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Abstract 

Alcohol is a legal psychoactive substance that has been widely used in many cultures for 

centuries. General background, definitions of alcohol and alcoholic beverages as well as the 

different patterns of alcohol consumption are given in the first Section of this Chapter 

(Section 1.1), while the metabolism of ethanol is depicted in Section 1.2. The first part of 

Section 1.3 (1.3.1) reviews the analytical methods to monitor alcohol consumption via the 

so-called ‘classical analyses‘, i.e. breath, blood and urine for the determination of ethanol 

itself and blood and urine for the detection of direct and indirect markers of ethanol that are 

widely used to estimate the alcohol intake. In the second part of Section 1.3 (1.3.2) so-called 

‘alternative sampling strategies’ are discussed. These cover the collection of classical 

blood/urine samples from a living person in an alternative way (i.e. dried blood spots (DBSs) 

and dried urine spots (DUSs)), as well as the collection of ‘alternative’ samples (i.e. different 

from blood, plasma, serum or urine). Amongst the alternative sampling strategies covered 

are the sampling of DBSs (CDT%, EtG/EtS, PEths), DUSs (EtG/EtS), sweat and skin surface 

lipids (ethanol, EtG, FAEEs), oral fluid (ethanol, EtG), exhaled breath (PEths), hair (EtG, 

FAEEs), nail (EtG). Post-mortem matrices (e.g. bone, muscle, bone marrow, adipose tissue, 

and vitreous humour) and samples specific to newborns (e.g. meconium, umbilical cord and 

placenta) will not be discussed here. Section 1.4 presents the legal issues regarding the 

driving under the influence of alcohol legislation and the driver’s licence regranting process 

currently in force in Belgium. 
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1.1 General background and definitions about alcohol 

Alcohol is the name commonly used to define the ethanol present in alcoholic beverages 

after the fermentation of sugar by yeast. Ethanol, which is one of the oldest psychoactive 

drugs used by humans, is a depressant of the central nervous system. Small doses typically 

create a feeling of euphoria, while higher doses affect the consumer’s performance and 

behaviour (impaired coordination, lack of good judgment, sedation, ataxia, incoherent 

speech, loss of motor control). Finally, at a very high dose (leading to a blood alcohol 

concentration (BAC) > 4 g/L) alcohol consumption can lead to unconsciousness and death 

[1]. 

Alcohol is a volatile, flammable and colorless liquid also used as a solvent, antiseptic and 

fuel. The ethanol content of commercially available alcoholic beverages is indicated on the 

packaging and is expressed as alcohol by volume (ABV, or alc. % vol) and corresponds to the 

number of milliliters of pure ethanol present in 100 mL of the solution at 20° C. Alcoholic 

beverages are typically divided into three categories, based upon their ethanol content; 

beers (alc. 4-5 % vol.), wines (alc. 11-16 % vol.) and spirits (alc. 40 % vol.) [2,3]. To 

standardise the amount of ethanol ingested by an individual, regarding the beverages 

consumed (type and amount), publications often refer to the standard drink/unit. The World 

Health Organization (WHO) has defined a standard drink as a volume of a specific alcoholic 

beverage (e.g. a glass of wine or a can of beer) that contains approximatively the same 

amount of ethanol regardless the type of beverage [4]. The amount of ethanol used to 

define a standard drink changes from one country to another (Table 1.1).  

 

Country Standard drink definition 

Canada 13.60 g 

UK 8.00 g 

USA 12.00-14.00 g 

New Zeeland and Australia 10.00 g 

Japan 19.75 g 

Table 1.1 Standard drink definition for Canada, UK, USA, New Zeeland, Australia and Japan reported by the 
WHO [5,6]. 

 

http://en.wikipedia.org/wiki/Alcoholic_beverages
http://en.wikipedia.org/wiki/Volatility_(chemistry)
http://en.wikipedia.org/wiki/Flammability
http://en.wikipedia.org/wiki/Solvent
http://en.wikipedia.org/wiki/Antiseptic
http://en.wikipedia.org/wiki/Alcohol_fuel
http://en.wikipedia.org/wiki/Ethanol
http://en.wikipedia.org/wiki/Beer
http://en.wikipedia.org/wiki/Wine
http://en.wikipedia.org/wiki/Distilled_beverage
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Knowing that 1 mL of ethanol equals to 0.79 g of ethanol (volumetric mass density) and 

taking into account the ethanol content estimation per type of alcoholic beverage, a chart of 

common standard drinks containing 10 g of ethanol is presented in Figure 1.1.     

 

Figure 1.1 Illustration of standard drink containing approximately 10 g ethanol.  

 

In literature, variable amounts of ethanol per day (sometimes expressed as number of 

standard drink) are used to classify volunteers based on their drinking pattern. Briefly, 

“abstainers” or “teetotallers” are generally defined as those with a total abstinence for at 

least some months [7,8]. A person who is not strictly abstinent, but who drinks alcohol only 

at rare occasions and then in low doses, (for instance one glass champagne to clink glasses 

on a birthday party) was defined as “low moderate drinker [7]”. Within “social drinkers” (< 

60 g ethanol per day [9]), one refers to “low-risk drinkers” (1-21 units alcohol per week [8] or 

< 30 (< 20 for women) g ethanol per day [10]), “increasing-risk drinkers” (22-50 units per 

week [8]) or “high-risk drinkers” (20-60 g ethanol per day for women and 30-60 g ethanol 

per day for men [10]). “Heavy drinkers” (≥ 50 g ethanol per day [11] or ≥ 60 g ethanol per 

day [10]) or “high-risk drinkers” (≥ 50 units per week [8]) have been defined more in detail as 

“risky drinkers” (60-120 g ethanol per day [9])  or “excessive drinkers” (> 120 g ethanol per 

day [9]). The WHO defined a “low-risk drinker” as a person with an alcohol consumption of 

less than 20 g of alcohol per day, less than 5 days a week (recommending 2 non-drinking 

days) [6]. The WHO has published in 2014 a lexicon of alcohol and drug terms which provides 

definitions (Table 1.2) for different drinking patterns [4].  
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Drinking pattern name  Definition by the WHO 

Abstinence   Refraining from drinking alcoholic beverages, whether as a 

matter of principle or for other reasons. Those who practise 

abstinence from alcohol are termed “abstainers” or 

“teetotallers”.  

Moderate drinking  An inexact term for a pattern of drinking that is by implication 

contrasted with heavy drinking. It denotes drinking that is 

moderate in amount and does not cause problems.  

Social drinking  The use of alcoholic beverages in compliance with social 

custom, primarily in the company of others, and then only for 

socially acceptable reasons and in social acceptable ways. 

Often used loosely to mean a drinking pattern that is not 

problem drinking.  

Heavy drinking  

 

 A pattern of drinking that exceeds some standard of 

moderate drinking or more equivocally social drinking. It is 

often defined in terms of exceeding a certain daily volume or 

quantity per occasion.  

Excessive drinking  Currently a non-preferred term for a pattern of drinking 

considered to exceed some standard of moderate drinking of 

acceptability.  

Binge drinking  A pattern of heavy drinking that occurs in an extended period 

set aside for purpose.  

Hazardous drinking  A pattern of drinking that increases the risk of harmful 

consequences for the user. Consequences can be physical, 

mental, or even social. 

Harmful drinking  A pattern of drinking that is causing damage to health. The 

damage may be physical or mental (e.g. episodes of 

depressive disorder secondary to heavy consumption of 

alcohol). 

Table 1.2 Drinking patterns defined by the WHO [4]. 
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1.2 Metabolism of ethanol 

After alcohol consumption, ethanol is readily absorbed from the stomach and from the small 

intestine (duodenum and jejunum) into the blood stream [12]. The speed of absorption is 

influenced by many factors, such as the quantity consumed, the rate of drinking, the type of 

beverage (beer, wine, spirit) and the consumption of food before and/or during the 

ingestion of alcohol [12]. Ethanol is a small size (molecular weight (MW) = 46 g/mol) weak 

acid (pKa 15.9 at 25°C), which can easily penetrate biological membranes by passive 

diffusion through aqueous channels. Ethanol is distributed into all body fluids and tissues, in 

proportion to their water content [13]. Between 2 to 5 % of an ingested dose is excreted 

unchanged in the urine, breath and sweat. The ingested ethanol is mainly (about 95 %) 

removed from the body by oxidative metabolism (phase I) and partially (< 0.1 %) by non-

oxidative metabolism (phase II), i.e. via conjugation reactions. The oxidative metabolism of 

ethanol takes places via three pathways, namely alcohol dehydrogenase (ADH), catalase and 

cytochrome. The alcohol dehydrogenase metabolism is the principal reaction. Via a two-

stage oxidation process in the liver, it transforms ethanol into acetic acid, via acetaldehyde 

(Figure 1.2). The reaction is catalysed by the alcohol dehydrogenase (ADH) and the aldehyde 

dehydrogenase (ALDH) and requires involvement of the coenzyme oxidised nicotinamide 

adenine dinucleotide (NAD+), which is converted into its reduced form (NADH). 

 

 

Figure 1.2 Ethanol metabolised to acetic acid, via acetaldehyde. ADH: alcohol dehydrogenase, ALDH: aldehyde 
dehydrogenase, NAD+: oxidised nicotinamide adenine dinucleotide, NADH: reduced nicotinamide adenine 
dinucleotide. 

  

 

http://en.wikipedia.org/wiki/Small_intestine
http://en.wikipedia.org/wiki/Small_intestine
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1.2.1 Direct biomarkers 

The non-oxidative metabolism of ethanol results in the formation of ethyl glucuronide (EtG), 

ethyl sulfate (EtS), phosphatidylethanol species (PEths) and fatty acid ethyl esters (FAEEs) 

(Figure 1.3). These are discussed more into detail in Section 1.3.1.3, where the ‘classical’ 

analyses of direct biomarkers in urine and blood are outlined. 

1.2.2 Indirect biomarkers 

After excessive and chronic alcohol consumption, ethanol can induce indirect effects on the 

body via its interference with glycosylation (increased carbohydrate deficient transferrin 

(CDT%), with liver function (increased gamma-glutamyltransferase (GGT), aspartate 

aminotransferase/alanine aminotransferase (AST/ALT)) and via its effect on the size of red 

blood cells (increased mean corpuscular volume (MCV)). Also these are discussed more into 

detail in Section 1.3.1.2, where the ‘classical’ analyses of indirect biomarkers in blood are 

outlined. 
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Figure 1.3 Non-oxidative phase II metabolism of ethanol into EtG, EtS, PEths (PEth 16:0/18:1, PEth 18:1/18:1 
and PEth 16:0/16:0) and FAEEs (ethyl myristate (E14:0), ethyl palmitate (E16:0), ethyl stearate (E18:0) and ethyl 
oleate (E18:1)), with indication of the molecular weight (MW). PAPS: 3’-phosphoadenosine 5’-phosphosulfate, 
UDPGA: uridine 5’-diphospho-β-glucuronic acid. 
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1.3 Analyses of interest 

Monitoring of alcohol consumption is most often performed in breath, blood and urine. The 

blood alcohol concentration (BAC), obtained by quantification of ethanol in blood, is of 

particular interest to monitor alcohol consumption, due to its correlation with the effect of 

alcohol. To avoid sampling by venepuncture and to allow the evaluation of alcohol 

consumption in traffic situations, breath sampling has since long been introduced to detect 

persons under the influence of alcohol. Then, application of a factor, based upon the blood-

breath concentration ratio, allows the conversion of the ethanol concentration in breath 

(BrAC) to the BAC [1]. Analysis of ethanol, EtG and EtS in urine, as well as the determination 

of EtG, EtS, FAEEs and PEths in blood, allows a longer detection window, but does not lead to 

information concerning the status of the person e.g. at the time of an accident. Indirect 

biomarkers of alcohol measured in whole blood (MCV) or serum (CDT%, GGT, ALT, AST) are 

traditionally used to detect chronic and excessive alcohol consumption (as seen in alcohol 

dependent individuals), for instance in case of fitness to drive decision. These ‘classical 

analyses’ are presented more in detail in Section 1.3.1.   

The alcohol consumption of a living person can also be monitored via so-called ‘alternative 

sampling strategies’, which include ‘classical’ samples obtained from a living person via an 

alternative way (i.e. dried blood spots (DBSs) and dried urine spots (DUSs)), as well as 

‘alternative’ samples (i.e. different from blood, plasma, serum or urine). Amongst the 

alternative sampling strategies covered in Section 1.3.2, are the sampling of DBSs, DUSs, 

sweat/skin surface lipids, oral fluid, exhaled breath, hair and nail. Post-mortem matrices (e.g. 

bone, muscle, bone marrow, adipose tissue, and vitreous humour) [14–17] and samples 

specific to newborns (meconium, umbilical cord and placenta) will not be discussed here. 

Key results, issues and considerations specific to each matrix are reported. For details about 

sample preparation and analytical methods, the interested reader is referred to the original 

articles or to recent reviews on this topic [9,18–30]. 

1.3.1 ‘Classical’ analyses 

1.3.1.1  Ethanol 

The concentration-time profiles of ethanol in blood, breath and saliva (Figure 1.4, upper) 

follow the same overall shape [1].  
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The peak concentrations are reached after about 30 minutes for breath and saliva and 1 

hour for blood. The peak concentrations of ethanol in blood and saliva are similar and 

approximatively 2100 times higher than in breath. The peak concentration of ethanol in 

urine is the highest and is reached later (after about 2h). The peak concentration of ethanol 

in sweat (Figure 1.4, lower) is lower than in blood, urine and saliva and is reached later than 

in other matrices (~4.5 h). 

 

  
Figure 1.4 (Upper) Ethanol mean (N=21) concentration-time profile in blood, urine, breath and saliva after a 
consumption of 0.68 g ethanol/kg body weight [1]. (Lower) Ethanol mean (N=8) concentration-time profile of 
ethanol in sweat and breath after the consumption of 0.56 g/kg body weight [31]. 

 

1.3.1.1.1 Ethanol in blood 

In literature, the alcohol concentration in blood is expressed using different units (i.e. g/kg, 

g/L (‰), mol/L). Use of the mean density of whole blood (1.055 g/mL) and/or the molecular 

weight (MW) of ethanol (46 g/mol) allows to convert results from one unit to another [1].  

After alcohol consumption between 0.50 and 0.78 g ethanol/kg body weight, peak 

concentrations in blood were reached between 1.3 and 2.1 hours [32] after the start of 
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drinking (N=13). Ethanol was detectable up to 8.6 hours after the start of drinking. The 

concentration-time profile of ethanol in blood after the consumption of 0.68 g/kg body 

weight is presented in Figure 1.4 (upper). The rate of disappearance of ethanol in blood was 

estimated at 0.12 g/L/h [33]. The elimination rate is up to 1.5 times higher for heavy drinkers 

[34]. Ethanol concentrations up to 3.7 g/L have been measured in blood of alcoholic patients 

in withdrawal [35].  

Ethanol levels exceeding 1.5 g/L without sign of intoxication or exceeding 3.0 g/L at any time 

are a sign of abnormal ethanol tolerance and suggest alcohol misuse [34].  

1.3.1.1.2 Ethanol in urine 

A good correlation (r=0.96) has been observed between urine and blood concentrations and 

the urine-blood concentration ratio was estimated at 1.3:1 [1]. In urine, the mean peak 

ethanol concentration (17.0 mmol/L = 0.782 g/L (MW = 46 g/mol)) after consumption of 0.50 

g ethanol/kg body weight, was reached 1.5 h after the start of drinking [15]. Ethanol was 

detectable up to 6.5 hours after the consumption of alcohol. The concentration-time profile 

of ethanol in urine after the consumption of 0.68 g/kg body weight is presented in Figure 1.4 

(upper). Ethanol concentrations up to 4.76 g/L were measured in urine from patients when 

admitted to a detoxification unit [13].  

1.3.1.1.3 Ethanol in breath 

Breath alcohol concentration (BrAC) measurement is performed with a Breath Analyser 

System and gives a direct result. BrAC measurement is, in contrast to blood sampling, non-

invasive and is therefore often used in road traffic control. 

A good correlation (r=0.98) between the concentration of ethanol in breath and blood has 

been reported [1]. Most publications expressed the breath ethanol concentration not as the 

mg ethanol per liter of breath measured, but as the corresponding calculated blood alcohol 

concentration in g/L or ‰. This inference requires the use of a blood-breath concentration 

ratio (conversion factor), which differs from one country to another (2300:1 for Great 

Britain, The Netherlands and Belgium, 2000:1 for most European countries and 2100:1 for 

USA and Canada).    

After the consumption of 1.07 g ethanol/kg body weight, BrAC values between 0.245 and 

0.730 mg/L were measured 33 min after the termination of drinking. Ethanol was still 
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detectable in breath after 5 h. The concentration-time profile of ethanol in breath after the 

consumption of 0.68 g/kg body weight is presented in Figure 1.4 (upper). The mean 

elimination rate of ethanol in breath was estimated at 0.082 mg/L/h (0.078-0.086, 95 % 

CI)[70], which corresponds to 0.16 g/kg/h (0.15-0.17, 95 % CI) when expressed as BAC 

(blood-breath concentration ratio 2000:1). Ethanol concentrations in breath up to 2.2 mg/L 

(reported in the article as 4.7 g/L in blood (conversion factor 2100:1)) have been measured 

in breath of alcoholic patients on arrival in a detoxification unit [64]. 

1.3.1.2  Indirect biomarkers 

1.3.1.2.1 Carbohydrate deficient transferrin (CDT) 

Transferrin (Tf) is a group of glycoproteins synthesised and secreted by the liver, that 

transport iron through the bloodstream. These are present in the body under different 

isoforms (Figure 1.5) all composed of a polypeptide chain with two binding sites and two 

carbohydrate chains. These polysaccharide chains are branched with sialic acid residues.  

 

Figure 1.5 Representation of the different isoforms of transferrin present in the human body. 

 

Percentages of most important isoforms in the serum of healthy persons are between 64 

and 80 % for tetrasialo-Tf, 12 and 18 % for pentasialo-Tf, 4.5 and 9 % for trisialo-Tf and less 

than 2.5 % for disialo-Tf. Asialo-Tf and monosialo-Tf are not present, or in a very small 

amount (< 1 %) in healthy persons [36]. Alcohol consumption induces an increase of 

isoforms with less carbohydrate chains and less sialic acid groups, named carbohydrate-

deficient transferrin (CDT). This has been explained by an underglycosylation of Tf (most 

likely due to the effect of ethanol and or acetaldehyde on the N-glycan chain synthesis) [37] 

http://en.wikipedia.org/wiki/Glycoprotein
http://en.wikipedia.org/wiki/Sialic_acid
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or by an enhanced activity (induced by ethanol or acetaldehyde) of the sialidase enzyme that 

removes the carbohydrate groups from Tf [34].   

Different methods, which consider different transferrin isoforms as CDT, have been 

developed. This involves that cut-off values used for the interpretation of results are 

method-dependent. Arndt has published in 2001 an interesting review on this issue [36].  

In its original definition, CDT encompassed the sum of transferrin glycoforms with either 

zero (asialo-Tf)), one (monosialo-Tf) or two (disialo-Tf) sialic acid residues on the 

carbohydrate side chain of the transferrin molecule [36]. Several studies demonstrated that 

trisialo-Tf was not correlated with alcohol consumption [38,39]. Subsequent investigations 

have recognised disialo-Tf and asialo-Tf as being the main alcohol-related glycoforms 

[40,41]. In 2007, the International Federation of Clinical Chemistry and Laboratory Medicine 

(IFCC) workgroup on CDT [41] proposed to exclude the monosialo-Tf from this definition 

because it is linked to trisialo-Tf and not to alcohol consumption [42,43]. Some authors 

[44,45] proposed to used asialo-Tf instead of a total CDT as test diagnostic of alcohol abuse. 

CDT results are generally expressed as a % of total transferrin (CDT%). 

It is observed that asialo-Tf is usually not detected in serum of healthy persons. Disialo-Tf is 

normally detected in serum of healthy volunteers but the concentration increased after high 

alcohol consumption. A daily consumption between 50 and 80 g during 1 to 2 weeks is 

required to rise the CDT level. In this way, short periods of high alcohol consumption are not 

detected. Abnormal CDT level is detected in alcoholic patients up to 2 weeks after the 

cessation of drinking. The mean half-life of CDT in blood is about 7 to 10 days [34]. CDT 

(asialo-Tf, disialo-Tf and monosialo-Tf) values up to 6.6 % have been measured in blood of 

alcoholics patient in withdrawal [46].  

Amongst the indirect markers, CDT% is the most reliable marker to detect chronic alcohol 

consumption (specificity between 80 and 95 % [22]). Nevertheless, liver diseases can lead to 

false positive results [47–49]. The sensitivity for CDT has been reported between 20 and 

80 % [22]. Possibilities, limitations, outcomes and pitfalls concerning the use of CDT in the 

context of driver’s licence regranting programs have been discussed in detail in a recent 

publication [50].  
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1.3.1.2.2 Gamma-glutamyltranspeptidase (GGT) 

Gamma-glutamyltranspeptidase (gamma-glutamyltransferase, GGT) is an enzyme located in 

the cell surface membrane of many tissues (i.e. liver, kidneys, bile duct, pancreas, gall 

bladder, spleen, heart, brain, and seminal vesicles), which catalyses the transfer of a gamma-

glutamyl moiety of the glutathione to amino acids, peptides or water to form glutamate [51].  

This reaction is possibly involved in protection against oxidative stress (induced from the 

metabolism of alcohol), via the regulation of the intracellular glutathione (body’s anti-

oxidant) levels [52,53]. Although present in many tissues, only the isoform of GGT from the 

liver is detected in serum [19].  

GGT activity, which is measured in serum, is not increased after the consumption of a single 

dose of alcohol [53], and a consumption between 80 and 200 g of ethanol per day for a 

period of several weeks is required to increase the activity of GGT in serum [49]. A 15 % 

increase has been observed after daily alcohol consumption of 60 g ethanol for 3 weeks, 

with increases up to 50 % after 5 weeks of high alcohol consumption [53]. GGT mean activity 

measured in blood of heavy drinkers was 177 U/L (N=133) [54]. The half-life of GGT is 

between 14 and 26 days [34,55]. Normal GGT values are detected within 2 to 5 weeks after 

the start of an alcohol withdrawal [12,49]. GGT activity up to 945 U/L has been measured in 

blood of alcoholic patients in withdrawal [56].    

Because cholestasis, a liver injury which stops the bile flow from the liver to the duodenum, 

induces an increased synthesis of GGT [57], GGT has been widely used for the assessment of 

liver damage. In addition, GGT can increase due to biliary, heart, pancreas or kidney damage, 

obesity, type 2 diabetes, the use of drugs like barbiturates, anticonvulsants and alcohol 

[25,48,49,55]. Many different values have been reported regarding the sensitivity and 

specificity of GGT to detect excessive and chronic drinkers. These variations are explained by 

different study protocols (including variable subjects), using variable cut-off values and 

taking into account variable parameters (gender, age, medical conditions). As a result, 

sensitivity values between 30 and 60 % have been reported [22]. GGT is rarely elevated in 

subjects under 30 years [53,55], even when they have alcohol dependence [58]. Specificities 

between 65 and 95 % have been reported [22]. The IFCC has published a procedure for the 

measurement of GGT, which recommends an upper reference limit at 38 U/L for females 

and 55 U/L for males [59].  

http://en.wikipedia.org/wiki/Kidney
http://en.wikipedia.org/wiki/Bile_duct
http://en.wikipedia.org/wiki/Pancreas
http://en.wikipedia.org/wiki/Gallbladder
http://en.wikipedia.org/wiki/Gallbladder
http://en.wikipedia.org/wiki/Spleen
http://en.wikipedia.org/wiki/Heart
http://en.wikipedia.org/wiki/Brain
http://en.wikipedia.org/wiki/Seminal_vesicles
http://en.wikipedia.org/wiki/Glutathione
http://en.wikipedia.org/wiki/Bile
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http://en.wikipedia.org/wiki/Duodenum
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1.3.1.2.3 Aspartate aminotransferase (AST) and Alanine aminotransferase (ALT) 

Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) are two transaminase 

enzymes used in liver function tests (LFT), to detect liver injury. AST and ALT catalyse the 

reversible transfer of an α-amino group from aspartate (AST) or alanine (ALT) to α-

ketoglutarate to create oxaloacetate (AST) or pyruvate (ALT) and glutamate (Figure 1.6). AST 

is present predominantly in the liver, but also in heart, muscle, kidneys, brain, pancreas, lung 

and red and white blood cells [25]. ALT is mainly present in hepatic tissue [25].  

 

Figure 1.6 Typical reaction between aspartate or alanine and α-ketoglutarate catalysed by aspartate 
aminotransferase (upper) or alanine aminotransferase (lower). 

 

AST and ALT activity are determined in serum. The half-life of these enzymes is about 13 

(AST) and 16 days (ALT) [53], and normal values are reached in alcoholic patients between 2 

and 3 weeks after the cessation of alcohol consumption [34,48]. Concentrations up to 422 

U/L for AST and 225 U/L for ALT have been measured in blood from patients in alcohol 

withdrawal [46]. The sensitivity of the method to detect alcohol misuse was reported 

between 23 and 50 % [34,53,60]. Both AST and ALT levels have been reported to be less 

likely elevated in those aged less than 30, and possibly in the elderly, and to be elevated in 

case of obesity, liver and biliary diseases [53]. A study has demonstrated [53], that abnormal 

ALT activity could be attributed in 22 % of the cases to obesity and in between 17 to 20 % of 

the cases to hepatitis C. In addition, strenuous exercise, muscle disorders and many drugs 

have been shown to possibly increase AST levels [25,48]. Despite this, abnormal ALT and AST 

levels were observed in only 4 % of “moderate drinkers” (N=1504) [54] and so the specificity 

to distinguish between heavy drinkers and reference individuals has been calculated at 87 % 

for ALT and 95 % for AST [60]. This may be explained by a low prevalence of factors that may 

http://en.wikipedia.org/wiki/Transaminase
http://en.wikipedia.org/wiki/Aspartate
http://en.wikipedia.org/wiki/%CE%91-ketoglutarate
http://en.wikipedia.org/wiki/%CE%91-ketoglutarate
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elevate ALT and AST activity (e.g. obesity, liver and biliary diseases) in the reference 

populations involved.  

The IFCC has published procedures for the measurement of AST and ALT, which 

recommended an upper reference limit for AST at 31 U/L for females and 35 U/L for males 

and for ALT at 34 U/L for females and 45 U/L for males [59]. In addition, an AST/ALT ratio 

over 2 has been proposed to suggest alcohol induced liver damage in 90-95 % of the cases 

(specificity) but this ratio is not necessary elevated for all alcohol dependent patients 

(sensitivity below 40 %) [68, 84, 92]. 

1.3.1.2.4 Mean corpuscular volume (MCV) 

The mean corpuscular volume (mean volume of erythrocytes) is the average volume of 

erythrocytes (red blood cells). The value results from the hematocrit level (volume (%) of 

erythrocytes in total volume blood) divided by the number of erythrocytes. The result is 

expressed in femtoliters (fL, or 10−15L).  

The normal range of MCV is between 86 and 98 fL [62]. The cut-off value used to detect 

dependence of alcohol is between 93 and 96 fL [25]. A chronic and excessive alcohol 

consumption period is known to increase the size of red blood cells (macrocytosis). Values 

up to 109 fL have been measured for patients in alcohol withdrawal [56]. With a lifespan of 

the red blood cells of 120 days, MCV values remain abnormal for between 3 and 4 months 

after cessation of heavy drinking [12,34,63]. 

MCV is also influenced by folic acid or vitamin B12 deficiency, bleeding, hematological 

diseases, bone marrow disorders, liver diseases, hypothyroidism, hyperglycaemia and 

smoking [34,48]. MCV is less likely to be elevated in those aged less than 30, and possibly in 

the elderly [53]. MCV has shown a specificity between 75 and 95 % [22], and a sensitivity 

below 50 % [22,25,34,60]. 

1.3.1.3 Direct biomarkers 

1.3.1.3.1 Ethyl glucuronide (EtG) and ethyl sulfate (EtS) 

Glucuronidation of ethanol is a phase II conjugation reaction with UDPGA (uridine 5’-

diphospho-β-glucuronic acid) through the action of endoplasmic reticulum UDP-

glucuronosyltransferase enzyme (Figure 1.3) [64]. About 0.02 % of consumed ethanol is 

https://en.wikipedia.org/wiki/Erythrocyte
https://en.wikipedia.org/wiki/Hematocrit
https://en.wikipedia.org/wiki/Volume_percent
https://en.wikipedia.org/wiki/Erythrocyte
https://en.wikipedia.org/wiki/Blood
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excreted in urine as EtG [65,66]. Sulfation of ethanol is a phase II conjugation reaction with 

PAPS (3’-phosphoadenosine 5’-phosphosulfate) through the action of cytosolic 

sulfotransferase (Figure 1.3) [67]. Only 0.01-0.02 % of the consumed ethanol is excreted in 

urine as EtS on a molar basis [68,69].  

EtG and EtS are two small, polar and acidic metabolites of ethanol [70]. The pKa of EtG was 

estimated between 2.84 and 3.21 [70–72] and at -3.14 for EtS [70].  

1.3.1.3.1.1 EtG and EtS in blood 

After the consumption of between 0.50 and 0.78 g ethanol/kg body weight, the peak 

concentrations (N=13) in serum for EtG were between 0.3 and 1.1 mg/L (reported as 1.2-4.9 

µmol/L in the publication (MW = 222 g/mol)) and were reached between 2.3 and 5 hours 

after the start of drinking (drinking time was about 30 min) [32]. For EtS the peak 

concentrations were between 0.1 and 0.8 mg/L (1.0-6.4 µmol/L, MW = 126 g/mol) and were 

observed between 2.1 and 3.9 hours. EtG was still detected 10 hours after the start of 

drinking in 7 out of 13 volunteers. EtS concentrations return to zero more rapidly (between 4 

and up to more than 10 h) [32]. The concentration-time profiles of ethanol, EtG and EtS in 

serum are presented in Figure 1.7. The half-life of EtG and EtS in blood from alcohol 

dependent patients was calculated at 3.3 h (range 2.6-4.3) for EtG and at 3.6 h (range 2.7-

5.4) for EtS [35]. EtG and EtS were detectable in blood for about a two times longer period 

than ethanol [32].  

In blood of patients in alcohol withdrawal concentrations up to 17.9 mg/L for EtG and up to 

5.9 mg/L for EtS [35] were reported. EtG and EtS were detectable for up to 40 hours in blood 

of alcohol dependent patients after the cessation of drinking [35]. 

 
Figure 1.7 Serum ethanol, EtG and EtS concentration-time profiles in one volunteer after consumption of 0.5 g 
ethanol/kg body weight [32]. 1 µmol/L is equal to 0.22 mg/L for EtG (MW = 222 g/mol) and to 0.13 mg/L for EtS 
(MW = 126 g/mol).  
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1.3.1.3.1.2 EtG and EtS in urine 

In a study evaluating the kinetics of EtG and EtS in urine (Figure 1.8), peak EtG 

concentrations (N=13) were reached between 5.0 and 7.5 hours and were between 23 and 

179 mg/L (104-805 µmol/L, MW = 222 g/mol) [32]. For EtS, peak concentrations between 6 

and 67 mg/L (46-533 µmol/L, MW = 126 g/mol) were observed between 3.1 and 7.4 hours. 

Four out of 13 volunteers had positive EtG urinary levels after 44 h. In urine, EtG was 

detectable between 26.6 and more than 44 h after the start of drinking, while EtS was 

detectable between 22.8 and more than 47 h after consumption of alcohol quantities 

between 0.5 and 0.78 g /kg body weight [32]. EtG was detected for about 10 times longer 

than ethanol, whereas EtS was detectable for about 3-8 times longer [32]. The EtG 

concentration in urine decreased with a half-life of approximately 2.5 h [64,66]. Urine 

samples from alcohol-dependent patients during detoxification can have EtG concentrations 

up to 1240 mg/L [64] and EtS concentrations up to 264 mg/L [73] remaining detectable for 

up to 5 days [74].  

Due to the possibility of finding EtG and EtS concentrations in urine without consumption of 

alcoholic beverages, e.g. via the intake of certain food or beverages and the use of certain 

cosmetics (mouthwash and hand sanitizers) or e-cigarettes [75–82], low concentration 

results have to be interpreted with caution. No cut-offs are fixed yet by international 

guidelines and values currently used to detect intentional alcohol consumption vary 

between 0.05 and 1.1 mg/L [83,84]. 

 

 

 

 

 

 

 

 

 



Back to the table of contents 

19 

In
tr

o
d

u
ct

io
n

 

 

 

 

 

 

Figure 1.8 Urinary ethanol, EtG and EtS concentration-time profiles after consumption of 0.5 g ethanol/kg body 
weight [68]. 
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1.3.1.3.2 Fatty acid ethyl esters (FAEEs) 

FAEEs are a group of more than 20 substances formed by enzymatic esterification of ethanol 

and free fatty acids (Figure 1.3). Ethyl myristate (E14:0), ethyl palmitate (E16:0), ethyl 

stearate (E18:0) and ethyl oleate (E18:1) are the most studied FAEEs. Different enzymes (i.e. 

FAEE synthase, acyl-CoA:ethanol O-acyltransferase (AEAT), lipoprotein lipase, cholesterol 

esterase, carboxylesterase and carboxylester lipase) catalyse the esterification of ethanol to 

free fatty acids. More information about the biochemistry of FAEEs can be found in an article 

published in 2003 [85]. Politi et al. in 2007 and Cabarcos et al. in 2015 have published 

interesting reviews about the detection of FAEEs in biological samples [18,19].  

FAEEs are present in blood of alcohol drinkers and abstainers. In abstainers, FAEEs 

concentrations in serum between 24 and 87 nmol/L have been suggested as reference range 

[86]. 

Blood ethanol and serum FAEEs concentrations follow similar kinetics (Figure 1.9), except 

that FAEEs remain longer detectable in blood (up to 99 h) than ethanol [86,87].   

 

 

Figure 1.9 Serum FAEEs and blood ethanol concentration-time profiles in subjects after the consumption of  
0.43 g ethanol/kg body weight [88]. 

 

After the consumption of 0.43 g ethanol/kg body weight, a mean peak serum concentration 

at ~2200 nmol/L (N=4) for men and at ~1200 nmol/L for women (N=3) has been observed 

(Figure 1.9, left) [88]. During the first 17.7 hours after alcohol consumption, 95 % of the 

FAEEs detected in serum were eliminated. In serum from a hospitalised inpatient with 
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known history of chronic alcohol abuse, a FAEEs concentration up to 42.1 mg/L (E16:0 = 7.2 

mg/L, E18:0 = 5.2 mg/L, E18:1 = 23.9 mg/L, E18:2 = 4.4 mg/L and E20:4  1.4 mg/L) was 

reported [89].  

1.3.1.3.3 Phosphatidylethanol species (PEths) 

PEths are a group of abnormal phospholipids formed in the presence of ethanol (Figure 1.3), 

via the action of phospholipase D (PLD), which normally hydrolyses phosphatidylcholine into 

phosphatidic acid and choline in cell membranes (Figure 1.10) [21].  

 

Figure 1.10 Normal hydrolysis of phosphatidylcholine into phosphatidic acid and choline in cell membranes. 

 

In blood, PEths peak concentrations appear between the 3th and 6th day after five days of 

consecutive high alcohol consumption (between 50 and 109 g ethanol daily) and were 

detected up to more than 16 days [90]. Up to 48 different PEths have been detected in blood 

collected during autopsy of heavy drinkers [91]. All species have a common phosphoethanol 

head onto which two fatty acids of variable chain length and degree of saturation are 

attached. Although analysis of blood from heavy drinkers shows a huge interindividual 

variation of the distribution of the different PEths [92], PEth 16:0/18:1 and PEth 16:0/18:2 

are the two predominant PEths detected [91–94]. Preliminary studies suggest that PEth 

16:0/18:1, PEth 16:0/18:2, PEth 18:1/18:1, PEth 16:0/20:4 and PEth 18:1/18:2 could 

constitute together more than 80 % of total PEths, whereas PEth 16:0/16:0 alone could 

represent about 1-5 % [24]. The distribution of PEths species from different publications is 

presented in Figure 1.11.  

While some methods (e.g. high performance liquid chromatography (HPLC) coupled to 

evaporative light scattering detector (ELSD) [95–98] and non-aqueous capillary 

electrophoresis coupled to UV detection [99]) measure the total amount of PEths, other 

methods (such as liquid chromatography coupled to tandem mass spectrometry (LC-

MS/MS)) are able to identify and quantify individual molecular species [92–94,100–103].  
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Figure 1.11 Distribution of PEths in human blood according to 4 studies [92–94,104]. 

 

1.3.2 ‘Alternative’ sampling strategies 

1.3.2.1 Dried blood spot (DBS) 

A DBS is obtained by depositing a blood sample onto a filter paper, followed by drying. These 

samples are known to improve the stability of many analytes and to facilitate storage and 

transportation issues [105]. While so-called venous DBS (V-DBS) can be generated from 

venous blood, obtained by classical venepuncture, capillary DBS (C-DBS) are typically 

generated by direct collection of blood drops appearing after a finger or heel prick. The 

sampling can be performed either in a volumetric (using a precision microcapillary) or a non-

volumetric way (direct application from the finger/heel). Compared to venepuncture, the 

sampling of C-DBS offers the advantage of being less invasive and, as long as no accurate 

handling is required, does not require a nurse or physician [106]. 

DBS collected in a non-volumetric way are mostly processed by excision of fixed-size 

punches (typically 3-6 mm diameter) from the global spot. This partial-spot approach 

requires the assessment of the impact of variables such as hematocrit, punch localisation 

and spot volume on the quantitative result [107,108]. To cope with a possible bias imposed 

by deviating hematocrit values, different strategies have been proposed [106]. These include 
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volumetric deposition using special devices followed by full-spot analysis, the use of special 

filter paper, the normalisation following hematocrit prediction [106] or the collection of a 

fixed volume of blood from a non-volumetrically deposited sample (e.g. using a microfluidic 

device or volumetric absorptive microsampling) [109]. Another issue in DBS analysis is how 

to apply an internal standard (IS) to a dried matrix spot [110]. Whilst in most DBS-based 

procedures, the IS is added to the extraction solvent, it can also be spiked to or sprayed onto 

the DBS prior to extraction. Having the IS in the DBS prior to the extraction offers the 

advantage that any variability during the extraction process is corrected for [110]. 

Below, we provide an elaborated update on the use of DBS for detecting a subset of ethanol 

markers, which was briefly covered in an overview by Sadones et al. on the use of DBS for 

detecting (markers of) abused substances [29].  

1.3.2.1.1 CDT% in DBS 

In a report dating from 1996, a good agreement (as suggested by a correlation coefficient of 

0.94) was found between CDT% in serum and DBS [111]. CDT% values in DBS were 

demonstrated to be stable for up to 2-3 days at room temperature, and 2 weeks at 4°C or 

frozen (-20°C). In 2016, Bertaso et al. [112] reported on the development of a capillary 

electrophoresis method for straightforward quantification of CDT% in DBS. 

Further studies about the stability of CDT in DBS for longer periods of time, as well as the 

evaluation of the influence of hematocrit, punch localisation and spot volume are needed. In 

addition, and to ensure equivalence of venous and capillary samples, concentrations 

obtained from venous blood and C-DBS samples should be statistically compared. An 

advantage of CDT% is that it is a relative measure (expressed as a % of total transferrin). 

Hence, while the absolute amount of CDT and transferrin may differ, depending on several 

factors, the CDT% is likely to remain the same. Such an observation was readily made by De 

Kesel et al., albeit in the context of CYP1A2 phenotyping, where the use of ratios 

(paraxanthine:caffeine in that case) compensated for effects of volume and hematocrit, as 

well as for capillary-venous differences [106]. 

1.3.2.1.2 EtG and EtS in DBS 

While multiple methods for the quantification of EtG and EtS in blood have been published 

[35,65,71,78,113–119], there is currently only one report on their quantification in DBS 
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[120]. That study utilised full-spot extraction of 10-µL V-DBS, the IS being added to the 

extraction solvent. EtG and EtS were demonstrated to be stable in DBS for at least 3 weeks 

when stored at room temperature. Blood and DBS concentrations detected in blood samples 

from traffic offense cases (N=76) were compared using the matched-paired t test, Wilcoxon 

test, Bland-Altman analysis and Mountain plot of the percentage differences [120]. This 

study concluded that EtG and EtS measurement in DBS is a simple and cost-effective method 

that allows to shorten the time gap between a possible offense and blood sampling [120]. 

In addition, the stability of EtG has been examined in dried blood stains. Evaluation of blood, 

spotted and dried onto different surfaces (glass, carpet, wall paper, car seat, calf leather and 

cotton swab), revealed that the EtG concentration remains relatively constant for 24 hours 

after the deposit [121]. Even though there may be differences in absolute concentration 

between varying samples, Kaufmann and Alt proposed that 3 ng EtG/mg dried blood 

samples at a crime scene could be used as a cut-off value to suggest “a forensic relevant 

degree of alcoholisation” [122].  

Further studies about stability in dried blood stains and DBS for longer storage periods are 

warranted. Before routine implementation of EtG quantification via DBS, evaluation of the 

equivalence of V- and C-DBS concentrations, as well as of the influence of hematocrit, punch 

localisation and spot volume on the analytical result is needed.  

1.3.2.1.3 PEth species in DBS 

PEths have been widely analysed in blood [90–94,99,101,102,104,123–130], and since 2011, 

publications have reported on the quantification of PEth 16:0/18:1, PEth 18:1/18:1 and PEth 

16:0/16:0 in V-DBS samples [100,101,123] and in C-DBS [105,123]. Both whole-spot 

[101,127] and partial-spot approaches [100,105,123,131] have been described. In all 

methods the IS was added to the extraction solvent. The extraction efficiency was reported 

at 55 and 78 % for V-DBS and C-DBS, respectively [123]. Stability was demonstrated for up to 

6 months for DBS stored in zip-closure plastic bags containing a desiccant packet at room 

temperature [123]. One-way ANOVA tests did not reveal a significant influence (p>0.05) of 

the hematocrit (range 0.39-0.57), punch localisation and spot volume on quantification of 

the evaluated PEths [123]. Comparison between concentrations measured in blood and in 

DBS has been performed using Wilcoxon signed rank test analyses [123], Bland-Altman 

analyses [100,101,123], linear regression [100] and Passing-Bablok regressions [123]. All 
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studies concluded that determination of PEths in DBS is a useful tool to monitor alcohol 

misuse. Especially in the context of driver’s license regranting programs, where in many 

instances the indirect marker CDT% is used, the use of C-DBS for PEths monitoring seems 

promising [132]. Samples can be conveniently collected from a patient and the result allows 

to demonstrate (in)compatibility with ethanol abstinence and/or to make a distinction 

between teetotallers, social drinkers and heavy drinkers. 

Further improvement will be possible with the commercialisation of other species (especially 

PEth 16:0/18:2) and with the use of deuterated IS, which have recently become 

commercially available [132,133]. In addition, independent, large-scale, prospective studies 

are warranted to confirm the promising results we obtained in an exploratory study that 

demonstrated the potential of PEth monitoring for improving driver’s license regranting 

programs [132].  

1.3.2.2 Dried urine spot  (DUS) 

Similar to DBS, a dried urine spot (DUS) can be generated by depositing an amount of urine 

onto filter paper, followed by drying. As for DBS, DUS can be interesting to improve the 

stability of analytes and to facilitate storage and transportation of the samples [105].  

1.3.2.2.1 EtG and EtS in DUS 

Though widely analysed in urine [64–66,68,70,71,74–80,83,84,115,118,119,135–154], the 

quantification of EtG and EtS in DUSs (generated by applying 30 µL of urine on filter paper 

stripes) has only been reported by one research group [155]. While EtG in urine may be 

subject to degradation [156,157] or post-collection formation [158], these phenomena have 

not been observed for EtS [157–159]. The analysis of EtG from DUS was demonstrated to 

avoid the bacterial degradation of EtG in contaminated urine. EtG and EtS were stable up to 

7 days in DUS stored at room temperature. Creatinine was also measured in the DUS to 

compensate for possible dilution of the sample. The IS was added to the extraction solvent. 

The recovery for EtG and EtS from DUS was higher than 32 and 38 %, respectively. The 

reproducibility of the extraction efficiency from DUS is difficult to estimate because no %RSD 

values were published. Lower limits of quantification (LLOQs) were reported at 0.175 µg/mL 

for EtG and 0.340 µg/mL for EtS, values that lie somewhat above the ones typically reported 

for EtG/EtS in urine at 0.1 µg/mL (with reports down to 0.02 µg/mL) [160]. Additional 
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research on the extraction efficiency from DUS could be useful to decrease the LLOQ (by 

increasing the recovery) and to assess the reproducibility. Further evaluation of the stability 

for a longer period of time could be useful as well. In addition, to overcome the need for 

accurate pipetting of a urine sample, future applications could make use of novel 

technologies that allow volumetric collection of urine. Technologies originally developed for 

DBS sampling (volumetric absorptive microsampling and microfluidics) could turn out useful 

for this [109].  

1.3.2.3  Sweat and skin surface lipids 

The human skin (Figure 1.12) is an organ made up of multiple layers of tissue, which guards 

the underlying muscles, bones, ligaments and internal organs. The skin is composed of three 

primary layers, i.e. the epidermis, the dermis and the hypodermis. Glands present in the skin 

produce sweat (sweat gland) and sebum (sebaceous glandes). 

 

 

Figure 1.12 Schematic structure of the skin [50]. 

 

Sweat (perspiration) is a biological fluid, mainly composed of water (99 %), secreted by the 

body through the skin to maintain a constant core body temperature [27]. The number and 

type of sweat glands are not constant and vary from one area of the body to another (i.e. 

hands count most sweat glands). Eccrine sweat glands are located in the dermal layer of 

most skin surfaces, while apocrine sweat glands are only present in specific areas, such as 

axilla, pubic and nipples zone. Approximately 50 % of sweat originates from the trunk, 25 % 

https://en.wikipedia.org/wiki/Tissue_(biology)
https://en.wikipedia.org/wiki/Muscle
https://en.wikipedia.org/wiki/Bone
https://en.wikipedia.org/wiki/Ligament
https://en.wikipedia.org/wiki/Organ_(anatomy)
https://en.wikipedia.org/wiki/Epidermis_(skin)
https://en.wikipedia.org/wiki/Dermis
https://en.wikipedia.org/wiki/Hypodermis
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from the legs and 25 % from the head and upper extremities. The sweat production rate, 

which depends upon environmental temperature, emotional state and activities, was 

estimated between 300 and 700 mL per day and can be up to 2-4 L/h in case of extensive 

exercise [161]. The pH of the sweat ranges between 4 and 6.8 and increases with the flow 

rate. More information is presented in a review published in 2013 by De Giovanni and Fucci 

[27].  

Skin surface lipids consist of a mixture of epidermal and sebaceous lipids. The ratio between 

these two components depends on the body region. In regions with a high density of 

sebaceous glands (i.e. forehead, scalp, thorax and the upper part of the trunk) the skin 

surface lipids originate mainly (96-97 %) from sebum [162]. Sebum, secreted by the 

sebaceous gland in humans, is primarily composed of triglycerides (~41 %), wax esters (~ 

6 %), squalene (~12 %), and free fatty acids (~16 %) [163]. A transition time of about 1 week 

has been reported between the sebum production and its appearance at the skin surface 

[164]. 

The excretion of drugs through the skin is not fully understood, but seems to be possible 

through passive diffusion from blood into sweat glands and via transdermal migration across 

the skin. The excretion into sweat is dependent on the physicochemical properties of the 

compound (i.e. mass, pKa, protein binding and lipophilicity). Generally, parent drugs are 

expected to be detected at higher concentrations than the more polar metabolites. Sweat 

samples are a mixture of sweat and skin surface lipids present on the skin (especially on the 

face and scalp). 

The sampling of sweat and skin surface lipids was first performed using patches, worn for a 

variable period of time (from some hours up to some days), with the accumulation of drugs 

into these absorbent pads reflecting the total consumption during the period the patch was 

worn. Sebum has also been collected by wiping a wetted cotton bud on the skin [164]. When 

the total amount of sweat/sebum is not known, results are expressed semi-quantitatively 

and represent the total amount of drugs accumulated per patch/wipe. Quantitative results 

can be obtained when the amount of sweat/sebum accumulated on patches/wipes is also 

measured [16]. This can be performed by using pre-weighed patches/wipes or by measuring 

the sodium content in the sweat [165] or the squalene (or total lipid) content in the sebum 

[164,166,167]. For the detection of volatile compounds, electrochemical methods that 

https://en.wikipedia.org/wiki/Triglyceride
https://en.wikipedia.org/wiki/Wax_ester
https://en.wikipedia.org/wiki/Squalene
https://en.wikipedia.org/wiki/Fatty_acid#Free_fatty_acids
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convert vapours into an electrical signal proportional to the concentration have been 

proposed [168,169]. Depending on the device, monitoring can be based on successive or 

continuous measurements. These electrochemical devices are strapped on the forearm, 

wrist or ankle (Figure 1.13). 

1.3.2.3.1 Ethanol in sweat  

In the eighties, studies (described in a review published in 2006 [28]) were performed to 

develop methods to monitor alcohol consumption via transdermal alcohol measurement 

(TAC). While some studies were based on the analysis of sweat accumulated in a sweat 

patch [170–173], other studies quantified ethanol in vapours formed above the skin 

(insensible perspiration) [174–178]. In the nineties, electrochemical devices such as the 

Secure Continuous Remote Alcohol Monitor (SCRAM) bracelet Device [31,179,180] and the 

WrisTAS device (Figure 1.13) [179,181,182] were developed, originally meant to monitor 

alcohol consumption but subsequently also tested as an alternative to breath analysers 

which are widely used to provide a quantitative BAC. More details about the specification of 

these devices can be found in publications by Leffingwell et al. and Marques and McKnight 

[168,179].  

 

Figure 1.13 Secure Continuous Remote Alcohol Monitor (SCRAM) bracelet Device and WrisTAS device [168]. 

 

Research to date has shown that transdermal alcohol sensors allow the continuous remote 

monitoring of (absence of) alcohol consumption, without an intrusive daily contact [168] 

such as required by BrAC or BAC measurements. Variable correlations -from poor to good- 

have been reported; between TAC and BrAC/BAC peak concentrations [31,183], between the 

area under the curve (AUROC) for TAC and BrAC/BAC [31,183], between self-reported 
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alcohol consumption and TAC AUROC [184] and between self-reported alcohol consumption 

and peak TAC [184]. A shift (delay estimated between 30 and 180 minutes) and a lower 

magnitude of the TAC curve (a difference which was demonstrated to be gender dependent 

[179,185]) when compared with BAC and/or BrAC curves have been observed 

[12,124,126,128,129]. Overall, these studies have pointed out a lack of reliability to record 

and retrieve data for the WrisTAS [179] and a water accumulation issue for the SCRAM 

[179]. While neither the WrisTAS nor the SCRAM suffered from false positive results, both 

were somehow limited by false negative results (sensitivity estimated at 43 % for the 

WrisTAS and between 57 and 87 % for the SCRAM) [179,187]. The good specificity was 

confirmed in a study published in 2009 [180], which showed that abnormally high 

consumption of a non-alcoholic energy drink (containing up to 0.23 % ethanol) did not 

induce positive results (< 0.02 % w/v). Studies based on later-generation devices (i.e. 

WrisTAS 7 [188] and SCRAM II [180,186,189,190]), as well as other biosensing devices [169], 

have not reported problems to record and retrieve data. When combined with sophisticated 

mathematical models, these new devices are able to semi-quantitatively predict BrAC or BAC 

from TAC [169,181,185,186,188]. These studies have provided very promising results but 

should be tested and validated using larger datasets.       

In 2014, the SCRAM II was able to detect 38 % (8/21) of the drinking episodes when one 

alcoholic drink was consumed and all drinking episodes (N=83) when two or more alcoholic 

drinks were consumed. To date, TAC seems better suited to distinguish between the 

consumption of 1-2 beers vs. more than two beers (cut-off value proposed at 0.024 g/dL 

[186]), rather than to really monitor an alcohol abstinence period [185]. More recently, the 

SCRAMx (third generation of SCRAM devices) became commercially available.  

1.3.2.3.2 EtG in sweat 

In 2008, Schummer et al. reported on the quantification of EtG in sweat [16]. The amount of 

sweat accumulated on patches was determined by measuring the sodium content in the 

extract. In this study, 14 volunteers wore a sweat patch during the time they had planned to 

consume alcohol. They wore the patch for 3 to 12 hours and reported alcohol consumption 

varying from 38 to 155 g of pure ethanol. Four teetotallers were also involved in the 

protocol. EtG could be measured (1.7-103 µg/L) in patches from all subjects that had 

consumed alcohol, in concentrations that were about 100 times lower than those in blood. 
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We are not aware of other reports that have pursued the determination of EtG or 

determined EtS in sweat. While such methods should be fully validated, the interpretation of 

a quantitative result (and/or the use of a cut-off value) will likely remain challenging, given 

the anticipated inter-individual variability. Hence, while technically possible, we consider it 

likely that EtG determination in sweat will have to give way to other alternatives mentioned 

in this overview.                

