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Exosome-like vesicles (ELVs) are a novel class of biomarkers that are receiving a lot of attention 

for the detection of cancer in an early stage. In this study the feasibility of using a Surface Enhanced 

Raman Spectroscopy (SERS) based method to distinguish between ELVs derived from different 

cellular origins is evaluated. A gold nanoparticle based shell is deposited on the surface of ELVs 

derived from cancerous and healthy cells which enhances the Raman signal while maintaining a 

colloidal suspension of individual vesicles. This nano-coating allows the recording of SERS spectra 

from single vesicles. By using Partial Least Square Discriminative Analysis (PLS-DA) on the 

obtained spectra, vesicles from different origin can be distinguished, even when present in the same 

mixture. This proof-of-concept study paves the way for non-invasive (cancer) diagnostic tools 

based on exosomal SERS fingerprinting in combination with multivariate statistical analysis.  

 
1. Introduction 

To maximize the impact of current cancer treatments it is essential to detect carcinogenic cells in 

an early stage. To this end, the discovery of sufficiently sensitive and specific biomarkers is of 

foremost importance. Recently, circulating extracellular vesicles (EVs), especially exosomes, have 

emerged as a potential new class of biomarkers for early detection and treatment monitoring in 

cancer and other diseases.[1, 2] 

Exosomes are small (40-200 nm in diameter) membranous vesicles actively released by cells. They 

are composed of a protein-lipid bilayer encapsulating an aqueous core comprising nucleic acids 

and soluble proteins. Exosomes typically originate from the endosomal pathway. By inward 

budding of late endosomes, multivesicular bodies are formed which then fuse with the limiting 

membrane of the cell concomitantly releasing the exosomes.[3] This mechanism allows the cell to 

discard waste material[4, 5] and is associated with intercellular communication.[6, 7] 
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Exosomes are of interest for diagnostic and prognostic applications as they contain molecules 

derived directly from the parent cell.[8] In addition, they are fairly easily accessible as they are 

found in various body fluids (e.g. blood, salvia, urine, breast milk, ascites, etc.).[9-11] Currently, 

most exosome based diagnostic approaches focus on identifying specific molecular components by 

elaborate ‘omics’ studies.[12] Examples are elevated levels of miR-21 in exosomes of hepatocellular 

cancer patients[13] and the presence of EGFRvIII mutant proteins on exosomes derived from a 

specific glioblastoma subtype.[14] Despite the fact that these techniques provide detailed 

information on the molecular composition of exosomes, they rely on complicated and time-

consuming protocols. Moreover, these analyses are performed on the overall EV population level 

which makes it less likely to find low abundant subpopulations. Indeed, considering that most cells 

secrete EVs as part of their normal function, it is to be expected that the amount of vesicles derived 

from diseased cells is comparatively low. Accordingly, the detection of altered levels of low 

abundant components in a bulk analysis is quite challenging. Furthermore, it is becoming apparent 

that one cell type may release multiple subtypes of EVs due to which bulk analysis is prone to 

missing specific subtypes or subtype ratios of vesicles.[15-17] Therefore, techniques capable of 

identifying individual exosomes could prove very valuable, but are currently lacking. 

In this manuscript, a new approach is explored for single exosome identification based on surface 

enhanced Raman spectroscopy (SERS) for diagnostic applications. Raman spectroscopy is a label-

free technique based on inelastic scattering of laser light due to interaction of photons with 

molecular vibrations. As such, the Raman spectrum of inelastically scattered photons contains 

information on the molecular composition of the sample. Raman spectroscopy has been used before 

to characterize EVs.[18, 19] However, as it is a very inefficient process (only 1 in 106-8 photons is 

scattered inelastically), a high sample concentration is required in combination with high laser 
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power and long signal integration times. High throughput screening of single vesicles by Raman 

spectroscopy is therefore not feasible.[20] 

Fortunately, the Raman signal can be strongly enhanced (up to 1014-15 times) by using SERS.[21] 

SERS is based on the enhancement of the incident and scattered electromagnetic field by plasmon 

excitation on irregular (metal) surfaces, typically composed of Au or Ag.[22-24] As it has single 

molecule sensitivity, SERS is increasingly applied for the characterization of biological samples.[25, 

26] In this respect, different types of SERS-substrates have been developed to obtain plasmon 

enhancement and record Raman spectra from (sub)cellular components down to the single 

biomolecule level.[27] These can be, but are not limited to, well defined nanostructured surfaces of 

gold[28] or silver[29] and (intracellular) aggregated Ag[30] or AuNP[31]. Both Ag-nanograin coated 

chips and precipitated AuNP clusters were recently applied for bulk EV measurements.[32, 33] These 

few reports show the feasibility of obtaining SERS spectra from an EV sample and the capability 

to differentiate between EVs from different origin.[32, 33] However, it is important to note that these 

previous analyses were still performed on bulk vesicles from a single cell type. Yet, clinical 

samples contain EVs from different origin in a mixture, hampering the further implementation of 

bulk Raman measurements for diagnostic applications. 

