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We have implemented internally contracted complete active space second order perturbation
theory (CASPT2) with the density matrix renormalization group (DMRG) as active space
solver [Y. Kurashige and T. Yanai, J. Chem. Phys. 135, 094104 (2011)]. Internally con-
tracted CASPT2 requires to contract the generalized Fock matrix with the 4-particle reduced
density matrix (4-RDM) of the reference wavefunction. The required 4-RDM elements can
be obtained from 3-particle reduced density matrices (3-RDM) of different wavefunctions,
formed by symmetry-conserving single-particle excitations op top of the reference wavefunc-
tion. In our spin-adapted DMRG code 2 https://github.com/sebwouters/chemps2, we
decompose these excited wavefunctions as spin-adapted matrix product states and calculate
their 3-RDM in order to obtain the required contraction of the generalized Fock matrix
with the 4-RDM of the reference wavefunction. In this work, we study the longitudinal
static second hyperpolarizability of all-trans polyenes C2nH2n+2 [n = 4–12] in the cc-pVDZ
basis set. DMRG-SCF and DMRG-CASPT2 yield substantially lower values and scaling
with system size compared to RHF and MP2, respectively. Published by AIP Publish-
ing. [http://dx.doi.org/10.1063/1.4959817]

I. INTRODUCTION

Non-linear optical (NLO) properties of organic conju-
gated materials have been studied extensively due to their
potential use in optical devices. In computational chemistry, it
is well known that approximate methods struggle to yield
qualitatively accurate NLO properties. Density functional
theory (DFT) with the commonly used exchange-correlation
functionals significantly overestimates the longitudinal static
second hyperpolarizability γzzzz and its scaling with system
size.1–3 Long-range corrected functionals reduce a large part
of the overestimation, indicating the importance of long-range
exchange for the NLO properties.4–7

Also in ab initio methods, electron correlation should be
included with care.8 Restricted Hartree-Fock (RHF) theory
overestimates γzzzz, and with second order Møller-Plesset
perturbation theory (MP2), this overestimation becomes even
worse.9 For short polyenes, coupled-cluster theory with
single and double excitations (CCSD) predicts larger γzzzz
values compared to RHF, but their ratio drops below 1 with
increasing system length.10 The effect of electron correlation
on γzzzz has since been further explored with various
methods.11,12

One particular method, the density matrix renormalization
group (DMRG),13 is especially well-suited to study one-
dimensional systems such as hydrogen chains and polyenes.
It has therefore been used to assess the accuracy of other
methods to obtain γzzzz.9,14

White invented DMRG in 1992 to solve the breakdown
of Wilson’s numerical renormalization group for real-space
lattice systems.13 A few years later, Östlund and Rommer

discovered its underlying wavefunction ansatz, the matrix
product state (MPS).15 White and Martin applied DMRG
for the first time to ab initio Hamiltonians in 1999.16

With the effort of several quantum chemistry groups,17–25

DMRG has since become a standard method in computational
chemistry.

For realistic systems and Hamiltonians, applying DMRG
to the entire system becomes infeasible. DMRG can then
be used as a numerically exact active space solver in
conjunction with the complete active space self-consistent
field (DMRG-SCF) method to treat the static correlation.26–29

Dynamic correlation can be added subsequently by canonical
transformation theory,30,31 internally contracted perturbation
theory,32–34 or a configuration interaction expansion.35,36

Alternatively, the perturbation wavefunctions can also be
solved within the DMRG framework.37–39 Recently DMRG
has shown its full potential by resolving the electronic structure
of important catalysts, containing multiple transition metal
atoms.40–42

The MPS ansatz and the DMRG algorithm are reviewed
in Secs. II and III, respectively. Our implementation of
the contraction of the generalized Fock matrix with the
4-particle reduced density matrix (4-RDM) of the reference
wavefunction is described in Sec. IV. The DMRG-SCF
algorithm and internally contracted complete active space
second order perturbation theory (CASPT2) are outlined
in Sec. V. In Sec. VI we use our implementation of
DMRG-CASPT2 to study the longitudinal static second
hyperpolarizability of all-trans polyenes and compare the
results with the lower levels of theory. A summary of this
work is given in Sec. VII.

0021-9606/2016/145(5)/054120/9/$30.00 145, 054120-1 Published by AIP Publishing.
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II. MPS ANSATZ

Starting from a full configuration interaction (FCI)
wavefunction for L spatial orbitals

|Ψ⟩ =

{niσ}

Cn1↑n1↓n2↑...nL↓

(
â†1↑

)n1↑(â†1↓)n1↓(â†2↑)n2↑
...