1.3.2.3.3 FAEEs in skin surface lipids 

Concentrations of FAEEs in skin surface lipids (sebum) of teetotallers, social drinkers and 

alcoholics were estimated using patches [164,166,167] or wipe tests [164]. The endogenous 

concentration of FAEEs was reported up to 13.85 pg/mg sebum [167] or 1.12 ng/µg squalene 

[164]. After the consumption of a single high dose ethanol (92 and 112 g) by two volunteer 

abstainers, the highest increase of the concentration was observed between 8-12 days after 

the drinking event. This time delay corresponds to the transition period required by the 

sebum to reach the skin surface. Total FAEEs concentrations between 11.10 and 86.55 

pg/mg sebum (N=11) were measured in patches worn for 45 min by alcohol drinkers without 

dependence [167]. Using a wipe test, concentrations between 0.08 and 1.56 ng/µg squalene 

were reported for alcohol drinkers without dependence (N=16) [164] and with a self-

reported alcohol consumption between 9 and 261 g ethanol (~1 and 26 drinks per week) the 

week prior to the sampling. In alcoholics, FAEEs concentrations up to 23.33 ng/µg squalene 

using the wipe-test [164] and up to 1243.40 pg/mg sebum using patches have been reported 

[167]. Differences in results can be attributed to a variety of factors, amongst which the 

timing of the sampling, the use of different sampling approaches (wipe-test vs. patches) and 

the means for normalising the data (squalene vs. sebum). Further studies are needed to 

ensure the accuracy of the quantification and to provide information regarding 

interpretative issues. In addition, the same limitations hold true as those mentioned for EtG 

in sweat. 
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1.3.2.4 Oral fluid 

Oral fluid consists of saliva (the aqueous secretion produced by the three pairs of major 

salivary glands (Figure 1.14)), other secretes, as well as other (solid) constituents. It is 

composed of mainly water (99 %), with 0.3 % proteins (mostly enzymes) and 0.3 % 

electrolytes (i.e. sodium, potassium, chloride, bicarbonate), besides bacteria, epithelial cells 

and food debris. The composition and the volume of saliva produced are variable within 

individuals and are influenced by the moment of the day and the type of stimulus. The 

production of saliva is estimated between 0-6 mL/min (500-1500 mL per day). More 

information about the physiology of saliva/oral fluid and the incorporation of drugs into it 

are available in reviews published in 1998 by Kidwell et al. [161] and in 2005 by Aps and 

Martens [191]. The pH of unstimulated saliva ranges from 2.6 to 7 and -in case of 

stimulation- increases up to 8 [161]. The collection of oral fluid can be performed by spitting, 

expectoration, or absorption into a swab. 

 

 

Figure 1.14 Representation of the three pairs of salivary glands [55]. 
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1.3.2.4.1 Ethanol in oral fluid 

The detection of ethanol in oral fluid has been widely performed using enzymatic screening 

[192–198,13], while the quantification using chromatographic methods [199–201] is not 

commonly used. A good correlation (r=0.98) between the concentration of ethanol in blood 

and oral fluid has been observed [1]. Concentration-time profiles of ethanol in oral fluid, 

blood and breath are similar (Figure 1.4, upper) [199,201], with a mean oral fluid-blood ratio 

estimated at 1.09:1 (range 0.96:1-1.23:1) [71]. After the consumption of 0.68 g/kg body 

weight of ethanol, mean (N=21) peak concentrations (1.9 g/L) were reached between 10 to 

100 minutes from the end of drinking. The mean disappearance rate of ethanol in oral fluid 

was estimated at 0.13 g/L/h [33]. Ethanol concentrations up to 4.8 g/L were measured in 

oral fluid from alcohol abusers [13]. Oral fluid concentrations can be influenced by the 

presence of residual unabsorbed alcohol within the oral cavity due to recent ingestion or 

regurgitation. To avoid a bias due to these possible ethanol residuals, a delay of at least 10 

minutes has been proposed before the sampling [192]. Several on-the-spot enzymatic 

devices (alcohol test stick) for the analysis of ethanol in oral fluid (i.e. QED kits or 

AlcoScreen) have been used in emergency rooms and ambulances [192–198] to obtain rapid 

results, even from unconscious persons. Given the ease of and expertise with breath 

sampling and the fact that blood will remain the gold standard to verify whether or not 

someone is under the influence of alcohol, we feel that the main (and possibly only) use of 

ethanol determination in oral fluid indeed lies in screening, in cases where a person is 

unconscious or for another reason cannot perform a breath test. 

1.3.2.4.2 EtG in oral fluid 

The quantification of EtG in oral fluid has been reported in a few publications [71,78,202] 

and is based on a method published in 2009 by Hegstad et al. [203]. An oral fluid collector 

(Statsure Saliva Sampler), consisting of a collection pad, a stabilising solution and a transport 

tube, was used. The amount of collected oral fluid was determined by weighing the 

collector. The peak concentration of EtG in oral fluid (between 0.008 and 0.014 mg/L) after 

consumption of 0.5 g ethanol/kg body weight was observed 3.5 h after the start of drinking 

[71]. After consumption of 1.0 g ethanol/kg body weight (Figure 1.15), peak concentrations 

between 0.013 and 0.059 mg/L were measured after 3.5 to 5.5 hours. EtG was detected in 

oral fluid up to 11.5 hours after the end of drinking. EtG concentrations in oral fluid and 
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blood were similar. No EtG was detected in oral fluid after the use of mouthwash containing 

ethanol (22 %) or after the consumption of one bottle (7.5 dL) of non-alcoholic wine (which 

contains 3 mg/L EtG) [78]. Results from a small population study (N=3) have shown that the 

detection of EtG in oral fluid indicates an alcohol consumption of 6 or more drinks the night 

before the sampling [203].  

 

Figure 1.15 Oral fluid EtG concentration-time profile after the consumption of 1.0 g ethanol/kg body [71]. 

 

Even though some publications have used the quantification of EtG in oral fluid 

[71,78,202,203], only one has reported on the validation [203]. To confirm the utility of EtG 

in oral fluid, more data are needed, including more data on its stability in oral fluid and 

possible cut-off values for interpretation. In addition, the data should be corroborated by 

others. Potential may lie in the rapid and non-invasive sample collection for determination 

of EtG in oral fluid from drivers that were apprehended after a hit and run case and had a 

negative alcohol test at the time of testing. In these cases, the wider window of detection 

offered by EtG monitoring in oral fluid may still allow to detect a recent drinking episode. It 

should be considered that an even wider detection window is offered by EtG monitoring in 

urine and also ethanol determination in urine may allow to pick up recent drinking in cases 

in which ethanol is no longer measurable in breath or blood. To our knowledge, the 

detection or quantification of EtS in oral fluid has not yet been reported.  
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1.3.2.5 Exhaled breath 

Exhaled breath (mainly composed of water vapour and inhaled air that has not reached 

alveoli) contains volatile as well as non-volatile compounds. As already mentioned, the best 

known application of exhaled breath testing is monitoring of the volatile ethanol (Section 

1.3.1.1.3). However, recently, also the determination of non-volatile compounds in exhaled 

breath has gained interest. Different sampling approaches have been proposed and were 

presented in a recent review written by Beck et al. [204]. The principle comes down to the 

fact that virtually any compound, via its deposition in small particles that are exhaled, is 

present in exhaled breath. Via a simple and disposable sampling device, these exhaled 

breath particles can be trapped and processed for analysis on the presence of drugs or 

markers of e.g. alcohol use.   

1.3.2.5.1 PEth species in exhaled breath 

The quantification of PEth 16:0/18:1 and PEth 16:0/16:0 in exhaled breath has recently been 

presented as a non-invasive method to detect moderate to heavy drinking [134]. Breath 

samples were collected using a commercial disposable device (SensAbues), which traps 

aerosol microparticles that mainly originate from the airway lining fluid (surfactant). PEth 

16:0/18:1 could be measured (range 20-77 pg/filter, median 45.5) in all self-reported heavy 

drinking volunteers (N=12), while PEth 16:0/16:0 was not detectable (LLOQ = 5 pg/filter). 

The concentration of PEth in breath and BAC was not significantly correlated (ρ=0.660, 

Spearman). The breath samples of all (N=12) control volunteers (self-reported alcohol 

abstinence or regular low drinking but no alcohol intake in the previous 2 days) were 

negative. Further research is needed to establish if and how breath PEth results correlate 

with blood PEth data. Interesting to note is that for drugs of abuse, there is not a consistent 

quantitative correlation between breath and blood data; in the sense that data should 

primarily be considered as qualitative (a drug is present or not). However, because of the 

nature of PEth -being a modification of an endogenous phospholipid- exhaled breath actually 

contains an intrinsic control, being the non-modified phospholipids, which may serve to 

normalise the breath PEth data. If this approach turns out successful, studies could be set up 

to establish cut-off values, as has been done for blood. Obviously, the non-invasive nature of 

breath testing offers a promising and major advantage, and may possibly open a new field of 

research to provide an alternative approach of monitoring alcohol consumption. 
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1.3.2.6 Hair 

Hair as an alternative matrix is especially useful to provide long term information about 

consumption/ingestion of drugs, after their elimination from the body [26]. Briefly, the 

retrospective investigation of past consumption is possible because compounds are 

incorporated into hair. This is possible by passive diffusion from blood capillaries into 

growing cells, during the hair shaft formation via surrounding tissues from deep skin and by 

diffusion from sweat and sebum along the completed hair shaft (Figure 1.16).  

The melanin content of hair and the chemical properties of the compound (lipophilicity and 

basicity) are the main factors influencing the incorporation process. External contamination 

of hair -via for example dust, smoke, dirty hands, sweat or sebum- is possible and must be 

taken into account, especially when working with compounds which are not metabolites. In 

the same way, drugs and metabolites can be removed from hair, by decomposition (e.g. 

bleaching, UV radiation) or by extraction (e.g. shampooing and hair cosmetic treatments). 

 

 

Figure 1.16 Illustration of cortisol incorporation into hair [205]. 

 

Hair grows in a cycle composed of 3 stages (Figure 1.17), starting with an active growing 

(anagen) period (4-6 months), followed by a transition period of a few weeks (catagen), 

which ends with a resting phase (telogen). The growth rate range of scalp hair is estimated 

between 0.6 and 1.4 cm per month. The Society of Hair Testing (SoHT) guidelines for drug 
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testing in hair propose an average scalp hair growth of 1 cm/month [206]. The preferred 

sampling site is the vertex posterior part of the scalp, because it contains less telogen hair 

and a relatively uniform growth rate. Typically, a hair strand with a diameter of 3-4 mm is 

fixed with a string attached as close as possible to the scalp and hairs are cut at the skin 

surface. The string marks the proximal end of the sample. If no head hair is available, the 

SoHT states that other body hair can be collected, but the different physiology of non-head 

hair has to be considered during the interpretation [207].  

 

 

Figure 1.17 Illustration of the growing cycle of hair [59].  

 

Pre-analytical steps prior to analysis include washing the hair strand, segmenting the hair 

(optional), cutting the hair into small pieces or grinding it. A washing step is necessary to 

remove residues of hair products, sweat, sebum and dust and to remove target drugs that 

may originate from external contamination (e.g. in individuals involved with illegal drugs, 

smoking), although this may not be completely feasible and might even lead to 

incorporation of some compounds. Segmental analysis can provide information concerning 

the evolution of the consumption with respect to time course. When taking into account a 

mean scalp hair growth of 1 cm per month, analysis of 1-cm segments allows the evaluation 

of the consumption per month during the period before sampling. To avoid that hair shifts 

within the hair strand during the segmentation, a tuft of hair could be aligned into folded 

graph paper and cut to the appropriate length with a razor blade. Nevertheless, the 2014 

SoHT consensus guideline for the use of alcohol markers in hair recommends not to segment 



Back to the table of contents 

37 

In
tr

o
d

u
ct

io
n

 

 

 

hair but to analyse 0-3 up to 0-6 cm proximal scalp hair [207]. Compounds trapped into the 

hair shaft must be extracted by solubilisation or digestion. In case of solubilisation, hair is 

typically first cut into 1-3 mm pieces or pulverised. The 2014 SoHT consensus for the use of 

alcohol markers in hair advises to grind the hair prior to analysis or, if not, to demonstrate a 

comparable recovery [207]. The analysis of ethanol in hair and nail, which would offer a 

longer detection window, is not usable for evaluation of alcohol consumption due to the 

instability of ethanol in these solid matrices. Therefore, the focus has been on the detection 

of direct ethanol markers [207]. 

1.3.2.6.1 EtG in hair 

The quantification of EtG in hair has been reported in numerous publications 

[7,9,11,144,160,208–220] and has been reviewed in 2008 by Pragst and Yegles [221] and in 

2014 by Crunelle et al. [22]. The incorporation mechanism of EtG in hair has not been totally 

explained yet, but due to its acidic and extremely hydrophilic properties this seems to occur 

mainly by diffusion from blood and deposition from sweat (Figure 1.16) [26,63,160]. 

Quantification of EtG in hair is widely used to monitor chronic alcohol consumption and to 

establish abstinence (or not) in cases where chronic excessive drinking is suspected. 

The concentration of EtG in the first 3-cm proximal hair segment from 3 month-abstainers 

ranged up to 4.5 pg/mg. After a regular ethanol consumption of 100 g ethanol per week for 

3 months, the concentration of EtG was between 2.0 and 9.8 pg/mg hair (median = 5.6 

pg/mg, N=10). A regular ethanol consumption of 150 g ethanol per week for 3 months led to 

an EtG concentration between 7.7 and 38.9 pg/mg (median 11.3 pg/mg, N=10) [220]. EtG 

was detected in hair of patients in alcohol withdrawal studies in concentrations up to 528 

pg/mg hair [46]. A significant correlation between the EtG concentration in hair (measured 

up to 261 pg/mg hair) and the alcohol consumption (estimated using self-report 

questionnaires and medical records) has been reported by several authors [56,222,223], 

while others have reported no correlation at all [224–226]. These differences may be 

explained first by the difficulty to obtain sufficiently reliable information about the alcohol 

consumption, especially when a long period of time is involved, second by cosmetic 

treatments that have been shown to have an impact on the concentration of EtG in hair and 

third by a variation in the correlation, depending on the concentration range. Further studies 

are still required to resolves these issues.    
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The SoHT has published guidelines [207] concerning the use of EtG in hair for the detection 

of chronic/excessive alcohol consumption. A cut-off value at 30 pg EtG/mg hair, measured in 

the 0-3 up to 0-6 cm proximal segment, has been proposed to strongly suggest 

excessive/chronic alcohol consumption. An EtG concentration ≥ 7 pg/mg (but below 30 

pg/mg) in the 0-3 up to 0-6 cm proximal scalp hair segment strongly suggests repeated 

alcohol consumption and an EtG concentration < 7 pg/mg does not contradict self-reported 

abstinence of a person during the corresponding time period before sampling.  

Hair melanin content does not influence the concentration of EtG [227]. Bleaching, perming, 

straightening and dyeing of hair are known to decrease the concentration of EtG in hair, 

whereas other cosmetic hair treatments (use of cosmetics containing ethanol, hair spray, 

gel, wax, oil or grease) were reported to have no effect [207,228–230], except in one case 

report where EtG was detected in a hair sample due to the use of a hair care product 

containing EtG (alcoholic plant extract) [231]. Extraction experiments show that the time 

required to extract EtG from hair is decreased when the matrix is pulverised [209] and that 

the concentration determined in pulverised hair samples was higher than in cut hair samples 

[208,210,218,232]. The 2014 SoHT guideline states that “powdering hair prior to the 

extraction of EtG is preferred. Laboratories utilising other sample preparation procedures 

should demonstrate comparable recovery of EtG” [207]. An interesting publication has 

demonstrated that the washing and the nature of extraction solvents influences the 

quantification of EtG in hair [233]. Additional guidelines to streamline washing and 

extraction procedures may be useful to decrease the variations observed between reported 

EtG concentrations from different laboratories [218]. Moreover, labs aiming at routine 

implementation of EtG monitoring in hair should use external QCs and/or participate to 

proficiency testing schemes, to ensure an accurate quantification and/or comparability of 

results. 

1.3.2.6.2 FAEEs in hair 

Numerous studies about the quantification of FAEEs in hair have been published 

[7,9,221,233,226,234–245]. Because of their lipophilic character, most authors explain the 

incorporation of FAEEs into the hair mainly through sebum [19]. FAEEs concentrations 

increase from the proximal region to the distal [221] and -according to recent publications- 

decrease after 5-10 cm in length [240]. This phenomenon has been explained by the contact 
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of hair with the sebum from the sebaceous gland or by a more intense hair wash near the 

scalp. An interesting review has been published in 2008 by Pragst and Yegles [221]. 

Hair melanin content does not influence the concentration of FAEEs [227]. Bleaching and 

perming hair may influence the concentration of FAEEs in hair [207], while dyeing has been 

shown to decrease the FAEEs concentration in hair [237].  

The concentration of FAEEs in teetotallers was between 0.06 and 0.37 ng/mg [240]. The 

reason for this baseline presence remains unclear and different possible causes have been 

put forward, such as endogenous formation, incorporation via capillary products containing 

ethanol, external contamination, diet or medication [19]. The SoHT recommends not to use 

the analysis of FAEEs alone to assess abstinence and suggests a cut-off value to detect 

alcohol consumption at 0.2 ng/mg when measured in the 0-3 cm proximal segment (0.4 

ng/mg when measured in the 0-6 cm proximal segment) [207]. False positive results, due to 

an external contamination via cosmetic products containing ethanol and/or FAEEs, which 

have been detected in all of 49 frequently used hair products analysed, have been reported 

[237,242]. 

After “moderate” alcohol consumption, the total FAEEs (E14:0, E16:0, E18:0, E18:1) 

concentrations measured in the 0-6 cm proximal segment were between 0.20 and 0.85 

ng/mg (mean = 0.41 ng/mg, N=13) [240]. FAEEs (E14:0, E16:0, E18:0, E18:1) concentrations 

up to 11.6 ng/mg hair were measured in hair of patients in alcohol withdrawal studies [240]. 

The SoHT proposed a cut-off value to strongly suggest chronic and excessive alcohol 

consumption at 0.5 ng/mg FAEEs when measured in the 0-3 cm proximal segment (1.0 

ng/mg when measured in the 0-6 cm proximal segment) [207].   

1.3.2.7 Nail 

Nail is a solid keratinised layer covering the tips of the fingers and toes in humans, which -

like hair- accumulates drugs and allows a retrospective investigation. A review about nail 

analysis for the detection of drugs of abuse and pharmaceuticals has been published by 

Cappelle et al. in 2014 [23]. The nail consists of the nail plate (hard part of the nail), the nail 

bed (skin beneath the nail plate) and the nail matrix (part of the nail bed which contains 

nerves, lymph and blood vessels). The incorporation of compounds into nails (Figure 1.18) 

occurs mainly via the nail bed (along the nail plate) and via the nail matrix (at the root of the 

nail), in two directions (vertically and horizontally) [23]. The growth rate of nails is constant 

https://en.wikipedia.org/wiki/Nerve
https://en.wikipedia.org/wiki/Lymph
https://en.wikipedia.org/wiki/Blood_vessel
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and was estimated at about 3 mm/month for fingernails and 1.1 mm/month for toenails. 

Three to five months (8-16 for toenails) for fingernails are required to grow from the 

germinal matrix to the free edge. Sampling is mainly performed by clipping, but can also be 

performed via scraping. As for hair analysis, nail samples have to be washed, cut or grinded 

and drugs have to be extracted (via solubilisation or digestion).  

 

 

Figure 1.18 Schematic structure of the nail [63].The incorporation directions are indicated in red. 

 

1.3.2.7.1 EtG in nail 

Since 2012, quantitative methods for EtG in nails have been reported [14,246–250], as 

reviewed by Cappelle et al. [23]. The EtG concentrations in nails from 5 alcohol abstainers 

were all below 10 pg/mg (LLOQ = 2 pg/mg). After a self-reported mean alcohol consumption 

between 10 and 60 g of ethanol per day, the concentrations measured in nail were between 

12.3 and 84.3 pg/mg [247]. The EtG concentration in nails from alcohol abusers ranges 

between 40 and 91 pg/mg [14]. In 529 students, 203 nail samples had quantifiable ( 8 

pg/mg) EtG concentrations [246], up to 397 pg/mg (mean 29 pg/mg). Further studies are 

required to better understand the concentration of EtG in nails. In addition, the stability of 

EtG in nails, the equivalence between EtG levels in finger and toe nails, as well as the 

influence of external parameters (e.g. influence of the use of nail polish) should be studied. 

Undoubtedly, when a statement is to be made on the timing of ethanol consumption, this 

will be even more challenging for nails than for hair. 
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1.4 Driving under the influence of alcohol and regranting of a driver's licence 

The Belgian legislation for driving under the influence (DUI) of alcohol (Art. 35-37/1) fixed 

the limit concentration and the sentences [251]. The ethanol concentration in blood (BAC) is 

limited to 0.5 gram per litre of blood (BrAC ≥ 0.22 mg/L) and drivers above this limit are 

condemned to a fine, depending on the level of intoxication (Table 1.3). In case of alcohol-

impaired driving (Art. 35), the law provides a fine between 200 and 2000 Euro and the 

confiscation of the driver’s licence for 1 month up to lifelong. Imprisonment for 1 month to 2 

years, a fine between 400 and 5000 Euro and/or the confiscation of the driver’s licence for 3 

months up to lifelong can be pronounced in case of recidivism (Art. 36). 

 

 Art. 34 § 1 Art. 34 § 2 Art. 35 Art. 36 

Breath concentration (mg/L) 0.22-0.35 ≥ 0.35 * ** 

Blood concentration (g/L) 0.50-0.80 ≥ 0.80   

Fine (Euro) 25-500 200-2000 200-2000 400-5000 

Deprivation to drive (time)   1 m -5 y 

(lifelong) 

3 m - 5 y 

(lifelong) 

Imprisonment (time)    1 m - 2 y 

Table 1.3 Definitions and sentences for DUI offences (*state of drunkenness (observable signs of impairment); 
**recidivism to Art. 34 § 2 or Art. 35 (within 3 years) after a conviction for Art. 34 § 2 or Art. 35. m (month), y 
(years). 

 

The annex 14 of the driver’s licence regulation [252], which defines the 

medical/psychological norms to assess the fitness to drive, states that “all the resources 

offered by medicine can be used” and adds that the medical doctor can make this decision 

dependent on a blood analysis for DUI of alcohol offences and on a hair analysis in case of  

DUI of drugs offences. In Belgium, if the medical assessment by the physician deciding about 

the fitness to drive includes a blood analysis, the sampling is not performed directly by 

himself. The volunteer is asked to visit his family doctor, who then performs the 

venepuncture and sends the blood sample to an authorised laboratory for analysis. Hence, 

the current process implies an invasive sampling and there may be a long time period 

between the blood analysis request and the final decision. In addition, the chain of custody 

is not ensured during the whole process. 
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The medical norm of the annex 6 of the driver’s licence regulation [253] and the Directive 

2006/126/EC of the European Parliament and of the Council of December 20, 2006 on 

driver’s licences [254] declare that alcohol dependent persons or persons who cannot stay 

abstinent while driving are not fit to drive. The Belgian driver’s licence regranting legislation 

requires in case of alcohol dependence a 6-month period of proven abstinence [253]. 

Administrative documents (i.e. attestation of alcohol withdrawal, letter from a psychologist) 

are currently used to monitor the abstinence period.  

In Belgium, as in many European countries, analyses of indirect biomarkers such as CDT%, 

GGT, AST/ALT and MCV, are the current analytical methods used by physicians to monitor 

the alcohol consumption in case of a driver’s licence regranting process [50,209,255–258]. 

These markers reflect the indirect effects of ethanol on the body, via its interference with 

glycosylation (increased CDT%) and with liver function (increased GGT, ALT, AST) and its 

effect on the size of red blood cells (increased MCV). Because of a lack of sensitivity and 

specificity to detect alcohol consumption (illustrated in Figure 1.19), these analyses are 

unable to detect all cases of alcohol dependence and are not adapted to evaluate strict 

alcohol abstinence periods either.  

 

 

Figure 1.19 Illustration of sensitivity and specificity of an analytical method used to detect excessive and 
chronic alcohol consumers, using a cut-off value defined between patients in alcohol withdrawal and control 
volunteers. 
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In several countries (e.g. Italy, Germany, Switzerland and Sweden) the quantitative 

determination of ethanol metabolites, such as ethylglucuronide (EtG) and ethylsulfate (EtS) 

in urine and/or hair is used to monitor an alcohol abstinence period. According to the Italian 

driver’s licence regranting program, abstinence periods are monitored via urinary EtG and 

EtS, determined in three to five unannounced collections, over a period between 2 and 4 

weeks [83]. The Swedish [209] and Swiss [257] driver’s licence regranting programs have 

introduced the quantification of EtG in hair as a complementary tool to the analysis of 

indirect biomarkers. The German driver’s licence regranting guidelines to monitor 

abstinence periods require the quantification of EtG in six random urine or four hair samples 

[75,160,259]. Recently, Schröck et al. recommended to include the quantification of PEth 

16:0/18:1 in whole blood as a routine analysis for the detection of prolonged excessive 

alcohol consumption (currently based on a BAC above 1.6 ‰) in “driving under the 

influence” cases [260]. In the United States of America, where alcohol ignition interlock 

devices are used to prevent recidivism, the ability of direct biomarkers (blood total PEths, 

hair EtG and FAEEs and urine EtG and EtS) and indirect biomarkers (CDT%, ALT, AST, GGT) to 

predict recidivism has been tested [261]. From that study it appears that, except for FAEEs in 

hair, all alcohol biomarkers were significantly related to the interlock BAC test profiles and 

that PEths in blood was a remarkably strong, general alcohol risk indicator.  

The European Integrated Project DRUID (Driving under the Influence of Drugs, Alcohol and 

Medicines) has published in 2008 a report on state of the art regarding the rehabilitation in 

the European Union [262].  

  

http://www.druid-project.eu/Druid/EN/deliverales-list/downloads/Deliverable_5_1_1.html?nn=613800


Back to the table of contents 

44 

In
tr

o
d

u
ct

io
n

 

 

 

1.5 References 

[1] J.C. Garriott, Garriot’s Medicolegal Aspects of Alcohol, Fifth Edition, Lawyers & Judges 
Publishing Company, Inc., Tucson, Arizona, 2009. 

[2] World Health Organization, Global status report on alcohol and health. (2014). 
Available from: 
http://www.who.int/substance_abuse/publications/global_alcohol_report/en/ 
(accessed December 14, 2015). 

[3] The Organisation for Economic Co-operation and Development (OECD) Health 
Statistics, Definitions, Sources and Methods. (2015). Available from: 
http://www.oecd.org/els/health-systems/health-data.htm (accessed December 15, 
2015). 

[4] World Health Organization, Lexicon of alcohol and drug terms. (1994). Available from: 
http://www.who.int/iris/handle/10665/39461#sthash.U5PGv29S.dpuf (accessed 
December 14, 2015). 

[5] World Health Organization, International guide for monitoring alcohol consumption 
and related harm. (2000). Available from: 
http://apps.who.int/iris/handle/10665/66529 (accessed December 14, 2015). 

[6] World Health Organization, The Alcohol Use Disorders Identification Test (AUDIT): 
Guidelines for use in primary care (Second Edition). (2001). Available from: 
http://apps.who.int/iris/handle/10665/67205 (accessed April 28, 2016). 

[7] S. Suesse, F. Pragst, T. Mieczkowski, C.M. Selavka, A. Elian, H. Sachs, et al., Practical 
experiences in application of hair fatty acid ethyl esters and ethyl glucuronide for 
detection of chronic alcohol abuse in forensic cases. Forensic Science International, 
218 (2012) 82–91. doi:10.1016/j.forsciint.2011.10.006. 

[8] R. Lees, R. Kingston, T.M. Williams, G. Henderson, A. Lingford-Hughes, M. Hickman, 
Comparison of ethyl glucuronide in hair with self-reported alcohol consumption. 
Alcohol and Alcoholism, 47 (2012) 267–272. doi:10.1093/alcalc/ags010. 

[9] F. Pragst, M. Rothe, B. Moench, M. Hastedt, S. Herre, D. Simmert, Combined use of 
fatty acid ethyl esters and ethyl glucuronide in hair for diagnosis of alcohol abuse: 
Interpretation and advantages. Forensic Science International, 196 (2010) 101–110. 
doi:10.1016/j.forsciint.2009.12.028. 

[10] H. Kharbouche, M. Faouzi, N. Sanchez, J.B. Daeppen, M. Augsburger, P. Mangin, et al., 
Diagnostic performance of ethyl glucuronide in hair for the investigation of alcohol 
drinking behavior: a comparison with traditional biomarkers. International Journal of 
Legal Medicine, 126 (2012) 243–50. doi:10.1007/s00414-011-0619-9. 

[11] F. Lamoureux, J. Gaulier, F.-L. Sauvage, M. Mercerolle, C. Vallejo, G. Lachâtre, 
Determination of ethyl-glucuronide in hair for heavy drinking detection using liquid 
chromatography-tandem mass spectrometry following solid-phase extraction. 
Analytical and Bioanalytical Chemistry, 394 (2009) 1895–1901. doi:10.1007/s00216-
009-2863-0. 

[12] S.B. Karch, ed., Drug abuse handbook, Second edition, CRC Press, New York, 1998. 
[13] P. Bendtsen, J. Hultberg, M. Carlsson, A.W. Jones, Monitoring Ethanol Exposure in a 

Clinical Setting by Analysis of Blood, Breath, Saliva, and Urine. Alcoholism: Clinical and 
Experimental Research, 23 (1999) 1446–1451. doi:10.1111/j.1530-
0277.1999.tb04665.x. 



Back to the table of contents 

45 

In
tr

o
d

u
ct

io
n

 

 

 

[14] Keten A, Zeren C, Arslan MM, Daglioglu N, Karanfil R, Sen BB, Determination of ethyl 
glucuronide in fingernails by LC/MS-MS. Romanian Society of Legal Medicine, 21 
(2013) 67–72. doi:10.4323/rjlm.2013.67. 

[15] L. Morini, E. Marchei, F. Vagnarelli, O. Garcia Algar, A. Groppi, L. Mastrobattista, et al., 
Ethyl glucuronide and ethyl sulfate in meconium and hair-potential biomarkers of 
intrauterine exposure to ethanol. Forensic Science International, 196 (2010) 74–77. 
doi:10.1016/j.forsciint.2009.12.035. 

[16] C. Schummer, B.M.R. Appenzeller, R. Wennig, Quantitative Determination of Ethyl 
Glucuronide in Sweat. Therapeutic Drug Monitoring, 30 (2008) 536–539. 
doi:10.1097/FTD.0b013e318180c83d. 

[17] A. Thierauf, J. Kempf, M.G. Perdekamp, V. Auwärter, H. Gnann, A. Wohlfarth, et al., 
Ethyl sulphate and ethyl glucuronide in vitreous humor as postmortem evidence 
marker for ethanol consumption prior to death. Forensic Science International, 210 
(2011) 63–68. doi:10.1016/j.forsciint.2011.01.036. 

[18] L. Politi, F. Leone, L. Morini, A. Polettini, Bioanalytical procedures for determination of 
conjugates or fatty acid esters of ethanol as markers of ethanol consumption: A 
review. Analytical Biochemistry, 368 (2007) 1–16. doi:10.1016/j.ab.2007.05.003. 

[19] P. Cabarcos, I. Álvarez, M. Tabernero, A. Bermejo, Determination of direct alcohol 
markers: a review. Analytical and Bioanalytical Chemistry, 407 (2015) 4907–4925. 
doi:10.1007/s00216-015-8701-7. 

[20] L. Burd, R. Hofer, Biomarkers for detection of prenatal alcohol exposure: a critical 
review of fatty acid ethyl esters in meconium. Birth Defects Research. Part A, Clinical 
and Molecular Teratology, 82 (2008) 487–493. doi:10.1002/bdra.20464. 

[21] X. Joya, B. Friguls, S. Ortigosa, E. Papaseit, S.E. Martínez, A. Manich, et al., 
Determination of maternal-fetal biomarkers of prenatal exposure to ethanol: A 
review. Journal of Pharmaceutical and Biomedical Analysis, 69 (2012) 209–222. 
doi:10.1016/j.jpba.2012.01.006. 

[22] C.L. Crunelle, M. Yegles, A.L.N. van Nuijs, A. Covaci, M. De Doncker, K.E. Maudens, et 
al., Hair ethyl glucuronide levels as a marker for alcohol use and abuse: a review of the 
current state of the art. Drug and Alcohol Dependence, 134 (2014) 1–11. 
doi:10.1016/j.drugalcdep.2013.10.008. 

[23] D. Cappelle, M. Yegles, H. Neels, A.N. van Nuijs, M. De Doncker, K. Maudens, et al., 
Nail analysis for the detection of drugs of abuse and pharmaceuticals: a review. 
Forensic Toxicology, 33 (2015) 12–36. doi:10.1007/s11419-014-0258-1. 

[24] G. Viel, R. Boscolo-Berto, G. Cecchetto, P. Fais, A. Nalesso, S. Ferrara, 
Phosphatidylethanol in Blood as a Marker of Chronic Alcohol Use: A Systematic 
Review and Meta-Analysis. International Journal of Molecular Sciences, 13 (2012) 
14788–14812. doi:10.3390/ijms131114788. 

[25] H.R. Tavakoli, M. Hull, L.T. Michael Okasinski, Review of Current Clinical Biomarkers 
for the Detection of Alcohol Dependence. Innovations in Clinical Neuroscience, 8 
(2011) 26–33. PMID: 21487543. 

[26] F. Pragst, M.A. Balikova, State of the art in hair analysis for detection of drug and 
alcohol abuse. Clinica Chimica Acta, 370 (2006) 17–49. doi:10.1016/j.cca.2006.02.019. 

[27] N. De Giovanni, N. Fucci, The Current Status of Sweat Testing For Drugs of Abuse: A 
Review. Current Medicinal Chemistry, 20 (2013) 545–561. 
doi:10.2174/092986713804910139. 



Back to the table of contents 

46 

In
tr

o
d

u
ct

io
n

 

 

 

[28] J.S. Hawthorne, M.H. Wojcik, Transdermal Alcohol Measurement: A Review of the 
Literature. Canadian Society of Forensic Science Journal, 39 (2006) 65–71. 
doi:10.1080/00085030.2006.10757138. 

[29] N. Sadones, S. Capiau, P.M. De Kesel, W.E. Lambert, C.P. Stove, Spot them in the spot: 
analysis of abused substances using dried blood spots. Bioanalysis, 6 (2014) 2211–
2227. doi:10.4155/bio.14.156. 

[30] D. Oppolzer, M. Barroso, E. Gallardo, Bioanalytical procedures and developments in 
the determination of alcohol biomarkers in biological specimens. Bioanalysis, 8 (2016) 
229–251. doi:10.4155/bio.15.240. 

[31] J.T. Sakai, S.K. Mikulich-Gilbertson, R.J. Long, T.J. Crowley, Validity of Transdermal 
Alcohol Monitoring: Fixed and Self-Regulated Dosing. Alcoholism: Clinical and 
Experimental Research, 30 (2006) 26–33. doi:10.1111/j.1530-0277.2006.00004.x. 

[32] C. Halter, S. Dresen, V. Auwaerter, F. Wurst, W. Weinmann, Kinetics in serum and 
urinary excretion of ethyl sulfate and ethyl glucuronide after medium dose ethanol 
intake. International Journal of Legal Medicine, 122 (2008) 123–128. 
doi:10.1007/s00414-007-0180-8. 

[33] A.W. Jones, Pharmacokinetics of ethanol in saliva: comparison with blood and breath 
alcohol profiles, subjective feelings of intoxication, and diminished performance. 
Clinical Chemistry, 39 (1993) 1837–1844. PMID: 8375057. 

[34] O. Niemelä, Biomarkers in alcoholism. Clinica Chimica Acta, 377 (2007) 39–49. 
doi:10.1016/j.cca.2006.08.035. 

[35] G. Høiseth, L. Morini, A. Polettini, A. Christophersen, J. Mørland, Blood kinetics of 
ethyl glucuronide and ethyl sulphate in heavy drinkers during alcohol detoxification. 
Forensic Science International, 188 (2009) 52–56. doi:10.1016/j.forsciint.2009.03.017. 

[36] T. Arndt, Carbohydrate-deficient Transferrin as a Marker of Chronic Alcohol Abuse: A 
Critical Review of Preanalysis, Analysis, and Interpretation. Clinical Chemistry, 47 
(2001) 13–27. PMID: 11148172. 

[37] T. Maenhout, Biochemical evaluation of chronic alcohol abuse within the framework 
of driver’s license regranting, Belgium: Ghent University, 2013. 
https://biblio.ugent.be/publication/4215734. 

[38] M. Schöniger-Hekele, K. Ramskogler, D. Hartl, O.M. Lesch, C. Müller, Exclusion of 
trisialo-transferrin from carbohydrate-deficient transferrin measurement: advantage 
in patients with chronic liver disease? Wiener Medizinische Wochenschrift, 156 (2006) 
216–222. doi:10.1007/s10354-005-0238-5. 

[39] L. Dibbelt, Does Trisialo-Transferrin Provide Valuable Information for the Laboratory 
Diagnosis of Chronically Increased Alcohol Consumption by Determination of 
Carbohydrate-deficient Transferrin? Clinical Chemistry, 46 (2000) 1203–1205. PMID: 
10926910. 

[40] A. Helander, A. Husa, J.-O. Jeppsson, Improved HPLC Method for Carbohydrate-
deficient Transferrin in Serum. Clinical Chemistry, 49 (2003) 1881–1890. 
doi:10.1373/clinchem.2003.023341. 

[41] J.-O. Jeppsson, T. Arndt, F. Schellenberg, P.M. Wielders Jos, F. Anton Raymond, B. 
Whitfield John, et al., Toward standardization of carbohydrate-deficient transferrin 
(CDT) measurements: I. Analyte definition and proposal of a candidate reference 
method. Clinical Chemistry and Laboratory Medicine, 45 (2007) 558–562. 
doi:10.1515/cclm.2007.107. 



Back to the table of contents 

47 

In
tr

o
d

u
ct

io
n

 

 

 

[42] F. Schellenberg, J.P.M. Wielders, Evaluation of capillary electrophoresis assay for CDT 
on SEBIA’s Capillarys System: Intra and inter laboratory precision, reference interval 
and cut-off. Clinica Chimica Acta, 411 (2010) 1888–1893. 
doi:10.1016/j.cca.2010.07.015. 

[43] W. Oberrauch, A.-C. Bergman, A. Helander, HPLC and mass spectrometric 
characterization of a candidate reference material for the alcohol biomarker 
carbohydrate-deficient transferrin (CDT). Clinica Chimica Acta, 395 (2008) 142–145. 
doi:10.1016/j.cca.2008.06.001. 

[44] T. Arndt, D. Kuhn, H. Herbst, M. Linnemann, N. Nikolaidis, Increased Carbohydrate-
deficient Transferrin of Unknown Etiology in a 15-Year-Old Male Patient with 
Autoimmune Hepatitis Type 1. Clinical Chemistry, 49 (2003) 1025–1026. 
doi:10.1373/49.6.1025. 

[45] F.J. Legros, V. Nuyens, E. Minet, P. Emonts, K.Z. Boudjeltia, A. Courbe, et al., 
Carbohydrate-deficient Transferrin Isoforms Measured by Capillary Zone 
Electrophoresis for Detection of Alcohol Abuse. Clinical Chemistry, 48 (2002) 2177–
2186. PMID: 12446474. 

[46] G. Høiseth, L. Morini, A. Polettini, A. Christophersen, J. Mørland, Ethyl Glucuronide in 
Hair Compared With Traditional Alcohol Biomarkers—A Pilot Study of Heavy Drinkers 
Referred to an Alcohol Detoxification Unit. Alcoholism: Clinical and Experimental 
Research, 33 (2009) 812–816. doi:10.1111/j.1530-0277.2009.00900.x. 

[47] J.R. Delanghe, M.L. De Buyzere, Carbohydrate deficient transferrin and forensic 
medicine. Clinica Chimica Acta, 406 (2009) 1–7. doi:10.1016/j.cca.2009.05.020. 

[48] T.M. Maenhout, A. Poll, T. Vermassen, M.L. De Buyzere, J.R. Delanghe, R.S.G. the, 
Usefulness of indirect alcohol biomarkers for predicting recidivism of drunk-driving 
among previously convicted drunk-driving offenders: results from the Recidivism Of 
Alcohol-impaired Driving (ROAD) study. Addiction, 109 (2014) 71–78. 
doi:10.1111/add.12372. 

[49] M. Winkler, G. Skopp, A. Alt, E. Miltner, T. Jochum, C. Daenhardt, et al., Comparison of 
direct and indirect alcohol markers with PEth in blood and urine in alcohol dependent 
inpatients during detoxication. International Journal of Legal Medicine, 127 (2013) 
761–768. doi:10.1007/s00414-012-0812-5. 

[50] T. Maenhout, G. Baten, M.L. De Buyzere, J.R. Delanghe, Carbohydrate deficient 
transferrin in a driver’s license regranting program. Alcohol and Alcoholism, 47 (2012) 
253–260. doi:10.1093/alcalc/ags013. 

[51] D.M. Goldberg, Structural, functional, and clinical aspects of gamma-
glutamyltransferase. CRC Critical Reviews in Clinical Laboratory Sciences, 12 (1980) 1–
58. PMID: 6104563. 

[52] J.H.D.A. van Beek, M.H.M. de Moor, L.M. Geels, M.R.T. Sinke, E.J.C. de Geus, G.H. 
Lubke, et al., The association of alcohol intake with gamma-glutamyl transferase (GGT) 
levels: Evidence for correlated genetic effects. Drug and Alcohol Dependence, 134 
(2014) 99–105. doi:10.1016/j.drugalcdep.2013.09.016. 

[53] K.M. Conigrave, P. Davies, P. Haber, J.B. Whitfield, Traditional markers of excessive 
alcohol use. Addiction, 2 (2003) 31–43. PMID: 14984240. 

[54] P. Alatalo, H. Koivisto, K. Puukka, J. Hietala, P. Anttila, R. Bloigu, et al., Biomarkers of 
Liver Status in Heavy Drinkers, Moderate Drinkers and Abstainers. Alcohol and 
Alcoholism, 44 (2009) 199–203. doi:10.1093/alcalc/agn099. 



Back to the table of contents 

48 

In
tr

o
d

u
ct

io
n

 

 

 

[55] P.C. Sharpe, Biochemical detection and monitoring of alcohol abuse and abstinence. 
Annals of Clinical Biochemistry, 38 (2001) 652–664. doi:10.1258/0004563011901064. 

[56] B.M.R. Appenzeller, R. Agirman, P. Neuberg, M. Yegles, R. Wennig, Segmental 
determination of ethyl glucuronide in hair: A pilot study. Forensic Science 
International, 173 (2007) 87–92. doi:10.1016/j.forsciint.2007.01.025. 

[57] S.K. Ramaiah, A toxicologist guide to the diagnostic interpretation of hepatic 
biochemical parameters. Food and Chemical Toxicology, 45 (2007) 1551–1557. 
doi:10.1016/j.fct.2007.06.007. 

[58] J.I. Bisson, A. Milford-Ward, A Comparison of Carbohydrate Deficient Transferrin with 
Other Markers of Alcohol Misuse in Male Soldiers Under the Age of Thirty. Alcohol and 
Alcoholism, 29 (1994) 315–321. 0735-0414, 1464-3502. 

[59] G. Schumann, R. Klauke, New IFCC reference procedures for the determination of 
catalytic activity concentrations of five enzymes in serum: preliminary upper reference 
limits obtained in hospitalized subjects. Clinica Chimica Acta, 327 (2003) 69–79. 
doi:10.1016/S0009-8981(02)00341-8. 

[60] J. Hietala, H. Koivisto, P. Anttila, O. Niemela, Comparison of the combined marker 
GGT-CDT and the conventional laboratory markers of alcohol abuse in heavy drinkers, 
moderate drinkers and abstainers. Alcohol and Alcoholism, 41 (2006) 528–533. 
doi:10.1093/alcalc/agl050. 

[61] K.M. Conigrave, L.J. Degenhardt, J.B. Whitfield, J.B. Saunders, A. Helander, B. Tabakoff, 
et al., CDT, GGT, and AST As Markers of Alcohol Use: The WHO/ISBRA Collaborative 
Project. Alcoholism: Clinical and Experimental Research, 26 (2002) 332–339. 
doi:10.1111/j.1530-0277.2002.tb02542.x. 

[62] A. Dasgupta, Chapter 6 - Mean Corpuscular Volume and Carbohydrate-Deficient 
Transferrin as Alcohol Biomarkers, in: A. Dasgupta (Ed.), Alcohol and Its Biomarkers, 
Elsevier, San Diego, 2015: pp. 139–162. 
http://www.sciencedirect.com/science/article/pii/B9780128003398000067. 

[63] T. Maenhout, M.L. De Buyzere, J.R. Delanghe, Non-oxidative ethanol metabolites as a 
measure of alcohol intake. Clinica Chimica Acta, 415 (2013) 322–329. 
doi:10.1016/j.cca.2012.11.014. 

[64] N. Stephanson, H. Dahl, A. Helander, O. Beck, Direct Quantification of Ethyl 
Glucuronide in Clinical Urine Samples by Liquid Chromatography-Mass Spectrometry. 
Therapeutic Drug Monitoring, 24 (2002) 645–651. doi:10.1097/00007691-200210000-
00011. 

[65] G. Høiseth, J.P. Bernard, R. Karinen, L. Johnsen, A. Helander, A.S. Christophersen, et 
al., A pharmacokinetic study of ethyl glucuronide in blood and urine: Applications to 
forensic toxicology. Forensic Science International, 172 (2007) 119–124. 
doi:10.1016/j.forsciint.2007.01.005. 

[66] H. Dahl, N. Stephanson, O. Beck, A. Helander, Comparison of Urinary Excretion 
Characteristics of Ethanol and Ethyl Glucuronide. Journal of Analytical Toxicology, 26 
(2002) 201–204. doi:10.1093/jat/26.4.201. 

[67] J. Xu, Y. Chen, L. Li, Z. Li, C. Wang, T. Zhou, et al., An improved HPLC method for the 
quantitation of 3′-phosphoadenosine 5′-phosphate (PAP) to assay sulfotransferase 
enzyme activity in HepG2 cells. Journal of Pharmaceutical and Biomedical Analysis, 62 
(2012) 182–186. doi:10.1016/j.jpba.2011.12.015. 

[68] G. Høiseth, J.P. Bernard, N. Stephanson, P.T. Normann, A.S. Christophersen, J. 
Mørland, et al., Comparison between the urinary alcohol markers EtG, EtS, and 



Back to the table of contents 

49 

In
tr

o
d

u
ct

io
n

 

 

 

GTOL/5-HIAA in a controlled drinking experiment. Alcohol and Alcoholism, 43 (2008) 
187–191. doi:10.1093/alcalc/agm175. 

[69] F.M. Wurst, S. Dresen, J.P. Allen, G. Wiesbeck, M. Graf, W. Weinmann, Ethyl sulphate: 
a direct ethanol metabolite reflecting recent alcohol consumption. Addiction, 101 
(2006) 204–211. doi:10.1111/j.1360-0443.2005.01245.x. 

[70] W. Bicker, M. Lämmerhofer, T. Keller, R. Schuhmacher, R. Krska, W. Lindner, Validated 
Method for the Determination of the Ethanol Consumption Markers Ethyl 
Glucuronide, Ethyl Phosphate, and Ethyl Sulfate in Human Urine by Reversed-
Phase/Weak Anion Exchange Liquid Chromatography-Tandem Mass Spectrometry. 
Analytical Chemistry, 78 (2006) 5884–5892. doi:10.1021/ac060680+. 

[71] G. Høiseth, B. Yttredal, R. Karinen, H. Gjerde, J. Mørland, A. Christophersen, Ethyl 
Glucuronide Concentrations in Oral Fluid, Blood, and Urine After Volunteers Drank 0.5 
and 1.0 g/kg Doses of Ethanol. Journal of Analytical Toxicology, 34 (2010) 319–324. 
doi:10.1093/jat/34.6.319. 

[72] H. Kharbouche, N. Steiner, M. Morelato, C. Staub, B. Boutrel, P. Mangin, et al., 
Influence of ethanol dose and pigmentation on the incorporation of ethyl glucuronide 
into rat hair. Alcohol, 44 (2010) 507–514. doi:10.1016/j.alcohol.2010.05.001. 

[73] A. Helander, O. Beck, Ethyl Sulfate: A Metabolite of Ethanol in Humans and a Potential 
Biomarker of Acute Alcohol Intake. Journal of Analytical Toxicology, 29 (2005) 270–
274. PMID: 16105250. 

[74] A. Helander, M. Böttcher, C. Fehr, N. Dahmen, O. Beck, Detection Times for Urinary 
Ethyl Glucuronide and Ethyl Sulfate in Heavy Drinkers during Alcohol Detoxification. 
Alcohol and Alcoholism, 44 (2009) 55–61. doi:10.1093/alcalc/agn084. 

[75] F. Musshoff, M. Albermann, B. Madea, Ethyl glucuronide and ethyl sulfate in urine 
after consumption of various beverages and foods—misleading results? International 
Journal of Legal Medicine, 124 (2010) 623–630. doi:10.1007/s00414-010-0511-z. 

[76] A. Thierauf, H. Gnann, A. Wohlfarth, V. Auwarter, M.G. Perdekamp, K.J. Buttler, et al., 
Urine tested positive for ethyl glucuronide and ethyl sulphate after the consumption 
of “non-alcoholic” beer. Forensic Science International, 202 (2010) 82–85. 
doi:10.1016/j.forsciint.2010.04.031. 

[77] T.P. Rohrig, C. Huber, L. Goodson, W. Ross, Detection of ethylglucuronide in urine 
following the application of Germ-X. Journal of Analytical Toxicology, 30 (2006) 703–
704. doi:10.1093/jat/30.9.703. 

[78] G. Høiseth, B. Yttredal, R. Karinen, H. Gjerde, A. Christophersen, Levels of Ethyl 
Glucuronide and Ethyl Sulfate in Oral Fluid, Blood, and Urine After Use of Mouthwash 
and Ingestion of Nonalcoholic Wine. Journal of Analytical Toxicology, 34 (2010) 84–88. 
doi:10.1093/jat/34.2.84. 

[79] A. Costantino, E.J. DiGregorio, W. Korn, S. Spayd, F. Rieders, The Effect of the Use of 
Mouthwash on Ethylglucuronide Concentrations in Urine. Journal of Analytical 
Toxicology, 30 (2006) 659–662. doi:10.1093/jat/30.9.659. 

[80] A. Thierauf, A. Wohlfarth, V. Auwärter, M.G. Perdekamp, F.M. Wurst, W. Weinmann, 
Urine tested positive for ethyl glucuronide and ethyl sulfate after the consumption of 
yeast and sugar. Forensic Science International, 202 (2009) e45–47. 
doi:10.1016/j.forsciint.2010.06.028. 

[81] S. Gessner, E. Below, S. Diedrich, C. Wegner, W. Gessner, T. Kohlmann, et al., Ethanol 
and ethyl glucuronide urine concentrations after ethanol-based hand antisepsis with 



Back to the table of contents 

50 

In
tr

o
d

u
ct

io
n

 

 

 

and without permitted alcohol consumption. American Journal of Infection Control, In 
Press (2016). doi:10.1016/j.ajic.2016.02.021. 

[82] G.W. Valentine, P.I. Jatlow, M. Coffman, H. Nadim, R. Gueorguieva, M. Sofuoglu, The 
effects of alcohol-containing e-cigarettes on young adult smokers. Drug & Alcohol 
Dependence, 159 (2016) 272–276. doi:10.1016/j.drugalcdep.2015.12.011. 

[83] D. Favretto, A. Nalesso, G. Frison, G. Viel, P. Traldi, S. Ferrara, A novel and an effective 
analytical approach for the LC-MS determination of ethyl glucuronide and ethyl sulfate 
in urine. International Journal of Legal Medicine, 124 (2010) 161–164. 
doi:10.1007/s00414-009-0376-1. 

[84] M.E. Albermann, F. Musshoff, E. Doberentz, P. Heese, M. Banger, B. Madea, 
Preliminary investigations on ethyl glucuronide and ethyl sulfate cutoffs for detecting 
alcohol consumption on the basis of an ingestion experiment and on data from 
withdrawal treatment. International Journal of Legal Medicine, 126 (2012) 757–764. 
doi:10.1007/s00414-012-0725-3. 