To enable true single vesicle SERS identification, here we demonstrate to the best of our knowledge 

for the first time, that EVs can be functionalized with gold nanoparticles (AuNP) on their surface, 

forming an irregularly shaped nanoshell that enables the generation of an enhanced Raman signal 

while maintaining a colloidal suspension of individual vesicles. As proof-of-concept of the 

diagnostic potential of this approach, we show that vesicles derived from B16F10 melanoma cells 

can be successfully identified and quantified in a mixture with red blood cell (RBC)-derived 

vesicles.  
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2. Results 

2.1. Exosome-like vesicle (ELV) purification and characterization 

The potential of SERS to distinguish between vesicles released by two distinct cell types was 

explored using ELVs from RBC and B16F10 melanoma cancer cells. The terminology ELVs is 

further used throughout the manuscript as it is to date impossible to conclusively claim that all 

purified vesicles are originating from the endosomal cell compartment and consequently can be 

termed exosomes.[34] To this end, it is more appropriate to use the term ELVs. B16F10 cells were 

cultured in vitro and after 24 h incubation, the conditioned cell medium was harvested and used for 

ELV purification. An iodixanol density gradient based ultracentrifugation (UC) protocol was used 

(Figure S1) to obtain ELVs with a high purity with minimal protein contamination (Figure S2)[35] 

or residuals of commercial precipitation kit reagents.[36] After density gradient UC the fraction 

containing the ELVs was determined by immunoblotting against typical exosome-associated 

protein markers (HSP70, β-actin, CD63, CD81) on each fraction of the density gradient.[37] In this 

respect, fraction 5 contained the highest amount of exosomal markers. Moreover, the average 

density of this fraction was 1.14 g/ml which corresponds with earlier reports on the typical buoyant 

density of exosomes (Figure 1A).[38] This fraction was used further for characterization and Raman 

spectroscopy experiments. As a ‘healthy‘ vesicle source, RBC were used as they are abundantly 

present in patient-derived blood samples. The same ELV purification protocol was used as 

described for the B16F10 melanoma cell-derived vesicles (Figure S1). 

After two additional washing steps by UC, the ELV pellet was suspended in ultrapure water 

(Millipore) and analyzed for size and zeta potential by single particle tracking analysis and dynamic 

light scattering, respectively. The majority of the B16F10 melanoma-derived ELVs had a 

hydrodynamic diameter of approx. 0.12 µm. RBC-derived vesicles were slightly larger with a size 

of approx. 0.17 µm (Figure 1B). Both types of vesicles had a negative surface charge (Figure 1B). 
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Finally, cryo-TEM was used as an additional confirmation of the presence of membranous 

structures in the purified samples (Figure 1C). 

 
Figure 1. Characterization of purified B16F10 melanoma- and RBC-derived ELVs. A) 
Immunoblotting against exosomal markers HSP70, β-actin, CD63 and CD81 on the different 
density fractions after overnight density gradient UC of B16F10 melanoma derived conditioned 
medium. For each fraction the average density is reported [g/ml]. B) Representative size (upper) 
and zeta potential (lower) of B16F10 melanoma- (black) and RBC- (gray) derived ELVs 
determined by single particle tracking analysis and dynamic light scattering, respectively. C) Cryo-
TEM images of B16F10 melanoma (left) and RBC-derived (right) ELVs. The scale bar indicates 
100 nm. 
 

2.2. Gold nanoparticle coating of ELVs 

As a next step, we investigated if it would be possible to coat ELVs with AuNP while maintaining 

a colloidal single vesicle suspension. Specifically, we explored a coating strategy that is based on 

the electrostatic adsorption of cationic (due to a 4-dimethylaminopyridine (DMAP) coating), 10 

nm  AuNP (Figure  S3A and S3B) onto the anionic surface of ELVs. AuNP were mixed with 

vesicles at increasing particle over vesicle ratios. It was observed that increasing the ratio of 



  

7 
 

AuNP:vesicles causes an initial increase in size (i.e. agglomeration) due to the zeta potential 

becoming more neutral. When increasing the ratio of AuNP:vesicles further, the zeta potential 

became strongly positive, resulting in a dispersion of individual AuNP coated ELVs, as confirmed 

by dynamic light scattering size measurements (Figure 2A and 2B) and cryo-TEM imaging 

(Figure 2C and 2D). The latter also confirms the association between the negatively charged ELVs 

and the positively charged AuNP. Around 600 AuNP per B16F10 vesicle (Figure 2A) and 1200 

AuNP per RBC vesicle (Figure 2B) were required to obtain a colloidal stable suspension. The fact 

that more AuNP per vesicles were needed to coat the RBC compared to the B16F10 melanoma 

vesicles is in accordance with the larger surface area of a RBC-derived vesicles. Moreover, these 

numbers approach the average theoretical amount of AuNP (i.e. 912 AuNP per B16F10- and 1291 

AuNP per RBC-derived vesicle) needed to coat an entire vesicle in a monolayer as can be 

calculated from Equation S1. To obtain a SERS signal, AuNP need to be in close proximity to one 

another.[24] In this respect, high amounts of AuNP to vesicles were mixed (i.e. ~800 for B16F10 

and ~1200 for RBC) for the SERS measurements. Indeed, for these higher ratios, cryo-TEM 

imaging showed nearly complete coating of both vesicle types with AuNP (Figure 2C and 2D). 
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Figure 2. AuNP coating of ELVs. Average size and zeta potential of AuNP coated A) B16F10 
melanoma-derived ELVs and B) RBC-derived ELVs, as a function of mounting AuNP:vesicle 
ratios. C) Cryo-TEM images of AuNP coated B16F10-derived ELVs. Mounting AuNP:vesicle 
ratios are indicated underneath the respective pictures. D) Cryo-TEM confirmation of full coating 
conditions for RBC-derived ELVs. The scale bars indicate 100 nm. 
 

