
  

 

Abstract — In this paper we present a procedure to retrieve 

the hemodynamic response function (HRF) from resting state 

functional magnetic resonance imaging (fMRI) data. The 

fundamentals of the procedures are further validated by 

considering simultaneous electroencephalographic (EEG) 

recordings. The typical HRF shape at rest for a group of healthy 

subject is presented. Then we present the modifications to the 

shape of the HRF at rest following two physiological 

modulations: eyes open versus eyes closed and propofol-induced 

modulations of consciousness. 

I. INTRODUCTION 

Functional magnetic resonance imaging (fMRI) time 
series can be modeled as a convolution of a latent neural signal 
(which is not measured) and the hemodynamic response 
function (HRF). First, since the temporal characteristics of the 
HRF across different anatomical regions can be influenced by 
the underlying venous structure, it is possible that intrinsic 
activity across disparate brain regions can be temporally 
correlated only due to the underlying vascular architecture. 
Second, the hemodynamic response is affected by 
physiological fluctuations arising from cardiac pulsation and 
respiration [1]. These can introduce temporal correlations into 
resting state (RS) fMRI signals. Also, given the fact that 
RS-fMRI data is sampled slowly (typically every 1-2 
seconds), physiological fluctuations cannot be removed by 
simple filtering as they can alias into the low frequency band 
of interest (0.01-0.1 Hz). Third, the period of the fastest 
variation in RS-fMRI data is 10 s, which is orders of 
magnitude greater than the sub-second time scale at which 
most neuronal processes occur. 

This confounding effect can be dealt with by 
deconvolution of the HRF. In task-related fMRI this procedure 
has been known and applied since the very beginnings, since 
the onset of the HRF was known. This is not the case for 
RS-fMRI. 

Motivated by this evidence, we developed an approach to 
perform blind hemodynamic deconvolution [2] of RS-fMRI 
data to recover the underlying latent neuronal signals. This 
allowed to greatly improve the estimation of directed 
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dynamical influences in RS-fMRI recordings [2], but also 
provided us with the estimation of the HRF shape for each 
voxel in the brain. In this paper we will first explore the 
coupling between electrically measured brain activity and 
HRF using simultaneous electroencephalographic (EEG) 
recordings, then we analyzed the effects of physiological 
conditions (eyes open vs. eyes closed and modulations of 
consciousness) on the HRF shape. 

II. METHODOLOGY 

The deconvolution is blind because there is no external input 

in case of RS-fMRI data and consequently, both the HRF and 

the underlying neuronal latent variables must be 

simultaneously estimated from the observed fMRI data, 

making this an ill-posed estimation problem.  

The blind hemodynamic deconvolution of resting state data 

was performed using the approach proposed by Wu et al [2]. 

Specifically, neural events were detected in the resting BOLD 

signal as point processes corresponding to signal fluctuations 

with a given signature [3], specifically individuated when the 

standardized BOLD signal crossed a given threshold. These 

pseudo-events were then aligned in order to evaluate the exact 

delay between a pseudo-event at cortical level and the BOLD 

signature. This procedure allowed to extract voxel specific 

HRF and perform Wiener deconvolution of the BOLD signal 

[4]. The HRF can be reconstructed in several ways: the 

canonical shape (with time and space derivatives), as a Finite 

Impulse Response (FIR) or ‘selective averaging’ [5]. 

The procedure described above is sketched in Figure 1.  