[85] C.A. Best, M. Laposata, Fatty acid ethyl esters: toxic non-oxidative metabolites of 
ethanol and markers of ethanol intake. Frontiers in Bioscience, 1 (2003) e202–217. 
doi:10.2741/931. 

[86] K. Borucki, J. Dierkes, J. Wartberg, S. Westphal, A. Genz, C. Luley, In Heavy Drinkers, 
Fatty Acid Ethyl Esters Remain Elevated for Up to 99 Hours. Alcoholism: Clinical and 
Experimental Research, 31 (2007) 423–427. doi:10.1111/j.1530-0277.2006.00323.x. 

[87] C.C. Kulig, T.P. Beresford, G.T. Everson, Rapid, accurate, and sensitive fatty acid ethyl 
ester determination by gas chromatography-mass spectrometry. Journal of Laboratory 
and Clinical Medicine, 147 (2006) 133–138. doi:10.1016/j.lab.2005.11.006. 

[88] B.L. Soderberg, E.T. Sicinska, E. Blodget, J.E. Cluette-Brown, P.M. Suter, T. Schuppisser, 
et al., Preanalytical Variables Affecting the Quantification of Fatty Acid Ethyl Esters in 
Plasma and Serum Samples. Clinical Chemistry, 45 (1999) 2183–2190. PMID: 
10585351. 

[89] B.S. Kaphalia, P. Cai, M.F. Khan, A.O. Okorodudu, G.A.S. Ansari, Fatty acid ethyl esters: 
markers of alcohol abuse and alcoholism. Alcohol, 34 (2004) 151–158. 
doi:10.1016/j.alcohol.2004.07.013. 

[90] H. Gnann, W. Weinmann, A. Thierauf, Formation of Phosphatidylethanol and Its 
Subsequent Elimination During an Extensive Drinking Experiment Over 5 Days. 
Alcoholism: Clinical and Experimental Research, 36 (2012) 1507–1511. 
doi:10.1111/j.1530-0277.2012.01768.x. 

[91] H. Gnann, C. Engelmann, G. Skopp, M. Winkler, V. Auwärter, S. Dresen, et al., 
Identification of 48 homologues of phosphatidylethanol in blood by LC-ESI-MS/MS. 
Analytical and Bioanalytical Chemistry, 396 (2010) 2415–2423. doi:10.1007/s00216-
010-3458-5. 

[92] A. Nalesso, G. Viel, G. Cecchetto, D. Mioni, G. Pessa, D. Favretto, et al., Quantitative 
profiling of phosphatidylethanol molecular species in human blood by liquid 
chromatography high resolution mass spectrometry. Journal of Chromatography A, 
1218 (2011) 8423–8431. doi:10.1016/j.chroma.2011.09.068. 

[93] A. Helander, Y. Zheng, Molecular Species of the Alcohol Biomarker 
Phosphatidylethanol in Human Blood Measured by LC-MS. Clinical Chemistry, 55 
(2009) 1395–1405. doi:10.1373/clinchem.2008.120923. 

[94] Y. Zheng, O. Beck, A. Helander, Method development for routine liquid 
chromatography-mass spectrometry measurement of the alcohol biomarker 



Back to the table of contents 

51 

In
tr

o
d

u
ct

io
n

 

 

 

phosphatidylethanol (PEth) in blood. Clinica Chimica Acta, 412 (2011) 1428–1435. 
doi:10.1016/j.cca.2011.04.022. 

[95] A. Varga, P. Hansson, G. Johnson, C. Alling, Normalization rate and cellular localization 
of phosphatidylethanol in whole blood from chronic alcoholics. Clinica Chimica Acta; 
International Journal of Clinical Chemistry, 299 (2000) 141–150. doi:10.1016/S0009-
8981(00)00291-6. 

[96] S. Aradóttir, S. Seidl, F.M. Wurst, B.A.G. Jönsson, C. Alling, Phosphatidylethanol in 
Human Organs and Blood: A Study on Autopsy Material and Influences by Storage 
Conditions. Alcoholism: Clinical and Experimental Research, 28 (2004) 1718–1723. 
doi:10.1097/01.alc.0000145687.41646.e5. 

[97] S. Aradottir, G. Asanovska, S. Gjerss, P. Hansson, C. Alling, Phosphatidylethanol (PEth) 
concentrations in blood are correlated to reported alcohol intake in alcohol-
dependent patients. Alcohol and Alcoholism, 41 (2006) 431–437. 
doi:10.1093/alcalc/agl027. 

[98] T. Gunnarsson, A. Karlsson, P. Hansson, G. Johnson, C. Alling, G. Odham, 
Determination of phosphatidylethanol in blood from alcoholic males using high-
performance liquid chromatography and evaporative light scattering or electrospray 
mass spectrometric detection. Journal of Chromatography B: Biomedical Sciences and 
Applications, 705 (1998) 243–249. doi:10.1016/S0378-4347(97)00541-0. 

[99] A. Varga, S. Nilsson, Nonaqueous capillary electrophoresis for analysis of the ethanol 
consumption biomarker phosphatidylethanol. Electrophoresis, 29 (2008) 1667–1671. 
doi:10.1002/elps.200700548. 

[100] J. Jones, M. Jones, C. Plate, D. Lewis, The detection of 1-palmitoyl-2-oleoyl-sn-glycero-
3-phosphoethanol in human dried blood spots. Analytical Methods, 3 (2011) 1101–
1106. doi:10.1039/C0AY00636J. 

[101] A. Faller, B. Richter, M. Kluge, P. Koenig, H. Seitz, A. Thierauf, et al., LC-MS/MS analysis 
of phosphatidylethanol in dried blood spots versus conventional blood specimens. 
Analytical and Bioanalytical Chemistry, 401 (2011) 1163–1166. doi:10.1007/s00216-
011-5221-y. 

[102] H. Gnann, W. Weinmann, C. Engelmann, F.M. Wurst, G. Skopp, M. Winkler, et al., 
Selective detection of phosphatidylethanol homologues in blood as biomarkers for 
alcohol consumption by LC-ESI-MS/MS. Journal of Mass Spectrometry, 44 (2009) 
1293–1299. doi:10.1002/jms.1608. 

[103] A. Schröck, A. Thierauf, F.M. Wurst, N. Thon, W. Weinmann, Progress in monitoring 
alcohol consumption and alcohol abuse by phosphatidylethanol. Bioanalysis, 6 (2014) 
2285–2294. doi:10.4155/bio.14.195. 

[104] H. Gnann, A. Thierauf, F. Hagenbuch, B. Röhr, W. Weinmann, Time Dependence of 
Elimination of Different PEth Homologues in Alcoholics in Comparison with Social 
Drinkers. Alcoholism: Clinical and Experimental Research, 38 (2014) 322–326. 
doi:10.1111/acer.12277. 

[105] L.N. Bakhireva, L. Leeman, R.D. Savich, S. Cano, H. Gutierrez, D.D. Savage, et al., The 
Validity of Phosphatidylethanol in Dried Blood Spots of Newborns for the 
Identification of Prenatal Alcohol Exposure. Alcoholism: Clinical and Experimental 
Research, 38 (2014) 1078–1085. doi:10.1111/acer.12349. 

[106] P.M. De Kesel, S. Capiau, W.E. Lambert, C.P. Stove, Current strategies for coping with 
the hematocrit problem in dried blood spot analysis. Bioanalysis, 6 (2014) 1871–1874. 
doi:10.4155/bio.14.151. 



Back to the table of contents 

52 

In
tr

o
d

u
ct

io
n

 

 

 

[107] N.G.L. Jager, H. Rosing, J.H.M. Schellens, J.H. Beijnen, Procedures and practices for the 
validation of bioanalytical methods using dried blood spots: a review. Bioanalysis, 6 
(2014) 2481–2514. doi:10.4155/bio.14.185. 

[108] P.M. De Kesel, N. Sadones, S. Capiau, W.E. Lambert, C.P. Stove, Hemato-critical issues 
in quantitative analysis of dried blood spots: challenges and solutions. Bioanalysis, 5 
(2013) 2023–2041. doi:10.4155/bio.13.156. 

[109] P.M.M. De Kesel, W.E. Lambert, C.P. Stove, Does volumetric absorptive microsampling 
eliminate the hematocrit bias for caffeine and paraxanthine in dried blood samples? A 
comparative study. Analytica Chimica Acta, 881 (2015) 65–73. 
doi:10.1016/j.aca.2015.04.056. 

[110] P. Abu-Rabie, P. Denniff, N. Spooner, J. Brynjolffssen, P. Galluzzo, G. Sanders, Method 
of Applying Internal Standard to Dried Matrix Spot Samples for Use in Quantitative 
Bioanalysis. Analytical Chemistry, 83 (2011) 8779–8786. doi:10.1021/ac202321q. 

[111] P. Bean, M.S. Sutphin, P. Necessary, M.S. Agopian, K. Liegmann, C. Ludvigsen, et al., 
Carbohydrate-deficient transferrin evaluation in dry blood spots. Alcoholism: Clinical 
and Experimental Research, 20 (1996) 56–60. doi:10.1111/j.1530-
0277.1996.tb01044.x. 

[112] A. Bertaso, D. Sorio, A. Vandoros, E.F. De Palo, F. Bortolotti, F. Tagliaro, The use of 
finger-prick dried blood spots (fpdbs) and capillary electrophoresis for carbohydrate 
deficient transferrin (cdt) screening in forensic toxicology. Electrophoresis, In Press 
(2016). doi:10.1002/elps.201500588. 

[113] G. Høiseth, R. Karinen, A.S. Christophersen, L. Olsen, P.T. Normann, J. Mørland, A 
study of ethyl glucuronide in post-mortem blood as a marker of ante-mortem 
ingestion of alcohol. Forensic Science International, 165 (2007) 41–45. 
doi:10.1016/j.forsciint.2006.02.045. 

[114] S.T. Bogstrand, G. Høiseth, I. Rossow, P.T. Normann, Ø. Ekeberg, Prevalence of Ethyl 
Glucuronide and Ethyl Sulphate Among Patients Injured When Driving or at Work. 
Alcohol and Alcoholism, 50 (2015) 68–73. doi:10.1093/alcalc/agu070. 

[115] B. Jung, J. Caslavska, W. Thormann, Determination of ethyl sulfate in human serum 
and urine by capillary zone electrophoresis. Journal of Chromatography A, 1206 (2008) 
26–32. doi:10.1016/j.chroma.2008.05.086. 

[116] M. Nováková, L. Křivánková, Determination of ethyl glucuronide in human serum by 
hyphenation of capillary isotachophoresis and zone electrophoresis. Electrophoresis, 
29 (2008) 1694–1700. doi:10.1002/elps.200700663. 

[117] L. Morini, L. Politi, A. Zucchella, A. Polettini, Ethyl glucuronide and ethyl sulphate 
determination in serum by liquid chromatography-electrospray tandem mass 
spectrometry. Clinica Chimica Acta, 376 (2007) 213–219. 
doi:10.1016/j.cca.2006.08.024. 

[118] I. Janda, A. Alt, Improvement of ethyl glucuronide determination in human urine and 
serum samples by solid-phase extraction. Journal of Chromatography B: Biomedical 
Sciences and Applications, 758 (2001) 229–234. doi:10.1016/S0378-4347(01)00186-4. 

[119] A.M. Lostia, J.L. Vicente, D.A. Cowan, Measurement of Ethyl Glucuronide, Ethyl 
Sulphate and Their Ratio in the Urine and Serum of Healthy Volunteers after Two 
Doses of Alcohol. Alcohol and Alcoholism, 48 (2013) 74–82. doi:10.1093/alcalc/ags108. 

[120] A. Hernandez Redondo, A. Schroeck, B. Kneubuehl, W. Weinmann, Determination of 
ethyl glucuronide and ethyl sulfate from dried blood spots. International Journal of 
Legal Medicine, 127 (2013) 769–775. doi:10.1007/s00414-012-0815-2. 



Back to the table of contents 

53 

In
tr

o
d

u
ct

io
n

 

 

 

[121] M. Winkler, E. Kaufmann, D. Thoma, A. Thierauf, W. Weinmann, G. Skopp, et al., 
Detection of ethyl glucuronide in blood spotted on different surfaces. Forensic Science 
International, 210 (2011) 243–246. doi:10.1016/j.forsciint.2011.03.013. 

[122] E. Kaufmann, A. Alt, Detection of ethyl glucuronide in dried human blood using LC-
MS/MS. International Journal of Legal Medicine, 122 (2008) 245–249. 
doi:10.1007/s00414-007-0219-x. 

[123] N. Kummer, A.S. Ingels, S.M. Wille, C. Hanak, P. Verbanck, W.E. Lambert, et al., 
Quantification of phosphatidylethanol 16:0/18:1, 18:1/18:1, and 16:0/16:0 in venous 
blood and venous and capillary dried blood spots from patients in alcohol withdrawal 
and control volunteers. Analytical and Bioanalytical Chemistry, 408 (2016) 825–838. 
doi:10.1007/s00216-015-9169-1. 

[124] S. Aradottir, K. Moller, C. Alling, Phosphatidylethanol formation and degradation in 
human and rat blood. Alcohol and Alcoholism, 39 (2004) 8–13. 
doi:10.1093/alcalc/agh003. 

[125] S. Aradottir, B. Olsson, Methodological modifications on quantification of 
phosphatidylethanol in blood from humans abusing alcohol, using high-performance 
liquid chromatography and evaporative light scattering detection. BMC Biochemistry, 
6 (2005) 18–25. doi:10.1186/1471-2091-6-18. 

[126] A. Nalesso, G. Viel, G. Cecchetto, G. Frison, S.D. Ferrara, Analysis of the alcohol 
biomarker phosphatidylethanol by NACE with on-line ESI-MS. Electrophoresis, 31 
(2010) 1227–1233. doi:10.1002/elps.200900430. 

[127] A. Faller, B. Richter, M. Kluge, P. Koenig, H.K. Seitz, G. Skopp, Stability of 
phosphatidylethanol species in spiked and authentic whole blood and matching dried 
blood spots. International Journal of Legal Medicine, 127 (2012) 1–8. 
doi:10.1007/s00414-012-0799-y. 

[128] P. Cabarcos, J. Angel Cocho, A. Moreda, M. Miguez, M. Jesus Tabernero, P. Fernandez, 
et al., Application of dispersive liquid-liquid microextraction for the determination of 
phosphatidylethanol in blood by liquid chromatography tandem mass spectrometry. 
Talanta, 111 (2013) 189–195. doi:10.1016/j.talanta.2013.03.008. 

[129] A. Sch, A. Hernandez Redondo, M. Martin Fabritius, S. Konig, W. Weinmann, 
Phosphatidylethanol (PEth) in blood samples from “driving under the influence” cases 
as indicator for prolonged excessive alcohol consumption. International Journal of 
Legal Medicine, 130 (2016) 393–400. doi:10.1007/s00414-015-1300-5. 

[130] J.A. Hahn, L.M. Dobkin, B. Mayanja, N.I. Emenyonu, I.M. Kigozi, S. Shiboski, et al., 
Phosphatidylethanol (PEth) as a biomarker of alcohol consumption in HIV-positive 
patients in sub-Saharan Africa. Alcoholism: Clinical and Experimental Research, 36 
(2012) 854–862. doi:10.1111/j.1530-0277.2011.01669.x. 

[131] L.N. Bakhireva, R.D. Savich, D.W. Raisch, S. Cano, R.D. Annett, L. Leeman, et al., The 
feasibility and cost of neonatal screening for prenatal alcohol exposure by measuring 
phosphatidylethanol in dried blood spots. Alcoholism: Clinical and Experimental 
Research, 37 (2013) 1008–1015. doi:10.1111/acer.12045. 

[132] N. Kummer, S.M.R. Wille, A. Poll, W.E. Lambert, N. Samyn, C.P. Stove, Quantification 
of EtG in hair, EtG and EtS in urine and PEth species in capillary dried blood spots to 
assess the alcohol consumption in driver’s licence regranting cases. Drug and Alcohol 
Dependence, 165 (2016) 191–197. doi:10.1016/j.drugalcdep.2016.06.012. 

[133] L. Walther, A. de Bejczy, E. Löf, T. Hansson, A. Andersson, J. Guterstam, et al., 
Phosphatidylethanol is Superior to Carbohydrate-Deficient Transferrin and γ-



Back to the table of contents 

54 

In
tr

o
d

u
ct

io
n

 

 

 

Glutamyltransferase as an Alcohol Marker and is a Reliable Estimate of Alcohol 
Consumption Level. Alcoholism: Clinical and Experimental Research, 39 (2015) 2200–
2208. doi:10.1111/acer.12883. 

[134] A. Helander, S. Ullah, O. Beck, Phosphatidylethanols in Breath: A Possible Noninvasive 
Screening Test for Heavy Alcohol Consumption. Clinical Chemistry, 61 (2015) 991–993. 
doi:10.1373/clinchem.2015.239848. 

[135] N. Kummer, S. Wille, V. Di Fazio, W.E. Lambert, N. Samyn, A fully validated method for 
the quantification of ethyl glucuronide and ethyl sulphate in urine by UPLC–ESI-
MS/MS applied in a prospective alcohol self-monitoring study. Journal of 
Chromatography B, 929 (2013) 149–154. doi:10.1016/j.jchromb.2013.04.011. 

[136] M.E. Albermann, F. Musshoff, B. Madea, A High-Performance Liquid 
Chromatographic–Tandem Mass Spectrometric Method for the Determination of Ethyl 
Glucuronide and Ethyl Sulfate in Urine Validated According to Forensic Guidelines. 
Journal of Chromatographic Science, 50 (2012) 51–56. doi:10.1093/chromsci/bmr012. 

[137] W. Weinmann, P. Schaefer, A. Thierauf, A. Schreiber, F.M. Wurst, Confirmatory 
analysis of ethylglucuronide in urine by liquid-chromatography/electrospray 
ionization/tandem mass spectrometry according to forensic guidelines. Journal of the 
American Society for Mass Spectrometry, 15 (2004) 188–193. 
doi:10.1016/j.jasms.2003.10.010. 

[138] K. Borucki, R. Schreiner, J. Dierkes, K. Jachau, D. Krause, S. Westphal, et al., Detection 
of Recent Ethanol Intake With New Markers: Comparison of Fatty Acid Ethyl Esters in 
Serum and of Ethyl Glucuronide and the Ratio of 5-Hydroxytryptophol to 5-
Hydroxyindole Acetic Acid in Urine. Alcoholism: Clinical and Experimental Research, 29 
(2005) 781–787. doi:10.1097/01.alc.0000164372.67018.ea. 

[139] F.A. Esteve-Turrillas, W. Bicker, M. Lämmerhofer, T. Keller, W. Lindner, Determination 
of ethyl sulfate – a marker for recent ethanol consumption – in human urine by CE 
with indirect UV detection. Electrophoresis, 27 (2006) 4763–4771. 
doi:10.1002/elps.200600155. 

[140] Al-Asmari, Direct Determination of Ethyl Glucuronide and Ethyl Sulfate in Postmortem 
Urine Specimens Using Hydrophilic Interaction Liquid Chromatography-Electrospray 
Ionization-Tandem Mass Spectrometry. Journal of Analytical Toxicology, 34 (2010) 
261–272. PMID: 20529460. 

[141] L. Politi, L. Morini, A. Groppi, V. Poloni, F. Pozzi, A. Polettini, Direct determination of 
the ethanol metabolites ethyl glucuronide and ethyl sulfate in urine by liquid 
chromatography/electrospray tandem mass spectrometry. Rapid Communications in 
Mass Spectrometry, 19 (2005) 1321–1331. doi:10.1002/rcm.1932. 

[142] S. Hegstad, A. Helland, C. Hagemann, L. Michelsen, O. Spigset, EtG/EtS in Urine from 
Sexual Assault Victims Determined by UPLC–MS-MS. Journal of Analytical Toxicology, 
37 (2013) 227–232. doi:10.1093/jat/bkt008. 

[143] J. Bergström, A. Helander, A.W. Jones, Ethyl glucuronide concentrations in two 
successive urinary voids from drinking drivers: relationship to creatinine content and 
blood and urine ethanol concentrations. Forensic Science International, 133 (2003) 
86–94. doi:10.1016/S0379-0738(03)00053-7. 

[144] M. Concheiro, A. Cruz, M. Mon, A. de Castro, O. Quintela, A. Lorenzo, et al., 
Ethylglucuronide Determination in Urine and Hair from Alcohol Withdrawal Patients. 
Journal of Analytical Toxicology, 33 (2009) 155–161. doi:10.1093/jat/33.3.155. 



Back to the table of contents 

55 

In
tr

o
d

u
ct

io
n

 

 

 

[145] G.M. Reisfield, B.A. Goldberger, B.O. Crews, A.J. Pesce, G.R. Wilson, S.A. Teitelbaum, 
et al., Ethyl glucuronide, ethyl sulfate, and ethanol in urine after sustained exposure to 
an ethanol-based hand sanitizer. Journal of Analytical Toxicology, 35 (2011) 85–91. 
doi:10.1093/anatox/35.2.85. 

[146] F.M. Wurst, S. Seidl, D. Ladewig, F. Müller-Spahn, A. Alt, Ethyl glucuronide: on the time 
course of excretion in urine during detoxification. Addiction Biology, 7 (2002) 427–
434. doi:10.1080/1355621021000006035. 

[147] M. Böttcher, O. Beck, A. Helander, Evaluation of a new immunoassay for urinary ethyl 
glucuronide testing. Alcohol and Alcoholism, 43 (2008) 46–48. 
doi:10.1093/alcalc/agm153. 

[148] A. Thierauf, A. Serr, C.C. Halter, A. Al-Ahmad, S. Rana, W. Weinmann, Influence of 
preservatives on the stability of ethyl glucuronide and ethyl sulphate in urine. Forensic 
Science International, 182 (2008) 41–45. doi:10.1016/j.forsciint.2008.09.011. 

[149] R. Agius, B. Dufaux, H.-G. Kahl, T. Nadulski, Is urine an alternative to cosmetically 
treated hair for the detection of drugs and alcohol? Drug Testing and Analysis, 6 
(2014) 120–122. doi:10.1002/dta.1629. 

[150] I.Á. Freire, A.M.B. Barrera, P.C. Silva, M.J.T. Duque, P.F. Gómez, P.L. Eijo, Microwave 
assisted extraction for the determination of ethyl glucuronide in urine by gas 
chromatography-mass spectrometry. Journal of Applied Toxicology, 28 (2008) 773–
778. doi:10.1002/jat.1338. 

[151] M.H. Wojcik, J.S. Hawthorne, Sensitivity of commercial ethyl glucuronide (ETG) testing 
in screening for alcohol abstinence. Alcohol and Alcoholism, 42 (2007) 317–320. 
doi:10.1093/alcalc/agm014. 

[152] Y. Zheng, A. Helander, Solid-Phase Extraction Procedure for Ethyl Glucuronide in 
Urine. Journal of Analytical Toxicology, 32 (2008) 778–781. doi:10.1093/jat/32.9.778. 

[153] A. Thierauf, C.C. Halter, S. Rana, V. Auwaerter, A. Wohlfarth, F.M. Wurst, et al., Urine 
tested positive for ethyl glucuronide after trace amounts of ethanol. Addiction, 104 
(2009) 2007–2012. doi:10.1111/j.1360-0443.2009.02722.x. 

[154] J. Beyer, T. Vo, D. Gerostamoulos, O. Drummer, Validated method for the 
determination of ethylglucuronide and ethylsulfate in human urine. Analytical and 
Bioanalytical Chemistry, 400 (2011) 189–196. doi:10.1007/s00216-011-4667-2. 

[155] A. Hernández Redondo, C. Körber, S. König, A. Längin, A. Al-Ahmad, W. Weinmann, 
Inhibition of bacterial degradation of EtG by collection as dried urine spots (DUS). 
Analytical and Bioanalytical Chemistry, 402 (2012) 2417–2424. doi:10.1007/s00216-
011-5687-7. 

[156] A. Helander, H. Dahl, Urinary Tract Infection: A Risk Factor for False-Negative Urinary 
Ethyl Glucuronide but Not Ethyl Sulfate in the Detection of Recent Alcohol 
Consumption. Clinical Chemistry, 51 (2005) 1728–1730. 
doi:10.1373/clinchem.2005.051565. 

[157] S. Baranowski, A. Serr, A. Thierauf, W. Weinmann, M. Grosse Perdekamp, F.M. Wurst, 
et al., In vitro study of bacterial degradation of ethyl glucuronide and ethyl sulphate. 
International Journal of Legal Medicine, 122 (2008) 389–393. doi:10.1007/s00414-
008-0229-3. 

[158] A. Helander, I. Olsson, H. Dahl, Postcollection Synthesis of Ethyl Glucuronide by 
Bacteria in Urine May Cause False Identification of Alcohol Consumption. Clinical 
Chemistry, 53 (2007) 1855–1857. doi:10.1373/clinchem.2007.089482. 



Back to the table of contents 

56 

In
tr

o
d

u
ct

io
n

 

 

 

[159] S. Dresen, W. Weinmann, F.M. Wurst, Forensic confirmatory analysis of ethyl sulfate--
a new marker for alcohol consumption--by liquid-chromatography/electrospray 
ionization/tandem mass spectrometry. Journal of the American Society for Mass 
Spectrometry, 15 (2004) 1644–1648. doi:10.1016/j.jasms.2004.08.004. 

[160] M.E. Albermann, F. Musshoff, B. Madea, A fully validated high-performance liquid 
chromatography-tandem mass spectrometry method for the determination of ethyl 
glucuronide in hair for the proof of strict alcohol abstinence. Analytical and 
Bioanalytical Chemistry, 396 (2010) 2441–2447. doi:10.1007/s00216-009-3388-2. 

[161] D.A. Kidwell, J.C. Holland, S. Athanaselis, Testing for drugs of abuse in saliva and 
sweat. Journal of Chromatography B: Biomedical Sciences and Applications, 713 (1998) 
111–135. doi:10.1016/S0378-4347(97)00572-0. 

[162] P. Clarys, A. Barel, Quantitative evaluation of skin surface lipids. Clinics in 
Dermatology, 13 (1995) 307–321. doi:10.1016/0738-081X(95)00079-U. 

[163] A.J. Thody, S. Shuster, Control and function of sebaceous glands. Physiological 
Reviews, 69 (1989) 383–416. PMID: 2648418. 

[164] F. Pragst, V. Auwärter, B. Kießling, C. Dyes, Wipe-test and patch-test for alcohol 
misuse based on the concentration ratio of fatty acid ethyl esters and squalene 
CFAEE/CSQ in skin surface lipids. Forensic Science International, 143 (2004) 77–86. 
doi:10.1016/j.forsciint.2004.02.041. 

[165] B.M.R. Appenzeller, C. Schummer, S.B. Rodrigues, R. Wennig, Determination of the 
volume of sweat accumulated in a sweat-patch using sodium and potassium as 
internal reference. Journal of Chromatography B, 852 (2007) 333–337. 
doi:10.1016/j.jchromb.2007.01.037. 

[166] S.H. Mathes, H. Ruffner, U. Graf-Hausner, The use of skin models in drug 
development. Advanced Drug Delivery Reviews, 69–70 (2014) 81–102. 
doi:10.1016/j.addr.2013.12.006. 

[167] F. González-Illán, G. Ojeda-Torres, L.M. Díaz-Vázquez, O. Rosario, Detection of Fatty 
Acid Ethyl Esters in Skin Surface Lipids as Biomarkers of Ethanol Consumption in 
Alcoholics, Social Drinkers, Light Drinkers, and Teetotalers Using a Methodology Based 
on Microwave-Assisted Extraction Followed by Solid-Phase Microextraction and Gas 
Chromatography-Mass Spectrometry. Journal of Analytical Toxicology, 35 (2011) 232–
237. doi:10.1093/anatox/35.4.232. 

[168] T.R. Leffingwell, N.J. Cooney, J.G. Murphy, S. Luczak, G. Rosen, D.M. Dougherty, et al., 
Continuous Objective Monitoring of Alcohol Use: Twenty-First Century Measurement 
Using Transdermal Sensors. Alcoholism: Clinical and Experimental Research, 37 (2013) 
16–22. doi:10.1111/j.1530-0277.2012.01869.x. 

[169] M. Gamella, S. Campuzano, J. Manso, G.G. de Rivera, F. López-Colino, A.J. Reviejo, et 
al., A novel non-invasive electrochemical biosensing device for in situ determination of 
the alcohol content in blood by monitoring ethanol in sweat. Analytica Chimica Acta, 
806 (2014) 1–7. doi:10.1016/j.aca.2013.09.020. 

[170] M. Phillips, M.H. McAloon, A sweat-patch test for alcohol consumption: evaluation in 
continuous and episodic drinkers. Alcoholism: Clinical and Experimental Research, 4 
(1980) 391–395. PMID: 7004238. 

[171] M. Phillips, Sweat-Patch Test for Alcohol Consumption: Rapid Assay with an 
Electrochemical Detector. Alcoholism: Clinical and Experimental Research, 6 (1982) 
532–534. doi:10.1111/j.1530-0277.1982.tb05018.x. 



Back to the table of contents 

57 

In
tr

o
d

u
ct

io
n

 

 

 

[172] M. Phillips, Subjective Responses to the Sweat-Patch Test for Alcohol Consumption. 
Advances in Alcohol & Substance Abuse, 3 (1984) 61–67. doi:10.1300/J251v03n04_06. 

[173] M. Phillips, An Improved Adhesive Patch for Long-Term Collection of Sweat. Artificial 
Cells, Blood Substitutes and Biotechnology, 8 (1980) 13–21. 
doi:10.3109/10731198009118969. 

[174] D.J. Brown, The pharmacokinetics of alcohol excretion in human perspiration. 
Methods and Findings in Experimental and Clinical Pharmacology, 7 (1985) 539–544. 
PMID: 4079588. 

[175] D.J. Brown, A method for determining the excretion of volatile substances through 
skin. Methods and Findings in Experimental and Clinical Pharmacology, 7 (1985) 269–
274. PMID: 4033304. 

[176] H.G. Giles, G.E. Rertaud, S. Meggiorini, Y. Israel, New Instrument Using Gas Sensors for 
the Quantitative Analysis of Ethanol in Biological Liquids. Alcoholism: Clinical and 
Experimental Research, 10 (1986) 521–525. doi:10.1111/j.1530-0277.1986.tb05135.x. 

[177] H.G. Giles, S. Meggiorini, G. Renaud, J. Thiessen, E. Vidins, Ethanol Vapor above Skin: 
Determination by a Gas Sensor Instrument and Relationship with Plasma 
Concentration. Alcoholism: Clinical and Experimental Research, 11 (1987) 249–253. 
doi:10.1111/j.1530-0277.1987.tb01300.x. 

[178] T. Kamei, T. Tsuda, Y. Mibu, S. Kitagawa, H. Wada, K. Naitoh, et al., Novel 
instrumentation for determination of ethanol concentrations in human perspiration 
by gas chromatography and a good interrelationship between ethanol concentrations 
in sweat and blood. Analytica Chimica Acta, 365 (1998) 259–266. doi:10.1016/S0003-
2670(97)00673-9. 

[179] P.R. Marques, A.S. McKnight, Field and Laboratory Alcohol Detection With 2 Types of 
Transdermal Devices. Alcoholism: Clinical and Experimental Research, 33 (2009) 703–
711. doi:10.1111/j.1530-0277.2008.00887.x. 

[180] J. Ayala, K. Simons, S. Kerrigan, Quantitative Determination of Caffeine and Alcohol in 
Energy Drinks and the Potential to Produce Positive Transdermal Alcohol 
Concentrations in Human Subjects. Journal of Analytical Toxicology, 33 (2009) 27–33. 
doi:10.1093/jat/33.1.27. 

[181] M. Dumett, G. Rosen, J. Sabat, A. Shaman, L. Tempelman, C. Wang, et al., 
Deconvolving an Estimate of Breath Measured Blood Alcohol Concentration from 
Biosensor Collected Transdermal Ethanol Data. Applied Mathematics and 
Computation, 196 (2008) 724–743. doi:10.1016/j.amc.2007.07.026. 

[182] R.M. Swift, Transdermal measurement of alcohol consumption. Addiction, 88 (1993) 
1037–1039. doi:10.1111/j.1360-0443.1993.tb02122.x. 

[183] R.M. Swift, C.S. Martin, L. Swette, A. LaConti, N. Kackley, Studies on a Wearable, 
Electronic, Transdermal Alcohol Sensor. Alcoholism: Clinical and Experimental 
Research, 16 (1992) 721–725. doi:10.1111/j.1530-0277.1992.tb00668.x. 

[184] R. Swift, Direct measurement of alcohol and its metabolites. Addiction, 98 (2003) 73–
80. doi:10.1046/j.1359-6357.2003.00605.x. 

[185] N. Hill-Kapturczak, J.D. Roache, Y. Liang, T.E. Karns, S.E. Cates, D.M. Dougherty, 
Accounting for sex-related differences in the estimation of breath alcohol 
concentrations using transdermal alcohol monitoring. Psychopharmacology, 232 
(2014) 115–123. doi:10.1007/s00213-014-3644-9. 

[186] D.M. Dougherty, N.E. Charles, A. Acheson, S. John, R.M. Furr, N. Hill-Kapturczak, 
Comparing the Detection of Transdermal and Breath Alcohol Concentrations during 



Back to the table of contents 

58 

In
tr

o
d

u
ct

io
n

 

 

 

Periods of Alcohol Consumption Ranging from Moderate Drinking to Binge Drinking. 
Experimental and Clinical Psychopharmacology, 20 (2012) 373–381. 
doi:10.1037/a0029021. 

[187] N.P. Barnett, J. Tidey, J.G. Murphy, R. Swift, S.M. Colby, Contingency management for 
alcohol use reduction: A pilot study using a transdermal alcohol sensor. Drug and 
Alcohol Dependence, 118 (2011) 391–399. doi:10.1016/j.drugalcdep.2011.04.023. 

[188] I.G. Rosen, S.E. Luczak, J. Weiss, Blind deconvolution for distributed parameter 
systems with unbounded input and output and determining blood alcohol 
concentration from transdermal biosensor data. Applied Mathematics and 
Computation, 231 (2014) 357–376. doi:10.1016/j.amc.2013.12.099. 

[189] D.M. Dougherty, N. Hill-Kapturczak, Y. Liang, T.E. Karns, S.E. Cates, S.L. Lake, et al., Use 
of continuous transdermal alcohol monitoring during a contingency management 
procedure to reduce excessive alcohol use. Drug and Alcohol Dependence, 142 (2014) 
301–306. doi:10.1016/j.drugalcdep.2014.06.039. 

[190] D.M. Dougherty, T.E. Karns, J. Mullen, Y. Liang, S.L. Lake, J.D. Roache, et al., 
Transdermal alcohol concentration data collected during a contingency management 
program to reduce at-risk drinking. Drug and Alcohol Dependence, 148 (2015) 77–84. 
doi:10.1016/j.drugalcdep.2014.12.021. 

[191] J.K.M. Aps, L.C. Martens, Review: The physiology of saliva and transfer of drugs into 
saliva. Forensic Science International, 150 (2005) 119–131. 
doi:10.1016/j.forsciint.2004.10.026. 

[192] K.-H. Smolle, G. Hofmann, P. Kaufmann, A. Lueger, G. Brunner, Q.E.D. Alcohol Test: a 
simple and quick method to detect ethanol in saliva of patients in emergency 
departments. Intensive Care Medicine, 25 (1999) 492–495. 
doi:10.1007/s001340050886. 

[193] A.W. Jones, Measuring Ethanol in Saliva with the QED® Enzymatic Test Device: 
Comparison of Results with Blood- and Breath-Alcohol Concentrations. Journal of 
Analytical Toxicology, 19 (1995) 169–174. doi:10.1093/jat/19.3.169. 

[194] L.C. Degutis, R. Rabinovici, A. Sabbaj, R. Mascia, G. D’Onofrio, The Saliva Strip Test Is 
an Accurate Method to Determine Blood Alcohol Concentration in Trauma Patients. 
Academic Emergency Medicine, 11 (2004) 885–887. doi:10.1197/j.aem.2004.02.529. 

[195] G. Tu, B. Kapur, Y. Israel, Characteristics of a New Urine, Serum, and Saliva Alcohol 
Reagent Strip. Alcoholism: Clinical and Experimental Research, 16 (1992) 222–227. 
doi:10.1111/j.1530-0277.1992.tb01367.x. 

[196] I.C. Phair, S. Mardel, G.G. Bodiwala, Blood alcohol concentration measurement using a 
salivary reagent stick: a reliable tool for emergency departments? Emergency 
Medicine Journal, 7 (1990) 69–72. doi:10.1136/emj.7.2.69. 

[197] L.A. Pate, J.D. Hamilton, R.S. Park, R.M. Strobel, Evaluation of a saliva alcohol test stick 
as a therapeutic adjunct in an alcoholism treatment program. Journal of Studies on 
Alcohol, 54 (1993) 520–521. doi:10.15288/jsa.1993.54.520. 

[198] A. Penttilä, P.J. Karhunen, J. Pikkarainen, Alcohol screening with the Alcoscan test strip 
in forensic praxis. Forensic Science International, 44 (1990) 43–48. doi:10.1016/0379-
0738(90)90165-U. 

[199] W. Gubala, D. Zuba, Saliva as an alternative specimen for alcohol determination in the 
human body. Polish Journal of Pharmacology, 54 (2002) 161–165. PMID: 12139114. 



Back to the table of contents 

59 

In
tr

o
d

u
ct

io
n

 

 

 

[200] W. Gubala, D. Zuba, Gender differences in the pharmacokinetics of ethanol in saliva 
and blood after oral ingestion. Polish Journal of Pharmacology, 55 (2003) 639–644. 
PMID: 14581724. 

[201] L.H.P. Bueno, R.H.A. da Silva, A.V. Azenha, M.C. de Souza Dias, B.S. De Martinis, Oral 
fluid as an alternative matrix to determine ethanol for forensic purposes. Forensic 
Science International, 242 (2014) 117–122. doi:10.1016/j.forsciint.2014.06.024. 

[202] H. Gjerde, A.S. Christophersen, I.S. Moan, B. Yttredal, J.M. Walsh, P.T. Normann, et al., 
Use of alcohol and drugs by Norwegian employees: a pilot study using questionnaires 
and analysis of oral fluid. Journal of Occupational Medicine and Toxicology, 5 (2010) 
e1–8. doi:10.1186/1745-6673-5-13. 

[203] S. Hegstad, L. Johnsen, J. Morland, A.S. Christophersen, Determination of 
ethylglucuronide in oral fluid by ultra-performance liquid chromatography- tandem 
mass spectrometry. Journal of Analytical Toxicology, 33 (2009) 204–207. 
doi:10.1093/jat/33.4.204. 

[204] O. Beck, A.-C. Olin, E. Mirgorodskaya, Potential of Mass Spectrometry in Developing 
Clinical Laboratory Biomarkers of Nonvolatiles in Exhaled Breath. Clinical Chemistry, 
62 (2016) 84–91. doi:10.1373/clinchem.2015.239285. 

[205] T. Stalder, C. Kirschbaum, Analysis of cortisol in hair – State of the art and future 
directions. Brain, Behavior, and Immunity, 26 (2012) 1019–1029. 
doi:10.1016/j.bbi.2012.02.002. 

[206] G.A.A. Cooper, R. Kronstrand, P. Kintz, Society of Hair Testing guidelines for drug 
testing in hair. Forensic Science International, 218 (2012) 20–24. 
doi:10.1016/j.forsciint.2011.10.024. 

[207] P. Kintz, 2014 consensus for the use of alcohol markers in hair for assessment of both 
abstinence and chronic excessive alcohol consumption. Forensic Science International, 
249 (2015) A1–2. doi:10.1016/j.forsciint.2014.11.001. 

[208] M.E. Albermann, F. Musshoff, L. Aengenheister, B. Madea, Investigations on the 
influence of different grinding procedures on measured ethyl glucuronide 
concentrations in hair determined with an optimized and validated LC-MS/MS 
method. Analytical and Bioanalytical Chemistry, 403 (2012) 769–776. 
doi:10.1007/s00216-012-5926-6. 

[209] R. Kronstrand, L. Brinkhagen, F.H. Nystrom, Ethyl glucuronide in human hair after daily 
consumption of 16 or 32 g of ethanol for 3 months. Forensic Science International, 215 
(2012) 51–55. doi:10.1016/j.forsciint.2011.01.044. 

[210] B. Mönch, R. Becker, I. Nehls, Quantification of Ethyl Glucuronide in Hair: Effect of 
Milling on Extraction Efficiency. Alcohol and Alcoholism, 48 (2013) 558–563. 
doi:10.1093/alcalc/agt059. 

[211] L. Morini, L. Politi, A. Groppi, C. Stramesi, A. Polettini, Determination of ethyl 
glucuronide in hair samples by liquid chromatography/electrospray tandem mass 
spectrometry. Journal of Mass Spectrometry, 41 (2006) 34–42. doi:10.1002/jms.943. 

[212] P. Bendroth, R. Kronstrand, A. Helander, J. Greby, N. Stephanson, P. Krantz, 
Comparison of ethyl glucuronide in hair with phosphatidylethanol in whole blood as 
post-mortem markers of alcohol abuse. Forensic Science International, 176 (2008) 76–
81. PMID: 18023314. 

[213] P. Cabarcos, H.M. Hassan, M.J. Tabernero, K.S. Scott, Analysis of ethyl glucuronide in 
hair samples by liquid chromatography-electrospray ionization-tandem mass 



Back to the table of contents 

60 

In
tr

o
d

u
ct

io
n

 

 

 

spectrometry (LC-ESI-MS/MS). Journal of Applied Toxicology, 33 (2013) 638–643. 
doi:10.1002/jat.1791. 

[214] P. Kintz, M. Villain, E. Vallet, M. Etter, G. Salquebre, V. Cirimele, Ethyl glucuronide: 
Unusual distribution between head hair and pubic hair. Forensic Science International, 
176 (2008) 87–90. doi:10.1016/j.forsciint.2007.08.012. 

[215] V. Pirro, D. Di Corcia, S. Pellegrino, M. Vincenti, B. Sciutteri, A. Salomone, A study of 
distribution of ethyl glucuronide in different keratin matrices. Forensic Science 
International, 210 (2011) 271–277. doi:10.1016/j.forsciint.2011.03.026. 

[216] S.C. Turfus, J. Beyer, D. Gerostamoulos, O.H. Drummer, A comparison of the 
performance of quality controls prepared from spiked, fortified and authentic hair for 
ethyl glucuronide analysis. Forensic Science International, 232 (2013) 60–66. 
doi:10.1016/j.forsciint.2013.07.003. 

[217] L. Imbert, J.-M. Gaulier, S. Dulaurent, J. Morichon, F. Bevalot, P. Izac, et al., Improved 
liquid chromatography-tandem mass spectrometric method for the determination of 
ethyl glucuronide concentrations in hair: Applications to forensic cases. International 
Journal of Legal Medicine, 128 (2014) 53–58. doi:10.1007/s00414-013-0894-8. 

[218] N. Kummer, S.M. Wille, V. Di Fazio, M. del M. Ramírez Fernández, M. Yegles, W.E. 
Lambert, et al., Impact of the Grinding Process on the Quantification of Ethyl 
Glucuronide in Hair Using a Validated UPLC-ESI-MS-MS Method. Journal of Analytical 
Toxicology, 39 (2015) 17–23. doi:10.1093/jat/bku108. 

[219] D. Oppolzer, M. Barroso, E. Gallardo, Determination of ethyl glucuronide in hair to 
assess excessive alcohol consumption in a student population. Analytical and 
Bioanalytical Chemistry, 4 (2015) 1–8. doi:10.1007/s00216-015-9155-7. 

[220] C.L. Crunelle, D. Cappelle, M. Yegles, M. De Doncker, P. Michielsen, G. Dom, et al., 
Ethyl glucuronide concentrations in hair: a controlled alcohol-dosing study in healthy 
volunteers. Analytical and Bioanalytical Chemistry, 408 (2016) 2019–2025. 
doi:10.1007/s00216-015-9117-0. 

[221] F.P. Pragst, M.P. Yegles, Determination of Fatty Acid Ethyl Esters (FAEE) and Ethyl 
Glucuronide (EtG) in Hair: A Promising Way for Retrospective Detection of Alcohol 
Abuse During Pregnancy? Therapeutic Drug Monitoring, 30 (2008) 255–263. 
doi:10.1097/FTD.0b013e318167d602. 

[222] I. Kerekes, M. Yegles, U. Grimm, R. Wennig, Ethyl Glucuronide Determination: Head 
Hair versus Non-Head Hair. Alcohol and Alcoholism, 44 (2009) 62–66. 
doi:10.1093/alcalc/agn096. 

[223] L. Politi, L. Morini, F. Leone, A. Polettini, Ethyl glucuronide in hair: is it a reliable 
marker of chronic high levels of alcohol consumption? Addiction, 101 (2006) 1408–
1412. doi:10.1111/j.1360-0443.2006.01537.x. 

[224] I. Janda, W. Weinmann, T. Kuehnle, M. Lahode, A. Alt, Determination of ethyl 
glucuronide in human hair by SPE and LC-MS/MS. Forensic Science International, 128 
(2002) 59–65. 0379-0738. 

[225] A. Alt, I. Janda, S. Seidl, F.M. Wurst, Determination of ethyl glucuronide in hair 
samples. Alcohol Alcohol, 35 (2000) 313–314. doi:10.1093/alcalc/35.3.313. 

[226] M. Yegles, A. Labarthe, V. Auwärter, S. Hartwig, H. Vater, R. Wennig, et al., 
Comparison of ethyl glucuronide and fatty acid ethyl ester concentrations in hair of 
alcoholics, social drinkers and teetotallers. Forensic Science International, 145 (2004) 
167–173. doi:10.1016/j.forsciint.2004.04.032. 



Back to the table of contents 

61 

In
tr

o
d

u
ct

io
n

 

 

 

[227] B.M.R. Appenzeller, M. Schuman, M. Yegles, R. Wennig, Ethyl glucuronide 
concentration in hair is not influenced by pigmentation. Alcohol and Alcoholism, 42 
(2007) 326–327. doi:10.1093/alcalc/agm016. 

[228] J. Ettlinger, L. Kirchen, M. Yegles, Influence of thermal hair straightening on ethyl 
glucuronide content in hair. Drug Testing and Analysis, 6 Suppl 1 (2014) 74–77. 
doi:10.1002/dta.1648. 

[229] L. Martins Ferreira, T. Binz, M. Yegles, The influence of ethanol containing cosmetics 
on ethyl glucuronide concentration in hair. Forensic Science International, 218 (2012) 
123–125. doi:10.1016/j.forsciint.2011.10.015. 

[230] L. Morini, A. Zucchella, A. Polettini, L. Politi, A. Groppi, Effect of bleaching on ethyl 
glucuronide in hair: An in vitro experiment. Forensic Science International, 198 (2010) 
23–27. doi:10.1016/j.forsciint.2009.11.005. 

[231] F. Sporkert, H. Kharbouche, M.P. Augsburger, C. Klemm, M.R. Baumgartner, Positive 
EtG findings in hair as a result of a cosmetic treatment. Forensic Science International, 
218 (2012) 97–100. doi:10.1016/j.forsciint.2011.10.009. 

[232] B. Mönch, R. Becker, I. Nehls, Determination of ethyl glucuronide in hair: a rapid 
sample pretreatment involving simultaneous milling and extraction. International 
Journal of Legal Medicine, 128 (2014) 69–72. doi:10.1007/s00414-013-0939-z. 

[233] L.C.A.M. Bossers, R. Paul, A.J. Berry, R. Kingston, C. Middendorp, A.J. Guwy, An 
evaluation of washing and extraction techniques in the analysis of ethyl glucuronide 
and fatty acid ethyl esters from hair samples. Journal of Chromatography B, 953–954 
(2014) 115–119. doi:10.1016/j.jchromb.2014.01.049. 

[234] M.E. Albermann, F. Musshoff, B. Madea, Comparison of ethyl glucuronide (EtG) and 
fatty acid ethyl esters (FAEEs) concentrations in hair for testing abstinence. Analytical 
and Bioanalytical Chemistry, 400 (2011) 175–181. doi:10.1007/s00216-010-4443-8. 

[235] F.M. Wurst, S. Alexson, M. Wolfersdorf, G. Bechtel, S. Forster, C. Alling, et al., 
Concentration of fatty acid ethyl esters in hair of alcoholics: comparison to other 
biological state markers and self reported-ethanol intake. Alcohol and Alcoholism, 39 
(2004) 33–38. doi:10.1093/alcalc/agh005. 

[236] M. Hastedt, M. Büchner, M. Rothe, R. Gapert, S. Herre, F. Krumbiegel, et al., Detecting 
alcohol abuse: traditional blood alcohol markers compared to ethyl glucuronide (EtG) 
and fatty acid ethyl esters (FAEEs) measurement in hair. Forensic Science, Medicine, 
and Pathology, 9 (2013) 471–477. doi:10.1007/s12024-013-9416-8. 

[237] S. Hartwig, V. Auwarter, F. Pragst, Effect of hair care and hair cosmetics on the 
concentrations of fatty acid ethyl esters in hair as markers of chronically elevated 
alcohol consumption. Forensic Science International, 131 (2003) 90–97. 
doi:10.1016/S0379-0738(02)00412-7. 

[238] S. Suesse, M. Blueml, F. Pragst, Effect of the analyzed hair length on fatty acid ethyl 
ester (FAEE) concentrations in hair – Is there congruence of cut-offs for 0–3 and 0–
6 cm hair segments? Forensic Science International, 249 (2015) 1–5. 
doi:10.1016/j.forsciint.2014.11.020. 

[239] J. Gareri, C. Rao, G. Koren, Examination of sex differences in fatty acid ethyl ester and 
ethyl glucuronide hair analysis. Drug Testing and Analysis, 6 (2014) 30–36. 
doi:10.1002/dta.1653. 

[240] V. Auwärter, F. Sporkert, S. Hartwig, F. Pragst, H. Vater, A. Diefenbacher, Fatty Acid 
Ethyl Esters in Hair as Markers of Alcohol Consumption. Segmental Hair Analysis of 



Back to the table of contents 

62 

In
tr

o
d

u
ct

io
n

 

 

 

Alcoholics, Social Drinkers, and Teetotalers. Clinical Chemistry, 47 (2001) 2114–2123. 
PMID: 11719475. 

[241] S. Hartwig, V. Auwärter, F. Pragst, Fatty Acid ethyl esters in scalp, pubic, axillary, beard 
and body hair as markers for alcohol misuse. Alcohol and Alcoholism, 38 (2003) 163–
167. doi:10.1093/alcalc/agg046. 

[242] J. Gareri, B. Appenzeller, P. Walasek, G. Koren, Impact of hair-care products on FAEE 
hair concentrations in substance abuse monitoring. Analytical and Bioanalytical 
Chemistry, 400 (2011) 183–188. doi:10.1007/s00216-011-4685-0. 

[243] P. Kintz, D. Nicholson, Testing for ethanol markers in hair: Discrepancies after 
simultaneous quantification of ethyl glucuronide and fatty acid ethyl esters. Forensic 
Science International, 243 (2014) 44–46. doi:10.1016/j.forsciint.2014.03.012. 

[244] M. Hastedt, S. Herre, F. Pragst, M. Rothe, S. Hartwig, Workplace Alcohol Testing 
Program by Combined Use of Ethyl Glucuronide and Fatty Acid Ethyl Esters in Hair. 
Alcohol and Alcoholism, 47 (2012) 127–132. doi:10.1093/alcalc/agr148. 

[245] V. Kulaga, Y. Velazquez-Armenta, K. Aleksa, Z. Vergee, G. Koren, The Effect of Hair 
Pigment on the Incorporation of Fatty Acid Ethyl Esters (FAEE). Alcohol and 
Alcoholism, 44 (2009) 287–292. doi:10.1093/alcalc/agn114. 

[246] J. Jones, M. Jones, C. Plate, D. Lewis, M. Fendrich, L. Berger, et al., Liquid 
Chromatography-Tandem Mass Spectrometry Assay to Detect Ethyl Glucuronide in 
Human Fingernail: Comparison to Hair and Gender Differences. American Journal of 
Analytical Chemistry, 3 (2012) 83–91. doi:10.4236/ajac.2012.31012. 

[247] L. Morini, M. Colucci, M.G. Ruberto, A. Groppi, Determination of ethyl glucuronide in 
nails by liquid chromatography tandem mass spectrometry as a potential new 
biomarker for chronic alcohol abuse and binge drinking behavior. Analytical and 
Bioanalytical Chemistry, 402 (2012) 1–6. doi:10.1007/s00216-011-5609-8. 

[248] L. Berger, M. Fendrich, J. Jones, D. Fuhrmann, C. Plate, D. Lewis, Ethyl glucuronide in 
hair and fingernails as a long-term alcohol biomarker. Addiction, 109 (2014) 425–431. 
doi:10.1111/add.12402. 

