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Abstract: Designing efficient recombinant mucosal vaccines against enteric diseases is still a 

major challenge. Mucosal delivery of recombinant vaccines requires encapsulation in potent immu-

nostimulatory particles to induce an efficient immune response. This paper evaluates the capacity 

of β-glucan microparticles (GPs) as antigen vehicles and characterizes their immune-stimulatory 

effects. The relevant infectious antigen FedF was chosen to be loaded inside the microparticles. 

The incorporation of FedF inside the particles was highly efficient (roughly 85%) and occurred 

without antigen degradation. In addition, these GPs have immunostimulatory effects as well, 

demonstrated by the strong reactive oxygen species (ROS) production by porcine neutrophils 

upon their recognition. Although antigen-loaded GPs still induce ROS production, antigen loading 

decreases this production by neutrophils for reasons yet unknown. However, these antigen-loaded 

GPs are still able to bind their specific β-glucan receptor, demonstrated by blocking complement 

receptor 3, which is the major β-glucan receptor on porcine neutrophils. The dual character of these 

particles is confirmed by a T-cell proliferation assay. FedF-loaded particles induce a significantly 

higher FedF-specific T-cell proliferation than soluble FedF. Taken together, these results show 

that GPs are efficient antigen carriers with immune-stimulatory properties.
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Introduction
Mucosal vaccination is the most efficient way to protect human and animals against 

enteric infections. However, the development of effective mucosal vaccine subunits 

encounters multiple challenges, such as antigen damaging and limited immunogenicity.1–4 

The encapsulation of antigens in microparticles is a promising approach to overcome 

these problems, as they can protect the antigens against degradation as well as carry 

potent adjuvants or immune modulators to enhance the immunogenicity.5–7 Frequently 

used particle systems for oral immunization are those based on poly(lactic-co-glycolic 

acid); however, low antigen encapsulation efficiency and antigen degradation during 

their formation limit their use in commercial vaccines.8 On the contrary, β-glucan 

microparticles (GPs) are emerging microparticles known for their safety, immunoge-

nicity, and high antigen encapsulation efficiency.9–18 These promising antigen carriers 

are derived from the cell wall of Saccharomyces cerevisiae (Baker’s yeast) and are 

composed of .85% β-1,3-d-glucan polymers (β-glucans), ~2% chitin, and ,1% lipids 

and proteins, with the rest being mostly ash and moisture.15 The main component of these 

particles, the β-glucans, is a “microbe-associated molecular pattern”, which is very inter-

esting in vaccine development for its immunostimulating characteristics.19,20 We have 

previously reported that particulate β-glucans are mainly recognized by complement 

receptor 3 (CR3) on porcine innate immune cells and require the signaling molecule 
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FAK to carry out their immunostimulatory responses.21 

However, the receptor involved in the immunostimulat-

ing characteristics of GPs is not yet known. Many articles 

have described the strong potency of these GPs in eliciting 

durable immune responses in mice.9,10,14,22,23 Incubation of 

mouse bone marrow–derived dendritic cells with ovalbumin 

(OVA)-loaded GPs resulted in phagocytosis, upregulation 

of maturation markers, rapid proteolysis of OVA, and pro-

liferation of OVA-reactive transgenic CD8+ OT-I and CD4+ 

OT-II T-cells.14 However, the immunological effect of these 

particles on porcine innate immune cells has not been inves-

tigated yet. Moreover, besides the incorporation of model 

antigens, no clinically relevant antigens were incorporated 

in these GPs. We have incorporated FedF, the tipadhesin of 

F18 fimbriae, inside the particles, since this antigen is one of 

the most important virulence factors of F18+ Escherichia coli. 

E. coli carrying the F18 fimbriae colonizes the small intestine 

of pigs and cause postweaning diarrhea (enterotoxigenic  

E. coli [ETEC]) and edema disease (Shiga toxin-producing 

E. coli [STEC]) in pigs, resulting in economic losses to the 

pig production industry.24 The bacteria adhere to the intestinal 

epithelial surface with their fimbriae and produce enterotox-

ins, which induce secretion of electrolytes and water. Porcine 

ETEC strains can produce five fimbrial types (F4, F18, F41, 

F5, and F6), of which F4 and F18 are most frequently asso-

ciated with ETEC-induced diarrhea.25 The F18 fimbriae are 

polymeric proteins composed of several subunits: FedA is 

the structural subunit, while FedF is the tipadhesin mediat-

ing the binding of the bacteria to the epithelium. The FedF 

subunit of F18 fimbriae is located in a dedicated single-copy 

adhesin at the distal tip of the fimbriae.26 Tipadhesins are usu-

ally composed of two immunoglobulin (Ig)-like domains: an 

N-terminal lectin or receptor binding module and a C-terminal 

pilin. As it needs a complementary β-strand from the FedE 

subunit, using donor strand complementation is necessary to 

achieve a stable recombinant expression of FedF.27 To protect 

pigs against F18+ ETEC infections, local intestinal immunity 

is required. However, oral immunization with F18 fimbriae 

does not elicit protection in a piglet model, probably due to the 

presence of immunodominant epitopes in the FedA subunit.28 

We reasoned that oral immunization of piglets with purified 

FedF subunit would enable induction of protective immunity, 

but only if FedF is encapsulated inside microparticles so 

asto deliver higher amounts of antigens to the gut-associated 

lymphoid tissue and to induce strong immune responses by 

mimicking pathogen dimensions.

