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Abstract: For modelling damage in short fibre composites, both the predictions of the effective 

properties and the stresses in the individual inclusions and in the matrix are necessary. Mean field 

theorems are usually used to calculate the effective properties of composite materials, most 

common among them is Mori-Tanaka formulation. Owing to occasional mathematical and 

physical admissibility problems with the Mori-Tanaka formulation; a pseudo-grain discretized 

Mori-Tanaka formulation (PGMT) was proposed in literature. This paper looks at the predictive 

capabilities for stresses in individual inclusions and matrix as well as the average stresses in 

inclusion phase for full Mori-Tanaka formulation and PGMT for 2D-orientation of inclusions. 

The average stresses inside inclusions and the matrix are compared to solutions of full-scale FE 

models for a wide range of configurations. It was seen that the Mori-Tanaka formulation gave 

excellent predictions of average stresses in individual inclusions, even when the basic 

assumptions of Mori-Tanaka were reported to be too simplistic, while the predictions of PGMT 

were off significantly in all the cases. However, the predictions of the matrix stresses by the two 

methods were found to be very similar to each other. The average value of stress averaged over 

the entire inclusion phase was also very close to each other. Mori-Tanaka must be used as the 

first choice homogenization scheme.  

Key words: A-Short-Fiber Composites, C-Finite Element Analysis (FEA), C-Modelling, Mean-
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1. Introduction: 

Short fibre composites are a class of composite materials having short fibres randomly oriented in 

a resin. These materials are finding increasing relevance in the automotive industry to be used for 

semi-structural components. The predictions of various damage modes in short fiber composites 

components like fibre matrix debonding and fibre breakage requires the knowledge of both the 

effective properties of the composite and of the stresses and strains in the individual inclusions. 

The effective properties of composites are estimated, among other methods, using mean field 

homogenization schemes. Almost all mean field algorithms are based on the work of Eshelby [1]. 

The most popular among them was developed by Mori and Tanaka [2]. When the formulation of 

Eshelby and consequently Mori and Tanaka are applied to short fibre composites, fibres are 

modelled as ellipsoidal inclusions. Thus the terms, “fibre” and “inclusion" are generally used 

interchangeably in the context of homogenization of short fibre composites.  

By using the Mori-Tanaka formulation one can calculate the effective stiffness of a composite by 

estimating first the strain concentration factor in the inclusions and then relating the effective 

stiffness of a composite to the strain concentration factor by the following relation 

𝐶𝑒𝑓𝑓 = 𝐶𝑚 + ∑ 𝑐𝛼(𝐶𝛼 − 𝐶𝑚)𝐴𝛼𝑀
𝛼=1         (1) 

where, Ceff is the effective stiffness of the composite, Cm, Cα are the stiffness matrix of the matrix 

and inclusion respectively, cα is the volume fraction of individual inclusion, m is the total number 

of inclusions and Aα is the strain concentration factor which relates the strain in the inclusion to 

the applied strain. A detailed mathematical description of the Mori-Tanaka formulation can be 

found in literature[3].  

The Mori-Tanaka formulation is often criticized for giving physically inadmissible solutions. 

Mori-Tanaka and self-consistent schemes were shown by Benveniste et al., [4] to yield a 

symmetric effective stiffness tensor, only if the composite had reinforcements of similar shape 
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and alignment. Weng [5] noticed that the Mori-Tanaka approach in multi-phase composites could 

violate the Hashin - Shtrikman bounds. The effective property of a composite at unitary (100%) 

reinforcement was shown by Ferrari [6] to be depending on spurious matrix properties, this was 

described as “physically unacceptable”. It was concluded that the Mori-Tanaka approach is 

suitable for composites with reinforcements of similar shape and orientation or if the distribution 

of orientation is statistically homogenous random. However, the Mori-Tanaka formulation is 

often used for multiphase composites as well and it is this extension from two-phase composites 

to multi-phase composites with differently shaped reinforcements, not the original Mori - Tanaka 

assumption that occasionally produces physically inadmissible results. 

