemical exposure, 

mostly under invariable and (near-)optimal conditions, and using laboratory populations with limited 

genetic variability (De Schamphelaere et al., 2011, Heugens et al., 2001 , Coors and De Meester, 2008 

, Barata et al., 1998, Van Straalen and Timmermans, 2002, Medina et al., 2007 , Van den Brink, 2008 

, Van Straalen, 2003 ). This contrasts, mentioned in section 1.1, with the ecological reality and the 

protection goals of ERA. 

 

A population level study of 46 days illustrated the potential risk of drawing erroneous conclusions from 

standard ecotoxicity tests with the cladocerans Daphnia magna (Agatz et al., 2012). While the authors 

identified that dispersogen A stimulates the reproduction of juveniles in such a standard test (considered 

as a positive effect), they found that continuous exposure to dispersogen A not only altered the daphnid 

population structure by shifting towards smaller individuals, but also increased the sensitivity to the 

pulse exposure to another chemical, p-353-nonylphenol. (Agatz et al., 2012). This highlights a potential 

mismatch between protection aim and risk assessment practice. The authors showed that a positive 

effect observed at the individual level can be translated to a negative effect at the population level and 

that mixtures of stressors can also have considerable impacts on the structure of populations, which 

again cannot be assessed using standard ecotoxicity tests.  

 

 

1.3.1 Mechanistic modelling approach using DEB-IBM 

A major challenge in ecotoxicology is to develop predictive models that can take into account the 

ecological complexity displayed in real ecosystems. Ecological and ecotoxicological modelling is a 

promising tool for ERA (European Union, 2013). It has been suggested frequently that such models can 

be a powerful means to overcome some of the limitations that ERA faces (Grimm et al., 2009). As 

stressed in section 1.1, ecotoxicology is faced with a mismatch between the level of interest or the 

protection goals, which are populations or higher levels of organizations, while the effect assessment 

of stressors is based on individuals. The ideal type of model can overcome this mismatch by 

extrapolating effects on individuals to effects on populations (Bradbury et al., 2004, Forbes and Calow, 
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2012). Mechanistic models that use inherent properties from individuals to derive effects at higher 

organization levels make for ideal models. It is an established fact that patterns observed at one scale 

are often the emergent result of processes occurring at smaller scales (Chave, 2013, Levin, 1992, 

Grimm and Railsback, 2005). Such models also offer a pragmatic advantage because shifting from 

higher to lower levels of biological organisation decreases the time and costs required to collect the 

data required. It is also much more practical to collect data on individuals than populations. Ideally, the 

large existing amount of historical ecotoxicology data could be used for modelling purposes and the 

resulting models can reduce the need for additional ecotoxicological testing and the number of test 

animals needed. The missing link is the development of theory and methods to use lower-level data to 

understand and predict higher-level patterns. 

 

Individual Based Models (IBMs) seem particularly suited for use in ERA because they consider 

processes occurring at the individual level such as feeding, growth and reproduction, the focal level of 

standard ecotoxicity tests (Figure 1.3) (Martin et al. 2013b; Gabsi et al. 2014b). This contrasts with other 

population models, such as classical differential equation models or matrix models, which use state 

variables at the level of the populations (e.g. population density). Incorporating chemical effects on 

individuals in IBMs allows to explore how these effects extrapolate to the population level. In recent 

years, IBMs have been applied successfully to predict the population dynamics of Daphnia magna 

(Preuss et al., 2009, Preuss et al., 2010).  
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Figure 1.3. Conceptual diagram of an IBM model, which keeps track of each individual in a population, 

from birth (indicated by the inverted triangle) to death. Rectangles indicate processes occurring at the 

individual level and queries are expressed as rhombs. 

 

 

A drawback of IBMs, however, is that they are usually developed to answer very specific research 

questions, and the structure and parameterization of models defining the life-history of organisms tends 

to differ widely. This reduces the suitability of IBMs as generic models, as modellers often have to start 

from scratch when modelling a new species. To make the IBMs as widely applicable as possible, they 

should be based on a generic theory. Dynamic Energy Budget (DEB) theory is such a theory (Nisbet et 

al., 2000, Kooijman and Metz, 1984). The underlying goal of the DEB approach is to understand the 

dynamics of biological systems, from cells to ecosystems, via a balance approach for mass and energy 

(Figure 1.4). Similarly to IBMs, DEB theory consider individuals as the key unit of interest for 

understanding dynamic systems at higher levels of organisation. An extensive overview of DEB theory 

and its applications can be found in key papers (Nisbet et al., 2000, van der Meer, 2006, Sousa et al., 

2010, Kooijman and Metz, 1984). 
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Figure 1.4. Schematic diagram of the standard DEB model adapted from Martin et al. 2013b. The 

primary states variables (reserve, structure, maturity, and the reproduction buffer) are depicted as 

rectangular boxes and fluxes are shown in italic. The oval boxes represent the energy assimilated and 

mobilized as a fixed fraction (K) to somatic maintenance and growth, with remainder of the mobilized 

energy (1-K) being allocated to maturity maintenance and the reproduction buffer. The different 

Physiological Modes of Action (PMoAs) are indicated by the small numbered circles: 1 = increase in 

cost per egg, 2 = decrease in assimilation efficiency, 3 = increase in maintenance costs, 4 = increase 

in overhead costs of growth.  

 

 

The dynamic energy budget (DEB) theory was originally developed in the 1980’s (Kooijman and Metz, 

1984). In DEB theory, all processes and states of an individual are expressed as energy (or mass). 

Next, an energy (or mass) balance for the individual is created (Kooijman, 2010). DEB models describe 

processes at the level of the individual because, compared to sub- and supra-individual levels of 

biological organization, it is relatively easy to make energy and mass balances at the individual level 

(Kooijman, 2010). DEB translates environmental conditions to individual performance (growth, survival 

and reproduction), which is important because the trade-offs in life history traits that DEB specifies 

(growth vs reproduction, time and size to maturation) turn out to strongly influence population dynamics 

(Denney et al., 2002). Besides, DEB is a generic theory, as its key assumption is that the mechanisms 
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governing metabolic organization are similar among species. Therefore, IBMs can benefit from the 

generality of DEB, while IBMs enable extrapolating from the individual DEB-model to populations. 

 

Only recently a generic implementation of DEB theory in an individual-based model was developed 

(Martin et al., 2013a). Using this DEB-IBM framework they were successfully able to predict population 

growth rates and peak densities of experimental populations in multiple experimental settings from the 

properties of individuals using Daphnia magna as a model species. They went further to use his DEB-

IBM framework to extrapolate chemical stress from the individual to the population level, using 

information at the individual level on the effect of 3,4-dichloroanailine on D. magna (Martin et al., 2013b). 

Stressors were modelled as changes in the value of one or more parameters in the DEB sub-model, 

thereby altering one or more of the energetic fluxes leading to different patterns in growth and or 

reproduction. The pattern of the stressed life history output depends on the physiological mode of action 

(PMoA), of which they identified 4 potential PMoAs: Reproduction, Feeding/assimilation, Maintenance 

and growth cost (Figure 1.4). The individual data suggested a direct effect on reproduction as previous 

individual level data sets indicated no significant effects on growth. Assuming direct effects on 

reproduction, the model was able to accurately predict the population response to increasing 

concentrations of 3,4-dichloroaniline. The model predictions suggest that the combination of DEB 

theory with IBMs is a promising tool for ERA. 

 

 

1.3.2 Microevolutionary effects of chemical and natural stressors 

Conventional ecological risk assessment of chemicals is usually based on ecotoxicity tests using 

laboratory populations with limited genetic variation, often even a single isolate/ genotype, with 

exposure times rarely exceeding one generation (Baird, 1992 , Forbes and Depledge, 1992, De 

Schamphelaere et al., 2011). Although this guarantees low variability and high reproducibility of 

ecotoxicity test results, it is not a realistic reflection of the long-term effects of chemical exposure in the 

field (Barata et al., 1998, Messiaen et al., 2010 ). However, natural populations are typically 

characterized by genetically distinct individuals, which may give rise to considerable genetic variability 

in tolerance to chemical stress within populations (Van Straalen and Timmermans, 2002, Medina et al., 

2007 ). This genetic variability can also be as described as a Genotype x Environment interaction (G x 
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E interaction), i.e. defined as a change in the relative performance of two or more genotypes measured 

in two or more environments (Bowman 1972). G x E interactions may therefore involve changes in rank 

order of genotypes (i.e. genotypes with the highest fitness) between environments and changes in the 

absolute and relative magnitude of the genetic, environmental and phenotypic variances between 

environments. 

 

Genetic variation is one of the three pillars of biodiversity recognized at the Rio Convention (1993). The 

genetic variability in life-history traits under stress within a population sets the scope for 

microevolutionary responses under exposure to that stress (Klerks et al., 2011 , Messiaen et al., 2013). 

This may have very important implications for the ultimate effects (on multigeneration, or 

microevolutionary time scales) of chemicals on natural populations). For instance, exposure of a natural 

population to a chemical may result in directional selection favouring those genotypes that are more 

tolerant to the chemical, i.e., those genotypes that can maintain higher fitness under exposure to the 

chemical, and this process may allow the population to genetically adapt to chemical pollution (De 

Schamphelaere et al., 2011).  

 

One potential consequence of such acquired genetic adaption to chemical stressors is that short-term 

toxicity testing (conventional ecotoxicology) would actually overestimate chemical toxicity in field 

populations, because by definitions individuals in single-generation ecotoxicity tests can’t. Conversely, 

an alternative hypothesis is that every adaptation to chemical exposure bears a ‘‘cost of tolerance’’ or 

‘‘cost of adaptation’’ (Van Straalen and Timmermans 2002; Medina et al. 2007), implying that 

conventional ecotoxicology approaches may be underestimating the adverse effects of chemical 

stressors. Consequently, genetic adaptation to stressors can be envisaged as a double-edged sword, 

as current practices in ecotoxicology may be, depending on the exposure scenario, too conservative or 

not conservative enough with respect to environment protection.
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Box 1.3. Terminology used in evolutionary ecology. 

 

Microevolution can be defined as the change in allele frequencies that occurs over time within 

a population. Microevolution can be a result of four different processes: natural selection, 

mutation, gene flow, and genetic drift (Hartl and Clark, 1980). In this thesis only microevolution 

as a result of natural selection will be considered. Through the process of natural selection, 

also known as “selection of the fittest” (i.e. more tolerant individuals are favoured over less 

tolerant ones), populations can genetically adapt to chemical stress, which may protect them 

from local extinction (Van Straalen and Timmermans, 2002, Medina et al., 2007 , Agra et al., 

2010 , Agra et al., 2011 ).  

In this thesis we define genetic adaptation as result of a population increasing in fitness 

following the selective pressures exerted by environmental stressors (Bock, 1980). In contrast 

acclimation is a property of phenotypic features of an individual adjusting to a change in their 

environment (e.g. chemical stress) due to phenotypic plasticity, thus the capacity for 

morphological, physiological, or life-history modifications on time-scales less than one 

generation (Ensminger et al., 2005).  

The genotype is the set of genes responsible for a particular trait, while the phenotype is the 

physical expression, or characteristics, of the same trait. A Genotype – Environment 

interaction (or G × E interaction) is inferred when two different genotypes respond to 

environmental variation in different ways. 

Genetic adaptation to a stressor may come with an altered allelic constitution of the population, 

which is more suitable to deal with the chemical stressor, but not necessarily to deal with future, 

novel stressors. This process is commonly termed cost of adaptation or cost of tolerance (De 

Schamphelaere et al., 2011, Van Straalen and Timmermans, 2002, Medina et al., 2007 , Agra et 

al., 2010 ). Conversely, increased tolerance to novel stressors may also arise, referred to as 

cross-tolerance or co-tolerance (Lopes et al., 2005, Ward and Robinson, 2005 ). 
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Even before the term ecotoxicology was first coined, two case studies from the 1950’s serve as text 

book examples to illustrate that anthropogenic pollution can act as a selective force, causing 

microevolution in wild populations (Busvine and Nawab, 1955, Kettlewell, 1955). Kettlewell (1955) first 

demonstrated that the melanic form of the peppered moth Biston betularia was increasing in frequency 

relative to the black-and-white speckled wild type, due to a camouflage advantage on darkened tree 

barks, covered with soot from air pollution, as a consequence of the industrial revolution. At about the 

same time, Busvine (1954) demonstrated that houseflies could genetically adapt to and become 

resistant to DDT (dichlorodiphenyltrichloroethane). There reviews on increased resistance after 

adaptation to chemicals in the field (Medina et al., 2007 , Morgan et al., 2007, Agra et al., 2010 ). 

Recently there has also been an increase in experimental evolution studies in ecotoxicology (Ward and 

Robinson, 2005 , Lopes et al., 2009 , Jansen et al., 2010).  

 

One experimental evolution study addressed the question of cost of metal adaptation in a multi-

generation context with a D. magna population composed of 8 genotypes varying in their Cd 48h-LC50 

(26 to >120 mg/L) (Ward and Robinson, 2005 ). The authors observed a 3-fold increase of the mean 

48h-LC50 of the population after 8 generations but they didn’t observe any difference in tolerance to 

temperature stress between the cadmium adapted and control populations. A 3-month selection 

experiment in D. magna under carbaryl exposure resulted in increased tolerance to carbaryl at the 

expense of higher susceptibility to parasite infection (an illustration of a cost of adaptation or cost of 

tolerance), possibly due to a reduced efficiency of the early immune response (upregulation of phenol-

oxidase) in carbaryl- selected populations (Jansen et al., 2011 -a). Busvine (1954) discovered that the 

houseflies were also resistant to a whole group of organochlorine compounds that they hadn’t 

previously been exposed to. ‘Cross-tolerance’ has been reported before for metals in D. magna: for 

cadmium and lead (Ward and Robinson, 2005 ) and for copper and zinc (Lopes et al., 2005). A recent 

selection experiment not only demonstrated genetic change in the capacity of the D. magna to tolerate 

higher temperatures but also demonstrates that existing natural populations have evolved increased 

tolerance to higher temperatures using a layered dormant egg bank to reconstruction the evolution over 

a forty year period (Geerts et al., 2015).  
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Overall, the knowledge in this microevolutionary context is still fragmentary and more systematic 

understanding is needed, especially in the light of global change, to unravel the combined effects of 

chemical and natural stressors on microevolutionary time-scales.  

 

 

1.4 Impact of global change on the combined effects of chemical and natural stressors  

Through our increasing population growth, resource consumption, disturbance of natural systems, and 

technological advancement, we have been changing the global climate and environment in a manner 

that is unique over Earth’s history. Global change is the term used to describe the effects of human 

activities on Earth (see Box 1.4).  

 

Box 1.4. Definition of global change. 

 

 

 

With global change projections, co-occurences of chemical and natural (both abiotic and biotic) 

stressors are only predicted to increase (Moe et al., 2013). Considerable information already exists on 

interactive effects between chemicals and abiotic variables, whereas information on the effect of biotic 

stressors on the toxicity of chemicals is sparse (Holmstrup et al., 2010, Laskowski et al., 2010, Fischer 

et al., 2013, Couillard et al., 2008). The claim has even been made that we presently know more about 

how future climates are likely to shift across the globe than about how species will respond to those 

environmental changes (Fordham, 2015). 

 

The analysis of the effect of biotic stressors (such as parasites or harmful cyanobacteria) on organisms 

is complicated by the fact that biotic stressors (as opposed to chemical stressors) have the ability to 

The Ecosystems Panel defines global change as the interactions between natural changes in 

the Earth’s physical and biological structure and the broader effects of human activity, meaning 

that it has both natural and anthropogenic components. Global change connected with human 

activities first came to broad public attention through forecasts of climate change occurring 

primarily as a result of human-induced enrichment of the atmosphere with greenhouse gases. 
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adapt to their environment as well. Such Genotype-Genotype Interactions (G x G interactions) give rise 

to a geographic mosaic of coevolution. Geographic mosaic theory is a view of coevolution that implies 

that coevolution is a genetic and ecological process that relentlessly reshapes interactions among 

species (Thompson 2005). In studies of coevolution, Genotype-Genotype-Environment Interactions (G 

x G x E interactions) can then be viewed at the level of how natural selection acts on two or more 

interacting species across many contrasting environments. Geographic mosaic theory implies that the 

structure of selection, the intensity of reciprocal selection, and the distribution of genetically based traits 

available to natural selection continually change over time, as the environment changes (Thompson 

2005).  In the light of global change it will become increasingly important to understanding how these 

components of the coevolutionary processes interact. 

 

 

1.5 Model organism: Daphnia magna 

In a first approach to investigate the combined effects of chemical and natural stressors, there is a clear 

need for model species that are ecologically relevant, geographically widely distributed and easy to 

manipulate experimentally in the laboratory. The cladoceran Daphnia qualifies as such a model 

organism as it plays a pivotal role in the food web of freshwater ecosystems, affecting both 

phytoplankton communities in terms of biomass as well as species composition (as a primary grazer) 

and fish production (as a major food source) (Lampert, 2006, Dodson and Hanazato, 1995). Additionally 

its physiology (including resource allocation processes) is well-documented, and well-calibrated 

mechanistic models (DEB) and physiologically structured individual-based models (DEB-IBM) are 

available (Baas et al., 2010, Martin et al., 2013a). Its short life cycle under asexual reproduction 

(parthenogenesis) is very convenient for investigating the whole life cycle and populations dynamics, 

as well as genetic variation and microevolutionary effects (van Doorslaer et al., 2009 -b, Colbourne et 

al., 2011 ). More specifically, because of their cyclical parthenogenetic reproduction, within- and 

between-clone comparisons can demonstrate genetic variation for various traits within and between 

populations, enhancing our understanding of evolutionary ecology (Ebert, 2005).  

 

We used Daphnia magna (Strauss, 1820), as it is widely used as an invertebrate model for setting water 

quality standards and is a recommend species according to the guidelines of the Organisation for 
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Economic Co-operation and Development (OECD, 1998), and considerable information is already 

available for D. magna. (Figure 1.5).  

 

 

Figure 1.5. Female Daphnia magna carrying parthenogenic (asexual) eggs (left), female Daphnia 

magna carrying a sexually produced ephippium (right), as well as an asexually produced male D. 

magna (top right). 

 

 

D. magna is a cyclic parthenogen that reproduces asexually (clonal reproduction) when conditions are 

favorable (Figure 1.6) (Lampert, 2006). Once environmental conditions deteriorate (e.g. short day 

length, food depletion, and high population density, but also chemical stress) males are produced 

asexually and females produce two haploid eggs which are fertilized by the males (Kleiven et al., 1992, 

Hobaek and Larsson, 1990, Oda et al., 2005). This sexual reproduction leads to the production of 

dormant or resting eggs called “ephippia”. Ephippia can remain dormant for several decades and tend 

to hatch once environmental conditions become more favorable again (Lampert, 2006).  

 

Having alternative life-history strategies allows cladocerans such as Daphnia to maximize reproductive 

rates asexually when conditions are favorable and to ensure long term survival of the population by 

producing offspring sexually when the environment becomes unsuitable. Ephippia production is 

fundamental to the maintenance of many Daphnia populations in the wild. At the start of the growing 

season populations are reestablished from banks of resting eggs. In ephemeral habitats, such as 

temporary ponds, total annual production of ephippia is the most important measure of the fitness of a 

clone because all adult animals in the population die at the end of each growing season (Shurin and 
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Dodson, 1997). Even in overwintering populations, hatchlings derived from ephippia can make up a 

significant proportion of the juveniles born in the spring (Wolf and Carvalho, 1989). 

 

Figure 1.6. Schematic representation of the life cycle of Daphnia (adapted from (Ebert, 2005). 

 

 

1.6 Model stressors 

In order to improve ERA and EQS derivation, there is a need to generate systematic, mechanistic and 

quantitative knowledge about the responses of individuals and natural populations to chemical stress 

in a context of multiple, simultaneous and time-variable non-chemical stressors. In this PhD thesis 

copper and zinc are used as model chemical stressors, while the focus in terms of non-chemical 

stressors lies on cyanobacteria and temperature (in a context of global change). Copper and zinc were 

chosen as both classify as by the European Commission under list II substances, which are considered 

less dangerous substances than those under list I, but which nevertheless can have a deleterious effect 

on the aquatic environment (EC, 2001). Further, the issue of copper and zinc emissions into the 

environment is pertinent in the context of global change, as both metals are linked to many 

anthropogenic activities, such as power stations (copper and zinc), automobile vehicles (copper is used 

in brake pads, tyre wear releases zinc) and other applications (zinc is used in galvanized products, 

copper in building construction and electronical products). The application of copper-based algaecides 

is still one of the most common measures to eradicate freshwater phytoplankton, including 

cyanobacterial blooms (Jancula and Marsalek, 2011, Garcia-Villada et al., 2004). 
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1.6.1 Chemical stressors  

Contrary to man-made organic chemicals, metals are naturally occurring substances and life has 

evolved in the presence of these elements. Some of these, the essential metals (like copper and zinc), 

are crucial to survival, growth and reproduction of organisms (Marx, 1987; Linder, 1991; Keen et al., 

1993; O’Halloran, 1993). For each essential element, there is a species-specific optimal concentration 

range for which metabolic requirements and development occur in an optimal way (Hopkin, 1989). This 

range, over which homeostatic regulation occurs, has been termed the optimal concentration range of 

essential elements (OCEE) (Van Assche et al., 1997) (Figure 1.7).  

 

 

Figure 1.7. The Optimal Concentration range for Essential Elements (OCEE) for a species in a given 

habitat-type (adapted from Van Assche et al., 1997).  

 

 

When the external concentration of the essential element becomes too low or too high, homeostatic 

regulation will not be sufficient and deficiency or toxicity can occur, respectively. Therefore essential 

metals have a “double” toxicity threshold: deficiency at too low concentrations and toxicity at too high 

concentrations (Chapman et al., 1996) (Figure 1.7). Organisms regulate their internal concentrations of 

essential metals to counter potential toxicity with three main strategies are used: reduced intake, 

enhanced excretion, or storage/detoxification or a combination thereof (see Chapman et al. 1996 and 

references therein). The focus of this study is on the chronic toxicity of the essential elements copper 

and zinc, i.e. on copper or zinc concentrations at which the homeostatic regulation capacity of 

organisms is exceeded.  
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Copper 

Copper (Cu) is found in the Earth´s crust in a variety of forms (sulphide, carbonate, and silicate deposits, 

as well as pure “native” Cu) and naturally occurs in surface waters. It is an essential element and 

therefore indispensable for humans, animals and plant alike. The global demand for Cu continues to 

grow: world refined usage has more than tripled in the last 50 years, as a result of expanding sectors 

such as electrical and electronic products, building construction, industrial machinery and equipment, 

transportation equipment, and consumer and general products (International Copper Study Group, 

2014). The demand for Cu is expected to be met by the discovery of new deposits, technological 

improvements, efficient design, and by taking advantage of the renewable nature of Cu, as virtually all 

products made from Cu can be recycled and recycled copper loses none of its chemical or physical 

properties. An overview of the primary uses of Cu and the global production figures for 2014 is given in 

Figure 1.8. 

 

 

Figure 1.8. Primary end uses (A) and production figures (B) in 2014 of Cu.  

Mt = million tons. (International Copper Study Group, 2014) 
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Natural background dissolved concentrations of Cu across Europe in 2006 are shown in Figure 1.9 and 

have been obtained from the FOREGS Database (Salminen et al., 2005). The FOREGS-data set is 

considered to be of high quality. A detailed description of sampling methodology, sampling preparation 

and analysis is given by Salminen et al. (2005). Human induced inputs of Cu into the aquatic 

environment are copper mining and smelting, electrical industry, agriculture, sewage treatment, 

fabrication of metal products, as well as the combustion of fossil fuel, municipal waste waters, manure, 

fertilizers and antifouling measures (USEPA, 2007, Salminen et al., 2005).  

 

The most toxic form of copper is the ionic Cu2+. Copper can lead to the formation of reactive oxygen 

species when levels of the metal are high. Copper toxicity decreases with increasing dissolved organic 

matter (DOM), usually referred to as dissolved organic carbon (DOC), because copper binds to DOC 

with high affinity forming a complex that reduces copper binding and uptake, therefore reducing the 

bioavailable copper and hence its toxicity (Wood et al., 2011, De Schamphelaere et al., 2004 ).  Copper 

pollution in surface water can locally reach levels that may cause toxicity to Daphnia sp., for instance 

in waters affected by surface run-off from vineyards, where copper is still used as a biocide against 

fungus diseases (Banas et al., 2010) Additionally, copper is found in biocides, and the application of 

copper containing algaecides typically results in dissolved copper concentrations in the range of 10-

100 µg/L (Jancula and Marsalek, 2011). Copper toxicity has been indirectly linked to the inhibition of 

active sodium uptake in Daphnia magna (De Schamphelaere et al., 2007), inhibition of neuronal signal 

transmission and acetylcholinesterase (AChE) activity (Untersteiner et al., 2003), and oxidative stress 

(Barata et al., 2005, Xie et al., 2006). Genetic adaptation to copper has already been shown in field 

populations of Daphnia longispina, with initial evidence of costs of adaptation (Agra et al., 2010 ). 
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Figure 1.9. Dissolved background Cu concentrations in European surface waters in 2006 (taken from 

FOREGS Geochemical Baseline Programme) 
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Zinc 

Like copper (Cu), zinc (Zn) is a natural component of the earth’s crust, (present in rock, soil, air, and 

water), and it is also essential for plant, animal and human life. Zn occurs as ore deposits or mineral 

form (ILZSG, 2015). Natural sources of Zn may include the weathering of zinc-containing bedrocks 

which give rise to Zn2+ in solution. Anthropogenic sources of Zn are significant, arising mainly from 

industrial activities, such as mining, coal and waste combustion and steel processing. It had also 

important markets in the brass and construction industries and in chemicals and constitutes an essential 

nutritional element. The world’s Zn production is still on the rise and industrial applications tend to 

disperse Zn widely in the natural environment, leading to levels above pre-industrial concentrations in 

air, soil and water. An overview of the primary uses of Zn and the global production figures for 2014 is 

given in Figure 1.10. 

 

 

 

 

Figure 1.10. Primary end uses (A) and production figures (B) in 2014 of Zn.  

Mt = million tons. (ILZSG, 2015) 
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Natural background dissolved concentrations of Zn across Europe in 2006 are shown in Figure 1.11 

and have been obtained from the FOREGS Database (Salminen et al., 2005). In some areas, 

particularly at discharges from local mining sites or where industrial activities are carried out 

concentrations can be much higher (Luomo and Rainbow, 2008). Based on evidence with freshwater 

fish and daphnids, an important mode of action of zinc is believed to be an impaired calcium uptake, 

which can lead to hypocalcaemia (Spry and Wood, 1985, De Schamphelaere et al., 2008 , Muyssen et 

al., 2009 ). 

 

 

Figure 1. 11. Dissolved background Zn concentrations in European surface waters in 2006 (taken from 

FOREGS Geochemical Baseline Programme). 
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1.6.2 Natural stressors  

Non-chemical stressors that are currently considered most urgent are those that are linked to global 

climate change (Noyes et al., 2009) (Wenning et al., 2010 ). In addition, the Society of Environmental 

Toxicology and Chemistry (SETAC) has recently launched an urgent call to investigate how global climate 

change may combine and interact with chemical pollution and how to incorporate this into ERA and 

chemicals management (Wenning et al., 2010 ). Global change will undoubtedly bring about important 

challenges to freshwater organisms, and this PhD thesis will focus on temperature (as a abiotic natural 

stressor) and toxic cyanobacterial blooms (also termed harmful algal blooms, as a biotic natural 

stressor). While the effects of the individual stressors on the fitness of freshwater zooplankton are well-

studied, the combined effects of increased temperature and cyanobacteria on chemical toxicity have 

only rarely been documented (Noyes et al., 2009, Luerling, 2003 ). Further the combined effects of 

abiotic and chemical stressors have received more attention than the combined effects of biotic 

stressors on chemicals (Heugens et al., 2001 , Sokolova and Lannig, 2008). 

 

 

Cyanobacteria 

Cyanobacteria are a perfect illustration of non-chemical biotic stress, as they are considered as an 

emerging threat to freshwater environments. Cyanobacteria pose serious risks to environmental and 

human health, and large scale ecosystem wide effects have been attributed to their extensive bloom 

formation (also termed harmful algal blooms) and toxin production (Falconer, 2001, Johnk et al., 2008, 

Downing et al., 2001, Davis et al., 2009). These effects are only expected to worsen under global 

change as a number of factors, including rising nutrient loading due to anthropogenic pollution and 

water temperatures, duration of summer stratification, are predicted to increase prevalence and severity 

of these cyanobacterial blooms (Paerl and Huisman, 2008 , Kosten et al., 2012, Paul, 2008, O'Neil et 

al., 2012). The proliferation of cyanobacteria will increased the likelihood of the combined exposure with 

other stressors.  

 

Cyanobacteria play an important part in the functioning of aquatic ecosystems, as they are a major 

constituent of phytoplankton communities. Cyanobacteria have a significant impact on freshwater 
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zooplankton in particular, as they can become a food source to these invertebrates due to their bloom 

formation in freshwater lakes and ponds (Paerl et al., 2001). It has already been demonstrated that 

Daphnia cannot distinguish between toxic and non-toxic Microcystis strains as food source (Demott, 

1999, Rohrlack et al., 1999). Several studies have already demonstrated the harmful effects associated 

with cyanobacteria serving as a food source for freshwater invertebrates such as Daphnia (Haney et 

al., 1995, Demott et al., 1991, Dao et al., 2010). Yet, little agreement can be found in these studies as 

to the cause of these adverse effects (Rohrlack et al., 1999, Lurling and van der Grinten, 2003 ). Effects 

have mainly been associated with four factors or a combination thereof: cyanobacterial toxins (e.g. 

microcystins, cylindrospermopsins) (Rohrlack et al., 1999, Nogueira et al., 2004, Dao et al., 2010, 

Demott et al., 1991), feeding inhibition (Lurling, 2003 , Demott et al., 1991), morphology (Wilson et al., 

2006, DeMott et al., 2001) and the lack of essential nutrients (Martin-Creuzburg and von Elert, 2009). 

Although cyanotoxins exhibit high toxicity to vertebrates, including mammals (Wiegand and 

Pflugmacher, 2005), several studies have reported no significant differences between the effects of 

cyanotoxin producing and non-toxin producing cyanobacteria on zooplankton, albeit such studies have 

mainly focused on Microcystis aeruginosa (Tillmanns et al., 2008, Wilson et al., 2006). In Daphnia the 

the mechanistic basis of the harmful effects of cyanobacteria remain to be tested. 

 

While it is well-known that cyanobacteria reduce the fitness of Daphnia sp. (Cerbin et al., 2010a, Lurling, 

2003a) their combined effects with chemicals have hardly been documented, with a few exceptions. In 

one study the pesticide carbaryl and the microcystin LR producing Microcystis aeruginosa caused a 

synergistic effect in the response of Daphnia pulicaria (Cerbin et al., 2010a). Adverse effects of the 

filamentous cyanobacterium Cylindrospermopsis raciborskii on the growth of Daphnia longispina were 

magnified by the presence of a xenobiotc (PCB) (Bernatowicz and Pijanowska, 2011). On the other 

hand a lack of interactive effects of Microcystis aeruginosa with cadmium has been described in 

Daphnia magna (De Coninck et al., 2013), while antagonistic effects have been reported for mixtures 

of Microcystis aeruginosa and different pesticides in Daphnia pulex (Asselman et al., 2013). The primary 

focus of the thesis is on the most ubiquitous cyanobacterium Microcystis aeruginosa. Additionally five 

other cynanobacteria will also be investigated to some extent (Table 1.1)  
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Table 1.1. Overview of the cyanobacterial genera used in this PhD dissertation. Only the toxin produced 

by the strain used in the dissertation is mentioned. The known modes of toxic action were obtained from 

Wiegand and Pflugmacher (2005). 

 Cyanobacterium  Known toxin  Mode of toxic action 

 

Microcystis 

aeruginosa 

Microcystin Inhibition of protein 

phosphatases (PP1  

and PP2A) 

 

Aphanizomenon 

flos-aquae 

Saxitoxin Na channel blocking in 

neurons 

 

Anabaena 

lemmermannii 

Anatoxin-a(s) Inhibition of activity of 

acetylcholine esterase 

 

Cylindrospermopsis 

raciborskii 

Cylindro-

spermopsin 

Protein synthesis 

inhibitor 

 

Nodularia 

harveyana 

Nodularin Inhibition of protein 

phosphatases (PP1 

and PP2A) 

 

Oscillatoria sp. Anatoxin-a inhibition of 

acetylcholine receptor 
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Temperature 

Different climate scenarios predict the increase of global average air temperature between about 1.1 

°C and 6.4 °C, with average rise of 3.9 ºC, by the end of this century (IPCC, 2007). Global average 

surface temperature is predicted to increase on average by 1.8 – 4°C by the end of this century 

(Caldwell et al., 2015, Meehl, 2007). Most aquatic organisms are ectotherms, which makes temperature 

a crucial environmental factor controlling physiological processes. While extreme temperatures may be 

lethal, temperatures outside the optimal range but within the genetic tolerance limits, can lead to 

acclimatization of individuals to a higher or lower temperature and can extend the upper or lower 

boundaries, respectively (Cairns et al., 1975, Donker et al., 1998) 

 

Although a range of factors contribute to the proliferation of cyanobacteria, global warming alone is 

probably the most significant factor to contribute to the predicted increase in occurrence and prevalence 

of cyanobacteria (Kosten et al., 2012, Abrantes et al., 2006). If cyanobacterial abundance increases in 

response to global climate change, this could lead to increased exposure in zooplanktonton and other 

organisms higher up the food chain. The mechanisms by which temperature increases, or decreases, 

the sensitivity of D. magna to different cyanobacteria are not known. Temperature, even if not stressful 

in itself, can affect both the mechanisms by which stressors produce cellular effects (toxicodynamics), 

as well as the bioavailable amount of a stressor available for uptake or elimination reaching the target 

site (toxicokinetics) (Fischer et al., 2013). Harmful effects on D. magna reproduction increasing with 

temperature in some cyanobacteria, while decreasing with others, may therefore be the result of 

temperature affecting the balance of uptake, internal distribution and elimination (toxicokinetics), or the 

balance between damage and repair processes (toxicodynamics) differently after exposure to the 

cyanobacteria. 

 

Even temperatures within the tolerance range affect the balance of uptake, internal distribution, 

biotransformation, and elimination (toxicokinetics), as well as the balance between damage and repair 

processes (toxicodynamics) differently after exposure to stressors because of changes in metabolic 

and behavioral activity of organisms (Fischer et al., 2013, Heugens et al., 2003). This has been shown 

in the freshwater bivalve Unio douglasiae, in which microcystin is eliminated at a higher rate at 25 °C 

than at 15 °C (Yokoyama and Park, 2003). For most metal pollutants studied, toxicity increases with 
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temperature (Heugens et al., 2001 ). However a recent study on the annelid worm Enchytraeus 

crypticus also reported lower reproduction with decreasing temperature for copper and cadmium 

(Cedergreen et al., 2013). Our results support the authors’ conclusion that no consistent relationship 

between metal toxicity and temperature across species can be made.  

 

 

1.7 Conceptual framework 

This PhD dissertation focused on several aspects of ecological risk assessment (ERA) of metals on the 

effect assessment for the aquatic environment, especially focusing on the evaluation of the risk for 

aquatic invertebrates. Yet, as mentioned in sections 1.1 and 1.3, until now ERA focuses almost 

exclusively on the effect characterization of single chemical stressors on individuals in short term 

experiments. This contrasts with ecological reality, where natural populations adapt by means of natural 

selection to continuously changing conditions of multiple stressors under non-optimal conditions (e.g., 

food shortage, non-optimal temperature, and predation). With predictions of global change (as 

mentioned in section 1.4), occurrences of the combined exposure of organisms to chemical and natural 

(both abiotic and biotic) stressors are only predicted to increase. Therefore ERA may not be protective 

across different environments, such as conditions predicted under global change, as it doesn’t account 

for multiple stressors nor genetic adaptation. Below, the rationale behind the research carried out in 

each chapter, as well as the research questions are formulated. The conceptual framework and outline 

of this PhD dissertation is described in Figure 1.12. 

 

Non-chemical stress typically increases the sensitivity to chemicals and vice versa (Heugens et al., 

2001, Coors and De Meester, 2008 ). An important concern is the combined effects of cyanobacteria, 

sometimes referred to as harmful algal blooms, with chemical stressors. As discussed in section 1.6, 

copper remains the most commonly applied chemical algaecide and is also often detected in eutrophic 

run-offs that promote harmful algal blooms. As highlighted in section 1.6.2, M. aeruginosa is the most 

studied genus, but as other genera may also relevant in the context of global change, the response of 

two D. magna clones to the combined effects of copper and five cyanobacterial genera were evaluated 

in chapter 2 using two reference models.  
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Research question 1: Can the combined effects of copper and cyanobacteria be predicted using 

CA/IA reference models, based on the known effects of individual exposures? 

Research question 2: Can the combined effects between copper and cyanobacteria be 

generalized across different cyanobacterial and daphnid genera? 

As cyanobacterial blooms are likely to become more prevalent with global change, the effects of six 

different cyanobacterial genera were investigated in chapter 3 at three different temperatures (15°C, 

19°C and 23°C) on multiple endpoints of D. magna using standard ecotoxicity experiments.  

Research question 3: Does D. magna become more sensitive to the harmful effects of 

cyanobacteria as temperature increases? 

Research question 4: Are the different cyanobacterial genera more harmful to D. magna than 

starvation alone? 

 

As was emphasized in section 1.1, standard ecotoxicity tests are conducted for single chemicals under 

constant and favorable experimental conditions. In natural communities, however, the toxicity of 

chemicals may be influenced by abiotic and biotic environmental factors. In chapter 4 the influence of 

temperature and total food concentration (both related to global change) on the nature of the combined 

effects of copper and Microcystis aeruginosa on D. magna was examined (i.e. whether the combined 

effects deviated from non-interaction).  

Research question 5: Are 21-day Cu NOEC concentrations derived under optimal conditions 

protective under non-optimal conditions? 

 

Natural populations are faced with variable non-optimal conditions, characterized by the presence of 

multiple stressors, as mentioned in section 1.1. In chapter 5 a population experiment was carried out to 

compare the total density of a D. magna population exposed to regulatory and environmentally relevant 

copper concentrations under different environmental conditions, equivalent to a seasonal increase of 

temperature and the proportion of the total diet consisting of M. aeruginosa under current temperature 

conditions, as well as a 4°C temperature increase, predicted under global climate change.  

Research question 6: Are 21-day Cu NOEC concentrations derived under optimal conditions 

protective under time-variable non-optimal conditions at the population level? 
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As stressed in section 1.3.1, ecotoxicology is faced with the challenge to develop more ecologically 

realistic predictive models. In chapter 6 a DEB-IBM model was calibrated based on total reproduction 

after 21 days measured in chapter 4. The independent results from the population level experiment in 

chapter 5, under combined exposure to copper and M. aruginosa, under realistic (global change) time-

variable conditions, were used to validate the predictions resulting from this DEB-IBM model.  

Research question 7: Can a mechanistic model (DEB-IBM) extrapolate the effects at the 

individual level to more ecologically relevant effects at the population level? 

As mentioned in sections 1.1 and 1.3.2, natural populations are generally characterized by genetic 

variability, which offers the potential for multi-generational micro-evolutionary responses, allowing 

populations to genetically adapt to chemical stressors (and become more tolerant to them), but 

potentially at the expense of a cost-of-tolerance (Van Straalen and Timmermans, 2002, Medina et al., 

2007 , Agra et al., 2010 , Agra et al., 2011 ). Previous studies have shown the ability of individual D. 

magna clones to physiologically acclimate to a range of copper and zinc concentrations (Muyssen and 

Janssen, 2001, Muyssen et al., 2002 , Bossuyt and Janssen, 2003 , Bossuyt and Janssen, 2004 , 

Muyssen and Janssen, 2005 ), but as yet, no research has been dedicated to the potential for genetic 

adaptation to these metals. In Chapter 7, a 10 week microevolution experiment was conducted with a 

genetically diverse D. magna population at different copper and zinc exposures.  

Research question 8: Can a genetically diverse populations adapt to lethal metal concentrations 

(equivalent to the 8-day LC50)? 

Research question 9: Do populations display lower genetic diversity after adaptation than prior 

to selection? 

In a follow up study with the Zn-adapted populations, the effect of Zn-adaptation on the tolerance was 

observed to the absence of the stressor, as well as to additional stressors relevant for global change 

(temperature, M. aeruginosa, and cadmuim). 

Research question 10: Is adaptation to chemical stressors associated with costs of adaptation? 

 

In the final chapter 8, the findings of the PhD dissertation are critically assessed, pointing to 

methodological strengths and weaknesses, and providing some perspectives for future research.
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Figure 1.12. Conceptual framework and outline of the PhD dissertation. 
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2.1 Introduction 

Harmful algal blooms pose a serious risk to environmental and human health, and the management and 

restoration of water quality following such a bloom can be challenging. Large scale ecosystem wide 

effects have been attributed to their extensive proliferation and toxin production (Falconer, 2001, Johnk 

et al., 2008, Downing et al., 2001, Davis et al., 2009). The application of copper-based algaecides is still 

one of the most common measures to eradicate freshwater phytoplankton, including cyanobacterial 

blooms (Jancula and Marsalek, 2011, Garcia-Villada et al., 2004). Furthermore, copper itself is listed as 

priority pollutant by the U.S. Environmental Protection Agency (McKnight et al., 1983), and many EU 

countries are developing Environmental Quality Standards (EQS) for copper in surface waters under 

the EU water framework directive (Comber et al., 2008). Copper pollution in surface waters can locally 

reach levels that may cause toxicity to aquatic species, for instance in waters affected by surface run-

off from vineyards and citrus farms, where copper is still used as a biocide against fungus diseases 

(Banas et al., 2010, Graves et al., 2004).   

 

As a consequence, it can be anticipated that cyanobacteria and copper pollution often co-occur in 

freshwater systems, either in situations where surface run-off is enriched with both copper and nutrients 

or where copper is actively used as a major component in chemical applications to eradicate 

cyanobacteria blooms. Furthermore, anthropogenic copper pollution may also act interactively with 

cyanobacterial stressors on aquatic biota. Interaction (e.g. synergism or antagonism) is said to occur if 

the level of response produced by any combination of different stressors differs from the response 

expected on the basis of a theoretical reference model of non-interaction (McCarty and Borgert, 2006). 

Considerable information already exists on interactive effects between chemical and non-chemical 

stressors, whereas information on the interactive effects between chemical stressors and cyanobacterial 

stressors is sparse (Holmstrup et al., 2010, Laskowski et al., 2010, Fischer et al., 2013, Couillard et al., 

2008). Indirect “smaller than expected” effects of copper on non-target organisms could occur as copper 

actively eradicates the cyanobacteria, but indirect “larger than expected” effects of copper are also 

possible, as copper may induce cyanobacterial cell lysis, which increases external cyanobacterial toxin 

concentrations (Jones and Orr, 1994, Kenefick et al., 1993). Consequently an important concern is that 

conventional risk assessment may not be conservative enough, as it currently excludes combined and 
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potentially interactive effects of mixtures of stressors that cannot be predicted form individual toxicities 

alone.   

 

Furthermore the interactive effects of cyanobacteria with chemicals have rarely been investigated, with 

few exceptions. In one study the insecticide carbaryl and Microcystis aeruginosa caused a synergistic 

toxicity response in Daphnia pulicaria (Cerbin et al., 2010a). More recently, antagonistic effects were 

reported between carbaryl and four cyanobacterial genera in Daphnia pulex (Asselman et al., 2013). 

Despite the lack of any direct influence of two polychlorinated biphenyls (PCB52 and PCB153) on the 

fecundity, growth and depth selection of Daphnia longispina, adverse effects of the filamentous 

cyanobacteria Cylindrospermopsis raciborskii on fecundity (but not on growth and on depth selection) 

were magnified by PCB52 in 25.8% of the clones tested and reduced in 33% of the clones, while no 

significant interactions were observed with PCB153 for any endpoint (Bernatowicz and Pijanowska, 

2011). Previous studies have confirmed the existence of a genetic basis for the response to single 

chemicals or stressors between different Daphnia clones within the same species complex (Wilson and 

Hay, 2007, Barata et al., 1998, Soares et al., 1992, Barata et al., 2002a, Bednarska et al., 2011). These 

studies highlight that there is a need to investigate interactive effects between cyanobacteria and 

chemicals, and that the type of interaction is potentially influenced by the chemical, the cyanobacteria 

species, and the Daphnia genotype considered. 

  

In this study the combined effects of five different cyanobacterial genera and copper on reproduction of 

two Daphnia magna clones in 21-day exposure experiments. We chose 5 different cyanobacterial 

genera, all commonly reported in blooms, and known to differ in their toxin production (Wiegand and 

Pflugmacher, 2005), as well as their morphology (Araoz et al., 2010, Komarek and Mares, 2012, 

Watanabe, 1995), in order to cover a broad range of possible cyanobacterial effect profiles (Table 2.1). 

The overall aim was to obtain a descriptive overview of the effects on Daphnia magna upon combined 

exposure to copper and live cyanobacteria cells, accounting for all major factors which could affect 

fitness (cyanotoxins, feeding inhibition, morphology and lack of essential nutrients) by using a wide 

range of cyanobacteria species differing in those factors. Because the modes of action of copper and 

cyanobacteria are various and not fully understood, and because some modes of action may be (partly) 

similar, we decided a priori to use both the reference model for similarly acting chemicals, i.e. the 
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Concentration Addition (CA) model (or Loewe Additivity, first introduced by Loewe and Muischnek, 1926)  

and the reference model for dissimilarly acting chemicals, i.e. the Independent Action Model (IA) (first 

introduced by Bliss 1939) for the data analysis.  

 

 

2.2 Material and Methods 

2.2.1 Daphnia culture and test medium 

The Daphnia magna clones (Iinb1 and Xinb3) used in all exposures were obtained from the Ebert group 

(Zoological Institute, Evolutionary Biology, University of Basel, Rheinsprung 9, 4051 Basel, Switzerland, 

http://evolution.unibas.ch/ebert/). Both clones were derived  from the same clonal isolates used in the 

first-generation Daphnia magna genetic linkage map (Routtu et al., 2010). A modified M4 medium was 

used for both culturing and actual exposures. This medium differs from the original composition (Elendt 

and Bias, 1990) as follows: hardness was reduced to 180 mg CaCO3/L (Ca and Mg concentration were 

reduced by 30%), background Cu and Zn concentrations were modified to 5 and 28 µg/L respectively 

and Na2EDTA was omitted and replaced with Aldrich humic acid (AHA, Sigma Aldrich, Bornem, Belgium) 

at a nominal concentration of 5 mg dissolved organic carbon (DOC) per litre.  

 

All stock solutions for the medium were made from analytical grade products (Sigma-Aldrich, Bornem, 

Belgium) by dissolving them in deionized water, with the exception of AHA, which was dissolved in a 

solution of 0.04g NaOH per litre of deionized water and filtered to 0.45µm (Acrodisc, PALL Life Sciences, 

Port Washington, NY, USA). The modified M4 medium was aerated for 24-48h at 20°C +/- 1°C in 25L 

or 50L polyethylene vessels. After this time the required volume for each treatment per change out was 

spiked with Cu stock solutions and transferred into sealed polyethylene vessels. After vigorous shaking 

the test solutions were allowed to equilibrate for 48 hours at 20°C before being used in the toxicity tests. 

