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Abstract: The well-established advantages of fractional order PID controllers are only
shadowed by the problems arising from their digital implementations. In this paper a new
s to z transform is presented to produce digital realizations of fractional order PID
controllers. The approach consists in obtaining first a continuous-time approximation of
the ideal fractional order PID controller to which the new transform is applied to obtain
the discrete-time rational transfer function. The mapping of the poles and zeros of the
analog transfer function to the corresponding poles and zeros of the digital transfer
function is discussed. It is shown that the discrete-time approximation based on the
proposed s to z transform ensures a good fit of the ideal fractional order PID controller.
An experimental study is also given.
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1. Introduction

The PID (proportional-integrative-derivative) controllers are amongst the most
widely used control strategies in numerous industrial applications [1], accounting for
more than 90% of the control loops [2]. The simplicity of the design and implementation
of these controllers, coupled with their good performance, leads to many studies to
improve the closed loop results, both in terms of new structures, as well as new tuning
methods [1,3-5]. Such an attempt also leads to the generalization of the classical PID
controller to the fractional order one [6]. The new controller is based on the use of a
fractional integrator of order p and a fractional differentiator of order A, instead of the
classical integer order integrator and differentiator [7]. The main advantage of the new
generalized PID controller consists in a better shaping of the closed loop responses,
mainly due to the two supplementary tuning parameters involved, the fractional orders p
and A [8-13].

Unfortunately, this major advantage of fractional order PI"D* (FO-PID) controllers is
shadowed by the problems that occur in terms of realization. An important aspect of
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fractional order derivatives and integrators is their infinite memory. Because of their
infinite memory, the most difficult problem to be solved consists in the implementation of
controllers that use fractional order differentiators and integrators. Quite often, the
continuous-time FO-PID controllers are designed according to a set of performance
specifications and then for practical implementation issues, a discrete-time approximation
is computed.

The digital realizations of fractional order operators may be performed in two ways:
either using indirect discretization or direct discretization methods. The indirect method
presumes that first a continuous-time integer order transfer function is obtained that
approximates the FO-PID controller and then the fitted continuous time transfer function
is discretized. The direct methods, on the other hand, are based on power series expansion
or continued fraction expansion, to name just a few, combined with a suitable generating
function that maps the continuous time operator, s, into its discrete equivalent w(z™1),
where w is the generating function and z”' is the backward shift operator. The focus of
this paper is on indirect discretization methods.

Perhaps the continuous-time approximation most widely used is based on Oustaloup’
s Recursive Approximation (ORA) method [8,14,15], as the fitting quality is much
superior to those obtained with continued fraction based approaches [8]. The method
implies that the fractional order operator s* may be estimated as a generalized filter
designed as:

s+l
F(s) = KTy 2 )
where the poles, zeros and the gain are computed as wj, = wbwl(fk_l_” ) N, w, =
wp TN and K = wh, with w, = Jw,/w, and (wp, wy) is the frequency

range where the filter in (1) must fit the original fractional order operator. The major
drawback of Oustaloup’ s Recursive Approximation method consists in the high order of
the continuous-time (1) required to approximate the initial fractional order operator. This
leads to an even higher order for the continuous-time transfer function that approximates
the FO-PID controller, described as:

k.
Cro-mp (8) =k, + s_‘: + kdsk (2)

where p, Ae(0+2) and k;, k; and k4 are the proportional, integral and derivative gains.

Once the continuous-time approximation of the FO-PID controller has been
obtained, its discrete-time equivalent is computed by using appropriate s to z transforms.
The most efficient of these transforms are the Al-Alaoui and the bilinear (Tustin)
transforms [16,17,18,19]. In [8], the ¢2d Matlab function is offered as a solution to
discretize the continuous-time approximation of the FO-PID controller, using the Tustin
transform with frequency prewarping. However, as indicated in [15], the c2d function
might cause problems when used in the discretization of a high order continuous-time
approximation of a FO-PID controller. Some of the unwanted effects that may occur
when the continuous-time controller is replaced with an approximate discrete-time
controller, and which should be avoided, refer to a possible decrease of the phase margin
because of the sample-and-hold or even instability, due to truncation errors.
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In this paper, a new s to z transform is proposed. The mapping of the s plane poles
and zeros into the z plane is also given, along with the computation of the equivalent
discrete-time gain. It is shown that using the proposed s to z transform, a discrete-time
approximation is obtained that ensures a good fit of the initial FO-PID controller.