[249] L. Morini, E. Marchei, L. Tarani, M. Trivelli, G. Rapisardi, M.R. Elicio, et al., Testing 
Ethylglucuronide in Maternal Hair and Nails for the Assessment of Fetal Exposure to 
Alcohol: Comparison With Meconium Testing. Therapeutic Drug Monitoring, 35 (2013) 
402–407. doi:10.1097/FTD.0b013e318283f719. 

[250] D. Cappelle, H. Neels, M. Yegles, E. Fransen, K. Dueffels, S. Bremenfeld, et al., Ethyl 
glucuronide in nails: method validation, influence of decontamination and 
pulverization, and particle size evaluation. Forensic Toxicology, 34 (2016) 158–165. 
doi:10.1007/s11419-015-0302-9. 

[251] Belgian Royal Decree, Law on police traffic (1968031601), 1968. Available from: 
http://www.ejustice.just.fgov.be/cgi_loi/change_lg.pl?language=fr&la=F&cn=1968031
631&table_name=loi (accessed April 28, 2016). 

[252] Belgian Royal Decree, Annexe 14 of the driver’s licence regulation (2006014056), 
2006. Available from: http://www.ejustice.just.fgov.be/doc/rech_f.htm (accessed 
April 28, 2016). 

[253] Belgian Royal Decree, Driver’s licence regulation (1998014078), 1998. Available from: 
http://www.ejustice.just.fgov.be/doc/rech_f.htm (accessed April 28, 2016). 

[254] European Communities, Directive 2006/126/EC of the European Parliament and of the 
Council of 20 December 2006 on driving licences. (2006). Available from: http://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=celex:32006L0126 (accessed April 28, 2016). 



Back to the table of contents 

63 

In
tr

o
d

u
ct

io
n

 

 

 

[255] B.M.R. Appenzeller, S. Schneider, A. Maul, R. Wennig, Relationship between blood 
alcohol concentration and carbohydrate-deficient transferrin among drivers. Drug and 
Alcohol Dependence, 79 (2005) 261–265. doi:10.1016/j.drugalcdep.2005.01.017. 

[256] F. Bortolotti, F. Tagliaro, F. Cittadini, R. Gottardo, M. Trettene, M. Marigo, 
Determination of CDT, a marker of chronic alcohol abuse, for driving license issuing: 
immunoassay versus capillary electrophoresis. Forensic Science International, 128 
(2002) 53–58. doi:10.1016/S0379-0738(02)00153-6. 

[257] B. Liniger, A. Nguyen, A. Friedrich-Koch, M. Yegles, Abstinence Monitoring of 
Suspected Drinking Drivers: Ethyl Glucuronide in Hair Versus CDT. Traffic Injury 
Prevention, 11 (2010) 123–126. doi:10.1080/15389580903518280. 

[258] F.M. Wurst, M. Yegles, C. Alling, S. Aradottir, J. Dierkes, G. Wiesbeck, et al., 
Measurement of direct ethanol metabolites in a case of a former driving under the 
influence (DUI) of alcohol offender, now claiming abstinence. International Journal of 
Legal Medicine, 122 (2008) 235–239. doi:10.1007/s00414-007-0218-y. 

[259] R. Agius, T. Nadulski, H.G. Kahl, B. Dufaux, Ethyl glucuronide in hair - A highly effective 
test for the monitoring of alcohol consumption. Forensic Science International, 218 
(2012) 10–14. doi:10.1016/j.forsciint.2011.10.007. 

[260] A. Schröck, A. Hernández Redondo, M. Martin Fabritius, S. König, W. Weinmann, 
Phosphatidylethanol (PEth) in blood samples from “driving under the influence” cases 
as indicator for prolonged excessive alcohol consumption. International Journal of 
Legal Medicine, 130 (2016) 393–400. doi:10.1007/s00414-015-1300-5. 

[261] P. Marques, S. Tippetts, J. Allen, M. Javors, C. Alling, M. Yegles, et al., Estimating driver 
risk using alcohol biomarkers, interlock blood alcohol concentration tests and 
psychometric assessments: initial descriptives. Addiction, 105 (2010) 226–239. 
doi:10.1111/j.1360-0443.2009.02738.x. 

[262] S. Boets, U. Meesmann, S. Klipp, B. Bukasa, U. Wenninger, S. Rösner, et al., State of 
the Art on Driver Rehabilitation: Literature Analysis & Provider Survey. (2008). 
Available from: http://www.druid-project.eu/Druid/EN/deliverales-
list/downloads/Deliverable_5_1_1.html?nn=613800 (accessed April 28, 2016). 

[263] B.L. Soderberg, R.O. Salem, C.A. Best, J.E. Cluette-Brown, M. Laposata, Fatty acid ethyl 
esters. Ethanol metabolites that reflect ethanol intake. American Journal of Clinical 
Pathology, 119 (2003) S94–99. doi:10.1309/6F39-EAR2-L4GY-X5G6. 

[264] H. Stibler, Carbohydrate-deficient transferrin in serum: a new marker of potentially 
harmful alcohol consumption reviewed. Clinical Chemistry, 37 (1991) 2029–2037. 
PMID: 1764777. 





Back to the table of contents 

   

 

    Chapter 2  

Current situation, objectives and 

structure 

 

 

 

 

 

 

 

 

 

  



Back to the table of contents 

66 

C
u

rr
e

n
t 

si
tu

at
io

n
, o

b
je

ct
iv

es
 a

n
d

 s
tr

u
ct

u
re

 

 

 

The Belgian driver’s licence regranting regulation states two important facts regarding 

alcohol consumption and driving. First, an alcohol dependent person or a person who cannot 

stay abstinent while driving is not fit to drive; second, a person with a deprivation to the 

right to drive, who has been declared alcohol dependent, has to prove an abstinence period 

of minimum 6 months to regrant his driver’s licence. 

To date, the abstinence period is monitored using administrative documents (e.g. attestation 

of alcohol withdrawal, letter from a psychologist) and the procedure to assess the fitness to 

drive is based on a psychological and medical assessment, which can -but doesn’t have to- 

include a blood analysis. In Belgium, if a blood analysis is included in the medical assessment 

by the physician deciding about the fitness to drive, the blood sampling itself is not 

performed by this physician. Instead, the volunteer is asked to visit a sampling centre or his 

family doctor to perform the venepuncture. Blood samples are then sent to an authorised 

laboratory for analysis. Hence, the current process implies an invasive sampling and may 

result in a long time period between the blood analysis request and the final decision. In 

addition, the chain of custody is not guaranteed during the whole process. Another 

drawback of the process currently used in Belgium, is the compounds targeted. As in many 

European countries, indirect biomarkers of ethanol consumption are used to monitor 

(cessation of) alcohol abuse in case of a driver’s licence regranting process. These include 

carbohydrate deficient transferrin (CDT%), gamma-glutamyltransferase (GGT), aspartate 

aminotransferase/alanine aminotransferase (AST/ALT) and mean corpuscular volume (MCV) 

[1–6]. These markers reflect the indirect effects of ethanol on the body, via its interference 

with glycosylation (increased CDT%), with liver function (increased GGT, ALT, AST) and its 

effect on the size of red blood cells (increased MCV). Because of a lack of sensitivity and 

specificity [7], these analyses are unable to detect all cases of chronic and excessive alcohol 

consumption (as seen in persons with alcohol dependence) and are not adapted to evaluate 

strict alcohol abstinence periods either.  

For all these reasons, the aim of this thesis was to select, develop and test alternative 

methods for quantification of direct biomarkers of ethanol consumption, allowing the 

detection of excessive and chronic alcohol consumption and the monitoring of abstinence 

periods, thereby using samples that can be obtained via non- or minimally invasive 

sampling. 

http://en.wikipedia.org/wiki/Aspartate_aminotransferase
http://en.wikipedia.org/wiki/Aspartate_aminotransferase
http://en.wikipedia.org/wiki/Alanine_aminotransferase
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For those purposes, a literature search has been performed (Chapter 1) and has shown that 

apart from the ‘classical’ methods currently used to monitor (excessive) alcohol 

consumption (e.g. ethanol in blood, breath and urine; EtG, EtS, FAEEs and PEths in blood 

and/or urine; and CDT%, GGT, ALT, AST and MCV in blood or serum), ‘alternative’ sampling 

strategies (e.g. dried blood spots; dried urine spots; sweat and skin surface lipids; oral fluid; 

exhaled breath; hair and nail) were available. 

Methods based on dried urine spots (DUSs) are rare and have been developed to improve 

the stability of compounds (e.g. EtG and EtS) and to simplify the storage and transfer of 

samples. The analysis of compounds in dried blood spots (DBSs) could offer the same 

advantages of DUSs regarding the transfer/storage of samples and stability of compounds 

(e.g. CDT%, EtG, EtS and PEths), and in case of capillary DBS (C-DBS), would offer in addition 

a minimally invasive sampling approach that may be performed by minimally trained staff 

members. The same cut-off values that have been established for the interpretation of urine 

and blood results can be used for the interpretation of DUS and DBS results if a good 

agreement between results from the two methods has been demonstrated. To ensure the 

reliability of C-DBS methods, it is needed to include specific parameters into the validation 

process, such as hematocrit, punch localisation and volume effects. The measurement of 

ethanol with an electrochemical device, worn during a defined period of time, and of 

ethanol, EtG or FAEEs in sweat/skin surface lipids accumulated on a patch, offers an 

interesting approach to monitor an alcohol abstinence period. The similar pharmacokinetics 

of ethanol in oral fluid and blood would allow oral fluid to be an alternative matrix to blood 

to detect subjects under the influence of alcohol. An important limitation remains the short 

detection time of ethanol and EtG in oral fluid. The quantification of PEths in exhaled breath 

has been proposed as a promising non-invasive method to detect moderate to heavy 

drinking and is to date an interesting research field that is only starting to be explored. 

Quantification of EtG and FAEEs in hair provides long-term information about alcohol 

consumption prior to the sampling. The possible segmental analysis of hair samples -though 

not routinely implemented- might offer interesting insights into a drinking pattern. Nail, like 

hair a keratinised matrix, also offers the advantage of accumulating compounds (e.g. EtG).  
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Within the framework of this thesis, we have decided to work with hair samples instead of 

nails or sweat/skin surface lipids samples (which also offer the advantage to store 

compounds) for different reasons. First there is ample literature about the quantification of 

EtG and FAEEs in hair, whereas there is only a limited number of reports about EtG in nails or 

ethanol and EtG in sweat or FAEEs in skin surface lipids. Although scientific literature 

provides plenty of reliable information about analytical methods, sample preparation and 

interpretation issues for hair analysis, several issues (e.g. segmental analysis, impact of the 

decontamination and pulverisation, impact of nutritional components, drugs, genetic 

polymorphisms, and diseases on the metabolism) remain and should be studied further. In 

addition, sweat/skin surface lipids accumulation in patches or measurement with an 

electrochemical device requires a patch/device to be worn for several days, whereas nails 

and hair naturally accumulate compounds and so only require one sampling. In addition, 

because the incorporation of compounds into nails occurs horizontally (nail matrix) and 

vertically (nail bed), the relation between the detected concentration and the alcohol 

consumption pattern is challenging. Last but not least, the possible segmental analysis of 

hair samples can be very interesting to infer a drinking pattern. EtG and FAEEs are the two 

possible analytes of interest that can be analysed in hair to monitor alcohol consumption. In 

this study, we have chosen for the analysis of EtG for three main reasons. First, the SoHT 

states that “EtG should be the first choice in abstinence assessment” [8]. Second, EtG has a 

higher sensitivity and specificity to detect excessive and chronic alcohol consumption than 

FAEEs when measured in hair [9]. Third, FAEEs are subject to post-collection synthesis after 

exposure to ethanol vapour [10] and to false positive results when using popular 

ethanol/FAEEs containing cosmetic products [11]. 

Amongst the other methods based on the analysis of direct biomarkers of ethanol (EtG, EtS, 

PEths and FAEEs), we selected those with long detection windows in body fluids. Knowing 

that in persons with chronic and excessive alcohol consumption in detoxification, the 

detection time is up to 28 days for PEths in blood, up to 5 days for EtG/EtS in urine, up to 4 

days for FAEEs in blood, up to 40 hours for EtG/EtS in blood, and up to 11.5 hours for EtG in 

saliva, we decided to develop methods for the quantification of PEths in blood (and DBSs) 

and EtG/EtS in urine.  
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The first method described in this work is the quantification of EtG and EtS in urine. This 

method offers the advantage, compared to the other methods selected, that it is able to 

detect the consumption of a single dose of alcohol. This is highly relevant in case of 

monitoring alcohol abstinence. Chapter 3 presents the development and validation of this 

method and its application to a small population study. 

The second method described in this work is the quantification of EtG in hair. Special 

attention was paid to optimise the sample preparation (solid-phase extraction). The 

influence of the grinding process on the final quantitative result was studied. The 

development, validation and application of this method are presented in Chapter 4.  

A third series of methods described in this work relate to the quantification of PEth species 

in blood and DBS (venous and capillary). The development and the validation of these 

methods are presented in Chapter 5. In addition, the agreement between the quantitative 

results from the analysis of whole blood, V-DBS and C-DBS was tested via a population study. 

Based upon this, a cut-off value to distinguish between inpatients on alcohol withdrawal and 

control volunteers was suggested.    

To evaluate the potential added-value of our three-tiered approach to monitor the 

abstinence period, to detect the presence of chronic and excessive alcohol consumption 

and/or to infer information about the evolution of alcohol consumption, these three 

validated methods were applied to 50 volunteers, for whom fitness to drive had to be 

assessed. Results obtained from the quantification of EtG and EtS in urine, EtG in hair and 

PEths in C-DBS were compared with currently used indirect biomarkers (CDT%, GGT, ALT, 

AST and MCV), with a psychological test (AUDIT) and with the final decision concerning the 

fitness to drive. This population study is presented in Chapter 6. 

The broader international context, the relevance and the future perspectives of this 

research are presented in Chapter 7. While Chapters 3, 4 and 5 are primarily analytically 

oriented, Chapter 7 also discusses limitations and advantages related to the compounds and 

matrices chosen. A general conclusion is formulated in Chapter 8. 
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Abstract 

A method for the quantification of ethyl glucuronide (EtG) and ethyl sulfate (EtS) in human 

urine was developed and fully validated according to international guidelines. Protein 

precipitation with methanol was chosen as sample preparation and EtG-d5 and EtS-d5 were 

used as internal standards. The method was developed and validated on an Acquity UPLC® 

coupled to a Xevo TQ MS tandem mass spectrometer using a CSH C18 column. The method 

was linear (1/x for EtG and 1/x2 for EtS) from 100 (LLOQ) to 10000 ng/mL for both analytes. 

Acceptable accuracy and precision were demonstrated (%bias < 13 %, %RSDr < 7, %RSDt < 

10 %)). A matrix effect (expressed as % recovery) between 76 and 84 % was observed for EtG 

and no significant matrix effect (< 12 %) was measured for EtS. The extraction efficiency was 

between 76 and 81 % (%RSD < 14 %). EtG and EtS were stable up to 11 days in the original 

sampling device (4°C) and after three freeze/thaw cycles and up to 2 months when stored in 

Greiner bio-one tubes (-20°C and 4°C). Moreover, EtG and EtS extracts were stable in the 

autosampler during 72 h (4°C). EtG100 and EtS100 concentrations were calculated by 

normalising the measured EtG and EtS to a creatinine concentration of 100 mg/dL. The 

developed and fully validated method was transferred to another UPLC®-MS/MS system 

(composed of a Xevo TQ S tandem mass spectrometer) and partially revalidated (%bias < 

12 %, %RSDr < 5 %, %RSDt < 9 %). The reproducibility on both systems has been evaluated by 

successful (Z-score < 2) participation in proficiency tests.  

The measurement uncertainties (%U=2.12*%RSDt) at the LLOQ (%U = 21 % for EtG and %U = 

8 % for EtS) were used to interpret quantitative results close to the LLOQ. Concentrations 

above or equal to 121 ng/mL for EtG100 and 108 ng/mL for EtS100 (LLOQ + %U) were used to 

suggest alcohol intake the days prior to the sampling and to disprove strict abstinence. 

These decision limits were tested by analysing urine samples obtained from twenty-seven 

volunteers whose alcohol consumption was monitored during the 5 days before sampling.  
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3.1 Introduction 

Ethyl glucuronide (EtG) and ethyl sulfate (EtS) are two specific metabolites of ethanol, 

respectively generated by conjugation with UDP-glucuronic acid [1] and 3’-

phosphoadenosine 5’-phosphosulfate [2]. 

Quantification of EtG and EtS in urine is used to detect recent alcohol consumption. These 

biomarkers extend the detection window relative to blood ethanol measurement and, 

compared to long term biomarkers, allow the detection of drinking of small quantities. This 

permits to monitor alcohol consumption during withdrawal treatment [3,4] or for workplace 

testing [5,6]. As presented in Section 1.4, several countries -such as Italy [7] and Germany 

[8,9]- have integrated the quantification of EtG and EtS in urine into their driver’s licence 

regranting program to monitor the abstinence period. In post-mortem cases, the detection 

of EtG and EtS in urine is useful to distinguish between ante-mortem alcohol intake and 

post-mortem formation of ethanol [10–12].  

EtG and EtS are detectable in urine up to 24 h after intake of 0.25 g/kg ethanol and up to 48 

h after intake of 0.50 g/kg ethanol [2,13–18]. After alcohol intoxication, they can be detected 

in urine during a few days. EtG is eliminated with a half-life of 2.5 h [1,13]. After 

consumption of alcohol and depending on the amount of consumed alcohol, urinary 

concentrations of EtG and EtS can vary from some µg/mL [11,18–21] to hundreds of µg/mL 

[13,15,17,21–23]. Urine samples from alcohol-dependent patients during detoxification can 

reach EtG concentrations up to 1240 µg/mL [1,2,4,24] and EtS concentrations up to 264 

µg/mL [2].  
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Due to the possibility of finding EtG and EtS in urine even without consumption of alcoholic 

beverages (Table 3.1) [18,19,25–30], a cut-off limit is generally used to avoid false positive 

results. Cut-offs are not fixed yet in international guidelines and the ones currently used vary 

between 50 and 1100 ng/mL [7,9]. Urine analysis of teetotallers (which are persons who 

practise abstinence from alcohol) shows no EtG [1,31] and no EtS [32] above 100 ng/mL.

   

Compounds Ethanol content  Max. concentration (ng/mL) Ref. 

 (Amount consumed/used) EtG EtG  

Non-alcoholic beer 3.6 g/L (2-3 L) 512 169 [18] 

Non-alcoholic beer 3.1-3.2 g/kg (2.5 L) 870 70 [19] 

Non-alcoholic wine* 0.2% (7.5 dL) <LOD1 2150 [26] 

Sauerkraut 2 g/kg (0.8-1.3 kg) 200 55 [18] 

Appel juice 0.1-0.4 g/L (1.1-2 L) <LLOQ2 <LLOQ2 [18] 

Grape juice** 0.3-1.8 g/L (1.5-2 L) <LLOQ2 648 [18] 

Bananas (peeled) 5 g/kg (670-690 g) 120 55 [18] 

Yeast/sugar 21-42 g / 50 g  670 1410 [28] 

Mouthwash 21.6% (120 mL over 5 min) <LOD1 <LOD3 [26] 

Mouthwash 12% (118 mL over 15 min) 341 Not tested [27] 

Hand sanitiser 62% (every 15 min)4 62 Not tested [25] 

Hand antisepsis 96% (32 times, 3-4 mL)5 958 Not tested [30] 

E-cigarettes 23.5% (puffing) 3716  Not tested [29] 

Table 3.1 Maximum EtG and EtS concentrations, which are not due to ethanol consumption, detected in urine. 
1 LLOQ = 170 ng/mL, 2 LLOQ = 19 ng/mL., 3 LLOQ = 60 ng/mL, 4 hand sanitiser applied every 15 min throughout a 
workday, 5 hand antisepsis procedure performed by health care workers during 8-hour clinical work, 6 mean 
concentration (N=3), * containing 3.0 mg/L EtG and 1.5 mg/L EtS, ** containing EtS. 

 

The most commonly applied technique for quantification of EtG and EtS in urine is liquid 

chromatography coupled to mass spectrometry (LC-MS) [4,13] or coupled with tandem mass 

spectrometry (LC-MS/MS) [1,7,11,12,17,26,32–35] in combination with simple dilution or 

protein precipitation as sample preparation. A few methods have been published using gas 
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chromatography coupled to mass spectrometry [3,31,36,37] or capillary zone 

electrophoresis [38–41] for the analysis of EtG and EtS in urine or serum.   

To decrease matrix effects, especially for EtS, sample preparation should be adapted. 

Dilution of urine is the easiest ‘sample preparation’ method, however, high matrix effects 

and higher instrument maintenance can be problematic in routine analysis. Even with a 1/20 

dilution, relevant matrix effects were observed at low concentrations [32]. Liquid-liquid 

extraction (LLE) and solid-phase extraction (SPE) are conventional sample preparation 

techniques for non-volatile compounds. Due to the highly polar and acidic character of EtG 

and EtS in combination with a different acidic strength, the development of LLE and SPE is, 

however, not straightforward. Protein precipitation can be an alternative clean-up method 

for this type of analytes [12,17–19], if the matrix effects are carefully monitored. No matrix 

effects were reported after protein precipitation [12] using an LC system coupled with ion 

trap MS.  

Reversed-phase (RP) chromatography used with negative electrospray ionisation mode (ESI-) 

is the most commonly used approach [1,4,11,13,17,23,26,33,35,42]. The retention of very 

polar acidic compounds, such as EtG (pKa estimated between 2.84 and 3.21 [11,43,44]) and 

EtS (pKa estimated at -3.14 [11]), is achieved in RP only under highly aqueous conditions. As 

highly aqueous conditions might not be optimal for ESI ionisation, post-column addition of 

an organic modifier is used to enhance the ionisation of compounds, to improve sensitivity. 

A chromatographic possibility to improve the retention is to use a normal-phase column [12] 

or another specific column with particular retention behaviour [11]. Nevertheless, normal-

phase chromatography is known to provide variable retention times [45]. The use of no-

discharge atmospheric pressure chemical ionisation (ND-APCI) [7] or APCI [32] represents 

another solution to increase the ionisation and so to improve the limit of quantification.  

According to international guidelines, forensic analysis by MS/MS in multiple reaction 

monitoring (MRM) mode requires the detection of minimum two transitions for each 

compound; one for identification and one for quantification [35,46]. When LC-MS is used, 

three characteristic ions are required. Sometimes it is difficult to find a second transition for 

EtS using LC-ESI-MS/MS [12,33], because of the low intensity of the second transition and 

the presence of interfering compounds in urine. 
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Low limits of quantification have been reported using an LC-MS/MS system coupled with ion 

trap MS [7,11,12,47]. Using LC-ESI-MS/MS systems equipped with a triple quadrupole, only 

one published method [19] has reported an LLOQ at 100 ng/mL for EtG and EtS. 

Unfortunately, no details of the method validation are given in that publication.  

While several LC-MS(/MS) methods have been described for the quantification of EtG and 

EtS in urine, most of these are not fully validated (following all criteria for chromatographic 

assays), especially regarding the measurement of accuracy and precision with external and 

certified quality controls. Moreover, to our knowledge, to date, only two published reports 

[47,48] have evaluated the reproducibility of the method by participation to interlaboratory 

tests.  

This chapter describes and discusses the development of a method for the quantification of 

EtG and EtS in urine and presents the results of the validation using two UPLC®-ESI-MS/MS 

systems, with as tandem mass spectrometer either a Xevo TQ MS or a Xevo TQ S. A 

prospective study, based on 27 volunteers declaring their daily alcohol consumption, was 

performed to evaluate the sensitivity and specificity of the method to detect alcohol intake.  

3.2 Experimental 

3.2.1 Chemicals 

Ethyl glucuronide (EtG), ethyl sulfate (EtS) and their pentadeuterated analogues (EtG-d5 and 

EtS-d5) were obtained from Sigma-Aldrich (Steinheim, Germany) as a methanolic 1 mg/mL 

solution. ULC/MS grade acetonitrile, methanol and 0.1% formic acid in water were 

purchased from Biosolve (Valkenswaard, The Netherlands). Blank urine was purchased from 

Bio-Rad Laboratories (Nazareth Eke, Belgium).  

3.2.2 Standard Solutions, Calibrators and Quality Control Samples (QC) 

Two stock solutions, one for calibration (Cal-Stock) and one for the internal quality controls 

(QC-Stock), with EtG and EtS each at a concentration of 20 µg/mL were prepared in 

methanol. The stock solution with internal standards (IS-Stock) each at a concentration of 4 

µg/mL was prepared in methanol. All solutions were stored at -18°C. 

Daily calibration working solutions (Cal-WS) with concentrations of EtG and EtS each at 100, 

5000 and 10000 ng/mL were prepared by diluting the Cal-Stock solution. Calibrators were 

prepared by spiking 30 µL of the IS-Stock solution to 50 µL of commercial blank urine, an 
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adequate amount of Cal-WS solution, and methanol until a total volume of 280 µL was 

reached. 

Daily quality control working solutions (QC-WS) with concentrations of 0.5 and 5 µg/mL were 

prepared by diluting the QC-Stock solution. Internal quality controls (300, 4000 and 7500 

ng/mL) were prepared by spiking 30 µL of IS-Stock solution to 50 µL of commercial blank 

urine, an adequate amount of QC-WS solution and methanol until a total volume of 280 µL. 

External quality controls Medidrug ETG 1/10-B, Medidrug ETG 2/09-B, Medidrug ETG 3/10-B, 

Medidrug ETG 2/12-B were purchased from Medichem (Steinenbronn, Germany). 

Proficiency tests for EtG and EtS in urine organised by the German Society of Toxicological 

and Forensic Chemistry (GTFCh), were performed between 2011 and 2015. 

3.2.3 Sample preparation 

Methanol (250 µL) and 30 µL of the IS-Stock solution (4 µg/mL) were added to 50 µL of urine. 

After precipitation, the sample was centrifuged at 14000 rpm (20800 g) during 10 min at 4°C. 

250 µL of the supernatant was transferred to a total recovery glass vial (Waters, Zellik, 

Belgium), which is a vial -containing an interior sharp bottom- specifically designed to allow 

analysis of all volume available, and evaporated to dryness under a stream of nitrogen using 

a heated metal block at 38°C. The residue was reconstituted in 300 µL of 0.1 % formic acid in 

water. 

To ensure a reliable quantification of samples having a concentration of EtG or EtS above the 

upper calibrators, an additional 1/1000 dilution was systematically performed for each 

authentic sample. 

3.2.4 Liquid chromatography and mass spectrometry conditions 

Separation was performed on an Acquity UPLC® system (Waters, Manchester, UK) equipped 

with an electrospray ionisation (ESI) source operated in negative mode. Gradient elution was 

performed on an Acquity UPLC® CSH C18 (2.1 x 100 mm, 1.8 µm) column (Waters, Milford, 

MA, USA) with 0.1 % formic acid in water (A) and acetonitrile (B) at a flow rate of 300 

µL/min. The gradient elution started with 99.3 % of solution A for 2.4 min, decreasing to 

40 % of solution A at 3.0 min, and to 20 % of solution A at 4.4 min. The washing step 

contained only 2 % of solution A and was held from 4.41 to 5.40 min. The initial condition 

was applied from 5.41 min to 7 min. The column temperature was set at 55°C. The injection 
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volume was 5 µL using full-loop mode. Post-column addition of acetonitrile was performed 

at 400 µL/min.   

ESI source parameters specific to each mass spectrometer were used. For the Xevo TQ MS 

mass spectrometer, cone gas flow (nitrogen) was 40 L/h, desolvation gas flow (nitrogen) was 

900 L/h at 650°C, collision gas flow (argon) was 0.35 mL/min and capillary voltage was 1 KV. 

For the Xevo TQ S mass spectrometer, cone gas flow (nitrogen) was 150 L/h, desolvation gas 

flow (nitrogen) was 1000 L/h at 650°C, collision gas flow (argon) was 0.15 mL/min and 

capillary voltage was 0.8 kV.  

Detection was performed in the MRM mode using the appropriate parameters for each 

compound and each mass spectrometer (Table 3.2). Two product ions were monitored for 

EtG and EtS; a quantifier ion for the quantification and a qualifier to confirm the 

identification. For the ISs, only one ion was used. The chemical structure of the precursor ion 

and the two product ions for EtG and EtS are represented in Figure 3.1.  

  Xevo TQ MS / Xevo TQ S 

  Precursor/product 

ion (m/z) 

Dwell time 

(s) 

 Cone voltage 

(V) 

Collision energy 

(eV) 

EtG (Quantifier) 221/75 0.11/0.11  30/40 22/15 

EtG (Qualifier) 221/85 0.11/0.11  30/40 24/15 

EtG-d5 226/85 0.19/0.11  28/30 30/15 

EtS (Quantifier) 125/80 0.11/0.11  26/50 26/20 

EtS (Qualifier) 125/97 0.11/0.11  26/50 18/13 

EtS-d5 130/98 0.11/0.11  28/45 18/15 

Table 3.2 MRM transitions and conditions for EtG, EtS and their deuterated analogues. 

 

 

Figure 3.1 Chemical structure of EtG (upper) and EtS (lower) and of their two product ions (red), with the 
transition (precursor ion / product ion) used. MW: molecular weight. 



Back to the table of contents 

79 

Q
u

an
ti

fi
ca

ti
o

n
 o

f 
Et

G
 a

n
d

 E
tS

 in
 u

ri
n

e
 

 

 

 

EtG and EtS mass spectra, extracted from the total ion current plot obtained after the 

analysis of a urine sample using a Xevo TQ MS mass spectrometer operating in the scan 

mode, are presented in Figure 3.2. 

 
Figure 3.2 Mass spectrum extracted at 2.4 min (upper) and 3.8 min (lower) from total ion current plot obtained 
after the analysis of a urine sample spiked with EtG and EtS at 7500 ng/mL. Analysis was performed using a 
Xevo TQ MS mass spectrometer operating in the scan mode. Precursor and product ions (inside the enlarged 
area) are indicated.      
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3.2.5 Method validation 

Selectivity, sensitivity, matrix effects, extraction efficiency, limit of detection (LOD), lower 

limit of quantification (LLOQ), linearity, accuracy, precision and stability were evaluated 

according to international guidelines [49].  

To evaluate possible endogenous interferences, six blank urine samples from different 

individuals were analysed. To verify that there were no isotope exchange reactions with non-

labelled compounds, two zero samples (blank urine spiked with internal standard) were 

analysed. According to the EMA guideline [49], interferences are acceptable in our type of 

method as long as the response of the interfering peak remains lower than 20 % of the 

response at the LLOQ.  

Matrix effects expressed as % recovery (%ME) were quantified and evaluated using the post-

extraction addition technique [50]. To this end, six blank urine samples from different 

persons were spiked after sample preparation and compared with compounds spiked at the 

same theoretical concentration in the mobile phase. Extraction efficiency (%EE) was 

evaluated by comparing responses of six blank urine samples spiked before sample 

preparation with responses of six blank urine samples spiked after sample preparation. 

These experiments were done at low (300 ng/mL), medium (4000 ng/mL) and high (7500 

ng/mL) concentration. 

The limit of detection (LOD) was determined by analysing decreasing concentrations of the 

analytes (40, 60 and 80 ng/mL, respectively). The LOD was defined as the lowest 

concentration of the analyte for which the signal-to-noise ratio of both transitions was at 

least 3/1.  

The LLOQ is the lowest concentration of an analyte with a signal-to-noise ratio greater than 

10/1 for both transitions and for which the accuracy (%bias) and precision (%RSD) were less 

than 20 %. Other identification criteria, such as a stable ion ratio (%RSD < 20 %) between the 

quantifier and the qualifier also had to be reached. 

The calibration model (N=6) was tested over the range 100 (LLOQ) to 10000 ng/mL. 

Calibration model and weighting factor were evaluated for each compound. The goodness of 

fit was established as the difference between the calculated calibrator value and its nominal 

value. The %RSD should be lower than 15 % except for the LLOQ (< 20 %).  
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Accuracy (%bias) and precision (repeatability (%RSDr) and intermediate precision (%RSDt) 

were measured analysing QCs. Three internal quality controls (QCs) at low (300 ng/mL), 

medium (4000 ng/mL) and high (7500 ng/mL) concentrations and two external QCs were 

analysed in replicates on 8 different days. One-way ANOVA test with significance level (α) of 

0.05 allows to calculate bias, repeatability and intermediate precision with these data (see 

the Appendix 2 for more explanation). The results were acceptable when they were less than 

15 % (20 % for the LLOQ). The reproducibility was evaluated by participation in proficiency 

tests organised by GTFCh. The measurement uncertainty was also calculated 

(%U=2.12*%RSDt) and used to interpret quantitative results close to the LLOQ. 

Freeze/thaw stability (3 cycles), processed samples stability (42 and 72 h in the autosampler, 

4°C) and long term storage stability (2 months at 4°C and -20°C) were evaluated at low (300 

ng/mL) and high (7500 ng/mL) concentrations. Freeze/thaw stability and long term storage 

stability were evaluated with samples kept in 4-mL Greiner bio-one tubes (Frickengrasen, 

Germany). Stability of compounds in the original sampling device stored at 4°C for 5 and 11 

days was also tested. The mean of the stability samples (N=6) should be within 90 – 110 % of 

the mean of the control samples (N=6) and the 90 % confidence interval of the stability 

sample results should be within ± 20 % of the control samples (see the Appendix 2 for more 

explanation). 

Creatinine concentration was measured using a Cobas Integra analyser (Roche Diagnostics 

Limited, Switzerland).  

3.2.6 Population study 

A prospective alcohol self-monitoring study was performed by asking 27 volunteers to 

declare their exact alcohol consumption per day during the 5 days preceding the sampling. 

Urine samples were collected in 100-mL urine containers from Sarstedt (Nümbrecht, 

Germany), transferred to 4-mL Greiner bio-one tubes and stored at 4°C until analysis. 

Samples were analysed within 5 days after collection. 

EtG100 and EtS100 concentrations were calculated by normalising the measured EtG and EtS 

to a creatinine concentration of 100 mg/dL [2]. The measurement uncertainties (see the 

Appendix 2 for more explanation) at the LLOQ (%U = 21 % for EtG and %U = 8 % for EtS) 

were used to interpret quantitative results close to the LLOQ. Concentrations above or equal 
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to 121 ng/mL for EtG100 and 108 ng/mL for EtS100 (LLOQ + %U) were used to suggest alcohol 

intake the days prior to the sampling and to disprove strict abstinence. 

3.3 Results and discussion 

3.3.1 Method validations 

3.3.1.1 Xevo TQ MS mass spectrometer 

The method was validated for selectivity, sensitivity, matrix effects, extraction efficiency, 

limits, linearity, accuracy, precision and stability. Identification of compounds was based on 

retention time and on the presence of a stable ratio between the two MRM transitions (< 

20 %). It is well known that EtG and EtS can be present in small amounts in urine even 

without voluntary consumption of alcohol [18,19,25–27].  

In one of the blank urine samples (N=8), EtG could be detected, but the calculated 

concentration (approximately 40 ng/mL) was below the LLOQ (100 ng/mL). By a combination 

of retention time and stable ratio between the qualifier and quantifier, no interfering signal 

for EtS was detected in blank urine samples. Results of matrix effect and extraction 

efficiency are presented in Table 3.3. 

A matrix effect expressed as % recovery (%ME) between 76 and 84 % was observed for EtG 

(Table 3.3). The use of EtG-d5 as IS compensated for the matrix effect (%MEEtG-d5 in Table 

3.3). No significant matrix effects were observed for EtS. As comparison, %ME up to 69, 80 

and 171 % were reported for EtG and up to 94, 110, and 179 % for EtS in literature when 

using LC systems and simple dilution of urines as sample preparation [11,32,47]. The 

influence of co-eluting compounds influencing the ionisation of the target compounds can 

be minimised by an efficient sample preparation –in our case, protein precipitation instead 

of a simple dilution- and by a chromatographic separation of the analytes from interfering 

compounds (e.g. by using an adequate column and an adapted gradient elution). The 

extraction efficiency (%EE) of EtG and EtS was reproducible, concentration independent and 

about 80 %.  

The LLOQ was 100 ng/mL for EtG and for EtS (Figure 3.3). The LOD was 60 ng/mL for EtG and 

80 ng/mL for EtS.  

The calibration curve (N=6) was linear over the range 100 (LLOQ), 250, 500, 2500, 5000, 

10000 ng/mL for EtG and EtS. A weighting factor of 1/x (for EtG) and 1/x2 (for EtS) was 
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applied. The %bias of the method was lower than 13 %. The repeatability (%RSDr) and 

intermediate precision (%RSDt) were acceptable, with value lower than 10 % (Table 3.4). 

 

 EtG EtS  

Concentration L M H L M H 

Nominal value (ng/mL) 300 4000 7500 300 4000 7500 

%ME (%RSD) 84 (12) 80 (15) 76 (8) 106 (9) 95 (8) 88 (3) 

%MEEtG-d5 (%RSD) 110 (11) 102 (4) 102 (3) 108 (7) 96 (7) 113 (6) 

%EE (%RSD) 81 (14) 80 (3) 79 (3) 76 (5) 81 (7) 80 (6) 

Table 3.3 Matrix effect (%ME) and extraction efficiency (%EE) for EtG and EtS in urine measured at low (L), 
medium (M) and high (H) concentration.  

 

Figure 3.3 MRM Chromatogram for EtG (m/z 22175 (A), m/z 22185 (B)) and EtG-d5 (m/z 22685 (C)) and 
EtS (m/z 12580 (D), m/z 12597 (E)) and EtS-d5 (m/z 13098 (F)) at the LLOQ (100 ng/mL). 

 

 EtG  EtS 

QC Nominal 

value 

%RSDr %RSDt %Bias  Nominal 

value 

%RSDr %RSDt %Bias 

 (ng/mL)      (ng/mL)     

LLOQ 100 7 10  4  100 4 4 -5 

EtG 1/10-B 878 4 3 -4  920 2 4 -13 

EtG 2/09-B 3020 4 4 -1  1750 3 6 -4 

QC L 300 6 7 -1  300 4 7  6 

QC M 4000 2 5 -1  4000 3 4  0 

QC H 7500 2 6  0  7500 2 5 -5 

Table 3.4 Precision (repeatability (%RSDr), intermediate precision (%RSDt)) and accuracy (%bias) for EtG and EtS 
in urine, measured using the Xevo TQ MS, for the LLOQ and 5 QCs (2 external and 3 internal). 
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No instability was observed (Figure 3.4) for samples staying in the autosampler during 24 

and 72 h (4°C). Moreover, EtG and EtS were stable after three freeze/thaw cycles and after 2 

months at -20°C and 4°C when stored in Greiner bio-one tubes. EtG and EtS were also stable 

after 5 and 11 days when stored in the original sampling device at 4°C. Results of the stability 

experiments are presented Table 3.5 and in Figure 3.4. 

 EtG  EtS  

Concentration L H L H 

Nominal value (ng/mL) 300 7500 300 7500 

Processed sample stability (24 hours, 4°C) 

Mean stability % 102 103 109 105 

90 % CI of stability samples  62-62 1414-1448 63-64 1232-1268 

± 20 % of control samples 49-73 1111-1666 47-70 953-1429 

Processed sample stability (72 hours, 4°C) 

Mean stability % 95 102 108 105 

90 % CI of stability samples  56-59 1389-1435 62-64 1240-1273 

± 20 % of control samples 49-73 1111-1666 47-70 953-1429 

Storage stability (5 days, 4°C)     

Mean stability % 98 106 102 108 

90 % CI of stability samples  69-72 1637-1659 71-73 1342-1385 

± 20 % of control samples 57-86 1242-1864 56-84 1014-1522 

Storage stability (11 days, 4°C)      

Mean stability % 100 111 101 110 

90 % CI of stability samples  71-73 1342-1385 71-73 1342-1385 

± 20 % of control samples 56-84 1014-1522 56-84 1014-1522 

Long term storage stability (2 months, 4°C) 

Mean stability % 104 107 102 102 

90 % CI of stability samples  64-67 1467-1524 66-70 1227-1291 

± 20 % of control samples 51-76 1113-1670 53-80 989-1484 

Long term storage stability (2 months, -20°C) 

Mean stability % 101 110 102 107 

90 % CI of stability samples  62-66 1514-1537 66-70 1311-1325 

± 20 % of control samples 51-76 1113-1670 53-80 989-1484 

Freeze/Thaw (3 cycles)     

Mean stability % 101 100 109 101 

90 % CI of stability samples  60-63 1370-1414 62-65 1196-1218 

± 20 % of control samples 49-73 1111-1666 47-70 953-1429 

Table 3.5 Stability results for EtG and EtS in urine measured at two concentrations (Nominal value); Low (L) and 
high (H). The mean of the stability is expressed in %. The range corresponding to ± 20 % of the mean responses 
of the control samples and the 90 % confidence interval of the responses for stability samples are presented 
(values are divided by 100 for readability purpose). 
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Figure 3.4 Stability of EtG and EtS in low and high urine QC samples after 24 and 72 hours in the autosampler 
(4°C), after 3 freeze/thaw cycles, after 2 months storage at 4°C and -20°C and after 5 and 11 days storage in the 
original sampling device (4°C). 

 

The reproducibility of the method was evaluated via analysis of proficiency tests between 

2011 and 2014, organised by the German Society of Toxicological and Forensic Chemistry 

(GTFCh). Results are presented in Table 3.6.  

 EtG   EtS   

Proficiency 

test 

Nominal 

value 

(ng/mL) 

Reported 

value 

(ng/mL) 

Z-score Nominal 

value 

(ng/mL) 

Reported 

value 

(ng/mL) 

Z-score 

 

EtG 3/11 1450 1400 -0.22 885 818 -0.46 

EtG 1/12 800 814  0.57 1130 975 -0.86 

EtG 2/12 556 566  0.10 1070 1110  0.23 

EtG 3/12 832 872  0.23 924 899 -0.16 

EtG 1/13 1100 1100  0.00 1020 964 -0.32 

EtG 2/13 505 440 -0.72 587 515 -0.71 

EtG 3/13 1740 1760  0.07 1350 1020 -1.57 

EtG 1/14 1240 1173 -0.33 790 604 -1.41 

Table 3.6 Proficiency test results for EtG and EtS in urine using a Xevo TQ MS tandem mass spectrometer. 
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3.3.1.2 Xevo TQ S mass spectrometer 

The fully validated method using a Xevo TQ MS mass spectrometer was transferred to 

another system equipped with a Xevo TQ S mass spectrometer. More details about the 

difference between the two devices are presented in the Appendix 3. Because of the use of 

another tandem mass spectrometer, linearity, accuracy, precision and reproducibility were 

validated again. The results for the validation of the method on the Acquity UPLC® coupled 

to a Xevo TQ S tandem mass spectrometer, are presented in Table 3.7 and Table 3.8. The 

calibration model (N=8) was linear (1/x) for EtG and linear (1/x2) for EtS over the range 100, 

250, 500, 1000, 2500, 5000, 7000 and 10000 ng/mL.  

 EtG  EtS 

QC Nominal 

value 

%RSDr %RSDt %Bias  Nominal 

value 

%RSDr %RSDt %Bias 

 (ng/mL)      (ng/mL)     

EtG 3/10-B 1270 2 2 -3  810 2 2 -8 

EtG 2/12-B 556 1 5 1  1250 3 9 -12 

QC-L 300 3 4 -8  300 5 8 -5 

QC-M 4000 2 4 -6  4000 4 4 -3 

QC-H 7500 3 4 -3  7500 5 6 -1 

Table 3.7 Precision (repeatability (%RSDr) and intermediate precision (%RSDt)) and %bias for EtG and EtS in 
urine, using a Xevo TQ S mass spectrometer, for 5 QCs (2 external and 3 internal). 

 

The %bias, repeatability (%RSDr) and intermediate precision (%RSDt) were calculated for the 

internal and external QCs and were less than 12 % (Table 3.7). The reproducibility of the 

method has been monitored by successful (Z-scores < 1.04) participation in four proficiency 

tests (Table 3.8). 

 EtG    EtS   

Proficiency 

test 

Nominal 

value 

(ng/mL) 

Reported 

value 

(ng/mL) 

Z-score  Nominal 

value 

(ng/mL) 

Reported 

value 

(ng/mL) 

Z-score 

 

EtG 2/14 621 616 -0.04  1230 1230 0 

EtG 3/14 1350 1310 -0.19  715 631 -0.69 

EtG 1/15 945 999 0.35  796 658 -1.04 

EtG 2/15 1150 1100 -0.26  1440 1310 -0.59 

Table 3.8 Proficiency test results for EtG and EtS in urine using a Xevo TQ S tandem mass spectrometer. 
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3.3.1.3 Xevo TQ MS vs. Xevo TQ S 

The accuracy (%bias) and precision (repeatability (%RSDr) and intermediate precision 

(%RSDt)) were calculated for both devices. No differences were observed regarding the 

accuracy and precision (Figure 3.5) or Z-scores (between -1.57 and 0.57 (Xevo TQ MS) and 

between -1.04 and 0.35 (Xevo TQ S)) when using one or another device. This seems to 

confirm that both systems can be used interchangeably.  

 
Figure 3.5 Boxplots depicting %bias, repeatability (%RSDr) and intermediate precision (%RSDt) obtained using a 
Xevo TQ MS and a Xevo TQ S (values of Tables 3.4 and 3.7). The boxes represent the values between the lower 
and upper quartile, the middle line represents the median and the whiskers represent the extremes value. 

 

3.3.2 Population study 

Twenty-seven urine samples from volunteers were analysed on the Acquity UPLC® coupled 

to a Xevo TQ MS tandem mass spectrometer. Urine samples from volunteers (N=14) who did 

not drink alcoholic beverages the day before the sampling were all negative for EtG and EtS 

(EtG100 < 121 ng/mL and EtS100 < 108 ng/mL (LLOQ + %U)).  

The chromatograms obtained from one volunteer who declared having drunk 3 alcohol units 

the day before the sampling, which led to measured EtG100 and EtS100 concentrations of 496 

and 209 ng/mL, respectively, are presented in Figure 3.6.  
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Figure 3.6 EtG (m/z 22175 (A), m/z 22185 (B)), EtG-d5 (m/z 22685 (C)), EtS (m/z 12580 (D), m/z 
12597 (E)) and EtS-d5 (m/z 13098 (F)) MRM Chromatogram obtained by the analysis of urine sample from 
one volunteer. Concentrations of 496 (EtG100) and 209 (EtS100) ng/mL were measured. 

 

 

Figure 3.7 EtG100 and EtS100 concentrations in subjects who declared having been drinking alcohol 24 hours 
before the sampling. 

 

In 10 samples from volunteers who declared to have consumed alcohol the day before the 

sampling (N=13) a concentration between 646 and 101917 ng/mL (mean 10908, median 
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1433) for EtG100 and between 145 and 37853 ng/mL (mean 3613, median 256) for EtS100 was 

determined (Figure 3.7).  

EtG and EtS were in agreement in 25 out of 27 cases. EtG and EtS concentrations in urine 

were highly correlated (R=0.996, p<0.001). A lower correlation between the number of 

drinks the day before the sampling and the concentration of EtG (R=0.448, p<0.02) and EtS 

(R=0.406, p<0.04) in urine was observed. This result can be explained by an inaccurate self-

reported alcohol consumption, as well as by the high inter-individual variation of EtG and EtS 

concentrations in urine after the consumption of equal amounts of ethanol [17], due to 

different metabolism and elimination rates varying according to individual characteristics 

(e.g. age, gender, genetic polymorphisms and diseases) or to the intake of certain substances 

(e.g. foods and drugs) that may affect the glucuronidation and or sulfonation of ethanol (see 

Chapter 7).  

Twenty-four hours after the ingestion of 1 unit of alcohol, EtG was not detected (EtG100 < 

121 ng/mL and EtS100 = 153 ng/mL) in one volunteer (Figure 3.7, B), while neither EtG nor EtS 

(EtG100 < 121 ng/mL and EtS100 < 108 ng/mL) were detected in another volunteer (Figure 3.7, 

C). A recent study [9] has demonstrated that after the consumption of approximately two 

units of alcohol (0.2 L of wine or 0.66 L of beer), urinary concentrations were below 100 

ng/mL 24 hours after the intake in 1 out of 7 cases for EtG and in 6 out of 7 cases for EtS. 

Taking these results into account, it is indeed possible to have no EtG or EtS in urine 24 hours 

after the consumption of only one unit. 

In one case (Figure 3.7, A), no EtS (EtS100 < 108 ng/mL) was detected after the consumption 

of two alcohol units, while the EtG concentration was 1422 ng/mL. A mismatch between EtG 

and EtS results may be explained by the fact that the two compounds are formed via 

different pathways (i.e. via glucuronidation and sulfonation), with different factors (e.g. 

compounds or diseases) that may affect one of these pathways (formation of EtS in this 

case) but not necessarily the other.  

In one volunteer (Figure 3.7, D) who declared a consumption of five alcohol units the day 

before the sampling no EtG and no EtS were detected in urine (EtG100 < 121 ng/mL and EtS100 

< 108 ng/mL). The creatinine concentration measured in that sample was abnormally low 

(12 mg/dL). In Germany, a urinary creatinine concentration below 20 mg/dL is declared as 

“not usable” for analysis [51]. This abnormally low urinary creatinine concentration, which 
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may be induced by diabetes insipidus, potomania or tampering, can explain the negative 

result for EtG and EtS in this sample [47]. 

The three subjects who reported a consumption of alcohol (2, 4 and 6 units) 2 days before 

the sampling and no consumption the day before were all negative for EtG and EtS. Kinetic 

studies show that EtG and EtS are detectable in urine up to 24 h after intake of about 2 units 

of alcohol and up to 48 h after intake of about 4 units of alcohol [2,13–18].  

The use of the LLOQ increased by the measurement uncertainty of the method (EtG100 = 121 

ng/mL and EtS100 = 108 ng/mL) as cut-off values allows the demonstration of alcohol 

consumption approximately 24 hours after the intake, without showing any false positive 

results.  

3.4 Conclusion 

This report describes a validated method for the quantification of EtG and EtS in urine by 

UPLC®-ESI-MS/MS using protein precipitation with methanol as clean-up step. The 

chromatographic run time for one analysis is 7 minutes. The extraction efficiency (EE%) was 

around 80 % for both compounds and matrix effect (expressed as % recovery) were between 

76 and 84 % for EtG and virtually absent for EtS. This method provides good precision (%RSDr 

and %RSDt < 10 %) and accuracy (%bias < 15 %) using a Xevo TQ MS or a Xevo TQ S mass 

spectrometer. The validity of the method was confirmed by successful participation to 12 

proficiency tests (Z-scores ≤ 1.41). 

The measurement uncertainties (%U=2.12*%RSDt) obtained using the Xevo TQ MS at the 

LLOQ (%U = 21 % for EtG and %U = 8 % for EtS) were used to interpret quantitative results 

close to the LLOQ. Concentrations above or equal to 121 ng/mL for EtG100 and 108 ng/mL for 

EtS100 (LLOQ + %U) were used to suggest alcohol intake the days prior to the sampling and to 

disprove strict abstinence. Analysing urine samples from 27 volunteers showed that subjects 

(N=14) who did not drink alcoholic beverages the day before the sampling were all negative 

for EtG and EtS and that 10 out of the 13 subjects who declared having consumed alcohol 

the day before the sampling were positive. In these subjects, the determined concentrations 

(normalised to 100 mg/dL creatinine) lay between 646 and 101917 ng/mL for EtG100 and 

between 145 and 37853 ng/mL for EtS100. 
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Abstract 

A UHPLC-ESI-MS/MS method for the quantification of ethyl glucuronide (EtG) in human hair 

was developed and fully validated according to international guidelines on a Xevo TQ MS 

tandem mass spectrometer. The solid-phase extraction (SPE) was optimised (nine different 

SPE sorbents were tested and different washing and elution solvents were compared 

regarding the matrix effect and extraction efficiency) and the effect of the pulverisation on 

the quantification was evaluated. Differences were observed in the EtG concentration 

obtained depending on the grinding process and special attention was paid to optimise the 

extraction of EtG from 50 mg of hair with 1.5 mL of water. Using a Bond Elut SAX cartridge, 

extraction efficiency was higher than 53 % (%RSD < 15 %) and matrix effect (expressed as % 

recovery) was between 66 and 76 % (%RSD < 24 %) and compensated by the use of EtG-d5 as 

internal standard. The method was linear from 10 (LLOQ) to 500 pg EtG/mg hair. A %bias, 

repeatability (%RSDr) and intermediate precision (%RSDt) of less than 16 % were obtained. 