For each medium renewal fresh medium was prepared in the same manner and the spiked medium was 

always obtained from the same batch as the control medium. 
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2.2.2 Algae and cyanobacteria cultures 

Algal and cyanobacterial species used in this study were grown from continuous cultures that have been 

maintained successfully in our lab for many years and that have originated from certified culture 

institutions (Table 2.1). Green algae were cultured at 20°C ± 1°C under continuous light (240 µmol 

photon m-² s-1) with continuous aeration in carbon filtered aerated city tap water (Ghent, Belgium), to 

which modified Provasoli’s ES enrichment (Bold, 1978) at 1/2 strength and, additionally, 1.4 mg/L 

FeSO4.7H2O, 15 mg/L NaH2PO4.2H2O, 150 mg/L NaNO3 and 2.35 mg/L MnCl2.4H2O were added 

(Appendix A Table A.1). Cyanobacteria were cultured in modified reference culture media (Allen, 1968, 

Kotai, 1972a) (Appendix A Tables A.2 - A.4) at 20 ± 1°C under constant light intensity (14 µmol photon 

m-² s-1) with gentle aeration. At the mid to late log phase (+/- 10 days after culture initiation) both algae 

and cyanobacteria cultures were concentrated by centrifugation and re-suspended in clean culture 

medium. Because of the large variation in cell sizes and morphologies among the different algae and 

cyanobacteria used in this study, both algae and cyanobacteria concentrations were measured as mg 

dry weightt/mL by drying and weighing a known a subsample (2 mL) of the concentrated culture at 60°C 

for 24 hours and subsequently deriving the amount of carbon per liter from the dry weight using a 

conversion factor of 0.4mg C/mg dry weight (1mg C/L 2.5mg dry weight/L) (Evens et al., 2009 , De 

Schamphelaere and Janssen, 2004 ). Feeding ratios (algae/cyanobacteria) in all treatments were based 

on the dry wt per volume unit ratio of the concentrated culture suspensions.  

 

 

2.2.3 Experimental Design 

Chronic toxicity experiments were performed according to a modified central composite design.  This 

design has been advocated as one of the superior experimental designs for evaluating the combined 

effects data with both the IA and CA models (Lock and Janssen, 2002, Jonker et al., 2005). The standard 

central composite design was further modified by including four additional points in the mixture 

treatments (Appendix A Figure A.1). In addition, six points for each of the two single stressor treatments 

were added, to simultaneously evaluate the effects of the single stressor treatments. This was based 

on the evidence that non-simultaneous testing of single and mixture treatments leads to incorrect 

conclusions of the combined effects (De Laender et al., 2009). 
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Table 2.1. List of algal (A) and cyanobacterial (C) species obtained from different culture collections with 

their respective strain number, culture medium, as well as a description of the known toxin production, 

associated mode of action and basic morphology of the cyanobacteria used.  

Species Culture 

Institutiona 

Strain Culture 

Mediumb 

Known toxin (Mode 

of toxic Action) c 

Morphologyd 

Chlamydomonas reinhardtii (A) 

 
CCAP 

CCAP 
11/32B 

modified 
Provasoli’s ES  

NA NA 

Pseudokirchneriella subcapitata (A) 

 
CCAP 

CCAP 
278/4 

modified 
Provasoli’s ES  

NA NA 

Anabaena lemmermannii (C) 

 

SCCAP 
 

K-0599 
 

Z8 
 

Anatoxin-a(s) ( 
inhibition of activity 
of acetylcholine 
esterase) 

solitary straight 
filaments 
heterocysts and 
akinetes present 

Aphanizonmenon  sp. (C) 

 

CICCM CAWBG01 BG110 

Saxitoxin (Na 
channel blocking in 
neurons) 

solitary cylindrical 
filaments  with 
tendency to form 
colonies 
heterocysts and 
akinetes present 

Cylindrospermopsis raciborskii (C) 

 

UTEX LB 2879 Z8 
Cylindrospermopsin 
(protein synthesis 
inhibitor) 

solitary free-
floating filaments 
heterocysts and 
akinetes present 

Microcystis aeruginosa (C) 

 

PCC PCC7806 BG110 
Microcystin (protein 
phosphatase 
inhibitor) 

unicellular or large 
colonies                                 
no heterocysts and 
akinetes  

Oscillatoria sp. (C) 

 

PCC PCC6412 BG11 

Anatoxin-a 
(inhibition of 
acetylcholine 
receptor) 

cylindrical filaments                    
no heterocysts and 
akinetes  

a Culture Collection of Algae and Protozoa (CCAP), SAMS Research Services Ltd. Scandinavian Culture 

Collection for Algae and Protozoa (SSCAP), Cawthorn Institute Culture Collection of Microalgae 

(CICCM), Pasteur Culture Collection (PCC), University of Texas (UTEX). b Full composition of culture 

media (Appendix A Tables A.1 – A.4). c Modes of action of toxins were obtained in Wiegand and 

Pflugmacher (2005). NA = not applicable. d Information on morphology was obtained in Komarek and 

Mares (2012) for heterocystous cyanobacteria, in Araoz (2010) for Oscillatoria and in Watanabe et al. 

(1995) for Microcystis aeruginosa 
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The entire study was split into 5 separate sub-experiments over time, one for each of the 5 cyanobacteria 

tested. For each cyanobacteria tested, exposures with both clones were carried out simultaneously. In 

each of these sub-experiments single stressor treatments (cyanobacteria and copper) and mixture 

treatments were tested simultaneously. As a consequence, single dose response curves of copper could 

be estimated for each separate sub-experiment, resulting in 5 replicate estimates of the 21 day EC50 

and slope parameters of copper for both clones (Figure 2.1). For each cyanobacteria sub-experiment 

one control exposure was carried out simultaneously with the single dose exposures of Cu (6 

concentrations), cyanobacteria (6 concentrations) and the mixture treatments (13 combinations of Cu 

and cyanobacteria concentrations), resulting in a total of 26 treatments per sub-experiment (Table 2.2).  

 

At the start of each test, juvenile animals from the third clutch (< 24h old) of isoclonal females, which 

had already been grown for a minimum of two generations under experimental control conditions, were 

transferred individually to polyethylene cups containing 50 ml of the test medium (4 replicates per 

treatment). Individual reproductive output (measured as number of juveniles) was monitored daily for a 

period of 21 days. Exposures took place under controlled light cycles (16 h of light: 8 h of dark) and 

constant temperature (20°C ± 1°C) according to OECD guideline No. 211 (OECD, 1998). All animals 

were fed daily with a total food density of 5 mg of dry weight/L. In control treatments, animals were fed 

with 100% green algae consisting of a 3:1 mixture (based on cell numbers) of the algae 

Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii, which has been shown to result in 

sufficient dietary need fulfilment under control condition and has been used in our lab for over a decade 

(Muyssen and Janssen, 2001, Asselman et al., 2013). In the treatments where the diet was 

contaminated with cyanobacteria, a set percentage of the total diet concentration consisted of 

cyanobacteria, while the remainder was composed of the green algae mixture. For example, the 20% 

cyanobacteria treatment had 1 mg of dry weight/L of cyanobacteria and 4 mg of dry weight/L of the 

green algae mixture. The test medium was renewed 3 times a week (Monday, Wednesday, and Friday).  
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Table 2.2. Summary of the treatments in the experimental design. ± indicates the standard error (SE) 

around the mean of the different sub-experiments (measured as time weighted averages according to 

OECD guidelines, OECD 1998). For a scheme of the experimental design see Appendix A Figure A.1. 

Treatment type nominal Cu 

(µg Cu/L) 

dissolved Cu 

(µg Cu/L) 

total Cu 

(µg Cu/L) 

Cyanobacteria 

(% in the total diet) 

Cu single dose treatments a 

 5 3 ± 0.25 4.5 ± 0.34 0 

 66 43.6 ± 5.8 67.0 ± 4.2 0 

 100 72.2 ± 4.7 106.1 ± 3.1 0 

 142 93.5 ± 6.0 138.8 ± 2.9 0 

 200 116.1 ± 4.4 188.4 ± 7.2 0 

 300 138.2 ± 8.8 219.7 ± 38.5 0 

 400 172.7 ± 12.4 297.1 ± 36.8 0 

Cyanobacteria single dose treatments b 

 5 3 ± 0.25 4.5 ± 0.34 20 

 5 3 ± 0.25 4.5 ± 0.34 40 

 5 3 ± 0.25 4.5 ± 0.34 50 

 5 3 ± 0.25 4.5 ± 0.34 60 

 5 3 ± 0.25 4.5 ± 0.34 80 

 5 3 ± 0.25 4.5 ± 0.34 100 

Mixture treatments b 

 50 33.2 ± 4.7 52.7 ± 3.7 10 

 50 33.2 ± 4.7 52.7 ± 3.7 25 

 50 33.2 ± 4.7 52.7 ± 3.7 40 

 66 43.6 ± 5.8 67.0 ± 4.2 15 

 66 43.6 ± 5.8 67.0 ± 4.2 30 

 100 72.2 ± 4.7 106.1 ± 3.1 10 

 100 72.2 ± 4.7 106.1 ± 3.1 25 

 100 72.2 ± 4.7 106.1 ± 3.1 40 

 133 82.5 ± 3.9 127.8 ±4.1 15 

 133 82.5 ± 3.9 127.8 ±4.1 30 

 142 93.5 ± 6.0 138.8 ± 2.9 10 

 142 93.5 ± 6.0 138.8 ± 2.9 25 

 142 93.5 ± 6.0 138.8 ± 2.9 40 

a Cu single dose treatments were repeated 5 times for each cyanobacteria sub-experiment. b 

Cyanobacteria single dose and mixture treatments were carried out once for each cyanobacteria. All 

separate sub-experiments were carried out simultaneously for both Daphnia magna clones. 
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2.2.4 Chemical analysis 

Concentrations of Cu and dissolved organic carbon (DOC), as well as pH were measured twice a week, 

once in the fresh medium (prior to addition of algae or cyanobacteria) and once in the old medium (after 

transferring the daphnids to the fresh medium). Samples were taken as both total (unfiltered), and 

dissolved (filtered through a 0.45 mm filter, Acrodisc Filter, Supor Membrane, PALL, Newquay, Cornwall, 

UK). Samples for metal analysis were acidified to a final concentration of 0.14 molL-1 of HNO3 (Normaton 

Ultrapure 69% HNO3, Prolabo) prior to storage and subsequently analysed by Atomic Absorption 

Sepectroscopy (AAS) using a flame-atomic absorption spectrophotometer (SpectrAA800 with Zeeman 

background correction, Varian, Mulgrave, Australia). All data analyses were performed based on the 

time-weighted mean dissolved Cu concentrations (OECD, 1998). Samples for DOC analysis were 

measured with a TOC analyser (TOC5000, Shimadzu, Duisburg, Germany) as non-purgeable organic 

carbon (NPOC). This analysis involves the removal of inorganic carbon by acidification and subsequent 

purging with N2 gas prior to analysis. The average dissolved DOC concentration was 3.10 ± 0.16 mg/L 

and the total DOC concentration was 3.78 ± 0.17 mg/L (average values ± standard deviation). The pH 

measurements were performed with a pH meter P407 (Consort, Turnhout, Belgium). The pH glass 

electrode was calibrated before each use by using a pH 7 buffer (Merck, Darmstadt, Germany). Average 

pH in the new clean medium (before daphnids, cyanobacteria and algae were added) was 7.62 ± 0.18 

and average pH in the old medium (after daphnids were transferred to a new clean vessel) was 7.83 ± 

0.24 (average values ± standard deviation). 

 

 

2.2.5 Data analysis 

For Cu and cyanobacteria, single dose concentration response curves were fitted to each dataset with 

the log logistic function (Equation 2.1, Figure 2.1 and Figure 2.2). Each single stressor concentration 

response curve was expressed as % of control and characterized by two parameters, the median effect 

concentration and the slope: 

                  (Equation 2.1) 

where y is the response of the measured endpoint (total reproduction as % of control), x is the 

concentration of the stressor, 100 is the response (% of control) of the measured endpoint (total 

y = 100
1 + � xEC50�s  
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reproduction) at x = 0, s is the slope parameter and EC50 is the median effective concentration, resulting 

in a decline of 50% of the response variable relative to control treatment.  

                  

As a first step we visualized (Figure 2.3) the interactive effects of copper (Cu) and cyanobacteria (Cyano) 

by plotting the observed response to the mixtures together with the predicted responses according to 

both the IA (Equation 2.2) and CA (Equation 2.3) models, which assume non-interaction between the 

two stressors, using the EC50 and slope parameters from the fitted single stressor concentration 

response curves (Equation 2.1) as input. Both observed and predicted responses were plotted against 

the sum of toxic units (∑TU) of Cu and cyanobacteria (Equation 2.4): 

 

               (Equation 2.2 

             (Equation 2.3) 

             (Equation 2.4) 

 

We then tested for an improved model fit by extending the reference models IA (Equation 2.5) and CA 

(Equation 2.6) with one additional deviation parameter a (to account for synergistic or antagonistic 

deviations from the reference models) according to Jonker et al. (2005):  

 

        

         (Equation 2.5)

  

   

y = 100 · 1
1 + � x!"EC50Cu �$!" · 1

1 + % x!&'()EC50Cyano -$!&'()  

x!"
EC50Cu · �100 − && � 1$!"

+ x!&'()
EC50Cyano · �100 − && � 1$!&'()

= 1 

. �� = ��!" + ��!&'() = x!"EC50Cu + x!&'()EC50Cyano 

y = 100 · ф
0
1ф−1

0
1 1

1 + � x!"EC50Cu �$!" · 1
1 + % x!&'()EC50Cyano -$!&'() 2

3 + ' · ��!" · ��!&'()4��!" + ��!&'() 522
3 
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          (Equation 2.6)

   

where ф is the standard cumulative normal distribution function. Because roots are notoriously difficult 

to solve for, we solved the implicit function of CA (Equations 2.3 and 2.6) using (100-y)/y as a single 

unknown, solving the root and then subsequently determining y.  

 

The statistical analysis was performed in the statistical environment R (R Development Core Team, 

2011). The EC50 concentrations of the single concentration response curves (Equation 2.1) were 

compared between the two clones with a paired T-test. In order to test whether the EC50 concentrations 

of each cyanobacteria species differed significantly between both clones the Wheeler ratio test was 

applied (Wheeler et al., 2006). In order to fit the reference models (Equations 2.2 and 2.3) we sampled 

5000 sets of parameter values simultaneously that would solve the equations (i.e. EC50, slope and 

deviation parameter values were estimated simultaneously in one sample run). Each parameter value 

was taken from a normal distribution with the mean and standard deviation from the parameter values 

originating from the single concentration response curves. Then the best set of parameter values was 

selected based on the lowest sum of squared errors (SSE). For the deviation models (Equations 2.5 

and 2.6) we used the best parameter estimate from the reference model as starting values and a mean 

of 0 for the deviation parameter a, which is analogous to the generally accepted approach of Jonker et 

al. (2005).  

 

We statistically tested the presence of a hormesis effect in the single-stressor concentration-response 

data of Cu and cyanobacteria using the method described by Van Ewijk and Hoekstra (Van Ewijk and 

Hoekstra, 1993). After verifying assumptions of normality and homoscedasticity of the residuals of the 

models using a Shapiro-Wilk test and a Levene test respectively, the nested models (Equation 2.3 vs. 

Equation 2.6, Equation 2.4 vs. Equation 2.7) were compared using an F-test, to test whether including 

the deviation parameter a resulted in a statistically improved fit compared to the reference model, which 

translates in other words into synergistic or antagonistic deviations from the non-interaction assumption 

x!"
EC50Cu · �100 − && � 1$!"

+ x!&'()
EC50Cyano · �100 − && � 1$!&'()

= exp	: ' · ��!" · ��!&'()4��!" + ��!&'() 52; 
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of the reference model (Asselman et al., 2013, Jonker et al., 2005). As the two reference models 

(Equations 2.2 and 2.3) are mathematically different and not nested, they cannot be compared through 

formal statistical tests. We therefore used the Akaike Information Criterion (AIC) to provide quantitative 

measures about model quality as recommend previously (Jonker et al., 2005).  

 

 

2.3 Results 

The EC50 of copper (as estimated from the single stressor concentration response data, Equation 2.1 

was repeatable between the different experiments within each clone, but we noted consistent 

differences between the two clones (Table 2.3, Figure 2.1).  Xinb3 was more tolerant to Cu (EC50 ranging 

between 86.4 and 106 µg Cu/L) than Iinb1 (EC50 ranging between 64.5 and 79.9 µg Cu/L) (p = 1.748e-

04, n = 5, df = 4, paired T-test). Based on the estimated EC50 for each cyanobacteria (Table 2.3, Figure 

2.2), Microcystis was the most toxic for both clones (EC50 of 23.5% of the total diet for Xinb3 and of 28% 

of the total diet for Iinb1). The overall sensitivity to the cyanobacteria did not differ considerably between 

both clones (p = 0.1537, n = 5, df = 4, paired T-test). However Iinb1 was significantly more sensitive to 

Aphanizomenon (EC50 37.1% of diet) compared to Xinb3 (EC50 72.7 % of the diet) (p < 0.0001, Wheeler 

ratio). No significant hormesis effect was noted with respect to exposure to any of the cyanobacteria in 

both D. magna clones. We observed a general hormesis trend for the Xinb3 clone at the lowest Cu 

concentration, which was however not consistent over the 5 replicate sub-experiments, as the hormesis 

parameter in the Van Ewijk and Hoeksrat model (1993) was statistically significant in only one of the 5 

sub-experiments (i.e. the Cylindrospermopsis sub-experiment, p = 0.003). For the Iinb1 clone the 

hormesis parameter was also significant in only one sub-experiment (Anabaena sub-experiment, p = 

7.79e-10). As the hormesis effect was not consistently repeatable across sub-experiments we did not 

consider it further.  
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Figure 2.1. Single stressor concentration response curves for Cu (Equation 2.1) for the five different 

experiments for the Xinb3 and Iinb1 clones. Ana = Anabaena (sub-experiment 1), Aph = 

Aphanizomenon (sub-experiment 2), Cyl = Cylindrospermopsis (sub-experiment 3), Mc = Microcystis 

(sub-experiment 4), Osc = Oscillatoria (sub-experiment 5). 

 

 

Figure 2.2. Single stressor concentration response curves the five different cyanobacteria (Equation 

2.1) for the Xinb3 (grey line) and Iinb1 (black line) clones.  
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Table 2.3. Summary table of the single stressor concentration response parameters slope and EC50 

(Equation 2.1) of copper (Cu) and Cyanobacteria (Cyano) in each of the 5 sub-experiments for both 

Daphnia clones (± standard error). 

 slopeCu 

 

 

slopeCyano 

 

 

Cu EC50 

(µg/L) 

 

Cyano EC50 

(% of diet) 

Anabaena (sub-experiment 1) 

Xinb3 clone 8.581 ± 1.399 2.038 ± 0.770 101.490 ± 2.221 48.872 ± 7.103 

Iinb1 clone 22.342 ± 26.471 2.028 ± 0.949 77.659 ± 6.929 47.637 ± 8.756 

Aphanizomenon (sub-experiment 2) 

Xinb3 clone 10.063 ± 2.742 2.945 ± 0.413 86.418 ± 2.914 72.653 ± 3.009 

Iinb1 clone 17.521 ± 18.211 1.714 ± 0.289 74.089 ± 2.338 37.142 ± 3.179 

Cylindrospermopsis (sub-experiment 3) 

Xinb3 clone 13.647 ± 7.338 2.173 ± 0.640 105.996 ± 6.201 77.529 ± 8.063 

Iinb1 clone 5.376 ± 1.711 1.234 ± 0.269 81.666 ± 5.178 45.066 ± 4.785 

Microcystis (sub-experiment 4) 

Xinb3 clone 10.656 ± 2.519 5.724 ± 0.237 87.963 ± 2.62 23.483 ± 0.193 

Iinb1 clone 11.931 ± 0.0499 2.26 ± 0.851 53.096 ± 0.047 28.023 ± 5.589 

Oscillatoria (sub-experiment 5) 

Xinb3 clone 18.424 ± 1.188 2.401 ± 0.681 104.217 ± 0.731 45.928 ± 4.731 

Iinb1 clone 4.423 ± 1.884 2.731 ± 0.492 79.845 ± 8.259 38.357 ± 2.677 
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Interactive effects were detected in the plots of the observed responses and the predicted responses of 

the reference models against the sum of the toxic units of Cu and the cyanobacteria (Figure 2.3). We 

observed that the predictions of the mixture effects based on the IA reference model matched the 

observed response data more closely than those predictions made with the CA reference model in 4 out 

of the 5 cyanobacterial genera (Figure 2.3). The CA model appeared to overestimate the combined 

effects in those cases, i.e. an antagonistic interaction is identified when CA is used as the reference 

model. An exception was noted with mixtures of Microcystis and copper, which were considerably better 

predicted by the CA model compared to the IA model. For Microcystis the observed toxicity of the mixture 

with copper was underestimated by IA predictions, i.e. a synergistic interaction is identified when IA is 

used as the reference model for copper and Microcystis mixtures. These observations were statistically 

confirmed and are summarized in Table 2.4, showing the interaction type and the p-values for the F-test 

comparing the extended model against the reference model.   

 

The statistical comparison of the reference model (Equation 2.2 and Equation 2.3) against the extended 

model with the deviation parameter (Equation 2.5 and Equation 2.6) revealed four clear trends. First, 

exactly the same conclusion about the interaction type of the combined effects of Cu and cyanobacteria 

could be drawn for both clones (Table 2.4). Second, for 4 out of the 5 cyanobacteria species non-

interaction was identified with IA as a reference model and antagonism with the CA model (Table 2.4, 

Figure 2.3). Only for Microcystis we noted synergism according to the IA model and non-interaction 

according to the CA model (Table 2.4, Figure 2.3). Third, overall we observed a lower AIC under the IA 

concept (thus higher model accuracy), compared to the CA concept, with the exception of Microcystis, 

where the AIC was lower under the CA concept (Appendix A Tables A.5 and A.6). Fourth, the CA 

reference model (Equation 2.3) consistently overestimated the observed the combined effects 

compared to the IA model (Equation 2.2) (Figure 2.3). Thus the CA model was either conservative 

compared to the observed response data (predicting antagonism) in 4 out of 5 cases, or it matched the 

observed response data quite well (predicting non-interaction in the case of Microcystis). In contrast, 

the IA model on the other hand was under protective compared to the observed response data in one 

case as it underestimated the observed toxicity of Microcystis and Cu (predicting synergism), while it 

was in line with the observed response in the other cases (predicting non-interaction). 
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Figure 2.3. Comparison of the predicted interactive effects against the observed combined effects. 

Predictions were made according to IA and CA using the slope (s) and EC50 parameter values derived 

from the single stressor concentration response curves (Table 2.2). Both observations and predictions 

were plotted as per cent reproduction of the control against the sum toxic units (∑TU) based on the EC50 

values and slopes of the single stressor concentration response curves. Additionally, the single stressor 

concentration responses curves of Cu (black line) and cyanobacteria (grey line) were plotted. Ana = 

Anabaena, Aph = Aphanizomenon, Cyl = Cylindrospermopsis, Mc = Microcystis, Osc = Oscillatoria
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Table 2.4. Summary of the identified interaction types of the Cu and cyanobacteria mixtures. For both 

Daphnia magna clones and for each of the 5 cyanobacterial genera the reference models of 

Independent Action (IA) (Equation 2.2) and Concentration Addition (CA) (Equation 2.3) were compared 

against their respective synergism/antagonism deviation model (Equation 2.5 and Equation 2.6) with an 

F-test. A p-value < 0.05 (depicted by *) indicates a significant improvement of the model fit by including 

the deviation parameter and hence an interactive effect (antagonism or synergism). For the values of all  

parameter estimates in this statistical analysis we refer to Appendix A Tables A.5 and A.6. The plots of 

the observed against the fitted response for the reference and extended models including the deviation 

parameter can also be consulted in the Appendix A Figures A.2-A.6. Ana = Anabaena, Aph = 

Aphanizomenon, Cyl = Cylindrospermopsis, Mc = Microcystis, Osc = Oscillatoria. 

 

 

 

 

 

 

 

 

Daphnia clone Xinb3 Iinb1 

Cyanobacteria IA CA IA CA 

Ana Non-interaction Antagonism Non-interaction Antagonism 

p-value 0.777 6.515e-06* 0.140 9.844e-03* 

Aph Non-interaction Antagonism  Non-interaction  Antagonism 

p-value 0.357 6.922e-07 * 0.137 6.158e-05* 

Cyl Non-interaction Antagonism Non-interaction Antagonism 

p-value 0.520 3.421e-04* 0.411 6.817e-03* 

Mc Synergism  Non-interaction  Synergism  Non-interaction 

p-value 3.13e-10* 0.521 2.292e-05* 0.428 

Osc Non-interaction   Antagonism Non-interaction Antagonism 

p-value 0.505 5.693e-05* 0.678 1.885e-02* 
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2.4 Discussion 

As interactive effects of natural stressors and chemical pollutants could potentially complicate chemical 

risk assessment and management of water quality, investigations of such interactive effects are 

increasingly being carried out (Holmstrup et al., 2010, Laskowski et al., 2010). Here, we evaluated 

combined effects of five different freshwater harmful bloom-forming cyanobacterial genera with copper, 

which is commonly used as an algaecide to eradicate cyanobacterial blooms, and which frequently 

occurs in eutrophic run-off (e.g. vineyards and citrus farms). In this chapter 4 major findings are 

highlighted. First, the conclusions drawn on the combined exposures of copper and the five 

cyanobacterial genera were the same for both clones. In other words, there was no genotype effect in 

the combined or interactive response of Daphnia magna to copper and cyanobacteria exposure. We 

observed that the Iinb1 clone was more sensitive to Cu (Figure 2.1) and to Aphanizomenon (Figure 2.2) 

than Xinb3. There were however no differences in the type of interactive effects when the clones were 

simultaneously exposed to Aphanizomenon and copper. There are currently only a few studies 

published that provided concrete evidence of clonal (genotype based) differences in interactive effects 

between stressors, i.e. mixtures of cadmium + zinc (Barata et al., 2002b), and mixtures of cyanobacteria 

(Cylindrospermopsis raciborskii) + polychlorinated biphenyl (PCB52) (Bernatowicz and Pijanowska, 

2011). In the light of risk assessment the primary goal is to protect populations rather than individuals 

and therefore attempts to generalize the effects of exposure to mixtures should preferably be conducted 

on multiple genotypes. A recent study also didn’t report statistically significant differences in interactive 

effects of Microcystis and cadmium between 20 different Daphnia magna clones (De Coninck et al., 

2013). Nevertheless, they cautioned against the use of a limited number of clones in order to make 

generalizations at the species level, as they observed significant antagonism for 1 clone only, while non-

interaction occurred for all the 19 other clones tested. 

 

Second, we noted significant differences in the interactive effects of the two stressors, depending on the 

cyanobacteria species considered. Synergism was only detected in mixtures of copper with Microcystis 

(but only if the IA was used as the reference model), while antagonism was detected in mixtures of 

copper with the four other cyanobacteria (but only if CA was used as the reference model). It could be 

argued that this difference might be explained based on consideration of known modes of action (MoA) 

of both copper and the cyanobacteria. For instance, copper is known to cause redox cycling and has 
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been shown to synergize oxidative stress responses to other oxidative stress agents (Xie et al., 2006). 

As Microcystis aeruginosa is a well-known oxidative stress agent in Daphnia (Wiegand and 

Pflugmacher, 2005, Dao et al., 2013), it could explain its synergistic action in combination with copper. 

Yet, although less-well studied, the capacities of the four other cyanobacteria to induce oxidative stress 

cannot be excluded, as exemplified by the fact that oxidative stress has been reported in Daphnia magna 

exposed to extracts of a wide variety of cyanobacteria strains, including Anabaena and 

Cylindrospermopsis (Dao et al., 2013). Therefore oxidative stress is certainly not a definitive mechanistic 

explanation for the differences in interactive effects with copper between M. aerugionosa and the four 

other cyanobacteria. A similar line of reasoning develops when considering the review of (Deneer, 

2000), who reported that, in general, synergistic effects are most common for chemicals acting via 

similar MoA (albeit most data were on combinations of insecticides acting on AChE system and neuronal 

signal transmission). It could be argued that this would predict synergistic action between copper and 

two cyanobacterial genera (Anabaena lemmermannii and Oscillaloria sp.), as all of these have been 

demonstrated to act on the AChE system (Wiegand and Pflugmacher, 2005, Untersteiner et al., 2003). 

Similarly, the fact that both copper and Aphanizomenon are known to inhibit Na channels, could predict 

synergistic action between those two stressors. However, the reality is that neither Anabaena, 

Oscillatoria or Aphanizomenon were observed to act synergistically in combination with copper at the 

level of reproductive fitness. Thus, taken all together, the known modes of action of the different 

cyanobacteria are not able to satisfactorily explain as to why synergistic joint action with copper is only 

observed for Microcystis and not for at least three other cyanobacteria. When considering potential 

explanations for antagonistic interactions (relative to the CA reference model), a similar conclusion is 

reached. One possible explanation for antagonism between copper and the cyanobacteria could be 

related to feeding inhibition. Copper has been implicated in reduced feeding activity of D. magna 

(Ferrando and Andreu, 1993), and thus exposure to copper could diminish ingestion of cyanobacteria 

and thus reduce exposure to and resulting effects of cell-bound cyanotoxins. Yet, on the other hand, 

because cyanobacteria are also implicated in reduced feeding (Rohrlack et al. 2001), it could be argued  

– based on what is mentioned before regarding joint action of stressors with a similar MoA (Deneer, 

2000) that this mechanism could also predict synergism (for instance when both copper and 

cyanobacteria exposure is sufficiently high to each cause food intake inhibition on their own). Thus, 

without detailed mechanistic studies, it seems very premature to pinpoint the feeding inhibition MoA as 
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an important explanatory factor for the differences in interactive effects with copper between M. 

aeruginosa and the four other cyanobacteria. Finally, it is worth mentioning that even more complex 

explanations may be put forward, inherent to the complexity of the Daphnia-cyanobacteria-copper-

cyanotoxin system, including changing cell-bound to solution cyanotoxin ratios due to copper-induced 

cell-lysis (Demott et al., 1991, Gilbert, 1990, Zhou et al., 2013)(Demott et al. 1991, Gilbert 1990, Zhou 

et al. 2013) or reduced copper bioavailability due to copper complexation by cyanobacterial exudates 

(Choueri et al., 2009, Nogueira et al., 2004). However, it should be clear that, in order to identify the 

mechanistic basis of the difference of the interactive effects with copper between M. aeruginosa and the 

four other cyanobacteria, an in-depth study would be needed in which several of the possibly involved 

MoA (mentioned above) should be measured in parallel across the entire array of the five cyanobacteria. 

 

Third, we observed slightly lower AIC values for the IA reference model in almost all models compared 

to the CA reference model (except for Microcystis), suggesting a better model fit under IA than under 

CA, i.e. that the predicted response correlates better with the observed data (Altenburger et al., 1996, 

Cedergreen et al., 2008). It has been advocated that model accuracy in itself is less important in risk 

assessment than in pharmacokinetic research, and that differences between observed and predicted 

mixture toxicities, regardless of the reference model, are generally within a factor 2 (Altenburger et al., 

1996). Backhaus and Faust (2013) went further to suggest that mode of action (MoA) driven analyses 

should only be applied if error estimations indicate the possibility for substantial differences between 

CA- and IA-based assessments, rather than as a first priority. As our results indicate relatively small 

differences between the CA and IA reference models, and given the complex nature of the study system, 

the in depth MoA analysis (as the one proposed in the previous paragraph) is less of a priority and not 

strictly needed for use in water quality management.  

 

Fourth, we noted differences between the two reference models of IA and CA across all reference model 

comparisons. It has previously been noted that (i) the mathematical relationship between IA and CA is 

a function of the concentration response model function (here log-logistic), the slope parameters of these 

curves and the tested mixture concentrations and, (ii) that the response predicted by CA usually differs 

from the response predicted by IA (Drescher and Boedeker, 1995). This can also be further underlined 

by the dissimilar mathematical formulae related with both concepts (Jonker et al., 2005). With exception 
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of Microcystis, CA overestimated the toxicity of all the binary mixtures, while IA predicted the observed 

responses reasonably well. For Microcystis however, the observed toxicity of the mixtures was predicted 

well by CA and underestimated by IA. In other words, IA predicted lower combined effects compared to 

CA, as IA identified the interaction type of copper an cyanobacteria mixtures as non-interaction (or 

synergism with Microcystis) and, while CA identified the interaction type of copper an cyanobacteria 

mixtures as antagonism (or non-interaction with Microcystis). As a consequence the CA model delivers 

consistently across all cases more conservative estimates of the ombined effects for risk assessment 

than the IA model, which is in general agreement with the literature (Bellas, 2008, Asselman et al., 2013, 

Cedergreen et al., 2008, Altenburger et al., 1996).  

 

As it has been advocated that CA is equally useful for predicting toxicities of dissimilarly acting chemicals 

than IA, it has been suggested to apply CA as a precautious first step worst case scenario, regardless 

of the modes of action of the chemicals considering that mixture toxicities higher than those predicted 

by CA are rare findings (Cedergreen et al., 2008, Rodney et al., 2013, Backhaus and Faust, 2013). In 

terms of ecological risk assessment protection of aquatic ecosystems is an important goal and therefore 

the use of a conservative model could be the choice for implementation. The data collected in this 

chapter identified the CA model to be suitable in delivering such conservative predictions of the 

combined effects of cyanobacteria and copper. Thus in water quality management decisions, the 

concentration addition (CA) reference model could form a rational basis to account for the combined 

effects of cyanobacteria and copper.  

 

The results are also consistent with previous studies on interactive effects of cyanobacteria and other 

chemical stressors (De Coninck et al., 2013, Asselman et al., 2013), as we did not observe strong 

synergisms (no single case of synergism with the CA model) between cyanobacteria and copper in 

Daphnia. Investigations of additional environmental variables such as nutrient status, resulting in more 

or less eutrophic conditions (and hence a higher total food concentration) or other model organisms, 

especially vertebrates, would be necessary to confirm whether the results can be generalised on an 

ecosystem wide scale. 
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3.1 Introduction 

Temperature is one of the main drivers affecting biodiversity and exerts considerable effects on 

ectothermic freshwater organisms, as their metabolic rates are directly controlled by ambient 

temperature (Lampert, 2006). The impact of increasing temperature on D. magna may in itself be 

positive (provided that dietary requirements are fulfilled) because maturation time and developmental 

time are shortened (Orcutt and Porter, 1984), but it could also be negative, as higher temperatures lead 

to higher energy demands (leading to starvation if energy demands are not fulfilled) (Paul et al., 2004). 

The effects of increasing temperatures on D. magna dynamics have extensively been reviewed 

elsewhere (Wojtal-Frankiewicz, 2012).  

 

It is well-known that cyanobacteria reduce the fitness of Daphnia sp., either by the presence of toxic 

compounds such as cyanotoxins (e.g. microcystins, cylindrospermopsins) (Dao et al., 2010, Demott et 

al., 1991, Nogueira et al., 2004, Rohrlack et al., 1999), by mechanistically interfering with the ability of 

Daphnia to feed on algae (Demott et al., 1991, DeMott et al., 2001, Lurling, 2003b, Wilson et al., 2006), 

or by their lack of essential sterols and fatty acids (Martin-Creuzburg et al., 2008, Volkman, 2003). 

Furthermore cyanobacteria are predicted to benefit from the consequences of increasing temperatures 

(Paerl and Huisman, 2008 , Kosten et al., 2012, Paul, 2008, Paerl and Paul, 2012, Elliott, 2012, Abrantes 

et al., 2006). This may pose considerable risks to environmental and human health, and large scale 

ecosystem wide effects have already been attributed to their extensive bloom formation (also termed 

harmful algal blooms) and toxin production (Falconer, 2001, Johnk et al., 2008, Downing et al., 2001, 

Davis et al., 2009, Abrantes et al., 2006). A survey on small eutrophic lakes in Canada highlighted that 

warmer spring and summer temperatures in 2006 (compared to 2005) were responsible for a significant 

increase in cyanobacterial biomass, as well as a shift in the dominant taxa, and that this in turn was 

correlated with a decline in daphnid abundance (Dupuis and Hann, 2009).  

  

Comparatively little effort has been directed at investigating how temperature influences the response 

of D. magna to cyanobacteria. Cyanobacteria are deficient in phytosterols (Volkman, 2003), which are 

essential for Daphnia to form the membrane component cholesterol (Martin-Creuzburg and Von Elert, 

2004). It has been shown that daphnids require more cholesterol at higher temperatures, which suggests 

that potential dietary sterol limitation of D. magna feeding on cyanobacteria could be further intensified 
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at higher water temperatures (Sperfeld and Wacker, 2009). Prolonged population-level exposure to low 

dosage microcystin has shown to mask potential responses to changes in temperatures, as warmer 

temperatures and cyanotoxins were both shown to result in reduced growth and smaller clutch sizes in 

D. magna (Domis et al., 2013). An experiment with a presumably non-cylindrospermopsin-producing 

strain of the filamentous cyanobacterium Cylindrospermopsis found that the number of aborted eggs in 

D. magna increased from 16°C to 24°C (Bednarska and Slusarczyk, 2013). Separate studies on two 

different genera of cyanobacteria have reported opposite trends of the effect of temperature. In a chronic 

ecotoxicity test with Daphnia pulex the intrinsic rate of natural increase was slightly less reduced by 

Microcystis exposure at 24°C compared to 19°C (Hietala et al., 1997). Similarly higher temperature 

(30°C compared to 20°C) was observed to mitigate the adverse effects of Microcystis across different 

species of Daphnia (Nandini, 1998). Another study compared the harmfulness of two different species 

of the same genus at different temperatures (Anabaena affinis and Anabaena flos-aquae, at 12°C, 19°C 

and 25°C) and noticed that the inhibitory effects of both on D. magna reproduction increased with 

increasing temperature (Claska and Gilbert, 1998). To our knowledge, no studies so far have attempted 

to simultaneously compare the harmful effects of more than one genus of cyanobacteria to Daphnia 

across a range of temperatures.  

 

Temperature may not only affect the direct response of D. magna to cyanobacteria as a food source but 

also exert indirect effects on D. magna due to cyanobacteria-temperature interactions. Yet these 

interactions appear to be of a more complex nature. For instance microcystin concentrations have been 

reported to positively correlate with water temperature in one study (Wicks and Thiel, 1990), while 

another study found no correlation of microcystins with water temperature (Rapala and Sivonen, 1998). 

It has been hypothesized that toxin production is linked to conditions that are most favorable for 

cyanobacterial growth rather than temperature per se (Orr and Jones, 1998). However experimental 

results do not support this hypothesis as higher temperatures resulted in higher growth rates and lower 

peptide contents in Microcystis, and in lower growth rates but higher peptide contents in Anabaena 

(Tonk et al., 2009). Temperature is also known to alter morphology and may therefore affect the dietary 

uptake by daphnids. The trichome length of Cylindrospermopsis was observed to decrease with 

temperature (Soares et al., 2013). Changes in temperature can also affect sterol content of 

cyanobacteria (see (Volkman, 2003) and references therein). 
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The goal of this chapter was to contribute to unraveling effects of temperature on Daphnia-cyanobacteria 

interactions. We chose to only account for direct effects of temperature on the harmful effects of 

cyanobacteria on D. magna, while indirect effects on D. magna, via effects of temperature on the 

cyanobacteria themselves were excluded. Therefore, cyanobacterial genera were cultured at a single 

temperature. Experiments were carried out with six cyanobacteria spanning a wide range of 

characteristics potentially affecting D. magna life history, each belonging to a separate genus and 

differing in their known toxin production, morphology, and geographic distribution (Onodera et al., 1997, 

Merel et al., 2013, Mahmood and Carmichael, 1986, Humpage et al., 1994, Yilmaz and Phlips, 2011, 

Hawkins et al., 1985, Fastner et al., 2003, Wood and Stirling, 2003, Beattie et al., 2000, Edwards et al., 

1992, James et al., 1997) (Table 1) We use the term “harmfulness” throughout instead of “toxicity” to 

emphasize that we consider the entire arsenal of harmful effects of live cyanobacteria cells rather than 

limiting ourselves to their toxin production. This is because harmful effects of cyanobacteria have been 

ascribed to more than their cyanotoxins produced, and because cyanobacteria may produce several 

toxins simultaneously, some of which still remain unidentified (Sivonen, 1999). We investigated the 

sensitivity of Daphnia magna to these six different cyanobacterial genera as a food source on multiple 

endpoints at three different temperatures in a 21-day life table experiment. The temperatures tested are 

comparable to current late spring and early summer temperatures (15°C and 19°C) across Western 

Europe or to late spring and early summer temperatures that are predicted to be 4°C higher due to 

climate warming (19°C and 23°C) (Christensen, 2007).  

 

Two specific research questions were addressed in this chapter:  

(1) Does D. magna becomes more sensitive to the harmful effects of cyanobacteria as temperature 

increases?  

(2) Are the different cyanobacterial genera more harmful to D. magna than starvation?
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3.2 Material and Methods 

3.2.1  Organism cultures and tests media 

The Daphnia magna clone used in this chapter was the Xinb3 clone. The experimental organisms 

originated from cultures described in sections 2.1.1 and 2.1.2 in chapter 2 (Appendix A Tables A1-A4). 

The modified M4 medium was prepared and aerated 72 h before each medium renewal at 20 °C in 25 

L or 50 L polyethylene vessels. The aerated medium was subdivided and stored at the specific exposure 

temperature (15 °C, 19 °C, and 23 °C) 24 h prior to medium renewal.  

 

 

3.2.2 Experimental Design 

Chronic 21 day life table experiments were carried out with Daphnia magna at 3 different temperatures 

(15°C, 19°C, 23°C), exposed to six different cyanobacteria (Anabaena, Aphanizomenon, 

Cylindrospermopsis, Microcystis, Nodularia, Oscillatoria) and with a diet varying in the fraction of 

cyanobacteria (0%, 20%, 40%, 50%, 60%, 80%, 100% of the total diet on a dry wt basis). In addition we 

added a starvation control treatment (no food, i.e. neither green algae nor cyanobacteria) to assess 

whether the effect of the cyanobacteria was greater than the effect of starvation alone. We used a full 

factorial design for each factor combination resulting in a total of 144 treatments (3 temperature levels, 

6 cyanobacterial genera and 8 diet treatments).The complete experiment was split into two sub-

experiments, which were carried out sequentially. In the first sub-experiment all exposures with 

Microcystis, Nodularia and Oscillatoria were carried out, while in the second sub-experiment all 

exposures with Anabaena, Aphanizomenon and Cylindrospermopsis were conducted. Within each sub-

experiment all treatments were run simultaneously. Daphnids were acclimated for two generations to 

their respective exposure temperatures prior to the start of the test. At the start of each test, juvenile 

animals from the third clutch (< 24h old) of the 2nd generation females were transferred in individual 

polyethylene cups containing 50 ml of the test medium. For each treatment 6 replicate juveniles were 

set up individually. Exposures were carried out under controlled light cycles (16 h of light: 8 h of dark, 

with an average light intensity of 14 µmol photon m-2s-1 according to OECD guideline No. 211 (OECD, 

1998). 
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Table 3.1. List of algal (A) and cyanobacterial (C) genera obtained from different culture collections with 

their respective strain number, culture medium, including a description of the known toxin production 

and the location of isolation of the cyanobacteria strains used in this study. NA = not applicable. 

Species  Strain number 

(Culture 

Institute)a 

Culture 

mediumb 

Known toxin 

production  

Location of 

Isolation 

Chlamydomonas 

reinhardtii (A) 

CCAP11/32B 

(CCAP) 

modified 

Provasoli’s 

ES 

NA Amherst, 

Massachusetts, USA 

Pseudokirchneriella 

subcapitata (A) 

CCAP278/4 

(CCAP) 

modified 

Provasoli’s 

ES 

NA River Nitelva, Akershus, 

Norway 

Anabaena 

lemmermannii (C) 

K-0599 

(SCCAP) 

Z8 Anatoxin a(s) Jutland, Denmark 

Aphanizonmenon  

sp. (C) 

CAWBG01 

(CICCM) 

BG110 Saxitoxin  Durham, New 

Hampshire, USA 

Cylindrospermopsis 

raciborskii (C) 

LB 2879 (UTEX) Z8 none known 

(Hawkins et al., 

1985)  

Indiana, USA  

Microcystis 

aeruginosa (C) 

PCC 7806 

(PCC) 

BG110 Microcystin        Braakman, the 

Netherlands 

Nodularia 

harveyana (C) 

PCC 7804 

(PCC) 

BG110 Nodularin          Dax, France 

Oscillatoria sp. (C) PCC 6412 

(PCC) 

BG11 Anatoxin-a        California, USA 

a Culture Collection of Algae and Protozoa (CCAP), SAMS Research Services Ltd. Scandinavian Culture 

Collection for Algae and Protozoa (SSCAP), Cawthorn Institute Culture Collection of Microalgae 

(CICCM), Pasteur Culture Collection (PCC), University of Texas (UTEX).b The culture media 

compositions can be found in Appendix A Tables A.-A.4.
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During the entire test period daily records of survival and reproduction were made and at the end of the 

test individual length was measured of the surviving adults. Measured endpoints were: total reproduction 

(number of juveniles per female), intrinsic rate of natural increase (rm), age at first brood, first brood size 

and length on day 21.  The intrinsic rate of natural increase (rm) was calculated for each individual 

replicate based on age-specific fecundity, solving the implicit function (Equation 3.1) (Caswell, 2001, 

Messiaen et al., 2013):   

                 (Equation 3.1) 

where x is the age of the individual, Fx is the age specific fecundity (number of alive offspring born on 

day x) and rm is the intrinsic rate of natural increase. 

 

All test animals were fed daily with a total food density of 5 mg of dry weight/L (≈ 2.5mg C/L (Geller, 

1975)). In control treatments, animals were fed with 100% green algae mixture consisting of a 3:1 ratio 

(based on cell numbers) of the algae Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii, 

respectively.  In the treatments where the diet was contaminated with cyanobacteria, a set percentage 

(20%, 40%, 50%, 60%, 80%, or 100%) of the total diet concentration consisted of cyanobacteria, while 

the remainder was composed of the green algae mixture. For example, the 40% cyanobacteria 

treatment had 2 mg of dry weight/L of cyanobacteria and 3 mg of dry weight/L of the green algae mixture. 

The test medium was renewed 3 times a week (Monday, Wednesday, and Friday).  

 

 

3.2.3 Chemical analysis 

Dissolved organic carbon (DOC) and pH were measured twice a week, once in the fresh medium (before 

any algae or cyanobacteria were added) and once in the old medium (after transferring the daphnids to 

new fresh medium). Samples were taken as both total (unfiltered), and dissolved (filtered through a 0.45 

mm filter, Acrodisc Filter, Supor Membrane, PALL, Newquay, Cornwall, UK). Samples for DOC analysis 

were measured with a TOC analyser (TOC5000, Shimadzu, Duisburg, Germany) as non-purgeable 

organic carbon (NPOC). The pH measurements were performed with a pH meter P407 (Consort, 

Turnhout, Belgium). The pH glass electrode was calibrated before each use by using a pH 7 buffer 

(Merck, Darmstadt, Germany).   
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3.2.4 Data analysis 

Concentration response curves for total reproduction (R0) relative to the control level were fitted in 

Statistica 7.0 software (Statsoft, Tulsa, OK) using a log logistic model (Equation 3.2):  

 

                  (Equation 3.2) 

where y is the response of the measured endpoint (total reproduction as % of control), x is the 

concentration of the cyanobacteria (in % of the total diet), 100 is the response (% of control) of the 

measured endpoint (total reproduction) at x = 0, s is the slope parameter, a is the ln(EC50) and EC50 is 

the median effective concentration resulting in a decline of 50% of the response variable relative to the 

control treatment. Parameter estimation and calculation of the 95% confidence limits was carried out 

using the Levenberg-Marquardt method (Levenberg, 1944, Marquardt, 1963). The Wheeler ratio was 

used to test for significant pairwise differences in the EC50 and slope parameter values, which is based 

on the delta-method to estimate approximate confidence intervals from standard errors of the two 

estimated parameter values (Wheeler et al., 2006). 