(
â†
L↓

)nL↓|−⟩, (1)

the MPS ansatz can be introduced. Without loss of accuracy,
the FCI coefficient tensor can be decomposed as

Cn1↑n1↓n2↑n2↓n3↑n3↓...nL↑nL↓

=

{αi}

A[1]n1↑n1↓
α0,α1 A[2]n2↑n2↓

α1,α2 A[3]n3↑n3↓
α2,α3 ...A[L]

nL↑nL↓
αL−1,αL

= A[1]n1A[2]n2A[3]n3...A[L]nL, (2)

with size(αi) = min(4i,4L−i) to allow to represent every state
of the Hilbert space. On the last line, the shorthand ni for
ni↑ni↓ was introduced. Matrices are written in boldface. The
MPS ansatz can now be obtained by truncating size(αi) to
min(4i,4L−i,D). The parameter D is called the virtual or bond
dimension of the MPS. With increasing virtual dimension D,
a larger corner of the Hilbert space can be reached, and this
parameter is therefore a handle on the convergence.

Because of the virtual dimension truncation, the MPS
ansatz is not invariant with respect to orbital rotations. With
arguments from quantum information theory, it can be shown
that for one-dimensional orbital spaces, any accuracy per
length unit can be reached with a finite virtual dimension D,
independent of the number of orbitals L, even if L → ∞.43 In
quantum chemistry, the orbital active spaces are often far from
one-dimensional. With a proper choice and ordering of the
active space orbitals, and by exploiting the symmetry group
of the Hamiltonian, efficient MPS decompositions of the FCI
coefficient tensor can still be obtained.44

The symmetry group of the Hamiltonian typically
consists of SU(2) spin symmetry, U(1) particle number
symmetry, and the spatial point group symmetry P. In
2 all three Hamiltonian symmetries are exploited, but
P is limited to the abelian point groups with real-valued
character tables.24 The non-abelian SU(2) spin symmetry
was first exploited in condensed matter and nuclear structure
DMRG calculations,45–48 and later found its way to quantum
chemistry.14,21,22,24,49,50 We also want to mention Refs. 51 and
52, where the non-abelian point group D∞h is exploited for
homonuclear diatomic molecules.

In order to exploit the symmetry, both the orbital and
virtual indices are written with the correct symmetry labels.
In what follows j and s denote spin, jz and sz denote spin
projection, N denotes particle number, and I denotes an
irreducible representation of an abelian point group P with
real-valued character table. In that case I ⊗ I = I trivial for all I.
Due to the Wigner-Eckart theorem, the MPS tensors factorize
into reduced tensors and Clebsch-Gordan coefficients,

A[i]sszN I
jL jz

L
NL ILαL; jR jz

R
NRIRαR

= ⟨ jL jzLssz | jR jzR⟩
δNL+N,NR

δIL⊗I, IRT[i]sN I
jLNL ILαL; jRNRIRαR

. (3)

The Clebsch-Gordan coefficients introduce block sparsity and
information compression. A reduced basis state ( jLNLILαL)

in the reduced MPS tensor T[i]sN I represents an entire
multiplet ( jL jzLNLILαL) in the MPS tensor A[i]sszN I . The
reduced virtual dimension is therefore smaller than the virtual
dimension it represents,

Dreduced =


jLNL IL

Dreduced
jLNL IL

< Drepresented =


jLNL IL

(2 jL + 1)Dreduced
jLNL IL

. (4)

Another advantage of the symmetry-adaptation is the ability
to study excited states as ground states of different symmetry
sectors, for example, to calculate singlet-triplet gaps. We also
want to mention that the decomposition in Eq. (3) resembles
the wavefunction in the multifacet graphically contracted
function method.53

When a non-singular matrix G and its inverse are inserted
at a particular virtual bond, the MPS tensors change but the
wavefunction does not,

A[i]niA[i + 1]ni+1 = (A[i]niG) �G−1A[i + 1]ni+1
�

= A[i]niA[i + 1]ni+1. (5)

This gauge freedom allows to left-normalize
ni

(A[i]ni)†A[i]ni = I (6)

or right-normalize 
ni

A[i]ni(A[i]ni)† = I (7)

the MPS tensors. Analogous expressions exist for reduced
MPS tensors.24 Left-normalization and right-normalization
are used in the DMRG algorithm to remove the overlap matrix
from the local generalized eigenvalue problems.