2.3. Recording SERS spectra of individual ELVs 

Next, we investigated if this dense packing of AuNP on the vesicular surface indeed allows to 

generate a SERS spectral fingerprint. For these experiments we worked under high AuNP:vesicle 

ratios as described above. Spectra were recorded from individual AuNP coated ELVs adsorbed on 

a quartz surface (Figure 3A). Peaks from (exosomal) biomolecules (green arrows) could be clearly 

identified in the spectra from B16F10 melanoma-derived vesicles (Figure 3B) and RBC-derived 

vesicles (Figure 3C), apart from peaks arising from the DMAP coating of the AuNP (red arrows; 

cfr. Figure S4). Table 1 gives an overview of the identified biomolecule peaks with their molecular 

origin. Most classes of biomolecules seem to be present, i.e. lipids, proteins, nucleic acids and 
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carbohydrates. It is of note that ELVs without AuNP coating could not generate a clear Raman 

signal under the same conditions, underscoring the importance of SERS for enhancing the signal 

of single vesicles. 

 



  

10 
 

Figure 3. A) Schematic representation of the SERS measurements of AuNP coated ELVs. Each 
recorded spectrum is derived from another vesicle by moving the laser to a different spatial location 
(e.g. 1, 2, 3). The presence of a gold coated ELV was confirmed by a scattering signal (cfr. location 
2). The scale bar indicates 10 µm. B) Representative, unmodified SERS spectrum of B16F10 
melanoma-derived ELVs coated with AuNP and C) RBC-derived ELVs coated with AuNP. Red 
arrows indicate peaks arising from the DMAP AuNP coating. Green arrows indicate presumed 
ELV related peaks. 
 

2.4. Identification of individual ELVs by spectral analysis 

The obtained Raman spectra were subjected to two previously published dedicated statistical 

models: a Partial Least Square Discriminative Analysis (PLS-DA) and a Multivariate Curve 

Resolution Alternating Least Squares (MCR-ALS).[39, 40] Both models were trained and calibrated 

by Raman spectra obtained from pure samples i.e. AuNP alone, AuNP coated B16F10-derived 

vesicles and AuNP coated RBC-derived vesicles. The potential of Raman spectroscopy to 

discriminate between B16F10 melanoma and RBC-derived ELVs in an unbiased fashion was 

quantified by the PLS-DA model. A sensitivity of 95.8%, 88.0%, 95.1% and specificity of 95.5%, 

95.4% and 98.0% for AuNP, B16F10 and RBC-derived ELVs, respectively was obtained (Table 

2). The here reported specificity and sensitivity of the model to discriminate among the different 

types of vesicles was assessed by cross-validation. Moreover, a parallel experiment was performed 

with a different Raman microscope allowing shorter acquisition times (500 ms compared to 10 s 

for the above measurements). Analysis of the obtained data was again performed using the PLS-

DA model. The results show that the ability to separate between samples based on their SERS 

fingerprint was maintained (Table S1). 

Additionally, a MCR-ALS algorithm was applied on the obtained spectra (Figure S5). Here it is 

important to note that the MCR-ALS model requires minimal constraints and prior information 

about the sample and is an unsupervised methodology. Nonetheless, the algorithm was able to 

deconvolve spectra (Figure S5A) which can be attributed (based on the score plots represented in 

Figure S5B and spectra in Figure 3) to: Quartz (surface), DMAP (AuNP coating), B16F10 and 
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RBC vesicles respectively. Indeed, this objectively shows the spectral discrepancy between ELVs 

from different origin. 

 

2.5. Identification and quantification of B16F10 vesicles in a mixture with RBC-derived 

vesicles 

Finally, to provide evidence of the diagnostic potential of this approach, mixtures of AuNP 

functionalized B16F10 cancerous- and RBC-derived ELVs were prepared at two different ratios. 

This setup more closely resembles the in vivo situation where cancerous vesicles need to be 

detected in patient samples containing a variety of vesicle types, especially highly abundant RBC-

derived ELVs. To determine as a reference the exact ratio of both types of vesicles in the prepared 

mixtures, they were fluorescently labeled with lipophilic dyes (RBC ELVs = green; B16F10 ELVs 

= red) and subsequently coated with AuNP. The suspension was placed on a microscopy cover slip 

and confocal microscopy images were recorded. With in-house developed particle detection 

software the number of green and red fluorescent spots were counted (Figure S6A). It was 

calculated that mixture 1 contained 51 ± 17 % cancerous ELVs and mixture 2 contained 15 ± 6% 

cancerous ELVs, respectively (Figure S6B).  From these images it could also be confirmed that 

the two types of AuNP coated vesicles did not agglomerate with one another as no co-localization 

of green and red spots could be seen.  

Identical mixtures without fluorescent labels were subsequently prepared for SERS measurements. 