Pierard et al.[7] proposed a method to circumvent the mathematical problems of the Mori-Tanaka 

formulation. They discretized the representative volume element (RVE) to a number of “pseudo-

grains”. A pseudo-grain is defined as a bi-phase composite consisting of inclusions having the 

same orientation and aspect ratio. They applied the Mori-Tanaka formulation individually on the 

“pseudo-grains” and then volume averaged the stiffness of the grains to get the effective 

properties of the short-fibre composite. The basic idea behind breaking the homogenization 

scheme into two steps is the following: if each step individually satisfies all the conditions of the 

homogenization scheme, then the procedure in itself will satisfy all the conditions required for 

mean-field homogenization schemes. This approach eliminated the mathematical problems of the 

Mori-Tanaka formulation but introduced additional approximations with regard to the 

interactions between the inclusions. This idea of discretising the RVE into several “pseudo-

grains” was also implemented by Kaiser et al. [8]. We will call this “pseudo-grain” formulation 

of the Mori-Tanaka method in short the “PGMT” formulation. 

A number of different works describing comparison of the predictions of the effective 

response of composite materials by various mean field theories with finite element simulations of 
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microstructures can be found in literature, a few of them are Kari et al.[9], Gusav[10], Llorca et 

al.[11], Ghossein et al. [12] and Sun et al.[13]. A detailed review of different mean-field schemes 

for uni-directional short fiber composites can be found in [14]. A comparison between the 

predictions of effective response by the Mori-Tanaka formulation and PGMT formulation was 

done by Doghri and Tinel [15]. All the above articles [9-15] focussed primarily on the 

comparison of predictions of effective mechanical properties of RVE. Average stresses in 

individual inclusions are required to model damage events like fibre matrix de-bonding and fibre 

failure [16], while the average stresses in the matrix are usually used to model the material non-

linearity in the matrix. The predictions of average stresses in individual inclusions are as 

significant as the equivalent effective properties. For the case of non-aligned ellipsoidal 

inclusions, the micro-stresses in individual inclusions is a function of the orientation of the 

inclusion. Duschlbauer et al. [17] compared predictions of stresses in individual inclusions by a 

modified Mori-Tanaka formulation and finite element results for a RVE with 2d-planar uniform 

random arrangement of carbon fibers in copper matrix. But apart from this, there is limited 

literature validating the prediction of stresses in individual non aligned ellipsoidal inclusions by 

the Mori-Tanaka formulation and to our knowledge none for PGMT. In this paper, we compare 

the predictions of stresses in individual inclusions by the Mori-Tanaka formulation and the 

PGMT formulation with finite element calculations. A number of different cases including 

aligned inclusions, non-aligned inclusions including both approximations of 2D-planar uniform 

random and also statistical distribution of orientations and different length distributions are 

considered. All the models considered in this paper had only a planar variation of orientation. The 

aspect ratio of inclusions in most of the cases are taken to be 3 while, the volume fraction of 

inclusions vary from 0.01 to 0.25. For all the cases considered, a uniaxial load case is applied and 

comparison is made for both the stresses in the applied load direction S11 as well as transverse 
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loading direction S22. Average stresses in individual inclusions are referred in the rest of the 

article as “inclusion average”; while the average of stresses across all inclusions referred in the 

rest of the article as “phase average”. All the stresses are calculated in the global co-ordinate 

system of the orientation tensor. In section 2, a description of the implementation of the different 

techniques is presented. The results are presented in section 3, the results are discussion in section 

4. The conclusions are summarized in section 5 of this article. 

2. Methodology of the numerical experiments 

To compare the inclusion average stresses predictions by the Mori-Tanaka formulation and 

PGMT a series of RVE were created. The volume fraction of the inclusions varied from 1% to 

25%. For all the calculations, a second order orientation tensor “a”, was fed as an input to 

describe the orientation distribution of the inclusions [18]. Complete information about the 

orientations of inclusions is based on a fourth order orientation tensor. If the orientation is fixed 

or uniformly random the closure from second order orientation tensor a to the fourth order 

orientation tensor is exact. However for orientations which are neither uniformly random nor 

fixed, the estimation of the fourth order orientation tensor from the second order orientation 

tensor is not exact and some approximation is needed. In such cases, orthotropic closure method 

as described by Cintra and Tucker [19] was used for both the Mori-Tanaka and PGMT 

formulation.  