Figure 2 reports the typical HRF parameters (Height, Time to 

Peak and Full Width at Half Maximum) for a pool of 32 

healthy subjects, as described in [2]. It is worth to note how 

the variations in HRF are consistent with the differences in 

net arterial and venous flow, and the consequent effects on the 

estimation of Granger causality reported in [6]. This confirms 

the importance of performing HRF deconvolution prior to 

estimating lag-based directed connectivity. 
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III. APPLICATIONS 

A.  Relation with EEG power 

In order to further investigate the electrophysiological 
basis of the HRF and its coupling to electrical brain activity we 
considered simultaneously recorded EEG and fMRI data. 
EEG were collected at 1000 Hz and down-sampled at 250 Hz. 
Scanner artifact correction, pulse artifact correction, notch 
filtering and ICA analysis were performed on the raw data. 
fMRI data were collected at 7 Tesla, with a repetition time of 
1s. Resting-state fMRI data preprocessing was carried out 
using both AFNI and SPM8 package. First, the EPI volumes 
were corrected for the temporal difference in acquisition 
among different slices, and then the images were realigned to 
the first volume for head-motion correction. The resulting 
volumes were then despiked using AFNI's 3dDespike 
algorithm to mitigate the impact of outliers. Next, the despiked 
images were spatially normalized to the Montreal 
Neurological Institute template then resampled to 3-mm 
isotropic voxels.  

Several parameters were included in a linear regression to 
remove possible spurious variances from the data. These were 
i) six head motion parameters obtained in the realigning step, 
ii)non-neuronal sources of noise estimated using the 
anatomical component correction method (aCompCor, the 
representative signals of no interest from white matter (WM) 
and cerebral spinal fluid (CSF) included the top five principal 
components (PCs) from WM and the top five from CSF mask; 
the subject-specific WM and CSF masks was segmented from 
the anatomical image of each participant using SPM8's unified 
segmentation–normalization procedure) [7]. Then the time 
series were temporally band-pass filtered (0.01-0.08 Hz) and 
linearly detrended. 

The scalp EEG voltage data from the three occipital 
channels O1,O2, and Oz were selected. 

First, EEG signals for each channel were segmented into 
500 ms non-overlapping epochs. Second, the EEG power 
spectrum for each single epoch was calculated using a 
nonparametric multitaper approach, and the alpha band power 
was obtained by integrating the power spectrum between 8 
and 12 Hz. Third, the channel-level alpha power time series 
from each of the three occipital channels was averaged to yield 
the subject-level alpha power time series, which was 
convolved with a canonical hemodynamic response function 
(HRF). The HRF-convolved alpha power time series was then 
downsampled to the same sampling frequency as the BOLD 
signal. 

 

To identify brain regions whose BOLD activity co-varied 
with EEG alpha power, we examined the temporal correlation 

between HRF-convolved alpha power time series and BOLD 
time series from all voxels based on the general linear model 
(GLM). HRF-convolved alpha power time series was 
incorporated as a parametric regressor in the GLM, modeling 
the coupling effects between alpha and BOLD . 

The processed BOLD signal at every voxel was converted 
into its z-score, and the resting state HRF was retrieved as 
described above, according to the selective averaging 
procedure. 

Two canonical ROIs were chosen from the previous GLM 
analysis (Thalamus and Occipital Lobe) both for eye closed 
and open condition, under individual voxel p-value<1E-6, 
cluster size>50. A positive correlation between deconvolved 
BOLD and EEG filtered in alpha band was observed in the 
thalamus, and a negative one in the Occipital Lobe (Figure 3). 

 

 
 

 
The typical HRF shapes derived in these two regions in the 

two conditions are reported in Figure 4. Interestingly we 

observe two subfamilies of HRF shapes in the thalamus. 

Their nature and function will need to be investigated further.  

     

 
 

B. HRF modulations with eyes open and closed 

In order to study the modulations of HRF shape when 

opening or closing the eyes on a larger sample, we 

considered a data set of 48 healthy controls collected at 

          Figure 2 : parameters of the HRF retrieved at rest 

           Figure 3 : clusters of significant correlation (red) and 

anticorrelation (blue) between deconvolved BOLD and alpha power 

spectrum 

Figure 4 : HRF at rest in the occipital cortex (left) and in the thalamus 

(right) for eyes open and closed 
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the Beijing Normal University in China with 3 resting 

state fMRI scans of six minutes each. During the first 

scan participants were instructed to rest with their eyes 

closed. The second and third resting state scan were 

randomized between resting with eyes open versus eyes 

closed. In addition this dataset contains a 64-direction 

DTI scan for every participant. Data were preprocessed 

as described above. Using a contrast taking into account 

the three conditions (eyes closed, open, closed again), 

we observed significant differences in the height of the 

HRF in the areas depicted in figure 5. The 

corresponding HRF shape is also reported. 
 