2. The digital implementation of the fractional order PI’D* controller

It is probably well established that one of the most common approaches in producing a
continuous time rational approximation of a FO-PID controller is based on the Oustaloup
Recursive Approximation methods [14]. However, even though the ORA method
produces excellent continuous-time approximations of the FO-PID controller, a discrete-
time realization is required for its final digital implementation. Therefore, the
discretization of the fitted continuous-time rational transfer function is necessary. A great
disadvantage here consists in the higher order of the continuous-time rational transfer
function that needs to be discretized. And problems may arise [15] when using Matlab
built-in functions such as the continuous-to-discrete-time function, c2d. To exemplify
this, consider the following FO-PID controller transfer function:

2
Cro-pp(8) =16+ So_.ss +2.6¢% "

To obtain the continuous-time rational approximation of (3), the ORA method is used for
the fractional order integrator and differentiator, with N=2, in a frequency range bounded
by a high frequency end equal to wy;=1000 rad/s and a low frequency end equal to
=0.0001wy rad/s. A final 10™ order continuous-time rational transfer function is
obtained to approximate the FO-PID controller in (3). The discrete-time equivalent of the
10™ order fitted continuous-time rational is computed according to Tustin method, with a
sampling period of 0.00314 seconds and using Matlab ¢2d function. To achieve this, the
Laplace operator s in the rational continuous-time transfer function is replaced with:

21-z"1
=fl+z'l @

where T, is the sampling time and z”' is the backward shift operator. Figure 1 shows the
continuous-time ideal FO-PID, as well as its discrete-time approximation. Although the
high frequency approximation is acceptable, problems occur at low frequencies.

3. A new s to z transform

An alternative indirect discretization method is proposed in what follows, which is based
on using a different generating function, as an interpolation of the Euler and Tustin
discretization rules:

l+a 1—z7" l+o z-1
— — Or §S=

T 1+oz! T. z+a

S s

&)

with ae[0+1] — a weighting parameter. For a=0, the Euler discretization rule is obtained,
while a=1 leads to the Tustin discretization rule. The choice of the parameter a has effect
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on the frequency response, weighing the magnitude error versus the phase error. The
inverse relation is obtained based on (5) as:

_l+a+asT, ©)
1+ 0 —sT,

Magnitude (dB)

[— FO PI"D" .

I—I direct discretization
§. $2 s T ERIT

Phase (%)

Frequency (rad/s)

Figure 1. Problems when using Matlab c¢2d function in indirect discretization of a
fractional order PI*D* controller transfer function

Consider the general rational continuous-time transfer function with m zeros and » poles,
m<n:

G(s) =K, —r )

where K, is the gain, zj are the zeros, jzl,_m and p{ are the poles, izl,_n. Then, its
discrete-time equivalent has the form:

1

d
H (Z —Zj )
G(z) =K, LT ——— @®)

[16-»)

i=1
where K, is the corresponding discrete-time transfer function gain and z}i and p{are the

zeros and the poles, respectively. To determine the value of a discrete-time pole or zero,
the relation in (6) is used as follows:

1+ a+ap;T,

R ©
1+o—-piT,

¢ ltoa+aziT,

2 — 2 (10)

i c
l+a-2z]T,
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with a proper selection of the weighting factor a, as well as of the sampling time T;. Once
the discrete-time poles and zeros have been determined, the computation of the discrete-
time gain Ky is based on:

n

TTEz)10-0¢)
K, =K, 2 (1
TTERT0-2)

i=1 j=l

The relation in (11) is obtained by making G(s) = Gu(z) in steady-state regime, that is
G(0) = Gqy(D).

Remarks:

I. To calculate the discrete-time gain Ky using (11), all pure integrators and
differentiators need to be removed.

2. Continuous-time transfer function with dead time are converted in two steps. The
rational part is converted using (9), (10) and (11), while the dead time is converted
separately to the nearest integer number of samples: ™" < z % with 1, =dT,.

3. If m<n, then (n-m) continuous-time zeros at -0 are converted into discrete-time zeros at

—q. In this case, (n-m) zeros are added in discrete-time: zf =—o with j=m+1,n.

Figure 2 shows the ideal frequency response of the FO-PT'D* controller in (3), as well as
the rational discrete-time approximation obtained using the proposed generating function.
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Figure 2. Frequency response of the PI'D* controller and the rational approximation
obtained using the proposed indirect discretization method

To compute the discrete-time rational transfer function, the 10" order continuous-time
rational transfer function obtained in Section 2 is discretized using the proposed method.
For the discretization, the same sampling time is used as in Figure 1, T;=0.00314 seconds,
while o=1. With this choice of the weighting parameter a, the proposed generating
function equals the Tustin operator, the same discretization method used in Section 2.
Figure 2 shows that with the proposed generating function, an improved low frequency
response is obtained in comparison to the result in Figure 1.
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4. Case study: FO-PI'D* controller for DC motor speed

The experimental unit consists of the modular servo system built by Inteco [20] as
indicated in Figure 3. The system consists of a DC motor equipped with a tachogenerator,
which is used to measure the rotational speed of the DC motor, an inertia load, backlash,
incremental encoder, and gearbox with output disk [21].

Figure 3. The modular servo system used as a case study

To control the rotational speed by varying the voltage supplied to the DC motor, the
mathematical model of the modular servo system has been determined experimentally as:

k
Ts+1

P(s)= (12)

where k=158 and 7-=0.95 seconds are the motor nominal gain and time constant,
respectively.