Within the scope of this paper, we have considered a 2D distribution of orientations for reasons 

of simplicity. In such a case, the orientation of inclusion is characterised by an angle φ, which is 

defined as the orientation of the inclusion with respect to the global x-direction. Pseudo-grain 

discretization of such an RVE, consisting of inclusions with different orientations but with same 

aspect ratio was done with the number of pseudo-grains equal to 30. Each pseudo-grain is 
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characterized by orientation vector p, and consists of a bi-phase composite containing inclusions 

whose orientation vector lies between p+dp. In our case since of 2D distribution of orientation 

each grains is characterised by an angle, phi φ and contains all inclusions having orientation 

between angle φ±dφ. A detailed description of the discretization of an RVE to a number of 

pseudo-grains is described in [7]. PGMT calculations were performed using the software 

DIGIMAT[20]. For the Mori-Tanaka formulation a realization of 1000 inclusions was used in all 

the calculations. 

2.1 Generation of finite element model 

For the finite element calculations, a volume element (VE) of the microstructure was built by 

using the random sequential adsorption algorithm[21]. For building the finite element model, 

meshing ellipsoids in the finite element solver ABAQUS [22] proved to be challenging for 

inclusions with aspect ratio higher than 5. Keeping this in mind, the aspect ratio chosen for the 

majority of the calculations was 3. Inclusions with a higher aspect ratio were modelled as a 

cylinder with semi-spherical ends. The placement of the inclusion centres was random in all 

cases. To ensure an acceptable mesh, the minimum distance between two inclusions was 0.0035 

times the diameter of the inclusion [23].  Periodic boundary conditions were applied to all the 

three axis of the VE cube to approximate an infinite VE as close as possible. Periodic structure of 

the cuboidal cells is ensured by splitting the ellipsoids intersecting the edge of cube into 

appropriate number of parts which is then copied to the opposite face of the cube. Three faces of 

the cube are meshed and then copied to the corresponding opposite face to ensure identical 

meshes on opposite faces. Periodic boundary conditions are applied to the cubic cell by applying 

the following equations: 

𝒖(𝑥, 𝑦, 0) −  𝒖𝑧 = 𝒖(𝑥, 𝑦, 𝐿) 
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                   𝒖(𝑥, 0, 𝑧) −  𝒖𝑦 = 𝒖(𝑥, 𝐿, 𝑧)              (2) 

(0, 𝑦, 𝑧) − 𝒖𝑥 = 𝒖(𝛼𝐿, 𝑦, 𝑧)  

Where, u is the displacement vector in the different faces of the cube and ux, uy, uz depend on the 

particular loading applied to the cubic cell. Uniaxial strain εx is applied by ux = (εxαL,0,0), uy = 

(0, uy, 0) and uz = (0,0, uz). uy and uz is then computed from the conditions. 

∫ 𝑇𝑦
 

Ω
𝑑Ω = 0 on y = L and ∫ 𝑇𝑧

 

Ω
𝑑Ω = 0 on z = L. Where Ty and Tz are the normal tractions 

acting on the prism faces contained in the transverse planes y = L and z = L. Similar boundary 

conditions can be applied for different loading directions as well. The ABAQUS solver was used 

to solve the finite element problem with C3D10M elements – a 10 node tetrahedron element 

(figure 1a, 1b, 1c), this was as prescribed by software DIGIMAT. 

 

Figure 1 Periodic cuboid showing Finite element Volume element(VE) Notice that the structure 
is periodic and inclusions intersecting a face of cube also appear on the opposite face. 
 Figure 1a VE containing 30 inclusions aligned in same direction, volume fraction of inclusions is 
0.161 and aspect ratio is 3. Figure 1b VE containing 30 inclusions having an approximate 
uniform random distribution of inclusions with orientation tensor (a11=0.52, a22=0.48) and a 
volume fraction of 0.25.  Figure 1c VE having inclusions with aspect ratios 3 and 15; the 
orientation of the inclusion with lower aspect ratio is uniformly random, while longer inclusions 
are aligned in one direction. The volume fraction of the both the phases are 0.05. 
  