For each mixture between 60 and 80 spectra were recorded of AuNP coated vesicles. With the 

PLS-DA model each spectrum was assigned to one of the following groups: Unbound AuNP, RBC-

derived ELVs or B1610-derived ELVs. In mixture 1 and 2, 38% and 6.3% cancerous vesicles were 

retrieved, respectively (Figure 4). A few of the spectra were found to originate from unbound 

AuNP clusters (Figure S7). These values reasonably correspond to the ratios as determined by 
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fluorescence microscopy and clearly demonstrate the potential of identifying and quantifying 

vesicles from different origins in a mixtures using SERS. 

 
Figure 4. Composition of two ELV-mixtures determined by single vesicle SERS measurements in 
combination with PLS-DA statistical analysis. Mixture 1 and mixture 2 are two different blends of 
melanoma-derived and RBC-derived vesicles composed of 51% and 15% melanoma-derived 
vesicles, respectively. Each spectrum of an individual complex was allocated to one of three classes 
(unbound AuNP, AuNP coated B16F10 ELVs or AuNP coated RBC ELVs) by the PLS-DA model. 
Here the percentages B16F10- versus RBC-derived ELVs are reported for both mixtures. 
 

3. Discussion 

In this manuscript we investigated the possibility of identifying single ELVs by SERS. In contrast 

to previous diagnostic approaches, where the focus lies on detecting the presence or modified 

expression of a single exosomal component (i.e. a specific nucleic acid, lipid or protein)[41] using 

elaborate and time-consuming ‘omics’ studies, here the potential of SERS was tested to generate 

an optical fingerprint of individual ELVs coated with AuNP. If successful, such a method holds 

great potential for the identification of vesicles from different cellular origin in a quantitative 

manner from patient samples.  

As an initial proof-of-concept, vesicles were purified from two distinct cell types. A skin-derived, 

B16F10 melanoma cell line was used as a model for carcinogenic cells and primary RBC as a 

model for healthy cells that are highly abundant in blood samples. To obtain vesicular concentrates 

as pure as possible, an iodixanol based density gradient UC protocol was used.[35] This is essential 
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as it was previously shown that residuals of commercial purification kits can interfere with the 

Raman fingerprint.[36] Moreover, other less stringent purification protocols (i.e. UC and 

commercial precipitation kits) suffer from limited purity due to co-purification of vesicle-

independent proteins and nucleic acids, which might preclude the AuNP from interacting with the 

ELVs[42] and interfere with the Raman fingerprint. 

In a next step, the purified vesicles were functionalized with ~10 nm AuNP to generate the SERS 

signal. The small diameter ensures that a large number of hot-spots are created in close proximity 

to the ELV-surface. The AuNP carry a cationic surface charge due to the DMAP coating which 

allows adsorption onto the anionic ELVs surface. Likely this association is charge based though it 

is also possible that the DMAP-molecules are exchanged for thiol-containing proteins present on 

the ELV surface.[43] Although aggregation was observed initially at low AuNP:vesicle ratios, at 

higher ratios a colloidal suspension of individual AuNP coated vesicles could be obtained. Indeed, 

once the overall surface charge of the AuNP coated ELVs became firmly positive (due to the 

DMAP coating), a mutual repulsion between the coated vesicles was created. This was confirmed 

using dynamic light scattering, cryo-electron microscopy and indirectly by confocal fluorescence 

microscopy. Additionally, as DMAP is a small molecule, the AuNP can reside in close proximity 

to the ELV surface. To the best of our knowledge this is the first time that single ELVs were 

enveloped with a gold coating. On average ~800 AuNP were used to coat the B16F10 melanoma 

vesicles, while ~1200 for RBC vesicles which is in agreement with the fact that RBC ELVs have 

a larger surface area and approaches the theoretical amount of AuNP to create a monolayer. This 

nanoshell of AuNP allowed to generate a SERS signal emanating from the ELVs due to a strong 

localized surface plasmon resonance between the closely packed AuNP present on the vesicular 

surface.[44]  
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The Raman peaks in the SERS spectra of single ELVs were found to arise in part from the DMAP 

and from ELV biomolecular components that are present in the vicinity of the AuNP. Biomolecular 

exosomal components were identified at 1123 cm-1 (lipids + proteins), 1172 cm-1 (proteins), 1307 

cm-1 (proteins + lipids), 1366-1370 cm-1 (phospholipids + carbohydrates), 1445 cm-1 (lipids + 

proteins) and 1572-1576 cm-1 (nucleic acids). Interestingly, most of these pronounced peaks have 

previously been identified by others when recording Raman spectra of biological samples like 

erythrocytes[45] or even EVs (by classic Raman or SERS on bulk isolates).[18, 19, 32, 33, 36] 

Next, we could show that the generated spectra, in combination with a PLS-DA classification 

model, allow us to separate between vesicles derived from B16F10 melanoma cells and RBC-

derived vesicles. The fact that Raman spectroscopy is able to discriminate between vesicles from 

different cellular origin is in accordance with the very few reports available to date in which it was 

shown that classic Raman spectroscopy[18] and SERS[32, 33] on bulk or clusters of vesicles has 

discriminative power, even for more similar parent cells. Yet, as mentioned above, these reports 

are based on pure samples of one type of EV measured in bulk. Here, instead, we tackled the 

pending challenge of using SERS for the identification and quantification of single cancerous ELVs 

that are present in a mixture with ‘healthy’ RBC-derived vesicles. While future research should 

focus on testing more complex mixtures with multiple types of vesicles, still this is a promising 

proof-of-concept study. We consider the subtle difference discriminated by SERS in previous work 

on bulk EVs as a promising indication that detecting cancerous ELVs in complex mixtures would 

be possible with our single vesicle SERS approach.[28]  