 

We further investigated the effect of increasing cyanobacteria concentrations under different 

temperatures on the additional endpoints of length (after 21 days), the intrinsic rate of natural increase 

(rm), age at first brood and first brood size. As a log-logistic concentration response curve could not fit 

the response of these endpoints we opted for a non-parametric regression model based on the Theil-

Sen estimator to conduct pairwise comparisons of the slopes and intercepts of the regression lines of 

the endpoints against the cyanobacteria concentration to test for an interaction between temperature 

and cyanobacteria concentration (Wilcox, 2012). For pairwise comparisons we excluded concentrations 

where no data were available (i.e. cases where individuals died before the onset of reproduction 

occurred and without taking length measurements). Significantly different slopes indicate an interaction 

between temperature and cyanobacteria concentration. Additionally significantly different intercepts can 

be interpreted as different effects of the different temperatures on the endpoint without the addition of 

cyanobacteria, while a significant correlation between the endpoint and the cyanobacteria concentration 

(using the Spearman’s Rho) would confirm a significant effect of an increasing concentration of the 

cyanobacteria on the endpoint at a fixed temperature. Additionally to test whether the order of 
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harmfulness (from most to least harmful cyanobacteria) remained constant over the temperature range 

we conducted pairwise correlations (using the Spearman’s Rho) of the EC50 and slope parameters at all 

temperature pairwise combinations. The Bonferroni-Holm correction method was used to adjust all the 

p-values for multiple comparisons. The above analysis was performed in the statistical environment R 

(R Development Core Team, 2011) using the WRS package (Wilcox, 2012). 

 

In order to evaluate whether the effects of the cyanobacteria could be attributed to more than a lack of 

nutritional value we compared the age specific survivorship (lx) of daphnids fed on a cyanobacteria diet 

only (100% cyanobacteria and 0% green algae in the diet) against that of starved individuals (0% 

cyanobacteria and 0% green algae in the diet) at the 3 different temperatures (15°C, 19°C and 23°C) 

using a Cox proportional hazards regression model (Equation 3.3) together with the Wald test statistic 

(Cox, 1972, Therneau, 2000):  

                  (Equation 3.3) 

where h(t,xi) is the hazard at time t, for an individual characterized with value xi for the covariate x, h0(t) 

is the baseline hazard and eB is a function making h(t,xi) proportional to the baseline hazard at all 

exposure times. The hazard rate is a ratio of the probability of an event (i.e. death) occurring in an 

exposed group (i.e. cyanobacteria diet) versus a reference group (i.e. starvation treatment).The hazard 

rate indicates the likelihood of death for each point of increase in a predictor and is calculated by raising 

the log odds parameter estimate (B) to the base of natural logarithms. This model was chosen as the 

data was right censored, which means that the event of interest (death in this case) did not occur before 

the end of the test period, i.e. several individuals were still alive after 21 days. The analyses were 

performed with the survival package (Therneau, 2000) in R (R Development Core Team, 2011).  

 

 

3.3 Results 

The pH remained stable over the exposure duration at 7.9 (± 0.1) in the new medium and 7.8 (± 0.1) in 

the old medium, mean (± SE). Average Total Organic Carbon (TOC) was 4.4 (± 0.1) mg/L in the new 

medium and 3.8 (± 0.1) mg/L in the old medium, while average Dissolved Organic Carbon (DOC) was 

3.5 (± 0.2) mg/L in the new medium and 3.6 (± 0.9) mg/L in the old medium (mean ± SE). No significant 
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differences in TOC and DOC among the different temperatures or among the different cyanobacteria 

treatments were observed (one-way ANOVA, p-value < 0.05). 

 

 

Table 3.2. Summary of the p-values of the pairwise comparisons (PwC) of the slopes of the non-

parametric Theil-Sen regression modelsa.  

Endpoint PwC Ana Aph Cyl Mc Nod Osc 

length (µm) 15°C-19°C 0.778 0.2136 0.852 0.2571 0.4408 1 

15°C-23°C 0.621 0.0801 0.852 <0.0001* 0.03* 1 

19°C-23°C 0.621 0.26 0.852 0.0334* 0.4408 1 

rm (day-1) 15°C-19°C <0.0001* 0.04* 0.1 0.5944 1 0.0301* 

15°C-23°C 0.0066* 0.0734 0.9215 0.2805 1 <0.0001* 

19°C-23°C 0.1836 0.7613 0.09 0.8515 0.187 0.0134* 

age 1st brood 

(days) 

15°C-19°C 0.075 1 1 1 0.928 0.1336 

15°C-23°C 0.548 1 1 1 0.989 0.05* 

19°C-23°C 0.548 1 1 1 0.2754 0.0934 

1st brood size 

(# of juveniles) 

15°C-19°C <0.0001* <0.0001* 0.7329 0.9799 1 0.7212 

15°C-23°C 0.0067* <0.0001* 0.566 0.3172 1 0.1202 

19°C-23°C 0.7596 0.0534 0.1953 0.3038 1 0.2805 

The Bonferroni-Holm correction method was used to adjust the p-values for multiple comparisons. A 

complete overview of the pairwise comparisons (PwC) of the slopes and intercepts and the 95% 

confidence intervals around each PwC of the endpoints against the cyanobacteria concentration as well 

as the Spearman’s correlation coefficient (Rho) can be consulted in Appendix B Table B3 and B4). 

Ana=Anabaena, Aph=Aphanizomenon, Cyl=Cylindrospermopsis, Mc=Microcystis, Nod=Nodularia, 

Osc=Oscillatoria. * indicates significantly different slopes (i.e. interactive effects of temperature and 

cyanobacteria concentration) at p < 0.05. 
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Visual inspection of the concentration response curves suggested that harmful effects on reproduction 

decreased with increasing temperature in 3 cyanobacteria (Aphanizomenon, Microcystis and Nodularia) 

and that harmful effects on reproduction increased with increasing temperature in 2 cyanobacteria 

(Anabaena and Oscillatoria), while no clear trend was noted for the remaining cyanobacteria 

(Cylindrospermopsis) (Figure 3.1).  

 

Significant differences in both 21-day EC50 of total reproduction and slopes of the concentration 

response curves were noted for comparisons between temperatures for each cyanobacteria individually 

(depicted by different upper case letters in Figure 3.2, Appendix B Table B.2). For daphnids exposed to 

Anabaena the 21-day EC50 of total reproduction decreased with increasing temperature (harmful effects 

at 23°C > 19°C > 15°C; p <0.0001, Appendix B Table B.2). For Oscillatoria the EC50 was significantly 

lower at 23°C compared to 19°C (p = 0.0002, Appendix B Table B.2) and 15°C (p < 0.0001, Appendix 

B Table B.2) (harmful effects at 23°C > 19°C = 15°C).  

 

On the contrary for Aphanizomenon and Nodularia the EC50 significantly decreased with increasing 

temperature (harmful effects at 15°C > 19°C > 23°C) (p =< 0.003 for Aphanizomenon, p-value =< 0.009 

for Nodularia, Appendix B Table B.2). Similarly for Microcystis the EC50 was significantly lower at 15°C 

and at 19°C compared to 23°C (harmful effects at 15°C > 19°C = 23°C) (p < 0.0001, Appendix B Table 

B.2).  

 

For Cylindrospermopsis the EC50 did not change significantly with increasing temperature (harmful 

effects at 15°C = 19°C = 23°C, Appendix B Table B.2).  

 

For Anabaena the slope was significantly steeper at 15°C compared to 19°C (p = 0.002, Appendix B 

Table B.2) and 23°C (p = 0.0005, Appendix B Table B.2). The same trend was observed for 

Cylindrospermopsis (p = 0.001 and p =0.03, Appendix B Table B.2), while for Microcystis the slope was 

significantly steeper at 19°C compared to 15°C (p = 0.003, Appendix B Table B.2) and 23°C (p = 0.03, 

Appendix B Table B.2). For Oscillatoria the slope of the concentration response curve was significantly 

steeper at 15°C than at 23°C (p = 0.05, Appendix B Table B.2). For Nodularia and Aphanizomenon no 

differences between the slopes were observed at the different temperatures.  
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Figure 3.1. Concentration response curves of D. magna total reproduction after 21 d for 6 cyanobacterial 

genera (Anabaena, Aphanizomenon, Cylindrospermopsis, Microcystis, Nodularia, and Oscillatoria) at 3 

different constant temperatures (15°C, 19°C, and 23°C). Averaged data (relative to the control) are 

depicted by marker points and fitted values are depicted by lines. The concentration response 

parameters (-95%/+95% confidence interval) can be consulted in Appendix B Table B.1. An arrow 

pointing up indicates that toxicity increases with increasing temperature, arrow pointing down indicates 

that toxicity decreases with increasing temperature, and the symbol ≈ indicates no significant change in 

toxicity with increasing temperature. 
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Additionally significant differences in both 21-day EC50 of total reproduction and slopes were also noted 

for comparisons between the different cyanobacteria within each temperature (depicted by different 

lower case letters in Figure 3.2, Appendix B Table B.3). At 15°C the order from most to least harmful 

cyanobacteria was as follows: Microcystis = Nodularia = Aphanizomenon > Oscillatoria > Anabaena = 

Cylindrospermopsis (p = < 0.0002, Appendix B Table B.3). At 19°C the order from most to least harmful 

was as follows: Nodularia = Anabaena = Microcystis = Oscillatoria > Aphanizomenon > 

Cylindrospermopsis (p = < 0.03, Appendix B Table B.3). At 23°C the order from most to least harmful 

was as follows: Oscillatoria > Anabaena > Microcystis > Nodularia > Aphanizomenon = 

Cylindrospermopsis (p- =< 0.002, Appendix B Table B.3). At 15°C the order from the steepest to the 

shallowest slope was: Anabaena > Cylindrospermopsis > Nodularia > Oscillatoria > Microcystis > 

Aphanizomenon. At 19°C the order was: Microcystis > Nodularia > Anabaena > Oscillatoria > 

Cylindrospermopsis > Aphanizomenon. At 23°C the order was: Microcystis > Nodularia > Anabaena > 

Cylindrospermopsis > Aphanizomenon > Oscillatoria. There were no significant correlations between 

neither EC50 values nor slopes at different temperatures (Spearman’s Rho p > 0.1), which suggests that 

the order of the most to least harmful cyanobacteria to D. magna reproduction changed over the 

temperature range studied. 

 

 

Figure 3.2. Median effective concentrations (EC50) of total reproduction at 21 d for daphnids exposed 

to 6 cyanobacterial genera (Anabaena, Aphanizomenon, Cylindrospermopsis, Microcystis, Nodularia, 

Oscillatoria) under 3 different constant temperatures (15°C, 19°C, 23°C). Lowercase letters indicate 

significant differences of the EC50 values between different cyanobacteria species within the same 

temperature. Uppercase letters indicate significant differences of the EC50 values between different 

temperatures within a particular cyanobacterium. 
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Figure 3.3. Effect of an increasing concentration of 6 different cyanobacterial genera (% cyanobacteria in total diet) on length after 21 d, intrinsic rate of natural 

increase (rm), age at first brood, and first brood size under 3 different temperatures. The raw data are depicted by marker points, and regression lines are fitted 

using the nonparametric Theil–Sen regression model. The asterisk (*) indicates at least one case of interactive effect between temperature and cyanobacteria 

concentration on the endpoint considered. An arrow pointing up indicates that toxicity increased with increasing temperature, and an arrow pointing down 

indicates that toxicity decreased with increasing temperature.
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Next we investigated the effect of the different cyanobacteria across temperatures on additional endpoints 

that followed a linear rather than a sigmoidal trend in response to increasing cyanobacteria concentration 

in the diet: length at the end of the test (after 21 days), intrinsic rate of natural increase (rm), age at first 

brood and first brood size (Table 3.2, Figure 3.3).  For daphnids exposed to Anabaena we noticed interactive 

effects of cyanobacteria concentration and temperature (i.e. significantly different slopes of the regression 

lines). rm and first brood size decreased significantly at 19° and 23°C, while at 15°C rm remained constant 

(non-significant Rho, Appendix B Table B.5) and first brood size actually increased with increasing 

cyanobacteria concentration. For exposures with Aphanizomenon, the opposite trend was noted: a greater 

decrease in rm and first brood size at lower temperatures. These results are in line with the 21-day EC50 of 

total reproduction decreasing with increasing temperatures in Anabaena exposures and increasing with 

increasing temperatures in exposures with Aphanizomenon.  

 

No interactive effects of temperature on length and on age at first brood were observed in exposures with 

either of the two cyanobacteria. In Cylindrospermopsis treatments no interactive effects were observed for 

any of the studies endpoints, which is line with the absence of significant differences in 21-day EC50 of total 

reproduction (Figure 3.1, Appendix B Table B.2). In daphnids exposed to Microcystis length and first brood 

size decreased significantly less at 23°C than at lower temperatures. However no interactive effects were 

noted for the other endpoints. Similarly in Nodularia treatments length decreased at a significantly faster 

rate at 15°C compared to 23°C. For exposures with Oscillatoria we observed rm to decline significantly faster 

as well as a later onset of first reproduction with increasing temperature. We did however notice that for any 

given temperature, the first brood size differed considerably between replicates (e.g. 5 juveniles in the 

Anabaena exposure vs. 15 juveniles in the Aphanizomenon exposure under the control treatment, Figure 

3.3), which indicates a high degree of variability among replicates.  
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Figure 3.4. Age specific survivorship (lx) of D. magna over the entire exposure period grown under different 

cyanobacterial diets (100% cyanobacteria and 0% green algae) compared to starvation (0% cyanobacteria 

and 0% green algae) under 3 different temperatures (15°C, 19°C and 23°C). Ana  = Anabaena; Aph = 

Aphanizomenon; Cyl = Cylindrospermopsis; Mc = Microcystis; Nod = Nodularia; Osc = Oscillatoria.
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The age specific survivorship (lx) under different diets and temperatures can be consulted in Figure 3.4. We 

found evidence for overall significant differences between survival curves at 19°C (Wald test, χ2=16.9; 

d.f.=6; p =0.0097) and at 23°C (Wald test, χ2=38.54; d.f.=6; p =8.791e-07) but not at 15°C (Wald test, 

χ2=7.84; d.f.=6; p =0.2504). At 15°C there was no significant difference between starved daphnids compared 

to those fed on 100% cyanobacteria, with the exception of the 100% Microcystis diet, which increased the 

daily hazard rate of survival by a factor of 3 (Cox proportional-hazards regression model, exp (B) = 3.2110, 

p = 0.0128, Table 3.3). At 19°C diets consisting of 100% Aphanizomenon and Cylindrospermopsis both 

decreased the daily hazard rate of survival by approximately a factor of 10 (Cox proportional-hazards 

regression model, Aphanizomenon: exp (B) = 0.1050, p = 0.0273, Cylindrospermopsis: exp (B) = 0.0732, p 

= 0.0103, Table 3.3)  compared to starved animals. A diet of 100% Microcystis increased the hazard rate 

2-fold, however this trend was only marginally significant (Cox proportional-hazards regression model, exp 

(B) = 2.282, p = 0.0718, Table 3.3). At 23°C all cyanobacteria significantly decreased the daily hazard rate 

of survival compared to starved animals by more than 10-fold, apart for Microcystis exposure for which the 

hazard rate was reduced by roughly a factor of 7 (Table 3.3). 

 

 

3.4 Discussion 

The aim of this chapter was to examine the harmful effects of six different cyanobacterial genera on multiple 

endpoints of D. magna under at three temperatures (15°C, 19°C and 23°C). At present there is little evidence 

whether D. magna become more or less sensitive to cyanobacteria as a food source as temperature 

increases. Here we show that the direct harmful effects on total reproduction (R0) of five out of the six 

cyanobacteria are temperature dependent (Figure 3.1). We observed the 21-day EC50 of total reproduction 

to increase (i.e. decrease in harmful effects) with increasing temperature for three cyanobacteria 

(Microcystis, Nodularia and Aphanizomenon), while the EC50 was noted to decrease (i.e. increase in harmful 

effects) with increasing temperature in two cyanobacteria (Anabaena and Oscillatoria) (Figures 3.1 and 3.2). 

Our results further confirm results by Hietala and colleagues (1997) who noted Daphnia pulex intrinsic rate 

of natural increase under Microcystis exposure to be lower at 19°C compared to 24°C and those of Claska 

and Gilbert (1998) that the toxic effects on reproduction increase with temperature for Anabaena. 
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Table 3.3. Results of the Cox proportional-hazards regression model (Equation 3.3) examining the hazard 

rate of 6 cyanobacteria compared to a starvation reference at 3 different temperaturesa.  

aThe coefficient B measures the effect of each cyanobacteria compared to the starvation treatment 

(reference). The exp (B) gives the relative hazard rate (relative to the reference), therefore the reference 

has a set hazard rate of 1. NA: information not available for reference.* indicates significantly different 

hazard rates at p < 0.05. Ana=Anabaena, Aph=Aphanizomenon, Cyl=Cylindrospermopsis, Mc=Microcystis, 

Nod=Nodularia, Osc=Oscillatoria, NA = not applicable. * indicates significantly different hazard rates at p < 

0.05.

 B (SE) exp (B)  95% CI for exp (B) p-value 

15°C     

Starvation NA 1 NA NA 

Ana -18.5 (4810) 0.0000 (0-Inf) 0.9969 

Aph -0.0688 (0.549) 0.9336 (0.3186-2.735) 0.9002 

Cyl -0.4 (0.743) 0.6706 (0.1563-2.876) 0.5906 

Mc 1.17 (0.469) 3.2110 (1.2818-8.044) 0.0128 * 

Nod -0.256 (0.621) 0.7745 (0.2292-2.616) 0.6807 

Osc 0.0844 (0.552) 1.0880 (0.3686-3.212) 0.8786 

19°C     

Starvation NA 1 NA NA 

Ana -0.916 (0.611) 0.4001 (0.1208-1.327) 0.1337 

Aph -2.25 (1.02) 0.1050 (0.0142-0.7767) 0.0273* 

Cyl -2.62 (1.02) 0.0732 (0.0099-0.54) 0.0103* 

Mc 0.825 (0.458) 2.2820 (0.9296-5.6018) 0.0718 

Nod -0.132 (0.447) 0.8767 (0.3649-2.1067) 0.7686 

Osc -19.0 (3610) 0.0000 (0-Inf) 0.9958 

23°C     

starvation NA 1 NA NA 

Ana -2.7 (0.81) 0.0634 (0.0130-0.3091) 0.000644* 

Aph -3.10 (0.72) 0.0452 (0.0110-0.1867) 1.87E-05* 

Cyl -4.20 (1.09) 0.0150 (0.0018-0.1279) 0.000122* 

Mc -2.03 (0.65) 0.1307 (0.0365-0.4679) 0.001764* 

Nod -2.75 (0.66) 0.0637 (0.0176-0.2311) 2.80E-05* 

Osc -4.25 (1.09) 0.0143 (0.0017-0.1218) 0.000102* 
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Additionally the rank order of the most to the least harmful cyanobacteria (based on the EC50 of total 

reproduction) changed considerably at the three temperatures. The data suggest that there is no major 

change in the most harmful cyanobacteria (measured as 21-day EC50 of total reproduction) at 15°C and 

19°C, as Microcystis and Nodularia appear to be the most harmful under both temperatures. The only 

exception could be Aphanizomenon as it is according to our results as harmful as the most harmful 

(Microcystis and Nodularia) at 15°C but the least harmful (together with Cylindrospermopsis) at 23°C. 

However at 23°C Anabaena and Oscillatoria appear to be more harmful to Daphnia magna than 

Microcystis and Nodularia. Cylindrospermopsis is overall the least harmful at all temperatures. The 

results indicate that D. magna is more sensitive to Anabaena and Oscillatoria at warmer temperatures, 

while the harmful effects on D. magna fed a diet that includes Microcystis, Nodularia and 

Aphanizomenon are more severe at colder temperatures.  

 

The examination of other endpoints in addition to total reproduction (R0) served two main purposes. 

Firstly to confirm the trends observed in the dose response analysis of the 21-day EC50 of total 

reproduction and secondly to provide a more in depth investigation of the harmful effects of different 

cyanobacteria under different temperatures on the life history of D. magna. We observed interactive 

effects (i.e. a greater or lesser harmful effect with changing temperature) under all cyanobacteria 

exposures, with the exception of Cylindrospermopsis, which matches the results from the Wheeler ratio 

(Appendix B Table B.2). Although significant changes were noticed in total reproduction in 5 out of the 

6 cyanobacteria exposures, in only 3 of these 5 exposures were they matched by a significant change 

in rm. The rm endpoint therefore seems to be less sensitive than total reproduction. In Anabaena and 

Aphanizomenon treatments a greater decline of rm at higher and lower temperatures respectively 

appears to be related to a steeper decline in first brood size and not a significantly later onset of 

reproduction. For exposure with Oscillatoria treatments on the other hand a greater decline of rm at 

higher temperatures appears to be related to a significantly later onset of reproduction rather than a 

smaller first brood size. However as the first brood size varied considerably under control conditions at 

a given temperature across simultaneously performed tests, first brood size may be a less reliable 

indicator of fitness than the other endpoints assessed in the present study and, consequently, 

extrapolations based on the first brood size metric should be made with great caution. In Microcystis 

and Nodularia the significantly lower total reproduction at 15°C seems to be related to an interactive 
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effect of increasing cyanobacteria concentration and temperature on length rather than rm or the related 

age at first brood or first brood size. As fecundity is directly correlated to body size in Daphnia (Lampert, 

1993), it seems likely that the harmful effects on length are a main driver in the response of Daphnia 

magna to Microcystis and Nodularia exposures. In general the findings suggest that the cyanobacteria 

affect Daphnia magna life history traits adversely in slightly different ways. These findings are supported 

by the fact that all 6 cyanobacteria differ considerably in their morphology and their known toxins 

produced (Table 3.1).  

 

Furthermore, we observed significantly different slopes of the concentration response curves across 

different temperatures for all cyanobacteria (Appendix B Table B.2-B.4). Differences between slopes at 

different temperatures are an indication for differences in the mode of action (Loewe, 1926).The 

mechanisms by which temperature increases, or decreases, the sensitivity of Daphnia to the different 

cyanobacteria are not known. Temperature, even if is not stressful in itself, can affect both the 

mechanisms by which stressors produce cellular effects (toxicodynamicss), as well as the bioavailable 

amount of a stressor reaching the target site (toxicokinetics) (Fischer et al., 2013). Harmful effects on 

Daphnia reproduction increasing with temperature in some cyanobacteria, while decreasing with others, 

may therefore be the result of temperature affecting the balance of uptake, internal distribution, 

biotransformation and elimination (toxicokinetics), or the balance between damage and repair processes 

(toxicodynamics) differently after exposure to the cyanobacteria. For instance microcystin is eliminated 

more rapidly in the freshwater bivalve Unio douglasiae at 25°C than at 15°C if (Yokoyama and Park, 

2003). If harmful effects of Microcystis, Nodularia and Aphanizomenon are primarily related to their toxin 

content, lower detoxification rates at lower temperatures may explain the observed increase in 

harmfulness with decreasing temperatures. It also may be that sensitivity to the toxins is temperature 

dependent. Daphnia pulex became more sensitive to anatoxin-a derived of Anabaena flosaque at higher 

temperatures (Claska and Gilbert, 1998). Moreover temperature may also affect the uptake rates of the 

cyanobacteria cells, as viscosity of the water decreases with increasing temperature. Higher edibility of 

the filamentous cyanobacteria Cylindrospermopsis raciborskii by Daphnia galeata was observed at 

higher water viscosity (thus colder temperatures), which is most probably caused by lack of interference 

with filtering combs (Abrusan, 2004). Therefore especially for filamentous cyanobacteria, feeding 

inhibition could be higher at higher temperatures. Also, sterol limitation of Daphnia fed with 
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cyanobacteria can be intensified by elevated temperatures, due to increase in Daphnia demands for 

sterols with rising temperatures (Sperfeld and Wacker, 2009).  

 

The results presented in this chapter also suggest that at 23°C daphnids survived significantly longer in 

all cyanobacteria species treatments on a diet with 100% cyanobacteria (i.e. no green algae added) 

compared to the starvation control (no added food at all) (Table 3.2, Figure 3.3). However the age 

specific survival at 23°C was actually lower for animals fed 100% Microcystis compared to starved 

animals for the first 5 days (Figure 3.4). Furthermore at 15°C and 19°C daphnids fed with 100% 

Microcystis died significantly faster than under starvation. This suggests that the harmful effect of 

Microcystis outweighs any nutritional value of the cyanobacteria and that death does indeed occur due 

to an additional factor than feeding inhibition or poor nutritional value alone (potentially toxin production). 

Although some other cyanobacteria diets resulted in lower survivorship in the first few days of the 

exposure (i.e. Nodularia at 15°C and Anabaena at 19°C) than starvation, survivorship was lower at all 

temperatures under starvation than under any of the other 5 cyanobacteria. These results can most 

likely be linked to a combination of increased metabolism and energy needs of D. magna at higher 

temperatures and that survival depends on the balance between potential cyanobacteria toxicity and 

nutritional value. This could be linked to a higher metabolic rate of D. magna at increasing temperatures 

and the fact that the cyanobacteria still contain some nutritional value (Paul et al., 2004, Martin-

Creuzburg et al., 2008). As we used whole cyanobacteria cells, it can be difficult to disentangle effects 

due feeding inhibition from those due to toxicity. However for those comparisons where we noticed 

survival to be significantly lower at 100% cyanobacteria than in the starvation treatment lethal effects 

can be at least partly be attributed to toxin production. These results also suggest that Microcystis is the 

only cyanobacteria that caused a significantly greater mortality to the daphnids than starvation did. The 

mortality caused by the five other cyanobacteria is less or (at most) similar to the mortality in the 

starvation control.  

 

An important reason as to why temperature-dependent differences in harmful effects of cyanobacteria 

should be considered is in relation to projected climate warming. Under realistic conditions in the field 

indirect effects on Daphnia fitness may also occur, due to a direct effect of temperature on 

characteristics of the cyanobacteria themselves (e.g. toxin content, morphology and sterol content). A 
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limitation of our study, which therefore does not warrant a simple extrapolation to a realistic climate 

warming scenario, is that we did not account for such effects of temperature on cyanobacteria 

themselves, as they were cultured at a single temperature.  Further research should consider growing 

the cyanobacteria at temperatures that are identical to the temperatures used in the Daphnia 

experiments. Such studies would preferably also need to measure toxin production and morphological 

parameters, as well as sterol content to quantify the relationship with temperature. Furthermore more 

realistic climate warming projections may want to consider mixtures of more than one cyanobacteria as 

field research suggests that the competitive abilities of different cyanobacteria differ at different 

temperatures (Dupuis and Hann, 2009). Therefore shifts in dominant cyanobacteria species are likely 

to occur under global change and could have major implications when replacement taxa are more 

harmful to zooplankton. Future studies may also want to consider multiple clones as an experiment with 

four Daphnia magna clones found that the interactive effects of a non-toxic Cylindrospermopsis strain 

and temperature were highly genotype-dependent, which could possibly trigger microevolutionary 

changes at the population level (Bednarska et al., 2011). 

 

The findings from this chapter do nonetheless highlight that both the sensitivity of Daphnia magna to 

cyanobacteria and the order of harmfulness of the cyanobacteria studied are temperature dependent. 

Overall there appears to be no universal increase or decrease in the harmful effects of cyanobacteria to 

Daphnia magna with temperature, but rather an intricate combination of mechanisms causing certain 

cyanobacteria to increase their harmful effect on Daphnia at higher temperatures while others may be 

more harmful at lower temperatures. 
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4.1 Introduction 

Aquatic communities are typically exposed to mixtures of stressors rather than to single substances 

and/or other stressors (Eggen et al., 2004). Nevertheless most regulatory assessments focus almost 

exclusively on the effect characterization of individual substances on a chemical by chemical basis (van 

Gestel, 2010). Previous research suggests that mixtures at No-Observed-Effect-Concentration (NOEC) 

levels of individual substances may already cause adverse effects (Breitholtz et al., 2008, Silva et al., 

2002). Consequently, a major concern is that conventional risk assessment approaches may not be 

conservative enough if they do not account for the combined and the potentially interactive effects of 

toxicant mixtures. 

 

Anthropogenic pollutants may also interact with natural stressors and the knowledge of interactions is 

important for the extrapolation of results of laboratory toxicity to field situations and for the design of site-

specific Environmental Quality Standards (Heugens et al., 2001). Under global change, the exposure to 

combinations of natural and chemical stressors are predicted to increase, which may substantially 

complicate ecological risk assessment (Moe et al., 2013, Christensen, 2007). Two extensive reviews 

provided solid evidence that synergistic effects are commonly observed between chemicals and abiotic 

stressors (Holmstrup et al., 2010, Laskowski et al., 2010). However, no studies related to the interaction 

of chemical mixtures and biotic stressors (with the exception of parasites) were discussed by these 

authors. Cyanobacteria are a perfect illustration of such biotic stress, as they are considered as an 

emerging threat to freshwater environments.  Large-scale ecosystem effects have been attributed to 

cyanobacterial bloom formation and their toxicity to aquatic organisms (Falconer, 2001, Johnk et al., 

2008, Downing et al., 2001, Davis et al., 2009). It is well established that cyanobacteria reduce the 

fitness of zooplankton taxa like Daphnia sp. (Dao et al., 2010, Demott et al., 1991, Rohrlack et al., 2004, 

Rohrlack et al., 2005, Sarnelle et al., 2010, Shurin and Dodson, 1997). Freshwater communities can be 

compromised if cyanobacteria outcompete green algae, i.e. if cyanobacteria serve as primary food 

source for zooplankton under cyanobacterial bloom conditions (Moe et al., 2013). The adverse effects 

on zooplankton fitness may be enhanced if the proliferation of cyanobacteria interacts with both chemical 

stressors and/or abiotic stressors.  
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Copper (Cu) is commonly used as an algaecide to eradicate freshwater phytoplankton, including 

cyanobacterial blooms (Jancula and Marsalek, 2011). It tends to be applied in concentrations ranging 

from tens to hundreds of micrograms per liter (Jancula and Marsalek, 2011). It has been reported, 

however, that it can take up to two months to return to background levels, which in some cases coincides 

with the same time frame that cyanobacteria can reappear (Van Hullebusch et al., 2002), especially in 

warmer weather. Increasing temperatures, nutrient loads and extended summer stratification are 

predicted to increase the prevalence and severity of cyanobacterial blooms (Paerl and Huisman, 2008 

, Kosten et al., 2012, Paul, 2008, O'Neil et al., 2012).  

 

The nature of the interactive effects of cyanobacteria and other stressors depends on in the mixture 

composition. Synergistic effects between cyanobacteria have already been described for the combined 

exposure of Microcystis aeruginosa and the pesticide carbaryl to Daphnia pulicaria (Cerbin et al., 2010b) 

and for Daphnia longispina exposed to Cylindrospermopsis raciborskii and pentachlorophenol mixtures 

(Bernatowicz and Pijanowska, 2011). Conversely, a lack of interactive effects of Microcystis aeruginosa 

with cadmium was observed in experiments with Daphnia magna (De Coninck et al., 2013), while 

antagonistic effects in Daphnia pulex were reported for mixtures of Microcystis aeruginosa and different 

pesticides (Asselman et al., 2013). The results from chapter 2 have shown,  that the type of interaction 

of the combined exposure to different cyanobacteria and copper (non-interaction, synergism or 

antagonism) was dependent on which reference model was used. For mixtures of Microcystis 

aeruginosa and copper synergism was observed relative to the Independent Action reference model 

(IA) and non-interaction relative to the Concentration Addition reference model (CA) (Hochmuth et al., 

2014).  

 

The results from chapter 2 also showed that, based on standard ecotoxicity tests with D. magna 

performed under standard environmental conditions, interactive effects of harmful algal blooms and 

copper pollution appear to be of limited concern for water quality management. However, in chapter 3, 

I observed and reported an increasingly harmful effect of M. aeruginosa on D. magna fitness at lower 

temperatures (Hochmuth and De Schamphelaere, 2014). More generally, it is well known that both 

temperature and food concentration can influence the toxicity of metals and other chemicals to D. magna 

(Holmstrup et al., 2010, Heugens et al., 2001). Based on all this, it could be expected that interactive 
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effects between Cu and harmful algae blooms might be dependent on factors such as temperature and 

total food concentration, which can be very different in the field compared with standard test conditions. 

 

The main aim of this chapter was to evaluate if under-estimation of copper toxicity can occur when 

results obtained in standard toxicity tests under optimal conditions are extrapolated to variable and sub-

optimal field situations. Building on the findings from chapters 2 and 3, we investigated whether the 

combined effects of copper and M. aeruginosa were affected by less optimal environmental conditions. 

We selected two important factors with a known effect on copper toxicity:  temperature, which generally 

increases Cu toxicity, and total food concentration which reduces copper toxicity with increasing 

concentrations (for details consult the extensive review by Heugens et al 2001). An additional aim was 

to assess to what extent the three factors (total food concentration, % of M. aeruginosa in the diet and 

temperature) combined to influence Cu toxicity.  We addressed this aim by evaluating how much of the 

variance in the observed chronic copper median effective concentrations was explained by M. 

aeruginosa, temperature and total food concentration. 

 

 

4.2. Material and Methods 

4.2.1 Organism cultures and test media 

The Daphnia magna clone used in this chapter was the Xinb3 clone. The experimental organisms 

originated from cultures described in sections 2.1.1 and 2.1.2 in chapter 2 (Appendix A Tables A1-A4). 

The preparation of culturing and test media has previously been described in chapter 3 Section 2.1.1. 

Test animals were taken from the third clutch (< 24h old) and acclimated for 2 generations to their 

respective exposure temperature prior to the start of the experiments. The modified M4 medium was 

prepared and aerated for 72h before each medium renewal at 19°C in 25L or 50L polyethylene vessels. 

24h prior to medium renewal the aerated medium was divided and stored at the specific exposure 

temperatures (19°C, 15°C and 23°C). 
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4.2.2 Experimental Design 

A chronic 21 day toxicity experiment was carried out using a full factorial design composed of 8 Cu 

concentrations (dissolved concentrations: control 2.2 µg Cu/L, 28 µg Cu/L, 39 µg Cu/L 55 µg Cu/L, 71 

µg Cu/L, 103 µg Cu/L, 132 µg Cu/L and 175 µg Cu/L), and 4 concentrations of M. aeruginosa (control: 

0%, 10%, 20%, and 40% of the total diet) at 3 different constant temperatures (control 19°C, 15°C, 23°C) 

and 2 total food concentrations (high: 2 mg C/L and low: 0.8 mg C/L). The first level mentioned in 

parentheses for each factor indicates the control level and follows the OECD test guideline (OECD, 

1998). This full factorial design was extended with one higher concentration of M. aeruginosa (80%) in 

the single dose concentration response curves (Cu only at control with a measured dissolved 

concentration of 2.2 µg/L), resulting in a total of 198 treatments.  

 

For each treatment, 4 replicates with one juvenile each were set up in 50 mL of the test medium. All test 

animals were fed daily with the total food density based on dry weight of either 0.8 or 2 mg C/L. In control 

treatments, animals were fed with 100% Pseudokirchneriella subcapitata.  In the treatments where the 

diet was contaminated with a set fraction of cyanobacteria, a fixed percentage in terms of milligrams of 

carbon (10%, 20%, 40% and 80%) of the total food concentration consisted of M. aeruginosa, while the 

remainder was composed of P. subcapitata. exposures were carried out under controlled light cycles 

(16 h of light: 8 h of dark) according to OECD guideline No. 211 (OECD, 1998). The test medium was 

renewed 3 times a week (Monday, Wednesday, and Friday). Reproduction and survival were scored 

daily.          

 

 

4.2.3 Chemical analysis 

Dissolved organic carbon (DOC), total organic carbon (TOC) and pH were measured twice a week, once 

in the fresh/new medium (before any algae or cyanobacteria were added) and once in the old medium 

(after transferring the daphnids to new fresh medium). Samples for metal and organic carbon analysis 

were taken as both total (unfiltered), and dissolved (filtered through a 0.45 mm filter, Acrodisc Filter, 

Supor Membrane, PALL, Newquay, Cornwall, UK).  All samples for Cu analysis were acidified to a final 

concentration of 0.14 mol/L of HNO3 (Normaton Ultrapure 69% HNO3, Prolabo).  Total and dissolved 

Cu concentrations of the control medium were measured using graphite furnace atomic absorption 
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spectrophotometry (GFAAS Furnace Autosampler, Thermo Fisher Scientific Inc., Waltham, MA, USA), 

while all exposure media with added copper (nominal Cu concentration >45 µg/L were measured using 

flame atomic absorption spectrophotometry (SpectrAA100, Varian, Mulgrave, Australia). The 

measurements for dissolved and total copper concentration can be consulted in the Supplemental Data 

(Supplemental Data: Table S3). Samples for organic carbon analysis were measured with a TOC 

analyser (TOC5000, Shimadzu, Duisburg, Germany) as non-purgeable organic carbon (NPOC). The pH 

measurements were performed with a pH meter P407 (Consort, Turnhout, Belgium). The pH glass 

electrode was calibrated before each use by using a pH 7 buffer (Merck, Darmstadt, Germany). The pH 

remained stable over the exposure duration at 7.87 (± 0.02) in the new medium and 7.87 (± 0.03) in the 

old medium across treatments, mean (± SE, n = 9). Average Total Organic Carbon (TOC) was 4.1 mg/L 

(± 0.1) in the new medium and 3.1 mg/L (± 0.2) in the old medium, while average Dissolved Organic 

Carbon (DOC) was 2.6 m/L (± 0.1) in the new medium and 2.9 mg/L (± 0.4) in the old medium, mean (± 

SE, n = 9). 

 

 

4.2.4 Data analysis 

Single dose response curves fitted to Cu and M. aeruginosa for each temperature and total food 

concentration and the statistical mixture analysis were performed as described in chapter 2 section 2.1.5 

(Hochmuth et al., 2014).  

 

Additionally an ANOVA analysis was carried out to predict the Cu EC50 using % of M. aeruginosa, 

temperature, total food concentration and their two-way interactions as explanatory categorical factors. 

As there were no replicate observations of the EC50 parameter values for any factor combination the 

ANOVA model could not include a 3-way interaction term. In addition, to further investigate the 

relationship between M. aeruginosa and Cu toxicity we used a linear model to predict the Cu EC50 as a 

function of the amount (in mg C/L) of P. subcapitata and M. aeruginosa expressed as continuous factors. 

To assess the non-linear correlation between Cu EC50 and % of M. aeruginosa an approximate 

Spearman correlation test with 9999 Monte Carlo resamplings was carried out. Assumptions of normality 

and homoscedasticity of the residuals of the models were verified using a Shapiro-Wilk test and a 

Levene test, respectively.  Reference models were compared against the extended models using an F-
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test, to test whether including the deviation parameter a resulted in a statistically improved fit compared 

to the reference model. A p value <0.05 associated with this F-test translates into a significant synergistic 

or antagonistic deviation from the non-interaction null-hypothesis of the reference model (Asselman et 

al., 2013, Jonker et al., 2005). As the two reference models (IA and CA) are not nested models, they 

cannot be compared through formal statistical tests. Instead we used the Akaike Information Criterion 

(AIC) to compare model fit as recommend previously (Jonker et al., 2005, Asselman et al., 2013).  

 

An ANOVA analysis was carried out to predict the Cu EC50 using % of M. aeruginosa, temperature, total 

food concentration and their two-way interactions as explanatory categorical factors. As there were no 

replicate observations of the EC50 parameter values for any factor combination the ANOVA model could 

not include a 3-way interaction term. In addition, to further investigate the relationship between M. 

aeruginosa and Cu toxicity we used a linear model to predict the Cu EC50 as a function of the amount 

(in mg C/L) of P. subcapitata and M. aeruginosa expressed as continuous factors. To assess the non-

linear correlation between Cu EC50 and % of M. aeruginosa an approximate Spearman correlation test 

with 9999 Monte Carlo resamplings was carried out. All analyses were conducted in R (Team, 2011).  

 

 

4.3 Results 

The response of D. magna to mixtures of Cu and M. aeruginosa was more accurately predicted with the 

CA reference model (Equation 2.3) than with the IA reference model (Equation 2.2) (Figure 4.1). This is 

supported by a consistently lower AIC regardless of temperature or total food concentration (CA: 217-

255, IA: 258-295, Table 4.1). Overall, non-interaction was identified according to CA (a not significantly 

different from 0, F-test, p > 0.05, Table 4.1) while synergism between Cu and M. aeruginosa was 

identified according to IA (a significantly smaller than 0, F-test, p > 0.05, Table 4.1), again regardless of 

temperature and total food concentration (Table 4.1). The a parameter (measure of deviation from non-

interaction) had the same magnitude across all combinations of temperature and total food 

concentration.  

 

Overall, the observed Cu 21d-EC50 values (based on reproduction) varied between 20 and 100 µg Cu/L 

(Figure 4.2). We observed a significant main effect of M. aeruginosa, temperature and total food 
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concentration on the EC50 of Cu, as well as significant interactions between temperature and total food 

concentration and between temperature and M. aeruginosa (Table 4.2). There was a clear effect of 

increasing Cu toxicity with increasing M. aeruginosa concentration in the total diet (Figure 4.2). 

Furthermore the adverse effect of M. aeruginosa was more pronounced at colder temperatures, as 

illustrated by the fact that no reproduction occurred at 15°C with a diet containing 40% M. aeruginosa, 

regardless of the total food concentration. The main effects of temperature and total food concentration 

were less significant than the effect of M. aeruginosa. However, there was a trend of decreasing Cu 

toxicity with increasing total food concentration. Cu toxicity was lowest at the reference temperature of 

19°C, while it increased at 15°C and 23°C (Figure 4.2). Without any addition of M. aeruginosa, Cu toxicity 

was not affected by total food concentration at 15°C (black line in Figure 4.2A), while it decreased with 

a higher total food concentration as temperature increased to 19°C and 23°C (black lines in Figures 

4.2B and C). The main effect of M. aeruginosa had the lowest p-value and when considered alone the 

% of M. aeruginosa already explained 76% of the variance in the Cu EC50 (Table 4.2, Figure 4.3A). 

Addition of the other two main effects (temperature and total food concentration) explained a further 

11% of the variation (Figure 4.3B) and the full model with all two-way interactions increased the 

explained variance to 99% (Figure 4.3C).   
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Table 4.1. Summary of the identified interaction types of the Cu and cyanobacteria mixtures. For each 

temperature and food concentration the reference models of IA and CA reference models were 

compared against their respective synergism/antagonism deviation model with an F-test. For the values 

of all parameter estimates in this statistical analysis we refer to the Appendix C Table C.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* indicates a p-value < 0.05, i.e. a significant improvement of the model fit by including the deviation 

parameter and hence an interactive effect (antagonism or synergism). P-values were corrected for 

multiple testing using the Benjamini-Hochberg correction method. 

0.8 mg C/L 15°C 19°C 23°C 

IA  Synergism Synergism Synergism 

a -4.07 -3.353 -4.95 

p-value 3.87e-06* 1.13e-05* 3.03e-07* 

AIC 262.3 294.0 279.0 

CA Non-interaction Non-interaction Non-interaction 

a 0.723 -0.223 -0.199 

p-value 0.2220 0.5128 0.9836 

AIC 243.1 254.9 249.7 

2 mg C/L 15°C 19°C 23°C 

IA  Synergism Synergism Synergism 

a -4.472 -4.867 -3.2346 

p-value 4.54e-07* 4.45e-9* 0.0003* 

AIC 257.6 295.2 290.4 

CA Non-interaction Non-interaction Non-interaction 

a -0.420 -0.3814 -0.1072 

p-value 0.8090 0.2604 1 

AIC 217.0 240.5 254.3 



Chapter 4 

88 

 

 

Figure 4.1. Comparison of the predicted responses to the mixture exposure relative to the observed 

response data. Predictions were made according to the independent action and concentration addition 

reference models using the slope and median effective concentration (EC50) parameter values derived 

from the single-stressor concentration–response curves. Both observations and predictions were plotted 

as a percentage reproduction of the control against the sum toxic units based on the EC50 and slope 

values of the single-stressor concentration–response curves (Equation 2.1). In a mixture, under the 

concentration addition reference model, the sum of the toxic units is assumed to equal 1 in case of no 

interaction. The single-stressor concentration–responses curves of Cu (black line) and cyanobacteria 

(gray line) are also plotted. A summary table of the single-stressor concentration–response parameter 

values of Cu and M. aeruginosa as well as the single-dose response curves can be accessed in 

Appendix C Tables C.3 and C.4, Figures C.1 and C.2. CA = concentration addition; IA = independent 

action; Mc = M. aeruginosa; ∑TU = sum toxic units.  
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Table 4.2. ANOVA summary of the effect of M. aeruginosa, temperature and total food concentration 

on the Cu EC50.  

Source of variation DF SS MS F    p R2 

Mc 3    7009   2336.4 120.653 4.39e-05* 0.76 

Temp 2     759    379.5   19.598    0.0043* 0.08 

Tf 1   293    15.117    292.7   0.0115* 0.03 

Temp x Tf     2 284 142.0    7.334    0.0326* 0.03 

Mc x Tf         3 413 137.7    7.112    0.0297* 0.05 

Mc x Temp       5 386 77.2    3.987    0.0777 0.04 

Residuals 5 97 19.4   0.01 

* indicates significant p-values at the 95% significance level. DF= degrees of freedom, SS= sum of 

squares, MS= mean sum of squares, F= F statistic, p= p-value, Mc=Microcystis aeruginosa (% in total 

diet), Temp=temperature (°C), Tf= total food concentration (mg C/L), R2= variance in Cu EC50 

explained  

 

 

 

Figure 4.2. Interaction plots of the effects of percentage M. aeruginosa, temperature and total food 

concentration on the observed Cu EC50. The plots aid visual interpretation of the main effects as well 

as interactive effects quantified in the ANOVA analysis (Table 4.2).
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Figure 4.3. Regression of the predicted vs. observed Cu EC50 values using only the percentage of M. 

aeruginosa (A), percentage of M. aeruginosa as well as temperature and total food concentration without 

interactions (main effects (B), or all main effects as well as all 2 two-way interactions (C). The observed 

Cu NOEC under standard conditions (19°C, 2 mg C/L, 0% M. aeruginosa) is also depicted (see the 

Supplemental Data Figure S1 for the dose response curves). Note that the predictions are made using 

categorical factors (ANOVA). To visualize the goodness of fit a (1:1) line was added. R2 = variance 

explained by the factor(s). 
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Figure 4.4. Regression of the predicted vs. observed Cu EC50 values using the amount (in mg C/L) of 

P. subcapitata and M. aeruginosa as continuous factors (A) and correlation of the observed Cu EC50 

values with the percentage of M. aeruginosa in the diet (B). The observed Cu NOEC under standard 

conditions (19°C, 2 mg C/L, 0% M. aeruginosa) is also depicted (see the Supplemental Data Figure S1 

for the dose response curves). To visualize the goodness of fit a (1:1) line was added. R2 = variance 

explained by the sum of the predictors used in the model (see Table 4.3). 