2.2 Description of models considered 

The calculations performed can be grouped into three categories. A first set of models studied 

had inclusions with aspect ratio 3 and volume fraction 0.161 (equivalent to mass fraction of 30%, 

which is a typical value for injection moulded composites) were fully aligned to each other. For 

this case, two RVE are considered the first one had all the inclusions aligned in the same 

direction with value of orientation angle φ=0, whereas the second model has all inclusions with 
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value of orientation angle φ=90. This set of calculations was performed to compare the 

predictions of the Mori-Tanaka formulation with the FE results. PGMT for such configurations is 

equivalent to Mori-Tanaka formulation, since such an RVE which is already a biphase composite, 

pseudo-grain discretization leads to creation of a single pseudo-grain.  

A second set of models was built with approximate 2D-planar uniformly random orientations. 

The different volume fractions considered were 0.01, 0.1 and 0.25%. A third set of calculations 

were aimed at comparing the predictions of the Mori-Tanaka and the PGMT formulation when 

the assumptions of mean strain and image strain were said to be too simplistic [24]. First a model 

with non-uniform 2D-planar orientation is considered. Inclusions had an aspect ratio of 3, while 

the orientation distribution for this case was taken to be a11= 0.65, a22=0.35. Finally a 

comparison was made for the case of mixed aspect and mixed orientations, the model consisted 

of inclusions having aspect ratio 3 and 15. The inclusions with aspect ratio 15 were modelled as a 

sphero-cylinder while the inclusions with aspect ratio 3 were modelled as ellipsoids. The 

orientation of the inclusion with lower aspect ratio is an approximation of 2D-planar uniform 

random, while longer inclusions are aligned in one direction. This particular configuration was 

chosen to create a RVE so as to test the validity of the assumptions of the Mori-Tanaka 

formulation even in cases when there are inclusions with different aspect ratios as well as 

completely different orientation tensor for inclusion of each aspect ratio. A summary of the 

different volume elements considered are presented in table 1.  

Table 1: A summary of the different cases considered 

Sl. 

No. 
Description of inclusions in different models considered 

Volume fraction 

of inclusion 

1 Fully aligned inclusions with an aspect ratio 3, orientation angle, φ=0 0.161 

2 Fully aligned inclusions with an aspect ratio 3, orientation angle, φ=90 0.161 

3 
Inclusions with aspect ratio 3 having orientation distribution close to uniform 

random; a11= 0.54, a22=0.46 
0.01 

4 Inclusions with aspect ratio 3 having orientation distribution close to uniform 0.1 
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random; a11=0.51, a22=0.49 

5 
Inclusions with aspect ratio 3 having orientation distribution close to uniform 

random; a11=0.52, a22=0.48 
0.25 

6 

Inclusions having aspect ratios 3 and 15; the orientation of the inclusion with 

lower aspect ratio is uniformly random, while longer inclusions are aligned in 

one direction 

0.05 of each 

phase 

Finally the effect of pseudo-grain discretization on the stress predictions of the matrix region was 

compared. 

2.3 Size of Finite element model and checking for transverse isotropy 

Under periodic boundary conditions, the number of inclusions required to completely 

characterize an VE depends on the volume fraction of the inclusion phase. There are no 

theoritical estimations for minimum size of VE having anisotropic inclusions[25]. In such cases 

the accuracy of the numerical simulations is usually established by comparing the scatter in the 

effective response for different dispersions of reinforcements; this technique was used by 

Seguardo et al.[26] and Pierard et al.[27]. For a composite having inclusions of aspect ratio 3 and 

a volume fraction of 0.25 Pierard et al.[27] concluded that 30 inclusions was enough to limit the 

standard deviation in predictions of effective response to less than 1% even in the non-linear 

regime, 30 was thus seen as sufficient number of inclusions to form a VE.  