III. DMRG ALGORITHM

First, the so-called micro-iteration or local eigenvalue
problem of the DMRG algorithm is discussed. Subsequently,
its place in the total DMRG algorithm is explained. A micro-
iteration corresponds to the optimization of two neighbouring
MPS tensors, while all other MPS tensors remain fixed.
Suppose the MPS tensors belong to orbitals i and i + 1. A
two-orbital tensor

B[i]nini+1 = A[i]niA[i + 1]ni+1 (8)

is constructed by contracting over the common virtual index.
It forms an initial guess for the local eigenvalue problem
which arises by varying the Lagrangian,

L = ⟨Ψ(B[i]) | Ĥ | Ψ(B[i])⟩ − E⟨Ψ(B[i]) | Ψ(B[i])⟩, (9)

with respect to the parameters in B[i]nini+1. When all MPS
tensors to the left of orbital i are left-normalized and all MPS
tensors to the right of orbital i + 1 are right-normalized, this
variation yields a standard eigenvalue problem,

nini+1

Hnini+1
nini+1

× B[i]nini+1 = EB[i]nini+1. (10)
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In practice, the application of the sparse effective Hamiltonian
on the left-hand side of Eq. (10) is realized by

nini+1

Hnini+1
nini+1

× B[i]nini+1

=

k


nini+1

O[i, k]niniB[i]
nini+1C[i, k]ni+1

ni+1
, (11)

where the sum over k runs over O(L2) operator and
complementary operator pairs. The lowest eigenvalue and
corresponding B[i]nini+1 tensor of the effective Hamiltonian
are typically obtained with the Lanczos or Davidson
algorithm. This tensor is then decomposed with a singular
value decomposition into a left-normalized MPS tensor
A[i]ni, a right-normalized MPS tensor A[i + 1]ni+1, and
4 ×min(size(αi−1),size(αi+1)) Schmidt values Λ,

B[i]nini+1 = A[i]niΛA[i + 1]ni+1. (12)

When the number of Schmidt values is larger than D, only the
D largest ones are kept.

This local eigenvalue equation is solved during the
so-called left and right sweeps or macro-iterations. During
a left (right) sweep, the D largest Schmidt values are absorbed
into the MPS tensor A[i]ni (A[i + 1]ni+1). In the next step,
the MPS tensors of orbitals i − 1 and i (i + 1 and i + 2)
are then optimized. The DMRG sweeps continue until the
energy and/or the wavefunction does not change anymore
or a maximum number of sweeps is reached. The virtual
dimension truncation D is stepwise increased after several
sweeps.

Analogous expressions exist for the reduced two-orbital
tensor, its corresponding effective Hamiltonian equation, and
the subsequent decomposition into left- and right-normalized
reduced MPS tensors.24 For more details on the DMRG
algorithm we refer the reader to Refs. 18 and 44. Per

sweep, its computational cost is O(L3D3 + L4D2), its memory
requirement O(L2D2), and its disk requirement O(L3D2).
In what follows, D will always denote the reduced virtual
dimension.

The operators

b̂†iσ = â†iσ (13)

b̂iσ = (−1) 1
2−σâi−σ (14)

are doublet irreducible tensor operators, belonging to, respec-
tively, row (s = 1

2 , s
z = σ,N = 1, Ii) of irreducible represen-

tation (s = 1
2 ,N = 1, Ii) and row (s = 1

2 , s
z = σ,N = −1, Ii)

of irreducible representation (s = 1
2 ,N = −1, Ii). The Wigner-

Eckart theorem can therefore be exploited for both the MPS
tensors and the second quantized operators. The resulting
SU(2) Clebsch-Gordan coefficients can be removed by
summing over the common multiplets, and only Wigner 6-j
and 9-j symbols remain in a spin-adapted DMRG code.24

We have reviewed the symmetry-adaption and the use
of operator and complementary operator pairs in order to
explain the hybrid parallelization in 2 for mixed
distributed and shared memory architectures. MPI processes56

become responsible for certain operator and complementary
operator pairs. This strategy was first introduced in Ref. 57.
The contraction over separate reduced symmetry sectors
( jLNLIL) is parallelized in 2 with OMP threads.24,58

The parallelization over symmetry sectors was implemented
in Ref. 22 for distributed memory architectures. The
parallelization over operator and complementary operator
pairs is independent from the parallelization over symmetry
sectors, and they give independent (multiplicative) speedups.
Our hybrid parallelization is illustrated in Fig. 1. The caption
of Fig. 1 contains all details of the calculation. We also want
to mention a third parallelization strategy for DMRG, which
involves multiple simultaneous sweeps.59