It is of note that an alternative approach with the potential of single vesicle SERS was very recently 

developed by Lee et al.. Their setup is based on Ag coated ‘nanobowls’ for hot-spot generation and 

SERS fingerprinting of EVs deposited into the nanobowls.[36] While a complex technological feat, 

our approach benefits from its simplicity and high-throughput potential. The AuNP based shell is 
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formed by simple self-assembly and AuNP functionalized ELVs can be measured by standard 

Raman equipment. Furthermore, our approach can be easily combined with (standard) 

microfluidics and an optical trapping unit allowing automated and fast SERS measurements. These 

characteristics will help to overcome the technological challenge of upscaling this technology for 

future clinical applications.  

With the most sensitive set-up we could record clear Raman spectra at 0.5 s integration time per 

ELV. This means that per day it would be possible to analyze about 160.000 individual ELVs. As  

detectors continue to become more sensitive, and combined with the fact that a 0.5 s integration 

period already gave a strong and clear Raman spectrum, we expect that throughput could be 

increased 5-10 fold in the near future. Rapid recording of single spectra is indeed of pivotal 

importance for potential future diagnostic applications as ‘diseased’ ELVs are likely present in low 

abundance relative to the ‘healthy’ ones. 

A particular challenge with our new approach is that SERS spectra of individual ELVs exhibit quite 

some variability, even for vesicles of the same parent cell. This originates from variability within 

the ELV population but potentially also from the (random) adsorption of AuNP on the vesicle 

surface and non-uniformity in hot spot generation.[46] In future research, therefore, it will be of 

interest to investigate other ways of functionalizing vesicles with AuNP with the aim to make the 

SERS spectra more uniform among vesicles of the same origin. This would allow to detect more 

subtle differences in molecular compositions and obtain more reliable molecular information from 

each individual vesicle. In turn this will lead to even better specificity and sensitivity. Apart from 

diagnostic applications, this method has the potential of being useful to deepen insight in molecular 

composition/diversity of the vesicles secreted by a certain cell type.[15] 

 

4. Conclusion 
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Our findings show that applying SERS technology on AuNP-coated ELVs in combination with 

PLS-DA is capable of sensing biomolecular diversity between ELVs from different origins. 

Although future research should focus on more complex ELV mixtures, we have clearly 

demonstrated the potential of single vesicle identification by SERS to obtain ratios of vesicles from 

different origins in a mixture. 

 

5. Experimental Section 

Cell culturing and ELV purification 

B16F10 melanoma cells (ATCC® CRL-6475™) were cultured in Dulbecco's Modified Eagle 

Medium (Invitrogen), supplemented with glutamine (2 mM), 10 % heat-inactivated fetal bovine 

serum (Hyclone), Sodium Pyruvate (1 mM), penicillin (100 U/mL) and streptomycin (100 µg/ml ) 

(Invitrogen) at 37 °C in a humidified atmosphere containing 5 % CO2. For the purification of ELVs, 

cells were first washed with phosphate-buffered saline (PBS, Invitrogen) and the cell medium was 

replaced with vesicle-depleted medium. The latter was prepared by ultrafiltration of complete cell 

culture medium through a 300 kDa filter (Millipore) using an Amicon stirred cell setup (Millipore) 

under three bar nitrogen pressure to remove bovine EVs. Cells were incubated for 24 hours after 

which the conditioned cell medium was harvested for vesicle purification.  

Red blood cells (RBC) were isolated out of blood from a healthy volunteer as described 

previously[47] with minor modifications. Briefly, blood was collected in K2EDTA coated tubes 

(Venosafe) and spun at 1 500 g for 15 minutes (Heraeus Multifuge 1S-R) within 10 minutes after 

blood collection. RBC were retained, washed twice and suspended in Ringer buffer (NaCl (150 

mM), KCl (5 mM), CaCl2 (2 mM), MgCl2 (1mM), NaH2PO4 (2 mM), 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES)-buffer (10 mM), Glucose (10 mM), pH=7.2) for 2 days at 

37°C while shaking. 
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Vesicles derived from B16F10 melanoma cells and RBC were purified from conditioned cell 

medium or Ringer buffer, respectively by differential centrifugation followed by density gradient 

UC (figure S1). First, conditioned cell medium/Ringer buffer was centrifuged for 10 minutes at 

300 g and 10 minutes at 3 000 g. Next, the supernatant was concentrated by ultrafiltration using a 

30 kDa filter (Millipore) in a Amicon stirred cell setup (Millipore) under nitrogen pressure. The 

concentrated sample was centrifuged (Beckman® L8-70M ultracentrifuge) at 10 000 g for 10 

minutes using a SW55ti rotor (Beckman instruments) and the supernatant was placed on top of an 

iodixanol (Optiprep, Axis-Shield) based density gradient. The gradient was produced according to 

the manufacturer’s instruction. Briefly, 1 ml of different iodixanol dilutions (12.5 %, 25 %, 37.5 % 

and 50 % in sucrose (250 mM), EDTA (1 mM), Tris-HCl (10 mM) buffer; pH = 7.4) were carefully 

laid underneath one another using a 21G needle. The samples were then centrifuged at 150 000 g 

for 15 hours. Next, the gradient was fractionated per 0.5 ml, diluted 10x in ultrapure water and 

centrifuged at 150 000 g for 150 minutes. Finally, the pellet was washed 1 more time and suspended 

in ultrapure water. The fraction containing the exosome associated proteins was used for further 

characterization and Raman spectroscopy experiments and the respective vesicles are referred to 

as ELVs.  