The next step consists in the tuning of a FO-PI"D* controller for the DC motor. The
performance specifications are: a gain crossover frequency w,-3, a phase margin,
¢n=60° as well as robustness to gain variations. A bound B=-20dB is imposed for the
sensitivity function, for all frequencies ® < 0.001rad/s, while for the complementary
sensitivity function, a limit A=-20dB is considered, for all frequencies ® =100 rad/s. To
tune the FO-PI"D" controller, the Matlab optimization toolbox is considered, using the
Jmincon() function [22]. The resulting controller parameters are determined as: k,=0.007,
ki=5.5882, ks=0.078, p=0.78 and A=0.9, with the final controller given as:

5.5882
078

Heopp(8) = 0.007(1 + + 0_07880.9J 13

The FO-PI*D* controller, the fractional order integrator and differentiator are first
approximated using the Recursive Qustaloup Filter method [14] used with a low
frequency bound of 0.0157 and a high frequency bound of 157 rad/sec, as well as an order
of approximation N=2. The frequency response of the open loop system with the
designed fractional order controller is given in Figure 4, considering the nominal DC
motor model in (12). The phase margin and gain crossover frequencies are met. The Bode
diagrams corresponding to the uncertain open loop system with +25% and -25% gain
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variations are also given in Figure 4. The phase margin in these two cases remains
constant around 60°. Thus, the robustness to gain variations is also met. Finally, the Bode
diagrams for the sensitivity function and complementary sensitivity function are analyzed
in Figure 5a) and b), respectively. In this case also, the two performance specifications

have been met.
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Figure 4. Bode diagrams of the nominal and uncertain open loop system with £25%
variation of the open loop gain (black for nominal system, blue for -25% gain variation,
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Figure 5. Bode diagrams of the a) sensitivity function b) complementary sensitivity

function

The rational continuous-time approximation of the FO-PI*D* controller in (13) is

computed as:

0.42 (s +4.93) (s +3.76) (s +0.34) (s + 0.28) (s + 0.022)
(s +0.018)(s? +252.5s +1.6-10*)(s +25.97s +266.8)

Hgopip (8) =
(s+1368)(s +134.2) (s +86.3) (s +8.47) (s + 5.45) (s + 0.53)
(s +0.34)(s +0.034) (s + 0.0217) (s + 0.00213)
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To implement the designed FO-PI"D* controller, the proposed discretization method is
applied to the rational continuous-time approximation in (14). The discrete-time poles,
zeros and gain are computed according to (9), (10) and (11), yielding the final rational
transfer function:

0.029 (z - 0.9089) (z - 0.9293) (z - 0.9932) (z - 0.9944) (z - 0.99956)
(z-0.99963) (z* - 0.3729z+0.03481) (z> -1.537z + 0.6081)

(z+0.15) (z-0.17) (z - 0.29) (z - 0.85) (z - 0.9) (z - 0.9894)
(z-0.9932)(z - 0.99932)(z - 0.99956)(z - 0.99995)

Hpo_pin (2) =

(15)

For the generating function, «=0.2 and the sampling period is T,=0.02 seconds. Figure 6
shows the ideal frequency response of the FO-PI"D" controller in (13), along with the
frequency response of its discrete-time rational approximation in (15). The Bode
diagrams show a good agreement between the two.
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Figure 6. Frequency response of the FO-PI"D* controller designed for the DC motor and
the rational approximation obtained using the proposed indirect discretization method

The experimental results considering a staircase change of the reference signal for the
speed of the DC motor are given in Figure 7. The results show that the controller achieves
an overshoot of 20-23% and a settling time of 2.1-2.3 seconds, regardless of the operating
point. In the case of higher rotational speeds, the settling time increases to approximately
4 seconds. Overall, the digital realization in (15) ensures the closed loop performance
specifications used for the design of the FO-PID controller in (13).

4. Conclusions

The major drawback when using a FO-PID controller consists in its rational
approximation. For practical implementation, the digital realization of the controller is
required. Several approaches have been proposed in this regard, each having their
advantages and limitations. In this paper an indirect discretization method is proposed.
The approach consists in obtaining first a continuous-time approximation of the ideal
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fractional order PID controller to which a new s to z transform is applied to obtain the
discrete-time rational transfer function. The mapping of the poles and zeros of the analog
transfer function to the corresponding poles and zeros of the digital transfer function is
discussed. An experimental case study is considered to show that the discrete-time
approximation based on the proposed s to z transform ensures a good fit of the ideal
fractional order PID controller.

Future work includes an analysis of the effect of a upon the discretization results, along
with a discrete to continuous-time transformation as a consequence of the proposed s to z
transform presented in this paper.
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Figure 7. Closed loop experimental results using the digital approximation of the ideal
FO-PI'D* controller
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