FIG. 1. Speedup achieved with the hybrid parallelization of 2, compared with the MPI parallelization of  version 1.1-alpha.54 The system under
study is H2O in Roos’ ANO DZ basis set (L = 41) with atom positions O(0,0,0) and H(±0.790 689 766, 0, 0.612 217 330) in Å.55 All calculations were performed
with reduced virtual dimension D = 1000. RHF orbitals were used, ordered per irreducible representation of C2v according to their single-particle energy, and
the irreducible representations were ordered as {A1, A2, B1, and B2}. The residual norm tolerance for the Davidson algorithm was set to 10−4. Note that in
 the square of this parameter needs to be passed. Each node has a dual Intel Xeon Sandy Bridge E5-2670 (total of 16 cores at 2.6 GHz) and 64 GB of
memory. The nodes are connected with FDR InfiniBand. The renormalized operators were stored on GPFS in order to achieve high disk bandwidths. Both codes
and all depending libraries were compiled with the Intel MPI compiler version 2015.1.133. The Intel Math Kernel Library version 11.2.1.133 was used for
BLAS and LAPACK routines. (a) Comparison of pure MPI and OMP speedups on a single node. Wall times per sweep are indicated for 16 cores (in seconds).
(b) Illustration of the hybrid parallelization of 2. For 16 cores and less, one MPI process with several OMP threads is used. For 32 cores and more, several
MPI processes each with 16 OMP threads are used. Wall times per sweep are indicated (in seconds).
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IV. CONTRACTION OF THE GENERALIZED FOCK
MATRIX AND THE 4-RDM

The 2-, 3-, and 4-particle reduced density matrices
(2-, 3-, and 4-RDM) are defined as

Γ
2
pq;wx =


στ

⟨â†pσâ†qτâxτâwσ⟩, (15)

Γ
3
pqr ;wxy =


στυ

⟨â†pσâ†qτâ†rυâyυâxτâwσ⟩, (16)

Γ
4
pqr s;wxyz =


στυφ

⟨â†pσâ†qτâ†rυâ†sφâzφâyυâxτâwσ⟩, (17)

where the Greek letters denote spin-projections and the
Latin letters spatial orbitals. The computational cost to
obtain the N-RDM as the expectation value of an MPS
is O(LN+1D3 + L2ND2).27,32–34,60 In 2, the 2- and
3-RDMs are implemented as described in these works.
Renormalized operators of three spin- 1

2 second quantized
operators (13) and (14) are needed for the 3-RDM. They
couple to two spin- 1

2 and one spin- 3
2 renormalized operators,

1
2
⊗ 1

2
⊗ 1

2
=

1
2
⊕ 1

2
⊕ 3

2
. (18)

The full twelvefold permutation symmetry of the 3-RDM
is taken into account, as well as the Hermitian conjugation
equivalence of renormalized operators24 and the fermionic
anti-commutation relations. The scaling of the computational
cost of the 3-RDM with system size is illustrated in Fig. 2.
The caption of Fig. 2 contains all details of the calculation.
As can be observed, O(L6D2) is the dominant contribution in
practice.

The generalized Fock matrix will be introduced in Sec. V.
This symmetric matrix has two spatial orbital indices and is

FIG. 2. Scaling of the wall time to calculate the 3-RDM for the (2n, 2n)
active spaces of all-trans polyenes C2nH2n+2 for a reduced virtual dimen-
sion D = 1000. All computations were performed with 2 on a single
node with a dual Intel Xeon Sandy Bridge E5-2670 (total of 16 cores at
2.6 GHz) and 64 GB of memory. The geometry of the polyenes is opti-
mized with B3LYP/cc-pVDZ. The active spaces are fully converged with
DMRG-SCF(2n, 2n)/cc-pVDZ. Localized orbitals are constructed with the
Edmiston-Ruedenberg algorithm and ordered according to the topology of
the molecule with the Fiedler vector of the exchange matrix. The scaling of
the wall time has to be compared with the theoretical computational scaling
O(L4D3+L6D2).

diagonal in the irreducible representations,

Fpq = Fqp = FpqδIp, Iq. (19)

The contraction of the generalized Fock matrix with the
4-RDM of the active space is required for CASPT2,

�
F.Γ4�

pqr ;wxy
=


sz

FszΓ
4
pqr s;wxyz. (20)

One way to avoid the implementation and computation of the
full 4-RDM is to work in the pseudocanonical orbital basis
which diagonalizes the generalized Fock matrix,

Fpq = Fppδp,q. (21)

Kurashige and Yanai describe an efficient contraction of the
4-RDM with the pseudocanonical Fock matrix, in which two
of the eight 4-RDM indices are always identical.32 This is in
general a good strategy for smaller active spaces, or molecules
with a large point group. For all-trans polyenes, however, it is
better to use a localized and ordered orbital basis because the
reduced virtual dimension D can then be orders of magnitude
smaller.