  

Immunoblotting  

In order to determine the density fraction containing the exosomes, pelleted vesicles from each 

fraction were resuspended in ice cold RIPA buffer (Sigma-Aldrich) mixed with MS-SAFE protease 

and phosphatase inhibitor cocktail (Sigma-Aldrich) and vortexed. Next, the samples were sonicated 

for 10 minutes and centrifuged at 13 000 g for 5 minutes. For protein separation, samples were 

diluted in 2x Laemmli buffer (Bio-Rad) with or without 5 % 2-mercaptoethanol (Sigma-Aldrich), 

heated at 95°C for 5 minutes and loaded on a 10 % mini-protean TGX precasted gel (Bio-Rad). 
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The polyacrylamide gel was ran at 100 V for 60 minutes in running buffer (Tris (25 mM) –Glycine 

(200 mM) – 0.1 % SDS). The blotting was done on an immunoblot PVDF 0.2 µm membrane (Bio-

Rad) at 100 V for 90 minutes in blotting buffer (Tris (25 mM) –Glycine (200 mM) – 20 % Methanol 

– 0.05 % SDS). The blot was blocked for 1 hour using 3 % BSA, 0.1 % Tween20 (Sigma-Aldrich) 

in PBS buffer (Invitrogen). Next, primary antibodies were incubated overnight at 4°C on a shaker. 

After washing the blots with blocking buffer they were incubated with a secondary antibody 

conjugated to HRP for 1 hour at room temperature (Table S2). Visualization was done using the 

SuperSignal West Dura chemiluminscent kit (Thermo-Scientific) in combination with a 

VersaDocTM imaging system (Bio-Rad). All density fractions were loaded on one gel using equal 

volumes for objective comparison and the respective protein bands were cropped and aligned 

underneath one another for clarity. 

  

DMAP coated AuNP 

AuNP coated with DMAP were prepared as described by Gittins and Caruso.[48] Briefly, a HAuCl4 

aqueous solution was added to a tetraoctylammonium bromide in toluene solution under gentle 

stirring. Next, NaBH4 was added to the mixture. After 30 minutes the toluene phase was separated 

from the aqueous phase and washed 3 times using H2SO4, NaOH and ultrapure water. Equal 

volumes of the AuNP in toluene solution and an aqueous DMAP solution were mixed and left to 

equilibrate for 1 hour. During this period the AuNP transfer from the organic toluene phase to the 

aqueous phase concomitantly exchanging the tetraoctylammonium bromide coat for a DMAP 

coating. Finally the aqueous phase, containing the AuNP coated with DMAP, is separated from the 

toluene phase. The final AuNP concentration was estimated by UV/VIS spectroscopy based on the 

optical density of the SPR-peak (Nanodrop 2000c; Thermo Scientific), assuming that the AuNP 
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are spherical with a molar extinction coefficient of 1.03 x108 M-1cm-1as calculated from Equation 

1 reported by Liu et al..[49] 

lnሺߝሻ ൌ 3.3211	 ൈ lnሺ݀ሻ  10.80505                                                                                     (1) 

In which  represents the molar extinction coefficient and d the diameter of the AuNP (10 nm). 

  

AuNP coating of ELVs 

ELVs were mixed with DMAP coated AuNP at different AuNP:vesicle ratios by mixing equal 

volumes using a pipette. After 10 minutes incubation at  room temperature, the samples were 

diluted in ultrapure water/buffer and analyzed by different techniques (i.e. dynamic light scattering 

and cryo-TEM). 

  

Concentration, size and zeta potential measurements 

The concentration and size distribution of purified ELVs was determined by light scattering based 

single particle tracking using a NanoSight LM10 instrument (Malvern instruments Ltd.) equipped 

with a 405 nm laser. Prior to analysis, the concentrated vesicles were diluted in HEPES buffer (pH 

7.4; 20 mM) to obtain a concentration in the range of 1.0 to 9.0 x 108 particles/ml to guarantee 

reliable measurements. Movies of 60 seconds were recorded and analyzed with the NTA Analytical 

Software version 2.3 (Malvern instruments Ltd.). 

The size and zeta potential of ELVs and ELVs coated with AuNP (after dilution in HEPES-buffer) 

were measured by dynamic light scattering using a Zetasizer Nano ZS (Malvern instruments Ltd.), 

equipped with Dispersion Technology Software.   

  

Cryo-transmission electron microscopy 
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Each ELV (with our without AuNP) sample (3.5 µL) was applied to a 300 mesh quantifoil grid and 

incubated for 30-60 seconds. Next, excess buffer was removed by blotting the grids for 3 seconds 

using a Whatmann 1 filter paper and the sample was snap frozen by plunging in liquid ethane at a 

temperature of -180°C and stored in liquid nitrogen until visualization. Next, the samples were 

transferred to a Gatan 914 cryoholder and imaged at low dose conditions at -177°C,  using a JEOL 

JEM1400 TEM equipped with a 11 Mpxl Olympus SIS Quemesa camera. 