For our study, we decided to confirm this calculations for the same configurations as considered 

by Pierard et al. [27], but the constituent fiber and matrix properties are different. This particular 

configuration of inclusions with aspect ratio 3 and volume fraction of 0.25 is considered because 

in the study presented in this paper, the highest volume fraction considered is also 0.25. Multiple 

dispersions of volume elements with 10, 20 and 30 inclusions each subjected to an applied 

uniaxial strain of 1%. Like Pierard et al. [27] we noticed that mean of averages stresses in the 

volume element for different realizations for 10, 20, 30 inclusions were practically the same and 

equal to the Mori-Tanaka predictions of 60.2 MPa. We then assumed that the size of an VE 

would be sufficient if for an applied strain, the average stresses of the volume element in the 
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different realizations didn’t vary by more than 5% from each other. We found that for 20 

inclusions, the difference between the maximum and minimum value of average stresses in the 

volume element was less than the desired 5%, the maximum and minimum values of average 

stresses in the different realizations of the volume element was 58.6 and 62 MPa respectively. We 

however used 30 inclusions for most calculations.  

For the case of 2D-planar uniform random orientation described in section 2.2, the required 

orientation distribution tensor is a11=a22=0.5. A Finite element VE with 30 inclusions having 

aspect ratio 3 was created with a uniform random orientation of inclusions. Upon recalculation of 

the orientation tensor of the concrete VE based on the 30 inclusions, it was seen that there were 

some deviations from the ideal 2-D planar uniform random orientation. It was not possible to get 

strictly uniform random orientation for an VE with only 30 inclusions. A realization of volume 

element was considered to be a reasonable approximation of 2D-uniform random if the difference 

in effective response for axial and transverse loading is less than was within 5% of each other. 

This condition of 5% deviation in the effective response of volume element is the same condition 

as was choosen for estimating the minimum size of the volume element. The input orientation 

tensor for the mean field homogenization (both Mori-Tanaka and PGMT formulation) was the 

value of the orientation tensor recalculated from the orientations of the 30 inclusions in the FE 

model. 

The phase average stresses were calculated as a volume weighted average of the stresses in the 

elements forming the inclusion phase. For all the calculations, the inclusion phase was isotropic 

glass fibre and matrix was polyamide with an Young’s modulus of 72 GPa and 3 GPa 

respectively, while the Poisson’s ratio was 0.22 and 0.37 respectively.  

3. Results 
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A comparison of predictions for both inclusion average and phase average for a wide range of 

cases is presented in this section.  

3.1) Mori-Tanaka formulation for fully aligned cases 

For all model containing inclusions with orientation, φ=0, the predictions of phase average stress 

in the inclusions in the axial directions (S11) by the Mori-Tanaka formulation was 143.3 MPa 

compared to 143.2 MPa (figure 2a.) in the FE model. While for the case where all inclusions had 

value of orientation angle, φ=90, the Mori-Tanaka formulation phase average predictions of 

stresses in axial direction (S11) was 56.6 MPa, which was higher than the predictions of FE 

which was 61.6 MPa (figure 2b). In both the cases, the Mori-Tanaka formulation slightly 

underestimated the phase average stresses when compared to the values predicted by the FE 

model.  

There is also some scatter in the stress levels of the individual inclusions in the FE model, 

particularly in the transverse direction (figure 2c, figure 2d); this could be due to the fact that the 

immediate neighbourhood of the inclusions is different for the inclusions. For a confidence 

interval of 95%, the range was calculated to be 3.75MPa and 1.52 MPa respectively for 1a and 1b 

respectively. 
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Figure 2 Inclusion average and phase average stresses for an RVE with fully aligned inclusions, 
with aspect ratio 3 and vf = 0.164 for an applied strain of 1%, Figure 2a S11 for inclusions have φ 
= 0, Figure 2b inclusions have φ = 90, Figure 2c S22 for inclusions have φ = 0, Figure 2d S22 for 
inclusions have φ = 90. 