Another option to avoid the implementation and
computation of the full 4-RDM is to use a cumulant
approximation.33 With this approximation, imaginary level
shifts become necessary, and even then potential energy
surfaces can become quite rugged.33 In order to compute the
longitudinal static second hyperpolarizability, accurate finite
differences need to be calculated, and we have observed that
the cumulant approximation of the 4-RDM yields meaningless
results for this purpose.

We adopt another strategy to avoid the implementation
of the full 4-RDM. Because the generalized Fock matrix is
symmetric, the following sum of 4-RDM elements can be
used as well:

Γ
4
pqr s;wxyz + Γ

4
pqrz;wxys, (22)

where the spatial orbitals s and z belong to the same irreducible
representation (Is = Iz). With |Ψ0⟩ the reference wavefunction
and Êpq =


σ â†pσâqσ, we define “excited” wavefunctions as

|sz,α, β⟩ = �
α
�
Êsz + Êzs

�
+ β

� |Ψ0⟩, (23)

which have the same symmetry as the reference wavefunction
if Is = Iz. We denote the 3-RDM of the (unnormalized) excited
wavefunctions as

Γ(sz,α, β)3pqr ;wxy

=

στυ

⟨sz,α, β | â†pσâ†qτâ†rυâyυâxτâwσ | sz,α, β⟩. (24)

In this notation Γ(sz,0,1)3pqr ;wxy = Γ
3
pqr ;wxy, the 3-RDM of

the reference wavefunction. The following identity holds,

2

Γ

4
pqr s;wxyz + Γ

4
pqrz;wxys


+ Γ3

pqr ;wxy

= Γ(sz,1,1)3pqr ;wxy − Γ(sz,1,0)3pqr ;wxy

− δs,pΓ3
zqr ;wxy − δs,qΓ

3
pzr ;wxy − δs,rΓ

3
pqz;wxy

− δs,wΓ3
pqr ;zxy − δs,xΓ

3
pqr ;wz y − δs, yΓ

3
pqr ;wxz

− δz,pΓ3
sqr ;wxy − δz,qΓ

3
psr ;wxy − δz,rΓ

3
pqs;wxy

− δz,wΓ3
pqr ;sxy − δz,xΓ

3
pqr ;wsy − δz, yΓ

3
pqr ;wxs. (25)
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Eq. (25) shows that the required 4-RDM contributions can
be obtained with O(L2) 3-RDM calculations, with total
computational cost O(L6D3 + L8D2). This is higher than the
theoretical optimum O(L5D3 + L8D2) for the 4-RDM, but as
illustrated in Fig. 2 for the 3-RDM, the dominant contribution
for our 4-RDM calculation will be O(L2 × L6D2).

The excited wavefunctions |Ψ1⟩ = |sz,α, β⟩ are decom-
posed into spin-adapted MPS in 2 by minimization of
the Hylleraas functional

L = ⟨Ψ1 | Ψ1⟩ − 2⟨Ψ1 | α �
Êsz + Êzs

�
+ β | Ψ0⟩, (26)

in a manner entirely similar to Ref. 37. The sweep
algorithm is only performed between orbitals min(s, z) and
max(s, z) as the MPS tensors outside of this range do not
change. The cost of one full optimization is O(LD2 + LD3)
= O(LD3), i.e., entirely negligible compared to the subsequent
3-RDM calculation. After submission of our manuscript, a
similar strategy in the  code to compress the perturber
wavefunctions for DMRG-NEVPT2 has been brought to our
attention.34,61

The proposed strategy resembles the strategy in a FCI
code to calculate the N-RDM, which is driven by a routine
to compute |Ψpw;α⟩ = Êpw |Ψα⟩. The computation of the
2-RDM, for example, is realized by a nested for-loop over
single-particle excitations which generates

|Ψpw;qx⟩ = Êpw |Ψqx⟩ = ÊpwÊqx |Ψ0⟩. (27)

The 2-RDM elements are obtained by taking overlaps with
the reference wavefunction,

Γ
2
pq,wx = ⟨Ψ0 | Ψpw;qx⟩ − δq,w⟨Ψ0 | Ψpx⟩. (28)

V. DMRG-CASPT2

In the complete active space self-consistent field method
(CASSCF), the spatial orbitals are divided into core, active,
and virtual orbitals. The core orbitals are doubly occupied,
while the virtual orbitals remain empty. By taking the Coulomb
and exchange interactions with the electrons in the core
orbitals into account, an effective active space Hamiltonian
can be constructed, and its desired eigenstate can be computed
with FCI. The gradient and Hessian of the energy with respect
to rotations between the three orbital spaces can be computed
based on the 2-RDM of the active space solution.62 The three
orbital spaces are then optimized with the Newton-Raphson
algorithm, or its augmented Hessian variant.63 An important
question is the selection of the active orbital space. We want
to mention Refs. 29, 64, and 65, which shed new light on this
subject.