  

Fluorescent labeling and confocal microscopy of ELVs 

Purified B16F10- and RBC-derived vesicles were incubated for 15 minutes at 37°C with Vibrant 

DiD  (Invitrogen) or PKH67 (Sigma), respectively (final dye concentration = 5 µM; in Diluent C 

(Sigma)). Next, non-incorporated dye and diluent C was removed using exosome spin columns 

(MWCO 3 000) pre-incubated with ultrapure water according to the manufacturer’s instructions 

(Invitrogen).  

The labeled ELVs were mixed with AuNP in the indicated ratios (cfr. SERS measurements) and 

visualized using a swept field confocal microscope (LiveScan SFC, Nikon Belux) equipped with a 

60x oil immersion lens (NA = 1.4, Nikon). The ELVs were alternately irradiated with 488 nm and 

647 nm laser light and images were recorded with an iXon Ultra EMCCD camera (Andor). Particle 

detection was done with in-house developed software in Matlab as previously described by 

Deschout et al..[50] The ratio of B16F10 to RBC vesicles (B16F10:RBC ratio) was determined for 

each mixture by particle counting in at least 20 individual images at different spatial locations. 

  

SERS measurements 

ELVs (unlabeled) were mixed with DMAP coated AuNP at a fixed AuNP:vesicle ratio (i.e. ~800 

for B16F10-derived ELVs and ~1200 for RBC-derived ELVs). Next, samples were diluted in 
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ultrapure water to ≤ 5 x 107 vesicles per µl to minimize the possibility that more than one vesicle 

is present in the focal detection volume. A droplet (60 µl) of the diluted sample was placed on a 

quartz substrate and SERS spectra were recorded using an inVia confocal Raman microscope 

(Renishaw, UK) equipped with a 60x WI lens (NA = 1, Nikon) and a 785 nm laser using a 10 

second integration time and 15 mW power. Alternatively, a Raman microscope (Zeiss) equipped 

with a piezo-scanner (P500, physick instrumente) and a 785 nm laser focused through a 60x WI 

lens (NA = 1, Nikon) was used (integration time 500 ms). The spectra were acquired with a Spectra 

Pro500i (Acton Research) monochromator/spectrograph. The 785 nm laser was chosen to limit 

photodegradation and autofluorescence.[51, 52] All spectra were recorded at different locations in the 

sample. The presence of a gold coated ELV in the focal volume was confirmed by light scattering 

(figure 3A).  

  

Analysis of SERS spectra 

For statistical analysis, the obtained spectra were pre-processed as described previously.[39] To 

assess the ability of Raman spectroscopy to discriminate RBC- and B16F10 melanoma-derived 

ELVs, PLS-DA was performed using the PLS toolbox from Eigenvector Research in MatLab. 

Cross-validation analysis was computed by Venetian blinds (10 splits and one sample per split). 

The number of retained latent variables was chosen to minimize the root mean square error of cross 

validation curves. Additionally, a MCR-ALS algorithm was used to analyze the spectra. 

 
Supporting Information  
Supporting Information is available from the Wiley Online Library or from the author. 
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Table 1. Enumeration and tentative assignment of SERS peaks for AuNP-coated B16F10 ELVs 
(B16F10_AuNP) and AuNP-coated RBC ELVs (RBC_AuNP). 
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Raman shift 
[cm-1] 

RBC_AuNP a) B16F10_AuNP a) Previously identified 
in EV isolates 

Presumed origin[53] b) 

486 w m  polysaccharide 

521 w m  S-S stretching (e.g. protein) 

546 w m  cholesterol  

883  w [18, 36] (CH2) (e.g. protein) 

989 sh  [33]  

1032 w sh [18, 32] CH2CH3 bending (e.g. phospholipid); ν(C-C) 
(e.g. polysaccharide) 

1115 sh sh [36] C-O  ribose (e.g. nucleic acid) 

1124 s m [18, 19] ν22(porphyrin half ring; typical for RBC) / C-C 
stretch (e.g. lipid, protein) / C-N (e.g. protein) 

1134 sh m [32] ν(C-C) (e.g. lipid) 

1172 m sh [36] (C-H) (e.g. protein) 

1179  m  ν(C-C) or ν(C-O) (e.g. phospholipids) 

1243 sh  [18] amide III (e.g. protein) / asymmetric 
phosphate stretching (e.g. nucleic acid) 

1271  w [18] amide III (e.g. protein) / C=C (e.g. fatty 
acids) 

1293  m [19] cytosine (nucleic acid) / CH2 deformation 
(e.g. lipids) 

1307 m sh [18, 33, 36] C-N asymmetric stretching (e.g. protein) / 
CH3CH2 twisting (e.g. lipid) 

1326 sh sh [36] (CH3CH2) (e.g. nucleic acid) 

1346 sh w   

1354  w  guanine (nucleic acid) 

1367 sh sh  ν(CH3) (e.g. phospholipid) 

1370 s m  carbohydrate 

1381 sh m  CH3 symmetric (e.g. lipid) 

1411  w   

1443 sh s [18, 19, 36]  (CH2/CH3) (e.g. protein, lipid) 

1465 w  [36] lipid 

1477 w w [32] DMAP + δ(C-H) (e.g. lipid, protein) 

1528 w sh [18] ν(-C=C-) conjugated 

1563 sh w  tryptophan 

1576 w w [19] guanine (nucleic acid) 

1608 sh sh [18] cytosine (nucleic acid) / phenylalanine 
(protein) 
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1618 s s [33] DMAP/ν(C=C) (e.g. protein) 

a)s: strong, m: medium, w: weak, sh: shoulder; b)ν: vibration, : deformation, : wagging, : in 
plane rocking, DMAP: 4-dimethylaminopyridine 

 
 
Table 2. PLS-DA classification of the spectra of pure samples (AuNP, B16F10 ELVs coated 

with AuNP and RBC ELVs coated with AuNP) . 