 

To place  our results in regulatory context we compared the observed Cu EC50 values under different 

factor combinations against a “reference” value, i.e. the copper EC50 concentration obtained under 

standard OECD test guideline conditions (19°C, 2mg C/L, 0% M. aeruginosa) for the clone in this study 

(EC50 = 102 µg/L, Appendix C Figure C.1). All other Cu EC50 values (i.e. in all other conditions 

investigated here) were lower than this reference value. We further noted that the Cu EC50 values at 

20% and 40% M. aeruginosa were lower than the copper NOEC obtained under OECD reference 

conditions in this study (0% Mc, 19°C, 2mg C/L, Figure 4.3A, see Appendix C Figure C.1).  

 

A linear model with the concentration of P. subcapitata and M. aeruginosa (in mg C/L) as continuous 

factors explained 63% of the variance in the observed Cu EC50 (Figure 4.4A). The amount of M. 

aeruginosa explained nearly twice as much of the variance as the amount of P. subcapitata (40% vs. 

23%, Table 4.3). We observed a significant correlation between the observed Cu EC50 and the % of M. 

aeruginosa in the total diet, irrespective of the temperature and total food concentration (approximate 

Spearman correlation: Z = -4.115, p < 0.0001, Figure 4.4B). 
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Table 4.3. Summary of the linear model using the amount mg C/L of P. subcapitata (Pseudo) and M. 

aeruginosa (Mc) as continuous factors. The table includes the estimates of the coefficients, of the 

predictor variables, the standard error (SE), significance (p-value) and explained variance (R²). 

Predictor coefficient SE p R2 

intercept 40.08 7.32 <0.0001* NA 

mg C/L of Mc -57.70 12.61 0.0002* 0.40 

mg C/L of Pseudo 17.74 5.26 0.0032* 0.23 

* indicates significant p-values at the 95% significance level. 

 

 

4.4 Discussion 

Without considering potentially interactive effects, predicted effects of mixtures based on single 

concentration response curves may either under- or over-estimate the actual effects observed in the 

environment (van Gestel, 2010, Moe et al., 2013). Here we provide two important insights regarding 

predictions of the combined effects of stressors. Firstly, we found that, regardless of the reference model 

used, the combined and interactive effects of copper and M. aeruginosa to D. magna reproduction are 

not affected by the temperature and the total food concentration. Secondly, we found that at any given 

food concentration or temperature the median effective concentration of copper is lower in the presence 

than in the absence of M. aeruginosa, while the effects of temperature and total food concentration were 

less important. The second insight is actually a logical mathematical consequence of the observed 

synergisms between copper and M. aeruginosa and equal a parameter estimates across all temperature 

and total food concentrations relative to the IA model described in the first insight. Under the 

assumptions of the IA reference model the fractional effects of the individual mixture constituents (e.g. 

50% effect level) are expected to be independent from each other in a probabilistic sense (Faust et al., 

2003). By analyzing the shift of the concentration-response curve of one component in the mixture under 

fixed concentrations of a second component it can be assessed whether their combined effect is in 

agreement with IA assumptions. We observed a significant effect of M. aeruginosa on the Cu EC50, 

which is underlined by the fact that the EC50 of Cu decreases with increasing M. aeruginosa 

concentration (Table 4.2, Figure 4.4B). This has important implications for all studies applying the IA 

reference model to combined effects of stressors. Below our findings are discussed in more detail. 
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Irrespective of temperature or total food concentration, synergism was consistently identified with the IA 

model (i.e. the observed combined effects were consistently underestimated), while non-interaction was 

identified with the CA model (i.e. the observed combined effects were accurately predicted) (Table 4.1, 

clearly visible in Figure 4.1). Given that the CA reference model provides both more accurate and 

conservative (i.e. protective) predictions than the IA reference model, the former represents a sensible 

choice for risk assessment purposes. Our results add to the accumulating evidence in the literature that 

the CA reference model typically delivers more conservative estimates of the  combined effects 

(Hochmuth et al., 2014, Asselman et al., 2013, Altenburger et al., 1996, Bellas, 2008) and performs well 

as a first tier approach even without in depth knowledge of the mode of action of the mixture components 

(Backhaus and Faust, 2013).  

 

The percentage of M. aeruginosa in the diet alone explained most (72%) of the variance in the median 

effective concentration of copper and when it was used as the only explanatory variable all predicted 

Cu EC50 values were within a two-fold range of the observed EC50 values (Figure 4.3A). This suggests 

that the contribution of temperature and total food concentration (together only explaining and additional 

11% of the variance in Cu EC50 values) is much less important. The latter is supported by the fact that 

the a parameter (which is based on the whole dose response data and not just on the EC50) is very 

similar across all temperature and total food combinations. When the percentage of M. aeruginosa 

exceeded 20% the combined effects of copper and M. aeruginosa were much greater at 15°C than at 

higher temperatures. Higher total food concentration generally reduced the harmful effects of M. 

aeruginosa on Cu toxicity at higher temperatures, while the opposite was observed at lower 

temperatures (higher total food concentration increasing the harmful effects of M. aeruginosa on Cu 

toxicity). These observations suggest that the effect of M. aeruginosa in mixtures with copper is more 

harmful at lower temperatures, as is also demonstrated in the single dose responses curves (Appendix 

C Figure C.2) and in chapter 2 (Hochmuth and De Schamphelaere, 2014). Currently the mechanism by 

which increasing temperatures decrease the sensitivity of D. magna to M. aeruginosa remains unknown, 

but increased detoxification rates at higher temperatures have been suggested as a possible 

mechanism (Yokoyama and Park, 2003).  
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The results presented in this chapter suggest that the adverse effects of M. aeruginosa may be a 

consequence of more than just a decrease in overall food quality as the amount of M. aeruginosa 

explained 40% of variance in the Cu EC50 values, while the amount of P. subcapitata explained this 

variance to a lesser extent (23% of variance, Figure 4.4A, Table 4.3). This is further supported by the 

strong negative correlation between the percentage of M. aeruginosa and Cu EC50 values (Figure 4B). 

It is also in line with our previous reports, in which we showed that the adverse effects of M. aeruginosa 

can be attributed to more than just starvation-like effects in D. magna (Hochmuth and De 

Schamphelaere, 2014, Asselman et al., 2014).  

  

Without addition of M. aeruginosa, Cu toxicity increased with lower total food concentration and was 

least toxic at the intermediate temperature (19°C) increasing at both the higher (23°C) and lower (15°C) 

temperatures (Figure 4.3A). These observations are in accordance with the existing literature, as lower 

food concentrations have been reported to enhance copper toxicity in five cladoceran species including 

D. magna (Koivisto et al., 1992), with Cu toxicity being lowest at 20°C, and higher at 10 and 30°C 

(Boeckman and Bidwell, 2006). Our findings therefore indicate that copper toxicity does change with 

temperature and total food concentration, which is in contrast with standardized experiments at one 

temperature and an ad libitum food supply. It has been postulated that organisms living in environments 

close to their tolerance limits experience an increased vulnerability to additional stress (Heugens et al., 

2001). However, the temperatures and total food concentrations that we selected and tested here are 

still well within the tolerance range of the D. magna clone investigated, which may be one explanation 

as to why these two factors do not have a major influence on the combined effects of copper and M. 

aeruginosa.  

 

Here we highlight that the EC50 of copper decreases 5-fold with increasing M. aeruginosa percentage in 

the total diet, while the difference in EC50 is much less pronounced at different temperatures or total food 

concentrations. Importantly, all Cu EC50 values obtained under non-standard conditions in our 

multivariate experiment(s) are lower than the reference value obtained under standard OECD guideline 

conditions (see Appendix C table C.3). The decrease of EC50 values (i.e. increase of copper toxicity) at 

increasing M. aeruginosa concentrations questions the use of copper-based algaecides in combating 

harmful algae blooms. Further, a diet composed of only 10% M. aeruginosa (= NOEC, see Appendix C 
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Figure C.2) results in copper EC50 values close to the copper NOEC under standard conditions (Figure 

4.3A), which confirms that mixtures at NOEC levels of individual substances can result in adverse effects 

(Breitholtz et al., 2008, Silva et al., 2002). It may also become necessary to derive separate 

Environmental Quality Standards for eutrophic systems. These may – as, with global change 

temperature and cyanobacteria are predicted to increase - be part of climate management strategy (Moe 

et al., 2013). In conditions with a M. aeruginosa percentage of 20% or higher the Cu EC50 is lower than 

the copper NOEC obtained under standard (test) conditions (19°C, 2mg C/L, 0% M. aeruginosa) for the 

clone used in this research (=39.3 µg/L, Appendix C Figure C.1). This observation has regulatory 

significance as, when M. aeruginosa was added we observed more than 50% decline in daphnid 

reproduction at copper levels around the NOEC obtained under standard conditions. The results 

therefore suggest that predicted no effect concentrations (PNECs) or Environmental Quality Standards 

(EQSs) based on copper NOECs derived from standard toxicity tests may not be protective in systems 

that experience M. aeruginosa blooms.  
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5.1 Introduction 

Daphnia magna is widely used as model organism in both ecotoxicology and ecology because of its 

short generation time, high sensitivity to many chemicals and keystone position in the aquatic food web 

(Wogram and Liess, 2001, Mark and Solbe, 1998, Lampert, 2006, Koivisto, 1995). An important 

limitation of conventional risk assessment is that it primarily focuses on determining short-term (typically 

less than one generation) toxicological responses of individual organisms to exposures of single 

chemicals, mostly under constant and (near-)optimal conditions (Van den Brink, 2008 , Calow and 

Forbes, 2003 , OECD, 1998). This contradicts the main goal of ecological risk assessment, which is to 

protect of populations and ecosystems rather than single individuals (Hommen, 2010). Indeed, standard 

tests in ecotoxicology are in sharp contrast with ecological reality, as natural populations are often 

exposed to a combination of chemical and non-chemical stressors and seek to persist over many 

generations (long-term) under time-variable, non-optimal conditions. Non-chemical stressors can be 

both abiotic (e.g. sub-optimal temperature, hypoxia) and biotic (e.g., low food quantity or quality, 

predation, pathogens) and typically increase the sensitivity to chemicals and vice versa (Coors and De 

Meester, 2008 , Heugens et al., 2001, Agatz and Brown, 2013).  

 

Current knowledge is still insufficient and too fragmentary to integrate these ecologically relevant 

aspects into ecological risk assessment (ERA) in a scientifically robust manner (Van den Brink, 2008 ). 

Research is needed to investigate the influence of chemical stressors under more realistic exposure 

scenarios and at higher organisational levels.  A recent study found that the combined exposure to 

imidacloprid and carbaryl can result in a significant decrease in population density, even when no 

mortality was  observed at the individual level (Agatz and Brown, 2013). Another study demonstrated 

that the combined stressors p-353-nonylphenol and predation drove daphnid populations to the brink of 

extinction, although the effects of both stressors were cryptic (i.e. hard to detect statistically) in single 

stressor treatments (Gergs et al., 2013). Together these two studies highlight the potential for 

unexpectedly strong combined stressor effects and the need to assess their consequences at the 

population level. 
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Copper contamination in surface water can locally reach levels that may cause toxicity to Daphnia sp., 

for instance in waters affected by surface run-off from vineyards, where copper is still used as a biocide 

against fungus diseases (Banas et al., 2010). Copper is also an active ingredient in some algaecides 

used to combat harmful algal blooms, the application of which typically results in dissolved copper 

concentrations in the range of 10-100 µg/L (Jancula and Marsalek, 2011). This suggests that ecological 

risk assessment of copper should consider specific situations where harmful M. aeruginosa blooms can 

co-occur with elevated copper exposure. By the end of this century, global surface water temperatures 

are expected to increase on average by 1.8 – 4°C (Christensen, 2007, IPCC, 2007), which will enhance 

the frequency of thermal stratification periods in lakes and thereby increase the prevalence of 

cyanobacteria blooms (Wagner and Adrian, 2009).  

 

We have previously observed in chapter 4 that mixtures at 21d NOEC levels of individual stressors can 

result in adverse effects, as a diet composed of only 10% M. aeruginosa (= 21d NOEC, see Appendix 

C Figure C.2) resulted in copper 21d EC50 on reproduction values lower than the copper 21d NOEC 

under standard conditions. The aim of this chapter was to assess the response of more ecologically 

relevant endpoints (population-level density) to the 21-day Cu NOEC for reproduction derived at the 

individual level under realistic time-variable conditions of global change. Here we compared the 

population density of D. magna over a seasonal increase of temperature representative of late 

spring/early summer in Western Europe under current conditions (15°C-19°C) with that of a population 

experiencing a 4°C increase (19°C-23°C) under global change projections. This temperature change 

was coupled with a realistic temperature-dependent percentage of M. aeruginosa in the total food source 

(Table 5.1) (Davis et al., 2009, Wagner and Adrian, 2009, Lurling et al., 2013, IPCC, 2007), and at 

copper levels equivalent to or lower than the 21-day copper reproduction NOEC (NO Effect 

Concentration) concentration for the studied clone (Hochmuth et al., 2014, Hochmuth et al., 2016).  

 

 

5.2 Material and methods 

5.2.1 Organism cultures and test media 

The Daphnia magna clone used in this chapter was the Xinb3 clone. The experimental organisms 

originated from cultures described in sections 2.1.1 and 2.1.2 in Chapter 2 (Appendix A Table A1-A4). 
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The preparation of culturing and test media has previously been described in Chapter 3 section 2.1.1 

Test animals were acclimated for 2 generations to their respective exposure temperature prior to the 

start of the experiments. The modified M4 medium was prepared and aerated for 72h before each 

medium renewal. 24h prior to the medium renewal the aerated new medium was divided and stored in 

the same water bath as the test jars (to acquire the same temperature as the experimental vessels) at 

19°C in 25L or 50L polyethylene vessels.  

 

Dissolved organic carbon (DOC), total organic carbon (TOC), and pH were measured twice a week, 

once in the fresh medium (before any algae or cyanobacteria were added) and once in the old medium 

(after transferring the daphnids to new fresh medium). Samples were taken as both total (unfiltered), 

and filtered (through a 0.45 mm filter, Acrodisc Filter, Supor Membrane, PALL, Newquay, Cornwall, UK). 

Samples for organic carbon analysis were measured with a TOC analyser (TOC5000, Shimadzu, 

Duisburg, Germany) as non-purgeable organic carbon (NPOC). The pH measurements were performed 

with a pH meter P407 (Consort, Turnhout, Belgium). The pH glass electrode was calibrated before each 

use by using a pH 7 buffer (Merck, Darmstadt, Germany).  

 

Measured dissolved Cu concentrations were 2.4 µg/L (± 0.6, control), 25 µg/L (± 8.9), and 44 µg/L (± 

8.6), mean +/- standard deviation. Measured total Cu concentrations were 4.4 µg/L (± 0.9, control), 43 

µg/L (± 12), and 81 µg/L (± 8.8). The pH remained stable during the entire exposure duration at 7.6 (± 

0.8) in the new medium and at 7.5 (± 0.1) in the old medium across treatments. Average Total Organic 

Carbon (TOC) was 4 mg/L (± 0.1) in the new medium and 3.2 mg/L (± 0.1) in the old medium, while 

average Dissolved Organic Carbon (DOC) was 3.0 mg/L (± 0.1) in the new medium and 2.7mg/L (± 0.1) 

in the old medium.  

 

 

5.2.2 Experimental Design 

We conducted a population level experiment for a total duration of 68 days. The experimental setup 

consisted of a 3 x 4 design, with one constant factor (3 Cu concentrations) and one time-variable factor 

(4 natural stressor levels). As copper is an essential element, it follows and optimal concentration range 

(as illustrated in Chapter 1 Figure 1.5) The control and lower Cu concentrations were  representative of 
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the low and high end of the optimal Cu concentration range for D. magna and based on results derived 

in the same medium (3µg Cu/L = control, 25µg Cu/L = lower Cu concentration) (Bossuyt and Janssen, 

2004 ). The higher Cu concentration (dissolved Cu concentration of 45µg Cu/L) was comparable to the 

NOEC level derived in the same test medium (43.6µg Cu/L = higher Cu concentration) (Hochmuth et 

al., 2014, Hochmuth et al., 2016). The time-variable factor consisted of natural stressor 4 levels 

mimicking a realistic seasonal increase in temperature and cyanobacteria concentration under projected 

global change (IPCC, 2007, Davis et al., 2009, Wagner and Adrian, 2009, Lurling et al., 2013): (i) control, 

(ii) a diet change of 10-20% of the diet consisting of Microcystis aeruginosa under control temperature 

conditions, (iii) a temperature rise of 4°C relative to the control without a diet change, and (iv) 

temperature rise of 4°C relative to the control with a diet change consisting of 20-40% M. aeruginosa 

(see Table 5.1 for details).  

 

 

Table 5.1. Summary table of the experimental design used for the time-variable natural stressor levels. 

The different treatment factors are: a time-variable control conditions under the control temperature 

15°C-19°C), b time-variable M. aeruginosa concentrations and temperatures under the control 

temperature (15°C-19°C), c time-variable temperature conditions under the projected global change 

regime (temperature = control + 4°C, i.e. 19°C-23°C), d twice the amount of time-variable M. aeruginosa 

concentrations as in b and temperature conditions under projected global change (temperature = control 

+ 4°C). 

 Control conditions Global change conditions 

Period Controla MCb +4°Cc 2xMC+4°Cd 

1 (Day 0-14) 0% MC-15°C 10% MC-15°C 0% MC-19°C 20% MC-19°C  

2 (Day 14-28) 0% MC-16°C  12.5% MC-16°C 0% MC-20°C  25% MC-20°C 

3 (Day 28-42) 0% MC-17°C 15% MC-17°C  0% MC-21°C 30% MC-21°C  

4 (Day 42-56) 0% MC-18°C 17.5% MC-18°C  0% MC-22°C 35% MC-22°C  

5 (Day 56-68) 0% MC-19°C 20% MC-19°C 0% MC-23°C 40% MC-23°C  
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Each factor combination was replicated 4 times resulting in a total of 48 experimental units. Prior to the 

start of the test, populations were acclimated for 2 generations to their respective start exposure 

temperatures (15°C or 19°C) and fed ad libitum. At the start of the test, jars containing 1L of modified 

M4 medium (= experimental unit) were inoculated with 3 egg-carrying females of the same age (14 days, 

+/- 1 day) and 5 neonates (< 24 hrs). To each experimental unit a total food density of 2 mg dry weight/L 

(≈0.8 mgC/L) was added daily (Evens et al., 2009 , De Schamphelaere and Janssen, 2004 ). In treatment 

combinations with green algae only this consisted of 100% Pseudokirchneriella subcapitata, while in 

treatment combinations with cyanobacteria this consisted of a mixture of P. subcapitata and M. 

aeruginosa. Every two weeks (on day 14, 28, 42, 56) the experimental conditions were changed: 

temperature was increased by 1°C (control conditions: 15°C at the start to 19°C at the end; global 

change conditions: 19°C at the start to 23°C at the end), % M. aeruginosa was increased by 2.5% (on 

dry weight basis) under control conditions (10% at start to 20% at end) and by 5% under global change  

conditions (20% at start to 40% at end). The medium was completely renewed 3 times per week and 

population abundance was recorded by gently pouring the contents of the jars over 3 sieves with 

consecutively smaller mesh sizes. This allowed us to determine 3 population size classes: ‘adults’ 

(>2mm, retained on a 800µm sieve), ‘juveniles’ (non-egg carrying, 1.2-2mm, retained on a 500µm sieve) 

and ‘neonates’ (typically < 48h old, <1.2mm, retained on a 200µm sieve). Individuals present on each 

sieve were counted and carefully transferred with a pipette to the fresh medium. To simulate predation, 

every two weeks (simultaneously with the changes in the other time-variable experimental conditions) 

50% of each of the 3 different size classes (adults, juveniles, neonates) were removed at random. In 

line with negative frequency dependent selection, a threshold abundance of 50 daphnids per litre was 

above which predation events were carried out (Hampton et al., 2006, Visser, 1982). 

 

 

5.2.3 Data analysis   

For the statistical analysis we split the exposure duration into 5 time periods reflecting the 5 changes in 

the time-variable conditions and artificial predation event (Table 5.1). A mixed linear model with period 

(5 levels), Cu concentration (3 levels) and natural stressor factor (4 levels) as fixed effects and jar 

(experimental unit) as random effect was applied. We included different weights for the fixed effects to 

consider for unequal variances as well as a correlation structure correlating abundance at day t+2 (or 
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t+3, as abundance was recorded on Monday, Wednesday and Friday) per jar with the abundance at day 

t. The final model was selected based on the lowest AIC, by comparing models with different or no 

weights or correlation structures. We tested for effects of the single factors and specifically for 

statistically significant two-way interactions between Cu concentration and the natural stressor level (i.e 

combined exposure) for each time period using a Wald Chisquare test wit Holm adjustment for multiple 

testing. Treatments were always compared against the control populations. The statistical analysis was 

conducted in R using the package phia (Rosario-Martinez, 2013). To test for interactive effects between 

the copper and the natural stressor levels at each time point, interaction effect sizes were calculated for 

each observation of population density using Hedges d, an estimate of the standardized mean difference 

not biased by small sample size (Jackson et al., 2016, Gurevitch and Hedges, 2001). Hedges d (also 

termed ‘interaction effect size’) for each observation was calculated as the difference between the 

observed effect of both stressors and the predicted additive effect based on the sum of their single 

independent effects (see (Jackson et al., 2016) and the Supplementary material therein for equation 

and model details). A significant interactive effect (i.e. different from non-interaction) was assessed using 

95% confidence intervals calculated around each effect size. If the 95% confidence interval includes 

zero non-interaction was concluded. Negative interaction effect sizes (less than zero) represent 

antagonism (i.e. observed total population density is larger than the density predicted from single 

additive effects of the individuals stressors) while positive effect sizes (greater than zero) represent 

synergism (i.e. observed total population density is smaller than the predicted density from single 

additive effects of the individuals stressors).  

 

 

5.3 Results 

5.3.1 Individual and interactive effects of copper and the natural stressor levels at different 

time periods 

The effects of the individual factors were limited (Figure 5.1A). Under an exposure of 44µg Cu/L 

population density was significantly lower compared to the control in period 2 (p < 0.001) but higher in 

period 4 (p = 0.035). Population density was higher under the control in period 2 (p = 0.0315) and higher 

under the +4°C stressor level in period 4 (p = 0.0263). Under the MC stressor level (2.4 µg Cu/L) total 

density was lower than under the control in periods 2 (p = 0.004) and 5 (p = 0.0334) but higher in period 
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4 (p = 0.0135). Under the 2xMC+4°C stress level total density was higher than the control at period 1 (p 

= 0.0126) but lower at period 2 (p = 0.0056). Interactive effects between copper and natural stressor 

levels were consistently observed only when M. aeruginosa was present (MC and the 2xMC+4°C stress 

level), regardless of the temperature (Figure 5.1B and Figure 5.1C).  Under an exposure of 25µg Cu/L 

total population density was much lower in the MC stressor level in period 4 (p < 0.001) and in the 

2xMC+4°C stress level in period 5 (p = 0.001) compared to the control (Figure 5.1B). Under an exposure 

of 45µg Cu/L total population density was significantly lower in the MC stressor level in periods 3 (p = 

0.016) and 4 (p < 0.001) and at the end of the experiment this population was one the verge of extinction, 

with 2 out of the 4 replicates already extinct and a total of only 3 non-egg carrying adults remaining in 

the other two experimental units (Figure 5.1C). The interactive effects between copper and natural 

stressors were more pronounced under the 2xMC+4°C stressor level than under the MC level. At the 

end of the experiment, total population density declined significantly under the combined exposure to 

25µg Cu/L and the 2xMC+4°C stressor level (period 5: p < 0.001, Figure 5.1B). Under the combined 

exposure to 45µg Cu/L in the 2xMC+4°C stressor level total abundance was significantly lower 

compared to the control (p < 0.002) at all time periods exempt for period 2 (p = 0.1559, Figure 5.1C). 

Further, under this exposure the first replicate population went extinct on day 23 and by day 54 the last 

replicate population reached complete extinction. 

 

 

5.3.2 Interactive effects of copper and the natural stressor levels at each time point  

Significant interaction effect sizes (Hedge’s d) (i.e. 95% confidence interval not including zero) were 

observed for all stressor combinations at various time points. However, the occurrence and magnitude 

of interactive effects differed between factor combinations. The combination of copper with the MC 

stressor level resulted in consistent positive effect sizes, i.e. synergisms, which were greater (larger 

Hedge’s d) at 45µg Cu/L (Figure 5.2E) than at 25µg Cu/L (Figure 5.2B). The combination of copper with 

the 2xMC+4°C stressor level increased the magnitude of the significant synergisms (i.e. positive effects 

sizes, Figure 5.2C and Figure 5.2F). Consistently negative interaction effects sizes, i.e. antagonisms, 

were only observed when no M. aeruginosa was added, regardless of the copper level or temperature 

(Figure 5.2A and Figure 5.2D). This indicates that copper and temperature together had a stimulating 

effect on total population abundance, if no M. aeruginosa was present. 
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Figure 5.1. Average (n = 4) population density of Daphnia magna over the course of the exposure. 

Upward pointing arrows (↑) indicate the specific days where half of the population was removed at 

random to mimic predation. A: The effect of the individual stressors on population density. B: The 

combined effect of 25µg Cu/L and climate stressors. C: The combined effect of 44µg Cu/L and natural 

stressors. See Table 5.1 for a description of the natural stressor levels. Control: time-variable control 

conditions under the control temperature regime (15°C-19°C), MC: M. aeruginosa concentrations and 

temperatures under control temperature (15°C-19°C). +4°C: time-variable temperature conditions under 

the projected global change (temperature = control + 4°C, i.e. 19°C-23°C). 2xMC+4°C: twice the amount 

of time-variable M. aeruginosa concentrations as in MC and temperature conditions under projected 

global change (temperature = control + 4°C, i.e. 19°C-23°C). 
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Figure 5.2. The observed combined effects of copper and natural stressor levels expressed as individual 

effect sizes (Hedge’s d), relative to the predicted additive effect based on the sum of their single 

independent effects (= 0). If the 95% confidence interval includes zero non-interaction was concluded 

(i.e. no significant difference between measured and predicted response variable under the combined 

exposure). Negative interaction effect sizes (Hedge’s d less than zero) represent antagonism (i.e. 

observed total population density is larger than the density predicted from single additive effects of the 

individuals stressors) while positive effect sizes (Hedge’s d greater than zero) represent synergism (i.e. 

observed total population density is smaller than the predicted density from single additive effects of the 

individuals stressors). Figures 5.2A-C show the combined effects from an exposure to 25µg Cu/L and 

Figures 5.2D-F show the combined effects from an exposure to 44µg Cu/L. Please note a difference in 

the scale of the y-axis across the (Figures 5.2A-F).   
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5.4 Discussion 

In the present study the changes in population density over time were monitored in a D. magna 

population exposed to environmentally relevant copper concentrations under realistic global change 

conditions (notably the addition of M. aeruginosa to the diet and a temperature rise of 4°C). The aim of 

this chapter was to assess the response of more ecologically relevant endpoints (population-level 

density) to the 21-day Cu NOEC for reproduction derived at the individual level under realistic time-

variable conditions of global change.  

 

Firstly, the results suggest that interactive effects predicted from standard ecotoxicity tests can be 

translated to more complex realistic situations. Here we observed predominantly synergistic interactions 

between copper and global change conditions (almost exclusively in the presence of M. aeruginosa), 

when analysing the population abundance at each time point (Figure 5.2). Our results suggest limited 

effects on total population density of Cu, M. aeruginosa and temperature, when considered individually 

(Figure 5.1A) Synergistic interactions are especially a concern for population and community-level 

ecological risk assessment, because they complicate extrapolations and predictions from standard 

individual ecotoxicity tests (Moe et al., 2013, Van den Brink, 2008 ). Standard ecotoxicity tests typically 

only cover one generation and may therefore not accurately capture the long term effects over several 

generations at the population level (Heugens et al., 2001). At the individual level we previously reported 

that the synergistic effects of copper and M. aeruginosa to D. magna reproduction were not affected by 

the temperature (Hochmuth et al., 2016). Similar results were reported in another recent study, where 

short-term (< 14 days) exposure to low dosages of toxic M. aeruginosa resulted in higher population 

density compared to a control without M. aeruginosa, while prolonged exposure (>14 days) to low-

dosage M. aeruginosa resulted in a strong decrease in population densities, regardless of the 

temperature (Domis et al., 2013). We have previously documented that the Cu 21 day EC50 of the same 

clone as used in this study decreases 5-fold with increasing MC in diet (Hochmuth et al., 2016). Here 

we have provided evidence that future global change can cause extinction even at the copper 21-day 

NOEC concentration of the freshwater ectotherm D. magna. Our results obtained at the population level 

confirm previous findings obtained at the individual level (Hochmuth et al., 2016) and suggest that 

copper NOECs derived from standard toxicity tests may not be protective in systems that experience M. 

aeruginosa blooms. 
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Secondly, we highlight the need to consider combined effects of stressors in ERA. We observed that 

under global change related stressors the daphnid population was clearly more sensitive to the Cu 21 

day NOEC for the D. magna clone in our study (44µg Cu/L) and to some extent already to a 

concentration representative of the higher end of the optimal copper concentration (25µg Cu/L, see 

(Bossuyt and Janssen, 2004 )) compared to the Control (2.4µg Cu/L). While the effects of all copper, M. 

aeruginosa and temperature levels were limited when evaluated in single exposures, the combination 

of all 3 resulted in the extinction of the population under an exposure to 44µg Cu/L with added M. 

aeruginosa and a temperature increase of 4°C (Figure 5.1C). Hence, without the data on mixture effects 

at the individual level, we could not have predicted the population level extinction, based on single stress 

exposures to copper and M. aeruginosa alone. This is an example of an ecological surprise, i.e. multiple 

stressors having combined effects that are not expected from the effects of the single stressors (Paine 

et al., 1998). Evidence from the literature raises concern over the future occurrence of such ecological 

surprises, given the extent to which the freshwater ecosystems are impacted by a range of simultaneous 

stressors (Hecky et al., 2010, Jackson et al., 2016, Segner et al., 2014, Darling and Cote, 2008). The 

prevalence of ecological surprises may increase in the light of global change and multiple, interacting 

environmental stressors. Contaminants, for which the effects are getting more toxic in the wake of global 

change, may be require stronger environmental quality standards (Moe et al., 2013).  

 

Further, we highlight the need to overcome the mismatch between the level of interest of ecological risk 

assessment, which is populations or higher levels of organizations and the currently used endpoints in 

ecotoxicology, which are at the level of individuals. The standard ecotoxicological concepts used in 

ecological risk assessment to protect ecosystems are an oversimplification, as the so-called “predicted 

no effect concentrations” (PNEC) and “no effect concentrations” (NOEC) are typically derived from effect 

threshold concentrations determined in laboratory toxicity tests using single species. It is an ongoing 

challenge for ecotoxicologists to extrapolate the combined effects of toxicants and global change, 

measured at the individual level (e.g., reduced survival and reproduction) to the population level (e.g., 

population growth rate, extinction risk) and community level (e.g. species richness, food-web structure) 

(Moe et al., 2013).  
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The difficulty to extrapolate from laboratory to field conditions has been raised repeatedly (Moe et al., 

2013, Van den Brink, 2008 ). We have demonstrated that the exposure to copper around the geometric 

mean 21 day Cu NOEC for D. magna reproduction can already affect total abundance under global 

change projections to such an extent that daphnid populations may go extinct within two months. The 

question arises whether we could have predicted the outcome of our experiment with standard 

ecotoxicity data. We have previously documented that the concentration addition model accurately 

predicted the synergistic effects between copper and M. aeruginosa on D. magna at the individual level 

(Hochmuth et al., 2014, Hochmuth et al., 2016). The fact that the model predicts that the combined 

effects are greater than zero even if the individual effects are both zero, suggests that population level 

effects may be predicted from individual level effects. Recent developments in modelling frameworks, 

such as mechanistic effect models, combining individual level reproduction and survival models with an 

individual-based population model (IBM) (e.g. DEB-IBM) offer a possibility to not only understand the 

individuals’ responses but further to extrapolate them to the population level (Martin et al., 2013b). 

Extending such a modelling framework to account for changing global conditions may be an important 

step towards a more realistic risk assessment of chemicals. 
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6.1 Introduction 

Risk assessment is faced with a mismatch between the level of interest, which is the protection of 

populations or higher levels of organizations, and the effect assessment of stressors in practice, which 

is based on standard ecotoxicity tests with individuals. Natural populations are often exposed to multiple 

contaminants under non-optimal and time-variable conditions. Non-chemical stressors, both biotic and 

abiotic (e.g., food shortage, non-optimal temperature, and predation), typically increase the sensitivity 

of organisms to chemicals and vice versa (Heugens et al., 2001, Coors and De Meester, 2008 ). 

Standard ecotoxicity tests derive short-term (typically less than one generation) toxicological endpoints 

(typically survival or reproduction) of individuals under chemical exposure for individual substances, 

mostly under invariable and (near-)optimal conditions (De Schamphelaere et al., 2011, Heugens et al., 

2001 , Coors and De Meester, 2008 , Van den Brink, 2008 ). 

 

ERA is faced with the challenge to develop predictive models that can take into account the ecological 

complexity displayed in real populations and ecosystems (European Union, 2013) (Grimm et al., 2009). 

Mechanistic models, that use inherent properties from individuals to derive effects at higher organization 

levels, could address some of the current limitations in ERA, as patterns observed at higher scales tend 

to emerge of processes occurring at lower scales (Bradbury et al., 2004, Forbes and Calow, 2012, 

Chave, 2013, Grimm and Railsback, 2005). Recently a generic implementation of Dynamic Energy 

Budget (DEB) theory in an individual-based model (IBM) was developed (Martin et al., 2013a). The 

combination of DEB and IBM has many advantages over other mechanistic models. The IBM 

component of the model allows for population level responses to emerge from the properties of 

individuals (Figure 6.1). IBMs in particular seem particularly suited for ERA because they consider 

processes occurring at the individual level such as growth and reproduction, the focal level of standard 

ecotoxicity tests (Jager et al., 2014, Martin et al., 2013b, Gabsi and Preuss, 2014) (Figure 6.1). 

Incorporating chemical effects on individuals in IBMs therefore allows to explore how these effects 

propagate to the population level. In recent years, IBMs have been applied successfully to predict the 

population dynamics of Daphnia magna, a test species used in ecotoxicology (Preuss et al., 2009, 

Preuss et al., 2010, Gabsi and Preuss, 2014, Gabsi et al., 2014).  
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Figure 6.1. Schematic diagram of the organisation in an IBM. An IBM follows the entire life cycle of 

each individual at discrete time steps. Each individual follows the steps in the same order as illustrated 

in the diagram. The steps that change the outcome of the state of the individual are shaded in grey. 

 

 

The underlying goal of the DEB approach is to understand the dynamics of biological systems, from 

cells to ecosystems, via a balance approach for mass and energy (Nisbet et al., 2000, Kooijman and 

Metz, 1984, Kooijman, 2010). (Figure 6.2). DEB is therefore a generic theory, theoretically universal in 

its application, as its key assumption is that the mechanisms governing metabolic organization are 

similar among species (Kooijman, 2010) (Figure 6.2). Similarly to IBMs, DEB theory considers that 

individuals are the key unit of interest for understanding dynamic systems at higher levels of 

organisation. DEB translates environmental conditions to individual performance (growth, survival and 

reproduction), which is important because the trade-offs in life history traits that DEB specifies (growth 

vs reproduction, time and size to maturation) turn out to strongly influence population dynamics (Denney 

et al., 2002). Therefore, IBMs can benefit from the generality of DEB, while IBMs enable scaling from 

the individual DEB-model to populations. An extensive overview of DEB theory and its applications can 

be found in several key papers (Nisbet et al., 2000, van der Meer, 2006, Sousa et al., 2010, Kooijman 

and Metz, 1984). 

 

Using this DEB-IBM framework, Martin and colleagues were successfully able to predict population 

growth rates and peak densities of experimental D. magna populations in multiple experimental settings 

from the properties of individuals (Martin et al., 2013a, Martin et al., 2012). The same DEB-IBM 



Chapter 6 

114 

 

framework was used to extrapolate chemical stress from the individual to the population level, using 

information at the individual level on the effect of 3,4-dichloroanailine on D. magna (Martin et al., 2013b). 

Stressors were modelled as changes in the value of one or more parameters in the DEB sub-model, 

thereby altering one or more of the energetic fluxes leading to different patterns in growth or 

reproduction. The pattern of the stressed life history output depends on the physiological mode of action 

(PMoA). In their paper they identified 4 potential PMoAs: feeding/assimilation, maintenance, growth 

costs, reproduction costs, and embryonic hazard (Figure 6.2 and Table 6.1) (Martin et al., 2013b). The 

individual level data sets indicated no significant effects on growth, excluding all PMoAs that have an 

effect on growth (all except the reproductions costs and embryonic hazard PMoAs). Assuming direct 

effects on reproduction, the model was able to accurately predict the population response to increasing 

concentrations of 3,4-dichloroaniline. This suggests that the combination of DEB theory with IBMs is a 

promising tool for ERA. 

 

Table 6.1. DEB parameters affected by stress depending on the Physiological Mode of Action (PMoA). 

Parameter values in combination with environmental conditions determine the magnitude of energy 

fluxes as governed by a set of coupled differential equations (More details on the DEB parameters 

affected by stress can be found in Appendix D Table D.2). 

 

* We used the same assumption as Martin et al. (2013), making the assumption that both maturity and 

somatic maintenance costs are both equally affected, however effects on each parameter 

independently are also possible.  
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Figure 6.2. Diagrams illustrating energy flow according to DEB theory and the implementation of toxic 

stress on physiological endpoints (reproduction and growth) via the DEB framework. A: Scheme of the 

standard DEB-theory and physiological mode of actions (PMoAs). The state of the environment 

(characterized here by food density) determine the magnitude of the energy fluxes which in turn affect 

the life history of the organism, including growth and reproductive output. Stress is modelled in DEB as 

changes in the value of one or more parameters, resulting in changes in one or more of the energetic 

fluxes, hence leading to different patterns in growth and or reproduction. The pattern of the physiological 

response under stress (here reproduction and length are shown) depends on the PMoA. Each number 

in the left diagram represents the point where toxicity via a specific PMoA disrupts energy flow. In Table 

6.3, the parameters affected by the different PMoAs are listed. B: Length and reproduction associated 

with stress via each PMoA are shown. The growth and reproductive predictions for each PMoA 

correspond to the stress level required to result in a reduction in reproduction of 50% relative to control 

after 21 days (indicated by the vertical dashed line) in a standardized ecotoxicity test (diagrams taken 

from Martin et al. 2014). 
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The aim of this chapter was to test whether DEB-IBM is a suitable modelling approach to predict 

population level effects of chemical and natural stressors using standard toxicity data collected at the 

individual level. This aim was addressed in 2 steps: 

(1) A DEB-IBM developed by Martin et al. (2013) was calibrated using data on total reproduction 

after 21 days (i.e. a standard endpoint in ecotoxicology) collected in chapter 4.  

(2) The predictions made by the DEB-IBM were validated with the independent population level 

data collected in chapter 5. 

 

 

6.2 Material and Methods 

6.2.1 Individual and population level experiments 

Below follows a short description of the experimental design. See the methods sections in chapter 4 

(individual level experiment) and chapter 5 (population level experiment) for a more detailed description. 

In chapter 4,  a standard 21-day ecotoxicity experiment was carried out with a full factorial design using 

8 copper and 4 concentrations of Microcystis aeruginosa at 3 different constant temperatures (15°C, 

19°C, 23°C) and 2 total food concentrations (low: 0.8 mg C/L and high: 2 mg C/L). In chapter 5, a 

population level experiment was conducted for a total duration of 68 days. The experimental setup 

consisted of 3 x 4 design, with one constant factor (3 copper concentrations) and one time-variable 

factor (4 natural stressor levels). Every two weeks (on days 14, 28, 42, 56) the experimental 

environmental conditions changed: temperature was increased by 1°C (control: 15°C at the start and 

19°C at the end, global change: 19°C at the start and 23°C at the end), % M. aeruginosa increased by 

2.5% in the control climate regime (10% at start and 20% at end) and by 5% in global change regime 

(20% at start and 40% at end). Each experimental population was fed daily with a total food density of 

0.8 mg C/L based on dry weight of (2 mg dry weight/L). To simulate predation, every two weeks 

(simultaneously with the changes in the other time-variable experimental conditions) 50% of each of 

the 3 different size classes (adults, juveniles, neonates) were removed at random. In line with negative 

frequency dependent selection, a threshold abundance of 50 daphnids per litre was above which 

predation events were carried out (Hampton et al., 2006; Visser, 1982). The comparison of the 

experimental conditions between the experiment by Preuss et al. (2009) (used for the development of 
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the original DEB-IBM) and the experimental conditions in chapter 4 and 5 (used to calibrate the original 

DEB-IBM) can be consulted in Table 6.2. 

 

 

Table 6.2. Comparison of the experimental conditions in chapter 4 and chapter 5 to the experimental 

conditions by Preuss et al. (2009) used for the development of the original DEB-IBM model. Please 

note that the differences in the experimental conditions were accounted for in the model calibration (see 

section 6.2.3). 

Experimental 

condition 

Preuss et al. (input for 

DEB-IBM) 

Chapter 4 Chapter 5 

D. magna 
clone 
 

Clone B Xinb3 Xinb3 

Volume 
 

900mL 40mL 1000mL 

Initial density 5 neonates < 24hrs old, or 
3 adults and 5 neonates  

1 neonate < 24hrs 
old 

3 adults (14 days old  
+/- 1 day) 
5 neonates < 24hrs old 

Food source Desmodesmus subspicatus  Pseudokirchneriella 

subcapitata 

 

Pseudokirchneriella 

subcapitata 

 
Feeding cells were added each day 

Monday – Thursday, and 
3x  the normal food level on 
Friday  

cells were added 
each day 

cells were added each day 

Medium 
change  

Medium renewal 3 times a 
week 

idem idem 

Endpoints 3 times a week the 
population was counted in 
3 size classes, 
representative for different 
life stages separated by 
sieving with different mesh 
sizes (adults: ≥2.2mm, 
juveniles: ≥1.4mm and 
<2mm, neonates: <1.1mm). 

Daily record of  
survival of adults and 
number of neonates 
produced  

3 times a week the 
population was counted in 
3 size classes, 
representative for different 
life stages separated by 
sieving with different mesh 
sizes (adults: ≥2mm, 
juveniles: ≥1.1mm and 
<2mm, neonates: <1.1mm). 

Duration 42 days 21 days 68 days 
Temperature 20°C 15°C, 19°C, 23°C Weekly increase of 1°C 

under control conditions 
(15-19°C) and global 
change predictions (19-
23°C)  

Artificial 
predation 

none Juveniles removed 3 
times a week (at 
medium renewal) 

50% removal across each 
of the 3 size classes every 
two weeks 
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6.2.2 Description of the original DEB-IBM model 

In this chapter the same DEB-IBM published by Martin and colleagues was used (Martin et al., 2013a). 

It has eight ‘scaled’ parameters, with two additional parameters for the aging sub-model (ageing 

parameters), two parameters for the feeding sub-model (prey dynamics parameters) and three D. 

magna specific parameters (Appendix D Tables D.1 and D.2) (Martin et al., 2013a). A full description 

of the DEB-IBM implemented by Martin, following the ODD protocol for describing IBMs (Grimm et al., 

2006), the user manual, and the NetLogo file of DEB-IBM can be accessed online 

(https://popecology.wordpress.com/deb-ibm/). In the DEB framework each individual is characterized 

by four primary state variables (referred to as “DEB state variables”) that describe the energy content 

of four different compartments: “structure”, which determines the actual size, feeding rates, and 

maintenance costs; “reserves”, which serve as a buffer between energy flow from feeding to metabolic 

processes; “maturity”, which is a continuous state variable governing transitions between three 

development stages (embryo, neonate, adult) at fixed maturity levels, and a “reproduction buffer”, into 

which mature individuals (i.e. adults) direct energy for reproduction. A schematic design of the energy 

flow at the level of the individual can be consulted Figure 6.2. 

 

DEB theory use differential equations to describe how the energy from food is used at the individual 

level for physiological processes such as maintenance, growth and reproduction (Nisbet et al., 2000). 

For in-depth reviews of DEB the following papers are a good starting point (Jager et al., 2014, van der 

Meer, 2006, Ananthasubramaniam et al., 2015, Sousa et al., 2010). In summary, food is ingested by 

the individual (via the feeding flux JX) and then assimilated (via the assimilation flux JA) to fuel different 

metabolic processes. Embryos do not assimilate food but consume their egg buffer WB until birth. A 

fraction K of the assimilation flux JA is used for maintenance (JM) and for somatic growth (JV) of the 

structural biomass WV. A fraction 1 – K of the assimilation flux JA is used by juveniles for maturation. 

After puberty, this 1 – K fraction of the assimilation flux JA describes the mass flux JR towards the 

reproduction buffer WR. General DEB theory makes no assumptions on how the reproduction buffer is 

converted into offspring, as too many reproductive strategies exist. In the specific case of D. magna, 

the energy in the reproduction buffer is converted into embryos during discrete reproductive events as 

daphnids reproduce in clutches (i.e. broods). Energy allocated to the reproduction buffer is accumulated 

over one molt and the energy content per egg is assumed to be fixed throughout the life cycle. The 
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number of eggs is determined by the size of the reproduction buffer and by the mass per egg. The 

embryos develop during the next molt, and hatch at the end of that molting period (Martin et al., 2013a).  

At reproduction events, the available reproduction buffer is converted to eggs.  

 

We started off by using the same DEB parameters as Martin et al. (2013a) (without modifications for 

our D. magna clone) and calibrated the DEB-IBM model, using the standard ecotoxicity data set 

obtained in chapter 4. We then use this calibrated model to make a priori simulations of population 

abundance under time-variable conditions. The population experiment data from chapter 5 was 

compared to the model predictions to validate DEB-IBM. What follows is a brief overview of the DEB-

IBM and how it was adjusted and modified to the purpose of this research.  

 

 

6.2.3 Calibration of the original DEB-IBM model  

The original DEB-IBM (Martin et al., 2013a) model was calibrated using the control data on total 

reproduction after 21 days (no Cu or MC added) from chapter 4, which was available for two food 

concentrations (0.8 and 2mg C/L) and three temperatures (15, 19 and 23°C). It was calibrated on the 

basis of differences in the experimental design (see Table 6.2). 3 specific adjustments were made: (1) 

the adjustment of temperature to include the effect of the different time-variable temperatures, (2) the 

adjustment of feeding related parameters to account for the different algal species and D. magna clone 

(3) the estimation of the stress level for two potential PMoAs (feeding and maintenance). See Appendix 

D Tables D.1 and D.2 for a complete list of the DEB-IBM model parameters and which parameters are 

affected by the correction factors. 