3.2) Mori-Tanaka formulation and PGMT for random orientation of inclusions 

The first step in this set of calculations is to ascertain whether the orientation distribution of the 

finite element model was a sufficient approximation of uniform random. First for the case when 

the volume fraction of inclusions is 0.01, for uniaxial loading of 1% strain, the orientation tensor 

recalculated from the discrete finite element volume element was (a11=0.54, a22=0.46). When 

subjected to loading in the axial direction, the average stresses in the axial direction was 

calculated to be 30.4MPa, while for the transverse loading the average stresses in the volume 

element was 30.1 MPa. Similarly for the case when the volume fraction of the inclusion was 0.1, 

the orientation tensor recalculated from the discrete finite element volume element was 

(a11=0.51, a22=0.49). Average stresses for axial and transverse loading was 34.6MPa and 

34.5Mpa repectively. In the final case when the volume fraction of the inclusions was 0.25 the 

orientation tensor recalculated from the discrete finite element VE was (a11=0.52, a22=0.48). 

Average stresses for axial and transverse loading was 55.7MPa and 54.4MPa respectively. Thus 

in all the three cases we were able to ascertain that our finite element models were reasonable 

approximations of the ideal 2d-uniform random case. The inclusion average stresses, S11 was 

found by all the three methods to follow a quasi-sinusoidal trend as a function of the orientation 
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of the inclusion. The inclusions with orientations closer to 0° with respect to the loading axis 

were stressed higher than the ones with higher orientation angles. However the peak in the curve 

of PGMT was much flatter than in the predictions by both Mori-Tanaka and full finite element 

calculations. The predictions by the PGMT were off significantly in all the cases. The predictions 

by both the Mori-Tanaka formulation and FE were however in excellent agreement with each 

other for both the axial (figures 3a, 3b, 3c) and transverse stresses (figures 4a, 4b, 4c) for all the 

three volume fractions considered. The scatter in the FE results was found to be increasing with 

increase of the volume fraction.  

The phase average stress in the inclusion phase was quite close to each other by all the MT, 

PGMT as well as full finite element calculations. For the RVE with volume fraction of 0.01 the 

predictions of phase average stresses were 78.9, 78.9 and 78.2 MPa for the Mori-Tanaka 

formulation, PGMT and FE calculations. Similarly the values of phase average stresses for the 

three methods was 83.7, 83.8 and 87.1 MPa respectively when the volume fraction was 0.1 and 

101, 100.6 and 104.2 MPa when the volume fraction was 0.25. The average stiffness of the 

composite is a direct function of the phase average stress (and strain). Because both methods give 

similar values of the phase average stress; both the methods, namely MT and PGMT can be 

expected to give similar predictions of the effective stiffness. 
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Figure 3 Inclusion average stresses in the global loading direction, S11 for random orientation of 
inclusions, applied load is 1% strain , figure 3a vf = 0.1, with orientation tensor (a11=0.51, 
a22=0.49); figure 3b vf = 0.01, with orientation tensor (a11=0.54, a22=0.46) figure 3c vf = 0.25, 
with orientation tensor (a11=0.52, a22=0.48). 

 

Figure 4 Inclusion average stresses transverse to the global loading direction, S22 for random 
orientation of inclusions, applied load is 1% strain. figure 4a vf = 0.1, with orientation tensor 
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(a11=0.51, a22=0.49); figure 4b vf = 0.01, with orientation tensor (a11=0.54, a22=0.46) figure 4c 
vf = 0.25, with orientation tensor (a11=0.52, a22=0.48). 

 

3.3) Mori-Tanaka formulation and PGMT for non-uniform distribution of inclusions 

In all the cases studied in section 3.2 the orientation of inclusions was close to uniform random. 