This method was applied to authentic samples from 6 social drinkers (mean ethanol intake 

per day between 10 and 32 g) and one teetotaller. A cut-off value at 30 pg/mg hair was used 

to strongly suggest chronic excessive alcohol consumption. Monitoring periods of alcohol 

abstinence requires a method with a lower LLOQ -i.e. able to quantify concentrations equal 

to or below 7 pg/mg hair- which is the cut-off value used to strongly suggest repeated 

alcohol consumption and disprove a strict abstinence period. Therefore, the method was 

transferred to another tandem mass spectrometer (Xevo TQ S instead of the Xevo TQ MS) 

and optimised (the mobile phase A (0.1 % formic acid in water) was changed into 0.01 % 

formic acid in water), to reach a lower LLOQ (at 2 pg EtG/mg hair). To ensure the accuracy 

and precision of the modified method, a partial validation was performed (%bias < 

9 %, %RSDr < 8 %, %RSDt < 12 %). The reproducibility on both systems has been 

demonstrated by successful (Z-score < 1.8) participation in proficiency tests.  
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4.1 Introduction 

Quantification of ethyl glucuronide (EtG) in hair is used to detect excessive/chronic alcohol 

consumption and to assess alcohol abstinence. As direct quantification of ethanol in hair is 

not possible [1], specific non-oxidative metabolites of ethanol [2–4], such as ethyl 

glucuronide (EtG), ethyl sulfate (EtS) and/or fatty acid ethyl esters (FAEEs) are targeted. Hair 

is advantageous over traditional matrices such as blood or urine because of its extended 

detection window. The Society of Hair Testing (SoHT) has published guidelines [5] 

concerning the use of EtG and FAEEs in hair for the detection of chronic/excessive alcohol 

consumption and the monitoring of alcohol abstinence periods. Although these markers can 

be used independently, the consensus is that in some cases determination of both can prove 

useful. For EtG, two cut-off values have been proposed by the SoHT [6], at 7 and at 30 pg/mg 

hair, respectively, to strongly suggest repeated alcohol consumption and to disprove a strict 

abstinence period and to strongly suggest excessive/chronic alcohol consumption 

(consumption of ≥ 60 g ethanol/day over several months).  

Sample preparation steps, such as decontamination and extraction, have been 

demonstrated to influence the measured EtG concentration [7–14]. It has been shown that a 

simple decontamination with 1 mL of methanol (30 seconds vortex mixing) was not enough 

to clean the sample and that a first dichloromethane wash was needed to eliminate lipids 

[15]. The most common decontamination solvents used are dichloromethane alone [16] or 

in combination with methanol [10,15,17–21] or water [22,23], methanol [24,25] or methanol 

and acetone [26,27], water and acetone [8,11,28–31], or water and n-heptane [32,33]. 

Bossers et al. [14] have pointed out that among different washing solvents tested, a wash 

with dichloromethane followed by methanol was a very efficient washing protocol. Prior to 

extraction of the analytes, an attempt to improve sample homogeneity is usually made by 

reducing the hair into smaller pieces, e.g. by cutting or pulverising. Extraction experiments 

show that the time required to extract EtG from hair is decreased when the matrix is 

pulverised to a powder [10] and that the determined concentration in pulverised hair 

samples was higher than in cut hair samples  [7,13,34]. In 2014, the SoHT has published 

guidelines which state that: “powdering hair prior to the extraction of EtG is preferred. 

Laboratories utilising other sample preparation procedures should demonstrate comparable 

recovery of EtG” [6]. 



Back to the table of contents 

100 

 Q
u

an
ti

fi
ca

ti
o

n
 o

f 
Et

G
 in

 h
ai

r 

 

 

Direct analysis of the aqueous extract is the easiest ‘sample preparation’ method 

[7,11,17,18,27,35–37], however, to clean up the extract, solid-phase extraction (SPE) is the 

conventional technique applied  [8,10,21–23,25,26,28–32,38]. Several validated methods 

based on liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) 

[7,10,15–18,21–23,31,34,39–42], or gas chromatography coupled to single or tandem mass 

spectrometry (GC-MS(/MS)) [8,13,25,28–30,32,37,43] have been published. Most of these 

make use of internal quality control samples (QCs) that have been prepared using either 

spiked QCs [7,15–17,22,23,25,28,37,39,40,42] and/or authentic hair [8,10,15,18,31,44], to 

estimate the accuracy of the method. Whilst spiked QCs are suitable to estimate accuracy 

and precision, they do not take into account the extraction efficiency of compounds from 

the hair matrix; QCs based on authentic hair partially overcome this problem but 

unfortunately they are not suitable to estimate the accuracy, because the real concentration 

is not known. Thus, to estimate the real capability of methods to correctly quantify authentic 

samples, QCs with a certified reference value and/or proficiency tests are required [41,43]. 

Nowadays a number of commercial sources of hair QCs (external QCs) exist; these samples 

may be supplied either in cut or pulverised form. Furthermore, to assess the reproducibility, 

proficiency tests are organised by the German Society of Toxicological and Forensic 

Chemistry (GTFCh) and by the SoHT in collaboration with Medichem. The SoHT provides 

samples in both cut and pulverised form, while the GTFCh provides pulverised samples. 

Although several publications report successful participation in these schemes [23,40,42,45], 

the quantitative results from these proficiency tests show an overall lack of reproducibility 

for the EtG quantification in hair [41,45].  

This chapter describes and discusses first the selection of an SPE cartridge and the 

optimisation of the SPE process, second the impact of different grinding and extraction 

conditions on the measured EtG concentrations, third the validation of a quantitative 

method on a Xevo TQ MS mass spectrometer and its application to a small population study, 

fourth the transfer (and optimisation) of the developed method to a more sensitive mass 

spectrometer (Xevo TQ S) and finally the results of past proficiency tests.  
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4.2 Materials and methods 

4.2.1 Chemicals and stock solutions 

Certified reference standards for EtG and its pentadeuterated analogue (EtG-d5) were 

obtained from Sigma-Aldrich (Steinheim, Germany) and were supplied at 1 mg/mL in 

methanol. Formic acid (mass spectrometric quality i.e. ~98 %) was obtained from the same 

supplier. A separate source of EtG was also purchased from Lipomed (Arlesheim, 

Switzerland) in powder form and was used for the preparation of internal QCs. UPLC/MS 

grade acetonitrile, methanol and 0.1 % formic acid in water were purchased from Biosolve 

(Valkenswaard, The Netherlands).  

Two stock solutions, one for calibration (Cal-Stock) and one for the preparation of the 

internal QCs (QC-Stock) with EtG at a concentration of 5000 ng/mL were prepared in 

methanol, using a different source of reference standard. The stock solution containing the 

internal standard (IS-Stock) at a concentration of 50 ng/mL was prepared in methanol. All 

solutions were stored at -18°C. 

4.2.2 Blank hair samples, external QCs and proficiency tests  

Blank hair samples from children and teetotallers were collected on a voluntary basis and 

were used for the validation, for the calibrators and for the spiked QC samples.  

Hair samples were washed with dichloromethane (vortex 30 seconds, sonication 10 minutes) 

and methanol (vortex 30 seconds, sonication 2 minutes), and dried overnight at room 

temperature. The samples were cut into small pieces with scissors and stored at room 

temperature.   

One external QC sample, EGH 2/12-A from ACQ Science GmbH (Rottenburg-Hailfingen, 

Germany) was used during validation. This QC sample consists of pulverised authentic 

human hair with an EtG concentration of 25 pg/mg hair.  

Between 2011 and 2015 proficiency tests (N=16) for EtG in hair were organised by the GTFCh 

(GTFCh 3/11, GTFCh 1/12, GTFCh 2/12, GTFCh 3/12, GTFCh 1/13, GTFCh 2/13, GTFCh 3/13, 

GTFCh 1/14, GTFCh 2/14, GTFCh 3/14, GTFCh 1/15,and GTFCh 2/15) and by the SoHT in 

collaboration with Medichem (SoHT 2011, SoHT 2012, SoHT 2013 and SoHT 2014).  
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4.2.3 Xevo TQ MS mass spectrometer method 

4.2.3.1 Optimisation of the solid-phase extraction 

Nine SPE cartridges, all based on ion exchange mechanisms, were tested: Oasis MAX 

(Waters, 60 mg, 3 mL), Strata X-AW, Strata SAX and Strata Screen A (100 mg, 3 mL) from 

Phenomenex (Utrecht, The Netherlands), Isolute SAX and Isolute PE-AX (Biotage, 100 mg, 3 

mL) purchased from Sopachem (Eke, Belgium), Varian Bond Elut SAX (100 mg, 3 mL) and 

Varian Bond Elut NH2 (50 mg, 1 mL) from Agilent (Diegem, Belgium) and Clean Screen EtG 

(UCT, 200 mg, 3 mL) purchased from Achrom (Zulte, Belgium). More details concerning these 

cartridges are provided in the Appendix 1.  

Hair from children (up to 5 years old) and from one alcohol abstainer (48 years old) were 

used as blank samples. Samples were first washed (with water and acetone), then cut into 

small pieces with scissors before being homogenised. During method development, we used 

30-mg samples, which were weighed into a 2-mL Precellys tube containing six 2.8-mm 

diameter stainless steel beads (Precellys Lysing kit, Hard tissue grinding) and were pulverised 

(three cycles (6200 rpm) of 90 seconds with a cooling time of 5 seconds in between) using 

the Precellys 24 homogenizer (Bertin Technologies, Montigny-le-Bretonneux, France). 

Samples spiked with EtG (500 pg/mg hair) were incubated 2 hours at 40°C with 1.5 mL water 

and were then loaded onto the SPE cartridges. The extraction protocol for each cartridge 

(presented in Table 4.1) was chosen based on recommended methods from the 

manufacturer or using published procedures [8,22,32,46].  

Loading, wash and elution solutions were collected separately, and analysed to detect EtG. 

Wash and/or elution solvents were optimised for cartridges with good retention during the 

loading and washing steps. Matrix effect and extraction efficiency were calculated for the 

three cartridges showing the best results, at a concentration of 100 pg/mg hair (N=6). 
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Oasis MAX (SAX)  Strata-X-AW (WAX) 

C: 2 mL MeOH - 2 mL H2O  C: 1 mL MeOH - 1 mL H2O 

W: 1 mL NH3 - 1 mL MeOH  W: 2 mL AAbuffer - 2 mL MeOH 

D: 2 min vacuum   D: 2 min vacuum  

E: 1 mL MeOH/FA (98/2)  E: 2 mL MeOH/NH4OH (95/5) 

Bond Elut SAX (SAX)  Screen-A (SAX + apolar) 

C: 2 mL MeOH - 2 mL H2O  C: 2 mL MeOH - 2 mL AAbuffer 

W: 1 mL H2O - 1 mL ACN  W: 1.2 mL AAbuffer/MeOH (50/50) 

D: 2 min vacuum   D: 2 min vacuum  

E: 1 mL ACN/H2O/AF (94/3/3)  E: 1.2 mL MeOH/FA (85/15)  

Strata SAX (SAX)  Clean Screen (WAX + apolar) 

C:  2mL MeOH - 2 mL AAbuffer  C:  2 mL MeOH/FA (99/1) - 2 mL  

W: 1.2 mL AAbuffer/MeOH (50/50) -  H2O/FA(99/1) 

 2 mL MeOH W: 2 mL H2O 

D: 2 min vacuum D: 10 min vacuum 

E: 1.2 mL MeOH/FA (85/15)  E: 3 mL MeOH/FA (99/1)  

Isolute PE-AX (SAX)  Bond Elut NH2 (WAX + polar) 

C: 1 mL MeOH - 1 mL H2O  C: 1 mL MeOH - 1 mL H2O 

W: 1 mL H2O/MeOH (50/50)  W: 1 mL ACN - 1 mL n-hexane 

D: 2 min vacuum  D: 15 min vacuum 

E: 1 mL MeOH/FA (98/2)  E: 1 mL H2O/NH3 (32%) (90/10)  

Isolute SAX (SAX)    

C: 2 mL MeOH - 2 mL H2O    

W: 2 mL H2O/MeOH (50/50)    

D:  15 min vacuum      

E: 2 mL MeOH/FA (98/2)      

Table 4.1 Classification of SPE cartridges tested for the extraction of EtG from hair. FA: formic acid, AAbuffer: 
25 mM ammonium acetate buffer (pH=6), MeOH: methanol, H2O: water, NH3: ammonia, ACN: acetonitrile, C: 
conditioning, W: washing, D: drying, E: elution, SAX: strong anion exchange, WAX: weak anion exchange.  
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4.2.3.2 Grinding experiments 

Experiments on the extraction process (state of hair and extraction condition), in order to 

fully extract EtG from 50 mg of hair with 1.5 ml water, were performed. Hair from two 

volunteers (alcohol consumers) and two external QC samples were used. The two volunteers 

were Caucasian with cosmetically untreated hair; one was a male with brown hair, the other, 

a female with blond hair. Samples were first washed and cut into small pieces with scissors. 

The external QCs Medidrug ALCM 1/11-C (12 pg/mg hair) and Medidrug ALCM 12-A (39 

pg/mg hair) from Medichem (Steinenbronn, Germany) -both authentic hair reference 

materials obtained in a cut (non-pulverised) form- were used.  

Approximately 50 mg of cut hair were weighed into a 2-mL Precellys tube and were 

pulverised with the Precellys 24 homogenizer. Pulverisation is performed mechanically by 

the movement of the six stainless steel beads, that are present in each tube. The same 

sample was processed according to four different procedures (4 to 6 replicates for each 

pulverisation procedure). The first three procedures aimed to compare the determined EtG 

concentration when using cut hair (process n°1), weakly pulverised hair (process n°2) or 

extensively pulverised hair (process n°3, which is the standard grinding protocol used for the 

validation studies). Cut hair samples (process n°1) were initially incubated for 16 hours at 

40°C and then sonicated for 2 hours (40°C) with 1.5 mL water and 50 µL of IS-Stock solution. 

Pulverisation was performed using the Precellys 24 homogenizer; one cycle of 30 seconds (at 

a speed of 6500 rpm) was used for the weakly pulverised samples (process n°2) and three 

cycles of 60 seconds (with a cooling time of 2 minutes in between) was used for the 

extensively pulverised samples (process n°3). Pulverised hair samples were sonicated for 2 

hours (40°C) with 1.5 mL water and 50 µL of IS-Stock solution. For the extensively pulverised 

samples, the sonication time was also evaluated (2 hours for process n°3 and 6 hours for 

process n°4).    

The EtG mean calculated concentrations obtained from the four different processes were 

compared using One-way ANOVA test (α=0.05) to detect statistical differences. 

The impact of the different grinding procedures on the hair was studied using a Phenom G2 

pro electron microscope (Phenom-World BV, Eindhoven, The Netherlands). 

To ensure that the grinding process selected (process n°3) sufficiently pulverised real 

samples (hair strand up to 6 cm not cut into pieces prior to the pulverisation), additional 

http://www.labcompare.com/4886-Phenom-World/
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analyses of real positive samples (three alcohol consumers) were performed. Hair strands 

from the volunteers were divided into aliquots, which were pulverised using one, two, three 

and up to six grinding processes. Results were visually compared.  

4.2.3.3 Final sample preparation procedure 

Fifty milligrams of hair sample were weighed into a 2-mL Precellys tube and pulverised with 

the Precellys 24 homogenizer. For the validated method a pulverisation protocol based on 

three grinding cycles of 60 seconds at 6500 rpm with a cooling time of 2 minutes between 

each cycle, was used. EtG was subsequently extracted from the pulverised hair samples with 

1.5 mL water and 50 µL of IS-Stock solution using 2 hours of sonication (40°C).  

 

 

Figure 4.1 Representation of the different solid-phase extraction steps used for the quantification of EtG in 
hair. Interactions between the cartridge stationary phase and EtG at different pH are presented. FA: formic 
acid, MeOH: methanol, ACN: acetonitrile. 
 
 

For clean-up (see Figure 4.1), the sample was centrifuged (20800 g) for 10 minutes at 4°C 

and the supernatant was applied to a Bond Elut SAX (100 mg, 3 mL) SPE cartridge from 

Agilent (Diegem, Belgium), conditioned with 2 mL of methanol and 2 mL of water. Special 

care was paid to ensure the cartridge did not dry out between conditioning steps. The SPE 

cartridge was washed with 2 mL of water and 2 mL of acetonitrile and was dried under 

vacuum (-0.3 bar) during 2 minutes. EtG was eluted with 1 mL of a formic acid/acetonitrile 
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solution (3/97, v/v) in a total recovery glass vial (Waters, Zellik, Belgium), which is a vial -

containing an interior sharp bottom- specifically designed to allow analysis of all volume 

available. The eluate was evaporated to dryness using a vacuum centrifuge at 38°C for 45 

minutes (Labconco, Kansas City, Missouri, USA). The residue was reconstituted in 100 µL of 

0.1 % formic acid in water. Ten microliters were injected onto the UPLC®-MS/MS system 

using the full-loop mode.  

4.2.3.4 Preparation of calibrators, QCs and proficiency test samples 

Daily calibration working solutions (Cal-WS) at 10, 50 and 250 ng/mL were prepared by 

diluting the Cal-Stock solution in water. Calibrators (10, 15, 20, 50, 100, 250 and 500 pg/mg 

hair) were prepared with 50 mg of pulverised blank hair spiked with 50 µL of the IS-Stock 

solution, an adequate amount (50, 75 or 100 µL) of a Cal-WS solution, and water until a total 

volume of 1.5 mL was reached. 

Daily QC working solutions (QC-WS) at 10, 25 and 250 ng/mL were prepared by diluting the 

QC-Stock solution in water. Spiked quality controls at 16, 30 and 300 pg/mg hair were 

prepared by adding 50 µL of the IS-Stock solution, an adequate amount (60 or 80 µL) of a 

QC-WS and water until a total volume of 1.5 mL to 50 mg of pulverised blank hair. EGH 2/12-

A QC and proficiency test samples were prepared by spiking 50 µL of IS-Stock solution and 

1.45 mL of water to 50 mg of pulverised hair sample.  

  

http://en.wikipedia.org/wiki/Missouri
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4.2.3.5 Liquid chromatography and mass spectrometry conditions 

Analyses were performed on an Acquity UPLC® coupled to a Xevo TQ MS tandem mass 

spectrometer (Waters) equipped with an electrospray ionisation source operated in negative 

mode. Gradient elution was performed on an Acquity UPLC® HSS T3 (2.1 x 100 mm, 1.8 µm) 

column (Waters) with 0.1 % formic acid in water (mobile phase A) and acetonitrile (mobile 

phase B) at a flow rate of 400 µL/min. The gradient elution started with 99 % of mobile 

phase A, decreasing to 88 % mobile phase A, at 2.0 min. The washing step consisted of 100 % 

of mobile phase B held from 2.1 to 2.5 min. The initial condition was applied from 2.6 min to 

5 min. The column temperature was set at 60°C.  

MS/MS detection was performed in the multiple reaction monitoring mode (MRM) with a 

dwell time fixed at 0.078 sec using the following precursor/product ion transitions (cone 

voltage, collision energy): EtG for quantification 221/85 (30 V, 24 eV), EtG for qualification 

221/75 (30 V, 22 eV) and EtG-d5 226/85 (28 V, 30 eV). ESI source parameters used were the 

same as described in Chapter 3 (3.2.4) [47]. Briefly, nitrogen was applied as cone gas (40 L/h) 

and as the desolvation gas (900 L/h at 650°C). Argon was used as collision gas (0.35 mL/min). 

The capillary voltage and the cone voltage were 1 kV.  

4.2.3.6 Method validation  

Selectivity, matrix effect, extraction efficiency, lower limit of quantification (LLOQ), linearity, 

accuracy, precision, stability and reproducibility were evaluated according to international 

guidelines [48].  

Identification was based on the following criteria: a stable retention time (%RSD < 5 %) and 

stable ion ratios for the MRM transitions (within 20 % of expected) [5]. Two MRM transitions 

were used for EtG and one transition was used for the IS. 

Selectivity was determined by the analysis of six blank hair samples from different 

individuals. To verify that there were no isotope exchange reactions with non-labelled 

compounds, two samples without hair but with internal standard were analysed. According 

to the EMA guideline [48], interferences are acceptable in our type of method as long as the 

response of the interfering peak remains lower than 20 % of the response at the LLOQ. 

Matrix effects expressed as % recovery (%ME) were quantified and evaluated using the post-

extraction addition technique [49]. Six blank hair samples from different individuals were 
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spiked after the sample preparation and compared with the analytes spiked at the same 

theoretical concentration in the mobile phase. Extraction efficiency (%EE) was evaluated by 

comparing the responses of six blank hair samples spiked before solid-phase extraction with 

responses of six blank hair samples spiked after solid-phase extraction. These experiments 

were performed at LLOQ (10 pg EtG/mg hair), and at low (16 pg EtG/mg hair), medium (30 

pg EtG/mg hair) and high (300 pg EtG/mg hair) concentration. 

The lower limit of quantification (LLOQ) was defined as the lowest concentration of the 

analyte with a signal-to-noise ratio calculated as root mean square above 10/1 (for both 

transitions) and for which the %bias and %RSD was below 20 %. Other identification criteria, 

such as a stable ion ratio between the quantifier and the qualifier had to be met.  

The calibration model (N=7) and the weighting factor were tested over the range 10 to 500 

pg EtG/mg hair and were evaluated via residual plots [48]. The goodness of fit was 

established as the difference between the calculated calibrator value and its nominal value. 

The coefficient of variation should be lower than 15 % except at the LLOQ (%RSD < 20 %).  

Accuracy (%bias) and precision (repeatability (%RSDr) and intermediate precision (%RSDt)) 

were determined analysing three internal QCs spiked at low (16 pg EtG/mg hair), medium 

(30 pg EtG/mg hair) and high (300 pg EtG/mg hair) concentration and one external QC; EGH 

2/12-A (25 pg EtG/mg hair). QCs were analysed in replicates on eight different days. One-

way ANOVA test with significance level (α) of 0.05 allows calculating %bias, %RSDr and %RSDt 

with these data (see the Appendix 2 for more explanation). The results are acceptable when 

they are below 15 % (20 % at the LLOQ).  

The stability of processed samples when stored in the autosampler (72 hours, 4°C) was 

evaluated at low (16 pg EtG/mg hair) and high (300 pg EtG/mg hair) concentrations and 

using six blank hair samples spiked with EtG. Controls and stability samples (N=6) were 

prepared at the same time and processed samples were stored in the autosampler for up to 

72 hours prior to the analysis. The mean response of the stability samples should be within 

90 – 110 % of the mean response of the control samples and the 90 % confidence interval of 

the stability sample responses should be within ± 20 % of the control sample responses (see 

the Appendix 2 for more explanation). 
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The reproducibility has been evaluated by participation in proficiency tests organised either 

by the GTFCh or by the SoHT in co-operation with Medichem and the Federal Institute for 

Materials Research and Testing between 2012 and 2014.  

4.2.3.7 Population study  

To verify that no false positive results were obtained in the detection of chronic/excessive 

alcohol consumption applying the recommended cut-off value (30 pg EtG/mg hair) and using 

the Xevo TQ MS mass spectrometer method developed, a prospective alcohol self-

monitoring study was performed. Seven healthy volunteers were asked to declare their 

alcohol consumption per day during the 4 weeks preceding the sampling. The mean daily 

alcohol intake was calculated based on the volume and on the % (v/v) alcohol content of the 

declared consumption. Hair strands were sampled at the end of the 4 weeks and the first 1-

cm proximal segments were analysed.  

4.2.4 Method transfer (Xevo TQ S mass spectrometer) 

Because monitoring of an alcohol abstinence period requires a method with a lower LLOQ, 

i.e. able to quantify concentrations equal to or below 7 pg/mg hair, which is the cut-off value 

used to strongly suggest repeated alcohol consumption and disprove a strict abstinence 

period, the method presented in Section 4.2.3 was transferred to another tandem mass 

spectrometer (Xevo TQ S instead of the Xevo TQ MS) and optimised. More details about the 

difference between the two devices are presented in the Appendix 3. 

Some minor modifications concerning the preparation of the daily calibration working 

solutions (Cal-WS) and daily QC working solutions (QC-WS) were necessary to add lower 

calibrators and QCs. Briefly, 4 Cal-WS solutions (at 2.5, 10, 50 and 250 ng/mL) were prepared 

by diluting the Cal-Stock solution (5000 ng/mL) in water. Calibrators (2, 5, 10, 20, 50, 250 and 

500 pg/mg hair) were prepared with 50 mg of pulverised blank hair spiked with 50 µL of the 

IS-Stock solution, an adequate amount (40, 50 or 100 µL) of the Cal-WS solution, and water 

until a total volume of 1.5 mL was reached. Daily QC-WS at 10, 25 and 250 ng/mL were 

prepared by diluting the QC-Stock solution in water. Spiked quality controls at 6, 30 and 300 

pg/mg hair were prepared by adding 50 µL of the IS-Stock solution, an adequate amount (30 

or 60 µL) of the QC-WS solution and water until a total volume of 1.5 mL to 50 mg of 

pulverised blank hair.  
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The final sample preparation procedure described in Section 4.2.3.3 was used. Analysis was 

performed according to the developed UHPLC-ESI-MS/MS method described in Section 

4.2.3.5, with some modifications, one concerning the mobile phase A used (0.01 instead of 

0.1% formic acid in water) and the others concerning some parameters specific to the mass 

spectrometer used (Table 4.2).  

Parameters Xevo TQ MS  Xevo TQ S 

Cone voltage, collision energy    

EtG quantifier (221/85) 30 V, 24 eV  40 V, 15 eV  

EtG for qualification (221/75) 30 V, 22 eV   40 V, 15 eV   

EtG-d5 (226/85) 30 V, 24 eV 40 V, 15 eV 

Dwell time 0.078 sec 0.047 sec 

Cone gas (nitrogen) 40 L/h 40 L/h 

Desolvation gas (nitrogen) 900 L/h at 650°C 1000 L/h at 650°C 

Collision gas (argon) 0.35 mL/min 0.15 mL/min 

Capillary voltage 1 kV 0.8 kV 

Table 4.2 Specific MS/MS parameters used for analyses on a Xevo TQ MS and Xevo TQ S mass spectrometers. 

 

Because the method was previously fully validated (see section 4.2.3.6), only a partial 

validation (LLOQ, linearity, accuracy and reproducibility) was performed to ensure the 

accuracy of the transferred method. 
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4.2.5 Proficiency test results analysis 

The uncertainty of measurement (%U=2.12*%RSDt) was calculated using proficiency test 

results according to the GTFCh guidelines [45,48,50]. The combined uncertainty u(x) was 

calculated based on the uncertainty of the inaccuracy of measurement (RMSbias), the 

uncertainty of the certified value (u(Cref)) and the intermediate precision of the method 

(%RSDt) using the equations presented in Figure 4.2.  

 

𝑢(𝑥) = √(𝑅𝑀𝑆
𝑏𝑖𝑎𝑠

)2 +  (𝑈(𝐶𝑟𝑒𝑓))2 +  (%𝑅𝑆𝐷𝑡)2        (𝑒𝑞. 1) 

 
 
 

%𝐵𝑖𝑎𝑠 =
100 ∗ (𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑇𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒)

𝑇𝑎𝑟𝑔𝑒𝑡 𝑉𝑎𝑙𝑢𝑒
        (𝑒𝑞. 2) 

 

𝑢(𝐶𝑟𝑒𝑓) =

∑(100 ∗  
𝑆𝐷𝐻

𝑇𝑎𝑟𝑔𝑒𝑡 𝑉𝑎𝑙𝑢𝑒
)

𝑁𝑃𝑇

√𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠
        (𝑒𝑞. 3) 

 

 

𝑅𝑀𝑆𝑏𝑖𝑎𝑠 = √
∑(( %𝐵𝑖𝑎𝑠)2)

𝑁𝑃𝑇
        (𝑒𝑞. 4) 

 
Figure 4.2 Equations used to calculate the uncertainty of measurement. SDH: standard deviation, NPT: number 
of proficiency test samples. 
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4.3 Results and discussion 

4.3.1 Xevo TQ MS mass spectrometer method 

4.3.1.1 Optimisation of the solid-phase extraction 

Nine cartridges were selected because of their potential interaction with EtG (Figure 4.3). 

Because EtG is a very polar acidic compound (pKa estimated between 2.84 and 3.21 

[44,51,52]), polar and anion exchange interactions seemed to be well suited for the 

extraction of EtG. Polymer based cartridges were of interest because they are stable within a 

larger pH range (pH 0 to 14) compared to silica based cartridges (pH 2 to 7).  

Figure 4.3 Classification of SPE cartridges tested for the extraction of EtG from hair samples according to the 
type (silica vs. polymer based) of sorbent and the interaction involved (strong anion exchange (SAX), weak 
anion exchange (WAX) or mixed mode). 

 

EtG was clearly detected in loading and/or wash solvents (Figure 4.4) using the Strata SAX, 

Strata Screen A, Bond Elut NH2 and Strata X-AW cartridges. No further experiments were 

done with these cartridges. The five other cartridges (Bond Elut SAX, Isolute PE-AX, Isolute 

SAX, Clean Screen EtG and Oasis MAX) retain EtG and do not show any loss during loading 

and washing steps. 

Three out of these 5 cartridges (Bond Elut SAX, Isolute SAX, Isolute PE-AX) are very similar, 

due to a common silica based and strong anion exchange mode (Figure 4.3). Because the 

Bond Elut SAX cartridge showed the best result for matrix effect for EtG-d5 (estimated at 71, 

64 and 46 % for the Bond Elut SAX, Isolute PE-AX and Isolute SAX, respectively), this cartridge 

was selected (along with Oasis MAX and Clean Screen EtG) for further experiments.  



Back to the table of contents 

113 

 Q
u

an
ti

fi
ca

ti
o

n
 o

f 
Et

G
 in

 h
ai

r 

 

 

 

 

Figure 4.4 Mean percentage (N=6) of EtG measured in loading, wash and elution solvent for all SPE cartridges 
tested, with the matrix effect (expressed as % recovery) measured on the internal standard.  

  

The matrix effect expressed as % recovery (%ME) and extraction efficiency (%EE) for three 

cartridges (Bond Elut SAX, Oasis MAX and Clean Screen EtG) were measured and are 

presented in Table 4.3. The best SPE cartridges with regard to matrix effect and extraction 

efficiency were the Clean Screen EtG and the Bond Elut SAX. This result is in agreement with 

earlier observations reported in literature [28]. Because of a comparable efficiency but a 

considerable price difference between these two products, the Bond Elut SAX cartridge was 

chosen for further experiments (grinding experiments) and for the method validation. 

 

 %ME (%RSD) %EE (%RSD) 

Clean Screen EtG  73 (13) 83 (5) 

Bond Elut SAX  81 (18) 69 (14) 

Oasis MAX  71 (20) 53 (21) 
Table 4.3 Matrix effect (%ME) and extraction efficiency (%EE) of EtG calculated at a concentration of 100 pg 
EtG/mg hair (N=6). 

 

4.3.1.2 Grinding experiments 

The results of the different analyses of hair samples from two volunteers and data on the 

two QCs (Medidrug ALCM 1/11-C and Medidrug ALCM 12-A) are shown in Figure 4.5. 
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Figure 4.5 Impact of different extraction processes (cut hair (process n°1), weakly pulverised hair (process n°2), 
extensively pulverised hair (process n°3) and extensively pulverised hair with longer sonication time (process 
n°4)) on the mean EtG concentration measured (y-axis), with standard deviation. This experiment was 
performed on 2 authentic positive hair samples (Volunteer 1 and 2) and on two external QC samples (QC 
Medidrug ALCM 1/11-C and QC Medidrug ALCM 12-A). 

  
  

A result below LLOQ (at 10 pg EtG/mg hair) was obtained for EtG using cut hair (process n°1) 

or weakly pulverised hair (process n°2) for volunteer 1 and 2. After extensive pulverisation 

(process n°3), a mean concentration of 14 pg EtG/mg hair (%RSD = 20 %, N=6) and 40 pg 

EtG/mg hair (%RSD = 8 %, N=6) were determined in the hair of volunteer 1 and 2, 

respectively.  

For the QCs Medidrug ALCM 1/11-C and Medidrug ALCM 12-A, One-way ANOVA tests 

demonstrated statistical differences in the determined EtG concentration with regard to the 

sample preparation. For Medidrug ALCM 1/11-C -with a target value at 12 pg EtG/mg hair- 

EtG was not quantifiable using cut hair (process n°1) while a mean concentration of 10 pg 

EtG/mg hair (%RSD = 5 %, N=3) and 19 pg EtG/mg hair (%RSD = 18 %, N=4) were calculated 

using weakly pulverised hair (process n°2) and extensively pulverised hair (process n°3), 

respectively. For the Medidrug ALCM 12-A -with a target value at 39 pg EtG/mg hair- a mean 

EtG concentration of 34 pg/mg hair (%RSD = 4 %, N=4) and 33 pg/mg hair (%RSD = 9 %, N=4) 

were calculated using cut (process n°1) and weakly pulverised hair (process n°2), 

respectively. The mean concentration measured (N=4) using extensively pulverised hair 

(process n°3) was significantly higher (49 pg EtG/mg hair, %RSD = 4 %). An extensive 

pulverisation of hair samples leads to a significantly higher amount of EtG measured, which 

exceeded the reference value of the commercially available QCs. Indeed, to reach the 

  x      < LLOQ 
- - -    target value 
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certified values, these hair samples had to be weakly pulverised or even not pulverised at all. 

This could partially be explained by the fact that certified values were determined with a 

mean calculated concentration obtained from different laboratories, working either with cut 

hair samples or with pulverised hair samples. To avoid that bias, we suggest the creation of 

different QCs with a different certified value for a method based on cut hair and for a 

method based on pulverised hair.  

Furthermore, experiments on the hair from the two volunteers showed that the results 

obtained after two hours of sonication (process n°3) did not differ statistically from those 

obtained after six hours of sonication (process n°4). 

Electron microscopy was used to illustrate the impact of different grinding procedures on 

hair. The results of the grinding process are visualised in Figure 4.6. Weak pulverisation 

(process n°2) damaged the external structure of the hair segment (Figure 4.6-B) while 

extensive pulverisation (process n°3) destroyed the structure of the hair segment (Figure 

4.6-C) and so increases the surface in contact with the extraction solvent. The microscopic 

structure of the external QC EGH 2/12-A, which consists of pulverised authentic human hair, 

is presented as a comparison in Figure 4.6-D and is similar to the structure obtained after an 

extensive pulverisation of hair (process n°3) with the Precellys 24 homogenizer (Figure 4.6-

C).  

Three real samples (hair strands up to 6 cm not cut into pieces prior to the pulverisation) 

were used to ensure that one grinding process was efficient enough to pulverise the hair and 

to allow to extract all EtG (Figure 4.7) from the matrix. 
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Figure 4.6 Microscopic observation of A: hair cut into small pieces (process n°1), B: hair cut into small pieces 
and weakly pulverised (process n°2), C: hair cut into small pieces and extensively pulverised (process n°3), D: 
external QC EGH 2/12-A. 
 
 

 
Figure 4.7 Effect of the number of grinding processes on the measured EtG concentration in real samples 
(N=3), which are not cut into small pieces (as calibrators and QCs). The methods developed and validated are 
based on one grinding process.  
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Pulverisation was performed in disposable tubes containing six stainless steel beads, placed 

on a Precellys 24 homogenizer. The multi-directional motion gives a high energy level to the 

beads that grind up to a total 24 samples simultaneously. The motion speed, the number of 

cycles, the time of the cycles and the pause between cycles are variable parameters, which 

could potentially be optimised to improve the grinding of samples. This system allows a 

rapid pulverisation of samples without a risk of contamination. As the samples are directly 

weighed and pulverised in the same vial that is used for the extraction, loss of sample is 

minimised. Further experimental studies based on more hair samples, from different 

ethnicities, with different colours and which have been subject to different cosmetic 

treatment are required to propose an optimal sample preparation procedure.     

4.3.1.3 Method validation  

The method was validated using a Acquity UPLC® coupled to a Xevo TQ MS mass 

spectrometer for lower limit of quantification (LLOQ), selectivity, linearity, matrix effects, 

extraction efficiency, accuracy, precision, stability and reproducibility. 

The LLOQ was calculated at 10 pg EtG/mg hair (Figure 4.8). Variation in the ratio between 

the two transitions (%RSD > 20%) at concentrations below 10 pg EtG/mg hair limited the 

sensitivity of the presented method. Nevertheless, the cut-off value used to detect abuse 

and excessive alcohol consumption, defined as 30 pg EtG/mg hair by the SoHT, exceeds by 

far the LLOQ of 10 pg EtG/mg hair of the presented method. Furthermore, this LLOQ was 

suitable for the purpose of evaluating the grinding process.  

An interfering peak at the same retention time of EtG and with a stable ratio between the 

two transitions (< 20 %) was detected in some blank hair samples (3/6); the estimated 

concentrations were around 0.5 pg EtG/mg hair (~20 times lower than the LLOQ). The 

response obtained for the interfering peak (11290) was 6 % of the response obtained for the 

LLOQ (168242). The origin of the peak was not determined. Interfering peaks have also been 

reported in other publications [7,17] and have been separated from EtG using a 100 % 

porous graphitic carbon column instead of a more conventional silica-based bonded phase 

column. We opted for an Acquity UPLC® HSS T3 column because of enhanced retention of 

polar compounds on this column. Other published methods based on liquid chromatography 

[15–17,22] did not report on interfering peaks. However, these research groups used hair 
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samples in the cut form and, as already demonstrated in literature [7,13,34], grinding of hair 

samples increases the extraction efficiency. 

 
Figure 4.8 MRM Chromatogram for EtG (m/z 22185 and m/z 22175) in a ‘blank’ sample (left) and spiked at 
the LLOQ (10 pg/mg hair) (right) obtained after the analysis of hair using a Xevo TQ MS mass spectrometer. 

 

The calibration curve (Figure 4.9) was linear over the range 10 (LLOQ), 15, 20, 50, 100, 250 

and 500 pg EtG/mg hair with correlation coefficients above 0.99. A weighted 1/x linear 

regression was applied. 

 

Figure 4.9 Calibration curve representing the mean EtG response (measured on 8 different days), with standard 
deviations, obtained analysing 7 calibrators. 

 

Data on matrix effect (expressed as % recovery), extraction efficiency and accuracy and 

precision are reported in Table 4.4. A matrix effect (%ME) between 66 and 76 % (%RSD < 

24 %) was observed for EtG. The %ME compensated by the use of EtG-d5 as IS (%MEIS) was 
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between 105 and 136 % (%RSD < 13 %). The extraction efficiency (%EE) of EtG was higher 

than 53 % (%RSD < 15 %).  

 

Concentration  LLOQ L M H EGH 2/12-A 

Nominal value (pg/mg hair)  10 16 30 300 25.4 

%ME (%RSD)  76 (6) 66 (24) 69 (16) 68 (21)  

%MEIS (%RSD)  136 (6) 116 (13) 112 (13) 105 (8)  

%EE (%RSD)  71 (13) 57 (15) 56 (10) 53 (6)  

%Bias   1 0 -1 1 -12 

%RSDr   11 9  7 7  16 

%RSDt   13 12  13 9  15 

Table 4.4 Matrix effect expressed as % recovery (%ME), extraction efficiency (%EE), %bias, repeatability 
(%RSDr) and intermediate precision (%RSDt) for EtG in hair, measured using a Xevo TQ MS mass spectrometer 
for the LLOQ and 4 QCs (3 internal and 1 external QCs).  

 

The %bias of the method was ≤ 1 % using internal QCs and ≤ 12 % using an external QC. The 

repeatability (%RSDr) and intermediate precision (%RSDt) were ≤ 16 % (for both internal and 

external QCs). Bias, repeatability and intermediate precision obtained from analysis of 

spiked QC samples (≤ 13 %) are comparable with results from published studies 

[7,25,28,37,41]. The measured %RSDr and %RSDt (≤ 16 %) and the calculated %bias (≤ 12 %) 

for the external QC (EGH 2/12-A) -consisting of authentic hair in pulverised form- 

demonstrate the accuracy and precision of this method. Comparable precision (< 13 %) has 

been reported by other groups [8,44] using authentic hair samples. To our knowledge, no 

reports on accuracy -based on the analysis of external QC samples with a certified reference 

value- have been published yet. In one published study, cross-validation including several 

laboratories has been used to determine the accuracy (%bias < 13 %) [8]. The reference 

value was determined based on the mean of the EtG concentrations obtained from each 

laboratory. According to our results, commercially available QC samples, in pulverised form, 

can be integrated in quality control programs to measure the accuracy and precision, but do 

not take into account variations due to the sample preparation.  

No instability was observed for samples staying in the autosampler for 72 h at 4°C. The mean 

stability was at 109 % for the QC low and at 104 % for the QC high. The 90 % confidence 

interval of stability sample responses (QC low = 38318-41218, QC high = 520898-549493 
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were within the ± 20 % of the mean response for control samples (QC low = 29098-43647, 

QC high = 410152-615228). 

The reproducibility of the method was evaluated via successful (Z-score ≤ 1.8) participation 

to 5 proficiency tests organised by the SoHT and the GTFCh. Results are presented in Table 

4.5. Some results from proficiency tests were not reported, because results were not 

available at the deadline (GTFCh 3/11, GTFCh 3/12, GTFCh 2/12, GTFCh 3/12, SoHT 2011) or 

because samples were never received (SoHT 2013).  

 

Proficiency test Sample Nominal value 

(pg/mg hair) 

Reported value 

(pg/mg hair) 

Z-score 

SoHT 2012  A 39 63 1.8 

 B 69 90 1.1 

GTFCh 1/13  A 42 33 -0.8 

 B 60 53 -0.5 

GTFCh 2/13  A 47 40 -0.6 

 B 38 33 -0.5 

GTFCh 3/13  A 22 29 1.3 

 B 31 34 0.3 

GTFCh 1/14  A < 7 < 10 - 

 B 39 35 -0.4 

Table 4.5 Proficiency test results for EtG in hair using a Xevo TQ MS mass spectrometer.  
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4.3.1.4 Population study  

The mean daily alcohol consumption and the EtG concentrations determined in the proximal 

1-cm segments -i.e. closest to the skin- from 7 volunteers are described in Table 4.6.  

 

Volunteer Gender Mean daily alcohol 

consumption (g/day) 

EtG concentration (pg/mg hair) 

1 Male 16 < LLOQ 

2 Male 21 < LLOQ 

3 Female 0 < LLOQ 

4 Male 10 < LLOQ 

5 Female 27 < LLOQ 

6 Female 32 10.4 

7 Female 17 10.1 

Table 4.6 Data of the population study, with indication of the gender, the mean daily alcohol consumption in 
g/day and the EtG concentration measured in the hair strand using a Xevo TQ MS mass spectrometer. LLOQ = 
10 pg EtG/mg hair. 

 

With a mean alcohol intake per day between 10 and 32 g for the social drinkers and of 0 g 

for one teetotaller, EtG concentrations in hair were below LLOQ (10 pg EtG/mg hair) for 5 

subjects and at 10.1 and 10.4 pg/mg hair for 2 subjects, the latter having a mean alcohol 

intake per day at 17 and 32 g, respectively. A recent controlled alcohol-dosing study [53] has 

shown that a mean daily ethanol consumption of 14 g ethanol for 3 months led to an EtG 

concentration between 2.0 and 9.8 pg/mg hair (median = 5.6 pg/mg, N=10), while a mean 

daily ethanol consumption of 21 g ethanol for 3 months led to an EtG concentration 

between 7.7 and 15.2 pg/mg (median 11.3 pg/mg, N=10), with one volunteer having an 

especially high EtG concentration at 38.9 pg/mg. Recalling that the LLOQ of our method was 

at 10 pg/mg and taking into consideration the considerable inter-individual variability 

observed for EtG in hair after the consumption of a fixed amount of alcohol [53], our results 

are in agreement with the results of this controlled alcohol-dosing study, even if a higher EtG 

concentration could have been expected for two volunteers (n°5 and n°6), having declared a 

mean daily alcohol consumption of 27 and 32 g/day. Cosmetic treatment (e.g. bleaching, 

perming and thermal hair straightening [31,32,38,54,55]), which may lead to significant 

decreases of EtG concentration in hair, could explain the somewhat low EtG concentrations 

observed in these 2 cases. In our study, no information concerning hair treatment was 
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available. Some drugs or diseases that may affect the glucuronidation of ethanol (see 

Chapter 7), could also possibly lead to decreased EtG concentrations in hair. Such issues still 

remain to be studied.     

Hair analysis from 6 social drinkers (mean ethanol intake per day ≤ 32 g) and 1 teetotaller did 

not show an EtG concentration above 30 pg/mg hair. Results of this limited population study 

showed no false positive results of the method in the diagnosis of excessive/chronic alcohol 

consumption using the cut-off value fixed by the SoHT. Because of the too small size of the 

population study, the specificity of the presented method was not estimated. However, a 

recently published method has reported a specificity at 0.93 using 25 pg/mg hair as cut-off 

value to distinguish between social and excessive/chronic drinkers [56]. Based on that 

estimation and working with a higher cut-off value (i.e. 30 pg EtG/mg hair), the risk of a false 

positive result for our method can be estimated at 7 % or less.  

4.3.2 Method transfer (Xevo TQ S mass spectrometer) 

The fully validated method using a Xevo TQ MS mass spectrometer (see section 4.2.3) was 

transferred to another system equipped with a Xevo TQ S mass spectrometer and partially 

validated (LLOQ, linearity, accuracy, precision and reproducibility). 

Using a system equipped with a more sensitive mass spectrometer (a Xevo TQ S instead of 

Xevo TQ MS) and with 0.01 % formic acid in water (instead of 0.1 %) as mobile phase 

improved the lower limit of quantification (LLOQ) for EtG in hair from 10 to 2 pg/mg hair 

(Figure 4.10). This is of major importance to apply the cut-off value at 7 pg/mg hair proposed 

by the SoHT to detect repeated alcohol consumption and so to disclaim a strict abstinence 

period. The calibration model (N=8) was linear (1/x) over the range 2 (LLOQ), 5, 10, 20, 50, 

250 and 500 pg EtG/mg hair. The %bias, repeatability (%RSDr) and intermediate precision 

(%RSDt) for internal and external QCs were ≤ 12 % (Table 4.7).  

 
Figure 4.10 MRM Chromatogram for EtG (m/z 22185 (A) and m/z 22175 (B)) and EtG-d5 (m/z 22685 (C)) 
spiked at the LLOQ (2 pg/mg hair) obtained after the analysis of hair using a Xevo TQ S mass spectrometer. 
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Concentration LLOQ QC-L QC-M QC-H EGH 2/12-A 

Nominal value (pg/mg hair) 2 6 30 300 25.4 

%Bias  6 3 8 8 -9 

%RSDr  8 3 2 3 5 

%RSDt  10 9 7 4 12 

Table 4.7 Precision (repeatability (%RSDr), intermediate precision (%RSDt)) and accuracy (%bias) for EtG in hair, 
measured using a Xevo TQ S mass spectrometer for the LLOQ and 4 QCs (1 external and 3 internal). 

 

The reproducibility of the method was evaluated via successful participation to 3 proficiency 

tests organised by the SoHT and the GTFCh. Results for two proficiency tests (GTFCh 2/14 

and GTFCh 1/15) were not reported, because results were not available at the deadline. 

Samples from older proficiency tests (between 2011 and 2012) that were still available were 

analysed. All results are reported in Table 4.8. 

 

Proficiency 

Test 

Sample Nominal 

value 

(pg/mg hair) 

Reported 

value  

(pg/mg hair) 

Z-score Measured 

value  

(pg/mg hair)  

GTFCh 3/11 B 72   68 

SoHT 2011 B 24   27 

 C 16   13 

GTFCh 1/12 A 27   23 

 B 54   46 

GTFCh 2/12 A 25   24 

 B 41   50 

GTFCh 3/12 A 5   4 

SoHT 2014  A 9 8 -0.4  

 B 29 27 -0.4  

GTFCh 3/14  A 11 8 -1.0  

 B 26 18 -1.1  

GTFCh 1/15 A 4   < 2 

 B 12   9 

GTFCh 2/15  A 23 18 -0.7  

 B 44 35 -0.8  

Table 4.8 Proficiency test results for EtG in hair using a Xevo TQ S mass spectrometer. 
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4.3.3 Xevo TQ MS vs. Xevo TQ S 

The accuracy (%bias) and precision (repeatability (%RSDr) and intermediate precision 

(%RSDt)) were calculated for both devices. No differences were observed regarding the 

accuracy and precision (Figure 4.11) or Z-score (between -0.8 and 1.8 (Xevo TQ MS) and 

between -1.1 and -0.4 (Xevo TQ S)) when using one or another device. This seems to confirm 

that both systems can be used interchangeably.  

 

 
Figure 4.11 Boxplots depicting the accuracy (%bias), repeatability (%RSDr) and intermediate precision (%RSDt), 
obtained using a Xevo TQ MS and a Xevo TQ S mass spectrometer (values of Tables 4.4 and 4.7). The boxes 
represent the values between the lower and upper quartile, the horizontal line represents the median and the 
whiskers represent the extreme values. 
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4.3.4 Proficiency test results between 2011 and 2015 

Quantitative results from the proficiency tests, organised either by the GTFCh or by the 

SoHT, in co-operation with Medichem and the Federal Institute for Materials Research and 

Testing, are presented in Figure 4.12. The target values, %RSD, accepted ranges, number of 

laboratories with a successful participation, reported values, obtained Z-score and measured 

value (but not reported) are reported. The %RSD reported are the standard deviation 

according to Horwitz (except for the SoHT 2011 and the SoHT 2012 where the %RSD 

provided by the report are the ‘coefficient of variation ‘resp. the ‘reproducibility %RSD’).   

The tests, based on authentic hair samples that had been cut into small pieces (organised by 

the SoHT), show a variation in the quantification between laboratories (%RSD) between 24 

and 102 %. The reported variation (%RSD) for the quantification of EtG in pulverised hair 

from proficiency tests organised by the GTFCh and the SoHT is between 23 and 35 %. The 

reproducibility of the presented methods was evaluated by means of participation in 5 

proficiency tests using the Xevo TQ MS mass spectrometer (SoHT 2012, GTFCh 1/13, GTFCh 

2/13, GTFCh 3/13, GTFCh 1/14) and in 3 proficiency tests using the Xevo TQ S mass 

spectrometer (SoHT 2014, GTFCh 3/14 and GTFCh 2/15). In agreement with data published 

in 2011 [45], the combined uncertainty (u(x) = 30 %) calculated on results from proficiency 

tests [48–50] is mainly due to the uncertainty of the inaccuracy of measurement (RMSbias = 

26 %, N=15) and partially due to the uncertainty of the certified value (u(Cref) = 6 %, N=36) 

and intermediate precision of the method (%RSDt = 13 %). The inaccuracy of measurement 

(RMSbias = 22 %, N=11) and so the combined uncertainty (u(x) = 26 %) decrease when 

proficiency tests based on cut hair samples, thus with variable sample preparation, are not 

taken into account. These results tend to suggest that recommendations or guidelines 

concerning the sample preparation protocol are to date crucial to lower the observed 

variation between laboratories in the determination of EtG from cut hair samples. 
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4.4 Conclusion 

This report describes the development and validation of a method for the quantification of 

EtG in hair by UHPLC-ESI--MS/MS using a Xevo TQ MS mass spectrometer. A SPE cartridge 

(the Bond Elut SAX) was selected among nine tested, to optimise the matrix effect and 

extraction efficiency. The influence of the preparation of the hair on the quantitative result 

has been studied. An extensive pulverisation of hair samples leads to a significantly higher 

amount of EtG measured and is therefore essential to assure a high extraction efficiency of 

EtG from hair and consequently a correct quantification of authentic samples. In addition, 

pulverisation of hair saves time and leads to more homogenous samples. The developed 

method has been fully validated using a Xevo TQ MS mass spectrometer. The accuracy and 

precision of the method has been demonstrated with spiked QC samples (%bias, %RSDt 

and %RSDr ≤ 13 %) and with one external QC sample (%bias, %RSDt and %RSDr ≤ 16 %), 

consisting of authentic pulverised hair, with a reference concentration value at 25.4 pg 

EtG/mg hair. With its LLOQ at 10 pg EtG/mg hair this method is suitable to diagnose chronic 

and excessive alcohol consumption according to the Society of Hair Testing (SoHT) as the 

proposed cut-off is 30 pg EtG/mg hair. Because monitoring of an alcohol abstinence period 

requires a method able to quantify concentrations equal to or below 7 pg/mg hair, which is 

the cut-off value used to strongly suggest repeated alcohol consumption and disprove a 

strict abstinence period, the method was transferred to another tandem mass spectrometer 

(Xevo TQ S instead of the Xevo TQ MS), optimised and partially validated (%bias, %RSDt 

and %RSDr ≤ 12 %). The LLOQ for EtG in hair was improved from 10 to 2 pg/mg hair. The 

reproducibility of both methods was assessed via successful participation (Z-scores ≤ 1.8) to 

eight proficiency tests. However, recommendations or guidelines concerning the sample 

preparation protocol are crucial to lower the observed variations between laboratories in 

the determination of EtG in hair.  