 

 

 

 C. HRF modulations in induced loss of consciousness 

Twenty one healthy right-handed volunteers (age 

range, 18–34 yr; mean age ± SD, 23.4 ± 4.1yrs; 5 males) 

participated in the study. The subjects provided written 

informed consent to participate in the study. None of the 

healthy subjects had a history of head trauma or surgery, 

mental illness, drug addiction, asthma, motion sickness, 

or previous problems during anesthesia. The study was 

approved by the Ethics Committee of the Medical 

School of the University of Liege (University Hospital, 

Liege, Belgium). 

Functional MRI acquisition consisted of resting-state 

fMRI volumes repeated in four clinical states only for 

healthy volunteers: normal wakefulness (W1), mild 

sedation (S1), deep sedation (S2), and recovery of 

consciousness (W2). The temporal order of mild- and 

deep-sedation conditions was randomized. The typical 

scan duration was half an hour in each condition. The 

number of scans per session was matched in each 

subject to obtain a similar number of scans in all four 

clinical states (mean ± SD, 251 ± 77 scans/session).  

Functional images were acquired on a 3 Tesla 

Siemens Allegra scanner (Siemens AG, Munich, 

Germany; Echo Planar Imaging sequence using 32 

slices; repetition time=2460ms, echo time=40ms, field 

of view = 220mm, voxel size=3.45x3.45x3 mm, and 

matrix size=64x64x32). During data acquisition, 

subjects wore earplugs and headphones. The most 

comfortable supine position attainable was sought to 

avoid painful stimulation related to position. The same 

preprocessing procedure described above for the 

simultaneous EEG/fMRI data was applied also to these 

data. 

A two-sample t-test with three covariates (age, 

gender and mean framewise displacement [8]) was 

implemented in SPM8 to map group difference between 

four levels of consciousness, independently for HRF 

parameters. 

HRF parameters and the amount of spontaneous 

events for each subject individually were entered into a 

random-effects analysis (one-way ANOVA within 

subjects, with three covariate (age, gender and mean 

displacement) to identify regions which showed 

significant activation differences among four clinical 

states), a linear T contrast was computed, searching for 

a linear relationship between HRF and the level of  

consciousness of the subjects across the four conditions 

( contrast (W1 W2 S1 S2) [1.5 0.5 –1.5 -0.5]). 

Type I error due to multiple comparisons across 

voxels was controlled by false discovery rate method 

[9]. Statistical significance for group analysis was set at 

PFDR<0.05, derived from the Gaussian random field 

theory. 

As reported in figure 6, we observed statistical 

differences in all the three HRF parameters, as well as in 

the number of spontaneous events, mainly in frontal 

areas which are reported to be implicated in 

modulations of consciousness from traditional fMRI 

studies. The corresponding HRF shape is also reported. 

 
 

 
 

 

Figure 5 : statistical differences in HRF height with eyes closed, open 

then closed again (left), and typical shapes within the cluster (right) 

Figure 6 : statistics on pseudoevents and resting HRF parameters 

with a contrast following the level of consciousness, and typical shapes within 

the cluster (bottom right) 
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IV.  CONCLUSIONS AND FUTURE WORK 

We have presented a methodology to retrieve the 

hemodynamic response function at from resting state 

functional magnetic resonance imaging data. The 

results are promising since the shape of the retrieved 

HRF is consistent with the literature and supports 

evidences of the vascular flow. Additionally, the 

functional modifications to the HRF shape are 

consistent with evidence previously reported using 

different methodologies. The approach will need further 

validation using electrophysiological and 

cardiovascular data. 
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