 

 

6.2.4 Arrhenius factor as temperature adjustment 

All metabolic rates depend on the body temperature. As an ectotherm, the body temperature of 

daphnids matches that of its environment closely. As all rates in the DEB-IBM, as well as the time 

between molts depend on temperature, a temperature correction was used. A well-established method 

to account for temperature within the homeostatic range for D. magna is the Arrhenius relationship 

(Kooijman, 2010, Rinke and Vijverberg, 2005). The Arrhenius temperature is species-specific and has 
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been determined for D. magna using the von Bertelanffy growth (1957) (= 6400 °K) (Kooijman, 2010, 

Kooijman, 1988). The Arrhenius law predicts that the natural logarithm of mass-corrected metabolic 

rates is a linear function of the inverse absolute temperature. To implement the effect of temperature in 

the model, all the rates that are temperature dependent were multiplied by a temperature adjustment 

factor (Arrhenius factor, kT), based on the Arrhenius relationship (Kooijman, 2010, Kooijman, 1988) to 

calibrate: 
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                 (Equation 6.1) 

 

Where k(T) is the Arrhenius factor at temperature T (°K), k1 is the Arrhenius factor at the standard 

temperature and is set to 1 (no temperature correction at 20°C), TA is the Arrhenius temperature (in 

Kelvin), T is the absolute temperature (in Kelvin, = 293°K), T1 is the chosen reference  temperature (in 

Kelvin).  

 

 

6.2.5 Adjustment of feeding related parameters 

In the original DEB-IBM, algae were administered as number of Desmodesmus subspicatus cells per 

volume and the cell number was equated to mg C, assuming that D. subspicatus has an average carbon 

content of 1.95×10−8 mgC cell−1 (Sokull-Kluettgen, 1998; unpublished recent results from the laboratory 

of the Institute of Environmental Research, RWTH Aachen University in Martin et al. 2013). Although 

we used a different food source (Pseudokircheriella subcapitata) than Preuss and colleagues, we 

initially tried to fit the model by solely expressing it as the equivalent quantity of D. subspicatus, as the 

amount of carbon administered in the test. We fed 2.5 or 5 mg/L P. supcapitata based on dry weight (≈ 

0.8 or 2mg C/L, knowing that the carbon/dry weight ratio is ~0.4, (Evens et al., 2009 , De 

Schamphelaere and Janssen, 2004 ). However the simulated individuals reproduced much more than 

in our observations (2-10-fold, depending on the treatment). We hypothesized that this divergence was 

a consequence of using both a different food source and a different clone. Different feeding related 

parameters have an effect on the food quality and size, as well as handling time by the daphnid. 

Assimilation is the remaining energy fixed into reserves, after removal of the energy lost during 
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digestion. By assuming that assimilation efficiency is independent of feeding rate (as it depends on a 

diet specific parameter), assimilation rate becomes proportional to ingestion rate, which has been 

experimentally demonstrated (Kooijman, 2010). The half-saturation constant can be understood in 

terms of species-specific physiological characteristics of the consumers in response to their specific 

food source (e.g. handling and digestion time). Differences in the half-saturation constant have been 

reported within one order of magnitude for D. magna clones of the same size, while even higher 

difference can be expected among D. magna clones differing in body size (Mulder and Hendricks, 

2014). We therefore re-calibrated the model by optimizing the maximum ingestion rate (JXAm) (to the 

same extent as the maximum assimilation rate (JAm), which is scaled out of the model) and the half-

saturation constant K.  As feeding rates vary with temperature and total food concentration, the 

complete data set (three temperatures and two total food concentrations) was used for the optimization 

procedure (Yurista, 1999). Optimization was done by randomized sampling (10,000 iterations) and 

selection of the best parameter combination using the simulation with lowest SSE compared to the 

control observations. 

 

 

6.2.6 Stress level determination 

At the individual level only sub-lethal effects were considered. Toxicants, once taken up by an individual, 

are assumed to affect one or more physiological processes. According to DEB theory, stress will affect 

one or more individual parameters (dependent on the mode of action of the stress), which in turn alters 

life-history output over time. Thus the type of sub-lethal effect invoked by a toxicant depends both on 

the physiological process (which parameter is affected), and the magnitude of the effect on that 

parameter. Martin et al. (2013) referred to effects on different parameters as different ‘‘Physiological 

Modes of Action’’ (PMoA).  The 5 different PMoAs identified are depicted in Figure 6.2 and how they 

affect the parameters is illustrated in Table 6.2. The stress levels fitted to the individual data were used 

for the simulations at the population level. Given that we observed negative effects of both copper and 

M. aeruginosa on daphnid length in the life table data (see Appendix D Figures D.1 and D.2), we could 

a priori exclude reproduction as a PMoA, as this PMoA doesn’t simulate a change in growth in response 

to stress (see illustration of the effect on length over time in Figure 6.2) Further, growth was excluded 

as a potential PMoA a posteriori, on the basis of the simulation results (shown in Appendix D Figure 
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D.3 and not further discussed in this chapter). Simulations using growth as PMoA significantly 

overestimated the combined effects compared to the other 2 PMoAs (growth PMoA predicted the 

populations to already go extinct in the 25µg Cu/L+MC treatment and die out instantly in all other mixture 

treatments).  

 

Given that the results of chapter 2 and chapter 4 suggest that the Concentration Addition (CA) reference 

model delivers the most accurate predictions of the combined toxicity of copper and M. aeruginosa, we 

decided to convert the concentrations of the two stressors to their toxic units relative to their EC50 values 

obtained in chapter 4. In line with the CA model, we used the sum of the Toxic Units (TU) of copper and 

M. aeruginosa (obtained from the single dose response curves) to fit the stress level to each TU 

combination using a hockey stick regression:  

<=>?$$ = @a	 ∙ �∑TU� + 	b, if		∑TU >	– b/a	
0,																										if	∑TU	 ≤	– b/a

                (Equation 6.2) 

Where a is the slope and b the intercept of the hockey stick relationship between the stress level and 

the sum of the toxic units (∑TU). The complete data set from chapter 4 was used in order to account 

for a temperature and food density effect. Based on trial simulations and the knowledge of the range of 

the (∑TU) in the life table experiment, we allowed both parameters to be sampled from the following 

ranges: 0 < a < 10 and -2 < b < 0.   

 

Optimization of the stress levels per PMoA was done by randomized sampling (1000 itineration) and 

selection of the best parameter combination using the simulation with the lowest SSE compared to the 

control observations. The conversion of the sum of the toxic units to stress level can be accessed in the 

Appendix D (Tables D.3-D.6).The DEB-IBM framework was implemented in NetLogo (Wilensky, 1999) 

which was specifically designed for IBMs and has been used before to implement DEB IBMs (Martin et 

al., 2013a, Martin et al., 2012).
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6.3 Results 

6.3.1 Model calibration 

The assimilation (assim_optim = 0.957) and the half-saturation (K_optim = 10.58) parameters were 

optimized for the individual-level DEB-IBM based on the lowest SSE out of 100000 simulations under 

control conditions for 3 temperatures and 2 total food concentrations (Figure 6.3A). The 10-times higher 

half-saturation constant is in the realistic range, as differences in the half-saturation constant within one 

order of magnitude for D. magna clones of the same size have been reported (as well as higher 

difference among D. magna clones differing in body size) (Mulder and Hendricks 2014). 

 

The stress level parameter was derived via equation 6.1 using the entire data set by converting the 

concentrations of copper and M. aeruginosa to their toxic units (as a common denominator). Using the 

CA reference model, the assumption was made that the toxic units of the components of the mixture 

treatments could be summed up. Figure 6.3B and Figure 6.3C show the predicted and the observed 

reproductions using the best parameter set (lowest SSE) for the feeding and maintenance PMoAs, 

respectively. Figure 6.4A and Figure 6.4B show the hockey stick regression for the feeding and 

maintenance PMoAs, respectively. The stress levels corresponding to the single and mixture treatment 

toxic units per PMoA can be accessed in the Appendix D (Tables D.3-D.6). 

 

Figure 6.3. Parameter optimization results. A: The best parameter set (assim_cor  = 0.957, K_cor = 

10.58), based on the lowest SSE out of 10000 simulations to correct for a different food source, was 

used to plot the predicted against the observed reproduction is plotted. B: The best parameter set for 

the feeding PMoA (a = 0.516, b = -0.195) based on the lowest SSE out of 1000 simulations was used 

to plot the predicted against the observed reproductions. Best parameter set (0.95702, 10.5789) is 

plotted. C: The best parameter set for the feeding PMoA (a= 4.633, b= -1.377) based on the lowest 

SSE out of 1000 simulations was use to plot the predicted against the observed reproductions. 
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Figure 6.4. Hockey stick regression of the stress level in function of the sum of the toxic units using 

Equation 6.2. A: feeding as PMoA. B: maintenance as PMoA. 

 

 

6.3.2 Individual level predictions 

The predicted and the observed endpoints (total reproduction after 21 days, age at first reproduction, 

and length after 21 days) under control conditions are shown in Figure 6.5. For both total food 

concentrations (0.8 and 2mg C/L), the temperature trend is correctly captured and the predictions match 

the observations closely: At the lower food concentration (0.8mg C/L), reproduction increases from 

15°C to 19°C and then decreases at 23°C (Figure 6.5A1). At the higher total food concentration (2mg 

C/L) reproductions increases linearly from 15°C to 23°C. For the other endpoints the predictions are 

also in line with the observations: Age at first reproduction decreases linearly with temperature (Figure 

6.5A2 and Figure 6.5B2), while length after 21 days remains very similar across temperatures (Figure 

6.5A3 and Figure 6.5B3).  



Extrapolations from individual to population level with a DEB-IBM  
 

125 
 

 

Figure 6.5. Observed (grey bars) and predicted (blue bars) endpoints for the standard ecotoxicity test 

from chapter 4: 1 = total reproduction, 2 = age at first reproduction, 3 = length after 21 days); at two 

different total food concentrations: A = 0.8mg C/L and B = 2mg C/L). Observations and predictions are 

for control conditions only (at 2µg Cu/L = Control, without any M. aeruginosa added) and expressed as 

the mean value. Errors bars indicate the minimum and maximum values (n = 4). 

 

 

6.3.3 Population level predictions of control conditions 

As is shown in Figures 6.6A and C and Figures 6.7A and C, the simulations under control conditions 

(without added copper or M. aeruginosa stress) follow the trend of the observed total population 

abundance very closely. In both temperature regimes, the peak abundances (+/-100 individuals/L), as 

well as the total density at the end of the simulations overlapped with the observations. One difference, 

compared to the observations, is that under the control temperature regime total population density 

initially increases much faster in the simulations (Figure 6.6A and 6.7A)
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6.3.4 Population level predictions under the PMoA feeding 

In Figure 6.6 the simulations using feeding as the PMoA for copper and M. aeruginosa stress are plotted 

against the observations. The simulations follow the observed trend, in terms of total abundance over 

time and total density at the end, for copper stress under both temperature regimes (control: Figures 

6.6E and Figure 6.6I, global Change: Figures 6.6G and Figure 6.6K). Under the global change 

temperature regime (Figure 6.6D) control copper and M. aeruginosa stress, population density at the 

end of the simulations also matches that of the observations, while the total density at the end of the 

test is over predicted by a factor 2 (100 vs. 50 individuals/L) by the simulations under the control 

temperature regime (Figure 6.6B). At the lower copper concentration (25µg Cu/L), the simulations of 

the combined effects of copper and M. aeruginosa are in line with the observations (Figures 6.6F and 

Figure 6.6H). The only exception is that under the global change temperature regime, total density at 

the end of the experiment was overpredicted by a factor 4 (100 vs. 25 individuals/L) by the simulations 

(Figure 6.6H). The greatest discrepancy between predictions and observations is noted for combined 

effects at the highest copper concentration (44µg Cu/L) under the current climate regime (Figure 6.6J).  

While near extinction was observed in the experiment, simulations predict a stable population density 

fluctuating between 50 and 100 individuals/L. Under the global change regime (Figure 6.6L), the total 

abundance was 3 or less individuals and populations went extinct after 54 days, while in the simulations 

the total density only declines toward extinction after 64 days.  

 

 

6.3.5 Population level predictions under the PMoA maintenance 

In Figure 6.7 the simulations using maintenance as the PMoA for copper and M. aeruginosa stress are 

plotted against the observations. Under single exposures with copper, the simulations also followed the 

observed trend, similarly to the simulations using feeding as PMoA (Control: Figures 6.7E and Figure 

6.7I, Global Change: Figures 6.7G and Figure 6.7K). Under single exposures with M. aeruginosa the 

trend at the end of the experiment was reversed when maintenance was implemented as PMoA. Under 

the control temperature regime (Figure 6.7B) control copper and M. aeruginosa stress, population 

density at the end of the simulations also matches that of the observations, while the total density at the 

end of the test was underpredicted by a factor 3 (30 vs. 100 individuals/L) by the simulations under the 

global change temperature regime (Figure 6.7D). At the lower copper concentration (25µg Cu/L), the 
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simulations of the combined effects of copper and are M. aeruginosa are over-estimating the observed 

effects (Figures 6.7F and Figure 6.7H). Under the control temperature regime, total density at the end 

of the experiment is underpredicted by a factor 3.5 (25 vs. 85 individuals/L) by the simulations (Figure 

6.7F). Under the global change temperature regime, the population is predicted to go extinct after 28 

days, while the observed total density only declines towards the end of the experiment (Figure 6.7H). 

At the higher copper concentration (44µg Cu/L), the predictions of the combined effects of both 

stressors match the observations better than the feeding PMoA (Figure 6.7J and Figure 6.7L). For both 

temperature regimes, not only is the initial increase captured well but also the decline phase and the 

(near-)extinction. 

 

As is shown in Figure 6.8, the predictions follow the trend of the observed total population density very 

closely. In both temperature regimes and PMoAs, the difference is mostly less than 50%, with a few 

exceptions. Using feeding as the PMoA, predictions are much higher (+100%) than observations in 

mixtures with high copper (44µg Cu/L) under both temperature regimes. (Figures 6.8A and 6.8B). Using 

maintenance as the PMoA, predictions are much lower (-150%) than observations in mixtures with high 

copper (44µg Cu/L) under both temperature regimes. (Figures 6.8C and 6.8D). 
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Figure 6.6. Observed and predicted population dynamics for D. magna under copper (Cu) and M. aeruginosa (MC) stress using the feeding PMoA. Full lines 

indicate mean total abundance (observations: = black, predictions = blue), while the dotted lines indicate the minimum and maximum observations (n = 4) and 

predictions (n = 10). Arrows indicate increasing levels of stress. Please note that Figures 6.6A and 6.7A are identical, as well as Figures 6.6C and 6.7D. 
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Figure 6.7. Observed and predicted population dynamics for D. magna under copper (Cu) and M. aeruginosa (MC) stress using the maintenance PMoA. Full 

lines indicate mean total abundance (observations: = black, predictions = blue), while the dotted lines indicate the minimum and maximum observations (n = 4,) 

and predictions (n = 10). Arrows indicate increasing levels of stress. Please note that Figures 6.6A and 6.7A are identical, as well as Figures 6.6C and 6.7D.
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Figure 6.8. Difference between the predicted and the observed values of total population density over 

the duration of the experiment. For both, the predicted and the observed values of total abundance, the 

relative abundance was used as a ratio of the exposed density over the control density (Exp/Ctl). A:  

Control temperature (15-19°C) using feeding as the PMoA. B: Global change temperature (19-23°C) 

using feeding as the PMoA. C:  Control temperature (15-19°C) using maintenance as the PMoA. D: 

Global change temperature (19-23°C) using maintenance as the PMoA 

 

 

6.4 Discussion 

DEB models are often criticized for their complexity and their inherent requirements for additional 

experiments (beyond the data acquired in standard toxicity tests) to obtain species (or clone) – specific 

DEB parameters. Our aim was to test the hypothesis that reproduction measured at the individual level 

under constant conditions could be extrapolated to total density under more realistic scenarios at the 

population level. The results from this chapter have shown that the combination of standard ecotoxicity 

endpoints and an existing DEB-IBM model with minimal calibration is able to deliver reasonable 

predictions for the combined effects of copper and M. aeruginosa on population abundance under global 
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change conditions. In this chapter a different Daphnia magna clone, as well as a different algal species 

as food source were used. Despite this difference, both the individual and the population level 

predictions matched our observed data closely, using an existing model with minimal calibration. The 

modelling predictions from chapter 6 also illustrate that the DEB-IBM is applicable for mixtures that 

follow the CA. In chapters 2 and 4 it was previously demonstrated that the Concentration Addition (CA) 

reference model delivers accurate predictions for the combined effects were copper and M. aeruginosa.  

 

There were a few inconsistencies in the model predictions, which beyond model uncertainty, can also 

be ascribed to the quality of the data set used for fitting the DEB-IBM. For instance total reproduction at 

15°C was overpredicted by the model for both total food concentrations (Figure 6.4), which is also 

reflected in the overpredictions of the model of the intial population density peak at the control 

temperature (15°C at the start, Figures 6.6A and 6.7A). In chapters 4 and 5 we reported that individuals 

were acclimated for 2 generations to the test tempertaures before the start of the expsoures. However, 

it is possible that acclimation time before the start of the experiment was too short. Further, recovery 

after artificial predation events was considerably faster in simulations compared to the observed total 

population density. This could potentially by a result of the handling stress inflicted on the individuals 

during these events, which is not captured in the model (Rousseaux et al., 2010 ). 

 

DEB is a natural choice for the extrapolation of toxic effects from the individual to the population level, 

as it is based on the mechanistic understanding of growth and reproduction of individual. Toxicity was 

described as the impairment of one of different physiological modes of action (PMoA), which affect 

survival, assimilation, growth, maintenance and reproduction (Kooijman, 2010, Jager et al., 2014, Jager 

and Zimmer, 2012). Both PMoAs deliver accurate predictions of population density for the single stressor 

effects. For the mixture treatments, different outcomes are predicted depending on the PMoA. When 

feeding is used as PMoA, mixtures with the lower copper concentration (25µg Cu/L) and M. aeruginosa 

are accurately predicted under both temperature regimes. However, the observed toxicity is 

underpredicted in mixtures with the higher copper concentration (44µg cu/L) and M. aeruginosa under 

both temperature regimes. Conversely, when maintenance is used as PMoA, the combined effects were 

overpredicted at the higher copper concentration (44µg cu/L), while simulations of the mixtures with the 

lower copper concentration (25µg Cu/L) and M. aeruginosa are accurately predicted under both 
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temperature regimes. This is an interesting finding, as it suggests a switch of dominant copper toxicity 

mechanism between 25µg Cu/L (maintenance) and 44µg Cu/L (feeding) that contributes most to the 

mixture effect.  

 

Based on the knowledge of the potential modes of action for copper and M. aerugiosa both PMoAs are 

possible. In Daphnia, copper toxicity has been linked to inhibition of active sodium uptake (De 

Schamphelaere et al., 2007), inhibition of neuronal signal transmission and acetylcholinesterase (AChE) 

activity (Untersteiner et al., 2003), and oxidative stress (Barata et al., 2005, Xie et al., 2006). While it is 

well-known that cyanobacteria reduce the fitness of Daphnia sp., there appears to be no general 

concensus in the literature about the main mechanisms underlying this effect. Effects have mainly been 

associated with four factors or a combination thereof: cyanobacterial toxins (e.g. microcystins, 

cylindrospermopsins) (Rohrlack et al., 1999, Nogueira et al., 2004, Dao et al., 2010, Demott et al., 1991), 

feeding inhibition (Lurling, 2003 , Demott et al., 1991), morphology (Wilson et al., 2006, DeMott et al., 

2001) and the lack of essential nutrients (Martin-Creuzburg and von Elert, 2009). Although cyanotoxins 

exhibit high toxicity to vertebrates, including mammals (Wiegand and Pflugmacher, 2005), several 

studies have reported no significant differences between the effects of cyanotoxin producing and non-

toxin producing cyanobacteria on zooplankton, albeit such studies have mainly focused on Microcystis 

(Tillmanns et al., 2008, Wilson et al., 2006).  

 

From what is known about the modes of action of copper and M. aeruginosa, both PMOAs are equally 

likely, or even a combination of the two. In this DEB-IBM the same assumption that both maturity and 

somatic maintenance costs are both equally affected was used, however effects on each parameter 

independently are also possible. Stressors can thus have a wide range of effects on individuals and 

their physiology, and it is hence difficult to discern which modes of action are relevant for a specific 

chemical The simulations depicted in Figure 6.2 illustrate that it is very difficult to discern the effects of 

the different PMoAs on growth and even more so on reproduction (even for stress levels equivalent to 

the 21day EC50). It may therefore also be necessary to include additional endpoints (e.g. feeding and 

metabolic rates). To identify the actual physiological mode of action of a chemical, ideally full life-cycle 

studies are used (Jager and Zimmer, 2012). Ecotoxicology urgently needs robust tools that identify the 

mechanistic basis of measured endpoints to (i) interpret them in an ecological way and (ii) translate 
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them to ESQs in ERA. In support of mode of action based risk assessment, the concept of adverse 

outcome pathways (AOPs) has been proposed as a framework to organize and communicate the 

existing knowledge on the toxicity mechanisms and outcomes across levels of biological organization 

(Ankley et al., 2010). An AOP is a sequence of events from the first critical molecular event (known as 

the molecular initiating event or MIE) to an in vivo adverse outcome (AO) (Ankley et al., 2008).  

 

Although both PMoAs investigated in this chapter delivered reasonably good fits, the maintenance 

PMoA provided the most protective predictions in terms of extinction probability (Figures 6.6 and 6.7). 

Without any in depth knowledge of the mechanistic basis of the combined effects of copper and M. 

aeruginosa, two approaches can be followed. Firstly the feeding PMoA could be applied when the known 

copper contamination is equal to or lower than 25µg Cu/L, while the maintenance PMoA could be applied 

when the known copper contamination is higher than 25µg Cu/L. Alternatively, as a worst case scenario 

approach, the maintenance PMoA should be selected, as it either delivers accurate or overprotective 

predictions, while the feeding PMoA is underprotective in mixtures of copper at the 21 day NOEC and 

M. aeruginosa. 

 

If multiple stressors have interactive effects that are not predictable from single stressor impacts (e.g. 

ecological surprises, sensu Paine et al. 1998), a major source of uncertainty is added to projections of 

biodiversity (Sala et al., 2000) and ecosystem resilience (Folke et al., 2004). Furthermore, if drivers of 

global change interact synergistically, predictions based on additive expectations may underestimate 

the ecological impacts of global environmental change (Hoffman et al., 2003, Przeslawski, 2005). The 

results from this chapter demonstrate that, if maintenance was selected as PMoA, the extinction 

probability of the population could have accurately been predicted by the DEB-IBM. In other words, an 

ecological surprise could have been forecasted based on the calibrated model presented here.  
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7.1 Introduction 

Conventional risk assessment of chemicals is usually based on ecotoxicity tests using laboratory 

populations with limited genetic variation, often even monoclonal populations, with exposure times rarely 

exceeding one generation (Baird, 1992 , Forbes and Depledge, 1992). However, natural populations 

are typically characterized by genetically distinct individuals, which may give rise to considerable genetic 

variability in tolerance to chemical stress within populations. The genetic variability in life-history traits 

under stress within a population sets the scope for microevolutionary responses under exposure to that 

stress (Klerks et al., 2011 , Messiaen et al., 2013). Microevolution can be defined as the change in allele 

frequencies that occurs over time within a population. This change can be due to four different 

processes: natural selection, mutation, gene flow, and genetic drift (Hartl and Clark, 1980). Through the 

process of directional selection (i.e. more tolerant individuals are favoured over less tolerant ones), 

populations can genetically adapt to chemical stress, which may protect them from local extinction (Van 

Straalen and Timmermans, 2002, Medina et al., 2007 , Agra et al., 2010 , Agra et al., 2011 ).  

 

Because selection by the presence of chemicals eliminates out less tolerant genetic combinations, it is 

expected to result in the loss of genetic variation. In cyclical parthenogens like the water flea Daphnia, 

a key model species in ecotoxicological testing, this translates into a reduction in clonal diversity in the 

population, as less tolerant clonal lines (genotypes) become less frequent. Selection may also induce 

the loss of allelic diversity, which has been termed ‘genetic erosion’ (Van Straalen and Timmermans, 

2002).  Conversely the opposite may be possible too, referred to as ‘balancing selection’, as an increase 

of genetic diversity was observed under unfavourable conditions (Hoffmann and Merila, 1999 ).An 

additional cost of selection may involve that populations adapted to a given chemical stressor are less 

tolerant to novel stressors or have lower fitness in the absence of the stressor compared to non-adapted 

populations (Van Straalen and Timmermans, 2002, Medina et al., 2007 , Agra et al., 2010 ). For instance, 

a 3-month selection under carbaryl exposure lead to reduced sensitivity to the pesticide but in an 

increased susceptibility to parasite infection in Daphnia magna populations (Jansen et al., 2011 -a). 

Conversely, increased tolerance to novel stressors may also arise, particularly to a related stressor with 

similar modes of action. This ‘cross-tolerance’ has been reported before for metals in Daphnia: for 

cadmium and lead (Ward and Robinson, 2005 ) and for copper and zinc (Lopes et al., 2005). 



Microevolutionary effects in a natural D. magna population 

137 

Experimental evolution allows to study the genetic responses of populations to selection pressures 

under standardized conditions and thus to investigate whether populations are able to adapt to a given 

stressor (Conner, 2003 ). Such experiments are, however, rarely used in ecotoxicology. One study 

observed a 3-fold increase of the mean 48h-LC50 for cadmium over 8 generations in a laboratory 

population of Daphnia magna initially composed of 8 clones  (Ward and Robinson, 2005 ). A limitation 

of this study was that the design did not include several generations of removing maternal effects so as 

to establish genetic adaptation as the sole reason for the observed increased tolerance to cadmium. To 

discriminate genetic adaptation from physiological acclimation and maternal effects, any difference in 

population level tolerance to a stressor (comparison of tolerance to a same stressor before and after 

selection) needs to remain significant after several generations under conditions without that stressor 

present (Klerks and Levinton, 1989, Walker, 2001).  

 

The main aim of this chapter was to determine whether microevolutionary responses (genetic 

adaptation) and complete recovery of population densities are possible in a natural D. magna population 

under copper and zinc stress and whether this genetic adaptation has potential consequences for the 

tolerance to novel stressors (i.e. cost of adaption vs. cross-tolerance). Our study consisted of two phases 

(Conner, 2003 , van Doorslaer et al., 2009 -b) (Jansen et al., 2011 -b). First a 10 week selection 

experiment was carried out using the standing genetic variation present in a natural D. magna population 

exposed to 70 µg Cu/L and 630 µg Zn/L (dissolved concentrations equivalent to the 8-day LC50) as a 

selection pressure. The focus of our study was on the clonal selection phase, under otherwise 

favourable conditions (i.e. the spring to fall growth cycle). A common garden experiment was then 

carried to evaluate the degree of genetic differentiation between the non-selected ‘original’ population 

and the experimentally selected populations under ‘control’ and metal conditions (‘Cu’ and ‘Zn’).  We 

further investigated the tolerance to novel stressors (temperature, cyanobacteria and cadmium) in a 

follow-up study with the Zn selected populations and used micro-satellite genotyping to determine the 

potential consequences of selection on clonal and allelic diversity.
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In this chapter, 3 research questions with potential implications for ecological risk assessment were 

assessed: 

(1) Can a genetically diverse natural D. magna population adapt to lethal metal concentrations 

(equivalent to the 8-day LC50)? 

(2) Do populations display lower genetic diversity after adaptation than prior to selection? 

(3) Is adaptation to chemical stressors associated with costs of adaptation? 

 

 

7.2 Materials and Methods 

7.2.1 Establishment and maintenance of the experimental population 

For the microevolution experiment we used a natural D. magna population established from ephippia 

collected from a temporal pond in the vicinity of Knokke (West Flanders, Belgium, 51° 21' 01.97"N, 03° 

19' 49.58"E). The upper 5cm layer of sediment was sampled in several locations of the pond using a 

Van Veen grab sampler. In the laboratory the pooled sediment was sieved over 500 µm. More than 200 

ephippia of D. magna were identified (Vandekerkhove and J.M., 2004) and placed individually in 

polyethylene vessel containing 50mL of tap water at either 20°C or 23°C under a 16 h light : 8 h dark 

photoperiod. Immediately upon hatching a single hatchling from each ephippium (in case both eggs of 

an ephippium hatched one hatchling was selected at random) was used to establish a clonal lineage. 

As ephippial eggs of D. magna are produced by sexual reproduction (Ebert et al., 1993 ), each clonal 

lineage can be considered genetically distinct (Barata et al., 2000). Juvenile hatchlings were placed 

individually in a 50 mL polyethylene cup filled with modified M4 medium (Hochmuth, 2014) and kept at 

20°C and under a 16h:8h light:dark cycle. Daphnids were fed daily 5 mg dry weight of 

Pseudokirchnerialla subcapitata per litre and the culture medium was refreshed 3 times a week. A total 

of 7 offspring of the 3rd brood of the hatchlings were transferred to 1L glass jars and culture medium was 

refreshed once a week. With every medium renewal, the next generation of each clone was established 

by randomly picking 4 juveniles and 3 adult daphnids (daphnids carrying eggs in the brood pouch) of 

the previous generation. As ephippial eggs of D. magna are produced by sexual reproduction (Ebert et 

al., 1993 ), each clone can be as considered genetically distinct (Barata et al., 2000). The microevolution 

experiment consisted of 3 discrete test phases (selection experiment, de-acclimation phase and 

common garden experiments).  
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Figure 7.1 Overview of experimental design in this chapter. (1) Selection experiment: 184 clonal lines 

(< 48 hours-old ) were inocculated in 10L aquaria for 10 weeks under either control, Cu or Zn selection 

(2) Genetic analysis: At the end of the selection experiment 20 clones per aquarium 40 clonal lines from 

the original population were genotyped using 12 microsatellite markers to test for effects on genetic 

diversity. (3) De-acclimation: 10 clones per aquarium (i.e. 40 per selection treatment) were picked at 

random and cultured under monclonal conditions in 200mL vessels in control medium for 4 months. 

Thereafter one juvenile (< 24 hours-old) per clone was placed in a 50mL vessel (F0) and 4 juveniles 

from the third clutch were used from each F0 clone to initiate the F1 generation. (4) Common garden: 

For the common garden experiment, 1 juvenile (F2-generation, < 24 hours-old) from the third clutch of 

each F1 mother was assigned to control, Cu or Zn expsoure medium, while per exposure medium 

(control, Cu or Zn) each replicate originated from a different mother. (5) Follow up experiments: 

Additionally tolerance to temperature, cyanobacteria and cadmium stress was assessed.  
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7.2.2 Selection experiment 

We conducted a selection experiment with 3 treatments: control, copper (Cu) and zinc (Zn). The 

concentrations used for the Cu and Zn treatments were based on pilot assessments and correspond to 

the 8-day LC50 concentrations (70 µg Cu/L and 630 µg Zn/L) (Figure 7.1). Each treatment was 

replicated 4 times (i.e. 4 aquaria per treatment), resulting in a total of 12 aquaria. A set of 184 different 

clones (one individual/per clone) were inoculated in each 10L aquaria and the exposure duration was 

10 weeks. Every day the concentration of Pseudokirchnerialla subcapitata in each aquarium was 

adjusted for each aquarium separately to maintain 2mg dry weight per day per L (≈0.8mg C/L) (Evens 

et al., 2009 , De Schamphelaere and Janssen, 2004 ), using a Coulter particle counter (Beckman-Analis, 

Namur, Belgium). Once per week half the medium was renewed with fresh medium. To avoid population 

collapses due to overcrowding , starting from the second week, 50% of the population was randomly 

removed randomly removed in each experimental unit every 2 weeks (as in Van Doorslaer et al. 2009 

a). Random culling was achieved by gently mixing the medium in the aquarium with a beaker to distribute 

the animals evenly before removing 50% of the volume (i.e. 5L). We adopted this culling regime as it 

avoids population crashes but at the same time results in strong fluctuations in population densities, 

thereby allowing for episodic exponential growth, which can promote faster replacement of genotypes 

through time and has previously been shown to result in repeatable microevolutionary responses  in a 

similar experimental evolution trial (Van Doorslaer et al., 2009 -a). Population density (total abundance 

per 10L aquaria) was recorded after 1, 2, 3, 4, 6 and 8 weeks. Ephippia were removed weekly to ensure 

that no sexually produced eggs could hatch and contribute to the population 

 

 

7.2.3 De-acclimation phase 

After 10 weeks 10 parthenogenic egg carrying females were randomly collected from each experimental 

unit and placed individually in 50mL vessels of control modified M4 medium to initiate clonal lines (Figure 

7.1). It is important to note that there may be replicate (i.e. identical) clones among these randomly 

initiated clonal lines. The medium was renewed 3 times a week. Each vessel received a suspension of 

P. subcapitata (equivalent to 5 mg/L dry weight). To eliminate any effects due to acclimation (phenotypic 

plasticity of individuals) or maternal effects and thus allow a direct test for genetic adaptation (altered 

allele frequencies in the population) all clonal isolates of the original, control and metal selected 
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populations were cultured for 4 months (≈14 generations as generation time ≈ 8.5 days) under common 

garden conditions (control medium) before we conducted the common garden experiments under Cu 

and Zn exposure (Stoks et al., 2014, Klerks and Levinton, 1989, Walker, 2001). As the individuals were 

cultured as clonal lines there was no interference from selection among clonal lines in this phase.  

 

 

7.2.4 Common garden experiments 

After the de-acclimation phase of 4 months we conducted a 21-day life-table experiment under common 

garden conditions to investigate if the populations selected under Cu and Zn had a higher tolerance to 

Cu and Zn, respectively, than the control populations and the original population (Figure 7.1). We thus 

investigated whether genetic adaptation to Cu or Zn, measured as an increase in mean population 

fitness, had occurred. We exposed the original and control populations as well as the Cu-selected or 

Zn-selected population to the same 8-day LC50 Cu or Zn concentrations, respectively. A clear effect of 

natural selection is only inferred if the selected populations differ significantly in their response to the 

selective force compared to both the original and control populations. This type of design allows to 

separate significant differences in populations due to natural selection from other un-accounted factors 

(e.g. random genetic drift or lab-selection). In total 10 clonal lines from each of the 4 replicate aquaria, 

thus a total of 40 clonal lines from the control and 40 clonal lines from each of the selected populations, 

and a subset of 40 clones from the original population were used. Per clone or clonal line 4 replicates, 

each from a different mother, were (Figure 7.1). Individuals (< 24 hours) were exposed in 50mL cups 

and the medium was renewed 3 times a week (Monday, Wednesday and Friday). We also compared 

the fitness of all populations under control conditions in the absence of elevated Cu or Zn concentrations 

to test for a cost of adaptation upon return to uncontaminated medium, by comparing total reproduction 

after 21 days of the Cu- and Zn selected populations against that of the control and original populations. 

 

 

7.2.5 Microsatellite genotyping 

At the end of the selection experiment 20 adult females were randomly picked from each aquarium (i.e. 

a total of 80 individuals from each of the control, Cu and Zn-selected population types) and tissue 

samples were preserved individually in 100% ethanol (molecular biology grade, Sigma Aldrich) and 
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stored at -20°C until DNA extraction. These samples were genotyped together with 40 individuals of the 

original population for a total of 13 microsatellite markers divided over two multiplexes (M01 and M03, 

see Appendix E Table E.2) (Jansen et al., 2011). Genomic DNA was extracted with the column 

NucleoSpin kit (Macherey-Nagel, Düren, Germany) following the manufacturer’s instructions with a few 

modifications: incubation time was overnight (12 to 14 hours), centrifuging time was increased from 1 to 

3 minutes, an additional third washing step of the silica membrane in a new collection tube was 

performed, and 40µL of Buffer BE was added instead of 100µL to elute the DNA. PCR amplification was 

performed with the Qiagen Multiplex PCR Kit (Qiagen, Hilden, Germany) on a Thermocycler PCR 

machine (Biometra, Westburg, Germany) following the manufacturer’s instructions. PCR cycling 

conditions were as follows: an initial denaturation step of 15 min at 95°C was followed by 25 cycles of 

94 °C for 0.5 min, 1.5 min at the annealing temperature  (Tm) (56°C for M01 , and 54°C for M03) and 

1.5 min at 72 °C. A final extension step of 30 min at 60°C completed the cycling. The forward primers 

were obtained from Qiagen and the reverse primers from Eurogentec (Maastricht, Netherlands). 

Microsatellite genotyping was performed by capillary electrophoresis using an ABI PRISM 3031 

automated sequencer (Applied Biosystems, Foster City, USA). In each sample well 1µL of the PCR 

product was combined with 8.8 µL Hi-Di formamide and the 0.2 LIZ size standard. Primers were labelled 

using the standard DS-33 set (G5) of four dyes (6FAM, NED, VIC, PET) and GeneScan-500 LIZ as size 

standard (35 and 250 bp peaks were omitted from the analysis). DNA Microsatellite alleles were scored 

with the Gene Mapper (Version 4.0) software (Applied Biosystems). One microsatellite (B030) was 

removed from further analysis as accurate scoring of the alleles was prevented due to excessive 

stuttering and amplification failure across the majority of DNA sample 

 

 

7.2.6 Tolerance to novel stressors of Zn adapted populations 

To test for an effect of adaptation on the tolerance to 3 novel stressors, we carried out a follow-up 

experiment using the Zn-selected, original and control populations by exposing them to temperature 

stress as a general abiotic stressor, to a cyanobacteria strain known for its toxin production and 

considered to be a low quality food source (Microcystis aeruginosa strain PCC 7806), as a non-related 

natural stressor to zinc, and to cadmium (Cd) as chemical stressor related to Zn. To evaluate whether 

Zn selection had an effect on the tolerance to temperature stress, reproduction at 28°C was compared 
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among selection treatments. Tolerance to cyanobacteria stress was evaluated by comparing 

reproduction under a diet containing M. aeruginosa (equivalent to 40% of the total dry weight)  against 

a control diet free of M. aeruginosa (see (Hochmuth and De Schamphelaere, 2014) for more details on 

cyanobacteria culturing). Tolerance to Cd was assessed in a full dose response with Cd (0, 1, 3, 6, 12 

and 28 µg Cd/L, measured as dissolved Cd concentration). All tolerance tests were conducted as 

standard 21-day life table tests under the same conditions as the common garden experiments, with the 

only difference that 1 rather than 4 replicates per clone or clonal line was used and replication was at 

the level of the aquaria (i.e. 4 replicates per treatment), as our focus was at the population rather than 

at the clonal level. 

 

 

7.2.7  Chemical analysis 

Concentrations of Cu, Zn, Cd and organic carbon, as well as pH were measured once a week, once in 

the fresh medium (prior to addition of algae or cyanobacteria) and once in the old medium (after 

transferring the daphnids to the fresh medium). The chemical analysis was carried out as described in 

section 2.2.4. The results of the chemical analysis can be consulted in the supportive info (Appendix E 

Tables E.3 and E.4). 

 

 

7.2.8 Population density during the selection experiment data analysis 

To measure the effect of exposure to metals in the selection experiment on population densities a mixed 

linear model with time point of the experiment and selection treatment as fixed effects and aquaria as 

random effect was applied. We tested whether total abundance differed between selection treatments 

at each time point using a Wald Chisquare test with Holm adjustment for multiple testing with the R 

package phia (Team, 2011).
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7.2.9 Common garden experiments data analysis 

To test for a microevolutionary response in the Cu and Zn populations in the selection experiments 

under Cu and Zn exposure, respectively, we compared total number of juveniles produced per female 

in 21 days in common garden environments.  As mortality was very high (resulting in a lack of 

reproduction for many individuals) under the Cu and Zn exposures, the distribution of the reproduction 

data was zero-inflated. We solved this by applying a hurdle model to the reproduction data. The hurdle 

model is a modified count model in which the two processes generating the zeros and the positives are 

not constrained to be the same. The first part is a binary outcome model, and the second part is a 

truncated count model. The binary part models the probability that the threshold is crossed (non-zero or 

zero), in our case whether reproduction occurred (probability of reproduction), while the second part 

counts the number of outcomes crossing the threshold, in our case quantifying the number of juveniles 

produced by reproducing females. The probability of reproduction was measured as the fraction of 

reproducing females in a population. We tested for an effect of selection treatment on reproduction using 

selection treatment as a fixed factor, aquaria as a random factor nested in selection treatment and clone 

or clonal line as a random factor nested in aquaria. Modelling was performed with the package 

glmmADMB (Fournier et al., 2012) in the statistical platform R. We tested for a cost of adaption of the 

Cu and Zn selected populations upon return to control conditions by comparing the total reproduction 

after 21 days using a mixed linear model with selection as fixed factor, aquaria nested in selection and 

clone or clonal line nested in aquaria as random factors using the R package phia. Differences in 

tolerance to temperature and cyanobacteria stress were assessed using a Hurdle model as described 

above. To assess if cadmium tolerance differed between populations the 21-day EC50 values of total 

reproduction and survival were compared using the Wheeler ratio (Wheeler et al., 2006). 

 

 

7.2.10 Microsatellite marker analysis data analysis 

We used Micro-Checker to check for scoring errors due to stuttering, the presence of null alleles, or 

large allele drop out, which could lead to a false increase in homozygosity (Van Oosterhout et al., 2004). 

Micro-Checker generates expected homozygote and heterozygote allele size difference frequencies via 

bootstrapping (Monte Carlo simulation) and uses the Hardy-Weinberg theory of equilibrium to calculate 

expected allele frequencies and the frequency of any null alleles detected.  
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Clonal richness (CR) was defined as the number of multilocus genotypes detected in each population 

sample and the fraction of maximum clonal richness was calculated by the ratio of clonal richness to the 

total number of individuals in the sample (CRfmax = CR/N). Clonal diversity was quantified as Simpson’s 

index of clonal diversity (D), which is generally not very sensitive to sample size. We statistically 

compared estimates of the Simpson Index of clonal diversity between the populations using a one-tailed 

bootstrap test as implemented in the software GENODIVE with 10,000 permutations (vers. 

1.1,(Meirmans P.G., 2004)).  

 

Whereas clonal richness and the Simpson index of clonal diversity refer to multilocus genotype diversity 

in the population, we also quantified allelic (i.e. genetic) diversity. Allelic richness  was estimated using 

rarefaction for each combination of locus and selection treatment (ElMousadik and Petit, 1996) and 

mean allelic richness was obtained by averaging the locus specific allelic richness estimates over all 

microsatellite loci in a population using the R package PopGenReport (Adamack and Gruber, 2014). As 

our smallest sample size was 19 individuals per population, we chose to compare allelic richness after 

rarefaction to a common sample size of 38 (2 alleles per locus). The population inbreeding coefficient 

(FIS) measures the excess or deficit of heterozygotes within populations relative to Hardy–Weinberg 

expectations. It is thus a measure of significant difference between expected and observed 

heterozygosities (He and Ho).  

 

Genetic variation was partioned among selection treatments, aquaria nested within selection treatment 

and individuals nested within aquaria using a three-level hierarchical analysis of molecular variance 

(AMOVA) in Genalex (Peakall and Smouse, 2006, Peakall and Smouse, 2012). The relative magnitude 

of differences in genetic variation among levels can be interpreted in function of the relative importance 

of deterministic and stochastic microevolution acting on the populations. It is expected that drift would 

cause significant differences to accumulate among replicates for any selection treatment, whereas 

selection would cause significant differences among selection treatments. Additionally we used G’ST 

estimates as a standardized measure of genetic differentiation to statistically measure genetic 

differentiation through pairwise comparisons among all populations (Hedrick, 2005). Expected and 
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observed heterozygosities, and global FIS and pairwise G’ST estimates with bootstrapped 95% 

confidence intervals were estimated using the DiveRsity package in R (Keenan, 2013). 

 

To assess the amount of genetic differentiation at the treatment level (i.e. by combining aquaria 

replicates) we used Discriminant Analysis of Principal Components (DAPC) in the adegenet 1.3-4 

package in R (Jombart et al., 2010). DAPC is a multivariate method designed to identify and describe 

clusters of genetically related individuals using a few synthetic variables (called discriminant functions). 

This method was favoured over more traditional methods such as PCA (Principal Component Analysis) 

or PCoA (Principal Coordinates Analysis), which focus on the entire genetic variation, because DAPC 

seeks linear combinations of the original variables (alleles) that maximize differences among populations 

while minimizing variation within populations. Furthermore the DAPC method does not assume Hardy–

Weinberg equilibrium or linkage disequilibrium and is more appropriate for situations where such 

assumptions are not met than conventional approaches such as Structure (Pritchard, 2000). 

 

 

7.3 Results  

7.3.1 Population density during the selection experiment 

After one week of metal exposure we already observed a reduction in population density in the metal-

selected populations, while population density was much less reduced in the control populations (Figure 

7.2B, Appendix E Table E.5). As no reproduction had occurred in the first week, any loss of individuals 

in that period translates into the loss of a clone. Under Cu selection a total of 48% of all clones were lost 

(88 clones of the initial 184 clones). In the Zn selection treatment survival after one week was even 

lower, with 74% loss of clonal richness (137 clones of the initial 184 clones, Figure 7.2B). In the control 

populations mortality was low (8 %, 15 clones of the initial 184 clones). Populations under Cu selection 

displayed significantly lower population densities compared to the control populations throughout the 10 

week selection experiment (Figure 7.2A , Wald Chisquare test: p-values < 0.05, see Appendix E Table 

E.5). Population densities in the Zn-selected populations were significantly lower than densities in the 

control populations until week 4 (Figure 7.2A , Wald Chisquare test: p-values < 0.05, see Appendix E 

Table E.5). In weeks 6 and 8 there was no longer a significant difference between the population 



Microevolutionary effects in a natural D. magna population 

147 

densities of the Zn-selected and control populations (Figure 7.2A , Wald Chisquare test: p-values > 0.2, 

see Appendix E Table E.5).  

 

 

Figure 7.2. (A) Population density (+/- standard error) during the selection experiment. Note that the 

density was reduced by 50% in weeks 2, 4, 6, and 8 as part of the experimental procedure. For visibility 

symbols for different treatments are slightly drifted relative to each other. No density measurements 

were available for week 10. 1. (B) Box-plot of population densities (+/- standard error) after one week 

during the selection experiment. Mean (+/- standard deviation) density estimates as well as p-values of 

the one-way ANOVA and Tukey HSD post-hoc tests can be found in Appendix E Table E.5. 

 

 

7.3.2 Common garden experiments testing for metal adaptation 

We observed a clear increase in the probability of reproduction in both Cu- and Zn-selected populations 

compared to the original and control populations under Cu and Zn common garden exposure, 
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respectively. While only 20% of the females of control and original populations reproduced when 

exposed to Cu, reproduction occurred in 45% of the individuals of the Cu-selected populations (Figure 

7.3A). This difference was significant (hurdle model followed by Tukey-HSD: Cu-selected vs. original: p 

= 0.0084, Cu-selected vs. control: p = 0.0058), while the probability of reproduction did not differ between 

the original and control populations (p = 0.9949). Under Zn common garden we also observed a 

significant increase in the probability of reproduction from 20% or less in the control and original 

populations to 70% in the Zn-selected populations (Figure 7.3A, hurdle model followed by Tukey-HSD: 

Zn-selected vs. original: p <1e-04, Zn-selected vs. control: p = <1e-04; no difference between control 

and original populations: p = 0.83).  There was no significant difference in the total number of offspring 

that were produced by females that did reproduce under Cu exposure (Figure 7.3B, hurdle model  

followed by Tukey-HSD: Cu-selected vs. original: p = 0.570, Cu-selected vs. control:  p = 0.501,  original 

vs. control: p =0.989) and Zn exposure (Figure 7.3B, hurdle model  followed by Tukey-HSD: Zn-selected 

vs. original: p = 0.774, Zn-selected vs. control: p = 0.157, original vs. control: p = 0.166). 