The assumption of uniform mean stress was described as reasonable for bi-phase composite and 

composites with ideal uniform random orientation of inclusions [4, 6, 24]. The results shown in 

previous section are in good agreement with this conclusion. A FE model was now created where 

the orientation distribution was not the ideal 2-D planar uniform random, which was analysed in 

the section 3.2. The orientation tensor recalculated from the discrete finite element volume 

element was (a11=0.65, a22=0.35). The effective stress response to axial and transverse loading for 

this model was 54.7 and 45.5 respectively, thus there is a 16.67% difference which is more 

allowed 5% deviation for 2D-planar uniform random case. Like was seen in the previous 

calculations, the Mori-Tanaka formulation was in excellent agreement with the FE results, while 

PGMT once again led to poor correlation. (Figure 5a, 5b). The mean-strain assumption of the 

Mori-Tanaka formulation might be valid even for a statistical distribution of orientations and 

PGMT leads to no obvious advantages in terms of predictions of inclusion average stresses. The 

predictions of average stress in the inclusion phase were once again very close to each other for 

all the three methods of analysis. The predictions for MT, PGMT and full FE calculations were 

100.7, 101.1 and 103.7 MPa respectively. 
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Figure 5 Aspect ratio of inclusions = 3, vf = 0.164 and orientation tensor (a11=0.65, a22=0.35). 
Applied load is 1% strain.Figure 5a Inclusion average stresses in loading direction. Figure 5b 
Inclusion average stresses in transverse to loading direction.  
 

For the case with distributed length of inclusions. The inclusion average of stress predicted by FE 

showed a significant scatter. PGMT once again gave a poor prediction. To better understand the 

scatter and validity of the predictions of the Mori-Tanaka formulation, a number of different 

realizations of VEs with the similar configurations (for the inclusions with aspect ratio 3, the 

orientation tensor components a11 and a22 varied in the range of 0.48 to 0.52) were created. It was 

seen that the FE predictions of the inclusion average stresses formed a scatter cloud to the 

predictions of the MT (figure 6a, 6b).  

Each realization of the VE has a unique combination of orientations of inclusions. On 

creating about 20 different realizations of the volume element, we were able to get at least 7 

different inclusions for most orientation of inclusion, φ. The inclusion average stresses for every 

orientation were averaged. Predictions of average inclusion stress by the Mori-Tanaka 

formulation were found to be in excellent agreement with the mean value of the inclusion average 

stresses calculated from different FE realizations (figure 6c, 6d). The confidence interval for 

significance level alpha = 0.05 is shown in the figure and is in the range of 10-15% of the mean 

value for most inclusions.  

 



  17 

 

Figure 6 The scatter of average stresses in inclusions with respect to orientation for inclusions 
with aspect ratio 3. RVE consisted of randomly oriented inclusions with aspect ratio 3 and 
aligned inclusions with aspect ratio 15. Figure 6a Variation of S11 Figure 6b Variation of S22. 
Figure 6c Polynomial curve fit of mean of inclusion average stresses of FE, also displaying 
confidence interval of α=0.05 of stresses for S11 Figure 6d Polynomial curve fit of mean of 
inclusion average stresses of FE, also displaying confidence interval of α=0.05 of stresses for S22. 
 

The stresses in the fully aligned inclusions having aspect ratio of 15 were predicted higher by 

both the mean field schemes when compared to the FE calculations. The average stresses in the 

individual inclusions varied from 321 MPa to 543 MPa with the average being 420 MPa in the 

FE calculation and 489 MPa and 475 MPa for Mori-Tanaka and PGMT respectively. The phase 

average stresses were predicted to be 259.8, 278, 285.9 MPa for FE, Mori-Tanaka formulation 

and PGMT respectively. The Mori-Tanaka formulation and PGMT predict marginally higher 

values of phase average stresses when compared with the FE calculations, but are once again 

close to each other. 

3.4) Effect of pseudo-grain discretization on the stresses in the matrix 

The matrix is treated differently in the three methods namely, the Mori-Tanaka formulation, the 

PGMT and the FE analysis. In the Mori-Tanaka formulation, the matrix is treated as one 

continuous medium while the matrix is discretized into a number of pseudo-grains in the PGMT 

formulation. In FE calculations, the matrix is broken into numerous elements and the stresses are 

calculated for each element. A direct comparison of the three methods is thus not possible.  
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In the PGMT formulation the matrix stresses in the different grains are calculated in different 

inclusion local-axis systems. For random orientation of inclusions with a11=0.65, a22=0.35, and 

aspect ratio 3 and a volume fraction of 0.164, the values of the matrix stresses in the different 

grains were different in their corresponding local systems. However, when these stresses were 

transformed to the global axis the difference was less than 1 per cent for all the above cases and 

also in excellent agreement with the Mori-Tanaka formulation. The variation of matrix stresses in 

different pseudo-grains is as shown in figure 7a and 7b. Thus, there is no observable difference in 

the values of the strains (and stresses) in the matrix with or without pseudo-grain discretization. 