  



Back to the table of contents 

128 

 Q
u

an
ti

fi
ca

ti
o

n
 o

f 
Et

G
 in

 h
ai

r 

 

 

4.5 References 

[1] J.C. Garriott, Garriot’s Medicolegal Aspects of Alcohol, Fifth Edition, Lawyers & Judges 
Publishing Company, Inc., Tucson, Arizona, 2009. 

[2] C.L. Crunelle, M. Yegles, A.L.N. van Nuijs, A. Covaci, M. De Doncker, K.E. Maudens, et 
al., Hair ethyl glucuronide levels as a marker for alcohol use and abuse: a review of the 
current state of the art. Drug and Alcohol Dependence, 134 (2014) 1–11. 
doi:10.1016/j.drugalcdep.2013.10.008. 

[3] R. Kronstrand, S. Norlin, H. Druid, Evaluation of alcohol markers in post mortem hair 
and blood: Comparison between ethyl glucuronide, ethyl sulphate, and CDT. Science & 
Justice, 49 (2009) 257–258. doi:10.1016/j.scijus.2009.09.011. 

[4] T. Maenhout, M.L. De Buyzere, J.R. Delanghe, Non-oxidative ethanol metabolites as a 
measure of alcohol intake. Clinica Chimica Acta, 415 (2013) 322–329. 
doi:10.1016/j.cca.2012.11.014. 

[5] P. Kintz, Consensus of the Society of Hair Testing on hair testing for chronic excessive 
alcohol consumption 2009. Forensic Science International, 196 (2010) 2. 
doi:10.1016/j.forsciint.2009.12.031. 

[6] P. Kintz, 2014 consensus for the use of alcohol markers in hair for assessment of both 
abstinence and chronic excessive alcohol consumption. Forensic Science International, 
249 (2015) A1–2. doi:10.1016/j.forsciint.2014.11.001. 

[7] M.E. Albermann, F. Musshoff, L. Aengenheister, B. Madea, Investigations on the 
influence of different grinding procedures on measured ethyl glucuronide 
concentrations in hair determined with an optimized and validated LC-MS/MS 
method. Analytical and Bioanalytical Chemistry, 403 (2012) 769–776. 
doi:10.1007/s00216-012-5926-6. 

[8] H. Kharbouche, F. Sporkert, S. Troxler, M. Augsburger, P. Mangin, C. Staub, 
Development and validation of a gas chromatography-negative chemical ionization 
tandem mass spectrometry method for the determination of ethyl glucuronide in hair 
and its application to forensic toxicology. Journal of Chromatography B, 877 (2009) 
2337–2343. doi:10.1016/j.jchromb.2008.11.046. 

[9] European Communities, Commission Decision of 12 August 2002 implementing 
Council Directives 96/23/EC concerning the performance of analytical methods and 
the interpretation of results, 2002. Available from: http://eur-lex.europa.eu/legal-
content/EN/ALL/?uri=CELEX:32002D0657 (accessed December 4, 2016). 

[10] R. Kronstrand, L. Brinkhagen, F.H. Nystrom, Ethyl glucuronide in human hair after daily 
consumption of 16 or 32 g of ethanol for 3 months. Forensic Science International, 215 
(2012) 51–55. doi:10.1016/j.forsciint.2011.01.044. 

[11] C. Jurado, T. Soriano, M.P. Giménez, M. Menéndez, Diagnosis of chronic alcohol 
consumption: Hair analysis for ethyl-glucuronide. Forensic Science International, 145 
(2004) 161–166. doi:10.1016/j.forsciint.2004.04.031. 

[12] F. Pragst, M.A. Balikova, State of the art in hair analysis for detection of drug and 
alcohol abuse. Clinica Chimica Acta, 370 (2006) 17–49. doi:10.1016/j.cca.2006.02.019. 

[13] B. Mönch, R. Becker, I. Nehls, Determination of ethyl glucuronide in hair: a rapid 
sample pretreatment involving simultaneous milling and extraction. International 
Journal of Legal Medicine, 128 (2014) 69–72. doi:10.1007/s00414-013-0939-z. 

[14] L.C.A.M. Bossers, R. Paul, A.J. Berry, R. Kingston, C. Middendorp, A.J. Guwy, An 
evaluation of washing and extraction techniques in the analysis of ethyl glucuronide 



Back to the table of contents 

129 

 Q
u

an
ti

fi
ca

ti
o

n
 o

f 
Et

G
 in

 h
ai

r 

 

 

and fatty acid ethyl esters from hair samples. Journal of Chromatography B, 953–954 
(2014) 115–119. doi:10.1016/j.jchromb.2014.01.049. 

[15] L. Morini, L. Politi, A. Groppi, C. Stramesi, A. Polettini, Determination of ethyl 
glucuronide in hair samples by liquid chromatography/electrospray tandem mass 
spectrometry. Journal of Mass Spectrometry, 41 (2006) 34–42. doi:10.1002/jms.943. 

[16] P. Kintz, M. Villain, E. Vallet, M. Etter, G. Salquebre, V. Cirimele, Ethyl glucuronide: 
Unusual distribution between head hair and pubic hair. Forensic Science International, 
176 (2008) 87–90. doi:10.1016/j.forsciint.2007.08.012. 

[17] M.E. Albermann, F. Musshoff, B. Madea, A fully validated high-performance liquid 
chromatography-tandem mass spectrometry method for the determination of ethyl 
glucuronide in hair for the proof of strict alcohol abstinence. Analytical and 
Bioanalytical Chemistry, 396 (2010) 2441–2447. doi:10.1007/s00216-009-3388-2. 

[18] P. Bendroth, R. Kronstrand, A. Helander, J. Greby, N. Stephanson, P. Krantz, 
Comparison of ethyl glucuronide in hair with phosphatidylethanol in whole blood as 
post-mortem markers of alcohol abuse. Forensic Science International, 176 (2008) 76–
81. PMID: 18023314. 

[19] G. Høiseth, L. Morini, A. Polettini, A. Christophersen, J. Mørland, Ethyl Glucuronide in 
Hair Compared With Traditional Alcohol Biomarkers—A Pilot Study of Heavy Drinkers 
Referred to an Alcohol Detoxification Unit. Alcoholism: Clinical and Experimental 
Research, 33 (2009) 812–816. doi:10.1111/j.1530-0277.2009.00900.x. 

[20] L. Morini, L. Politi, S. Acito, A. Groppi, A. Polettini, Comparison of ethyl glucuronide in 
hair with carbohydrate-deficient transferrin in serum as markers of chronic high levels 
of alcohol consumption. Forensic Science International, 188 (2009) 140–143. 0379-
0738. 

[21] F. Pragst, M. Rothe, B. Moench, M. Hastedt, S. Herre, D. Simmert, Combined use of 
fatty acid ethyl esters and ethyl glucuronide in hair for diagnosis of alcohol abuse: 
Interpretation and advantages. Forensic Science International, 196 (2010) 101–110. 
doi:10.1016/j.forsciint.2009.12.028. 

[22] F. Lamoureux, J. Gaulier, F.-L. Sauvage, M. Mercerolle, C. Vallejo, G. Lachâtre, 
Determination of ethyl-glucuronide in hair for heavy drinking detection using liquid 
chromatography-tandem mass spectrometry following solid-phase extraction. 
Analytical and Bioanalytical Chemistry, 394 (2009) 1895–1901. doi:10.1007/s00216-
009-2863-0. 

[23] P. Cabarcos, H.M. Hassan, M.J. Tabernero, K.S. Scott, Analysis of ethyl glucuronide in 
hair samples by liquid chromatography-electrospray ionization-tandem mass 
spectrometry (LC-ESI-MS/MS). Journal of Applied Toxicology, 33 (2013) 638–643. 
doi:10.1002/jat.1791. 

[24] C. Stramesi, M. Polla, C. Vignali, A. Zucchella, A. Groppi, Segmental hair analysis in 
order to evaluate driving performance. Forensic Science International, 176 (2008) 34–
37. 0379-0738. 

[25] R. Paul, R. Kingston, L. Tsanaclis, A. Berry, A. Guwy, Do drug users use less alcohol than 
non-drug users? A comparison of ethyl glucuronide concentrations in hair between 
the two groups in medico-legal cases. Forensic Science International, 176 (2008) 82–
86. doi:10.1016/j.forsciint.2007.06.025. 

[26] I. Janda, W. Weinmann, T. Kuehnle, M. Lahode, A. Alt, Determination of ethyl 
glucuronide in human hair by SPE and LC-MS/MS. Forensic Science International, 128 
(2002) 59–65. doi:10.1016/S0379-0738(02)00163-9. 



Back to the table of contents 

130 

 Q
u

an
ti

fi
ca

ti
o

n
 o

f 
Et

G
 in

 h
ai

r 

 

 

[27] A. Alt, I. Janda, S. Seidl, F.M. Wurst, Determination of ethyl glucuronide in hair 
samples. Alcohol Alcohol, 35 (2000) 313–314. doi:10.1093/alcalc/35.3.313. 

[28] R. Agius, T. Nadulski, H.-G. Kahl, J. Schräder, B. Dufaux, M. Yegles, et al., Validation of a 
headspace solid-phase microextraction-GC-MS/MS for the determination of ethyl 
glucuronide in hair according to forensic guidelines. Forensic Science International, 
196 (2010) 3–9. doi:10.1016/j.forsciint.2009.07.023. 

[29] B.M.R. Appenzeller, R. Agirman, P. Neuberg, M. Yegles, R. Wennig, Segmental 
determination of ethyl glucuronide in hair: A pilot study. Forensic Science 
International, 173 (2007) 87–92. doi:10.1016/j.forsciint.2007.01.025. 

[30] I. Kerekes, M. Yegles, U. Grimm, R. Wennig, Ethyl Glucuronide Determination: Head 
Hair versus Non-Head Hair. Alcohol and Alcoholism, 44 (2009) 62–66. 
doi:10.1093/alcalc/agn096. 

[31] S. Suesse, F. Pragst, T. Mieczkowski, C.M. Selavka, A. Elian, H. Sachs, et al., Practical 
experiences in application of hair fatty acid ethyl esters and ethyl glucuronide for 
detection of chronic alcohol abuse in forensic cases. Forensic Science International, 
218 (2012) 82–91. doi:10.1016/j.forsciint.2011.10.006. 

[32] M. Yegles, A. Labarthe, V. Auwärter, S. Hartwig, H. Vater, R. Wennig, et al., 
Comparison of ethyl glucuronide and fatty acid ethyl ester concentrations in hair of 
alcoholics, social drinkers and teetotallers. Forensic Science International, 145 (2004) 
167–173. doi:10.1016/j.forsciint.2004.04.032. 

[33] B.M.R. Appenzeller, M. Schuman, M. Yegles, R. Wennig, Ethyl glucuronide 
concentration in hair is not influenced by pigmentation. Alcohol and Alcoholism, 42 
(2007) 326–327. doi:10.1093/alcalc/agm016. 

[34] B. Mönch, R. Becker, I. Nehls, Quantification of Ethyl Glucuronide in Hair: Effect of 
Milling on Extraction Efficiency. Alcohol and Alcoholism, 48 (2013) 558–563. 
doi:10.1093/alcalc/agt059. 

[35] L. Morini, M. Colucci, M.G. Ruberto, A. Groppi, Determination of ethyl glucuronide in 
nails by liquid chromatography tandem mass spectrometry as a potential new 
biomarker for chronic alcohol abuse and binge drinking behavior. Analytical and 
Bioanalytical Chemistry, 402 (2012) 1–6. doi:10.1007/s00216-011-5609-8. 

[36] G. Skopp, G. Schmitt, L. Pötsch, P. Drönner, R. Aderjan, R. Mattern, Ethyl glucuronide 
in human hair. Alcohol and Alcoholism, 35 (2000) 283–285. 
doi:10.1093/alcalc/35.3.283. 

[37] I. Álvarez, A. Bermejo, M. Tabernero, P. Fernández, P. Cabarcos, P. López, Microwave-
assisted extraction: a simpler and faster method for the determination of ethyl 
glucuronide in hair by gas chromatography–mass spectrometry. Analytical and 
Bioanalytical Chemistry, 393 (2009) 1345–1350. doi:10.1007/s00216-008-2546-2. 

[38] L. Morini, A. Zucchella, A. Polettini, L. Politi, A. Groppi, Effect of bleaching on ethyl 
glucuronide in hair: An in vitro experiment. Forensic Science International, 198 (2010) 
23–27. doi:10.1016/j.forsciint.2009.11.005. 

[39] M. Concheiro, A. Cruz, M. Mon, A. de Castro, O. Quintela, A. Lorenzo, et al., 
Ethylglucuronide Determination in Urine and Hair from Alcohol Withdrawal Patients. 
Journal of Analytical Toxicology, 33 (2009) 155–161. doi:10.1093/jat/33.3.155. 

[40] V. Pirro, D. Di Corcia, S. Pellegrino, M. Vincenti, B. Sciutteri, A. Salomone, A study of 
distribution of ethyl glucuronide in different keratin matrices. Forensic Science 
International, 210 (2011) 271–277. doi:10.1016/j.forsciint.2011.03.026. 



Back to the table of contents 

131 

 Q
u

an
ti

fi
ca

ti
o

n
 o

f 
Et

G
 in

 h
ai

r 

 

 

[41] S.C. Turfus, J. Beyer, D. Gerostamoulos, O.H. Drummer, A comparison of the 
performance of quality controls prepared from spiked, fortified and authentic hair for 
ethyl glucuronide analysis. Forensic Science International, 232 (2013) 60–66. 
doi:10.1016/j.forsciint.2013.07.003. 

[42] L. Imbert, J.-M. Gaulier, S. Dulaurent, J. Morichon, F. Bevalot, P. Izac, et al., Improved 
liquid chromatography-tandem mass spectrometric method for the determination of 
ethyl glucuronide concentrations in hair: Applications to forensic cases. International 
Journal of Legal Medicine, 128 (2014) 53–58. doi:10.1007/s00414-013-0894-8. 

[43] B. Mönch, R. Becker, C. Jung, I. Nehls, The homogeneity testing of EtG in hair 
reference materials: A high-throughput procedure using GC–NCI–MS. Forensic Science 
International, 226 (2013) 202–207. doi:10.1016/j.forsciint.2013.01.018. 

[44] H. Kharbouche, N. Steiner, M. Morelato, C. Staub, B. Boutrel, P. Mangin, et al., 
Influence of ethanol dose and pigmentation on the incorporation of ethyl glucuronide 
into rat hair. Alcohol, 44 (2010) 507–514. doi:10.1016/j.alcohol.2010.05.001. 

[45] R. Agius, T. Nadulski, H.G. Kahl, B. Dufaux, Ethyl glucuronide in hair - A highly effective 
test for the monitoring of alcohol consumption. Forensic Science International, 218 
(2012) 10–14. doi:10.1016/j.forsciint.2011.10.007. 

[46] Y. Zheng, A. Helander, Solid-Phase Extraction Procedure for Ethyl Glucuronide in 
Urine. Journal of Analytical Toxicology, 32 (2008) 778–781. doi:10.1093/jat/32.9.778. 

[47] N. Kummer, S. Wille, V. Di Fazio, W.E. Lambert, N. Samyn, A fully validated method for 
the quantification of ethyl glucuronide and ethyl sulphate in urine by UPLC–ESI-
MS/MS applied in a prospective alcohol self-monitoring study. Journal of 
Chromatography B, 929 (2013) 149–154. doi:10.1016/j.jchromb.2013.04.011. 

[48] S. Wille, F. Peters, V. Di Fazio, N. Samyn, Practical aspects concerning validation and 
quality control for forensic and clinical bioanalytical quantitative methods. 
Accreditation and Quality Assurance, 16 (2011) 279–292. doi:10.1007/s00769-011-
0775-0. 

[49] B.K. Matuszewski, M.L. Constanzer, C.M. Chavez-Eng, Strategies for the Assessment of 
Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC-MS/MS. Analytical 
Chemistry, 75 (2011) 3019–3030. doi:10.1021/ac020361s. 

[50] Gesellschaft für Toxikologische und Forensische Chemie, Guideline for quality control 
in forensic-toxicological analyses. (2009). Available from 
http://www.gtfch.org/cms/images/stories/files/GTFCh_Richtlinie_For-
Tox_Version%201.pdf (accessed March 5, 2016). 

[51] W. Bicker, M. Lämmerhofer, T. Keller, R. Schuhmacher, R. Krska, W. Lindner, Validated 
Method for the Determination of the Ethanol Consumption Markers Ethyl 
Glucuronide, Ethyl Phosphate, and Ethyl Sulfate in Human Urine by Reversed-
Phase/Weak Anion Exchange Liquid Chromatography-Tandem Mass Spectrometry. 
Analytical Chemistry, 78 (2006) 5884–5892. doi:10.1021/ac060680+. 

[52] G. Høiseth, B. Yttredal, R. Karinen, H. Gjerde, J. Mørland, A. Christophersen, Ethyl 
Glucuronide Concentrations in Oral Fluid, Blood, and Urine After Volunteers Drank 0.5 
and 1.0 g/kg Doses of Ethanol. Journal of Analytical Toxicology, 34 (2010) 319–324. 
doi:10.1093/jat/34.6.319. 

[53] C.L. Crunelle, D. Cappelle, M. Yegles, M. De Doncker, P. Michielsen, G. Dom, et al., 
Ethyl glucuronide concentrations in hair: a controlled alcohol-dosing study in healthy 
volunteers. Analytical and Bioanalytical Chemistry, 408 (2016) 2019–2025. 
doi:10.1007/s00216-015-9117-0. 



Back to the table of contents 

132 

 Q
u

an
ti

fi
ca

ti
o

n
 o

f 
Et

G
 in

 h
ai

r 

 

 

[54] J. Ettlinger, L. Kirchen, M. Yegles, Influence of thermal hair straightening on ethyl 
glucuronide content in hair. Drug Testing and Analysis, 6 (2014) 74–77. 
doi:10.1002/dta.1648. 

[55] I. Kerekes, M. Yegles, Coloring, Bleaching, and Perming: Influence on EtG Content in 
Hair. Therapeutic Drug Monitoring, 35 (2013) 527–529. 
doi:10.1097/FTD.0b013e31828ca246. 

[56] H. Kharbouche, M. Faouzi, N. Sanchez, J.B. Daeppen, M. Augsburger, P. Mangin, et al., 
Diagnostic performance of ethyl glucuronide in hair for the investigation of alcohol 
drinking behavior: a comparison with traditional biomarkers. International Journal of 
Legal Medicine, 126 (2012) 243–250. doi:10.1007/s00414-011-0619-9. 

 

 

 

 

 

 

 

 

  



Back to the table of contents 

   

 

    Chapter 5  

Quantification of PEths in whole 

blood, V-DBS and C-DBS 

 

 

 

 

 

 

 

 

 

 

 

 

Based on 

N. Kummer, A.S. Ingels, S.M. Wille, C. Hanak, P. Verbanck, W.E. Lambert, N. Samyn, C.P. 
Stove, Quantification of phosphatidylethanol 16:0/18:1, 18:1/18:1, and 16:0/16:0 in venous 
blood and venous and capillary dried blood spots from patients in alcohol withdrawal and 
control volunteers, Analytical and Bioanalytical Chemistry. 408 (2016) 825–838. 



Back to the table of contents 

134 

Q
u

an
ti

fi
ca

ti
o

n
 o

f 
P

Et
h

s 
in

 w
h

o
le

 b
lo

o
d

, V
-D

B
S 

an
d

 C
-D

B
S 

 

 

  



Back to the table of contents 

135 

Q
u

an
ti

fi
ca

ti
o

n
 o

f 
P

Et
h

s 
in

 w
h

o
le

 b
lo

o
d

, V
-D

B
S 

an
d

 C
-D

B
S 

 

 

Abstract 

Phosphatidylethanol species (PEths) are promising biomarkers of alcohol consumption. This 

chapter reports on the set-up, validation and application of a novel UHPLC-ESI-MS/MS 

method for the quantification of PEth 16:0/18:1, PEth 18:1/18:1, and PEth 16:0/16:0 in 

whole blood (30 µL) and in venous (V, 30 µL) or capillary (C, 3 punches (3 mm)) dried blood 

spots (DBS). The methods were linear from 10 (LLOQ) to 2000 ng/mL for PEth 16:0/18:1, 

from 10 (LLOQ) to 1940 ng/mL for PEth 18:1/18:1, and from 19 (LLOQ) to 3872 ng/mL for 

PEth 16:0/16:0. Extraction efficiencies were higher than 55 % (%RSD < 18 %) and matrix 

effects compensated by IS were between 77 and 125 % (%RSD < 10 %). Accuracy and 

precision fulfilled acceptance criteria (%bias, %RSDr and %RSDt below 13 %). Validity of the 

procedure for determination of PEth 16:0/18:1 in blood was demonstrated by the successful 

participation to a proficiency test. The quantification of PEths in C-DBS was not significantly 

influenced by the hematocrit (Hct), punch localisation or spot volume. The stability of PEths 

in V-DBS stored at room temperature was demonstrated up to 6 months. The method was 

applied to authentic samples (whole blood, V-DBS and C-DBS) from 50 inpatients in alcohol 

withdrawal and 50 control volunteers. Applying a cut-off value to detect inpatients at 221 

ng/mL for PEth 16:0/18:1 provided no false positive results and a good sensitivity (86 %). 

Comparison of quantitative results (Bland-Altman plot, Passing-Bablok regression and 

Wilcoxon signed rank test) revealed that V-DBS and C-DBS are valid alternatives to venous 

blood for the detection of alcohol consumption.  
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5.1 Introduction 

Phosphatidylethanols (PEths) are a group of abnormal phospholipids formed by the 

presence of ethanol in cell membranes [1]. They are biomarkers of alcohol consumption [2] 

present in blood, mainly located in erythrocytes [3], and in different organs [4]. Up to forty-

eight different PEths have been detected in blood collected in autopsy cases of heavy 

drinkers [5]. All PEths have a common phosphoethanol head on which two fatty acid chains 

of variable length and degree of saturation are attached. Although blood analysis from heavy 

drinkers shows inter-individual variations of the distribution of the different PEths [6], the 

predominant species in blood after alcohol consumption are PEth 16:0/18:1 (30-46 %) and 

PEth 16:0/18:2 (16-28 %) [5–9]. Other PEths detected are PEth 18:1/18:1 and PEth 18:0/18:2 

(identical molecular masses), together accounting for about 11-12 % of total PEths [6,7] 

while PEth 16:0/16:0 accounts for about 5 % [6]. The half-life of PEths in whole blood was 

calculated to be 4.0 ± 0.7 days [3]. In case of chronic/excessive alcohol consumption, PEths 

are detectable in blood up to 28 days after sobriety [10]. Moreover, quantification of PEths 

can be used to detect the degree of alcohol consumption as a significant correlation 

between the PEths concentrations in blood and the amount of consumed ethanol has been 

demonstrated [11].  

Numerous studies have been published on the quantification of PEths in blood and these 

have been reviewed in 2012 [10]. The most used extraction technique is a liquid-liquid 

extraction (LLE) with n-hexane [5–7,11–17] (or heptane [8]) after stepwise addition of blood 

to isopropanol and the internal standard (IS) solution. Some methods added water [6], 

borate buffer (pH=9) [5] or sodium acetate buffer (pH=5) [15] to dilute the blood. Some 

publications reported other types of sample preparation, such as protein precipitation with 

methanol [18] or protein precipitation followed by an online solid-phase extraction [19]. A 

number of detection methods is based on high performance liquid chromatography (HPLC) 

with normal-phase columns coupled to evaporative light scattering detection (ELSD); 

chromatography has been carried out with n-hexane and propanol-based gradients 

containing acetic acid and triethylamine [3,4,11,12]. Quantification limits (LLOQ) obtained 

with these methods ranged between 100–500 ng/mL [4,11], analysing 250 to 300 µL of 

whole blood. PEths have also been analysed with non-aqueous capillary electrophoresis (CE) 

coupled to ultraviolet (UV) detection [13]. Both HPLC-ELSD and CE-UV [13] methods measure 
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the total amount of PEths. However, LC methods coupled to MS/MS detection allow to 

obtain much lower LLOQs (between 0.7 and 83 ng/mL, based on the analysis of between 100 

and 300 µL of whole blood) and are able to identify and quantify individual molecular 

species [6–8,15,18–20].   

To improve the stability of compounds in whole blood and to facilitate the storage and 

transportation of samples [21], DBS methods have been developed. Numerous DBS-based 

methods have been published for a wide variety of applications, including therapeutic drug 

monitoring and toxicology [22]. Also alcohol markers such as ethyl glucuronide, ethyl sulfate 

and PEths have been determined, starting from DBS [15,18,21,23–25] (reviewed by Sadones 

et al. [26]). Since 2011, two publications have reported on the quantification of PEth 

16:0/18:1 [15,18] and PEth 18:1/18:1 [15] in V-DBS samples, while only one [21] reported on 

the analysis of C-DBS samples (detection of PEth 16:0/18:1 in newborns to detect prenatal 

alcohol exposure). V-DBS are prepared by spotting a fixed volume of venous blood onto a 

filter paper, whereas C-DBS are generated by direct collection of blood drops appearing after 

a finger or heel prick onto a filter paper. C-DBS offer the advantage compared to 

venepuncture of being less invasive and not requiring the service of nurses or physicians. 

Since these are typically collected in a non-volumetric way, these samples are mostly 

processed by excising punches with a fixed diameter from the global spot. This partial-spot 

approach requires the assessment of the impact of variables such as hematocrit (Hct), punch 

localisation and spot volume on the quantitative result [27,28].  

This chapter presents the validation of UHPLC-ESI-MS/MS methods for the quantification of 

three PEths (PEth 16:0/18:1, PEth 18:1/18:1 and PEth 16:0/16:0) in whole blood, V-DBS and 

C-DBS according to international guidelines [29] and published recommendations [27]. To 

our knowledge, this is the first report on the rigorous validation of the differences between 

capillary and venous DBS including the impact of specific parameters such as the influence of 

hematocrit, punch localisation and spot volume on PEths. In addition, a sensitive method for 

PEth 16:0/16:0 in DBSs was developed and stability of the three species in V-DBS was 

evaluated over a period of 6 months. Moreover, successful participation to a proficiency test 

demonstrated the validity of the method for blood (no proficiency tests for DBS are 

available). Finally, the developed methods were applied to evaluate the agreement between 

the quantitative results from the analysis of whole blood, V-DBS and C-DBS obtained from 



Back to the table of contents 

138 

Q
u

an
ti

fi
ca

ti
o

n
 o

f 
P

Et
h

s 
in

 w
h

o
le

 b
lo

o
d

, V
-D

B
S 

an
d

 C
-D

B
S 

 

 

100 volunteers (50 inpatients in alcohol withdrawal and 50 control volunteers). Receiver 

operating characteristic (ROC) curves performed on these results allow us to propose a 

possible cut-off value to detect chronic and excessive alcohol consumption. It was our main 

objective to investigate whether C-DBS could be a reliable alternative for the detection of 

PEths in whole blood, as this could lead to a more user friendly and practical approach to 

detect excessive and chronic alcohol consumption.  

5.2 Materials and Methods 

5.2.1 Chemical 

1,2-Dioleoyl-sn-glycero-3-phosphoethanol (sodium salt; PEth 18:1/18:1) and 1,2-dipalmitoyl-

sn-glycero-3-phosphoethanol (sodium salt; PEth 16:0/16:0) were obtained from Avanti Polar 

Lipids (Alabaster, Alabama, USA). Palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanol (PEth 

16:0/18:1) was purchased from Enzo Life Sciences (Antwerp, Belgium). As deuterated 

analogues had not been commercialised at that time, four different internal standards from 

Avanti Polar Lipids were evaluated during validation: 1,2-dipalmitoyl-sn-glycero-3-

phosphomethanol (sodium salt; PMeth 16:0/16:0), 1,2-dioleoyl-sn-glycero-3-

phosphomethanol (sodium salt; PMeth 18:1/18:1), 1,2-dipalmitoyl-sn-glycero-3-

phosphopropanol (sodium salt; PProp 16:0/16:0) and 1,2-dioleoyl-sn-glycero-3-

phosphopropanol (sodium salt; PProp 18:1/18:1). 

Isopropanol (ULC/MS), tetrahydrofuran (ULC/MS), ammonium acetate (ULC/MS), water 

(HPLC) and methanol (ULC/MS) were purchased from Biosolve (Valkenswaard, The 

Netherlands). Isopropanol and n-hexane, gradient grade for liquid chromatography, were 

purchased from Merck KGaA (Darmstadt, Germany). Formic acid for mass spectrometry 

(~98 %) was purchased from Sigma-Aldrich (Steinheim, Germany).  

5.2.2 Standard solutions, calibrators and quality control (QC) samples 

Stock solutions of PEths (PEth 16:0/18:1 (1.000 mg/mL), PEth 18:1/18:1 (0.970 mg/mL) and 

PEth 16:0/16:0 (0.968 mg/mL)) and stock solutions of the 4 evaluated ISs (PMeth 16:0/16:0 

(0.968 mg/mL), PMeth 18:1/18:1 (0.971 mg/mL), PProp 16:0/16:0 (0.969 mg/mL) and PProp 

18:1/18:1 (0.971 mg/mL)) were prepared in methanol. For the blood and V-DBS methods, 

two stock solutions, one for the calibrators (Cal-Stock, 100 µg/mL) and one for the QCs (QC-

Stock, 50 µg/mL) -containing PEth 16:0/18:1, PEth 18:1/18:1 and PEth 16:0/16:0- were 

prepared by diluting stock solutions of each PEth in methanol. An IS stock solution (IS-Stock) 
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with the 4 ISs each at a concentration of 5 µg/mL was prepared in methanol. For the C-DBS 

method, a Cal-Stock solution of 250 µg/mL, a QC-Stock solution of 250 µg/mL and an IS-

Stock solution of 0.25 µg/mL were prepared in methanol. All working solutions were stored 

at -18°C. 

Daily dilutions of IS-Stock solutions were performed in solution A, consisting of isopropanol, 

10 mM ammonium acetate buffer and formic acid (6:4:0.2, v/v), to reach a concentration of 

100 ng/mL (IS working solution (IS-WS-1) used for the whole blood and V-DBS method) and 

10 ng/mL (IS working solution (IS-WS-2) used for the C-DBS method). 

Daily dilutions of Cal-Stock solutions and QC-Stock solutions were performed in water to 

obtain 8 different concentrations for calibrators and 3 for QCs. A second dilution was 

performed in EDTA blank whole blood. Final calibrator concentrations in blood were 

between 10 and 2000 ng/mL for PEth 16:0/18:1, 10 and 1940 ng/mL for PEth 18:1/18:1 and 

between 19 and 3872 ng/mL for PEth 16:0/16:0. For the two DBS methods, 30 µL of 

calibrators and QCs in blood were spotted onto Whatman 903 filter paper (GE Healthcare). 

Spots were dried for minimum 2 hours at room temperature. The complete DBS was used 

for the V-DBS method and 3 punches (3 mm) were used for the C-DBS method, unless 

indicated otherwise. Here, we typically used 3 punches from the same DBS, except in the 

application study, where not from all C-DBS three 3-mm punches could be obtained. The 

hematocrit of the blood used to prepare the DBS calibrators was 0.48 ± 0.02, as measured 

using a Sysmex XP-300™ automated hematology analyser (Sysmex America, Inc.). The three 

methods are presented in Figure 5.1. 
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Figure 5.1 Illustration of the whole blood, venous DBS (V-DBS) and capillary DBS (C-DBS) sampling process. 

 

5.2.3 Sample preparation 

PEths were extracted by liquid-liquid extraction (LLE) with n-hexane. For the whole blood 

method, 30 µL of the sample was added to a 5 mL disposable glass tube containing 250 µL of 

solution A (consisting of isopropanol, 10 mM ammonium acetate buffer and formic acid 

(6:4:0.2, v/v)) and 50 µL of the IS-WS-1 solution (100 ng/mL). After a quick mixing (vortex), 1 

mL n-hexane was added and the sample was gently mixed for 10 minutes. The tubes were 

centrifuged (10 min, 14000 rpm (20800 g), 4°C) and the clear supernatant was transferred to 

a total recovery glass vial (Waters, Zellik, Belgium) and evaporated to dryness during 30 

minutes in a rotational vacuum concentrator (RVC 2-33 IR, Martin Christ, Osterode am Harz, 

Germany). The final dried extract was dissolved in 250 µL of a solution B (50 % of mobile 

phase A and 50 % of mobile phase B, see below).  

For the V-DBS method, the complete DBS (30 µL) was excised and placed in a 5 mL 

disposable glass tube containing 250 µL of solution A and 50 µL of the IS-WS-1 solution (100 

ng/mL). For the C-DBS method, three (or one, where indicated) punches (3 mm) were 

excised from the DBS and placed in a 5-mL disposable glass tube containing 250 µL of 

solution A and 50 µL of the IS-WS-2 solution (10 ng/mL). For both DBS methods, the tubes 

were gently mixed for 1 hour. After adding 1 mL of n-hexane, the samples were mixed for 

another 10 minutes. After centrifugation, the clear supernatant was transferred in total 
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recovery glass vials and evaporated to dryness. The final dried extract was dissolved in 250 

µL of solution B for the V-DBS and in 100 µL of solution B for the C-DBS. 

For the whole blood method and the V-DBS method, 5 µL was injected in partial loop with 

needle overfill mode. For the C-DBS method, 10 µL was injected in full loop mode.  

5.2.4 Liquid chromatographic and mass spectrometric conditions 

Analyses were performed on an Acquity UPLC® system coupled to a Xevo TQ S tandem mass 

spectrometer (Waters, Manchester, UK) equipped with an electrospray ionisation source 

operated in negative mode (ESI-). The compounds were separated on an Acquity UPLC® BEH 

C8 (2.1 x 50 mm, 1.7 m) column (Waters) using as mobile phase A 10 mM ammonium 

acetate buffer with 0.05 % formic acid (pH 2) and as mobile phase B isopropanol with 10 % 

of tetrahydrofuran at a flow rate of 400 L/min. The gradient elution started with 40 % of 

mobile phase A and decreased to 0 % of mobile phase A at 1.5 minutes. The washing step, 

containing 100 % of solution B, was held for 1 minute and was followed by 1 minute re-

equilibration with the starting condition, resulting in a total run time of 3.5 minutes. The 

column temperature was set at 60°C.  

Detection was performed in the multiple reaction monitoring mode (MRM), with a dwell 

time fixed at 0.017 sec, using the appropriate parameters for each compound (Table 5.1). 

Two transitions were monitored for the PEths (Figure 5.2), one for quantification 

(underlined) and one for qualification. For the ISs only one MRM transition was used.  

 

  Precursor/product ion (m/z)  Cone voltage (V) Collision energy (eV) 

PEth 16:0/18:1  702/255  10 35 

PEth 16:0/18:1  702/125  10 40 

PEth 18:1/18:1  728/281  10 35 

PEth 18:1/18:1  728/463  10 25 

PEth 16:0/16:0  676/255  10 30 

PEth 16:0/16:0  676/125  10 35 

PProp 18:1/18:1 742/281  20 35 

PProp 16:0/16:0 690/255  20 30 

PMeth 18:1/18:1 714/281  20 30 

PMeth 16:0/16:0 662/255  10 30 

Table 5.1 MRM transitions and conditions for PEths and ISs (PProp 18:1/18:1, PProp 16:0/16:0, PMeth 
18:1/18:1, PMeth 16:0/16:0).  
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For the MS/MS detection, the following parameters were used: temperature of source gas 

(nitrogen) was 150°C, desolvatation gas (nitrogen) flow was 1000 L/h at 650°C, capillary 

voltage was 3 KV, cone gas flow at 150 L/h and collision gas (argon) flow was 0.15 mL/min.  

 

 

 

Figure 5.2 Chemical structure of PEth 16:0/18:1 (left), PEth 18:1/18:1(middle) and PEth 16:0/16:0 (right) and of 
their two product ions (red), with the transition (precursor ion / product ion) used. MW: molecular weight. 
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5.2.5 Method validation 

Selectivity, sensitivity, matrix effect, extraction efficiency, lower limit of quantification 

(LLOQ), linearity, accuracy, precision (repeatability (%RSDr) and intermediate precision 

(%RSDt)) and stability were evaluated based upon international guidelines [29]. The 

influence of hematocrit, punch localisation and spot volume were evaluated for the C-DBS 

method [27,28]. 

To study endogenous interferences, six blank whole blood samples from different 

teetotallers were analysed. To verify that IS compounds do not interact with PEths, two zero 

samples (blank samples spiked with IS-WS solution) were analysed. According to the EMA 

guideline, in our method interferences are acceptable as long as the signal was lower than 

20 % of the response at the LLOQ [30].  

Matrix effect expressed as % recovery (%ME) was quantified and evaluated by the post-

extraction addition technique using six different blank bloods from teetotallers [31]. Whole 

blood (30 µL), V-DBS (complete 30 µL DBS) and C-DBS (3 filter paper punches spiked each 

with 3.5 µL of whole blood) were extracted. The reference standards and IS (diluted in the 

mobile phase) were added in the total recovery vial before the injection. These samples 

were compared with control samples spiked at the same theoretical concentration in the 

mobile phase. Extraction efficiency (%EE) was evaluated by comparing responses of six blank 

samples spiked before sample preparation with responses of six blank samples, where the 

reference standards were spiked after the sample preparation in the mobile phase. Matrix 

effect and extraction efficiency were evaluated at low, medium and high concentrations. For 

the C-DBS method, blood samples with varying hematocrit levels (measured from 0.31 to 

0.58) were used, to study the influence of the hematocrit variation on the extraction 

efficiency and on the matrix effect. 

The LLOQ is the lowest concentration of analyte with a signal-to-noise ratio greater than 

10/1 for both transitions and for which the bias and precision deviation is less than 20 %.  

Calibration model and weighting factor were evaluated for each compound and each 

method. The linearity was tested by performing F-Tests (α=0.05). Homoscedasticity was 

tested visually by plotting residuals vs. fitted value. In case of heteroscedasticity, a weighted 

regression (1/x and 1/x2) was applied (slope and intercept). The sum of relative errors 

(difference between the calculated concentration and its nominal concentration) for each 
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model was calculated and plotted against the nominal concentrations. The model with a R2 ≥ 

0.99 with the lowest sum of relative errors was selected. The goodness of fit of the selected 

model was tested, calculating the relative errors for calibrators and QCs. The relative errors 

should be lower than 15 % except for the LLOQ (< 20 %) [30].  

Three internal QCs spiked at low, medium and high concentration, were analysed in 

duplicate on 8 different days to assess accuracy (%bias) and precision (%RSDr and %RSDt). A 

One-way ANOVA test with significance level (α) of 0.05 allows calculating bias, repeatability 

and intermediate precision with these data (see the Appendix 2 for more explanation), with 

acceptance criteria of 15 % (20 % for the LLOQ). The measurement uncertainty was also 

calculated (%U=2.12*%RSDt) and used to interpret quantitative results close to the LLOQ or 

close to the cut-off value.    

The validity of the PEth 16:0/18:1 quantification in blood was tested by participation to a 

proficiency test organised by Equalis (Uppsala, Sweden). 

Processed sample stability and long term storage stability were evaluated at low and high 

concentrations for the whole blood method and for the V-DBS method. The mean response 

of the stability samples should be within 90 – 110 % of the mean response of the control 

samples and the 90 % confidence interval of the stability sample responses should be within 

± 20 % of the control sample responses data (see the Appendix 2 for more explanation). 

The influence of the hematocrit on the response was evaluated for five hematocrit values at 

low and high concentrations. Blank blood samples with variable hematocrit level were 

prepared by adding or removing plasma to EDTA blank blood samples. The measured 

hematocrit values were 0.39, 0.42, 0.48, 0.50 and 0.57. Six spots per concentration and per 

hematocrit level were prepared and single centrally located punches were analysed. 

Measured responses were compared with a One-way ANOVA test (α=0.05). To evaluate 

whether no artefactual results were obtained because spiked samples might behave 

differently from real samples (where PEth species are presumably located in erythrocytes), 

we set up an experiment in which blood with different hematocrit was prepared from blood 

of two inpatients. More specifically, 200 µL of blood of an inpatient was diluted with plasma 

(between 25 and 200 µL) and erythrocytes (between 0 and 175 µL) of an alcohol abstainer to 

generate 6 blood samples of 400 L with a different hematocrit (with measured hematocrits 

between 0.20 and 0.60) but with the same PEths concentrations (PEths virtually exclusively 

http://www.thefreedictionary.com/abstainer
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being derived from the 200 L of inpatient blood). This blood was used to generate DBS, 

which were processed as real samples (see Section 5.2.3). The DBS analysis was performed 

in quadruplicate at each hematocrit level. Also the blood PEths concentrations were 

determined and served as a reference. 

The influence of the punch localisation (peripherally or centrally) was evaluated at low and 

high concentrations and at low (0.39), intermediate (0.48) and high (0.57) hematocrit levels. 

Six spots per concentration and per hematocrit level were prepared and the responses 

measured in peripherally and centrally located punches (one central and one peripheral 

punch were analysed per DBS) were compared using a One-way ANOVA test (α=0.05).  

Three blood spot volumes (20, 35, 50 µL) were tested at low (0.32), intermediate (0.48) and 

high (0.67) hematocrit levels and at 2 concentrations; low and high. Six spots per 

concentration and per hematocrit level were prepared and centrally located 3 mm punches 

(1/DBS) were analysed. Responses were compared using a One-way ANOVA test (α=0.05) to 

detect significant differences.  

The normality of the distributions and the homogeneity of variances were tested using the 

Shapiro-Wilk test and the Levene’s test prior to One-way ANOVA tests [32].  

5.2.6 Application to a comparative study 

5.2.6.1 Sample collection 

Whole blood and C-DBS from inpatients in alcohol withdrawal were collected at the 

Brugmann Hospital (Brussels, Belgium) one business day after their admission. Whole blood 

and C-DBS from control volunteers were collected by the medical staff of the Military 

Hospital in Brussels (Belgium). The inpatients group was composed of 37 males and 13 

females, between 27 and 71 years (mean = 47, median = 47) and with a self-reported 

number of abstinence days before the sampling between 1 and 21 (mean = 4, median = 2). 

The control group was composed of 23 males and 27 females, between 22 and 64 years 

(mean = 40, median = 37) and with a self-reported mean alcohol consumption per week 

between 0 and 16 units (mean = 5, median = 6). Seven out of the 50 control volunteers were 

teetotallers.         

Venous whole blood samples were collected in a 4-mL EDTA tube and were stored at -80°C 

until analysis. Five C-DBS were collected onto a Whatman 903 filter paper card after a 

http://en.wikipedia.org/wiki/Shapiro-Wilk_test
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fingertip prick with a contact-activated lancet (BD Microtainer®, Becton Dickinson). Five V-

DBS were prepared from the EDTA tubes by pipetting 30 µL of venous blood onto a filter 

paper. C-DBS and V-DBS were left to dry for minimum 2 hours at room temperature and 

were then stored in zip-closure plastic bags containing a desiccant packet (Sigma-Aldrich) at 

room temperature until the analysis.  

The study protocol was approved by the ethics committee of the Brugmann Hospital 

(Brussels, Belgium) and informed consent was obtained from each subject before enrolment 

in the study (B077201420445). 

5.2.6.2 Statistical analysis 

Bland-Altman plot, Passing-Bablok regression analysis and Wilcoxon signed rank test were 

used to study the agreement between quantitative results obtained from whole blood, V-

DBS and C-DBS samples [33]. A Bland-Altman plot is used to assess the absence of systematic 

differences between two measurements. The mean of the two measurements is plotted 

against the difference between these, 95 % of the differences are expected to lie within the 

limits of agreement (mean ± 1.96 SD). The Passing-Bablok regression analysis is a scatter 

diagram of the concentrations obtained with two different methods. The regression line and 

equation are used to detect measurement errors. No proportional differences are observed 

as long as the 95 % confidence interval of the slope includes 1 and no systematic differences 

are observed as long as the 95 % confidence interval of the intercept includes the zero value. 

Wilcoxon signed rank test was performed to detect significant differences (p-value<0.05) 

between the concentrations obtained from two methods.  

ROC curve analyses were performed to determine optimal cut-off values (higher sensitivity 

with 0 false positive results) to distinguish between inpatients in alcohol withdrawal and 

control volunteers. The area under the curve (AUROC) was used to quantify the overall 

ability of the method to discriminate between the two populations. A perfect diagnostic 

method (0 false positives and 0 false negatives) will have an area of 1, where a method with 

no diagnostic ability will have an area of 0.5.  

  

http://en.wikipedia.org/wiki/Mean
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5.3 Results 

5.3.1 Method Validation 

Selectivity, sensitivity, linearity, LLOQ, matrix effects, extraction efficiency, accuracy and 

precision were assessed for the three methods. Stability was tested for the whole blood and 

V-DBS methods. For the C-DBS method, the impact of hematocrit, punch localisation and 

blood spot volume were evaluated.  

In summary, no interfering peaks were detected in blank samples and the addition of the IS 

did not interfere with PEths detection. The linear (1/x) calibration curves ranged from 10 

(LLOQ) to 2000 ng/mL for PEth 16:0/18:1, from 10 (LLOQ) to 1940 ng/mL for PEth 18:1/18:1 

and from 19 (LLOQ) to 3872 ng/mL for PEth 16:0/16:0.  

The non-IS-compensated matrix effect (%ME) was between 68 and 137 % (%RSD < 20 %) for 

PEth 16:0/18:1, between 73 and 121 % (%RSD < 12 %) for PEth 18:1/18:1 and between 59 

and 110 % (%RSD < 20 %) for PEth 16:0/16:0. For the three PEths, PMeth 18:1/18:1 was 

selected as IS, because it better compensated for matrix effect than PMeth 16:0/16:0 and 

PProp 18:1/18:1 (Table 5.2) and had a better peak shape compared to PProp 16:0/16:0. The 

matrix effect compensated by this IS (%MEIS) was between 77 and 125 % (%RSD < 10 %) for 

all PEths. The extraction efficiency (%EE) was between 66 and 100 % (%RSD < 18 %) for the 

blood method, between 55 and 63 % (%RSD < 14 %) for the V-DBS method and between 61 

and 78 % (%RSD < 15 %) for the C-DBS method. Visual inspection of the results indicated no 

influence of the hematocrit level on matrix effect and extraction efficiency for the C-DBS 

method (Figure 5.3).  

 

 

 

 

 

 
Table 5.2 Matrix effect (%ME), matrix effect ► 
compensated with ISs (%MEIS) and extraction efficiency 
(EE) in whole blood, V-DBS and C-DBS for the three 
PEths calculated at low (L), medium (M) and high (H) 
concentrations. 
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Concentration L M H 

PEth 16:0/18:1 (Nominal value ng/mL) 133 2000 6250 

Blood %ME (%RSD) 116 (16) 89 (4) 72 (12) 

 %MEPMeth 18:1/18:1 (%RSD) 116 (10) 102 (5) 88 (3) 

 %MEPMeth 16:0/16:0 (%RSD) 81 (11) 67 (8) 57 (10) 

 %MEPProp 18:1/18:1 (%RSD) 43 (18) 36 (12) 30 (15) 

 %MEPProp 16:0/16:0 (%RSD) 118 (10) 101 (5) 91 (3) 

 %EE (%RSD) 90 (10) 80 (9) 79 (17) 

V-DBS %ME (%RSD) 137 (9) 99 (9) 76 (8) 

 %MEPMeth 18:1/18:1 (%RSD) 125 (6) 108 (4) 87 (3) 

 %EE (%RSD) 59 (14) 61 (5) 58 (11) 

C-DBS %ME (%RSD) 101 (15) 79 (17) 68 (20) 

 %MEPMeth 18:1/18:1 (%RSD) 108 (6) 89 (4) 89 (3) 

 %EE (%RSD) 67 (4) 65 (8) 74 (13) 

PEth 18:1/18:1 (Nominal value ng/mL) 129 1940 6063 

Blood %ME (%RSD) 115 (10) 101 (3) 97 (8) 

 %MEPMeth 18:1/18:1 (%RSD) 115 (6) 117 (6) 118 (5) 

 %MEPMeth 16:0/16:0 (%RSD) 80 (6) 77 (9) 76 (7) 

 %MEPProp 18:1/18:1 (%RSD) 43 (12) 41 (8) 41 (11) 

 %MEPProp 16:0/16:0 (%RSD) 118 (6) 116 (6) 122 (4) 

 %EE (%RSD) 96 (7) 85 (9) 81 (18) 

V-DBS %ME (%RSD) 121 (6) 97 (5) 94 (6) 

 %MEPMeth 18:1/18:1 (%RSD) 110 (5) 107 (4) 108 (2) 

 %EE (%RSD) 61 (7) 63 (6) 59 (11) 

C-DBS %ME (%RSD) 106 (11) 89 (12) 73 (12) 

 %MEPMeth 18:1/18:1 (%RSD) 114 (4) 101 (3) 97 (8) 

 %EE (%RSD) 64 (9) 61 (13) 77 (12) 

PEth 16:0/16:0 (Nominal value ng/mL) 258 3872 12100 

Blood %ME (%RSD) 103 (8) 88 (3) 83 (6) 

 %MEPMeth 18:1/18:1 (%RSD) 103 (4) 102 (7) 101 (5) 

 %MEPMeth 16:0/16:0 (%RSD) 72 (5) 66 (7) 65 (6) 

 %MEPProp 18:1/18:1 (%RSD) 38 (9) 36 (8) 35 (9) 

 %MEPProp 16:0/16:0 (%RSD) 105 (4) 100 (7) 104 (3) 

 %EE (%RSD) 100 (13) 79 (11) 66 (15) 

V-DBS %ME (%RSD) 110 (9) 81 (11) 84 (6) 

 %MEPMeth 18:1/18:1 (%RSD) 102 (8) 89 (9) 96 (5) 

 %EE (%RSD) 58 (14) 57 (4) 55 (9) 

C-DBS %ME (%RSD) 107 (9) 69 (16) 59 (20) 

 %MEPMeth 18:1/18:1 (%RSD) 116 (7) 78 (3) 77 (5) 

 %EE (%RSD) 78 (13) 66 (7) 74 (15) 
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Figure 5.3 (Upper) Matrix effect (% recovery) for PEths from DBS at three concentrations (low, medium and 
high) and prepared from 6 whole blood samples with varying hematocrit levels. (Lower) Extraction efficiency % 
for PEths from DBS at three concentrations (low, medium and high) and prepared from 6 whole blood samples 
with varying hematocrit levels. 

 

The %bias, %RSDr and %RSDt were ≤ 13 % for the whole blood, V-DBS and C-DBS methods 

(Table 5.3). The maximal uncertainties of measurement (%U=2.12*%RSDt) were 23 % 
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(blood), 25 % (V-DBS) and 24 % (C-DBS) for PEth 16:0/18:1; 25 % (blood), 22 % (V-DBS) and 

23 % (C-DBS) for PEth 18:1/18:1 and 28 % (blood), 21 % (V-DBS) and 22% (C-DBS) for PEth 

16:0/16:0.  

 

 PEth 16:0/18:1  PEth 18:1/18:1  PEth 16:0/16:0 

QC * L M H   * L M  H   *  L M  H 

Blood               

%RSDr  9 9 6 4   7 4 4  4   11  6 3  4 

%RSDt  11 9 6 5   12 7 3  4   13  10 8  7 

%Bias  3 5 2 3  -1 3 4  3  -5 -3 1 -1 

V-DBS               

%RSDr  11 7 3 4   6 5 3  4   7  6 4  3 

%RSDt 12 12 6 5   10 8 6  5   10  9 6  6 

%Bias  5 3 6 4   2 3 2  1   0  0 4  1 

C-DBS               

%RSDr 11 7 4 3   7 5 3  3   7  4 3  2 

%RSDt 11 11 6 6   11 8 7  5   9  11 6  6 

%Bias 0 3 6 1   0 4 3 -1  -2 -2 4  0 

Table 5.3 Precision (repeatability (%RSDr) and intermediate precision (RSDt) and %bias for PEth 16:0/18:1, PEth 
18:1/18:1 and PEth 16:0/16:0 in blood, V-DBS and C-DBS. *: LLOQ, L: low, M: medium, H: high.  

 

The validity of the quantification of PEth 16:0/18:1 in blood was demonstrated by the 

successful participation (Z-score < 1.43) to a proficiency test. The Z-score obtained 

((reported value – target value) / SD) was 0.11 for sample B (reported value = 2.52 µmol/L, 

target value = 2.50 µmol/L, SD = 0.23, N=8) and 1.43 for sample C (reported value = 0.17 

µmol/L, target value = 0.16 µmol/L, SD = 0.01, N=8). The samples were used to create V-DBS 

and Z-scores of 0.38 for sample B (measured value = 2.59 µmol/L) and 0.22 for sample C 

(measured value = 0.16 µmol/L) were calculated ((measured value – target value) / SD). 