The equations in Ref. 62 depend solely on the active space
2-RDM, and any method which can compute this quantity to
high accuracy can be used as active space solver. Recently,
unbiased RDMs have been obtained with FCI quantum Monte
Carlo (FCIQMC),66 and a corresponding FCIQMC-CASSCF
algorithm was developed.67 We also want to mention a
CASSCF variant without underlying wavefunction ansatz,
based on the variational optimization of the 2-RDM.68 With
DMRG as active space solver, the method is called DMRG-
CASSCF or DMRG-SCF.26–29

Systems exhibit static correlation when multiple Slater
determinants are required for a qualitatively accurate
description. In quantum chemistry, the set of important
orbitals, in which the occupation changes over the dominant
Slater determinants, is typically small. These orbitals form
the active space and the static correlation can be resolved
with CASSCF, FCIQMC-CASSCF, or DMRG-SCF. Due to
the Coulomb repulsion between the electrons, the core and
virtual orbitals show small deviations from doubly occupied
and empty, respectively. The associated energy contribution is
called the dynamic correlation. With DMRG as active space
solver, it can be resolved with the canonical transformation
theory,30,31 internally contracted perturbation theory,32–34 or
a configuration interaction expansion.35,36 Alternatively, the
perturbation wavefunctions can also be solved within the
DMRG framework.37–39

We have implemented internally contracted complete
active space second order perturbation theory (CASPT2)69,70

with DMRG as active space solver.32 It is based on the
generalized Fock operator,

F̂ =

pq

FpqÊpq, (29)

with matrix elements

Fpq =
1
2


σ

⟨âpσ


Ĥ , â†qσ


− â†pσ

�
Ĥ , âqσ

�⟩ (30)

= tpq +

r s

⟨Êr s⟩
(
(pq|rs) − 1

2
(pr |qs)

)
, (31)

where tpq and (pq|rs) are the usual one- and two-electron
integrals.

The full Hilbert spaceH is split up into four parts,

H = V0 ⊕ VK ⊕ VSD ⊕ VTQ... (32)

V0 contains only the CASSCF solution |Ψ0⟩. VK is the space
spanned by all possible active space excitations on top of
|Ψ0⟩ which are orthogonal to V0. Wavefunctions in VK
have the same core and virtual orbitals as |Ψ0⟩, with the
same occupation. VSD contains all single and double particle
excitations on top of |Ψ0⟩ which are orthogonal to V0 ⊕ VK.
With the indices i j for core orbitals, tuv for active orbitals,
and ab for virtual orbitals, VSD is spanned by the following
excitation types,

A : Êt iÊuv |Ψ0⟩, (33)

B : Êt iÊu j |Ψ0⟩, (34)

C : Êat Êuv |Ψ0⟩, (35)

D : ÊaiÊtu |Ψ0⟩, Êt iÊau |Ψ0⟩, (36)

E : Êt iÊa j |Ψ0⟩, (37)

F : Êat Êbu |Ψ0⟩, (38)

G : ÊaiÊbt |Ψ0⟩, (39)

H : ÊaiÊb j |Ψ0⟩. (40)

AndVTQ.. is the remainder ofH . The zeroth order Hamiltonian
for internally contracted CASPT2 is

Ĥ0 = P̂0F̂ P̂0 + P̂KF̂ P̂K + P̂SDF̂ P̂SD + P̂TQ..F̂ P̂TQ.., (41)
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where P̂X is the projector ontoVX. The first order wavefunction
|Ψ1⟩ for internally contracted CASPT2 is spanned by a linear
combination overVSD,

|Ψ1⟩ =


pq;r s∈VSD

Cpq;r sÊpqÊr s |Ψ0⟩

=


pq;r s∈VSD

Cpq;r s |Ψpq;r s⟩. (42)

The coefficients can be found by solving
pq;r s∈VSD

⟨Ψwx;yz | Ĥ0 − E0 | Ψpq;r s⟩Cpq;r s

= −⟨Ψwx;yz | Ĥ | Ψ0⟩. (43)

The overlap matrix ⟨Ψwx;yz | Ψpq;r s⟩ is block-diagonal in the
different excitation types (A to H). It is diagonalized, small
eigenvalues are discarded, and Eq. (43) is transformed to