 

 

Figure 7.3. Probability of reproduction (A) and average number of juveniles produced per female in 21 

days of females that reproduced (B) in the common garden experiment upon exposure to 8-day LC50 

of Cu and Zn and in the absence of such exposure (control condition) of clonal isolates from the metal 

selected (Cu and Zn), original (O) and control (C) populations. Different lower case letters indicate a 

significant difference between selection treatments (significance level p = 0.05). Error bars represent 

one standard error. 
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7.3.3 Follow-up experiments testing for a cost of adaptation and cross-tolerance to novel 

stressors 

We did not observe any significant difference in total reproduction between metal-selected, control and 

original populations under control conditions (Figure 7.3B, linear mixed model: p = 0.053). At 28°C the 

probability of reproduction in the Zn-selected populations was significantly lower than in the control 

populations but did not differ significantly from the original population (Figure 7.4A, hurdle model 

followed by Tukey-HSD: Zn-selected vs. original: p = 0.5681, Zn-selected vs. control: p = 0.0371, original 

vs. control: p = 0.1010), and  no difference in average reproduction of reproducing individuals was 

observed (Figure 3B, hurdle model:  followed by Tukey-HSD: Zn-selected vs. original p = 0.945, Zn-

selected vs. control p = 0.702, original vs. control p = 0.746). There were no differences in either 

probability of reproduction (Figure 3A, hurdle model:  followed by Tukey-HSD: Zn-selected vs. original 

p = 0.705, Zn-selected vs. control p = 1, original vs. control p = 0.470) or average number of offspring 

of reproducing females between populations derived from different selection treatments when fed a diet 

in which 40% of the dry weight consisted of the cyanobacterium Microcystis aeruginosa (Figure 3B, 

hurdle model:  followed by Tukey-HSD: Zn-selected vs. original p = 0.999, Zn-selected vs. control p = 

0.669, original vs. control p = 0.475).  

 

The effect of Zn selection on cadmium (Cd) tolerance was more complex and depended on the effect 

concentration used as a criterion. When total reproduction was used as an endpoint, the Zn-selected 

populations showed a 20% reduction at a low Cd concentration (21-day reproduction EC20= 2.0µg Cd/L) 

than both the control (21-day reproduction EC20= 1.6µg Cd/L) and original populations (21-day 

reproduction EC20= 1.5µg Cd/L), reflecting that they became less sensitive, although the actual 

difference in EC20 was less than 25% (Figure 7.4C, Wheeler ratio: p < 0.05, Appendix E Tables E.6 and 

E.7). With respect to the 21-day reproduction EC50, Zn-selected populations were less sensitive than 

the control populations but equally sensitive as the original population. For the 21-day reproduction 

EC80, the Zn-selected populations proved more sensitive to Cd than the original population but equally 

sensitive as the control populations (Figure 7.4C, Appendix E Tables E.6 and E.7). When survival over 

the test period was considered as an endpoint the only difference in Cd tolerance was that Zn-selected 

populations had a significantly lower 21-day survival LC80 than the original population but that their 21-

day survival LC80 did not differ from that of the control populations (Figure 7.4D, Appendix E Tables E.6 



Chapter 7 

150 

and E.7). The slopes of the concentration response curves for both reproduction and survival were 

significantly steeper in the Zn-selected populations than those of the original population but did not differ 

from the slopes of the control population (Wheeler ratio: p < 0.05, Appendix E Tables E.6 and E.7). 

 

 

 

 

Figure 7.4.. (A) Tolerance to novel stressors of the metal selected (Cu and Zn), original (O) and control 

(C) populations. Probabilities of reproduction under high temperature conditions (28°C) and when fed 

cyanobacteria (40% Microcystis aeruginosa in the total diet). (B) Average number of offspring of clones 

that did reproduce. Different lower case letters indicate a significant difference between selection 

treatments (significance level p = 0.05). (C) Concentration response curve under cadmium stress for 

total reproduction. (D) Concentration response curve under cadmium stress for survival. 
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7.3.4 Testing for effects of metal selection on clonal and allelic diversity 

Both clonal richness and the Simpson index of clonal diversity were lower in the Cu- and Zn-selected 

populations than in the original and control populations (Table 7.1). The one-tailed bootstrap analysis of 

the Simpson Index confirmed that both the original and control populations had considerably higher 

clonal diversity than both the Cu- and Zn-selected populations (p < 0.05, 10000 permutations), while no 

difference in clonal diversity was observed between the Cu and Zn populations (p > 0.05, 10000 

permutations) and between the original and control populations (p > 0.05, 10000 permutations, exact p-

values can be consulted in the supportive info: Table S8).  

 

Average allelic richness ranged from 2 to 3 alleles per locus (Table 7.1, see Appendix E Figures E.2 

and E3 for locus specific allele frequencies). When averaged over all loci, the observed heterozygosity 

was consistently higher than the expected heterozygosity (i.e. gene diversity) in the Cu- and Zn-selected 

populations, which is indicative of heterozygote excess in the latter populations (Table 7.1). The 

inbreeding coefficient (FIS) provides further evidence of a significant heterozygote excess in the Cu- and 

Zn-selected populations, while there was no excess of heterozygotes in the original and control 

populations (bootstrapped 95% C.I. includes 0).  

 

The Discriminant Analysis of Principal Components (DAPC) on the allele frequencies shows that the 

Cu- and Zn-selected populations form two mostly non-overlapping clusters, while the original and control 

populations largely overlap with each other (Figure 7.5). The 1st principal component mainly separated 

the Zn- and Cd-selected populations from each other and to a lesser extent also from the original and 

control populations, while the 2nd principal component) mainly separated the metal-selected from the 

control and original populations and, to a lesser extent, also the control from the original populations. 

Pairwise G’ST values confirm that there is no significant differentiation between the original and control 

treatments, while the Cu and Zn-selected populations are significantly differentiated from the original 

and control and from one another (as indicated by the bootstrapped 95% C.I., supportive info: table S9). 

The hierarchical AMOVA revealed that most allelic variation is found within populations, but that 

treatment also resulted in significant genetic differences (Table 7.2). 
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Table 7.1. Estimates of clonal and genetic diversity of the original D. magna population and the 

experimental populations (control, Cu- and Zn-selected).a 

   clonal diversity allelic diversity 

population aq. N CR  CRfmax  D  AR Ho He FIS (95% CI) 

original NA 40 36 0.90 1 3.36 0.45 0.48 0.05 (-0.01 to 0.1) 

control 1 19 14 0.74 0.95 2.92 0.45 0.44 -0.03 (-0.19 to 0.09) 

 2 19 11 0.58 0.92 2.83 0.42 0.38 -0.12 (-0.25 to 0.01) 

 3 20 16 0.80 0.97 3.49 0.47 0.51 0.07 (-0.01 to 0.14) 

 4 19 15 0.79 0.97 3.17 0.41 0.41 -0.001 (-0.09 to 0.07) 

Cu-selected 1 20 12 0.60 0.85 3.00 0.56 0.44 -0.28 (-0.48 to -0.13)* 

 2 20 9 0.45 0.82 2.81 0.54 0.43 -0.26 (-0.44 to -0.10) * 

 3 20 10 0.50 0.80 2.66 0.59 0.44 -0.33 (-0.53 to -0.19) * 

 4 20 4 0.20 0.55 1.91 0.51 0.31 -0.62 (-0.77 to -0.53) * 

Zn-selected 1 20 8 0.40 0.70 2.82 0.64 0.44 -0.45 (-0.72 to -0.24) * 

 2 19 9 0.47 0.81 2.33 0.59 0.39 -0.52 (-0.72 to -0.34) * 

 3 19 5 0.26 0.64 2.17 0.52 0.37 -0.39 (-0.64 to -0.17) * 

 4 19 13 0.68 0.95 3.17 0.55 0.47 -0.18 (-0.32 to -0.06) * 

a aq.: replicate (aquarium); N: number of genotyped individuals; CR: clonal richness; CRfmax, clonal 

richness expressed as a fraction of maximum clonal richness; D: clonal diversity measured as the 

Simpson’s index; AR: mean allelic richness  of the studied loci measured as the average number of 

alleles detected per locus, based on rarefaction to a common sample of 38 alleles using the method of 

El Mousadik and Petit (1996); Ho, He: observed and expected heterozygosity, respectively, averaged 

over loci; FIS: inbreeding coefficient with bootstrapped 95% confidence intervals as a measure of 

deviations from Hardy-Weinberg equilibrium within populations (positive values indicate homozygote 

excess, negative values heterozygote excess). * indicates significant deviations from the Hardy-

Weinberg equilibrium. 
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Figure 7.5. Discriminant analysis of principal components (DAPC) on the multi-locus genotype data for 

all populations. Individual multilocus genotypes appear as circles. Horizontal and vertical axes are the 

first and second principal component, respectively. A visual representation of the membership 

probability of the different multilocus genotypes to the different populations can be found in Appendix E 

Figure E.4).  

 

 

Table 7.2. Hierarchical analysis of molecular variance for the microsatellite data partitioning variance 

among and within 4 treatments and within 4 aquaria replicates.  

Hierarchical level df SS MS variance % variation p-value 

among treatments  3 64.8 21.6 0.052 2% 0.018* 

among aquaria within treatments  9 106 11.8 0.236 8% 0.084 

within aquaria 535 1383 2.58 2.58 90% 0.001* 

* indicates a significant difference at the 0.05 significance level.
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7.4 Discussion 

Conventional risk assessment based on tests on monoclonal populations may be over-conservative 

because of the artificial reduction of evolutionary potential compared to the natural situation. On the 

other hand genetic adaptation or acquired resistance - brought about by natural selection - may have 

costs and these too may interfere with conventional risk assessment practice. In this study we showed 

that natural populations of Daphnia magna have the ability to adapt to both copper and zinc even when 

exposed to concentrations that strongly impact population densities. We have further demonstrated that 

these populations can recover fully in the case of zinc but not for copper. We obtained no strong 

evidence for either costs or gains associated with zinc adaptation in terms of the populations’ tolerance 

to novel stressors or in the absence of the initial stressor.  While metal selection clearly leads to a 

reduction in clonal diversity, allelic richness of the metal-selected populations remained unaffected 

compared to the control and original populations due to a selection for heterozygous individuals. Below 

each of these findings is discussed in more detail. 

 

 

7.4.1 Microevolutionary response to Cu and Zn selection 

Using a selection experiment followed by a common garden approach, we have shown that a natural D. 

magna population harbours sufficient evolutionary potential to support rapid adaptation to Cu and Zn 

stress. We observed a significant increase in Cu and Zn tolerance in a period of only 10 weeks, which 

is approximately 8 generations of parthenogenetic reproduction (generation time ≈ 8.5 days). The 

response was strong for the ability to reproduce under Cu and Zn stress but not for the number of eggs 

produced by individuals that could reproduce. This may be related to the fact that we chose rather high 

and near-lethal copper and zinc concentrations (8-day LC50) causing a more acute than chronic effect.   

 

Although both Cu and Zn selection caused a significant increase in tolerance to the respective metal, 

the dynamics of the resulting populations differed considerably. Under the conditions we established in 

our experiment, the control populations maintained a stable population growth reaching densities 

between 150 and 200 individuals per L following each culling event. The Zn-selected populations 

matched the population densities observed in the control populations from week six onwards, while the 

Cu-selected populations never completely recovered to reach densities similar to the control 
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populations. Although significantly higher than in the original and control populations, Cu tolerance and 

average reproduction of the Cu-selected populations in the common garden experiment overall 

remained rather low. The number of offspring produced by reproducing individuals of the Cu-selected 

populations when exposed to Cu in the common garden experiment was only 15% of that of these same 

populations under control conditions (Figure 7.3B).  

 

Although the initial selection on survival was less severe in the Cu-selected compared to the Zn-selected 

populations (50% mortality during the first week in the Cu-exposed aquaria populations compared to 

75% mortality under the Zn-exposed aquaria populations), our results suggest that the natural D. magna 

population used in this study has a higher capacity to adapt to zinc than to copper. Previous studies 

have established that the microevolutionary potential in response to exposure to another trace metal, 

cadmium, may differ considerably among populations (Messiaen et al., 2013, Barata et al., 2002a).  This 

warns against generalizations, as it suggests that observations of the evolutionary consequences of 

long-term exposures to lethal effect concentrations (8-day LC50s in our study) of a given pollutant 

cannot be extrapolated to other substances.  

 

 

7.4.2 Costs of adaptation and cross-tolerance 

No evidence was observed for a cost of metal adaptation of the Cu- or Zn-selected populations when 

returned to control conditions. This finding is somewhat in contrast with previous work on Daphnia 

longispina adapted to copper in the wild, where a cost of adaptation upon return to unpolluted conditions 

was observed (Agra et al., 2011 , Agra et al., 2010 ). This can, however, be related to the fact that 

copper is an essential element and Agra and colleagues did not include any copper at all in their control 

medium, which may have resulted in Cu deficiency in animals that had been selected under higher Cu 

concentrations. Indeed, the essential metal deficiency hypothesis postulates that a potential cost of 

metal adaptation is associated with less efficient metal uptake (Van Straalen, 2000, Harper et al., 1997). 

Our control medium still included 5µg Cu/L and 28µg Zn/L (nominal concentrations), which lies within 

the optimal concentration range of both metals for Daphnia (Bossuyt and Janssen, 2004 , Muyssen and 

Janssen, 2005 ).  
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We obtained only weak evidence for a cost of selection in the follow-up experiments in which we 

exposed Zn-selected, control and original populations to two additional stressors, a high temperature 

and a suboptimal food. Exposed to a temperature of 28°C, the Zn-selected populations showed a lower 

probability to reproduce than the control populations. Although this suggests a cost of adaptation in the 

Zn-evolved populations, this evidence is incomplete given the lack of a significant difference compared 

to the original population. Ward and Robinson (2005), in a selection experiment involving 8 clones, also 

did not observe a difference in temperature tolerance associated with metal adaptation (Cd in their 

study). Similarly Zn-selection had no influence on the performance of the Daphnia when fed a diet 

composed of 40% Microcystis aeruginosa.  

 

We observed cross-tolerance of the Zn-selected populations to cadmium for the 21-day EC20 of total 

reproduction. Yet, this effect was not very strong given that the actual difference in EC20 was less than 

25%. Moreover at the median and high effect levels (EC50 and EC80), rather than observing an effect of 

Zn-selection, we observed what was most likely an effect of laboratory selection as both the Zn-selected 

and control populations displayed a significantly lower tolerance to cadmium than their original 

population. Therefore, despite similar survival at lower cadmium concentrations, control and Zn-selected 

populations appear to have lower survival tolerance at higher concentrations (>EC50) than the original 

population. Although this study is limited to the asexual part of the life cycle, it is important to bear in 

mind that under field conditions the selection to one stressor may be separated from the exposure to 

novel stressors by genetic recombination by means of sexual reproduction. One on narrow sense 

heritability suggests that there may be long-term adaptive potential of D. magna populations to cadmium, 

but only under one of two temperature conditions investigated (Messiaen et al., 2012) which suggests 

that the longterm (selection) effects of one stressor can be context-dependent and that extrapolations 

to true field conditions may be difficult.
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7.4.3 Interplay between genetic drift and selection in the selection experiment 

The among-population genetic differences we observe among aquaria can in principle be a 

consequence of genetic drift and differential natural selection (Hartl and Clark, 1980). In addition to our 

observation of an adaptive increase in Zn and Cu tolerance in the Zn- and Cu-selection experiment, 

respectively, also our data on microsatellite markers provide multiple lines of evidence that in our 

experiment, selection was a determining factor. Genetic drift would result in a large amount of variation 

among aquaria irrespective of treatment, whereas natural selection would result in differences that are 

related to the treatments. First, the discriminant analysis shows repeatable differences among 

treatments. Second, the pair-wise GST values between the original and control populations were non-

significant, whereas they were significantly different between the control, Cu- and Zn-selected 

populations. Thirdly, the AMOVA shows that allelic variation for the 12 studied microsatellite markers 

among treatments is significant whereas variation among replicate aquaria within treatments is not.  

 

Selection was strong in our experiment, given that high mortality of clones was observed already during 

the first week. After one week of exposure to either copper or zinc, already 50 to 75 % decline in 

population density was observed in the metal-selected populations (Figure 7.2B, Appendix Table E.5), 

which translated in an equally strong reduction in the number of clones. The response was very similar 

across the four replicate aquaria in both metal-selection treatments (cf. small error bars in Figure 7.2B). 

This strong decline in the metal-selection treatments reflects that experimental populations were 

exposed to a strong selection pressure, corresponding to the eight-day lethal concentration for each 

metal. Given this strong selection pressure, it is striking that the Zn-selected populations entirely 

recovered in terms of their population densities during the experiment, as they reached similar densities 

as the control populations by the sixth week of the experiment. This may represent a case of evolutionary 

rescue (Gomulkiewicz and Shaw, 2013). 
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7.4.4 Selection for heterozygotes 

A significant excess of heterozygosity was observed in the Cu- and Zn-selected populations but not in 

the original and control populations (significant FIS; Table 7.2 and Figure 7.4A). This suggests that the 

exposure to quite high levels of metals we imposed on the populations selected for heterozygotes. 

Heterozygote excess has been reported before in field Daphnia populations that experience prolonged 

periods of clonal reproduction (Hebert, 1974b, Hebert, 1974a, Young, 1979a, Young, 1979b, Hamrova 

et al., 2011) and has also been reported in experimental mesocosm studies (Haag and Ebert, 2007), 

but not as a response to chemical stress. We are only aware of two other studies (Peles et al., 2003, 

Jordaens et al., 2006), cited in a recent review on the effect of metal pollution on the genetic diversity 

(Mussali-Galante et al., 2014) that also observed an increase in heterozygosity following metal-induced 

selection. However, both of these studies were performed with sexually reproducing terrestrial species 

(earthworms and land snails) and with mixtures of metals. To our knowledge, our study is the first to 

report that multigenerational exposure of a natural freshwater population to metal stress resulted in a 

reduction of clonal diversity while allelic diversity was maintained, with heterozygote excess being the 

outcome of chemically induced natural selection in favor of heterozygotes  

 

The increase in heterozygosity observed in the selection experiment has important consequences, as it 

contributes to the maintenance of a higher allelic diversity. Although we observed a strong decline in 

clonal richness in the metal-selected populations, there is no decline in allelic richness. This is important 

as allelic diversity determines a population’s ability to respond to long-term selection across generations 

(Allendorf, 1986).This might reduce one of the potential costs of adaptation, which is reduced genetic 

variation. The fact that allelic richness was not significantly reduced in the Cu- and Zn-selected 

populations suggests that the heterozygote excess observed in the metal-selected populations may act 

as a mechanism that contributes to the maintenance of allelic richness under metal stress. Future 

research needs to determine to what extent this mechanism could help to maintain the adaptive potential 

of metal-selected populations to novel stressors and to what extent increased heterozygosity is 

preserved after genetic recombination following periods of sexual reproduction. This study demonstrates 

that the exposure of a natural population to levels equivalent to the 8 day LC50 does not exhaust the 

genetic diversity and that a natural population can quickly recover from chemical stress (at least in the 

case of zinc) at such high metal concentrations in terms of population density.
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8.1 Introduction 

Conventional ecotoxicology primarily focuses on determining short-term (typically ≤ one generation) 

toxicological responses of individual organisms (typically clonal) exposed to single chemicals, mostly 

under invariable and (near-)optimal conditions. This contrasts with ecological reality, where natural 

populations adapt by means of natural selection to continuously changing conditions of multiple 

stressors under non-optimal conditions (e.g., food shortage, non-optimal temperature, and predation). 

Therefore ERA may not be protective across different environments, such as conditions predicted under 

global change, as it doesn’t account for multiple stressors nor genetic adaptation.  

 

 

The aim of this PhD dissertation was to investigate the combined effects of metals with natural stressors 

at different organization levels (individual vs. population), and time-scales (short term vs. long term) on 

the freshwater cladoceran Daphnia magna. First, this final chapter recapitulates the key findings linked 

to the specific research questions listed in in the conceptual framework (Box 8.1). Secondly, both the 

methods and results followed to address the specific research questions are critically assessed in the 

context of ecological risk assessment, pointing to methodological strengths and weaknesses, and 

providing perspectives for future research. At the end of this chapter the overall contribution of the PhD 

dissertation to ecological risk assessment is highlighted (Box 8.2). 
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Box 8.1. Summary of the key findings linked to the research questions formulated in chapter 1. 

 

 

 

1: Can the combined effects of copper and cyanobacteria be predicted using models? 

YES, CA is more accurate for M. aeruginosa and IA is more accurate for the other cyanobacteria. 

2: Can the combined effects of copper and cyanobacteria be generalized? 

Unlikely, future research is needed to investigate G x G x E interactions. 

3: Do rising temperatures increase the harmful effects of cyanobacteria to D. magna? 

Harmful effects increase for Anabaena and Oscillatoria, decrease for Microcystis, 

Nodularia and Aphanizomenon, and remain unchanged for Cylindrospermopsis. 

4: Are the different cyanobacterial genera more harmful to D. magna than starvation?  

Only Microcystis was observed to be more harmful than starvation alone.  

5: Is the Cu NOEC protective for combined effect of copper and M. aeruginosa?  

NO, as the 21d Cu EC50 on D. magna reproduction values were lower than the 21d NOEC in 

treatment where M. aeruginosa was added to the diet. 

6: Is the Cu NOEC protective for the combined effects of copper and M. aeruginosa at the 

population level? 

NO, population extinction was observed under the combined exposure, despite the effect of M. 

aeruginosa on the population density of D. magna being negligible under the copper control. 

7: Can a mechanistic model (DEB-IBM) extrapolate the effects observed at the individual 

level to more ecologically relevant effects at the population level? 

YES, the model could extrapolate the effects of the individual stressors on the individual level to 

the combined effects of both stressors at the population level (i.e. predict population extinction). 

8: Can populations adapt to lethal metal concentrations (equivalent to the 8-day LC50)? 

YES, rapid adaptation was observed to copper and zinc after only 10 weeks. 

9: Do populations display lower genetic diversity after adaptation than prior to selection? 

NO, clonal diversity was reduced but allelic (i.e. gene) diversity was not affected by selection. 

10: Is adaptation to chemical stressors associated with costs of adaptation? 

Not necessarily, future research is needed to identify the imprint of adaptation on populations. 
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8.2 Combined effects of copper and cyanobacteria 

A central aim of the PhD dissertation was to investigate the combined effects of cyanobacteria and 

copper (commonly applied as algaecide to combat cyanobacteria) on D. magna under more realistic 

conditions than those used in standard ecotoxicity experiments, as the exposure to multiple stressors is 

predicted to increase under global change.  

 

Research question 2: Can the combined effects between copper and cyanobacteria be 

generalized across different cyanobacterial and daphnid genera? 

The results from chapter 2 suggest non-interaction between M. aeruginosa and copper according to the 

CA reference model and non-interaction according to the IA reference model. The opposite was 

observed for the other 4 cyanobacteria: antagonism according to the CA reference model and non-

interaction according to the IA reference model. We have highlighted that combined effects of copper 

and cyanobacteria can’t be generalized across different cyanobacteria genera. The results show that 

M. aeruginosa is the most harmful of the studied cyanobacteria in combined exposure with copper and 

suggest differences in the mode of action of M. aeruginosa and the other cyanobacteria. The results in 

chapter 2 were also the same for the two D. magna clones investigated. 

 

Only two D. magna clones and one strain per cyanobacterial genus and known toxin 

In ERA the primary goal is to protect populations rather than individuals and therefore attempts to 

generalize the effects of exposure to combined effects should preferably be conducted on multiple 

genotypes. The two D. magna clones are not sufficient two make generalizations, as it is important to 

cover the genetic variation present in the natural population. In contract in chapter 7, a more 

representative sample of the genetic variation of a natural population was used. The two specific D. 

magna clones were used because they were the chosen clonal isolates used for the first-generation D. 

magna genetic linkage map (Routtu et al., 2010). However the Xinb3 clone actually offers little ecological 

relevance, as it was isolated from a small temporary rock pool in Tvärminne (Finland). Although the 

Iinb1 clone, which was isolated in Münich (Germany), has a higher ecological relevance than the Xinb3, 

the latter was used in chapters 3-6 as the Iinb1 produces close to 50% male offspring. As only one strain 

(each with a different known toxin production) was used per cyanobacterial genus in the experimental 

design, we can’t identify the mode of action of the cyanobacteria. As mentioned in chapter 1, 
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disentangling the effect of cyanobacteria on D. magna is further complicated by the fact that the 

cyanobacteria have the ability to adapt to their environment as well. For instance, an analysis of the 

genome sequence of the M. aeruginosa strain used in this PhD dissertation highlights that it has a 

particularly high genome plasticity compared to other cyanobacterial strains (Frangeul et al., 2008). 

Such Genotype-Genotype-Environment Interactions (G x G x E interactions) give rise to a geographic 

mosaic of coevolution (Thompson, 2005). 

 

Importance of Genotype-Genotype-Environment Interactions 

As the main goal of ERA is to protect natural populations or ecosystems, future studies should focus on 

clonal genotypes with ecological relevance. Genotype-Genotype-Environment Interactions (G x G x E 

interactions) offer a possible explanation for the seemingly inconsistent literature reports on 

zooplankton–cyanobacteria interactions and may even provide insight on how that zooplankton can 

contribute to the suppression of cyanobacteria blooms. Moreover, Daphnia can increase its tolerance to 

Microcystis through maternal effects (Gustafsson et al., 2005 ) and microevolution (Hairston et al., 

1999). The presence or absence of a cyanobacteria bloom may therefore reflect the outcome of 

interactions between defences and counterdefences (cyanobacteria that protect themselves against 

grazing and their grazers that protect themselves against toxicity) in predator-prey dynamics. 

 

This geographic mosaic of coevolution can be described as how natural selection acts on two or more 

interacting species across many contrasting environments. One study showed that genotype x genotype 

(G x G) interactions are an important factor in explaining the mortality in short‐time exposures of D. 

magna to M. aeruginosa (Lemaire et al., 2012). This suggests that D. magna may develop specific 

responses rather than generalized responses to adapt to local assemblages of cyanobacteria strains 

(genotype x strain dependent), and vice versa. Another recent study revealed strong intraspecific 

differences in the tolerance of D. galeata clones to MC/non-MC-producing cyanobacteria in their diet, 

suggesting microevolutionary effects (Druga et al., 2016)(Druga et al. 2016). This confirms previous 

findings of food (nutrient) quality playing a role in microevolutionary responses to changing 

stoichiometric conditions in natural populations of D. pulex (Weider et al., 2005 ). Future studies should 

focus on the confirmation of such genotype x genotype interactions under a geographic mosaic of 

coevolution between D. magna and cyanobacteria. Genotype x Genotype x Environment Interactions 
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(G x G x E interactions) offer a possible explanation for the seemingly inconsistent literature reports on 

zooplankton–cyanobacteria interactions and may even provide insight on how zooplankton can 

contribute to the control or suppression of cyanobacteria blooms. 

 

 

Research question 3: Does D. magna becomes more sensitive to the harmful effects of 

cyanobacteria as temperature increases? 

A decrease in harmful effects on reproduction with increasing temperature (from 15°C to 23°C) was 

observed for Microcystis, Nodularia and Aphanizomenon, while an increase in harmful effects with 

increasing temperature was noted for Anabaena and Oscillatoria and no effect of temperature on D. 

magna sensitivity to Cylindrospermopsis was observed.  

 

Limited applicability of results as the cyanobacteria and algae were grown at one temperature  

While the findings in chapter 3, 4 and 5 are limited to the direct effects of temperature on D. magna 

sensitivity to cyanobacteria (as cyanobacteria were cultured at a single temperature), cyanobacteria and 

algae are themselves also affected by temperature. While this limitation enabled the focus on only the 

direct effects of Cu, M. aeruginosa, temperature and total diet concentration on the reproduction of D. 

magna (by removing the indirect effects of temperature on the harmfulness of M. aeruginosa), 

extrapolations  to realistic exposure scenarios under global change should be interpreted carefully.  

 

Culturing of cyanobacteria and algae at exposure temperature 

The present findings could be place in a more ecological relevant context if the effect of temperature on 

cyanobacteria would be taken into account by culturing the cyanobacteria at the experimental 

temperatures or at temperatures within the range of where they were isolated. As shown in Table 3.1 of 

chapter 3, the cyanobacteria and algal strains were isolated in different geographical regions. Moreover, 

the findings presented in chapter 3 could suggest that M. aeruginosa blooms could potentially become 

less of a concern in the future with temperature predicted to increase. Several additional physical (e.g. 

vertical mixing) and chemical (e.g. nutrient input) factors influencing the prevalence and intensity of M. 

aeruginosa blooms would have to be included in future experiments to draw more reliable conclusions. 
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Research question 4: Are the different cyanobacterial genera more harmful to D. magna than 

starvation alone? 

In chapter 3, some adverse effects of cyanobacteria on D. magna fitness in terms of food quality have 

been highlighted, as the effects of the cyanobacteria were comparable to (or less than) starvation-like 

effects  in most treatments. These results corroborate those from another study in our laboratory, in 

which adverse effects on reproduction could be explained largely by starvation effects in the 6 

cyanobacterial genera studied in D. pulex and in 3 out of the 6 cyanobacterial genera (Microcystis, 

Nodularia and Anabaena) in D. magna (Asselman et al., 2014). The results from chapter 3 also confirm 

those from chapter 2 and suggest that Microcystis is the most harmful cyanobacterium to D. magna, as 

it was the only cyanobacterium that caused a significantly greater mortality in D. magna than starvation, 

while the mortality caused by the five other cyanobacteria was less than or (at most) similar to the 

mortality in the starvation control.These results advocate against the central focus on cyanobacterial 

toxins in regulations to protect zooplankton (and potentially other aquatic species), as cyanobacterial 

toxins do not seem to be the sole driving force behind the adverse effects on zooplankton species 

(contrary to effects on human health or livestock). Even M. aeruginosa, the most harmful 

cyanobacterium tested, appears to provide at least some nutritional properties to D. magna, as the 

results in chapter 3 demonstrate that at 23°C individuals die faster under starvation then when they were 

fed with M. aeruginosa alone. Hence, the use of cyanobacterial cells rather than toxin concentrations 

appears more appropriate in ERA.  

 

Analysis of nutritional properties vs. toxin content 

Future research could focus on the analysis of the nutritional quality of cyanobacteria relative to green 

algae and toxin analysis. This follows observations also made by Von Elert and Wolfram (2001) and 

others (Martin-Creuzburg et al., 2008, Martin-Creuzburg and von Elert, 2009), who observed limited to 

no effects of cyanobacteria on Daphnia when supplemented with nutritional factors such as poly 

unsaturated fatty acids (PUFAs) and sterols. Additionally, a molecular analysis of the mechanisms 

affected by cyanobacteria in D. magna would be essential to investigate the relative importance of both 

factors (nutritional quality and toxin effect) in determining overall cyanobacterial toxicity. Future research 

could include feeding experiments to determine the parameters of the functional response for both algae 
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and cyanobacteria, which could then also serve as input for feeding-related parameters in the DEB-IBM 

described in chapter 6.  

 

 

Research question 5: Are 21-day Cu NOEC concentrations derived under optimal conditions 

protective under non-optimal conditions? 

The findings in chapter 4 are a testimony that mixtures at 21d NOEC levels of individual stressors can 

result in adverse effects, as a diet composed of only 10% M. aeruginosa (= 21d NOEC, see Appendix 

C Figure C.2) resulted in copper 21d EC50 on reproduction values lower than the copper 21d NOEC 

under standard conditions. Moreover, the results highlight that the interactive effects between copper 

and M. aeruginosa, were not significantly affected by temperature and total food concentration. The 21-

day EC50 for copper based on reproduction (EC50) varied between 20 and 100 µg/L and the results 

indicate that the percentage of M. aeruginosa explained 76% of the variance in the copper EC50 across 

all conditions studied (with higher M. aeruginosa correlating with higher Cu toxicity), while the effects of 

the temperature and the total food concentration were limited (together explaining 11% of the variance).  

 

The study design doesn’t allow for extrapolations to temperatures and food conditions beyond 

the ecological niche 

The temperature and total food condition levels didn’t qualify as stressors themselves. Consequently 

the statement made above, of temperature and total food content having limited influence on the 

combined effects of copper and M. aeruginosa should be taken with caution. Future experiments should 

place different D. magna clones outside their ecological niche (as illustrated in Chapter 1, Figure 1.2), 

by including the genotype-specific upper- and lower critical temperatures, as well as a starvation 

treatment. 

 

Limitations of the ecological relevance of the results in chapters 2, 4 and 5  

The results presented in chapters 2, 4, and 5 are limited in their applicability to natural systems, as the 

experimental design doesn’t account for effects of copper on algae and cyanobacteria. Indirect effects 

on D. magna can result, as both algae and cyanobacteria serve as a food source. Cyanobacteria are 

expected to be most sensitive to copper as copper-based algaecides serve the specific purpose to target 



General conclusions and future research perspectives 

 

167 
 

cyanobacterial blooms. While D. magna is more sensitive than both green algae and fish at low pH 

levels, green algae have been shown to be most sensitive test species to copper at high pH levels, 

similar to the medium used in this dissertation (De Schamphelaere et al. 2003). This suggests additional 

indirect effects of green algae and resulting food shortage under copper exposure on D. magna.   

 

Future research using controlled flow-through system to increasing ecological realism 

A useful study design to disentangle the Genotype-Genotype-Environment interactions (G x G x E 

interactions) would make use of a controlled flow-through system to investigate the direct effect of 

copper, M. aeruginosa and temperature on D. magna, as well as the indirect effects of copper and 

temperature on green algae and M. aeruginosa in a full factorial design. In order to increase ecological 

realism (i.e. mimicking natural scenarios where copper-based algaecides are used to combat 

cyanobacterial blooms) such an experiment should start with a daphnid-algae system to which first 

cyanobacteria are added and thereafter copper in a pulse exposure. In addition measurements of food 

intake by D. magna, toxin content (uptake and excretion) and nutritional quality of the cyanobacteria 

could help to identify the mechanistic basis of the G x G x E interactions. 

 

 

Research question 6: Are 21-day Cu NOEC concentrations derived under optimal conditions 

protective under time-variable non-optimal conditions at the population level? 

In chapter 5 a population experiment was carried out to compare the total population density dynamics 

of a D. magna population exposed to regulatory and environmentally relevant copper concentrations, 

equivalent to or lower than the 21-day copper reproduction NOEC concentration for the studied clone 

(Hochmuth et al., 2014, Hochmuth et al., 2016) under different realistic global change conditions (notably 

the addition of M. aeruginosa to the diet and a temperature increase of 4°C). Populations exposed to 

copper at the 21d NOEC level (44µg Cu/L) and M. aeruginosa under a 4°C temperature increase went 

extinct, despite the same diet and temperature having no significant effect on population density at 

control (2.4µg Cu/L) copper levels. This illustrates a case of ‘ecological surprise’, i.e. multiple stressors 

having combined effects that are not expected from the effects of the single stressors (Paine et al., 

1998) and substantiates the claim that the current focus of ERA on single substances is not sufficiently 

conservative as the potentially interactive effects of chemical stressors with natural stressors cannot be 
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predicted form individual of the chemicals alone. The population level effects in chapter 5 are also in 

confirmation with the individual level effects in chapter 4, as a diet composed of only 10% M. aeruginosa 

(= 21d NOEC, see Appendix C Figure C.2) resulted in copper 21d EC50 values lower than the copper 

21d NOEC under standard conditions (Figure 4.3A, Appendix C Table C.3) and therefore demonstrate 

that if ERA were to include the individual effects of natural stressors, interactive effects could actually 

be extrapolated from the individual to the population level (and as shown here: extinctions forecasted).  

 

Important implications for ERA 

The combined results of chapter 4 and 5 suggest that Cu NOECs derived from standard ecotoxicity tests 

may not be protective in systems that experience M. aeruginosa blooms and support the call to 

incorporate combined effects of stressors into ERA practice. The Water Framework Directive (WFD) 

aims to establish the basic principles of sustainable water policy in the European Union, with the aim to 

identify priority hazardous substances for the aquatic environment on the basis of scientific risk 

assessment (RA) and setting common environmental quality standards (EQS) and limit the emission 

values for chemicals (EC, 2011, WFD technical guidance). However, the WFD does not provide details 

on the assessment of chemical mixtures or mixture effects, despite the fact that the EQS guidance 

document recognizes that in some circumstances an EQS for mixtures may be preferable to deriving 

EQSs for the individual constituent substances (EC, 2011). In 2015, the Environmental Quality 

Standards Directive introduced the Development of the first Watch List of substances to support the 

identification of priority substances for regulation under the Water Framework Directive. However neither 

copper nor M. aeruginosa figure on this list.
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8.3 Implications of the models for ERA and their potential shortcomings  

"Essentially, all models are wrong, but some are useful" is a common aphorism in statistics. Below the 

strengths and weaknesses of the two main models used in this PhD dissertation and their implications 

for ecological risk assessment and ecology are discussed. 

 

Research question 1: Can the combined effects of copper and cyanobacteria be predicted using 

CA/IA reference models, based on the known effects of the individual exposures? 

The combined results from chapter 2 and 4 demonstrate that the CA reference model was consistently 

more accurate at predicting the combined effects of copper and M. aeruginosa, while the IA delivered 

more accurate predictions for the combined effects of copper and the other 4 cyanobacterial genera. 

Further, the CA model consistently overestimated the combined effects, while the IA model consistently 

underestimated the combined effects. This demonstrates that the CA reference model is always more 

conservative than the IA reference model, as it predicts higher toxicity of the combined effects compared 

to IA. As the IA reference model uses individual effects of the mixture components to calculate the 

expected mixture effect, it implies that agents present at doses below their individual effect thresholds 

(i.e. NOECs) will not contribute to the joint effect of the mixture. According to the CA reference model, 

on the other hand, all components of the mixture contribute to the mixture toxicity in direct proportion to 

their concentration in the mixture and their individual toxicity. Hence, whether the individual 

concentrations of the components in the mixture are above or below their individual effect thresholds 

(NOECs) does not matter. Consequently, the CA model can be used as a conservative approach in 

ecological risk assessment.  

 

Limitations of the CA and IA references models 

Currently the use of the CA and IA reference models can only infer interaction by comparing the model 

predictions to the empirical observations (Belden and Lydy, 2006). This is a major hurdle for ERA, as 

interactive effects can only be pragmatically resolved through experimental validation and quantitatively 

comparing the effects predicted by both models with observed effects. Under this framework ecological 

surprises, such as extinction events cannot be predicted in silico, i.e. prospectively.
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Future research using mechanistic models 

Predictive models that are based on mechanistic understanding, such as the DEB-IBM developed in 

chapter 6, are promising tools to move from a retrospective to a prospective risk assessment. Depending 

on the PMoA selected in DEB-IBM, the model was able to predict the extinction of the populations. In 

the case of copper and M. aeruginosa the correct PMoA would first have to be determined 

experimentally using mode of action driven analysis. Alternatively, or as a first step, the inclusion of 

more endpoints (e.g. growth, metabolic rates) could aid in the correct identification of the PMoA by 

principal of exclusion. For instance the results in chapter 3 (M. aeruginosa having an effect on length 

after 21 days) and chapter 4 (both copper and M. aeruginosa having an effect on length after 21 days), 

allowed the exclusion of reproduction as a PMoA (as both Cu and M. aeruginosa had no effect on 

length). 

 

Research question 7: Can a mechanistic model (DEB-IBM) extrapolate the effects at the 

individual level to more ecologically relevant effects at the population level? 

In chapter 6 a mechanistic model (DEB-IBM), was calibrated using standard ecotoxicity data from 

chapter 4 on individual-level reproduction of D. magna under control conditions. This model was used 

to extrapolate to population level effects of D. magna under combined exposure to copper and M. 

aeruginosa under changing environmental conditions. To validate the model an independent data-set 

on population density (presented in chapter 5) was used. The DEB-IBM presented in chapter 6 serves 

as a proof of principle that mechanistic models are an asset for ERA, as they can effectively translate 

standard ecotoxicity tests to more ecologically relevant scenarios. The results have demonstrated that 

process-based toxicity models (DEB-IBM) that are fitted on data from short-term life-table experiments 

can be used to make reliable predictions of population dynamics under ecologically realistic, time-

variable, multiple stressor scenarios, including conditions of projected global change. The present study 

is novel for two reasons: Firstly, to our knowledge it is the first implementation of a time variable DEB-

IBM model with fluctuating temperature. Secondly, this is the first attempt to incorporate the combined 

effects of stressors using the CA reference model into the DEB-IBM framework.
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Differences in the experimental design on model predictions  

The predictions of population density made by the DEB-IBM are not an absolute representation of the 

real observations, as not all underlining interactions are fully captured by the model. Although some 

aspects have an important impact on the further applicability of the DEB-IBM, their implications on the 

results presented in this dissertation are expected to be limited. For instance, the model currently doesn’t 

account for effects of copper on algae and cyanobacteria. In the context of this research however, the 

consequences are expected to be minor as algae and a cyanobacteria are fed (i.e. replaced) daily. As 

the DEB-IBM model incorporates stress as effect and not as a response, it is based on the CA model 

and can’t make predictions according to the IA model. The results from this research are not 

compromised, as the use of the CA concept is a logical extension of the previous chapters and the fact 

that the model predictions followed the observed trend generally well, confirms the use of CA addition 

as an appropriate reference model here.  

 

Other assumptions may have had consequences on how well the model reflect the real data. Because 

M. aeruginosa is both a food source and a stressor to D. magna, additional assumptions had to be 

made. The harmful effect of M. aeruginosa was incorporate in the estimated EC50 for reproduction and 

accounted for all potential modes of action (toxins, feeding inhibition and low food quality). In line with 

the standard toxicity tests in previous chapters the total food content (in mg C/L) was assumed to remain 

constant throughout, and expressed as green algae cells. In other words, the model assumes M. 

aeruginosa to be equally nutritious as the algae. If we had used the same algae as in the development 

of the original model this last assumption would actually suggest that the effects of M. aeruginosa could 

be predominantly attributed to toxin production and not the lack of nutritional quality. The biggest 

difference between our experimental design and that for the model development is that we used a 

different D. magna clone and a different algal species. As was described in the method section in chapter 

6, we re-calibrated the model by optimizing the species-specific feeding parameters, as the parameter 

values for our clone and algae could not be estimated.
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Improvements to improve the ecological realism and increase the applicability of the DEB-IBM 

If information were available on the effect of copper (i.e. EC50 or LC50) for P. subcapitata and for M. 

aeruginosa, the DEB-IBM could relatively easily be extended to include the resulting indirect effects on 

D. magna. The model could then also be adapted to predict the outcome of a suggested future 

experiment (flow-through system with pulse exposure) proposed in the discussion of research question 

5. 

 

 

Current DEB-IBM model doesn’t allow for effects of copper on algae and cyanobacteria 

The DEB-IBM framework presented in this thesis focused solely on a single species, thereby neglecting 

possible interactions with other species. However, the absence of interactions between species is one 

of the main criticisms on current ERA methods (Rohr et al., 2006, Clements and Rohr, 2009). Future 

efforts should be directed towards incorporating interactions between species (e.g. competition, 

predation, food chain dynamics) to move even further from population to ecosystem level effects (Grimm 

et al., 2009) (De Laender et al., 2014). One recent modelling effort demonstrated that adding 

interspecific competition to individual-based models increased recovery times following chemical stress 

up to three times (Kattwinkel and Liess, 2014). DEB-IBM is well suited as such a model, as separate 

DEB-IBMs could serve as building block and hold the potential to be further enhanced based on specific 

needs.  

 

 

The present DEB-IBM does not allow for microevolutionary effects  

Future efforts should be made to include genetic variability in tolerance to copper and zinc in the DEB-

IBM developed in chapter 6, to predict the population level response to metal selection from chapter 7, 

based on the dose response data collected for different clones within the population. Thus far there are 

two published studies where mechanistic models were successfully applied to quantify multigenerational 

effects to uranium, one in Chironomus riparius (Beaudouin et al., 2012) and one in Caenorhabsitis 

elegans (Goussen et al., 2015). DEB-IBM seems an appropriate framework for understanding and 

quantifying long term selection and tolerance mechanisms in a population under toxic stress, as natural 
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selection occurs at the level of the individual, which shapes the life-history traits of a species, and 

ultimately drives dynamics at higher levels of biological organisation.  

Future applications for DEB-IBMs 

Before mechanistic models such as DEB-IBM can become part of the accepted ERA tools, modelling 

needs to improve in certain key areas. Risk assessors need to be convinced that the model captures 

the actual patterns that are observed in real systems (Grimm and Martin, 2013). In order to improve their 

use and acceptance, models need to be validated by reliable scientific data sets or surveys (Grimm and 

Martin, 2013). The DEB-IBM developed in chapter 6 can be used to explore properties of both individual 

life history traits (survival, reproduction, growth) and population dynamics (population density, size 

structure daphnia-algae dynamics), which emerge from the set of DEB parameters of a species, and 

their interaction with environmental variables such as food density and chemical stressors. Potential 

users do not require extensive programming skills or an in depth technical understanding of DEB theory, 

as only the standard DEB parameters and environmental conditions need to be adjusted.  

 

Because the DEB-IBM model is based on DEB, which is a generic theory, the model can be calibrated 

to any species, as long as the species-specific DEB parameters are available in the literature or 

experimentally determined. There are currently two thorough reviews and guides for parameterizing a 

DEB model for different species (van der Meer, 2006, Kooijman et al., 2008). Mechanistic models such 

as DEB-IBM offer a pragmatic advantage because shifting from higher to lower levels of biological 

organisation decreases the time and costs required to collect the data required. The individual level is 

of key interest as it is possible to work with mass and energy balances, and because individuals are the 

units of natural selection and the building blocks of populations and ecosystems. It is also much more 

practical to collect data on individuals than populations. Ideally, the large existing amount of historical 

ecotoxicology data could be used for modelling purposes and the resulting models can reduce the need 

for additional ecotoxicological testing and the amount of test animals needed. 
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8.4. Microevolutionary effects of chemicals in a global change context 

It is the genetic variability in life-history traits under stress within a population that sets the scope for 

microevolutionary responses under exposure to that stress (Klerks et al. 2011 ; Messiaen et al. 2013). 

Microevolution can be defined as the change in allele frequencies that occurs over time within a 

population. The process of genetic adaptation to chemicals is therefore a double-edged sword. Current 

ecological risk assessment practices may be under-protective, as populations adapted to a given 

stressor may be more sensitive to additional stressors than non-adapted populations (cost-of-tolerance). 

Conversely, as ERA is based on populations with no or limited genetic variability, it may be 

overprotective, as natural selection favours those genotypes that are more tolerant to a stressor and 

allows them to replace less tolerant genotypes in a population. Below the microevolutionary findings are 

discussed in the context of ecological risk assessment  

 

Research question 8: Can a genetically diverse populations adapt to lethal metal concentrations 

(equivalent to the 8-day LC50)? 