Sample na) PLS-DA prediction   

  Correct identification Wrong identification Sensitivity (%) Specificity (%) 

AuNP 24 24 0 100b) / 95.8c) 97.0b) / 95.5c) 

B16F10_AuNP 25 23 2 92.0b) / 88.0c) 96.9b) / 95.4c) 

RBC_AuNP 41 39 2 95.1b) / 95.1c) 100b) / 98.0c) 

a)n is the amount of spectra recorded for each sample. Sensitivity and specificity were computed 
withc) and withoutb) cross validation. 

 
 
 

 
ToC. A method to obtain a surface enhanced Raman spectrum (SERS) of a single, nano-sized 
exosome-like vesicle (ELV) while maintaining individual ELVs in suspension. Based on these 
spectra ELVs derived from different cell types can be distinguished, hence allowing the 
identification and quantification of specific (cancerous) ELVs in a mixture. 
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Figure S1. Schematic representation of the protocol used to purify exosome-like vesicles (ELVs) 
from conditioned cell medium.  
 
 
 

 
Figure S2. Comparison of the purity of B16F10-derived ELV isolations obtained by density 
gradient UC or UC alone, respectively. The purity is expressed as the amount of particles 
(determined by single particle tracking; NanoSight) per µg protein (determined by Pierce BCA 
protein assay kit; ThermoFisher Scientific) as recommended by Webber et al..[1] 
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Figure S3. A) Zeta potential and B) hydrodynamic diameter of DMAP-coated gold nanoparticles, 
as determined by dynamic light scattering.  
 
 
 

 
Figure S4. Average SERS spectrum of multiple normalized spectra (n>20) of  DMAP-coated 
AuNP aggregates to determine the DMAP fingerprint.  
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Figure S5. Output of the MCR-ALS algorithm. A) Deconvolved Raman spectra. B) Score for each 
deconvolved spectrum (y-axis) for all recorded spectra (x-axis) allowing to allocate the 
deconvolved spectra to a specific source (i.e. quartz, DMAP, B16F10 and RBC vesicles).  
 
 
 

 
Figure S6. Mixtures of AuNP coated, fluorescently labeled RBC- (green) and B16F10 melanoma- 
(red) derived ELVs. A) A representative confocal image of mixture 1 (left) with particle location 
analysis (right). The scale bar indicates 20 µm. B) Percentage B16F10 melanoma-derived ELVs of 
the two B16F10:RBC mixtures based on fluorescence particle counting. Error bars indicate the 
standard deviation (n=20).  
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Figure S7.  PLS-DA analysis of SERS measurements executed on two B16F10:RBC ELV 
mixtures. Each point represents an individual spectrum allocated to one of the three classes 
(unbound AuNP, AuNP coated B16F10 ELVs or AuNP coated RBC ELVs). n Represents the 
amount of spectra allocated to a specific class within a mixture. For the first mixture 77 spectra 
were recorded, For the second mixture 65 spectra were recorded. 
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Supporting tables 
 
Table S1. PLS-DA classification of the spectra of pure samples recorded with an integration time 

of 500 ms. 

Sample n a) PLS-DA prediction 

  Correct identification Wrong identification 

B16F10_AuNP 53 53 0 

RBC_AuNP 64 64 0 

a)n is the amount of spectra recorded for each sample 
 
 
 
Table S2. Antibodies used for immunoblotting. 

Target Dilution Supplier Cat.# Reducing 
conditions b) 

MW (kDa) 

CD 81 1:1 000 LS biosciences Inc. LS-C108453 No ~25-30 

CD 63 1:500 Tebu-bio GTX37555 No ~40 

β-actin 1:1 000 Cell Signaling Techn. 4970 Yes ~45 

Hsp 70 1:1 000 LS biosciences Inc. LS-C24142 Yes ~70 

Rabbit IgGa)  1:50 000 Millipore AP307P N.A. N.A. 

 a)The secondary antibody is linked to a HRP-enzyme;  b)Reducing conditions imply heating of 
the sample to 95 °C for 5 minutes in the presence of 2-mercaptoethanol 
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Equation S1. Equation used to calculate the theoretical average amount of AuNP needed to coat 
an entire vesicle surface in a monolayer, with n as the total amount of vesicles, SELV,i as the surface 
of a vesicle i,  ɳ is the maximum packing density of a sphere which was fixed at 0.9 (hexagonal 
packing was assumed) and SSAuNP as the surface of the section occupied by one AuNP. Calculations 
were based on the size distribution for each ELV type as depicted in figure 1B. 
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