PEths were not detected in sample A (reported value < LLOQ). Sample A was whole blood 

from a teetotaller.  

  



Back to the table of contents 

151 

Q
u

an
ti

fi
ca

ti
o

n
 o

f 
P

Et
h

s 
in

 w
h

o
le

 b
lo

o
d

, V
-D

B
S 

an
d

 C
-D

B
S 

 

 

Similar mean responses (One-way ANOVA) were obtained from 20, 35, 50 µL V-DBS samples 

and from peripherally and centrally located punches (Figure 5.4).  

 

Figure 5.4 Influence of the localisation (upper) and of the volume (lower) on PEths responses measured in low 
and high QCs at three hematocrit (Hct) levels. Results are presented as a mean %bias compared with the 
reference value (localisation = centrally and volume = 35 µL). 
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As presented in Figure 5.5, no significant differences (p>0.05) were observed between the 

mean responses obtained for the analysis of V-DBS samples spiked with PEths reference 

standard, prepared from blood with hematocrit levels spanning a normal to high range (0.39, 

0.42, 0.48, 0.50, 0.57). In addition, varying the hematocrit level (between 0.20 and 0.60) of 

real inpatient’s blood samples (by adding blank plasma and red blood cells) did not adversely 

affect quantification, as demonstrated in Figure 5.6, which depicts the %bias when 

comparing results obtained from DBS with those obtained from blood. 

 

Figure 5.5 Influence of the hematocrit (Hct) on PEths responses measured in low and high QCs. Results are 
presented as mean %bias compared with the reference value (Hct = 0.48). 
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Figure 5.6 Influence of the hematocrit on PEths quantification in real positive samples (3 punches excised from 
DBS created from the blood of inpatients in alcohol withdrawal). Results, with standard deviation (%RSD), are 
presented for each hematocrit level as mean %bias (N=4) compared with the reference value measured in 
whole blood. The mean measured blood concentrations for PEth 16:0:18:1, PEth 18:1/18:1 and PEth 16:0/16:0 
were 728, 52 and 89 ng/mL for inpatient 1 and 659, 46 and 100 ng/mL for inpatient 2, respectively. 
 

 

All samples were stable in the autosampler for 72 h at 4°C. PEths were stable up to 6 months 

when stored at -80°C in EDTA tubes. PEth 16:0/18:1 and PEth 18:1/18:1 were stable during 6 

months in V-DBS samples stored at room temperature in zip-closure plastic bags containing 

a desiccant packet. The 90 % confidence interval of the stability sample responses for PEth 

16:0/16:0 in V-DBS were within ± 20 % of the control sample responses, although the mean 

response of the high stability samples was 119 % of the mean response of the control 

samples. Results are presented in Table 5.4.  

 

 

Table 5.4 Stability results for PEths. The mean ► 
stability is expressed in %. The range corresponding to 
± 20 % of the mean responses of the control samples 
and the 90 % confidence interval of the responses for 
stability samples are presented. L: low, M: medium, H: 
high. 
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5.3.2 Comparative study 

Whole blood, V-DBS and C-DBS from inpatients in alcohol withdrawal (N=50) and control 

volunteers (N=50) were analysed to quantify PEth 16:0/18:1, PEth 18:1/18:1 and PEth 

16:0/16:0. For the C-DBS method, the 3 punches analysed were excised either from the 

same spot (15 % of the cases), from two different spots (30 % of the cases) or from three 

different spots (55 % of the cases). Concentrations measured in whole blood, V-DBS and C-

DBS from all study participants were compared using Bland-Altman plot, Passing-Bablok 

regression analysis and Wilcoxon signed rank test. 

PEth 16:0/18:1 was quantified (> LLOQ) in 50/50 inpatients and in 18/50 control volunteers. 

Concentrations measured in blood ranged from 16 to more than 2000 ng/mL (mean = 1232, 

median = 1087) in alcoholics and were between 13 and 220 ng/mL (mean = 59, median = 49) 

in control volunteers with a quantifiable result. PEth 18:1/18:1, with blood concentrations 

ranging from 17 to 307 ng/mL (mean = 101, median = 78), was measured in 47/50 inpatients 

and in 1/50 control volunteers (17 ng/mL). PEth 16:0/16:0 was quantified only in some 

inpatient samples (34/50) with concentrations varying from 25 to 203 ng/mL (mean = 97, 

median = 89). An overview is given in Figure 5.7. 

 

 

Figure 5.7 Number of blood samples with a measured concentration for PEth 16:0/18:1, PEth 18:1/18:1 and 
PEth 16:0/16:0 above the LLOQ (+ %U). The numbers between brackets indicate the number of samples with a 
PEth 16:0/18:1 concentration above the cut-off value (+ %U) that suggest an excessive and chronic alcohol 
consumption.  
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In the comparison of the results obtained from blood, C-DBS and V-DBS (Table 5.5), 

correlation coefficients exceeded 0.995 for PEth 16:0/18:1 (N=68), 0.978 for PEth 18:1/18:1 

(N=48) and 0.962 for PEth 16:0/16:0 (N=32). As reported in Table 5.5 (presenting the 

numerical results) and shown in Figure 5.8 (right), the mean % differences in the 

concentration between whole blood and C-DBS included the 0 value for the three PEths. The 

95 % confidence intervals of the slope obtained from the Passing-Bablok regression analysis 

included or were very close to 1 and the 95 % confidence intervals of the intercept included 

the 0 value (Figure 5.8 (left) and Table 5.5). No significant differences (p≥0.05) in the mean 

measured concentrations were detected using Wilcoxon signed rank test. The same 

comparisons were performed between blood and V-DBS and between V-DBS and C-DBS for 

the three compounds (Table 5.5 and Figures 5.9 and 5.10), with essentially the same 

conclusions. Only in 3 cases with measurable (i.e. above LLOQ) PEth 16:0/16:0 in whole 

blood, V-DBS and C-DBS, a discrepancy was observed, when taking into account the 

measurement uncertainty at the LLOQ. The blood, V-DBS and C-DBS concentrations in these 

3 cases were respectively 32, 23* and 25 ng/mL (case 1), 22*, 31 and 21* ng/mL (case 2) and 

27, 29 and 22* ng/mL (case 3). For 4 quantitative results (indicated with an asterisk) in these 

3 cases, the results should actually be considered negative when the measurement 

uncertainty is taken into account (exemplified in Figure 5.11). These three cases were not 

taken into account for the statistical analysis.  
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Figure 5.8 (Left) Passing-Bablok regression analyses of PEths concentrations measured in blood and in C-DBS. 
The identity line is indicated using a dotted line. (Right) Bland-Altman analyses of PEths plotting the % 
difference between blood and C-DBS concentrations. The average difference is represented by a solid line, the 
limits of agreement (1.96 SD) by dashed lines. The 95 % confidence intervals for the mean and the limits of 
agreement are shown with dotted lines. 
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Figure 5.9 (Left) Passing-Bablok regression analyses of PEth species concentrations measured in blood and in V-
DBS. The identity line is indicated using a dotted line. (Right) Bland-Altman analyses of PEth species plotting 
the % difference between blood and V-DBS concentration. The average difference is represented by a solid line, 
the limits of agreement (1.96 SD) by dashed lines and the 95 % confidence intervals for the mean and the limits 
of agreement by dotted lines. 
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Figure 5.10 (Left) Passing-Bablok regression analyses of PEth species concentrations measured in V-DBS and in 
C-DBS. The identity line is indicated using a dotted line. (Right) Bland-Altman analyses of PEth species plotting 
the % difference between V-DBS and C-DBS concentration. The average difference is represented by a solid 
line, the limits of agreement (1.96 SD) by dashed lines and the 95 % confidence intervals for the mean and the 
limits of agreement by dotted lines. 

  



Back to the table of contents 

161 

Q
u

an
ti

fi
ca

ti
o

n
 o

f 
P

Et
h

s 
in

 w
h

o
le

 b
lo

o
d

, V
-D

B
S 

an
d

 C
-D

B
S 

 

 

 

Figure 5.11 Concentrations measured (case 3) and LLOQ in whole blood and C-DBS presented with the 
measurement uncertainty (%U). Taking into account the measurement uncertainty for the LLOQ, the whole 
blood result is considered as positive while the C-DBS result is considered as negative. 

 

Distributions of the concentrations of PEth 16:0/18:1 measured in whole blood, V-DBS and 

C-DBS from inpatients in alcohol withdrawal and control volunteers are presented in Figure 

5.12. 

ROC analysis was performed to determine a cut-off value to distinguish between control 

volunteers and inpatients in alcohol withdrawal using the concentration of PEth 16:0/18:1 in 

blood. A cut-off value at 221 ng/mL (AUROC = 0.947) for PEth 16:0/18:1 provided no false 

positive results (1-specificity = 0) and a sensitivity of 0.86 (7 out of 50 inpatients were 

classified as control volunteers). Among these 7 false negative results, 3 can be explained by 

a declared cessation of alcohol consumption between 16 and 21 days prior to the sampling. 

Among the 4 other false negative results (with a self-reported cessation of alcohol 

consumption between 1 and 2 days before the sampling), 2 have a PEth 16:0/18:1 

concentration between 271 and 272 ng/mL, which is very close to the cut-off limit. The 2 last 

false negative results, with abnormally low concentration of PEth 16:0/18:1 (between 16 and 

40 ng/mL), could be explained by a decreased transphosphatidylation rate of ethanol due to 

an altered phosphatidylcholine availability, a changed enzyme activity of PLDs or other, as 

yet unidentified, variables (see Chapter 7 for more details). Application of this cut-off for C-

DBS and V-DBS yielded exactly the same result, lending further support to the validity of the 

approach of using DBS. 
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Figure 5.12 Distribution of the PEth 16:0/18:1 concentrations measured in blood, V-DBS and C-DBS of patients 
in alcohol withdrawal (N=50) and in control volunteers (N=18). The box represents the values between the 
lower and upper quartile and the middle line represents the median. The whiskers represent the extreme 
values, excluding outliers (represented by dots). The indicated area (below) is enlarged (right above). 
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5.4 Discussion 

UHPLC-ESI-MS/MS methods for the quantification of PEths in whole blood, V-DBS and C-DBS 

have been developed and validated using international guidelines [29] and published 

recommendations [27]. PEth 16:0/18:1 and PEth 16:0/18:2 are the two predominant PEths 

detected in blood after alcohol consumption. Taking into account the commercial availability 

of the PEths standards at the moment, the methods presented in this chapter have been 

developed for PEth 16:0/18:1, PEth 18:1/18:1 and PEth 16:0/16:0. Because PEth 18:1/18:1 

and PEth 16:0/16:0 have also been detected in blood of heavy drinkers, these were included 

in this study, even though these are generally not analysed in other studies (especially PEth 

16:0/16:0). As deuterated analogues were not commercially available at that time, four 

different ISs (PMeth 16:0/16:0, PMeth 18:1/18:1, PProp 16:0/16:0 and PProp 18:1/18:1) 

were evaluated during validation. In this study, PMeth 18:1/18:1 compensated best for the 

matrix effect for each compound and was therefore chosen as IS for all 3 methods.  

The detection of PEths requires highly sensitive techniques, due to the low amount of a 

certain PEth present in the sample (e.g. 16:0/16:0) and/or due to a low amount of sample 

(e.g. C-DBS). Therefore, special attention was paid to decrease possible ion-suppression by 

optimising both the extraction and the chromatographic separation. 

Variable extraction efficiencies -ranging from 33 % (PEth 16:0/16:0 and PEth 16:0/18:1) [20] 

to 80 % (PEth 16:0/16:0, PEth 18:1/16:0, PEth 18:1/18) [7]- have been reported in past 

publications using a LLE with a mixture of isopropanol and n-hexane (2:3, v/v). In this 

chapter, the LLE procedure to extract PEths from venous blood has been optimised. 

Therefore, the pH during extraction was adjusted to 2 by adding 2 % formic acid in a mixture 

of 10 mM ammonium acetate buffer and isopropanol before extraction with n-hexane. This 

resulted in a mean extraction efficiency from venous blood of 83 % (%RSD = 13 %) for PEth 

16:0/18:1, 87 % (%RSD = 13 %) for PEth 18:1/18:1 and 82 % (%RSD = 20 %) for PEth 

16:0/16:0. Somewhat lower percentages were observed (between 55 and 78 %) for the V-

DBS and the C-DBS methods. Similar percentages, ranging from 68 to 91 % [15] and 56 to 

76 % for PEth 16:0/18:1 [18] and from 27 and 43 % for PEth 18:1/18:1) [15], were reported 

earlier for other DBS-based methods. The basis for this somewhat lower extraction efficiency 

is not known. Interaction with the filter paper might be a possibility, as recently suggested 

by Koster et al. for immunosuppressants [34].   
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Reversed-phase LC separation is the method of choice for the identification and 

quantification of phosphatidylethanol species. The retention is based on the lipophilicity, 

determined by the length and number of double bonds present in the fatty acid side chains 

[35]. Because the non-polar part of PEths tends to interact very strongly with the non-polar 

hydrocarbon phase of a reversed-phase column, the use of a more polar phase (i.e. C8 

[14,18,20], C4 [7,15] or phenyl [16]) instead of a C18 phase allows to decrease the retention 

of PEths [14]. The use of less polar solvents, such as tetrahydrofuran (index polarity = 4.0), 

isopropanol (index polarity = 3.9) or methanol (index polarity = 5.1) instead of acetonitrile 

(index polarity = 5.8) also improved the elution of PEths using a reversed-phase column. In 

our methods, gradient elution based on an ammonium acetate buffer and a mixture of 10 % 

tetrahydrofuran in isopropanol on a 50-mm C8 column was chosen.  

The three methods (blood, V-DBS and C-DBS) developed in this chapter, have a LLOQ of 10 

ng/mL for PEth 16:0/18:1 and PEth 18:1/18:1 and of 19 ng/mL for PEth 16:0/16:0. In 

literature, LC-MS/MS methods for PEths quantification in blood have reported LLOQs 

between 8 to 83 ng/mL for PEth 16:0/18:1, between 0.7 to 73 ng/mL for PEth 18:1/18:1 and 

between 0.7 to 68 ng/mL for PEth 16:0/16:0. While it seems at first sight that our method is 

less sensitive, the most sensitive method published [6] required 300 µL of blood while our 

methods use only 30 µL of sample. Using a low sample volume, such as 30 µL, was necessary 

for development of the C-DBS method. Published methods about the validation of PEths in 

DBS have reported LLOQs of 8 ng/mL (3x3 mm punches from a 30 µL DBS) [18] and 87 ng/mL 

(100 µL DBS) [15] for PEth 16:0/18:1 and of 23 ng/mL (100 µL DBS) for PEth 18:1/18:1 [15]. 

The DBS methods presented here provide comparable or lower LLOQs for PEth 16:0/18:1 

and 18:1/18:1, and have included PEth 16:0/16:0. Furthermore, to our knowledge, no 

publication has already evaluated the influence of hematocrit, punch localisation and spot 

volume on the quantification of PEths in DBS. One-way ANOVA tests did not reveal a 

significant influence (p>0.05) of these parameters on quantification of the evaluated PEths 

(Figure 5.4 and Figure 5.5). In addition, no influence of the hematocrit on matrix effect and 

extraction efficiency (Figure 5.3) was observed and quantification was not affected when 

comparing DBS and blood concentrations in real samples with a wide hematocrit range 

(Figure 5.6). Hematocrit levels generally vary between 0.20 and 0.50 (except in patients from 

neonatal care in which hematocrit levels may exceed 0.50) [36]. However, experiments were 



Back to the table of contents 

165 

Q
u

an
ti

fi
ca

ti
o

n
 o

f 
P

Et
h

s 
in

 w
h

o
le

 b
lo

o
d

, V
-D

B
S 

an
d

 C
-D

B
S 

 

 

performed on a wide range of values to detect possible hematocrit effect in persons with 

extreme hematocrit values. 

An important advantage of DBS compared with venous blood is the improvement of analyte 

stability, avoiding the degradation of PEths in venous blood not stored at -80°C [24] and the 

post-collection synthesis of PEths in samples exposed to ethanol [18]. Helander et al. have 

demonstrated that PEths were stable in venous blood, if stored at −80°C, and this up to 14 

months [7]. A decrease of the concentration of PEth 18:1/18:1 (18 %) and PEth 16:0/18:1 

(25 %) has been described for EDTA whole blood samples stored at -20°C for 30 days [24]. 

Stability of PEth in DBS (at -20°C and 20°C) has been assessed up to 30 days by Faller et al. 

[24]. Our results confirm the stability of PEths in blood stored at -80°C and, more 

importantly, demonstrate that PEths were stable in DBS samples stored in zip-closure plastic 

bags containing a desiccant packet at room temperature for up to 6 months, although a 

slight %bias (119 %) was observed for PEth16:0/16:0 in the QC high.  

Finally, the successful participation (Z-scores < 1.43) to an international proficiency test 

organised by Equalis (Uppsala, Sweden) proved that the venous blood method for the 

quantification of PEth 16:0/18:1 is accurate. 

Hundred authentic samples (50 inpatients in alcohol withdrawal and 50 control volunteers) 

were analysed using the 3 developed methods. To ensure C-DBS method validity, the 

hematocrit level of inpatients in withdrawal therapy (N=48) was measured and ranged 

between 0.33 and 0.49 (mean = 0.43, median = 0.44), with 83 % (40/48) of the inpatient 

hematocrit levels lying within the reference range [28,37] (0.41-0.50 for men and 0.36-0.44 

for women).  

Comparisons of the PEths concentrations measured using the three assays (Table 5.5) have 

shown limits of agreement of less than 33.62 %, with no significant differences using 

Wilcoxon signed rank test analyses (p ≥ 0.05) and Bland-Altman analyses (mean differences < 

2.82 %, with the zero value included in the 95 % CI). Passing-Bablok regressions indicated a 

good overall correlation (R>0.962), no systematic differences (95 % CI of the intercept values 

include the zero value) and no proportional differences, although 1 was just not included in 

the 95 % CI of the slope in 3 out of 9 comparisons. In literature, agreement between whole 

blood and V-DBS concentrations has been assessed using Bland-Altman analysis for PEth 

18:1/18:1 and PEth 16:0/18:1 [15,18]. One study showed good agreement, with a mean 
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difference of 95.8 ng/mL (%RSD = 3.0 %) and -4.3 ng/mL (%RSD = 2.9 %) for PEth 16:0/18:1 

and PEth 18:1/18:1, respectively [15]. Another study, despite a limit of agreement of more 

than 50 %, reported no significant bias (mean -4.5 %; %RSD = 33.8 %) for PEth 16:0/18:1 and 

a good correlation (R=0.94) when comparing 281 results obtained from the analysis of 

venous blood and of 3 punches excised from V-DBS [18]. Both studies concluded that PEth 

16:0/18:1 and 18:1/18:1 in V-DBS were a useful tool to monitor alcohol misuse. Our 

population study not only confirms these conclusions, but also extends these to PEth 

16:0/16:0, and, importantly, demonstrates the agreement between blood and C-DBS. The 

latter is the most relevant comparison, as in real practice C-DBS will be collected from a 

fingertip. Thus, the results presented here strongly suggest that C-DBS analysis is a valid 

alternative to venous blood analysis for the quantification of PEth 16:0/18:1, PEth 18:1/18:1 

and PEth 16:0/16:0. In addition, we studied the distribution of PEths within the two groups 

(inpatients in alcohol withdrawal and control volunteers). In 50, 47 and 34 out of the 50 

inpatients in alcohol withdrawal, PEth 16:0/18:1 (from 16 to more than 2000 ng/mL), PEth 

18:1/18:1 (17-307 ng/mL) and PEth 16:0/16:0 (25-203 ng/mL), respectively, were quantified. 

PEth 16:0/18:1 was quantified in 18 out of the 50 control volunteers (13-220 ng/mL), while 

PEth 18:1/18:1 (17 ng/mL) was quantifiable in only one. PEth 16:0/16:0 was not present 

above LLOQ in control volunteers. These results suggest that, using the methods presented 

in this publication, only PEth 16:0/18:1 could be used to distinguish inpatients in alcohol 

withdrawal from control volunteers. More sensitive methods are required to search for a 

cut-off value for PEth 18:1/18:1 and PEth 16:0/16:0.        

In literature, HPLC-ELSD methods analysing total PEths in blood generally used cut-off values 

between 0.2 and 1 µmol/L [7,10,11,17,19] to detect alcohol consumption. In Sweden, 0.7 

µmol/L of total PEths is used as the clinical threshold [7]. These values were fixed by the 

LLOQ of the methods used and are limited to the detection of relatively high alcohol 

consumption (i.e. more than 50 g ethanol per day at an LLOQ of 0.7 µmol/L total PEths [17]). 

For PEth 16:0/18:1, an upper reference value for blood donors (N=200) of 141 ng/mL (0.2 

µmol/L) has been proposed, which provided 5 % false positive results and 17 samples 

detected as outliers [8]. In addition, cut-off values at 210, 700 and 800 ng/mL, for PEth 

16:0/18:1 have been proposed in literature [38–40]. In our case, we have calculated a cut-off 

value of 221 ng/mL in blood to detect chronic and excessive alcohol consumption (inpatients 

on alcohol withdrawal), based on the highest sensitivity (86 %) which was associated with 
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the absence of false positive results (specificity = 100 %). It is of interest to add that 3 out of 

the 7 inpatients with PEth 16:0/18:1 concentrations lower than the chosen cut-off value 

declared to have ceased their alcohol consumption 2-3 weeks before the sampling. 

Importantly, and lending further support to the validity of using C-DBS, is that application of 

the blood cut-off to the C-DBS and V-DBS data yielded the same sensitivity and specificity. 

5.5 Conclusion 

This chapter describes the validation of three UHPLC-ESI-MS/MS methods for the 

quantification of PEth 16:0/18:1, PEth 18:1/18:1 and PEth 16:0/16:0 in 30 µL venous blood, 

30 µL V-DBS and 3 punches (3 mm) from C-DBS. The calibration curves ranged from 10 

(LLOQ) to 2000 ng/mL for PEth 16:0/18:1, from 10 (LLOQ) to 1940 ng/mL for PEth 18:1/18:1 

and from 19 (LLOQ) to 3872 ng/mL for PEth 16:0/16:0. Our results have confirmed the 

stability of PEths in blood stored at -80°C and have demonstrated that PEth 16:0/18:1 and 

PEth 18:1/18:1 were stable in V-DBS at room temperature for up to 6 months. The 

quantification of PEths via the C-DBS method was not significantly influenced by the 

hematocrit, the punch localisation or the spot volume. Statistical comparisons (Bland-Altman 

plot, Passing-Bablok regression analysis and Wilcoxon signed rank test) of the measured 

concentrations obtained from venous blood, V-DBS and C-DBS from 100 volunteers 

(alcoholic inpatients and control volunteers) showed good agreement. Furthermore, 

application of a cut-off value of 221 ng/mL for PEth 16:0/18:1 to distinguish between 

inpatients in alcohol withdrawal and control volunteers provided a sensitivity of 86 % and no 

false positive results (specificity = 100 %). To conclude, the developed method for C-DBS can 

be of interest to detect high and chronic alcohol consumption, as it offers distinct 

advantages such as a less invasive blood sample collection, stability during storage and 

transportation and a relatively simple sample preparation before analysis. 
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Abstract 

In Belgium, the analysis of indirect biomarkers such as carbohydrate deficient transferrin 

(CDT%), gamma-glutamyltransferase (GGT), aspartate aminotransferase/alanine 

aminotransferase (AST/ALT) and mean corpuscular volume (MCV), is currently used to 

monitor the alcohol consumption in cases of fitness to drive assessment. This chapter aims 

to evaluate the use of direct ethanol markers for this purpose, exclusively determined in 

matrices obtained via non- or minimally invasive sampling. 

The three quantitative methods developed and validated within the framework of this 

thesis, i.e. ethylglucuronide and ethylsulfate (EtS) in urine (Chapter 3), EtG in hair (Chapter 4) 

and phosphatidylethanol species (PEth 16:0/18:1, PEth 18:1/18:1 and PEth 16:0/16:0) in 

capillary dried blood spots (C-DBS)) (Chapter 5) were used. Fifty volunteers, for whom fitness 

to drive had to be assessed and for whom a blood analysis for indirect biomarkers was 

requested, were included in the study. The sampling and analysis of hair, urine and C-DBS 

were added to the process currently used. 

Hair EtG (24/50) and C-DBS PEths (29/50) are more sensitive than the currently used indirect 

biomarkers (13/50 for CDT%) to detect excessive and chronic alcohol consumption and allow 

to disprove an abstinence period. Urinary EtG and EtS are useful parameters to determine 

recent alcohol consumption. 

The combined use of the three strategies allows better inference about the evolution of the 

alcohol consumption prior to the sampling. An inference scheme to integrate the results of 

hair EtG, C-DBS PEths and urine EtG/EtS into the fitness to drive decision process - 

complementing the psychological assessment- is proposed Figure 6.4. 

Moreover, the exclusive use of non- or minimally invasive sampling (hair, urine and C-DBS) 

allows this to be performed directly during the fitness to drive assessment by regular staff 

members. This approach offers the potential to improve the Belgian driver’s licence 

regranting process. 

  

http://en.wikipedia.org/wiki/Aspartate_aminotransferase
http://en.wikipedia.org/wiki/Alanine_aminotransferase
http://en.wikipedia.org/wiki/Alanine_aminotransferase
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6.1 Introduction 

As introduced in Chapter 1 (Section 1.4), the Belgian legislation for driving under the 

influence (DUI) of alcohol (Art. 35-37/1) states that drivers with a measured ethanol 

concentration above the limit of 0.5 gram ethanol per liter of blood are condemnable to a 

fine and in some cases to a confiscation of the driver’s licence  [1]. The assessment of the 

fitness to drive can be requested by the judge in case of drunk driving or recidivism. The 

annex 14 of the driver’s licence regulation [2], which defines the medical/psychological 

norms to assess the fitness to drive, states that “all the resources offered by medicine can be 

used” and adds that the medical doctor can make this decision dependent on a blood 

analysis for DUI of alcohol offences and on a hair analysis in case of DUI of drug offences. In 

Belgium, if the medical assessment by the physician deciding about the fitness to drive 

includes a blood analysis, the sampling is not performed directly by himself. The volunteer is 

asked to visit a sampling centre or his family doctor to perform the venepuncture. Blood 

samples are then sent to an authorised laboratory for analysis. Hence, the current process 

implies an invasive sampling and there may be a long time period between the blood 

analysis request and the final decision. In addition, the chain of custody is not ensured 

during the whole process.  

The medical norm of the annex 6 of the driver’s licence regulation [3] and the Directive 

2006/126/EC of the European Parliament and of the Council of December 20, 2006 on 

driving licences [4] declare that alcohol dependent persons or persons who cannot stay 

abstinent while driving are not fit to drive. If an alcohol dependence is detected during the 

fitness to drive assessment, the person will be declared unfit to drive. The Belgian driver’s 

licence regranting legislation requires a 6-month period of proven abstinence after an unfit 

to drive decision [3]. Administrative documents (i.e. attestation of alcohol withdrawal, letter 

from a psychologist) are currently used to monitor the abstinence period. 

In Belgium, as in many European countries, analyses of indirect biomarkers such as 

carbohydrate deficient transferrin (CDT%), gamma-glutamyltransferase (GGT), aspartate 

aminotransferase/alanine aminotransferase (AST/ALT) and mean corpuscular volume (MCV), 

are the current analytical methods used by physicians to monitor (cessation of) alcohol 

abuse in case of a driver’s licence regranting process [5–10]. These markers reflect the 

indirect effects of ethanol on the body, via its interference with glycosylation present in the 

http://en.wikipedia.org/wiki/Aspartate_aminotransferase
http://en.wikipedia.org/wiki/Aspartate_aminotransferase
http://en.wikipedia.org/wiki/Alanine_aminotransferase
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body (increased CDT%), with liver function (increased GGT, ALT, AST) and via its effect on the 

size of red blood cells (increased MCV). Because of a lack of sensitivity and specificity [11], 

these analyses are unable to detect all cases of chronic and excessive alcohol consumption 

and are not adapted to evaluate strict alcohol abstinence periods either. To overcome these 

problems, the quantification of ethanol metabolites (direct biomarkers), such as 

ethylglucuronide (EtG), ethylsulfate (EtS) and phosphatidylethanol species (PEths) has been 

advocated [12,13]. Urinary EtG and EtS have been used to detect alcohol consumption up to 

5 days after intake [14], allowing a longer detection window than for ethanol itself and 

providing a tool to evaluate short term abstinence [15–17]. PEths in blood and dried blood 

spots (DBSs) have been used to detect chronic and excessive alcohol consumption and allow 

monitoring ethanol (ab)use during the month prior to the sampling [18]. The quantification 

of EtG in hair has proven to be an efficient method to monitor long term abstinence and to 

detect alcohol misuse, as outlined in a recent review by Crunelle et al. [19]. In several 

countries (e.g. Italy, Germany, Switzerland and Sweden) the quantitative determination of 

ethanol metabolites, such as ethylglucuronide (EtG) and ethylsulfate (EtS) in urine and/or 

hair is used to monitor an alcohol abstinence period [7,8,20–23]. Recently, Schröck et al. 

recommended to include the quantification of PEth 16:0/18:1 in whole blood as a routine 

analysis for the detection of prolonged excessive alcohol consumption (currently based on a 

BAC above 1.6 ‰) in ‘driving under the influence’ cases [24]. In the United States of 

America, where alcohol ignition interlock devices are used to prevent recidivism, the ability 

of direct biomarkers (blood PEths, hair EtG and FAEE and urine EtG and EtS) and indirect 

biomarkers (CDT%, ALT, AST, GGT) to predict recidivism has been tested [25]. 

Previously, our research group has set up validated approaches to quantify EtG and EtS in 

urine (Chapter 3), EtG in hair (Chapter 4) and PEths in capillary dried blood spots (C-DBS) 

(Chapter 5) [26–28]. In this Chapter, we applied these strategies on samples obtained from 

fifty volunteers, for whom fitness to drive had to be assessed and for whom a blood analysis 

was requested by the physician. Although the currently used process, based on psychological 

and medical assessments, remained the basis to decide on the actual fitness to drive, we 

also evaluated in this context the potential added-value of our three-tiered approach to 

monitor the abstinence period and/or chronic and excessive alcohol consumption. 

Importantly, the proposed strategy offers the advantage that it can be performed during the 
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psychological/medical assessment by a non-physician (and potentially even by non-medical, 

minimally trained staff), since it involves only non- or minimally invasive sampling.  

To our knowledge, we are the first to test the combination of these three methods for both 

the detection of excessive and chronic alcohol consumption and the monitoring of the 

abstinence period in case of fitness to drive decisions. In addition, analysis of 50 cases 

revealed practical information concerning interpretation of the results obtained from the 

three tested methods. The approach of assessing different analytes in distinct matrices, with 

each of these matrices covering another time window, should reduce both the false positive 

and false negative rate of the actual fitness to drive evaluation procedure. Hence, this three-

tiered strategy should allow for a better assessment of the fitness to drive. 

6.2 Materials and Methods 

6.2.1 Population study  

This study was conducted between May 2014 and September 2015. Fifty volunteers, for 

whom fitness to drive had to be assessed, were recruited by medical physicians from the 

Belgian Road Safety Institute (IBSR/BIVV). Subjects compelled to undergo a blood analysis 

were asked to participate. The study was approved by the Ethics Committee of Ghent 

University Hospital (B670201215604) and informed consent was obtained from each subject 

before enrolment in the study.  

All volunteers were asked to provide venous blood (one serum tube and one EDTA-

anticoagulated tube), urine, hair and a C-DBS sample. The serum was separated by 

centrifugation (10 min, 3500 rpm, 4°C) and stored at -20°C for maximum one week until 

analysis. The EDTA-anticoagulated blood was brought the same day to the Military Hospital 

in Brussels for determination of the MCV. Urine was stored at -20°C for maximum one week 

before analysis. Hair samples were stored in aluminium foil until analysis. Five C-DBS were 

collected onto a Whatman 903 filter paper card (GE Healthcare) after a fingertip prick 

performed with a contact-activated lancet (BD Microtainer®, Becton Dickinson). C-DBS were 

left to dry for minimum 2 hours at room temperature and were then stored in a zip-closure 

plastic bag containing a desiccant packet (Sigma-Aldrich) at room temperature until analysis.  

EtG and EtS in urine, EtG in hair and the PEth species (PEth 16:0/18:1, PEth 18:1/18:1 and 

PEth 16:0/16:0) in C-DBS were analysed at the NICC (National Institute of Criminalistics and 

Criminology).  
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The Alcohol Use Disorders Identification Test (AUDIT) developed by the World Health 

Organization (WHO) was used to detect persons with hazardous and harmful alcohol use and 

possible alcohol dependence [29]. The total score of the AUDIT test, along with other 

information about the volunteers, such as gender, age, self-reported liver problems, self-

reported hair treatment, self-reported alcohol consumption, the final fitness to drive 

decision (only based on the blood analysis of indirect biomarkers and the psychological 

assessment) and the indication of a requested abstinence period were collected by 

IBSR/BIVV members for each volunteer. 

6.2.2 Traditional biomarkers (CDT%, GGT, ALT/AST) in serum 

CDT%, GGT, ALT and AST were analysed in serum at the central laboratory of Ghent 

University Hospital. CDT% (percentage of asialo-transferrin and disialo-transferrin of the 

total transferrin isoforms) was measured by capillary zone electrophoresis using a Capillarys 

2™ system (Sebia, France) [30]. GGT was measured using a kinetic spectrophotometric assay 

(405 nm) with carboxynitroanilide as a substrate [31]. ALT and AST were measured using a 

kinetic ultraviolet spectrophotometer [32,33]. Values (females/males) above 31/37 U/L for 

AST, 31/40 U/L for ALT, 36/61 U/L for GGT were classified as above the reference range [34]. 

For CDT%, the cut-off value proposed by Maenhout et al. [9], which includes the 

measurement uncertainty, was used to suggest excessive and chronic alcohol consumption 

(concentrations ≥ 2.4%). 

6.2.3 MCV in EDTA whole blood 

MCV was measured in EDTA whole blood using a Sysmex XP-300™ automated hematology 

analyser (Sysmex Belgium, Belgium). MCV values above 96.4 fL were considered as being 

above the reference range [34].  

6.2.4 EtG in hair 

Analysis of EtG in hair samples was based upon a previously published fully validated 

method [27], using EtG-d5 as internal standard (see Chapter 4). Briefly, hair samples were 

washed (dichloromethane and methanol) and dried overnight at room temperature. The 0-6 

cm proximal scalp hair segment (50 mg) was selected and pulverised as recommended by 

the Society of Hair Testing (SoHT), which states that a pulverised 0-3 up to 0-6 cm hair 

segment should be analysed [35]. EtG was extracted with 1.5 mL of water (2 hours of 

sonication (40°C)). After a solid-phase extraction (BondElut SAX cartridge), EtG was 
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quantified by UHPLC-ESI-MS/MS after separation on an Acquity UPLC® HSS T3 (2.1 x 100 mm, 

1.8 m) column (Waters). The use of a Xevo TQ S mass spectrometer (Waters, Manchester, 

UK), as outlined in Chapter 4 (4.2.4 and 4.3.2), allowed an analytical range from 2 (LLOQ) to 

500 pg/mg hair. The measurement uncertainty (2.12*%RSDt) at the LLOQ (U = 25 %) was 

used to interpret quantitative results close to the LLOQ and cut-off values. The two cut-off 

values proposed by the SoHT [35], at 7 and at 30 pg/mg hair, respectively, were used to 

interpret the results. Concentrations above or equal to 9 pg/mg hair (7 + 25 %) were used to 

strongly suggest repeated alcohol consumption and disprove a strict abstinence period, 

while concentrations ≥ 38 pg/mg hair (30 + 25 %) were used to strongly suggest chronic 

excessive alcohol consumption (consumption of ≥ 60 g ethanol/day over several months). 

6.2.5 EtG and EtS in urine 

The quantification of EtG and EtS in urine was performed after protein precipitation followed 

by UHPLC-ESI-MS/MS according to a fully validated method previously published [26], using 

EtG-d5 and EtS-d5 as internal standards (see Chapter 3). Samples were analysed either using 

an Acquity UPLC® coupled to a Xevo TQ MS tandem mass spectrometer (used in the 

published method) or coupled to a Xevo TQ S tandem mass spectrometer (Waters, 

Manchester, UK), as outlined in Chapter 3. Briefly, methanol (250 µL) was added to 50 L of 

urine. The sample was centrifuged (14000 rpm, 10 min at 4°C) and 250 L of the supernatant 

was transferred to a total recovery glass vial (Waters, Zellik, Belgium), evaporated to dryness 

and reconstituted in 300 L of 0.1 % formic acid in water. Gradient elution was performed 

on an Acquity UPLC® CSH C18 (2.1 x 100 mm, 1.8 m) column (Waters, Milford, MA, USA). The 

analytical range was from 100 (LLOQ) to 10000 ng/mL. EtG100 and EtS100 concentrations were 

calculated by normalising the measured EtG and EtS to a creatinine concentration of 100 

mg/dL. The measurement uncertainties (2.12*%RSDt) at the LLOQ (%U = 21 % for EtG 

and %U = 8 % for EtS) were used to interpret quantitative results close to the LLOQ. 

Concentrations above or equal to 121 ng/mL for EtG100 and 108 ng/mL for EtS100 (LLOQ 

+ %U) were used to suggest alcohol intake the days prior to the sampling and to disprove 

strict abstinence. 

6.2.6 PEth 16:0/18:1, PEth 18:1/18:1 and PEth 16:0/16:0 in C-DBS 

Taking into account the commercial availability of the PEth standards at the time of the 

development of the method, three PEth species (PEth 16:0/18:1, PEth 18:1/18:1 and PEth 
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16:0/16:0) were quantified using PMeth 18:1/18:1 as an internal standard in C-DBS using a 

fully validated method, as described in Chapter 5 [28]. Briefly, three punches (3 mm) were 

excised from C-DBSs and blood was extracted from the paper using 250 µL of a mixture 

containing 10 mM ammonium acetate buffer with 0.2 % formic acid and isopropanol. PEths 

were extracted by liquid-liquid extraction (LLE) with n-hexane (1 mL). Analyses were 

performed on an Acquity UPLC® coupled to a Xevo TQ S tandem mass spectrometer (Waters, 

Manchester, UK) using an Acquity UPLC®BEH C8 (2.1 x 50 mm, 1.7m) column (Waters, 

Milford, MA, USA). The analytical ranges were from 10 (LLOQ) to 2000 ng/mL for PEth 

16:0/18:1, from 10 (LLOQ) to 1940 ng/mL for PEth 18:1/18:1 and from 19 (LLOQ) to 3872 

ng/mL for PEth 16:0/16:0. The measurement uncertainties (%U=2.12*%RSDt) at the LLOQ 

were used to interpret results close to the LLOQ and close to the cut-off value (for PEth 

16:0/18:1) and were 24 % for PEth16:0/18:1, 23 % for PEth 18:1/18:1 and 22 % for PEth 

16:0/16:0. A cut-off value at 221 ng/mL for PEth 16:0/18:1, previously proposed (see Section 

5.3.2) to distinguish between inpatients on alcohol withdrawal and control volunteers, was 

used [28]. Concentrations ≥ 274 ng/mL (221 + 24 %) were used to suggest excessive and 

chronic alcohol consumption. Measured concentrations ≥ 12 ng/mL for PEth 18:1/18:1 and 

above 23 ng/mL for PEth 16:0/16:0 (LLOQ + %U) were used to confirm excessive and chronic 

alcohol consumption suggested by other biomarkers.  
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6.3 Results  

Venous blood (CDT%, GGT, ALT, AST and MCV), hair (EtG), C-DBS (PEth 16:0/18:1, PEth 

18:1/18:1 and PEth 16:0/16:0) and urine (EtG100 and EtS100) from fifty volunteers, for whom 

fitness to drive had to be assessed, were analysed. The group was composed of 45 males 

and 5 females, aged between 25 and 69 years (mean = 45, median = 45). Ten out of the 50 

volunteers had an AUDIT total score of 8 or more, which is used as an indicator of hazardous 

and harmful alcohol use and possible alcohol dependence [29]. Based on psychological and 

medical assessments, including the results of indirect biomarkers (CDT%, GGT, ALT, AST and 

MCV) measured in venous blood, 18 volunteers were declared fit to drive, 20 fit to drive for 

one year and 11 unfit to drive (for one volunteer no decision was taken, because some 

requirements were not fulfilled). Table 6.1 contains the following details for each volunteer: 

age, gender, liver problems, self-reported alcohol consumption, AUDIT total score, fitness to 

drive decision, abstinence period required, indirect biomarkers concentrations (CDT%, GGT, 

ALT, AST and MCV values), hair sample data (treatment, hair length and weight of hair 

analysed, EtG concentration), C-DBS data (PEth 16:0/18:1, PEth 18:1/18:1 and PEth 

16:0/16:0 concentrations) and urine data (creatinine, EtG100 and EtS100 concentrations).  
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Quantitative results were interpreted using cut-off values and/or LLOQs as presented in 

Table 6.2. For serum CDT%, hair EtG, C-DBS PEths, and urine EtG100/EtS100, the measurement 

uncertainty (%U) of the method at the LLOQ was taken into account before considering a 

concentration above the LLOQ or cut-off values. For the purpose of readability, this will not 

be repeated further in the text. 

 

 %U LLOQ Cut-off Cut-off/LLOQ + %U 

Results suggesting excessive and chronic alcohol consumption 

(Concentrations ≥ cut-off + measurement uncertainty (%U)) 

Serum CDT% - - - 2.4% 

Hair EtG 25 %  30 pg/mg 38 pg/mg 

C-DBS PEth 16:0/18:1 24 %  221 ng/mL 274 ng/mL  

Results confirming excessive and chronic alcohol consumption  

(Concentrations ≥ LLOQ + measurement uncertainty (%U)) 

 

C-DBS PEth 18:1/18:1 23 % 10 ng/mL  12 ng/mL 

C-DBS PEth 16:0/16:0 22 % 19 ng/mL  23 ng/mL 

Results suggesting alcohol intake the days prior to the sampling and disproving strict 

abstinence 

(Concentrations ≥ LLOQ + measurement uncertainty (%U)) 

Urine EtG100 21 % 100 ng/mL  121 ng/mL 

Urine EtS100 8 % 100 ng/mL  108 ng/mL 

Results suggesting repeated alcohol consumption (disproving strict abstinence) 

(Concentrations ≥ cut-off/LLOQ + measurement uncertainty (%U)) 

Hair EtG 25 %  7 pg/mg 9 pg/mg 

C-DBS PEth 16:0/18:1 24 % 10 ng/mL  12 ng/mL 

Table 6.2 Criteria used to interpret the measured concentration for serum CDT%, hair EtG, C-DBS PEths and 
urine EtG100/EtS100. 
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A graphical comparison between the concentrations measured in hair (EtG), serum (CDT%) 

and C-DBS (PEth 16:0/18:1) is given in Figure 6.1. 

 
Figure 6.1 Measured concentrations of EtG in hair (left), CDT% in serum (middle) and PEth16:0/18:1 in C-DBS 
(right) are represented with dots. Hair EtG and C-DBS PEth16:0/18:1 concentrations are normalised to serum 
CDT% to have a horizontal alignment of the three cut-off values (indicated with a red line) used to detect 
chronic and excessive alcohol consumption. The final decision regarding the fitness to drive is indicated using 
different colours for each dot (green = fit, orange = fit for one year, red = unfit). Individuals subjected to an 
abstinence period are indicated with full dots. In cases where different conclusions were obtained for hair EtG, 
serum CDT% and/or C-DBS PEth 16:0/18:1 (N=22), lines were used to link the results per volunteer. Results 
from volunteers with concentrations in hair, serum and C-DBS all above (N=11) or all below (N=17) the cut-off 
values are not linked using lines. Blue lines indicate 9 volunteers with CDT% results below the cut-off value and 
EtG in hair and PEth 16:0/18:1 in C-DBS results above the cut-off values. Green lines indicate 3 volunteers with 
CDT% and PEth 16:0/18:1 in C-DBS results below the cut-off values and EtG in hair results above the cut-off 
value. Full red lines indicate 3 volunteers with CDT% and EtG in hair results below the cut-off values but PEth 
16:0/18:1 in C-DBS results above the cut-off value. The red dashed lines represent 4 cases where a hair sample 
was not available. Black dotted lines indicate 3 cases with CDT% value above the cut-off but C-DBS PEth 
16:0/18:1 or hair EtG below the cut-off values. To improve the readability, the y axes are not linear, the lower 
part is more expanded than the upper part. 
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Seventeen volunteers (Table 6.1, n° 1-17) had serum CDT%, hair EtG and C-DBS PEth 

16:0/18:1 concentrations that do not suggest excessive or chronic alcohol consumption. All 

of them, except one with a cannabis addiction, were declared fit to drive (7 for one year). 

The values obtained for indirect biomarkers were in the reference range in 15 (GGT and 

ALT), and 17 (AST and MCV) volunteers. 

Thirty-three volunteers (Table 6.1, n° 18-50) had at least one result (serum CDT%, hair EtG 

and/or C-DBS PEth 16:0/18:1) that suggests excessive and chronic alcohol consumption 

(Figure 6.2). Among them, 13 (Table 6.1, n° 18-30) had a CDT% value that suggests excessive 

and chronic alcohol consumption, which is confirmed by C-DBS (N=12) and/or hair (N=11) 

results. Other indirect biomarkers were measured above the upper reference limit in 10 

(GGT), 2 (ALT), 5 (AST) and 2 (MCV) out of these 13 cases. For one individual (n° 31), the only 

indirect biomarker available was MCV. Of note, urine analysis for EtG and EtS indicated 

recent alcohol consumption in 12 of these cases. The positive urine results are compatible 

with the alcohol dependence suggested by other biomarkers. Notably, in most cases the 

urinary concentrations were relatively high (between 2092 and up to more than 10000 

ng/mL for EtG100 and between 1107 and up to more than 10000 ng/mL for EtS100), when 

compared with concentrations measured in dependent patients during detoxification (about 

10000 ng/mL for EtG100 and about 3000 ng/mL for EtS100 20 hours after the cessation of 

alcohol intake) [14]. 

 
Figure 6.2 Numbers out of 50 volunteers with results above the cut-off values for CDT%, EtG and/or PEth 
16:0/18:1, suggesting alcohol dependence. The number of samples with EtG100 or EtS100 concentrations in urine 
above or equal to the LLOQ is indicated between brackets. CDT%, hair-EtG, C-DBS-PEth and urine-EtG/EtS data 
were available for respectively 49, 43, 50 and 48 volunteers. * 9 CDT% values below the cut-off and one with a  
missing result.   
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Seventeen volunteers (Table 6.1, n° 31-47) had a PEth 16:0/18:1 concentration in C-DBS that 

suggests excessive and chronic alcohol consumption and a serum CDT% below the cut-off (or 

with a missing result). Out of them, 10 (Table 6.1, n° 31-40, represented by blue lines in 

Figure 6.1 and in blue in Fig. 6.2) had an EtG concentration in hair that also suggests an 

alcohol misuse, 4 (Table 6.1, n° 41-44, represented by red dashed lines in Figure 6.1) had not 

provided a hair sample, while 3 (Table 6.1, n° 45-47, represented by red lines in Figure 6.1) 

had a measured EtG concentration in hair that suggests alcohol intake but with no 

suggestion of chronic and excessive alcohol consumption. All of the 10 volunteers with C-

DBS PEth 16:0/18:1 and hair EtG concentrations that suggest alcohol dependence also had 

quantifiable PEth 18:1/18:1 and PEth 16:0/16:0 levels. One noteworthy example in this 

context is the individual (Table 6.1, n° 42) with the highest C-DBS PEth 16:0/18:1 

concentration of the whole evaluated cohort (3689 ng/mL). In this individual, CDT% fell 

below the cut-off and the person was declared fit to drive (albeit for 1 year). Interestingly, 

also urinary EtG/EtS was positive in this individual (no hair was available for analysis).  

Three volunteers out of the 50 (Table 6.1, n° 48-50, Figure 6.2) had an EtG concentration in 

hair that suggests excessive and chronic alcohol consumption, which was not confirmed, 

neither by serum CDT% nor by C-DBS PEth 16:0/18:1 results. In these 3 cases, urine analysis 

for EtG and EtS was negative. 

Of the 50 volunteers, 13 had been submitted to an abstinence period (filled dots in Figure 

6.1). Out of these 13 cases, recent alcohol consumption was suggested in 4 (EtG100) and 3 

(EtS100) cases using urine results, while strict abstinence can be disproved by C-DBS analysis 

in 7 cases and by hair analysis in 5 cases (3 volunteers did not provide a hair sample). 

Although in total, only 4 volunteers tested negative for all evaluated direct markers, it should 

be noted that EtG/EtS concentrations in 1 individual (n° 1) were low, while the positivity in 

hair of another individual (n° 9) might be owing to residual EtG present in hair, dating from 

before the abstinence period. 

6.4 Discussion 

A driver’s licence regranting process like the one currently used in Belgium has to manage 

two main issues. First, medical doctors and psychologists have to detect people with chronic 

and excessive alcohol consumption. Second, after an unfit to drive decision, an abstinence 

period of minimum 6 months has to be proven. To date, medical doctors can use the results 
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from the analysis of indirect biomarkers of alcohol consumption (CDT%, GGT, ALT, AST and 

MCV) to help in the decision process. These analyses have as a drawback the necessity of a 

venepuncture by a physician. An interesting step towards a solution to avoid this invasive 

sampling has recently been presented by Bertaso et al. [36], who developed a method for 

the quantification of CDT% from DBS. However, still, one is confronted with the well-

documented lack of sensitivity and specificity of these indirect biomarkers. Three non- or 

minimally invasive methods analysing direct biomarkers (hair EtG, C-DBS PEths and urine 

EtG100/EtS100) were applied on 50 real cases, where the fitness to drive had to be assessed 

using a blood analysis.  

6.4.1 Methods and cut-off values 

For direct markers in urine and hair, internationally recommended cut-off values could be 

applied in this study. For PEth 16:0/18:1 in blood, a cut-off value at 274 ng/mL was used to 

suggest excessive and chronic alcohol consumption in 29 volunteers. Others have proposed 

a lower (210 ng/mL) or substantially higher (700 or 800 ng/mL) cut-off value [24,37,38]. 

When applying C-DBS PEth 16:0/18:1 cut-off values of 210, 700 or 800 ng/mL, a suggestion 

of excessive and chronic alcohol consumption would be made for resp. 30, 17 and 16 

volunteers. It remains to be evaluated what C-DBS PEth cut-off value should ideally be used 

in the context of driver’s license regranting. For CDT%, despite an international guideline 

advocating the measurement of disialo-transferrin as a single analyte, both asialo-transferrin 

and disialo-transferrin were used in this study, to be in accordance with the driver’s licence 

regranting process currently used in Belgium. For the same reason, cut-off values used 

(female/male) in this study (36/61 U/L for GGT, 31/40 U/L for ALT and 31/37 U/L for AST) 

slightly differ from the internationally accepted ones (38/55 U/L for GGT, 34/45 U/L for ALT 

and 31/35 U/L for AST) [39]. 

6.4.2 Inference processes 

Different information can be obtained from the quantification of hair EtG, C-DBS PEths and 

urine EtG/EtS. Knowing that the analysis of a proximal hair segment of up to 6-cm length will 

reflect the alcohol consumption during the period up to 6 months before the sampling 

(assuming a hair growth rate of 1 cm/month [40]), and recalling that PEth 16:0/18:1 is 

detected in an alcohol dependent patient up to 1 month after cessation of alcohol 

consumption [41], the evolution of the drinking pattern can be inferred. As an illustration, an 
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increase of the mean alcohol consumption at least the month prior to the sampling could 

explain the apparent mismatch of the results for volunteers n° 45-47 (Table 6.1; data points 

linked by full red lines in Figure 6.1). In these volunteers, C-DBS PEths results suggest an 

excessive and chronic alcohol consumption, which is not suggested by the hair EtG results. 

Hair lengths of these three volunteers were between 5 and 6 cm, which means that the EtG 

concentration measured in hair represented the mean alcohol consumption the 5-6 months 

prior to the sampling. In addition, for these 3 volunteers an excessive and chronic alcohol 

consumption is also confirmed by the concentration of PEth 18:1/18:1 measured in C-DBS. 

Two of them (Table 6.1, n° 45-46) also have PEth 16:0/16:0 concentrations in C-DBS above 

the LLOQ. Moreover, urinary EtG100 and EtS100 concentrations suggest for all 3 cases a recent 

alcohol consumption. This reflection is illustrated in Figure 6.3, which shows the results of 

volunteer n° 45. A segmental analysis of hair samples in such cases may provide relevant 

supplementary information [10,19,42,43], which could confirm or refute such inferences. 