In chapter 7, a 10 week microevolution experiment was conducted with a genetically diverse natural D. 

magna population that was exposed to Cu and Zn. Both Cu- and Zn-selected populations developed a 

significantly higher metal tolerance (i.e. genetic adaptation), indicated by higher reproduction 

probabilities of clonal lines in Cu and Zn exposures, than observed for the original and control 

populations. The results demonstrate that natural D. magna populations can adapt rapidly, after only 10 

weeks (≈7 generations) to high concentrations (8 day LC50) of both copper and zinc, with initially strong 

effects on population density. Interestingly, the same D. magna population was observed to recover 

successfully in terms of total population density after selection under zinc stress but not after selection 

under copper stress, despite initial effects being stronger in the former than in the latter selection 

treatment. This observation not only warns against generalizations across stressors but invites for a 

deeper investigation on the genetic basis of copper and zinc adaptation in the studied population. 
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Limitations of the study design ecological relevance of the test concentrations 

The concentrations of copper and zinc (8-day LC50) for which adaptation was observed have little 

relevance for ERA as they are higher than 21-day NOEC concentrations for reproduction in the same 

medium (70 vs 45µg cu/L, 428 vs. 630µg Zn/L). 

 

Do microevolutionary effects already occur around more regulatory relevant concentrations? 

Microevolutionary effects attract the attention of ecotoxicologists because they jeopardize the 

application of one of the foundation of ecotoxicology, the dose response curve. Attention from regulators 

to consider microevolutionary effects in ERA, or the derivation of EQS, on the other hand, has remained 

limited. In ERA, the hazardous concentration for 5% of the species (HC5), derived from species 

sensitivity distributions, is typically used to establish EQSs (Posthuma et al., 2002). Future research 

should therefore focus on determining if microevolutionary effects in copper and zinc already occur 

around regulatory relevant concentrations. A recent review assessed the regulatory relevance of 

microevolutionary effects of cadmium based on a comparison of concentrations at which 

microevolutionary effects have been reported in the literature and conventionally derived 

ecotoxicological threshold concentrations (De Coninck et al., 2014). The authors found reports of 

microevolutionary effects of cadmium at hardness-normalized concentrations that were at least 1.5 

times higher than the HC5 of 0.34mg Cd/L. This suggests that there is no immediate need to consider 

microevolutionary effects of cadmium in ecological risk assessments of freshwater environments. A 

similar approach should be followed for copper and zinc to gain insight at which (bioavailable) metal 

concentrations natural selection (and adaptation) actually occurs.  

 

 

Research question 9: Do populations display lower genetic diversity after adaptation than prior 

to selection? 

Although natural populations can harbour evolutionary potential to adapt genetically to chemical 

stressors, it is often thought that natural selection leads to a general reduction of genetic diversity and 

involves costs. Microsatellite genotyping revealed a decrease in clonal diversity but no change in allelic 

richness (liked to excess heterozygosity) in the Cu- and Zn-adapted populations compared to the control 

and original populations. It is allelic diversity that primarily determines a population's ability to respond 
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to long-term selection over many generations (Allendorf, 1986), nevertheless, whether clonal diversity 

or allelic richness (gene diversity) is the biodiversity-based protection goal is a decision to be made by 

water quality managers. The heterozygote excess observed In the Cu- and Zn-selected populations 

may be a consequence of an increased fitness advantage of heterozygote genotypes under Cu or Zn 

stress. This type of selection prescribes that, while there is no single “best” allele, the heterozygotes in 

a population often have a fitness advantage over the homozygotes. There are numerous examples of 

so-called heterozygote-fitness correlations in field studies (HFCs, see (Chapman et al., 2009) for a 

review), yet  there is lack of data on the effect of environmental stress on these HFCs. We are only 

aware of two experimental studies with Daphnia, which provides contrasting results. Hebert and 

colleagues found that outcrossed heterozygote clones of homozygote parents were more tolerant to 

temperature and salinity stress (Hebert et al., 1982). In another study clonal heterozygosity had a 

negative effect on survival under high and low conductivities as well as at low pH (Jose and Dufresne, 

2010). This excess heterozygosity in metal-selected populations has important consequences for ERA, 

as it may act as a mechanism to maintain allelic richness under multi-generational chemical exposure. 

 

Limitations of using microsatellite markers 

Microsatellite markers are neutral markers that do not necessarily reflect the genetic variation at the 

genes under selection. Our study could be screenshot of an incomplete selective ‘sweep’ or evolution 

in action. The results from chapter 7 suggest that under experimental conditions natural selection 

favours heterozygote genotypes. Alternatively, the fact that heterozygous individuals possess a greater 

diversity of alleles, could make them better suited to cope with environmental stochasticity, the so-called 

‘episodic heterozygote advantage (Samollow and Soule, 1983). While it appears likely, we cannot 

conclude that the heterozygote excess was a result of direct selection for increased heterozygosity 

(balancing selection), i.e. to maintain genetic variation.  

 

Future research should consider other molecular techniques, such as selective sweep approaches 

or analysis of outlier loci in genome scans that identify genes or genomic regions linked with genes 

under selection, would be more appropriate (Coutellec and Barata, 2013). Future studies may want to 

consider more loci, as genomic heterozygosity was inferred by a few loci only. The finding of 
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heterozygote excess in metal adapted populations suggests that balancing selection may play role in 

metal adaptation and deserves further investigation. 

 

Limitations of only considering asexual reproduction  

It remains to be tested if this heterozygote excess is maintained after recombination events during 

subsequent sexual cycles. Although microevolutionary effects during clonal selection may be rapid (as 

evidenced in chapter 7), it is uncertain to what extent the ‘selection of the fittest’ necessarily contributes 

to the genetic composition of future generations. This is because daphnids alternate between clonal 

reproduction and sexual reproduction and the fact that ephippial recruitment events have the capacity 

to reset the evolutionary trajectory of active populations (Hembre and Megard, 2006). Future research 

should determine if adaptation is preserved after genetic recombination during periods of sexual 

reproduction. This could be achieved by hatching the sexually-produced ephippia collected during a 

selection experiment and comparing the tolerance of those hatchlings to adapted asexual population. 

 

 

Research question 10: Is adaptation to chemical stressors associated with costs of adaptation? 

In a follow-up study with the Zn-adapted populations, no effect of Zn selection on the tolerance to heat 

and M. aeruginosa was observed. Limited to no evidence of either a cost or a gain associated with zinc 

adaptation was found in a follow-up experiment where the Zn-adapted populations where exposed to 

novel stressors. The only evidence of cross-tolerance (i.e. a fitness gain) was a higher 21-day Cd EC20 

of reproduction in the Zn-adapted populations. Contrary to the genetic erosion hypothesis, no clear costs 

of Zn adaptation upon exposure to the new stressors were observed. The only potential cost of 

adaptation was noted at cadmium concentrations higher than the EC50.  

 

Only the initial tolerance to additional stressors was tested not the adaptive potential 

Adaptation to toxic cyanobacteria may play an important role too. It has already been demonstrated that 

Daphnia frequently exposed to harmful algal blooms also develop a higher tolerance to cyanobacteria 

(Gustafsson and Hansson, 2004 ). Future experiments should also consider investigating the 

adaptive potential response to novel stressors rather than initial tolerance alone. However it is 

not possible to study all possible combinations of stressors (which are only predicted to increase in the 
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context of global change). ERA therefore urgently needs robust tools that identify the imprint of 

microevolution on populations, as well as thorough mechanistic understanding of the measured 

endpoints to (i) interpret them in an ecological way and (ii) translate them to ESQs in ERA. As it will be 

impossible for ERA to tackle an almost infinite number of combination of stressors, the application of 

tools from the –omics field (e.g. biomarkers in transcriptomics, proteomics and metabolomics), as well 

as AOPs (mentioned above) could shed light on the mechanistic basis on the sub-organismal level. 

 

 

Box 8.2. Overall contribution of this PhD dissertation to ecological risk assessment. 

 

This PhD dissertation has identified 3 major outcomes relevant for ERA of chemicals as they 

hold the potential to improve ecotoxicology practices by increasing the ecological realism: 

1. Combined effects of chemicals and natural stressors  

PNECs or EQSs based on copper NOECs derived under standard conditions may not be 

protective enough in systems that experience M. aeruginosa blooms. Therefore it might become 

necessary to derive separate EQSs for mixtures of copper and M. aeruginosa for eutrophic 

systems, especially in the context of global change projections. 

2. DEB-IBM for extrapolations from individual to population level effects 

DEB-IBM can predict the combined effects of copper and M. aeruginosa at the population level 

(even extinction) based on the observed effects of the individual stressors at the individual level.  

3. Microevolutionary effects 

Clonal populations can adapt rapidly to chemical stress without loss of genetic diversity and 

without major costs of tolerance in subsequent exposure to additional stressors. 
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The current approach followed in ecological risk assessment (ERA) of chemicals suffers several 

limitations. For instance, environmental protection goals tend to target populations or higher levels of 

organization, whereas ERA relies on standardized laboratory tests in which effects are measured on 

individual. From these tests, the threshold concentration of a chemical, below which no population-level 

effects should occur, is derived. In addition, these laboratory tests are mostly conducted for individual 

substances with laboratory populations with limited genetic variability under optimal conditions, whereas 

natural populations are not only genetically diverse, but they also have to cope with multiple stressors 

and varying environmental conditions. There is however a pressing need to evaluate the combined 

effects of stressors, as research suggests that mixtures at No-Observed-Effect-Concentration (NOEC) 

levels of individual substances may cause adverse effects when they are combined. With global change 

projections, co-occurrences of natural and chemical stressors are only predicted to increase. The aim 

of this thesis was to investigate the combined effect of metals (copper and zinc) with natural stressors 

(harmful algal blooms and global warming) at different organization levels (individual vs. population), 

and time-scales (short term vs. long term) in the freshwater model organism Daphnia magna. 

 

In chapter 2 the response of D. magna to the combined effects of copper and 5 cyanobacterial genera 

was predicted using 2 widely used reference models, i.e. the Concentration Addition (CA) reference 

model for similarly acting stressors and the Independent Action (IA) reference model for dissimilarly 

acting stressors.4 major findings were noted: (1) The interaction type differed between the Microcystis 

aeruginosa + copper mixture (non-interaction according to CA and synergism according to IA) and the 

4 other cyanobacteria + copper mixtures (antagonism according to CA and non-interaction according to 

IA). (2), Interactive effects were predicted differently by both reference models. More specifically, 

mixtures of Cu and Microcystis aeruginosa were synergistic with IA, whereas non-interaction was 

observed with CA, while the remaining 4 cyanobacteria + copper combinations non-interaction was 

predicted according to IA and antagonism according to CA. (3) Both reference models provided 

reasonable predictions for all observed combined effects. Despite IA providing a more accurate fit to the 

data (with the exception of M. aeruginosa), CA consistently delivered more conservative predictions for 

the combined effects of copper and cyanobacteria mixtures. Thus, CA could serve as a conservative 

model to account for mixture toxicity of cyanobacteria and copper in water quality management, as it 

gives rise to conservative predictions of mixed stressor toxicity at sub-lethal effect levels in Daphnia 
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magna. (4) Finally, and in accordance with other studies of cyanobacteria + chemical mixtures, we did 

not detect any strong synergistic effects of copper and cyanobacteria mixtures on D. magna. Of the 

tested genera Microcystis was the most harmful in combination with copper, but the combined effects 

could be predicted with the references models based on the individual level effects.  

 

In chapter 3 the effect of temperature on the harmfulness of 6 different cyanobacterial genera was 

assessed in a standard ecotoxicity test. More specifically two questions were answered, (i) whether D. 

magna becomes more or less sensitive to the harmful effects of cyanobacteria and (ii) whether the 

different cyanobacteria genera are more harmful to D. magna than starvation alone. The results suggest 

that higher temperatures, related to global warming, may increase the sensitivity of D. magna to the 

presence of some cyanobacteria (Anabaena and Oscillatoria) in their diet, while the harmful effects of 

others (Microcystis, Nodularia and Aphanizomenon) may diminish at higher temperatures. No effect of 

temperature on the sensitivity of D. magna to Cylindrospermopsis was observed. Further, the findings 

from chapter 2 suggest that Microcystis is the only strain for which the harmful effects can at least partly 

be attributed to toxin production, as it was the only strain to cause significantly greater mortality to 

Daphnia than starvation alone. 

 

The combined results from chapters 2 and 3 suggested that M. aeruginosa was the most harmful 

cyanobacterial genus (i.e. the only cyanobacteria with a synergistic interaction with copper according to 

the IA model and the only cyanobacteria genus that was more harmful than starvation alone), and 

because the harmfulness of M. aeruginosa to D. magna decreased with temperature (chapter 3), chapter 

4 investigated whether the combined effects of copper and M. aeruginosa would under less optimal 

environmental conditions (temperature and the total food concentration). A standard ecotoxicity test was 

carried out with mixtures of copper and M. aeruginosa at 3 different temperatures (15°C, 19°C, 23°C) 

and 2 different total food concentrations (0.8mg C/L and 2.5mg C/L). The interactive effects between 

copper and M. aeruginosa, i.e. synergism according to IA and non-interaction according to CA, was not 

affected by temperature and total food concentration. In line with chapter 2, CA gave rise to more 

accurate predictions of mixture toxicity than IA and we therefore confirm the former model’s suitability 

as a suitable tool for evaluating mixture toxicity of copper and M. aeruginosa under the temperature and 

food concentrations tested. Further, the 21-day median effective concentration for copper based on 
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reproduction varied between 20 and 100 µg/L and the results indicate that the percentage of M. 

aeruginosa explained 76% of the variance in the Cu median effective concentration for reproduction 

(EC50), suggesting that the effects of the temperature and the total food were much less important 

(together explaining 11% of the variance of the 21-day EC50). Further, a diet composed of only 10% M. 

aeruginosa results in copper EC50 values close to the copper NOEC under standard conditions, which 

confirms that mixtures at NOEC levels of individual substances can result in adverse effects and 

indicates that ecological risk assessment of copper should consider specific situations where harmful 

M. aeruginosa blooms can co-occur with elevated copper exposure. 

 

In chapter 5 a population experiment was carried out to compare the total density of a D. magna 

population exposed to regulatory and environmentally relevant copper concentrations under more 

realistic global change conditions. These conditions were equivalent to a seasonal increase of 

temperature and the proportion of the total diet consisting of the harmful cyanobacterium M. aeruginosa 

under current temperature conditions, as well as a 4°C temperature increase predicted under global 

change. Populations exposed to the copper and M. aeruginosa under a 4°C temperature increase went 

extinct, even though the effects of the individual stressors were limited. Two main conclusions were 

drawn: (1) The findings highlight the need to consider the combined effects of multiple stressors in ERA, 

as the population level extinction could not have predicted from the effect of copper alone. This is an 

example of an ecological surprise, i.e. multiple stressors having combined effects that are not expected 

from the effects of the single stressors. (2) The results presented in chapter 5 suggest that individual 

level effects measured in standard ecotoxicity tests (as in chapter 4) can be translated to more complex 

realistic effects at the population level (as in chapter 5). 

 

In chemical risk assessment, the ecological effects of stressors are often inferred from observations 

made at the level of the individual. In chapter 6 the hypothesis was tested that a mechanistic model 

(DEB-IBM) could extrapolate the effects at the individual level (using reproduction as an endpoint) to 

the effects at more ecologically relevant endpoints at the population level (such as total abundance). 

The results from this chapter have shown that the combination of standard ecotoxicity endpoints and an 

existing DEB-IBM model is able to deliver reasonable predictions for the combined effects of copper and 

M. aeruginosa on population abundance under global change conditions. The modelling simulations 
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from chapter 6 also illustrate that the DEB-IBM can be applied for combined effects that follow the 

Concentration Addition reference model.  

 

In chapter 7, the microevolutionary effects of copper and zinc were assessed on the basis of 3 

hypotheses: (i) that genetically diverse populations can adapt to lethal metal concentrations (equivalent 

to the 8-day LC50), (ii) that populations display lower genetic diversity after adaptation than prior to 

selection, and (iii) that adaptation to chemical stressors is associated with a cost of adaptation. A 10 

week microevolution experiment was conducted with a genetically diverse and representative sample 

of a natural Daphnia magna population that was exposed to copper and zinc. Both Cu- and Zn-selected 

populations developed a significantly higher metal tolerance (i.e. genetic adaptation), indicated by higher 

reproduction probabilities of clonal lines in Cu and Zn exposures than observed for the original and 

control populations. We have further demonstrated that these populations can recover fully in the case 

of zinc but not for copper, suggesting that the natural D. magna population used in this study has a 

higher capacity to adapt to zinc than to copper. This warns against generalizations, as it suggests that 

observations of the evolutionary consequences of long-term exposures to lethal effect concentrations 

(8-day LC50s in our study) of a given pollutant cannot be extrapolated to other substances. The results 

suggests only limited costs of adaptation, as (1) the reproduction under control conditions didn’t differ 

between the control and  metal-adapted populations, and (2) as no effect of Zn-adaptation was observed 

on the tolerance to high temperature and cyanobacteria in a follow-up study with the Zn-adapted 

populations. However, higher tolerance to Cd was observed in the Zn-adapted than in the non-selected 

populations (but only if the 20% effective concentration of Cd was considered).  

 

Finally, chapter 8 provides an overview of the main conclusions reached and the limitations of the results 

in light of the research questions put forward in the introduction, and provides suggestions for further 

research. 
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Het huidige systeem voor de ecologische risicoschatting van chemicaliën is gelimiteerd door enkele 

duidelijke gebreken. Ecologische risicoschattingen hebben als doel effecten van chemicaliën op 

populaties en gemeenschappen te vermijden. Typisch wordt dit risico geschat op basis van 

gestandaardiseerde blootstellingexperimenten waarin enkel een beperkt aantal individuen worden 

getest. Bovendien worden deze blootstellingexperimenten uitgevoerd voor individuele stoffen en onder 

optimale omstandigheden op populaties met beperkte genetische variabiliteit. Natuurlijke populaties 

worden nochtans gekenmerkt door een hoge genetische diversiteit, blootstelling aan meerdere 

stressoren en door de tijd variërende, sub-optimale omstandigheden. Onderzoek heeft aangetoond dat 

de combinatie van verschillende stressoren (metaal)toxiciteit sterk kan beïnvloeden en verwacht wordt 

dat de combinatie van stressoren nog belangrijker zal worden in de toekomst door de 

klimaatsverandering. Het doel van dit proefschrift was daarom het onderzoeken van de gecombineerde 

effecten van metaaltoxiciteit (koper en zink) en andere stressoren (cyanobacteriën en hogere 

temperaturen) voor verschillende organisatieniveaus (individu en populatie) en verschillende termijnen 

(korte termijn vs. lange termijn) op de watervlo Daphnia magna. 

 

In hoofdstuk 2 werd D. magna blootgesteld aan een combinatie van koper en één van vijf geselecteerde 

soorten cyanobactieriën. Verwacht werd dat de toxiciteit van deze mengsels afhankelijk was van de 

gebruikte cyanobacteriënsoort en dus van de mode of action van de toxines. De toxiciteit van deze 

mengsels werd geëvalueerd aan de hand van twee vaak-gebruikte referentiemodellen: concentratie-

additie (CA) en independent action (IA). Vier resultaten vielen hierbij op: (1) De interactie tussen koper 

en Microcystis aruginosa was verschillend van de interactie tussen koper en de vier andere geteste 

cyanobacteriën. Mengsels van koper en M. aruginosa waren synergetisch volgens IA, terwijl geen 

interactie werd waargenomen werdt volgens CA. Voor de vier andere geteste cyanobacteriën waren de 

interacties met koper afwezig volgens IA en antagonistisch volgens CA. (2) Verschillende interacties 

voor hetzelfde mengsel werden dus voorspeld door beide referentiemodellen. (3) De effecten van elk 

mengsel werden door beide referentiemodellen behoorlijk voorspeld. Het IA model benaderde in het 

algemeen de observaties beter terwijl de voorspellingen door het CA model steeds conservatiever 

waren. Het CA model lijkt dus het meest geschikt voor gebruik in waterkwaliteitsbeheer. (4) Het 

ontbreken van synergistische interacties tussen koper en cyanobacteriën op D. magna is in 

overeenstemming met andere studies van mengsels met cyanobacteriën. Van alle geteste mengsels 
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had het mengsel van koper met M. aruginosa de grootste effecten op D. magna. De toxiciteit van dit 

mengsel kon echter accuraat voorspeld worden aan de hand van de beschikbare referentiemodellen.  

 

In hoofdstuk 3 werd het effect van temperatuur op de schadelijkheid van zes verschillende 

cyanobactieriën in een standaard ecotoxiciteitstest onderzocht. Twee onderzoeksvragen stonden hierbij 

centraal: (1) het effect van temperatuur op de toxiciteit van cyanobacteriën voor D. magna en (2) voor 

welke cyanobacteriën is de toxiciteit niet enkel het gevolg van verhongering van D. magna. Een hogere 

temperatuur versterkte de negatieve effecten van twee cyanobacteriën (Anabaena and Oscillatoria) 

terwijl de toxiciteit afnam voor drie andere soorten (Microcystis, Nodularia and Aphanizomenon). 

Temperatuur had geen effect op de toxiciteit van Cylindrospermopsis. In lijn met de resultaten van 

hoofdstuk 2, werden enkel voor Microcystis negatieve effecten vastgesteld die niet aan verhongering 

alleen konden toegewezen worden. Dit suggereert dat, althans gedeeltelijk, de effecten van Microcystis 

op D. magna het gevolg zijn van de productie van toxines. 

 

In hoofdstuk 4 werd de mengseltoxiciteit van M. aeruginosa met koper verder onderzocht. Volgend uit 

de resultaten van hoofdstuk 2 en 3, was de centrale hypothese in hoofdstuk 4 dat de mengseltoxiciteit 

van koper en M. aeruginosa op D. magna zou variëren met de temperatuur en de totale 

voedselconcentratie. Standaard ecotoxiciteitstesten werden uitgevoerd met mengsels van koper en M. 

aeruginosa bij drie verschillende temperaturen (15°C, 19°C en 23°C) en twee verschillende totale 

voedselconcentraties (0.8mg C/L and 2.5mg C/L). De gevonden interacties tussen koper en M. 

aeruginosa (synergisme volgens IE, geen interactie volgens CA) waren onafhankelijk van de 

temperatuur en de totale voedselconcentratie. Net zoals in hoofdstuk 2 was de accuraatheid van het 

CA model hoger dan van het IA model voor de mengseltoxiciteit van M. aeruginosa met koper. Het CA 

model werd daarom als een geschikte methode beschouwd om de mengseltoxiciteit van koper en M. 

aeruginosa bij de hier geteste temperaturen en voedselconcentratie te voorspellen. De 21-dagen 

mediane effectconcentratie van koper voor reproductie varieerde van 20 tot 100 µg/L. Het percentage 

M. aeruginosa in het voedsel verklaarde 76% van de variatie in deze mediane koper effectconcentratie 

voor reproductie (EC50). Dit suggereert dat de invloed van temperatuur en totale voedselconcentratie 

(samen 11% van de EC50 variatie) veel minder belangrijk waren dan het voedselpercentage M. 

aeruginosa. Daarnaast werden EC50 waarden dicht bij de NOEC van koper gevonden wanneer het 
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voedsel slechts 10% M. aeruginosa bevatte. Dit resultaat bevestigt dat mengseleffecten kunnen 

optreden bij NOEC-concentraties (bepaald bij standaardcondities) van de individuele stressoren in het 

mengsel. Ecologische risicoschattingen van koper dienen dus in rekening te brengen wanneer M. 

aeruginosa bloeien samen voorkomen met kopervervuiling. 

 

In hoofdstuk 5 werd een populatie-experiment uitgevoerd om de effecten van koper op D. magna 

populaties bij regulatorische en mileurelevante concentraties na te gaan bij realistische 

omgevingcondities. Deze omgevingscondities stemden overeen met een seizoenale toename in 

temperatuur en het aandeel M. aeruginosa in het voedsel, en dit bij zowel huidige temperatuurcondities 

als bij een gemiddelde toename van 4°C door klimaatsverandering. Ondanks beperkte effecten van 

individuele stressoren, werd totale extinctie van de D. magna populaties geobserveerd bij blootstelling 

aan het mengsel van koper en M. aeruginosa bij verhoogde temperaturen (klimaatsverandering). Om te 

testen of synergistische effecten op individu-niveau ook observeerbaar zijn op populatie-niveau, werden 

de resultaten van het populatie-experiment vergeleken met de resultaten van de standaard 

ecotoxiciteitstesten in hoofdstuk 4. Twee algemene conclusies werden hierbij vastgesteld: (1) Deze 

resultaten benadrukken het belang van mengseltoxiciteit voor ecologische risicoschattingen. De 

extinctie van D. magna in de populatie-experimenten was niet voorspelbaar op basis van 

ecotoxiciteitstesten met koper alleen. (2) De vergelijking tussen de experimenten op individu- en 

populatieniveau suggeren dat de effecten op individu-niveau inderdaad kunnen vertaald worden in meer 

complexe effecten op populatie-niveau. 

 

Zoals reeds aangehaald worden de ecologische effecten van stressoren in ecologische 

risicoschattingen vaak bepaald aan de hand van observaties op individu-niveau. In hoofdstuk 6 werd 

nagegaan of een mechanistisch model (DEB-IBM) kan gebruikt worden om de effecten van individu-

niveau (reproductievermindering) te extrapoleren naar meer ecologisch relevante eindpunten (zoals 

abundantie) op populatieniveau. De resultaten van dit hoofdstuk tonen aan dat met het DEB-IBM model 

relevante voorspellingen kunnen gemaakt worden voor de effecten van koper en M. aeruginosa op D. 

magna populaties bij veranderende klimaatcondities. Verder werd ook aangetoond dat het DEB-IBM 

model in staat is mengseltoxiciteit te voorspellen aan de hand van het concentratie-additie referentie 

model. 
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In hoofdstuk 7 werden de micro-evolutionaire effecten van koper en zink bestudeerd op basis van drie 

hypotheses: (1) genetisch diverse populaties kunnen zich aanpassen aan letale metaalconcentraties 

(equivalent aan de 8-dagen LC50), (2) populaties zijn genetisch minder divers na adaptatie aan 

chemische stress en (3) adaptatie aan chemische stress gaat gepaard met kosten van adaptatie. 

Gedurende 10 weken werd een micro-evolutie experiment uitgevoerd met een genetisch divers en 

representatief staal van een natuurlijke D. magna populatie die werd blootgesteld aan koper en zink. 

Zowel populaties blootgesteld aan koper als aan zink werden toleranter voor blootstelling aan deze 

metalen, genetische adaptatie trad dus op. Dit kon duidelijk geobserveerd worden in de hogere 

reproductie bij metaalstress voor klonen uit deze blootgestelde populaties in vergelijking met 

controlepopulaties. Verder werd aangetoond dat deze populaties, in het geval van zink, zich volledig 

konden herstellen. Dit werd niet waargenomen voor koper, wat er op wijst dat de natuurlijke populatie 

gebruikt in deze experimenten een hogere capaciteit heeft om zich aan te passen aan zinkblootstelling 

dan aan koperblootstelling. Veralgemeningen over de adaptatie aan chemische stress op basis van de 

resultaten van één stressor zijn dus te vermijden. De kosten die gepaard gaan met adaptatie lijken 

beperkt te zijn: (1) de reproductie bij controlecondities was gelijkaardig voor controle populaties en 

populaties geadapteerd aan de metalen en (2) adaptie aan zink had geen effect op de tolerantie voor 

hoge temperaturen of cyanobacteriën, zoals aangetoond in een vervolgexperiment met de zink-

geadapteerde populaties. In dit vervolgexperiment werd wel een hogere tolerantie voor cadmium 

vastgesteld in de zink-aangepaste populaties in vergelijking met de niet-geadapteerde populaties maar 

enkel bij de EC20 van cadmium. 

 

Tot slot gaf hoofdstuk 8 een overzicht van de belangrijke conclusies in dit proefschrift en hoe zij hebben 

geantwoord op bepaalde problemen naar voren gebracht in de inleiding. Verder werd er ook aandacht 

besteed aan de uitdagingen die ecologische risicoschatting nog te wachten staan.
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A.1. Green algae culture medium. All components are dissolved in carbon filtered city tap water (Bold, 

1978) 

Components Concentration (g/L or mL/L) 

I. Fe Stock Stock Concentration (g/L) 

Fe(NH4)2(SO4)2·6H2O 0.702 g 

Na2EDTA 0.66 g 

II. Metal Mix Stock Concentration (g/L) 

H3BO3 1.14 g 

FeCl3·6H2O 0.049 g 

MnSO4·4H2O 0.164 g 

ZnSO4·7H2O 0.022 g 

CoSO4·7H2O 0.048  g 

Na2EDTA 1 g 

III. Vitamin Stock Stock Concentration (g/L) 

Vit B12 0.01 g 

Vit B1 0.5 g 

Vit H 0.005 g 

ES-Medium Provasoli Stock Concentration (g/L or mL/L) 

NaNo3 3.5 g 

Na2glcinophosphate 0.5 g 

I. Fe Stock 250 mL 

II. Metal Mix 250 mL 

III. Vitamin Stock 2 mL 

Walne-medium Stock Concentration (g/L) 

FeSO4·7H2O 0.278 g 

NaH2PO4·2H2O 3 g 

NaNO3 30 g 

MnCl2·4H2O 0.47 g 

Per litre carbon filtered water add 10 mL ES-Provasoli medium and 5 mL Walne-medium 
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Table A.2. Medium composition of BG110. All components are dissolved in deionized H2O (Allen, 1968).  

Components Concentration (g/L) Trace Components 
Concentration 
(mg/L) 

NaNO3 1.5 H3BO3 2.86 

NaHCO3 0.42 MnCl2.4H2O 1.81 

K2HPO4 0.04 ZnSO4.7H2O 0.222 

MgSO4.7H2O 0.075 Na2MoO4.2H2O 0.39 

CaCl2.2H2O 0.036 CuSO4.5H2O 0.079 

Citric acid (C6H8O7) 0.006 Co(NO3)2.6H2O 0.0494 

Ferric ammonium citrate 0.006   

EDTA  0.001   

Na2CO3 0.04   

 

Table A.3.  Medium composition of BG11. All components are dissolved in deionized H2O (Allen 1968). 

Components Concentration (g/L) 
Trace 

Components 

Concentration 

(mg/L) 

NaNO3 1.5 H3BO3 2.86 

K2HPO4 0.04 MnCl2.4H2O 1.81 

MgSO4.7H2O 0.075 ZnSO4.7H2O 0.222 

CaCl2.2H2O 0.036 Na2MoO4.2H2O 0.39 

Citric acid (C6H8O7) 0.006 CuSO4.5H2O 0.079 

Ferric ammonium citrate 0.006 Co(NO3)2.6H2O 0.0494 

EDTA  0.001   

Na2CO3 0.04   
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Table A.4. Medium Composition of Z8. All components are dissolved in deionized H2O unless stated 

otherwise (Kotai, 1972b)(Kotai 1972). 

Components  Concentration (g/L) Components  Concentration (mg/L) 

NaNO3 a 0.467 (NH4)6.Mo7O24.4H2O d 0.0088 

MgSO4.7H2O a 0.025 KBr d 0.012 

Ca(NO3)2.4H2O a 0.059 KI d 0.04083 

K2HPO4 b 0.031 ZnSO4 d 0.0287 

Na2CO3 b 0.021 Co(NO3)2.6H2O d 0.0146 

FeCl3.6H2O c* 0.00281 CuSO4.5H2O d 0.0125 

EDTA-Na2 c* 0.00372 H3BO3 d 3.1 

Components with the same letter in superscript can be combined in one stock solution. 

* 2.80 g FeCl3•6H2O dissolved in 100 mL 0.1 N HCl to make an Fe-solution and 3.90 g EDTA-

Na2 dissolved in 100 mL 0.1 N NaOH to make an EDTA-solution. 10 mL of the Fe-solution are dissolved 

in circa 900 mL deionized H2O to which 9.5 mL of the EDTA-solution is added, and filled up to one litre. 

Of this diluted combined Fe-solution and EDTA-solution 10mL is added per each L of Z8 medium. 
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Table A.5. Estimated model parameters used in the data analysis for the Xinb3 clone. Ana=Anabaena, 

Aph=Aphanizomenon, Cyl=Cylindrospermopsis, Mc=Microcystis, Osc=Oscillatoria, s is the slope of the 

concentration response curve, EC50 is the 50% effect concentration, IA is the Independent Action 

reference model (Equation 2.2), CA is the Concentration Addition reference model (Equation 2.3), 

IASA/CASA (reference models Equation 2.5 and Equation 2.6 including deviation parameter a to 

quantify synergism where a<0, or antagonism where a>0), SSE is sums of squared errors, AIC is Aikaike 

Information Criterion. *p value <0.05 of the F-test to compare the nested models indicates a significant 

deviation from non-interaction. SSE is used to compare nested CA and CASA (or IA and IASA) models, 

while AIC is used to compare non nested CA and IA models.  

 Ana Aph Cyl Mc Osc 

sCu       
IA 7.332 11.405 11.380 9.242 12.845 

IASA 8.584 9.440 11.785 11.502 12.698 

CA 7.666 6.754 18.484 9.920 14.508 

CASA 9.878 7.052 15.151 11.260 13.246 

sCyano      
IA 2.008 3.558 2.729 5.613 1.401 

IASA 1.890 3.295 2.417 7.016 2.199 

CA 1.641 3.735 2.962 4.226 1.003 

CASA 2.456 3.887 2.762 4.790 2.510 

Cu EC50 (ug/L)      
IA 99.121 93.935 102.891 71.135 99.794 

IASA 98.048 91.781 103.763 86.225 100.896 

CA 109.532 110.126 116.432 87.961 105.455 

CASA 99.713 91.595 113.196 90.328 108.621 

Cyanobacteria EC50 (% of diet) 
IA 50.818 76.348 73.305 22.164 40.509 

IASA 47.298 70.913 77.661 22.185 44.938 

CA 76.648 80.785 115.218 24.588 66.954 

CASA 51.108 91.337 86.507 23.826 49.590 

a deviation parameter 
IASA -0.039 1.491 0.393 -7.369 0.861 

CASA 1.266 2.013 1.587 0.068 1.047 

p value (F-test)      
IA/ IASA   0.777 0.357 0.520 3.13e-10* 0.505 

CA/CASA 6.515e-06* 6.922e-07* 3.421e-04* 0.521 5.693e-05* 

SSE      
IA 1807.537 3859.238 6166.729 6161.685 3053.506 

IA/IASA 1800.123 3694.999 6037.257 816.152 2984.593 

CA 5557.229 16426.940 12070.170 552.966 6488.326 

CA/CASA 1964.284 5088.905 6260.156 541.419 2831.637 

AIC      
IA 187.968 206.931 218.648 218.628 201.076 

IA/IASA 189.865 207.843 220.118 170.090 202.506 

CA 216.0464 243.142 235.4373 158.3574 219.919 
CA/CASA 192.0471 215.8455 221.024 159.8299 201.1903 
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Table A.6. Estimated model parameters used in the data analysis for the Iinb1 clone. Ana=Anabaena, 

Aph=Aphanizomenon, Cyl=Cylindrospermopsis, Mc=Microcystis, Osc=Oscillatoria, s is the slope of the 

concentration response curve, EC50 is the 50% effect concentration, IA is the Independent Action 

reference model (Equation 2.2), CA is the Concentration Addition reference model (Equation 2.3), 

IASA/CASA (reference models Equation 2.5 and Equation 2.6 including deviation parameter a to 

quantify synergism where a<0, or antagonism where a>0), SSE is sums of squared errors, AIC is Aikaike 

Information Criterion. *p value <0.05 of the F-test to compare the nested models indicates a significant 

deviation from non-interaction. SSE is used to compare nested CA and CASA (or IA and IASA) models, 

while AIC is used to compare non nested CA and IA models. 

 Ana Aph Cyl Mc Osc 

Cu slope      
IA 39.288 17.791 7.028 11.984 2.703 

IASA 36.114 14.588 6.234 12.210 2.352 

CA 9.152 6.452 8.960 6.460 2.440 

CASA 9.636 8.911 6.816 6.199 4.482 

Cyanobacteria slope 
IA 1.985 1.523 1.926 2.021 4.674 

IASA 1.955 0.992 1.588 2.240 3.183 

CA 2.393 0.732 1.869 3.715 2.086 

CASA 5.077 1.611 2.711 2.816 1.693 

Cu EC50 (ug/L)      

IA 78.759 81.837 81.370 56.359 73.390 

IASA 76.435 77.487 77.711 50.966 68.070 

CA 92.039 83.322 96.364 58.051 86.996 

CASA 86.108 76.821 84.110 55.512 78.241 

Cyanobacteria EC50 (% of diet) 
IA 52.665 35.451 51.911 15.706 42.204 

IASA 45.553 25.193 51.754 27.446 40.591 

CA 64.800 42.282 70.006 33.799 48.635 

CASA 64.027 42.204 55.642 30.948 41.210 

a deviation parameter 
IASA 1.223 2.725 0.964 -4.570 0.915 

CASA 1.042 1.604 1.225 0.078 1.918 

p value (F-test)      

IA/ IASA   0.140 0.137 0.411 2.292e-05* 0.678 

CA/CASA 9.844e-03* 6.158e-05* 6.817e-03* 0.428 1.885e-02* 

SSE      

IA 3798.862 2064.455 5315.825 3338.390 9343.703 

IA/IASA 3398.267 1843.400 5134.702 1333.894 9261.569 

CA 13129.020 7503.556 9206.041 2025.151 12789.100 

CA/CASA 9332.444 3299.676 6327.305 1961.043 10015.180 

AIC      

IA 206.537 191.291 214.936 203.306 229.037 

IA/IASA 205.751 190.459 216.070 182.372 230.816 

CA 237.540 223.553 228.665 190.810 236.884 

CA/CASA 231.006 205.015 221.291 192.006 232.772 
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Figure A.1. Experimental design consisting of the single stressor treatments (black circles) and mixture combinations (white circles) based on the central 

composite design representing each binary combination of Cu and cyanobacteria in the experiments. Concentrations shown are nominal. 
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Figure A.2. Mean observed versus fitted values for total reproduction of the Xinb3 (upper figures) and Iinb1 (lower figures) clones after exposure to Cu and 

Anabaena. The fitted values are derived from the estimated model parameters from Tables A.5 (Xinb3) and A.6 (Iinb1). Both singles stressor data, as well as 

mixture stressor data were used for the model fitting. Points above the 1:1 line (higher predicted reproduction compared to observed reproduction) indicate 

synergism, while points below the regression line (lower predicted reproduction compared to observed reproduction) suggest antagonistic effects between 

copper and the cyanobacteria. A statistically significant improved fit of the reference model with the deviation pattern (Equation 2.5 and Equation. 2.6, right 

figures) compared to the reference model (Equation 2.2 and Equation. 2.3, left figures) is visually indicated by a an improved match of the fitted values with the 

observed values (points are closer to the 1:1 line in the right figures than in the left figures).  
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Figure A.3. Mean observed versus fitted values for total reproduction of the Xinb3 (upper figures) and Iinb1 (lower figures) clones after exposure to Cu and 

Aphanizomenon. The fitted values are derived from the estimated model parameters Tables A.5 (Xinb3) and A.6 (Iinb1). Both singles stressor data, as well as 

mixture stressor data were used for the model fitting. Points above the 1:1 line (higher predicted reproduction compared to observed reproduction) indicate 

synergism, while points below the regression line (lower predicted reproduction compared to observed reproduction) suggest antagonistic effects between 

copper and the cyanobacteria. A statistically significant improved fit of the reference model with the deviation pattern (Equation 2.5 and Equation. 2.6, right 

figures) compared to the reference model (Equation 2.2 and Equation. 2.3, left figures) is visually indicated by a an improved match of the fitted values with the 

observed values (points are closer to the 1:1 line in the right figures than in the left figures). 
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Figure A.4. Mean observed versus fitted values for total reproduction of the Xinb3 (upper figures) and Iinb1 (lower figures) clones after exposure to Cu and 

Cylindrospermopsis. The fitted values are derived from the estimated model parameters from Tables A.5 (Xinb3) and A.6 (Iinb1). Both singles stressor data, as 

well as mixture stressor data were used for the model fitting. Points above the 1:1 line (higher predicted reproduction compared to observed reproduction) 

indicate synergism, while points below the regression line (lower predicted reproduction compared to observed reproduction) suggest antagonistic effects 

between copper and the cyanobacteria. A statistically significant improved fit of the reference model with the deviation pattern (Equation 2.5 and Equation. 2.6, 

right figures) compared to the reference model (Equation 2.2 and Equation. 2.3, left figures) is visually indicated by a an improved match of the fitted values with 

the observed values (points are closer to the 1:1 line in the right figures than in the left figures). 
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Figure A.5. Mean observed versus fitted values for total reproduction of the Xinb3 (upper figures) and Iinb1 (lower figures) clones after exposure to Cu and 

Microcystis. The fitted values are derived from the estimated model parameters from Tables A.5 (Xinb3) and A.6 (Iinb1). Both singles stressor data, as well as 

mixture stressor data were used for the model fitting. Points above the 1:1 line (higher predicted reproduction compared to observed reproduction) indicate 

synergism, while points below the regression line (lower predicted reproduction compared to observed reproduction) suggest antagonistic effects between 

copper and the cyanobacteria. A statistically significant improved fit of the reference model with the deviation pattern (Equation 2.5 and Equation. 2.6, right 

figures) compared to the reference model (Equation 2.2 and Equation. 2.3, left figures) is visually indicated by a an improved match of the fitted values with the 

observed values (points are closer to the 1:1 line in the right figures than in the left figures). 
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Figure A.6. Mean observed versus fitted values for total reproduction of the Xinb3 (upper figures) and Iinb1 (lower figures) clones after exposure to Cu and 

Oscillatoria. The fitted values are derived from the estimated model parameters from Tables A.5 (Xinb3) and A.6 (Iinb1). Both singles stressor data, as well as 

mixture stressor data were used for the model fitting. Points above the 1:1 line (higher predicted reproduction compared to observed reproduction) indicate 

synergism, while points below the regression line (lower predicted reproduction compared to observed reproduction) suggest antagonistic effects between 

copper and the cyanobacteria. A statistically significant improved fit of the reference model with the deviation pattern (Equation 2.5 and Equation. 2.6, right 

figures) compared to the reference model (Equation 2.2 and Equation. 2.3, left figures) is visually indicated by a an improved match of the fitted values with the 

observed values (points are closer to the 1:1 line in the right figures than in the left figures
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Table B.1. Dose response parameters (-95%/+95% confidence interval) for the full dose response of 

total reproduction for daphnids exposed to each cyanobacteria species at each temperature. 

 

 

 15°C 19°C 23°C 

Anabaena    

EC10  61.28 (44.34/84.68) 20.60 (16.99/24.98)  13.35 (10.51/16.94)  

EC50 74.09 (64.44/85.19)  42.26 (39.58/45.13)  31.02 (27.89/34.52)  

Slope 11.57 (-2.841/25.99)   3.059 (2.406/3.162) 2.605 (2.047/3.162)  

Aphanizomenon    

EC10 5.77 (2.06/16.14)  15.59 (6.95/34.97)  32.45 (20.34/51.76)  

EC50 19.09 (12.14/30.01)  56.73 (44.87/71.74)  95.35 (74.97/121.28)  

Slope  1.7 (0.626/2.775) 1.7 (0.693/2.707)  2.038 (0.911/3.166)  

Cylindrospermopsis    

EC10 52.11 (38.38/70.75)  31.1 (22.36/43.27)  36.96 (22.92/59.61)  

EC50 75.3 (66.21/85.63)  76.68 (67.47/87.14)  87.97 (70.63/109.58)  

Slope 5.969 (1.485/10.45)  2.435 (1.477/3.392) 2.532 (0.909/4.154)  

Microcystis    

EC10 10.22 (7.36/14.18)  30.99 (24.42/39.32)  29.03 (22.67/37.17)  

EC50 20.27 (17.94/22.91)  39.06 (36.47/41.84)  42.27 (38.84/45.99)  

Slope 3.207 (1.975/4.44) 9.484 (1.578/17.39)  5.849 (2.723/8.975)  

Nodularia     

EC10 15.15 (9.95/23.08)  31.42 (25.06/39.4)  32.74 (28.46/37.67)  

EC50 22.02 (18.67/25.97)  41.36 (38.11/44.89)  49.98 (47.45/52.64)  

Slope  5.88 (-2.52/14.28) 7.997 (2.639/ 13.35) 5.195 (3.66/6.73)  

Oscillatoria    

EC10 25.57 (16.49/39.67)  18.08 (12.45/26.26) 6.58 (3.11/13.9)  

EC50  47.34 (40.87/54.85) 39.98 (34.97/45.71)  21.37 (16.06/28.44)  

Slope 3.568 (1.393/5.743)  2.769 (1.733/3.806)  1.864 (1.025/2.702)  
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Table B.2.  Summary of the p-values from the pairwise comparisons in the Wheeler ratio test for each 

cyanobacteria species at different temperatures. 

 EC50 Slope 

 Ana 15°C Ana 19°C Ana 15°C Ana 19°C 

Ana 19°C <0.0001  0.002  

Ana 23°C <0.0001 <0.0001 0.0005 NS 

 Aph 15°C Aph 19°C Aph 15°C Aph 19°C 

Aph 19°C <0.0001  NS  

Aph 23°C <0.0001 0.003 NS NS 

 Cyl 15°C Cyl 19°C Cyl 15°C Cyl 19°C 

Cyl 19°C NS  0.01  

Cyl 23°C NS NS 0.03 NS 

 Mc 15°C Mc 19°C Mc 15°C Mc 19°C 

Mc 19°C <0.0001  0.003  

Mc 23°C <0.0001 NS 0.03 NS 

 Nod 15°C Nod 19°C Nod 15°C Nod 19°C 

Nod 19°C <0.0001  NS  

Nod 23°C <0.0001 0.009 NS NS 

 Osc 15°C Osc 19°C Osc 15°C Osc 19°C 

Osc 19°C NS  NS  

Osc 23°C <0.0001 0.0002 0.05 NS 
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Table B.3.  Summary of the p-values from the pairwise comparisons in the Wheeler ratio test for all cyanobacteria at each temperature. 

 15°C 19°C 23°C 

EC10 Ana Aph Cyl Mc Nod Ana Aph Cyl Mc Nod Ana Aph Cyl Mc Nod 

Aph <0.0001     NS     0.001     

Cyl NS <0.0001    0.04 NS    0.0002 NS    

Mc <0.0001 NS <0.0001   0.01 NS NS   <0.0001 NS NS   

Nod <0.0001 NS <0.0001 NS  0.007 NS NS NS  <0.0001 NS NS NS  

Osc NS 0.01 0.01 0.002 NS NS NS 0.04 0.02 0.015 NS 0.0005 0.0002 0.0003 <0.0001 

EC50 Ana Aph Cyl Mc Nod Ana Aph Cyl Mc Nod Ana Aph Cyl Mc Nod 

Aph <0.0001     0.02     <0.0001     

Cyl NS <0.0001    <0.0001 0.03    <0.0001 NS    

Mc <0.0001 NS <0.0001   NS 0.004 <0.0001   <0.0001 <0.0001 <0.0001   

Nod <0.0001 NS <0.0001 NS  NS 0.02 <0.0001 NS  <0.0001 <0.0001 <0.0001 0.002  

Osc <0.0001 0.0002 <0.0001 <0.0001 <0.0001 NS 0.02 <0.0001 NS NS 0.02 <0.0001 <0.0001 <0.0001 <0.0001 

Slope Ana Aph Cyl Mc Nod Ana Aph Cyl Mc Nod Ana Aph Cyl Mc Nod 

Aph 0.0001     0.03     NS      

Cyl NS 0.001    NS NS    NS  NS    

Mc 0.005 NS NS   0.0006 <0.0001 0.0002   0.0009 0.0009 0.02   

Nod NS 0.02 NS NS  0.0007 <0.0001 0.0002 NS  <0.0001 0.0004 0.02 NS  

Osc 0.02 0.04 NS NS NS NS NS NS 0.0005 0.0007 NS  NS NS <0.0001 <0.0001 
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Table B.4. Results of the pairwise comparisons (PwC) of the slopes and intercepts of the non-parametric Theil-Sen regression models for Anabaena (+/-95% 

confidence interval around each PwC). * indicates significantly different slopes (i.e. interactive effects of temperature and cyanobacteria) at p < 0.05. The 

Bonferroni-Holm correction method was used to adjust the p-values for multiple comparisons. A summary of the p-values of the pairwise comparisons (PwC) of 

the slopes was already given in the manuscript (Table 3.2). For a summary of the Spearman’s rho correlation coefficient and associated p-value to test for an 

effect of cyanobacteria concentration on the endpoints we refer to Appendix B Table B.10.  