β

�
Fαβ − E0δα,β

�
Cβ = −Vα, (44)

with F diagonal for two excitations |α⟩ and |β⟩ of the same
type (A to H). In 2, the coefficients Cα are solved with
the conjugate gradient algorithm. We use the initial guess

Cini
α = −

Vα

Fαα − E0
. (45)

For the excitation types A and C, the contraction of the
generalized Fock matrix with the 4-RDM of the active space of
the CASSCF solution is needed. If the active space orbitals in
the DMRG algorithm are not pseudocanonical, we rotate Γ1,
Γ2, Γ3, and

�
F.Γ4� to the pseudocanonical orbital basis before

building the required intermediates to solve Eq. (44). We also
couple the excitation types B, E, F, G, and H to singlet and
triplet excitations,

B singlet :
�
Êt iÊu j + Êt j Êui

� |Ψ0⟩, (46)

B triplet :
�
Êt iÊu j − Êt j Êui

� |Ψ0⟩, (47)

to make F more sparse.69,70

In order to mitigate intruder state problems, we have
implemented the imaginary level shift71 and the ionization
potential-electron affinity (IPEA) shift.72 For the latter, the
matrix on the left-hand side in Eq. (43) is shifted with

⟨Ψwx;yz | F̂ | Ψpq;r s⟩
+ = δp,wδq,xδr, yδs,z

ϵ IPEA

2
⟨Ψwx;yz | Ψpq;r s⟩

×
�
4 + ⟨Êpp⟩ − ⟨Êqq⟩ + ⟨Êrr⟩ − ⟨Êss⟩� . (48)

VI. LONGITUDINAL STATIC SECOND
HYPERPOLARIZABILITY OF POLYENES

Static second hyperpolarizabilities can be obtained with
the finite field method.73 When an electric field E is applied
in the z-direction, the Hamiltonian becomes

Ĥ = Ĥ0 + Ez. (49)

The static second hyperpolarizability in the z-direction can be
calculated as the fourth order derivative of the eigenvalue E

of Ĥ with respect to the electric field,

γzzzz = −
(
∂4E
∂E4

)
E→0

. (50)

For centrosymmetric all-trans polyenes, the fourth order
derivative can be approximated with the finite difference

γzzzz(E) = −6E(0) + 8E(E) − 2E(2E)
E4 , (51)

when the origin is chosen in the center of the polyene.
We calculate γzzzz(E) for E ∈ {0.001,0.002,0.004} a.u. and
extrapolate the finite differences to zero field with a least-
squares fit to

γzzzz(E) = γzzzz(0) + c1E2 + c2E4, (52)

with c2 ≪ c1. The odd powers in the electric field vanish in
Eq. (52) because of the centrosymmetry.

The values of E have to be chosen with care.14 For too
large fields, higher order effects come into play in Eq. (52). The
ab initio calculations yield energies with a certain precision,
due to either the convergence threshold or the finite precision
arithmetic. For too small fields, the relative error on γzzzz(E)
will therefore be too large.

All calculations were performed in the cc-pVDZ basis.
The geometries of all-trans polyenes C2nH2n+2 [n = 4–12]
with C2h symmetry were optimized with the B3LYP functional
in 4.74 The carbon atoms of the polyenes form two parallel
rows, and the electric fields have the same direction. The
electric fields break the C2h symmetry to Cs symmetry, and
the latter was used in the ab initio calculations. The RHF, MP2,
and CCSD calculations were performed with ,75 as well
as the calculation of the electron integrals for 2. For the
DMRG-SCF and DMRG-CASPT2 calculations, a (2n,2n)π-
electron active space was used. The active space orbitals
were localized with an augmented Hessian Newton-Raphson
implementation of the Edmiston-Ruedenberg algorithm.76,77

They were ordered according to the one-dimensional
topology of the polyene, by means of the Fiedler vector
of the exchange matrix.77,78 The DMRG calculations were
performed with a reduced virtual dimension D = 1000,
and a residual norm threshold 10−10 for the Davidson
algorithm. With these parameters, both the ground state
|Ψ0⟩ of the active space Hamiltonian and the corresponding
excited wavefunctions |sz,α, β⟩ are indistinguishable from
FCI.

In order to obtain accurate finite differences γzzzz(E)
and corresponding extrapolations (52) to zero field, we have
observed that the cumulant approximation, the imaginary level
shift, and the IPEA shift cannot be used. The IPEA shift even
yields negative γzzzz.