The predictions of the finite element model showed a huge range of stresses in the matrix 

elements. A histogram with the variation of stresses in elements predicted by FE is shown in 

figure 7c. Neither the Mori-Tanaka formulation nor the PGMT managed to capture the huge 

variation of stresses in the matrix region. This is expected as both the Mori-Tanaka and the 

PGMT formulation give the value of matrix stresses in an average sense, nullifying completely 

the effect of stress concentration in the matrix region around the inclusions.  
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Figure 7a Stresses in matrices in local grain axis for PGMT formulation. Figure 7b Stresses in 
matrix in global axis for PGMT formulation. Figure 7c Histogram showing the variation of global 
stresses in individual matrix elements in the FE calculations, with predictions of the Mori-Tanaka 
and PGMT formulation. 

4. Discussion: 

As discussed above, the Mori-Tanaka formulation predicted correctly the inclusion average 

stresses whereas the pseudo-grain discretization led to incorrect prediction of the inclusion 

average stresses. After pseudo-grain discretization the individual inclusions are discretized in a 

field of inclusions having same orientation and aspect ratio to itself is therefore influenced by 

only inclusions which have orientation and aspect ratio. PGMT formulation seperates inclusions 

at a scale which it shouldn’t, this leads to loss of some interactions between the inclusions and 

also introduces spurious interactions between inclusions having the same orientation and aspect 

ratio.  

Both the Mori-Tanaka and PGMT formulations predicted similar values of the phase average 

stress. For the case of the Mori-Tanaka formulation the stresses (and strains) in the individual 

inclusions are averaged to estimate the strain concentration factor which is then used to calculate 

the effective stiffness. However, in PGMT, the effective stiffness of the individual grains is first 

estimated by the Mori-Tanaka formulation and then the effective stiffness of the composite is 

calculated as a volume weighted average of the stiffness of the individual grains. In a composite 

material having isotropic inclusions and matrix showing linear behaviour, the pseudo-grain 
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discretization is equivalent to redistributing the image strain unevenly among the inclusions. In 

such cases the predictions of phase average stresses of PGMT should be in good agreement with 

the predictions of Mori-Tanaka. This is also what was observed in our calculations.  

5. Conclusions  

Comparisons for stress predictions by the Mori-Tanaka formulation and PGMT for individual 

inclusions were performed for a wide range of inclusion configurations, each having atmost a 2D-

orientation of inclusions. In all the cases the Mori-Tanaka formulation proved to give good 

correlation with the finite element calculations. Pseudo-grain discretization however failed to 

give good estimates of the stress level in the individual inclusions while predicting correctly the 

phase average stresses. The assumption of the mean strain in the Mori-Tanaka formulation seems 

to be a reasonable estimate, even in cases when there was statistical distribution of orientation 

and length in inclusions. For the matrix phase, no significant differences were reported in the 

prediction of stress levels by full Mori-Tanaka formulation and by Mori-Tanaka formulation after 

pseudo-grain discretization.  

The scatter of deviation of the FE results for individual inclusions from the average trends 

predicted by the Mori-Tanaka formulation increases with increase in volume fraction of inclusion 

and also quite significantly when there is a length distribution. In such cases, the Mori-Tanaka 

formulation can only predict the general trend of stresses in inclusions with respect to 

orientations. It can be concluded that Mori-Tanaka formulation is a better approximation of 

reality and should be used as the standard (“first choice”) mean field homogenization method, 

particularly if the stresses in individual inclusions are important for further analysis. 
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