Anabaena parameters PwC 15°C-19°C PwC 15°C-23°C PwC 19°C-23°C 

length 15°C 19°C 23°C CI (-95/+95) p-value CI (-95/+95) p-value CI (-95/+95) p-value 

Intercept 2967 3326 3389 -583.2/0.669 0.106 -773.9/-84.01 0.09 -446.7/128 0.507 

Slope -5.058 -5.813 -7.83 -4.313 ; 4.886 0.778 -1.991/9.222 0.621 0-1551/8.635 0.621 

rm 15°C 19°C 23°C CI (-95/+95) p-value CI (-95/+95) p-value CI (-95/+95) p-value 

Intercept 0.1325 0.3259 0.3600 -0.236 /-0.172 <0.0001* -0.2799/-0.1924 0.0066* -0.0706/0.0098 0.1636 

Slope -0.0003 -0.0018 -0.0024 0.001/0.0022 <0.0001* 0.0013/0.0034 0.0066* -0.0002/0.0017 0.1836 

Age 1st brood 15°C 19°C 23°C CI (-95/+95) p-value CI (-95/+95) p-value CI (-95/+95) p-value 

Intercept 17 10 9 6 /-8 <0.0001* 7.3 /9.5 <0.0001* 1/2 0.0033* 

Slope 0.025 0 0 0.008/0.05 0.075 -0.013/0.04 0.548 -0.029/0 0.548 

1st brood size 15°C 19°C 23°C CI (-95/+95) p-value CI (-95/+95) p-value CI (-95/+95) p-value 

Intercept 7.2 14 12.5 -10/ -3 <0.0001* -8.2/-2.3 0.01* -2.1/4.5 0.4307 

Slope 0.02 -0.125 -0.133 0.07/0.215 <0.0001* 0.09/0.23 0.0067* -0.05/0.088 0.7596 
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Table B.5. Results of the pairwise comparisons (PwC) of the slopes and intercepts of the non-parametric Theil-Sen regression models for Aphanizomenon (+/-

95% confidence interval around each PwC). * indicates significantly different slopes (i.e. interactive effects of temperature and cyanobacteria) at p < 0.05. The 

Bonferroni-Holm correction method was used to adjust the p-values for multiple comparisons. A summary of the p-values of the pairwise comparisons (PwC) of 

the slopes was already given in the manuscript (Table 3.2). For a summary of the Spearman’s rho correlation coefficient and associated p-value to test for an 

effect of cyanobacteria concentration on the endpoints we refer to Appendix B Table B.10.  

Aphanizomenon parameters PwC 15°C-19°C PwC 15°C-23°C PwC 19°C-23°C 

length 15°C 19°C 23°C CI (-95/+95) p-value CI (-95/+95) p-value CI (-95/+95) p-value 

Intercept 3041 3364 3275 -585.2/ -75.53 0.03* -529.8/-8.477 0.0868 -103.1/188.4 0.568 

Slope -9.861 -6.42 -4.612 -7.312 /0.5204 0.2136 -9.619 /-0.761 0.0801 -4.365/1.168 0.26 

rm 15°C 19°C 23°C CI (-95/+95) p-value CI (-95/+95) p-value CI (-95/+95) p-value 

Intercept 0.1987 0.3164 0.3567 -0.1865 /-0.0655 <0.0001* -0.2345/-0.1069 <0.0001* -0.0747/-0.0136 0.0067* 

Slope -0.0017 -0.0003 -0.0004 -0.0025/-0.0003 0.04* -0.0024/-4.37e-05 0.0734 -0.0004/0.0008 0.7613 

Age 1st brood 15°C 19°C 23°C CI (-95/+95) p-value CI (-95/+95) p-value CI (-95/+95) p-value 

Intercept 16.3 9.5 8 3.7 /8.7 <0.0001* 5.9/13.5 <0.0001* 1 /3 <0.0001* 

Slope 0.0063 0 0 -0.2/0.08 1 -0.2/0.078 1 -0.017/0 1 

1st brood size 15°C 19°C 23°C CI (-95/+95) p-value CI (-95/+95) p-value CI (-95/+95) p-value 

Intercept 17 13.2 7.5 -3.7/6.25 0.3589 1.625/11.5 0.02336* 2.75 /8.042 <0.0001* 

Slope -0.2 -0.06 0 -0.21/-0.05 <0.0001* -0.26/-0.1 <0.0001* -0.092/0 0.0534 
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Table B.6. Results of the pairwise comparisons (PwC) of the slopes and intercepts of the non-parametric Theil-Sen regression models for Cylindrospermopsis 

(+/-95% confidence interval around each PwC). * indicates significantly different slopes (i.e. interactive effects of temperature and cyanobacteria) at p < 0.05. 

The Bonferroni-Holm correction method was used to adjust the p-values for multiple comparisons. A summary of the p-values of the pairwise comparisons 

(PwC) of the slopes was already given in the manuscript (Table 3.2). For a summary of the Spearman’s rho correlation coefficient and associated p-value to 

test for an effect of cyanobacteria concentration on the endpoints we refer to Appendix B Table B.10.  

Cylindrospermopsis parameters PwC 15°C-19°C PwC 15°C-23°C PwC 19°C-23°C 

length (µm) 15°C 19°C 23°C CI (-95/+95) p-value CI (-95/+95) p-value CI (-95/+95) p-value 

Intercept 3095 3457 3295 -572.1/-191.3 <0.0001* -359.801/4.703 0.063* 47.568/339.831 0.0134* 

Slope -3.216 -4.789 -4.047 -1.357/5.15 0.284 -2.539/3.995 0.601 -3.336/0.915 0.3673 

rm 15°C 19°C 23°C CI (-95/+95) p-value CI (-95/+95) p-value CI (-95/+95) p-value 

Intercept 0.1925 0.3341 0.3268 -0.173/-0.1076 <0.0001* -0.17/-0.089 <0.0001* -0.033/4.6e-02 0.7813 

Slope -0.0003 -0.0009 -0.0004 8.79e-06/0.0012 0.1 -0.0007/0.0007 0.9215 -0.0012/-5.3e-05 0.09 

Age 1st brood 15°C 19°C 23°C CI (-95/+95) p-value CI (-95/+95) p-value CI (-95/+95) p-value 

Intercept 15 10 8 3.41/6.38 <0.0001* 5.9/10.3 <0.0001* 0.75/2 0.0017* 

Slope 0 0 0 -0.033/0.033 1 -0.017/0.078 1 0/0.025 1 

1st brood size 15°C 19°C 23°C CI (-95/+95) p-value CI (-95/+95) p-value CI (-95/+95) p-value 

Intercept 16.5 13.8 6 -2.17/7.17 0.3456 6.17/13.5 <0.0001* 4/10.38 <0.0001* 

Slope -0.061 -0.075 0 -0.067/0.1 0.7329 -0.12/0.025 0.283 -0.12/-0.0125 0.0651 
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Table B.7. Results of the pairwise comparisons (PwC) of the slopes and intercepts of the non-parametric Theil-Sen regression models for Microcystis (+/-95% 

confidence interval around each PwC). * indicates significantly different slopes (i.e. interactive effects of temperature and cyanobacteria) at p < 0.05. The 

Bonferroni-Holm correction method was used to adjust the p-values for multiple comparisons. A summary of the p-values of the pairwise comparisons (PwC) of 

the slopes was already given in the manuscript (Table 3.2). For a summary of the Spearman’s rho correlation coefficient and associated p-value to test for an 

effect of cyanobacteria concentration on the endpoints we refer to Appendix B Table B.10.  

Microcystis parameters PwC 15°C-19°C PwC 15°C-23°C PwC 19°C-23°C 

length 15°C 19°C 23°C CI (-95/+95) p-value CI (-95/+95) p-value CI (-95/+95) p-value 

Intercept 2990 3536 3332 -819.594/-72.949 0.0201* -627.7/100.1 0.2872 -91.92/472.6 0.2872 

Slope -20.37 -18.46 -13.65 -6.38/1.403 0.2571 -9.972/-3.734686 <0.0001 -8.05/-1.11 0.0334* 

rm 15°C 19°C 23°C CI (-95/+95) p-value CI (-95/+95) p-value CI (-95/+95) p-value 

Intercept 0.1908 0.3152 0.3507 -0.2219/-0.0672 <0.0001* -0.2318/-0.1188 <0.0001* -0.112/0.057 0.3472 

Slope -0.0026 -0.0034 -0.0035 -0.0006/0.0027 0.5944 -0.0002/0.002 0.2805 -0.0019/0.0017 0.8514 

Age 1st brood 15°C 19°C 23°C CI (-95/+95) p-value CI (-95/+95) p-value CI (-95/+95) p-value 

Intercept 13.7 9 7.8 3.5/7.7 <0.0001* 5/9.2 <0.0001* -0.333/3.4 0.102 

Slope 0.09 0.05 0.075 -0.03/0.09 1 -0.05/0.075 1 -0.05/0.025 1 

1st brood size 15°C 19°C 23°C CI (-95/+95) p-value CI (-95/+95) p-value CI (-95/+95) p-value 

Intercept 10 11 7.5 -8/7.5 0.8731 -2.07/9 0.4007 -2.7/9 0.3255 

Slope -0.2 -0.2 -0.1 -0.2/0.17 0.9799 -0.23/0.05 0.3172 -0.2/0.07 0.3038 
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Table B.8. Results of the pairwise comparisons (PwC) of the slopes and intercepts of the non-parametric Theil-Sen regression models for Nodularia (+/-95% 

confidence interval around each PwC). * indicates significantly different slopes (i.e. interactive effects of temperature and cyanobacteria) at p < 0.05. The 

Bonferroni-Holm correction method was used to adjust the p-values for multiple comparisons. A summary of the p-values of the pairwise comparisons (PwC) of 

the slopes was already given in the manuscript (Table 3.2). For a summary of the Spearman’s rho correlation coefficient and associated p-value to test for an 

effect of cyanobacteria concentration on the endpoints we refer to Appendix B Table B.10.  

Nodularia parameters PwC 15°C-19°C PwC 15°C-23°C PwC 19°C-23°C 

length 15°C 19°C 23°C CI (-95/+95) p-value CI (-95/+95) p-value CI (-95/+95) p-value 

Intercept 2994 3158 3268 -683.2/5.398 0.1902 -559.161/32.747 0.1902 -228.3/378.1 0.768 

Slope -15.68 -13.55 -10.96 -8.486/2.323 0.4408 -8.68/-1.621 0.03* -6.997/1.625 0.4408 

rm 15°C 19°C 23°C CI (-95/+95) p-value CI (-95/+95) p-value CI (-95/+95) p-value 

Intercept 0.2172 0.2881 0.325 -0.1433/-0.0209 0.0134* -0.1752/-0.0638 <0.0001* -0.075/0.0063 0.0935 

Slope -0.002 -0.0015 -0.001 -0.0029/0.0025 1 -0.0034/0.0016 1 -0.002/0.0006 0.187 

Age 1st brood 15°C 19°C 23°C CI (-95/+95) p-value CI (-95/+95) p-value CI (-95/+95) p-value 

Intercept 13 8.5 8 1 ; 5.5 0.0234* 1.5/6 0.0051* -0.25/2 0.222 

Slope 0 0.05 0 -0.1//0.125 0.928 -0.075/0.175 0.989 0/0.075 0.2754 

1st brood size 15°C 19°C 23°C CI (-95/+95) p-value CI (-95/+95) p-value CI (-95/+95) p-value 

Intercept 7 7.5 6.5 -7.5/7.25 1 -5/8.5 1 -2/6 1 

Slope -0.05 -0.05 -0.05 -0.35/0.3 1 -0.35/0.3 1 -0.15/0.1 1 
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Table B.9. Results of the pairwise comparisons (PwC) of the slopes and intercepts of the non-parametric Theil-Sen regression models for Oscillatoria (+/-95% 

confidence interval around each PwC). * indicates significantly different slopes (i.e. interactive effects of temperature and cyanobacteria) at p < 0.05. The 

Bonferroni-Holm correction method was used to adjust the p-values for multiple comparisons. A summary of the p-values of the pairwise comparisons (PwC) of 

the slopes was already given in the manuscript (Table 3.2). For a summary of the Spearman’s rho correlation coefficient and associated p-value to test for an 

effect of cyanobacteria concentration on the endpoints we refer to Appendix B Table B.10.  

Oscillatoria parameters PwC 15°C-19°C PwC 15°C-23°C PwC 19°C-23°C 

length 15°C 19°C 23°C CI (-95/+95) p-value CI (-95/+95) p-value CI (-95/+95) p-value 

Intercept 3130 3282 3277 -332.038/20.436 0.2403 -305.41/50.97 0.3004 -123.3/176.2 0.6578 

Slope -5.000 -5.802 -6.555 -1.811/4.648 1 -1.192/5.512 1 -2.222/3.193 1 

rm 15°C 19°C 23°C CI (-95/+95) p-value CI (-95/+95) p-value CI (-95/+95) p-value 

Intercept 0.2086 0.3174 0.3324 -0.1392/-0.0478 <0.0001* -0.199/-0.045 0.0066* -0.1028/0.0397 0.4307 

Slope -0.0009 -0.0021 -0.0035 0.0001 ; 0.0018 0.0301* 0.0013/0.0037 <0.0001* 0.0005/0.0026 0.0134* 

Age 1st brood 15°C 19°C 23°C CI (-95/+95) p-value CI (-95/+95) p-value CI (-95/+95) p-value 

Intercept 15 8.7 5.3 3.4/7.8 <0.0001* 6 /11.2 <0.0001* 1 /5.2 0.0017* 

Slope 0 0.033 0.067 -0.075/0.008 0.1336 -0.13/0.035 0.05* -0.08/0 0.0934 

1st brood size 15°C 19°C 23°C CI (-95/+95) p-value CI (-95/+95) p-value CI (-95/+95) p-value 

Intercept 16.8 13.0 4.6 -2.25/11 0.1936 6.5/17 0.01* 2/12.6 0.01* 

Slope -0.133 -0.15 -0.04 -0.133/0.1 0.7212 -0.188/0 0.1202 -02/0.04 0.2805 
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Table B.10. Summary of the Spearman’s Rho correlation coefficient and associated p-value to test for 

an effect of cyanobacteria concentration on the endpoints.  

* indicates a significantly correlation between cyanobacteria concentration and endpoint  at p < 0.05. 

The Bonferroni-Holm correction method was used

Anabaena 15°C p-value 19°C p-value 23°C p-value 

length  -0.659 0.0008* -0.870  <0.0001* -0.914  <0.0001* 

rm  -0.4324 0.0944 -0.963  <0.0001* -0.897  <0.0001* 

Age 1st brood  0.755 0.0021* 0.551 0.0022* 0.669  0.0046* 

1st  brood size  0.2239 0.42237 -0.767 <0.0001* -0.859 <0.0001* 

Aphanizomenon 15°C p-value 19°C p-value 23°C p-value 

length  -0.770 <0.0001* -0.865  <0.0001* -0.961  <0.0001* 

rm  -0.764 0.0006* -0.535  0.0011* -0.529  0.001* 

Age 1st brood  0.1005 1 -0.1011  1 0.371  0.057 

1st  brood size  -0.828 <0.0001* -0.5532 0.0015* -0.0842 0.636 

Cylindrospermopsis 15°C p-value 19°C p-value 23°C p-value 

length -0.477  0.0088* -0.782  <0.0001* -0.689  <0.0001* 

rm  -0.294 0.1285 -0.871  <0.0001* -0.486  0.004* 

Age 1st brood  0.0335 0.866 0.721  <0.0001* 0.201  0.44 

1st  brood size  -0.348 0.1398 -0.597  0.0012* -0.128 0.4763 

Microcsytis 15°C p-value 19°C p-value 23°C p-value 

length -0.945  <0.0001* -0.972  <0.0001* -0.961  <0.0001* 

rm  -0.950 <0.0001* -0.834  <0.0001* -0.943  <0.0001* 

Age 1st brood  0.767 0.0014* 0.783  <0.0001* 0.900  <0.0001* 

1st  brood size  -0.634 0.0149* -0.619 0.0124* -0.6287 0.0051* 

Nodualaria 15°C p-value 19°C p-value 23°C p-value 

length  -0.871 <0.0001* -0.919  <0.0001* -0.946  <0.0001* 

rm  -0.514 0.0877 -0.913  <0.0001* -0.767  <0.0001* 

Age 1st brood  0.138 0.667 0.887  <0.0001* 0.845 <0.0001* 

1st  brood size  -0.05 0.8708 -0.363 0.606 -0.305  0.606 

Oscillatoria 15°C p-value 19°C p-value 23°C p-value 

length  -0.622 0.0026* -0.797  <0.0001* -0.895  <0.0001* 

rm  -0.767 <0.0001* -0.908  <0.0001* -0.792  <0.0001* 

Age 1st brood  -0.159 0.4918 0.670  0.0004* 0.799  <0.0001* 

1st  brood size  -0.624 0.0057* -0.438 0.05* -0.338 0.085 
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Table C.1. Summary table of the measured Cu concentrations. ± indicates the standard error (SE) 

around the mean values. All measurements are given as weighted averages as described in the OECD 

testing guideline and the standard error is calculated over all measurements in the clean medium prior 

to adding Daphnia and algae and in the old medium after renewal.  

Exposure medium total Cu µg/L dissolved Cu µg/L 

Control 3.54 ± 0.13 2.17 ± 0.09 

Cu 1 45.09 ±  1.22 28.43 ±  1.41 

Cu 2 59.41 ± 1.60 39.34 ± 1.94 

Cu 3 83.85 ±  2.00 55.16 ±  2.35 

Cu 4 115.77 ± 2.02 70.62 ± 3.35 

Cu 5 161.00 ±  3.74 102.50 ±  4.14 

Cu 6 208.14 ± 7.69 131.70 ± 8.28 

Cu 7 289.61 ±  6.76 174.47 ±  4.55 
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Table C.2. Estimated model parameters. s is the slope of the concentration response curve, EC50 is the 

50% effect concentration, IA is Independent Action reference model (Eq. 2.2), CA is Concentration 

Addition reference model (Eq. 2.3), IASA/CASA (reference models Eq. 2.5 and Eq. 2.6 including 

deviation parameter a to quantify synergism where a<0, or antagonism where a>0), Mc is Microcystis 

aeruginosa, SSE is the sums of squared errors, AIC is the Aikaike Information Criterion. *p value <0.05 

of the F-test to compare the nested models indicates a significant deviation from non-interaction. 

 0.8mg C/L 2mg C/L 

 15°C 19°C 23°C 15°C 19°C 23°C 

sCu        
IA 8.75 5.84 7.37 4.33 2.03 3.17 

IASA 7.06 7.05 5.02 6.76 4.57 3.41 

CA 4.76 6.99 5.65 6.03 8.60 5.17 

CASA 5.78 6.42 5.27 5.20 8.27 5.60 

sMc       
IA 3.07 2.43 1.18 2.24 2.25 2.52 

IASA 3.80 3.31 5.02 2.13 3.44 3.16 

CA 4.51 3.96 3.24 2.77 3.20 3.96 

CASA 4.12 4.61 3.81 3.26 2.83 3.84 

Cu EC50 (ug/L)       
IA 62.00 57.93 52.66 64.20 99.25 83.06 

IASA 61.02 67.77 53.86 68.12 98.13 83.56 

CA 66.53 75.69 54.78 62.79 99.93 85.67 

CASA 65.51 77.05 54.24 64.47 101.92 88.51 

Mc EC50 (% of diet)       
IA 12.44 27.75 46.15 12.83 21.18 20.56 

IASA 20.23 29.29 48.42 18.94 25.29 24.31 

CA 19.81 35.16 49.07 19.40 21.52 49.11 

CASA 17.85 38.33 52.60 22.46 22.88 30.47 

a deviation parameter 
IASA -4.07 -3.353 -4.95 -4.472 -4.867 -3.2346 

CASA 0.723 -0.223 -0.199 -0.420 -0.3814 -0.1072 

p value (F-test)       

IA/ IASA   2.58e-06* 9.41e-
06* 

1.01e-
07* 

2.27e-
07* 7.42e-10* 0.0003* 

CA/CASA 0.0370* 0.2564 0.8197 0.5393 0.0868 1 

SSE       
IA 4974.6 13376.6 8393.3 4298.5 13910.7 8030.4 

IASA 2162.5 6384.3 2884.9 1566.9 3338.7 4927.1 

CA 2730.1 3953.0 3360.2 1206.8 2516.9 3869.1 

CASA 2318.1 3765.5 3353.6 1189.8 2253.3 3868.9 

AIC       
IA 262.3 294.0 279.0 257.6 295.2 290.4 

IASA 237.6 272.3 246.9 227.3 251.5 264.0 

CA 243.1 254.9 249.7 217.0 240.5 254.3 
CASA 239.9 255.4 251.7 218.5 239.0 256.3 
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Table C.3. Summary table of the single stressor concentration response parameter values slope and EC50 (µg/L) of copper (± standard error). Single dose 

response curves can be accessed in Figure C.1. 

Total food 

concentration 

Temp Cu EC50 

0% Mc 

Cu Slope 

0% Mc 

Cu EC50 

10% Mc 

Cu Slope 

10% Mc 

Cu EC50 

20% Mc 

Cu Slope 

20% Mc 

Cu EC50 

40% Mc 

Cu Slope 

40% Mc 

0.8mg C/L 15°C 65.75 ± 1.05 12.8 ± 6.43 40.75 ± 1.07 16.15 ± 28.51 28.56 ± 1.51 28.81 ± 2822 - - 

0.8mg C/L 19°C 75.74 ± 1.05 12.53 ± 6.11 50.51 ± 1.06 12.15 ± 5.86 35.64 ± 1.06 5.62 ± 1.21 29.72 ± 1.08 5.78 ± 1.41 

0.8mg C/L 23°C 57.61 ± 1.04 5.68 ± 1.27 41.91 ± 1.05 16.22 ± 11.78 38.96 ± 1.06 5.84 ± 1.41 29.24 ± 2.03 20.29 ± 19.61 

2mg C/L 15°C 64.09 ± 1.08 6.40 ± 3.02 43.70 ± 1.14 5.86 ± 3.62 19.37 ± 1.53 2.25 ± 1.42 - - 

2mg C/L 19°C 102.29± 1.04 8.68 ± 3.06 55.76 ± 1.29 32.16 ± 552 36.14 ± 1.11 3.84 ± 1.16 23.52 ± 1.27 3.67 ± 2.63 

2mg C/L 23°C 87.10 ± 1.08 3.76 ± 0.93 60.15 ± 1.02 10.37 ± 1.85 46.98 ± 1.07 4.69 ± 1.08 35.53 ± 1.11 5.61 ± 2.53 
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Table C.4. Summary table of the single stressor concentration response parameter values slope and 

EC50 (% of total diet of M. aeruginosa (± standard error). Single dose response curves can be accessed 

in the Figure C.2. 

Total food 

concentration 

Temperature EC50 

(% of diet) 

Slope 

0.8mg C/L 15°C 17.60 ± 1.15 4.72 ± 3.08 

0.8mg C/L 19°C 31.59 ± 1.15 2.61 ± 0.80 

0.8mg C/L 23°C 46.40 ± 1.12 6.53 ± 4.34 

2mg C/L 15°C 22.0 ± 1.08 7.00 ± 5.59 

2mg C/L 19°C 27.93 ± 1.17 1.85 ± 0.53 

2mg C/L 23°C 26.92 ±  1.05 3.74 ±  0.55 
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Figure C.1. Dose response curves of total reproduction after 21 days (control averaged) for Cu toxicity 

(dissolved Cu concentration) under 4 different concentrations of Microcystis aeruginosa (0, 10, 20 and 

40% of the total diet), 3 different constant temperatures (15°C, 19°C, 23°C) and 2 total diet 

concentrations (0.8mgC/L and 2mgC/L). Please note that no reproduction occurred at 80% Microcystis, 

as well as at 15°C and 40% Microcystis aeruginosa at both 0.8 and 2mg C/L.
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Figure C.2. Dose response curves of total reproduction after 21 days (control averaged) for 

cyanobacteria toxicity  under 3 different constant temperatures (15°C, 19°C, 23°C) and 2 total diet 

concentrations (0.8mgC/L and 2mgC/L).  
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Table D.1. Parameters of the DEB model for D. magna along with the confidence intervals determined 

via profile likelihoods. The unit for time (t) is days, for structural length of animals (L) in mm, for the 

abundance of prey (cells/L), and for length of the environment (l) in cm. A dot over a symbol indicates a 

rate parameter (two dots represent a rate, t-2). Curly brackets around a symbol represent the parameter 

is per unit surface area (see Kooijman 2010 for the full explanation). For M 0.9 was used as this was 

determined by Martin et al. 2013a. Assimilation was adjusted for all 8 primary DEB parameters, as well 

as for JXAm. The half-saturation coefficient K was calibrated separately. The Arrhenius factor was applied 

to: UB
H , UP

H ,km, kj, JXAm and moltime.  

 

 



Appendix D 
 

225 

 

Table D.2. Core DEB parameters of the DEB-IBM model for the DEB-IBM model for Daphnia 
magna and their link to various PMoAs through the stress level.  

 

 

 

 

 

 

 

 

 

 

 

 

 

DEB parameters 

Symbol Description Dimeosion Value PMoA 

K 
Fraetion of mobilized energy to 

0.678 
soma 

Fraction of reproduetion energy 
0.95 

Reproduetion costs and 
KR 

fixed in eggs embryonic hazard 

k 
Somatic maintenance rate 

t ' 
Maintenance costs, 

0.3314 m coefficient growth costs 

kj 
Maturity maintenance rate 

t ' 0. 1921 Maintnenace costs 
coefficient 

uh 
H Scaled maturity at birth tL1 0.1108 

UP 
H Scaled maturity at puberty tL1 2.555 

V Energy conductance L(' 18.1. 

g Energy investment ratio JO Growth costs 

f Scaled funetional response 0-1 Feeding/assimilation 
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Table D.3. Sum of the toxic units of copper and M. aeruginosa under the different exposures 
from chapter 4.          

Sum of TU      

Temperature     

Control 2µg Cu/L +MC 25µg Cu/L +MC 44µg Cu/L +MC 

t0 0.345 0.647 0.897 

t1 0.424 0.726 0.977 

t2 0.504 0.805 1.056 

t3 0.583 0.884 1.135 

t4 0.662 0.963 1.214 

+4°C 2µg Cu/L +2xMC 25µg Cu/L +2xMC 44µg Cu/L +2xMC 

t0 0.662 0.963 1.214 

t1 0.820 1.121 1.372 

t2 0.978 1.280 1.531 

t3 1.137 1.438 1.689 

t4 1.295 1.596 1.847 

      

Copper only 2.171547 25 44 

t0-t4 0.029 0.330 0.581 
 

 

Table D.4. Stress levels corresponding to the sum of the toxic units for the feeding PMoA. 

Feeding  A B SSE 

Temperature 0.5162 -0.1945 5968 

Control 2µg Cu/L +MC 25µg Cu/L +MC 44µg Cu/L +MC 

t0 -0.016 0.139 0.269 

t1 0.025 0.180 0.310 

t2 0.065 0.221 0.350 

t3 0.106 0.262 0.391 

t4 0.147 0.303 0.432 

Change Cu2Mc Cu25Mc Cu44MC 

t0 0.147 0.303 0.432 

t1 0.229 0.384 0.514 

t2 0.311 0.466 0.596 

t3 0.392 0.548 0.677 

t4 0.474 0.630 0.759 

      

Copper only 2.171547 25 44 

t0-t4 -0.180 -0.024 0.105 
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Table D.5. Stress levels corresponding to the sum of the toxic units for the maintenance 
PMoA. 

Maintenance 
PMoA A B SSE 

Temperature 4.633 -1.377 16951 

Control 2µg Cu/L +MC 25µg Cu/L +MC 44µg Cu/L +MC 

t0 0.222 1.619 2.781 

t1 0.589 1.985 3.148 

t2 0.956 2.352 3.514 

t3 1.322 2.719 3.881 

t4 1.689 3.085 4.248 

Change Cu2Mc Cu25Mc Cu44MC 

t0 1.689 3.085 4.248 

t1 2.422 3.819 4.981 

t2 3.156 4.552 5.714 

t3 3.889 5.285 6.448 

t4 4.622 6.019 7.181 

      

Copper only 2.171547 25 44 

t0-t4 -1.244 0.152 1.314 
 

 

Table D.6. Stress levels corresponding to the sum of the toxic units for the growth PMOA. 

Growth A B SSE 

Temperature 3.639 -1.882 6644 

Control 2µg Cu/L +MC 25µg Cu/L +MC 44µg Cu/L +MC 

t0 -0.626 0.471 1.384 

t1 -0.338 0.759 1.672 

t2 -0.050 1.047 1.960 

t3 0.238 1.335 2.248 

t4 0.526 1.623 2.536 

Change Cu2Mc Cu25Mc Cu44MC 

t0 0.526 1.623 2.536 

t1 1.102 2.199 3.112 

t2 1.678 2.775 3.688 

t3 2.254 3.351 4.264 

t4 2.830 3.927 4.840 

      

Copper only 2.171547 25 44 

t0-t4 -1.778 -0.681 0.232 
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Figure D.1. Mean length (+/- SD) of D. magna after 21 days under copper and M. 

aeruginosa exposure at a total food concentration of 0.8 mgC/L. 
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Figure D.2. Mean length (+/- SD) of D. magna after 21 days under copper and M. 

aeruginosa exposure at a total food concentration of 2 mgC/L. 
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Figure D.3. Observed and predicted population dynamics for D. magna under copper (Cu) and M. aeruginosa (MC) stress using the growth PMoA. Full lines 
indicate mean total abundance (observations: = black, predictions = blue), while the dotted lines indicate the minimum and maximum observations (n = 4,) and 
predictions (n = 10). Arrows indicate increasing levels of stress. With the exception of 25µg Cu/L+MC, the DEB-IBM predicted that the populations would go 
extinct immediately in all mixture treatments. 
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Table E.1. Physico-chemical characteristics of the KNO17 pond at the time of ephippia collection in 

October 2011.  

Latitude 51° 21' 01.97"N  

Longitude 03° 19' 49.58"E 

pH 7.72 

Temperature (°C, daytime) 12.5 

O2 (mg/L) 12.32 

Conductivity (µS/cm) 621 

Surface area (m2) 754 

IC (mg/L) dissolved: 47.95mg/L, total: 49.7mg/L  

NPOC (mg/L) dissolved: 30.3mg/L, total: 31.1mg/L 

Daphnids present in the water column no 

Measured Cu (µg/L) Dissolved: 0.3µg/L, total: 0.4µg/L , below 

quantification limit (<1µg/L) 

Measured Zn (µg/L) Below detection limit (<10µg/L) and 

quantification limit (<20µg/L) 
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Table E.2. Arrangement in multiplexes, annealing temperature in °C (Tm), labelling dye, PCR 

range size and bibliographic reference for the microsatellite loci used in this genotyping study. 

Taken from the supplementary material of Orsini et al. (2012).  

Locus Multiplex Tm Labeling 
PCR range 

in bp 

bibliographic 

reference 

B008 M01 56 VIC 148-174 Jansen et al. 2010 

B030 M01 56 PET 150-174 Jansen et al. 2010 

B045 M01 56 NED 110-130 Jansen et al. 2010 

B050 M01 56 6FAM 220-250 Jansen et al. 2010 

B064 M01 56 6FAM 130-160 Jansen et al. 2010 

B074 M01 56 NED 180-210 Jansen et al. 2010 

B096 M01 56 VIC 225-245 Jansen et al. 2010 

B107 M01 56 PET 242-290 Routtu et al. 2010 

A001 M03 56 VIC 400-430 Routtu et al. 2010 

B010 M03 56 NED 104-132 Jansen et al. 2010 

B133 M03 56 PET 170-190 Jansen et al. 2010 

B150 M03 56 VIC 157-187 Jansen et al. 2010 

B164 M03 56 NED 189-219 Jansen et al. 2010 
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Table E.3. Summary table of the chemical analysis for the micro-evolution experiment. All measurements are given as averages in the clean medium 

prior to adding Daphnia and algae and in the old medium after renewal. ± indicates the standard error (SE) around the mean values. C = control 

populations, Cu = Cu-selected populations, Zn = Zn-selected populations. 

Exposure 

medium 

total Cu 

µg/L 

dissolved Cu 

µg/L 

total Zn 

µg/L 

dissolved Zn 

µg/L 

total  

organic 

carbon mg/L 

dissolved 

organic 

carbon µg/L 

pH 

Selection experiment 

C 6.45 ±  0.25 4.23 ±  0.26 28.9 ± 0.2 26.3 ± 0.46 7.06 ± 0.48 6.31 ± 0.49 7.63 ± 0.01 

Cu 140.1 ± 4.49 71.3 ± 3.20 28.9 ± 0.2 26.3 ± 0.46 9.01 ± 1.00 8.22 ± 0.98 7.58 ± 0.01 

Zn 6.45 ±  0.25 4.23 ±  0.26 628.8 ± 10.5 496.4 ± 14.9 6.98 ± 0.66 6.61 ± 0.63 7.45± 0.01 

Common garden experiment 

C 6.71 ±  0.53 4.45±  0.83 29.8 ± 0.75 21.3 ± 0.92 3.26 ± 0.18 2.58 ± 0.20 7.66 ± 0.02 

Cu 146 ± 10.2 125 ± 38.4 29.8 ± 0.75 21.3 ± 0.92 3.71 ± 0.3 3.38 ± 0.20 7.75 ± 0.02 

Zn 6.71 ±  0.53 4.45 ±  0.83 743 ± 8.08 609 ± 35.5 3.38 ± 0.2 2.85 ± 0.19 7.66 ± 0.02 
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Table E.4. Summary table of the chemical analysis of the cadmium tolerance experiment. All 

measurements are given as averages in the clean medium prior to adding Daphnia and 

algae/cyanobacteria and in the old medium after renewal. ± indicates the standard error (SE) around 

the mean values. < dl = below detection limit. 

 

 

 

 

 

 

 

 

 

 

 

 

Exposure 

medium 

total  

Cd µg/L 

dissolved 

Cd µg/L 

total organic 

carbon mg/L 

dissolved organic 

carbon mg/L 

pH 

0µg Cd/L < dl < dl 5.15 ± 0.78 4.11 ± 0.44 7.64 ± 0.02 

Cd 1 2.10 ± 0.16 1.23 ± 0.06 4.66 ± 0.72 4.60 ± 0.51 7.67 ± 0.02 

Cd 2 5.02 ± 0.32 2.74 ± 0.13 4.48±  0.62 4.18 ± 0.49 7.67 ± 0. 09 

Cd 3 11.07 ± 0.28 6.34 ± 0.31  4.53 ± 0.49 3.99 ± 0.36 7.70 ± 0.06 

Cd 4 23.64 ± 0.64  11.83 ± 0.61 4.68 ± 0.58 4.42 ± 0.43 7.73 ± 0.05 

Cd 5 54.36 ± 1.35 27.25 ± 1.61 4.94 ± 0.64 4.18 ± 0.42 7.71 ± 0.05 
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Table E.5. Pairwise comparisons of total population density among selection treatments over time. An 

asterisk (*) indicates a significant difference between selection treatments, based on the Wald Chisquare 

test wit Holm adjustment for multiple testing.  We included different weights for the fixed effects to allow 

for unequal variances; we did not include a correlation structure correlating abundance at time point t+1 

per aquaria with the abundance at time point t as it did not significantly improve the model fit (Likelihood 

ratio test). C = control populations, Cu = Cu-selected populations, Zn = Zn-selected populations. 

Week C vs. Cu C vs. Zn Cu vs. Zn 

1 < 0.0001* < 0.0001* < 0.0001* 

2 0.0016* < 0.0001* 0.1675 

3 < 0.0001* < 0.0001* 0.1088 

4 0.0312* 0.0043* 0.9737 

6 < 0.0001* 0.2304 < 0.0001* 

8 0.0425* 0.3552 0.1336 
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Table E.6. Summary table of the cadmium concentration response parameters for each selection treatment (-95% CI - +95% CI). O = original population, C = 

control populations, Zn = Zn-selected populations. 

 EC10 EC20 EC50 EC80 EC90 Slope 

reproduction 

O 0.96 (0.69-1.34) 1.45 (1.14-1.83) 2.90 (2.51-3.35) 5.80 (4.63-7.28) 8.71 (6.35-11.95) 2.00 (1.48-2.52) 

C 1.26 (1.00-1.57) 1.64 (1.40-1.93) 2.60 (2.38-2.84) 4.12 (3.54-4.79) 5.39 (4.33-6.69) 3.02 (2.18-3.86) 

Zn 1.64 (1.37-1.97) 2.04 (1.81-2.30) 2.96 (2.76-3.17) 4.29 (3.68-5.00) 5.34 (4.29-6.63) 3.72 (2.53-4.92) 

survival 

O 1.25 (0.71-2.19) 2.10 (1.40-3.15) 5.12 (4.03-6.5) 12.48 (8.56-18.21) 21.03 (12.36-35.78) 1.55 (1.01-2.10) 

C 1.83 (1.15-2.90) 2.49 (1.77-3.51) 4.23 (3.37-5.30) 7.17 (5.19-9.91) 9.77 (6.31-15.13) 2.62 (1.41-3.83) 

Zn 1.60 (1.08-2.38) 2.23 (1.66-2.98) 3.91 (3.22-4.74) 7.57 (6.13-9.35) 11.01 (8.25-14.70) 2.46 (1.53-3.40) 
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Table E.7. Table of p-values of the pairwise Wheeler ratio comparisons among the different selection 

treatments for different dose response parameters (EC20, EC50, EC80 and slope) and endpoints 

(reproduction and survival) of the cadmium tolerance test.  An asterisk (*) indicates significant 

differences (p < 0.05) between two selection treatments for a given endpoint and parameter 

combination. O = original population, C = control populations, Cu = Cu-selected populations, Zn = Zn-

selected populations, ns = non-significant. 

Reproduction Survival 

EC20 

 C Zn  C Zn 

O ns 0.04* O ns ns 

Zn 0.02*  Zn ns  

EC50 

 C Zn  C Zn 

O ns ns O ns ns 

Zn 0.04*  Zn ns  

EC80 

 C Zn  C Zn 

O 0.02* 0.04* O 0.04* 0.03* 

Zn ns  Zn ns  

Slope 

 C Zn  C Zn 

O 0.02* 0.0009* O 0.04* 0.05* 

Zn ns  Zn ns  
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Table E.8. Bootstrap test for differences in genotypic (i.e. clonal) diversity (Simpson index) between pairs of populations.  O = original population, C = control 

populations, Cu = Cu-selected populations, Zn = Zn-selected populations, aquaria replicates 1-4. Significant differences (p < 0.05) are indicated in bold, below 

diagonal: p(A>=B), above diagonal: p(B<=A). 

A        B O C1 C2 C3 C4 Cu1 Cu2 Cu3 Cu4 Zn1 Zn2 Zn3 Zn4 

O  0.7365 0.8861 0.5236 0.5383 0.0609 0.0322 0.0431 0.0003 0.0186 0.0478 0.0027 0.2216 

C1 0.2636  0.2075 0.7159 0.6821 0.1017 0.054 0.0593 0.0014 0.0192 0.0588 0.0056 0.4213 

C2 0.114 0.7926  0.8737 0.8822 0.1785 0.1087 0.0987 0.0032 0.0362 0.1121 0.0118 0.7394 

C3 0.4765 0.2842 0.1284  0.4954 0.067 0.0404 0.0447 0.0008 0.0157 0.0428 0.0033 0.2406 

C4 0.4618 0.3274 0.1191 0.5047  0.0692 0.0348 0.0421 0.0008 0.0156 0.0472 0.003 0.2284 

Cu1 0.9392 0.8984 0.8216 0.9363 0.9309  0.4057 0.3346 0.0149 0.1235 0.3635 0.0506 0.8956 

Cu2 0.9679 0.9461 0.8915 0.9603 0.9653 0.5944  0.3942 0.0203 0.1607 0.4781 0.0726 0.94 

Cu3 0.957 0.9408 0.9015 0.9557 0.958 0.666 0.6081  0.0356 0.2195 0.5677 0.1095 0.9375 

Cu4 0.9998 0.9987 0.9969 0.9993 0.9993 0.9852 0.9798 0.9646  0.8486 0.97 0.7332 0.9988 

Zn1 0.9815 0.9809 0.9639 0.9845 0.9845 0.8803 0.8394 0.7809 0.1522  0.8191 0.3312 0.9805 

Zn2 0.9523 0.9413 0.8924 0.9573 0.9533 0.6366 0.5225 0.4324 0.0301 0.181  0.0845 0.934 

Zn3 0.9974 0.9945 0.9888 0.9968 0.9971 0.9495 0.9275 0.8911 0.2669 0.6689 0.9189  0.9923 

Zn4 0.7785 0.5788 0.2706 0.7612 0.7717 0.1056 0.0601 0.0627 0.0013 0.0196 0.0697 0.0085   
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Table E.9. Pairwise G’ST comparisons below the diagonal and 95% bootstrapped confidence interval above the diagonal. C = control populations, O = original 

population, Cu = Cu-selected populations, Zn = Zn-selected populations, aquaria replicates 1-4. Significant differences (p < 0.05) are indicated in bold. 

 O C1 C2 C3 C4 Cu1 Cu2 Cu3 Cu4 Zn1 Zn2 Zn3 Zn4 

O  -0.02 to 
0.07 

0 to 
0.11 

-0.02 to 
0.06 

-0.03 to 
0.04 

0.04 to 
0.18 

0.01 to 
0.13 

0.06 to 
0.20 

0.12 to 
0.24 

0.02 to 
0.14 

0.12 to 
0.24 

0.12 to 
0.27 

-0.02 to 
0.09 

C1 0.01  -0.01 to 
0.11 

-0.01 to 
0.13 

-0.02 to 
0.07 

0.02 to 
0.16 

0.01 to 
0.14 

0.01 to 
0.16 

0.11 to 
0.25 

0 to 
0.14 

0.09 to 
0.28 

0.11 to 
0.23 

-0.03 to 
0.08 

C2 0.05 0.04  0.00 to 
0.018 

-0.02 to 
0.09 

0.05 to 
0.20 

0 to 0.1 0.04 to 
0.18 

0.04 to 
0.14 

0.03 to 
0.14 

0.15 to 
0.33 

0.13 to 
0.33 

0 to 0.1 

C3 0.01 0.05 0.09  -0.01 to 
0.12 

0.02 to 
0.16 

0 to 
0.15 

0.07 to 
0.24 

0.11 to 
0.28 

0.03 to 
0.23 

0.14 to 
0.26 

0.13 to 
0.29 

-0.01 to 
0.13 

C4 0.00 0.02 0.03 0.05  0.07 to 
0.22 

0.01 to 
0.13 

0.07 to 
0.23 

0.11 to 
0.26 

0  to 
0.13 

0.14 to 
0.32 

0.13 to 
0.32 

-0.03 to 
0.11 

Cu1 0.10 0.08 0.12 0.09 0.13  0.04 to 
0.18 

0.05 to 
0.21 

0.11 to 
0.25 

0.06 to 
0.20 

0.16 to 
0.32 

0.21 to 
0.40 

0.04 to 
0.21 

Cu2 0.06 0.06 0.04 0.07 0.08 0.11  -0.02 to 
0.12 

-0.01 to 
0.08 

0.03 to 
0.18 

0.11 to 
0.28 

0.11 to 
0.28 

0.01 to 
0.11 

Cu3 0.12 0.08 0.10 0.15 0.14 0.12 0.03  0.04 to 
0.17 

0.02 to 
0.15 

0.13 to 
0.28 

0.18 to 
0.28 

0.05 to 
0.17 

Cu4 0.18 0.17 0.08 0.19 0.19 0.17 0.03 0.10  0.09 to 
0.20 

0.16 to 
0.35  

0.18 to 
0.35 

0.09 to 
0.20 

Zn1 0.07 0.06 0.08 0.12 0.06 0.12 0.10 0.08 0.16  0.12 to 
0.25 

0.19 to 
0.32 

0.01 to 
0.17 

Zn2 0.18 0.18 0.20 0.20 0.23 0.24 0.19 0.20 0.26 0.18  0.03 to 
0.14 

0.07 to 
0.20 

Zn3 0.20 0.19 0.23 0.21 0.23 0.30 0.20 0.23 0.29 0.26 0.08  0.01 to 
0.18 

Zn 4 0.02 0.02 0.03 0.05 0.03 0.11 0.06 0.10 0.14 0.08 0.13 0.09   
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Figure E.1. Mortality and cummulative reproduction (no. of juveniles) of a subset of 20 clones of the 

KNO17 population exposed to a range of nominal Cu and Zn concentrations for 12 days. This is data 

from a pilot experiment using animals cultured under identical conditions as described for the main 

experiments of this study, which we used to determine the Cu and Zn concentrations for the selection 

experiment.  We used the same initial population density (1 individual in 50 mL) and feeding regime 

(0.8mg C/L of Pseudokirchneriella subcapitata) as in the actual selection experiment. We postulated 

that micro-evolutionary effects should be most rapidly induced at lethal concentrations. We therefore 

based our choice for the metal concentrations at which to carry out our selection experiment on 

concentrations where 50% of clones died after 8 days as this time point typically marks the onset of 

reproduction. For copper we picked the nominal concentration of 180 µg Cu/L and for zinc 560 µg Zn/L. 

The data on cumulative reproduction after 12 days also indicate that little reproduction occurs at these 

concentrations, which lead us to expect strong selection to occur around these concentrations. 
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Figure E.2. Allele frequencies at 6 out of the 12 microsatellite markers (A001, B008, B010, B045, B050, 

B064) used for the data analysis under the different selection treatments. O = original population, C = 

control populations,  Cu = Cu-selected populations, Zn = Zn-selected populations. Error bars indicate 

the 95% confidence interval around the mean allele frequency of the 4 aquaria replicates. 
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Figure E.3. Allele frequencies at 6 out of the 12 microsatellite markers (B074, B096, B107, B133, B150, 

B164) used for the data analysis under the different selection treatments. O = original population, C = 

control populations, Cu = Cu-selected populations, Zn = Zn-selected populations. Error bars indicate 

the 95% confidence interval around the mean allele frequency of the 4 aquaria replicates.
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Figure E.4. Membership probability of the different multilocus genotypes to the different populations. 

Multilocus genotypes were grouped together according to their selection treatment along the x axis and 

the membership probability per multilocus genotype of belonging to each selection treatment is provided 

along the y-axis. This analysis was carried out in the R package adegenet. 
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