The power law behaviour γzzzz(n) ∝ na(n) is often
assumed.79 Consider a small local electric field which
causes a response of a certain length scale. For polyenes
smaller than this length scale, the possibility for response
opens up with polyene length n, and a rapid increase of
γzzzz with n is observed (a(n) ≫ 1). For polyenes much
larger than this length scale, γzzzz scales linearly with
n (a(n) → 1). The incremental longitudinal static second
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FIG. 3. The longitudinal static second hyperpolarizability of all-trans polyenes C2nH2n+2. The geometries are optimized with B3LYP/cc-pVDZ and all
calculations are performed with the cc-pVDZ basis. (a) The incremental longitudinal static second hyperpolarizability ∆γzzzz(n)=γzzzz(n)−γzzzz(n−1).
(b) The estimation in Eq. (54) for the power law exponent.

hyperpolarizability,

∆γzzzz(n) = γzzzz(n) − γzzzz(n − 1), (53)

and the estimated exponent for power law behaviour,

a(n) ≈ log(γzzzz(n)) − log(γzzzz(n − 1))
log(n) − log(n − 1) , (54)

are shown in Figs. 3(a) and 3(b), respectively.
Of all methods considered, DMRG-SCF and DMRG-

CASPT2 yield the lowest incremental longitudinal static
second hyperpolarizabilities ∆γzzzz(n) and exponents a(n).
An experimental value of a = 3.2 was determined for polyenes
with length n = 4–16 with a linear fit on a double logarithmic
scale.80 We have performed a similar analysis for our
computational data in Fig. 4. RHF, MP2, CCSD, DMRG-SCF,
and DMRG-CASPT2 yield the exponents a = 4.5, a = 4.5,
a = 4.0, a = 3.2, and a = 3.7, respectively. While the DMRG-
SCF exponent corresponds best to the experimental result,
the calculations have been performed in vacuum and with
a modest basis set, and should therefore be treated with
care.

The ab initio calculations mainly allow to compare
different levels of theory. As noted in the Introduction,

FIG. 4. The power law scaling of the longitudinal static second hyperpolar-
izability of all-trans polyenes C2nH2n+2 is determined with a linear fit on a
double logarithmic scale.

CCSD yields larger (smaller) longitudinal static second
hyperpolarizabilities than RHF for short (long) polyenes.
The RHF and MP2 values and power law exponents are
substantially reduced with DMRG-SCF and DMRG-CASPT2,
respectively. Our calculations hence point out the importance
of static correlation for the non-linear optical properties of
conjugated molecules.

The CCSD and DMRG-CASPT2 (incremental) γzzzz
differ by less than a factor 2. It remains an open question to
which extent CCSD covers the static correlation incorporated
in DMRG-CASPT2. If CCSD only captures a fraction of
the static correlation, multi-reference coupled cluster theory
(MRCC) can significantly alter the (incremental) γzzzz
compared to DMRG-CASPT2, in analogy to the single-
reference calculations.

VII. SUMMARY

In Secs. II and III the matrix product state (MPS) ansatz
and the density matrix renormalization group (DMRG) algo-
rithm were reviewed. A hybrid parallelization of DMRG for
mixed distributed and shared memory architectures was also
described. Processes become responsible for certain operator
and complementary operator pairs, while the contractions over
separate reduced symmetry sectors are parallelized by threads.
Because the two parallelization strategies are independent,
they show independent (multiplicative) speedups.

In Sec. IV our strategy to contract the generalized Fock
matrix with the 4-particle reduced density matrix (4-RDM)
of the reference wavefunction was explained. The required
4-RDM elements can be obtained from the 3-RDMs of
“excited” wavefunctions, formed by symmetry-conserving
single-particle excitations on top of the reference wavefunc-
tion. These excited wavefunctions are decomposed into spin-
adapted MPSs at negligible cost. The total computational
cost of our strategy scales as O(L6D3 + L8D2). In practice,
the dominant term is O(L8D2), which is the same as for the
theoretical optimum O(L5D3 + L8D2).

Our implementation of DMRG-CASPT2 was outlined
in Sec. V. We have studied the longitudinal static second
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hyperpolarizability of all-trans polyenes C2nH2n+2 [n = 4–12],
obtained in the cc-pVDZ basis with the finite field method,
in Sec. VI. The results of three single-reference methods
(RHF, MP2, and CCSD) were compared with the results of
DMRG-SCF and DMRG-CASPT2, using a (2n,2n)π-electron
active space. The multi-reference methods yield substantially
lower values and exponents for the longitudinal static second
hyperpolarizability than their single-reference counterparts.
Our calculations hence point out the importance of static
correlation for the non-linear optical properties of conjugated
molecules.
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