From these three cases it is readily clear that the combined results can provide possible 

explanations for certain observations and may give clues about the evolution of a person’s 

alcohol consumption.  

 

 

Figure 6.3 Hypothetical drinking pattern of volunteer n° 45 based on the results of EtG in hair and PEths in C-
DBS and confirmed by the concentration of EtG100 and EtS100 in urine. 
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Using the same reasoning, a mean decrease of alcohol consumption during at least the 

month prior to sampling could be suggested in volunteers n° 48-50 (Table 6.1; data points 

linked by green lines in Figure 6.1), where the hair EtG results but not the C-DBS PEth results 

suggest excessive and chronic alcohol consumption. In addition, EtG100 and EtS100 

concentrations in urine do not suggest an alcohol consumption by these individuals during 

the few days prior to the sampling. 

Among the 13 volunteers (Table 6.1, n° 18-30) with CDT% results that suggest excessive and 

chronic alcohol consumption, two had C-DBS PEth 16:0/18:1 and one had hair EtG 

concentrations below the cut-off values used to suggest alcohol dependence, which did not 

confirm the alcohol dependence suggested by the CDT% result. Among these three 

exceptions (indicated in Figure 6.1 using black dotted lines), one had a PEth 16:0/18:1 

concentration at 192 ng/mL (which is below but already relatively close to the cut-off at 

274), another had a EtG concentration at 30 pg/mg hair (which is below but rather close to 

the cut-off at 38) and the last had an EtG concentration at 15 pg/mg hair. This last result, 

measured in the 3-cm proximal hair segment, could be explained by an increase of the 

alcohol consumption at least the last month prior to the sampling. Both volunteers with EtG 

concentrations below the cut-off reported no cosmetic treatment (bleaching, perming or 

straightening) of their hair, which could lead to a decreased concentration of EtG in hair [44].  

An inference scheme to integrate the results of hair EtG, C-DBS PEths and urine EtG/EtS into 

the fitness to drive decision process, complementing the psychological assessment is 

proposed in Figure 6.4. 
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Figure 6.4 Flowchart showing the influence of the results of EtG in hair, PEth 16:0/18:1 in C-DBS and EtG100 and 
EtS100 in urine on the fitness to drive decision. The number of cases observed in the 50 volunteers of our study 
is indicated above (cases with negative urine sample for EtG or EtS) or below each category (cases with positive 
urine sample for EtG or EtS). EtOH: ethanol. 
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6.4.3 Sensitivity and specificity 

The results of our study confirm the good specificity of hair EtG and C-DBS PEth 16:0/18:1 to 

detect chronic and excessive alcohol consumption reported by others in literature 

[11,45,46]. Among the 13 volunteers with CDT% values above the cut-off value observed in 

our population study, all have C-DBS PEth 16:0/18:1 and/or hair EtG concentrations that 

confirm the alcohol misuse suggested by the CDT% result.  

Our results also confirm i) the superior specificity of CDT% over other indirect biomarkers 

(especially GGT, ALT and AST) to detect chronic and excessive alcohol consumption 

[11,45,46] and ii) that hair EtG (24/50) and C-DBS PEths (29/50) are more sensitive to detect 

excessive and chronic alcohol consumption than the currently used indirect biomarkers 

(13/50 for CDT%) and are more efficient to disprove an alcohol abstinence period than 

urinary EtG/EtS [16,20]. Nevertheless, and as mentioned by some authors [16,47], urinary 

EtG/EtS remains of special importance to disprove recent strict abstinence, because of its 

ability to detect one single alcohol consumption. In our study, one volunteer submitted to 

abstinence (volunteer n° 1) had no increased CDT%, a concentration of hair EtG and C-DBS 

PEths below the LLOQs but concentrations of EtG (155 ng/mL) and EtS (129 ng/mL) in urine 

above the limits used to suggest alcohol consumption. In that case, strict abstinence could 

only be disproved by urine analysis. However, due to the possibility of finding EtG and EtS 

concentrations above 100 ng/mL in urine without consumption of alcoholic beverages 

[23,48–52] low concentrations -as observed in this case- have to be interpreted with caution. 

In Germany, participants of abstinence programs are informed about the alcohol content of 

certain food, beverages and cosmetics (mouthwash and hand sanitisers), whose 

consumption or use may give rise to results that are in conflict with strict abstinence [15].  

Of the thirty-three volunteers that had at least one result (serum CDT%, hair EtG and/or C-

DBS PEth 16:0/18:1) that suggests excessive and chronic alcohol consumption (Figure 6.2), 

only 11 were declared unfit to drive (all having a positive CDT% result). This means that in 

this study (in which C-DBS and hair results were not used in the fitness-to-drive decision), 

2/3 of the cases with evidence of excessive and chronic alcohol consumption were declared 

fit to drive (albeit in many cases only for 1 year), which is worrisome. 
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6.4.4 Comparison with results in literature 

While many studies have already reported on the comparison of direct alcohol biomarkers 

with indirect biomarkers, most of these have only made this comparison with one of the 3 

direct biomarkers, such as hair EtG [8,11,42,46,53] or blood PEths [25,41,45]. Two studies 

have compared PEths in blood and EtG/EtS in urine with indirect biomarkers [16,54]. To our 

knowledge, to date only two publications have included in their population study the 

analysis of both EtG/EtS in urine, EtG in hair and PEths in blood or DBS [55,56]. Marques et 

al. [55] aimed to estimate the ability of alcohol biomarkers to predict DUI of alcohol 

recidivism. For that purpose, subjects were classified into three risk-groups, based on the 

number of attempts to drive a vehicle with an elevated breath alcohol concentration 

(measured and recorded by the Alcohol Ignition Interlocks Device (IIDs) installed on their 

vehicle). Mean biomarker concentrations per risk-group were compared and the correlation 

between biomarkers was evaluated. The interesting results of this study cannot be 

compared with our results, because both the aim and the procedure differ. The second study 

[56] compared PEths from venous DBS (100 µL venous blood spotted onto a filter paper) and 

blood, EtG (from serum, urine and hair), EtS (from serum and urine), CDT%, GGT, ALT and 

AST concentrations during 12 days (samples at 0, 6 and 12 days), in 81 subjects with an 

alcohol misuse history. The aim of that study was to determine the agreement and stability 

of PEths in blood and DBS. Other biomarkers were only used to compare their respective 

detection times and ability to distinguish between subjects drinking more or less than 85 g 

ethanol per day. Results were thereby limited to tables containing the mean and range of 

concentrations observed for each biomarker at days 0, 6 and 12. In addition, no significant 

differences for the median concentrations were reported between subjects drinking more or 

less than 85 g ethanol per day, and that for CDT%, EtG/EtS in urine and PEths in blood or 

DBS. 

  



Back to the table of contents 

194 

H
ai

r 
Et

G
, u

ri
n

e 
Et

G
/E

tS
 a

n
d

 C
-D

B
S 

P
Et

h
s 

in
 d

ri
ve

r’
s 

lic
en

ce
 r

eg
ra

n
ti

n
g 

ca
se

s 

 

 

6.4.5 Hair EtG vs. PEth C-DBS  

While there is currently more experience with hair EtG analysis in driver’s licence regranting 

programs abroad, C-DBS PEths analysis may have a similar utility in future. Indeed, both 

approaches have several advantages and disadvantages. A single analysis of a 3-6 cm hair 

strand is less labour intensive and may be less costly than multiple (e.g. monthly) PEth 

analyses in case of monitoring long term abstinence. Nevertheless, hair samples are not 

systematically available and a sufficient amount of hair is not always easy to obtain, 

especially when volunteers have short hair. While sampling at sites other than the scalp is 

possible, this poses problems as to the interpretation, when using the cut-off values for scalp 

hair. Moreover, correct sampling requires some expertise and the collection of a hair strand 

may be considered somewhat intrusive. In addition, false negative and false positive results 

due to hair treatments cannot be excluded [35,44,57]. Lastly, hair analysis typically requires 

a more dedicated sample preparation, often involving an SPE step (as is the case for the EtG 

analysis performed here). C-DBS, on the other hand, can be collected in any case, always 

yielding a result. Moreover, the availability of high-throughput-capable fully automated 

systems (from DBS card to chromatogram without hands-on) may offer a cost-effective 

alternative in future. 
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6.5 Conclusion 

To evaluate how the Belgian driver’s licence regranting process could be improved, we 

applied three strategies (hair EtG, C-DBS PEths and urine EtG100/EtS100) on 50 real cases, 

where the fitness to drive had to be assessed using a blood analysis. While currently regular 

blood sampling is not part of the medico-psychological evaluation (the individual needs to 

visit a sampling centre or his family doctor to perform a venepuncture), the exclusive use of 

non- or minimally invasive sampling in this study (hair, urine and C-DBS) allows sampling to 

be performed directly during the fitness to drive assessment by regular staff members. Each 

of the strategies applied here provides a different level of information and can be used 

separately or combined. The quantification of EtG and EtS in urine is a useful method to 

detect recent alcohol intake and can thus be used to disprove strict abstinence during the 

days prior to sampling. The determination of PEths in C-DBS is a user-friendly minimally 

invasive approach that allows to detect chronic and excessive alcohol consumption at least 

the month prior to the sampling and to disprove an abstinence period. The quantification of 

EtG in the up to 6-cm proximal hair segment is a non-invasive approach that allows to 

estimate the mean alcohol consumption for up to 6 months prior to sampling and can be 

used to strongly suggest repeated alcohol consumption or disprove strict abstinence. Both 

DBS and hair are easy to transfer and store and are far more sensitive than CDT% to detect 

chronic and excessive alcohol consumption. In conclusion, in conjunction with the 

psychological assessments, the approach proposed here allows to obtain a more detailed 

view on (the evolution of) the alcohol consumption of a subject. This allows a better 

judgment about the fitness to drive and hence has the potential to improve the driver’s 

licence regranting process. 
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7.1 Broader international context 

In the late 1960s, European countries started to develop driver rehabilitation programs for 

drinking driving offences, with the aim to avoid recidivism and to re-integrate driving under 

the influence (DUI) offenders into the traffic system without imposing a risk on other traffic 

users [1]. Even if differences are observed between countries, the fitness to drive decision in 

European countries follows the Directive 2006/126/EC of the European Parliament and of 

the Council of December 20, 2006 on driver’s licences [2]. Nine different regranting 

conditions (i.e. medical assessment, psychological assessment, screening for substance 

markers in blood/urine/hair, driver rehabilitation, treatment program, theoretical driving 

lessons, practical driving lessons, theoretical driving test and practical driving test) were 

detected in a survey performed in the DRUID project [3]. Amongst these, the first and 

second most common conditions for regranting after an alcohol offence, were, respectively, 

the medical assessment (used in 22 out of 30 countries either systematically (8/30) or in 

specific cases (14/30)) and the theoretical driving test (21/30). Medical/psychological 

examination may include a functional survey (e.g. observation of tremors, smell of the 

breath, skin changes (tiny red dots from which small blood vessels radiate or skin condition 

similar to acne)), a medical examination (e.g. blood pressure, heart rate, examination of the 

belly for an enlarged or tender liver), questionnaires for detecting heavy and problem 

drinking (e.g. AUDIT, CAGE, DAST, MAST, etc.) and toxicological analyses. In Belgium, as in 

many European countries, analyses of indirect biomarkers such as carbohydrate deficient 

transferrin (CDT%), gamma-glutamyltransferase (GGT), aspartate aminotransferase/alanine 

aminotransferase (AST/ALT) and mean corpuscular volume (MCV), are the current analytical 

methods used by physicians to help in their assessment of (cessation of) alcohol abuse in 

case of a driver’s licence regranting process [4–9]. Because of a lack of sensitivity and 

specificity [10], the efficiency of these analyses to detect excessive and chronic alcohol 

consumption and to assess strict alcohol abstinence periods has become an international 

issue. 

Since 2010, several countries (i.e. Italy, Germany, Switzerland and Sweden) advocate the 

quantification of ethanol metabolites, such as ethylglucuronide (EtG) and ethylsulfate (EtS) 

in urine and/or hair to monitor an alcohol abstinence period. According to the Italian driver’s 

licence regranting program, abstinence periods are monitored via urinary EtG and EtS, 

http://en.wikipedia.org/wiki/Aspartate_aminotransferase
http://en.wikipedia.org/wiki/Alanine_aminotransferase
http://en.wikipedia.org/wiki/Alanine_aminotransferase
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determined in three to five unannounced collections, over a period between 2 and 4 weeks 

[11]. The Swedish [6] and Swiss [7] driver’s licence regranting programs have introduced the 

quantification of EtG in hair as a complementary tool to the analysis of indirect biomarkers. 

The German driver’s licence regranting guidelines to monitor abstinence periods require the 

quantification of EtG in six random urine or four hair samples [12–14]. In 2016, some authors 

[15] have strongly recommended to include the quantification of PEth 16:0/18:1 in whole 

blood in routine analysis for the detection of prolonged excessive alcohol consumption 

(currently based on a BAC above 1.6 ‰). In the United States of America, where alcohol 

ignition interlock devices are used to prevent recidivism, the ability of direct biomarkers 

(blood PEths, hair EtG and FAEE, and urine EtG and EtS) and indirect biomarkers (CDT%, ALT, 

AST, GGT) to predict recidivism has been tested [16,17]. One-way ANOVA tests have shown 

that mean concentrations of direct and indirect biomarkers measured in blood and urine 

were different when measured in subjects with a low rate of attempts to drive with an BAC ≥ 

0.4 g/L or in subjects with a high ignition lockout rate. In addition, PEths in blood were 

depicted as “a remarkably strong, general alcohol risk indicator” correlating with all of the 

other biomarkers tested.   

7.2 Relevance 

To our knowledge, the work presented in this thesis is the first to test the combined 

quantification of EtG/EtS in urine, EtG in hair and PEths in capillary dried blood spots (C-DBS) 

for both the detection of excessive and chronic alcohol consumption and the monitoring of 

the abstinence period in case of fitness to drive decisions. These methods are known to be 

more sensitive and specific than indirect biomarkers currently analysed in blood/serum. Yet, 

as outlined below, there are still some limitations and challenges that have to be taken into 

consideration. 

7.2.1 Choice of the analytes 

The concentration of metabolites in humans strongly depends on the individual metabolism 

and elimination rate, which are related to factors such as gender and age. Briefly, ethanol 

metabolism has been described to be on average faster in women (0.17 g/L) than in men 

(0.15 g/L) and the elimination rate decreases with age [18]. Other factors such as differences 

in liver volume, enzymes and substrate levels, and pregnancy may affect the metabolism of 

ethanol [18].     
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EtG is produced by the transfer of a glucuronic acid moiety from uridine 5’-diphospho-β-

glucuronic acid (UDPGA) to an ethanol molecule by multiple UDP-glucuronosyltransferases 

(i.e. UGT1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B10, 2B15), with UGT1A9, 2B7 

(and 1A1 according to one study [19]) contributing most to ethanol glucuronidation.  

Genetic polymorphisms, due to variations in the coding regions and/or promoters of UGT 

isoforms, have been identified for different UGT enzymes [20,21] and may result in variable 

glucuronidation activity. For example, a common genetic polymorphism in the promoter 

region of the UGT1A1 gene (UGT1A1*28) results in a reduced enzyme expression and is 

associated with Gilbert’s syndrome [21]. Hence, one could hypothesize that EtG formation 

may be hampered in these individuals and, as a result, EtG may not be a good marker for 

alcohol consumption in these individuals. A recent study evaluated this hypothesis and 

found no evidence of impaired EtG formation [22] in individuals suffering from Gilbert’s 

syndrome, having a reduced activity of the UGT1A1 enzyme. This could be explained by the 

fact that functional differences in one isoform (UGT1A1 in case of Gilbert’s syndrome), may 

be compensated by the activity of other UGT isoforms involved in formation of EtG [19]. 

UGT activity is not only determined by genetic factors, also a variety of other factors may 

have an influence on UGT activity. Indeed, inhibition of various UGT isoforms has been 

observed by a wide set of compounds, including drugs (e.g. tolcapone and entacapone [23] 

used to treat Parkinson’s disease; medroxyprogesterone acetate used as contraceptive, in 

hormone therapy and to cure advanced breast cancer [24]; and chlormadinone acetate [25]) 

and dietary substances (e.g. carvacrol from numerous aromatic plants [26]; psoralidin from 

the psoraleacorylifolia [27]; nor-oleanane triterpenoid saponins from Stauntonia 

brachyanthera [28]; and ginsenosides from ginseng [29] used in traditional Chinese 

medicine). More studies are needed to evaluate whether these compounds may affect the 

glucuronidation of ethanol. A study like this has been performed for polyphenols (i.e. 

quercetin, kaempferol and resveratrol -naturally present in fruits, vegetables, wines, beers, 

herbs or spices) and results have shown that the glucuronidation of ethanol was inhibited, 

via UGT1A1, 1A9 (resveratrol) and UGT1A1, 1A3, 1A6, 1A9, 2B7, 2B10 (quercetin, 

kaempferol) [30]. However, this inhibition of ethanol glucuronidation was considered as 

weak to negligible by the authors. As demonstrated by the unaffected formation rate of EtG 

in subjects suffering from Gilbert’s syndrome [22], and knowing that each UGT isoform 

https://en.wikipedia.org/wiki/Uridine-diphosphate
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exhibits a distinct, but sometimes overlapping, inhibitor selectivity [20], it can be expected 

that the inhibition of one enzyme will most likely be compensated by the activity of the 

remaining isoforms. Alternatively, a depletion of UDPGA -as induced by drugs known to be 

glucuronidated (e.g. valproic acid, chloramphenicol, salicylamide, clofibric acid and 

galactosamine) [31,32] or after diethyl ether narcosis [32]- could result in a lower 

glucuronidation of ethanol and should be evaluated. In addition, further research about the 

effect of drugs (e.g. paracetamol, chloramphenicol, fenofibrate, nicotine, ibuprofen, etc 

[20,21,33]) known to be conjugated extensively by UGT1A9 or 2B7, which are the two 

isoforms showing the highest rate of ethanol glucuronidation, and about the effect of 

polymorphisms on these two isoforms (e.g. UGT1A9*22, UGT1A9*1c, UGT2B7*1a, 

UGT2B7*2 [33]), may provide valuable insights to better understand the inter- and intra-

individual variability of EtG formation and to more efficiently interpret results.  

Different sulfotransferase enzymes (i.e. SULT1A1, 1A2, 1A3, 1B1, 1C4, 1E1 and 2A1) are 

involved in the formation of EtS via the transfer of the sulfo moiety (SO3
-) of 3'-

phosphoadenosine 5'-phosphosulfate (PAPS) to ethanol, with SULT1A1 exhibiting the highest 

EtS formation rate, followed by SULT1A2, 2A1, 1A3, 1B1, 1C4 and 1E1 [30,34,35]. The activity 

of SULTs may be inhibited when humans are exposed to certain xenobiotics, including drugs 

(e.g. mefenamic acid, salicylic acid, clomiphene, danazol, nimesulide, meclofenamate, 

piroxicam, sulindac, aspirin and ibuprofen), dietary chemicals (e.g. ethyl acetate from red 

wine; catechins from wine and tea; caffeic acid from coffee and tea; quercetin from red 

wine, green tea and coffee; food colorants; flavonoids and phytoestrogens) and 

environmental chemicals (e.g. phthalates, hydroxylated polychlorinated biphenyls, 

hydroxylated polyhalogenated aromatic hydrocarbons, pentachlorophenol, triclosan and 

bisphenol A) [36–38]. Polyphenols (e.g. resveratrol, quercetin, kaempferol) have been shown 

to inhibit (in a way considered as moderate to weak by the authors) the sulfonation of 

ethanol [30]. Sulfotransferase expression and activity has been shown to decrease with liver 

disease (i.e. steatosis, diabetes, diabetic cirrhosis, alcoholic cirrhosis [39]). Genetic 

polymorphisms are known for all human SULT isoforms [40,41] and polymorphisms in the 

SULT1A family have been shown to result in altered enzyme activity [42,43]. We are not 

aware of studies that systematically investigated the influence of SULTs activity on EtS 

formation. Similar to glucuronidation, sulfonation is subject to substantial redundancy, 

where a reduction in activity of one enzyme may be compensated for by other enzymes. 

https://en.wikipedia.org/wiki/Steatosis
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Another important aspect when considering sulfonation is the availability of PAPS, which 

provides the required sulfonic group, which in turn is dependent on the availability of 

inorganic sulfate and on the activity of the two enzymes of its synthesis, PAPSS1 and PAPSS2 

[44]. Depletions of PAPS have been described in cases of administration of xenobiotics that 

are eliminated via sulfonation (e.g. salicylamide, phenol and naphthol) and molybdate 

[45,46]. Further studies are required to determine the impact of PAPS depletion on the 

sulfonation of ethanol.  

Currently available evidence points to the fact that, while nutritional components, drugs, 

genetic polymorphisms and diseases may affect the activity of UDP and SULT enzymes, the 

effect on EtG and/or EtS formation effect is modest at most, primarily because of 

redundancy and the presence of compensatory mechanisms. Yet, more studies are 

warranted to evaluate under what circumstances there may be a considerable effect on the 

glucuronidation/sulfonation of ethanol, which might lead to a significant variation of the 

concentration detected in blood, urine or hair. Depletion of UDPGA or PAPS due to drugs – 

as reported in a study from the 1990s- could also affect the glucuronidation/sulfonation rate 

of ethanol and should be further investigated. As a consequence, one should always keep in 

mind that certain factors may influence to some extent the quantitative results, and in cases 

of strange results for one subject, one should ask the person more information about drugs, 

illicit drugs, foods consumed and diseases diagnosed that could affect these results. 

Importantly, it is unlikely that variations in glucuronidation and/or sulfonation as the ones 

described above would lead to false positives (i.e. someone being accused of being a chronic 

drinker and/or not having respected an abstinence period): the influences that have been 

described mostly lead to a reduction, rather than an increase in enzyme activity. False 

positive results for EtG and EtS are possible due to items that contain ethanol (e.g. certain 

food or beverages, medications, cosmetics/sanitizers or e-cigarettes [47,48]). To avoid 

misleading interpretations two solutions arise. First the use of higher cut-off values, which 

will, however, decrease the detection window of alcohol consumption, and second, to 

inform participants about the items which could lead to positive results and to perform the 

urine sampling within 24 h after giving the advice- as performed in Germany [14]. 

PEths are a group of abnormal phospholipids formed in cell membranes when ethanol is 

present, via the action of phospholipase D (PLD), which normally hydrolyses 
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phosphatidylcholine into phosphatidic acid and choline in cell membranes [49]. Two human 

PLD isoforms (i.e. PLD1 and PLD2) have been reported [50–52], with cells expressing 

different splice variants [52]. Because PLD1 and PLD2 have been implicated in human cancer 

cell progression, compounds that inhibit these enzymes (e.g. FIPI and NOPT [53–56]) are 

targeted for the treatment of cancer [57] and could possibly affect the 

transphosphatidylation rate of ethanol. PLD1 and/or PLD2 inhibition is also used in some 

treatments against Alzheimer's, thrombotic diseases, hypertension, influenza and multiple 

sclerosis [58–61]. In addition, an altered phosphatidylcholine metabolism (as observed for 

example in subjects suffering from Alzheimer’s disease [62]) may affect the 

transphosphatidylation rate of ethanol. Different compounds found in food (e.g. resveratrol, 

honokiol and saponin) have been shown to decrease the activity of PLD enzymes [58]. In 

addition, trans-diethylstilbestrol, which is a synthetic estrogen used during the 1950s-1970s 

to prevent miscarriages, has been shown to reduce PEths formation in cells [63].  

While also plasma contains phosphatidylcholine (e.g. in lipoproteins) [64], Varga and Alling 

have demonstrated that PEths were formed in vivo within the red blood cells after alcohol 

consumption [49]. In another study the analysis of cell fractions (erythrocytes, leukocytes 

and plasma) of blood from 6 alcoholic patients, has shown that PEths were mainly located in 

erythrocytes and that PEths were not present in plasma [65]. In that study, although no 

significant difference was observed between whole blood and erythrocyte PEths 

concentrations, concentrations in erythrocytes tended to be somewhat lower. This could be 

explained by the presence of a minor part of PEths in platelets (which were not analysed in 

that study) or by a concentration of PEths in leukocytes or plasma, but at a concentration 

below the limit of detection of the method used. Although we could not find studies that 

evaluated whether different plasma phosphatidylcholine concentrations might result in 

different whole blood phosphatidylethanol levels, it is unlikely that fluctuations in plasma 

phosphatidylcholine (and, possibly, plasma phosphatidylethanol) levels would impact the 

whole blood level significantly.  

Yet, it may still be worthwhile to evaluate in future studies i) if an altered substrate 

availability (phosphatidylcholine) or a changed enzyme activity of PLDs would affect the 

transphosphatidylation rate of ethanol and/or the whole blood PEth level, and ii) which PLD 

isoforms are involved in the transphosphatidylation of ethanol. 

https://en.wikipedia.org/wiki/Estrogen
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7.2.2 Choice of the matrices 

Hair is a very interesting matrix especially due to the wide detection window of compounds 

trapped into it. However, because hair is an external matrix exposed to environmental 

conditions, compounds can be washed out to some extent, for example by cosmetic 

treatments. In addition, the sampling can be considered somewhat intrusive and requires a 

certain expertise [56]. Hair is not systematically available and a sufficient amount is not 

always available, e.g. in bald subjects or in subjects having short hair. Three-cm segments 

may be preferred over 6-cm segments to avoid “dilution” of possibly positive segments by 

adjacent negative segments. Since every 3-cm segment covers a period of about 3 months, 

four samplings may be sufficient to cover a whole year. The Swedish [6], Swiss [7] and 

German [12–14] driver’s licence regranting programs have introduced the quantification of 

EtG in hair as a complementary tool to the analysis of indirect biomarkers. In Switzerland, 

the 0-5 cm proximal scalp hair segment is analysed and hair from the arms, legs and chest 

are sometimes used [67]. In that regard, concentration in scalp hair has been shown to be 

similar to that in beard, chest, arms and legs [18]. In Germany, the analysis of the proximal 3 

cm segment of scalp hair is one option for subjects that want to recover their driver’s license 

and have to attest an abstinence period [12,13]. Four separate hair analyses are planned for 

persons who have to attest an abstinence over a period of one year [12].       

The C-DBS approach is a minimally invasive sampling procedure that is relatively easy to 

perform and provides samples that are easy to transfer and store. DBSs are also interesting 

as they improve the stability of several analytes. This is relevant in the context of PEths, 

which may be formed in vitro, in cases where ethanol is present in the blood and there is a 

delay in processing the sample. C-DBS also represent a very interesting solution to avoid the 

whole blood degradation which can affect for example the quantification of CDT% in blood 

[68]. Sampling of C-DBS has not been used routinely in the context of driving license 

regranting programs. However, one can envisage a system where follow-up of persons is 

performed using C-DBS. Since the time window covered is about a month, theoretically, 

twelve samplings should be performed to have full coverage of a year. However, this is not 

realistic from both a practical and financial point-of-view. Therefore, similar to the systems 

where random (unannounced) samplings of urine are performed (e.g. in Italy and Germany 

[11,12]), one may envisage a system in which persons get a phone call and have to present 
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within a certain time interval for C-DBS collection. If positive, sampling frequency might be 

increased. If negative, sampling frequency might be decreased. Important in this system is 

that persons do not know on beforehand when they will be sampled: e.g. sampling in 

January may or may not be followed by sampling in February (otherwise some people might 

have a tendency to start drinking right after a sample was collected). As such, the number of 

samplings may remain limited - ideally less than 6 per year, which is close to the frequency 

of hair sampling.  

Urine is a non-invasive sampling approach, which, however, requires supervised collection 

when it is to be used for legal purposes. This is somewhat inconvenient for both the person 

him/herself, as for the supervising person. Moreover, both a male and female should be 

available to perform the supervision. Urine allows monitoring of EtG and EtS to detect recent 

alcohol consumption, also if only low amounts of ethanol have been consumed. Obviously, 

the time window is much shorter than in the case of hair or C-DBS. Because dilution is known 

to affect the quantification, creatinine normalisation is required. Urine analysis might 

actually also be performed on-site, using simple, commercially available tests, such as the 

DRI® Ethyl Glucuronide Assay (Thermo Fisher Scientific Microgenics) [69–72]. A positive 

result might readily lead the individual to confirm recent ethanol intake. Obviously, one 

should always be cautious with such rapid tests as they may generate false positive results 

[73]. Hence, one may envisage a system in which the individual would be given the 

opportunity to challenge a positive screening result (provided that he/she would have to pay 

for the confirmatory chromatographic analysis in case the positive result is confirmed). As 

with DBS, dried urine spot analysis is also an interesting option: urine may be collected in a 

traditional way (supervised sampling, using a beaker), but, subsequently, dried urine 

samples could be generated (e.g. using volumetric absorptive microsampling), which would 

improve the stability of compounds and also facilitate transfer and storage.  

Obviously, a balance should be found between what is feasible and what is preferred from a 

scientific and clinical perspective. Moreover, the use of one sampling strategy or marker 

does not exclude the use of another sampling strategy or marker: depending on the case, 

another strategy or marker may be ideal: e.g. in someone that has to remain abstinent, a 

simple positive urinary test for EtG may readily lead the person to give in that he/she indeed 

still uses ethanol. In other cases, very high CDT% levels may readily confirm a suspicion of 
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chronic excessive ethanol use. Alternatively, in cases where CDT% would not lead to a 

suspicion of chronic excessive ethanol use, the availability of direct markers in non- or 

minimally invasive matrices may confirm or refute the absence of (excessive) ethanol 

consumption. 

7.3   Future perspectives 

As discussed before, further studies are required to estimate if nutritional components, 

drugs, genetic polymorphisms and diseases that have been demonstrated to affect the 

activity of UDP, SULT and PLD enzymes or to deplete necessary substrates (e.g. UDPGA, 

PAPS, phosphatidylcholine), will have an effect on the glucuronidation, sulfonation or 

transphosphatidylation of ethanol, which might have some impact on the observed 

concentrations of the corresponding direct ethanol markers, thereby explaining 

interindividual differences in concentrations of these markers between individuals that 

consumed similar amounts of ethanol.  

Although the three strategies presented in this research have been fully validated according 

to international guidelines and published recommendations, additional work seems required 

to ensure an accurate quantification and an adapted interpretation of the results. As 

discussed in Chapter 4, an extensive pulverisation of hair samples leads to a significantly 

higher amount of EtG measured. External QC samples with hair in a cut (non-pulverised) 

form were not used for the validation, because of a bias induced by the pulverisation 

process applied. To avoid such bias, the creation of different external quality control samples 

with a different certified value for methods based on cut hair and for methods based on 

pulverised hair seems necessary. Data analysis of proficiency tests between 2011 and 2015, 

using cut hair samples, has shown an overall lack of reproducibility (%RSD values from 24 up 

to 102 %). Less variation was observed between reported EtG concentrations from different 

laboratories (%RSD from 23 to 35 %) for proficiency tests using hair in powdered form. The 

observed variations can partially be explained by inhomogeneity within samples, but also 

illustrate the influence of the grinding process on the quantification of EtG in hair. 

Recommendations concerning the sample preparation protocol have been published in 2015 

by the Society of Hair Testing (SoHT) and in 2016 by Salomone et al. [74], and the impact of 

such guidelines on the observed variation between laboratories in the determination of EtG 

in proficiency test samples has to be studied. As discussed in Chapter 6, different cut-off 
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values for PEths have been proposed to suggest excessive and chronic alcohol consumption 

and it remains to be evaluated what PEths cut-off values are the most adapted to the fitness 

to drive assessment. To evaluate to what extent the determination of hair EtG, C-DBS PEths 

and urine EtG/EtS may improve the assessment of the fitness to drive, a population study 

including 50 volunteers was performed. The outcome of this limited study indicated that two 

thirds of the individuals in which our analyses indicated evidence of excessive and chronic 

alcohol consumption were declared fit to drive (albeit many for 1 year). This striking 

observation lends great support to the implementation of direct alcohol markers into the 

fitness to drive decision process. A decision scheme to integrate direct biomarker results 

(EtG in hair, PEth in C-DBS and EtG100 and EtS100 in urine), complementing the psychological 

assessment, has been presented in Chapter 6 and could be applied and tested in larger 

cohorts of individuals in driver’s license regranting programs in Belgium, as well as in other 

countries. In that perspective, the development of quantitative methods for ETG and EtS 

from dried urine spots and for CDT% from dried blood spots represents a very interesting 

improvement. This would allow to avoid the currently performed venepuncture and provide 

samples more easy to transfer and less subject to degradation [68,75]. In addition, 

monitoring ethanol in sweat via electrochemical devices could be an interesting approach to 

monitor alcohol abstinence period, while monitoring EtG in nail may be interesting, 

especially when no hair is available.  

 

Another future perspective inherent to this research field concerns the interpretation of 

results. A common thread throughout this research is the interpretation of quantitative 

results using cut-off values (e.g. to detect excessive and chronic alcohol consumption). Cut-

off values are defined according to the sensitivity and specificity of the method to distinguish 

between two populations (e.g. volunteers entering an alcohol withdrawal treatment vs. a 

control group). This approach, which is currently the common way of interpreting results in 

the toxicological field, is nevertheless not the only possible approach and one promising 

alternative is to choose a Bayesian probabilistic approach. As illustrated by Taroni et al. for 

the interpretation of THC concentrations in blood using a legal cut-off value to detect DUI of 

illicit drugs [76], a Bayesian probabilistic approach allows to provide as an output the 

probability (called posterior probability) for a THC concentration to exceed the legal 
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threshold, instead of the categorical conclusion (e.g. being below or above the cut-off value). 

In case of monitoring alcohol consumption (Figure 7.1), this would provide for example the 

probability of being an excessive and chronic alcohol consumer having an analytical result 

(e.g. CDT% in serum, EtG in hair, etc.) suggesting this.  

 

 

Figure 7.1 Illustration of the Bayes theorem. 

 

In addition, this approach allows to integrate the initial beliefs (prior to looking at analytical 

results) of the person in charge of taking a decision, as much as the sensitivity and specificity 

of the analytical method used. The posterior probability indeed combines both personal 

initial beliefs and analytical results (e.g. THC concentration in blood, CDT% value in serum). 

Another advantage is the possibility to combine several results (e.g. CDT% in serum, hair EtG, 

urine EtG/EtS, C-DBS PEths concentrations, AUDIT score, etc.) to calculate a posterior 

probability (i.e. the probability of being an excessive and chronic alcohol consumer), using a 

Bayesian network. Such network was developed and tested for the interpretation of post-

mortem drug concentrations [77] and in another field, for age estimation of living persons 

[78] and can serve as a reliable example.   
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The objectives of this thesis, presented in Chapter 2, were to select, develop and test 

alternative methods to detect excessive and chronic alcohol consumption and to monitor 

abstinence periods in individuals within a driver’s licence regranting program. Among the 

non- or minimally invasive sampling strategies for the assessment of alcohol intake of living 

persons found in literature and presented in Chapter 1, three methods were selected, 

developed and validated, all towards the quantitative determination of direct alcohol 

markers; ethyl glucuronide (EtG) and ethyl sulfate (EtS) in urine (Chapter 3), EtG in hair 

(Chapter 4) and phosphatidylethanol species (PEths) in capillary dried blood spots (C-DBSs) 

(Chapter 5). 

To estimate how these three alternative methods could improve the current process, 

samples (urine, hair and C-DBS) from 50 volunteers for whom fitness to drive had to be 

assessed and for whom a blood analysis was requested by the physician, were analysed. 

These three methods, which assess different analytes in distinct matrices, with each of these 

matrices covering another time window, provide different information about the alcohol 

consumption of the volunteer. Although there still remain some questions regarding 

interindividual variability in the levels of direct ethanol markers, our work supports the 

increasing amount of literature demonstrating the added-value of using these markers. EtG 

and EtS in urine form a relevant parameter to detect recent alcohol intake (even one single 

alcohol consumption) during the days (up to 5 days) prior to the sampling and can thus be 

used to disprove strict abstinence. The determination of PEths in C-DBS allows to detect 

chronic and excessive alcohol consumption at least the month prior to the sampling and to 

disprove an abstinence period. Monitoring an even longer abstinence period (e.g. the 6-

months abstinence period requested by the Belgian driver’s licence regranting legislation), 

using urine or C-DBS, requires multiple analyses, which can be avoided by hair analysis. The 

quantification of EtG in an up to 6-cm proximal hair segment allows indeed to estimate the 

mean alcohol consumption for up to 6 months prior to sampling. Quantitative results can 

disprove strict abstinence or strongly suggest repeated alcohol consumption. Nevertheless, 

hair samples are not systematically available and the required amount of hair is not always 

easy to achieve. In addition, false negative and false positive results due to hair treatments 

cannot be excluded. When combined together, the results obtained from the urine, hair and 

C-DBS analyses, allow to infer what the evolution of the alcohol consumption prior to the 

sampling was, thereby allowing a more detailed view on this consumption. A decision 
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scheme to integrate the results of these three alternative methods into the fitness to drive 

decision process, complementing the currently used psychological/medical assessment 

(based on CDT%, GGT, ALT, AST and MCV), has been proposed and can be used by physicians 

to monitor the alcohol consumption in case of a driver’s licence regranting process. 

Moreover, the exclusive use of non- or minimally invasive sampling allows this to be 

performed directly during the fitness to drive assessment by regular staff members. In 

conclusion, the three approaches that were evaluated in this work offer the potential to 

improve the Belgian driver’s licence regranting process. 
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Appendix 1: Solid-phase extraction cartridges 

To optimise the extraction efficiency and to decrease the matrix effect for the quantification 

of EtG in hair, several SPE cartridges, all based on ion exchange mechanisms, were tested. 

Details about these cartridges, such as the backbones, the functional group, the retention 

mode, the pka and the chemical representation of the phase are given below.  

Oasis MAX (Waters Corp., Milford, USA) 

Sorbent weight, barrel size 60 mg, 3cc 

Sorbent Substrate Polymeric 

Functional group Quaternary amide 

Retention mode Reversed-phase and ion exchange 

pKa >18 

Chemical representation  
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Strata-X-AW ( Phenomenex, Utrecht, The Netherlands) 

Sorbent weight, barrel size 100 mg, 3 mL 

Sorbent Substrate Polymeric 

Functional group  

Retention mode Weak anion exchange, π-π Bonding and hydrophobic 

interaction 

pKa 9 

Chemical representation  

  

 

Screen-A (Phenomenex, Utrecht, The Netherlands) 

Sorbent weight, barrel size 100 mg, 1 mL 

Sorbent Substrate  Silica 

Functional group C8 + quaternary amine 

Retention mode Hydrophobic selectivity + strong anion exchange 

pKa  

Chemical representation 

 

 

Clean Screen (UCT, Achrom, Zulte, Belgium) 

Sorbent weight, barrel size 200 mg, 3 mL 

Sorbent Substrate Silica 

Functional group  

Retention mode WAX + apolar 

pKa Neutral 

Chemical representation 
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Bond Elut SAX (Agilent Technologies, Diegem, Belgium) 

Sorbent weight, barrel size 100 mg, 3 mL 

Sorbent Substrate Silica 

Functional group Quaternary amine 

Retention mode Strong anion exchange 

pKa < 14 

Chemical representation 

 

 

Strata-SAX (Phenomenex, Utrecht, The Netherlands) 

Sorbent weight, barrel size 100 mg, 3 mL 

Sorbent Substrate Silica 

Functional group Quaternary amine 

Retention mode Strong anion exchange 

pKa < 14 

Chemical representation 

 
 

Isolute PE-AX (Biotage, Sopachem, Eke, Belgium) 

Sorbent weight, barrel size 100 mg, 3 mL 

Sorbent Substrate Silica 

Functional group Quaternary amine 

Retention mode Strong anion exchange 

pKa < 14 

Chemical representation 
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Isolute SAX (Biotage, Sopachem, Eke, Belgium) 

Sorbent weight, barrel size 100 mg, 3 mL 

Sorbent Substrate Silica 

Functional group Quaternary amine 

Retention mode Strong anion exchange 

pKa < 14 

Chemical representation 

 

 

Bond Elut NH2 (50 mg, 1 mL) (Agilent Technologies, Diegem, Belgium) 

Sorbent weight, barrel size 100 mg, 3 mL 

Sorbent Substrate Silica 

Functional group Aminopropyl 

Retention mode Polar and weak anion exchange 

pKa 9.8 

Chemical representation 
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Appendix 2: Statistics 

Accuracy, precision and measurement uncertainty 

To evaluate the accuracy (%bias) and precision (repeatability (%RSDr) and intermediate 

precision (%RSDt)) of the methods, quality controls were analysed in replicates (N=2) on 8 

different days. The bias is a systematic error which induces an overall deviation of the result 

from the true value (Figure A2.1, right). The imprecision, which is a random error, 

corresponds to the spreading of the quantitative results when measuring samples from the 

same concentration (Figure A2.1, middle). Imprecision may be due to a lack of repeatability 

and/or intermediate precision. Repeatability (%RSDr) is the precision obtained when samples 

(replicates in our case) are analysed within short intervals of time (the same day in our case), 

using the same method, in the same laboratory, by the same operator, using the same 

equipment. The intermediate precision (%RSDt) is the precision obtained, when samples 

(replicates analysed on 8 different days) are analysed within a longer interval of time (the 

validation periods in our case were from one to a few months). Figure A2.1, left shows the 

ideal case, in which both imprecision and bias are minimal (in our case there are 

international guidelines that need to be fulfilled). 

 

 

 

 

 

 
 
 
Figure A2.1 Illustration of an accurate method (left) and of bias (right) and imprecision (middle).  

 

The measurement uncertainty (%U) is used to interpret quantitative results close to the 

LLOQ or close to a cut-off value and is calculated using the equation %U = 2.12 * %RSDt. 
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Reproducibility 

The validity of the quantification (reproducibility) may be demonstrated by the successful 

participation (Z-score < 2) to proficiency tests. The Z-score is calculated using the reported 

value, the target value and the standard deviation observed between all results reported 

(SD) : ((reported value – target value) / SD).  

Stability 

Stability is evaluated by comparing the response of control samples (CS) and stability 

samples (SS). Control samples and stability samples were prepared at the same time in 

replicates (N=6). Control samples are analysed immediately, while stability samples were 

stored prior to the analysis. The mean response of the stability samples should be within 90 

– 110% of the mean response of the control samples and the 90% confidence interval of the 

stability sample responses should be within ± 20% of the control sample responses. 

 
Figure A2.2 Illustration where the 90% confidence interval (CI) of the stability sample responses are within ± 
20% of the control sample responses.  
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Appendix 3: Xevo TQ MS vs. Xevo TQ S 

The methods for the quantification of EtG/EtS in urine and for the quantification of EtG in 

hair were both developed and fully validated using a Xevo TQ MS mass spectrometer before 

being transferred to another system equipped with a Xevo TQ S mass spectrometer.   

Both devices are triple quadrupole mass spectrometers. Due to its innovative StepWave ion 

guide (as second quadrupole), the Xevo TQ S mass spectrometer (Figure A3.1) allows to 

achieve lower detection limits as compared to the Xevo TQ MS mass spectrometer. The 

StepWave ion guide (Figure A3.2) is designed to maximise ion transmission from the source 

to the mass analyser and allows to remove neutral contaminants. This leads to an 

enhancement of the overall signal to noise ratio. 

 

Figure A3.1 Schematic representation of the Xevo TQ S mass spectrometer (Picture from Waters Xevo TQ-S 
Operator’s Overview & Maintenance Guide, Revision A). 

 

 

Figure A3.2 Illustration of targeted compounds (yellow) transferred from the source to the mass analyser and 
neutral contaminants (blue) removed by the StepWave ion guide (Picture from http://www.waters.com). 

http://www.waters.com/
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Chapter 1 provides a general background and some definitions related to alcohol and to 

alcoholic beverages, information about the metabolites of ethanol, analytical methods 

available to monitor alcohol consumption, the legal issues regarding driving under the 

influence of alcohol, and the driver’s licence regranting process currently in force in Belgium.  

The objectives of this thesis, presented in Chapter 2, were to select, develop and test 

alternative methods to detect excessive and chronic alcohol consumption and to monitor 

abstinence periods in individuals within a driver’s licence regranting program.  

The first method, described in Chapter 3, deals with the quantification of ethyl glucuronide 

(EtG) and ethyl sulfate (EtS) in urine. The second method, described in Chapter 4, allows 

quantification of EtG in hair. In the latter method, sample preparation (grinding process and 

solid-phase extraction) was optimised, with special attention for the effect of the grinding 

process to ensure an accurate quantification from real hair samples. The third method, 

described in Chapter 5, is suited for the quantification of phosphatidylethanol (PEth) species 

(PEth 16:0/18:1, PEth 18:1/18:1, and PEth 16:0/16:0) in blood, venous (V) and capillary (C) 

dried blood spots (DBSs). The quantification in C-DBS was not significantly influenced by the 

hematocrit, spot volumes and punch localisation. In addition, the good agreement of the 

measured concentrations obtained from venous blood, V-DBS and C-DBS from 100 

volunteers (alcoholic inpatients and control volunteers) revealed that V-DBS and C-DBS are 

valid alternatives to venous blood for the detection of alcohol consumption. Based upon this 

population study, a cut-off value for PEth 16:0/18:1 to distinguish between inpatients on 

alcohol withdrawal and control volunteers was suggested.  

These three methods were validated regarding selectivity, sensitivity, matrix effects, 

extraction efficiency, limits of detection/quantification, linearity, accuracy, precision and 

stability. The validity of the procedures was demonstrated via successful participation to 

proficiency tests.  

The procedures for quantifying EtG/EtS in urine, EtG in hair and PEths in C-DBS were applied 

on samples obtained from fifty volunteers, for whom fitness to drive had to be assessed and 

for whom a blood analysis was requested by the physician (Chapter 6). The results showed 

that hair EtG and C-DBS PEths are more sensitive than the currently used indirect biomarkers 

(CDT%, GGT, ALT, AST and MCV) to detect excessive and chronic alcohol consumption and 

allow to disprove an abstinence period. 
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Different information, covering different time windows, can be obtained from the three 

approaches that are applied. 

When combined, these three approaches allow to infer what the evolution of the alcohol 

consumption prior to the sampling was, thereby allowing a more detailed view on this 

consumption. A decision scheme to integrate the results of EtG in hair, PEths in C-DBS and 

EtG/EtS in urine into the fitness to drive decision process, complementing the currently used 

psychological/medical assessment, has been proposed and can be used by the physicians 

that are involved in the fitness to drive decision in case of a driver’s licence regranting 

process. 

The broader international context, the relevance and the future perspectives related to this 

research along with factors that may influence the formation and/or elimination of direct 

ethanol markers, are presented in Chapter 7, while a general conclusion is formulated in 

Chapter 8. 

Additional information and details about the solid-phase extraction cartridges, the statistics, 

and the two mass spectrometers used in this project are given in the Appendix 1, 2 and 3, 

respectively.   
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Hoofdstuk 1 bevat de algemene achtergrond en enkele definities met betrekking tot alcohol 

en alcoholische dranken, informatie betreffende de metabolieten van alcohol, de analytische 

methodes die beschikbaar zijn om alcoholgebruik te monitoren, wettelijke bepalingen 

aangaande rijden onder invloed van alcohol, en de huidige procedure voor de teruggave van 

het rijbewijs in België. De doelstellingen van deze thesis, samengevat in Hoofdstuk 2, 

omvatten het selecteren, ontwikkelen en testen van ‘alternatieve methodes’ om excessief 

en chronisch alcoholgebruik aan te tonen en om periodes van abstinentie te monitoren bij 

deelnemers aan een omkaderingsprogramma voor de teruggave van het rijbewijs. 

De eerste methode, uitgewerkt in Hoofdstuk 3, betreft de kwantitatieve bepaling van 

ethylglucuronide (EtG) en ethylsulfaat (EtS) in urine. De tweede methode, beschreven in 

Hoofdstuk 4, focust op de kwantitatieve bepaling van EtG in haar. Hiervoor werd de 

staalvoorbereiding (verpulveren en vaste fase extractie) geoptimaliseerd, met bijzondere 

aandacht voor de impact van het verpulveren op het uiteindelijke kwantitatieve resultaat. 

De derde methode, beschreven in Hoofdstuk 5, betreft de kwantitatieve bepaling van drie 

fosfatidylethanol (PEth) species (PEth 16:0/18:1, PEth 18:1/18:1, and PEth 16:0/16:0) in 

bloed en droge bloedspots (DBS, veneus en capillair). De concentratie in capillaire droge 

bloedspots (C-DBS) werd niet significant beïnvloed door hematocriet, spot volume en 

‘punch’ lokalisatie. Bovendien waren de PEth concentraties in veneus bloed, veneuze droge 

bloed spots (V-DBS) en C-DBS van honderd personen (patiënten in een ontwenningskliniek 

en een controlegroep) niet significant verschillend, wat erop wijst dat V-DBS en C-DBS 

valabele alternatieven zijn voor veneus bloed om het alcoholgebruik op te volgen. In deze 

studie werd een grenswaarde voor PEth 16:0/18:1 gesuggereerd om een onderscheid te 

maken tussen zware drinkers en personen die geen of matige hoeveelheden alcohol 

gebruikten. 

Deze drie methodes werden gevalideerd met betrekking tot selectiviteit, gevoeligheid, 

matrix effecten, extractie efficiëntie, detectie- en kwantificatielimieten, lineariteit, 

accuraatheid en stabiliteit. De succesvolle deelname aan externe 

kwaliteitscontroleprogramma’s bevestigde de validiteit van de gebruikte procedures. 

De procedures voor de kwantitatieve bepaling van EtG/EtS in urine, EtG in haar en PEths in 

C-DBS werden toegepast op vijftig vrijwilligers, voor wie de rijgeschiktheid geëvalueerd 

moest worden en voor wie een bloedanalyse werd opgelegd door de arts (Hoofdstuk 6). De 
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resultaten toonden aan dat de analyses van EtG in haar en PEths in C-DBS gevoeliger waren 

dan de huidige gebruikte indirecte biomarkers in bloed (CDT%, GGT, ALT, AST en MCV) om 

excessief en chronisch alcoholgebruik op te sporen of om abstinentie te weerleggen. 

Aan de hand van de resultaten van de drie toegepaste methodes kan uiteenlopende 

informatie bekomen worden die geassocieerd wordt met verschillende tijdsvensters van 

gebruik.  

De combinatie van de drie toegepaste analysemethodes geeft de evolutie weer van het 

alcoholgebruik en laat toe om een meer gedetailleerd beeld te krijgen van het gebruik voor 

de monstername. Een beslissingsschema waarin de resultaten van EtG in haar, PEths in C-

DBS en EtG/EtS in urine geïntegreerd worden in de huidige rijgeschiktheidsevaluatie 

(momenteel bestaand uit een psychologische en medische beoordeling) werd voorgesteld 

en kan gebruikt worden door de artsen die betrokken zijn bij deze evaluatie in het kader van 

de teruggave van het rijbewijs. 

De bredere internationale context, de relevantie en de toekomstperspectieven van dit 

onderzoeksproject worden besproken in Hoofdstuk 7, alsook de factoren die de productie 

en eliminatie van directe ethanol markers kunnen beïnvloeden. Een algemeen besluit volgt 

in Hoofdstuk 8.  

Bijkomende informatie en details met betrekking tot de vaste fase extractie kolommen, de 

toegepaste statistiek en de twee massaspectrometers gebruikt binnen dit project, wordt 

weergegeven in respectievelijk Appendix 1,2 en 3. 
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Presentations 
August 2016 54th Annual Meeting of the International Association of Forensic  
4 days  Toxicologists (TIAFT), Brisbane, Australia. 
 Poster presentation: “Quantification of EtG in hair, EtG and EtS in urine, 

and PEth species in capillary dried blood spots to assess the alcohol 
consumption in driver's licence regranting cases”. 

 Kummer Natalie, Wille Sarah, Anneleen Poll, Lambert Willy, Samyn Nele, 
Christophe Stove. 

 
March 2014 Waters European Toxicology Forum, Barcelona, Spain.  
2 days Oral presentation: “Monitoring alcohol consumption using UPLC-MS/MS”.   
 
October 2013 Waters MS Technology Days 2013, Brussels, Belgium. 
1 day Oral presentation: “Quantification of EtG in hair to monitor alcohol 
 consumption”. 
 
October 2013 18th Meeting of the Society of Hair Testing, Geneva, Switzerland. 
3 days  Poster presentation: “Determination of ethylglucuronide in hair: 

optimization of the extraction process and validation of an UPLC-ESI--
MS/MS procedure”.  
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3 days Poster presentation: “Comparison of solid phase extraction procedures 
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 Kummer Natalie, Beuckelaers Astrid, Lambert Willy, Samyn Nele. 
 