So, we incorporated FedF inside GPs for oral administra-

tion to induce intestinal FedF-specific antibody responses. 

In this study, we investigated the capacity of these GPs 

as both antigen vehicles and immunostimulants. Porcine 

immune cells were used as the translational model, because 

β-glucan recognition and signaling in porcine innate immune 

cells is closer related to humans than murine cells.21,29,30

Experimental section
generation of FedF
FedF was generated using the method of De Kerpel et al.27 

Briefly, the fedF
15-165

 gene from F18 E. coli 107/86 strain 

was cloned in the pDEST14 vector under a T7 promo-

tor. The gene was C-terminal truncated and then trans-

formed into E. coli strain C43 (DE3). The C43 (DE3) 

cells were grown, induced with 1 mM isopropyl β-d-1-

thiogalactopyranoside, and incubated for 2 hours. Cells 

were subjected to osmotic shock and the periplasmic extract 

was loaded onto a Source 3S column (Amersham plc, 

Amersham, UK) for cation exchange in 20 mM Tris (pH 

7.5). Proteins were eluted with 140 mM NaCl and further 

purified using gel filtration on a Superdex-75HR column 

in 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 

acid (pH 7.0) and 150 mM NaCl. Finally, the protein was 

dialyzed against 0.9% saline.

Development of gPs and protein 
encapsulation
To generate GPs, S. cerevisiae (Baker’s yeast) was treated 

with alkali and acid and dried at 20°C–25°C following alcohol 

and acetone washing steps.14,15 The resulting GPs were hol-

low and porous biomimetic 2–5 µm particles consisting 

of .85% β-1,3-d-glucan polymers (β-glucans), ~2% chitin, 

and ,1% lipids and proteins, with the rest being mostly 

ash and moisture.15 Subsequently, these GPs were loaded 

with FedF as previously described.14 Briefly, 10 mg of dry 

GPs were swollen with 5 mg FedF dissolved in 0.9% saline 

(1.25 mL) for 2 hours at 4°C, followed by lyophilization. 

These dry GP-FedF preparations were reswollen with 

300 µL aqua dest to maximize FedF diffusion into the GPs. 

Upon relyophilisation, FedF was trapped inside the GPs by 

adding 350 µL of 25 mg/mL transfer RNA (derived from 

torula yeast) in Tris, EDTA, and NaCl buffer (50 mM Tris 

HCl with 2 mM ethylenediaminetetraacetic acid and 0.15 M  

NaCl, pH 8.2) for 30 minutes at 50°C. To complete the 

complexation reaction, another 500 µL of 10 mg/mL trans-

fer RNA was added to the particles. The suspension was 

centrifuged, washed four times in 0.9% saline, and stored 

at -20°C (2.5 mg/mL).14 To calculate the amount of FedF 

trapped inside the GPs, the unbound FedF protein in the wash 
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fractions was measured by a bicinchoninic acid assay against 

a bovine serum albumin standard (0.05–1 mg/mL).

Western blotting
Incorporation of FedF inside the particles was confirmed 

using a protein gel electrophoresis after digesting the GPs 

with β-1,3-d-glucanase from Helix pomatia (Sigma-Aldrich 

Co., St Louis, MO, USA). FedF-loaded GPs were first incu-

bated in β-glucanases (1 mg/mL) diluted in 150 mM sodium 

acetate buffer (Sigma-Aldrich Co.) for 24 hours at 37°C. 

Proteins, released in the supernatants, were separated via 

sodium dodecyl sulfate–polyacrylamide gel electrophoresis 

consisting of a 12% separating gel and a 4% stacking gel. 

The gels were prepared by dissolving 30% acrylamide in 

Tris (pH 8.8), 10% sodium dodecyl sulfate, 10% ammonium 

persulfate, and tetramethylethylenediamine. To load the 

samples, the proteins were mixed in equal volume ratios with 

the loading buffer containing β-mercaptoethanol and heated 

at 100°C for 5 minutes. Electrophoresis was performed at 

28 mA for 1 hour. After separation, the proteins were trans-

ferred to a 0.45 µm polyvinylidene fluoride membrane (GE 

Healthcare, Stockholm, Sweden) at 40 V for 2 hours. Next, 

the membrane was blocked (1 hour at room temperature) with 

5% milk powder diluted in phosphate-buffered saline +0.1% 

Tween®20 (Sigma-Aldrich Co.) to prevent antibodies from 

nonspecifically binding to the membrane. Monoclonal 

anti-mouse FedF-specific antibodies (10 µg) were added 

overnight to the blot, followed by horseradish peroxidase-

conjugated rabbit anti-mouse IgG (1/2,000; Dako, Denmark 

A/S Glostrup, Denmark) for 1 hour at room temperature. The 

bands were visualized using enhanced chemiluminescence 

(ECL) Western blotting substrate (Thermo Fisher Scientific, 

Waltham, MA, USA) and ChemiDOC™ MP imaging system 

(Bio-Rad Laboratories Inc., Hercules, CA, USA).

Oxidative burst by porcine neutrophils
All animal experiments were approved by the animal care 

and ethics committee of the Faculty of Veterinary Medicine, 

Ghent University (Gent, Belgium; EC2013/62). Piglets 

(between 4 and 20 weeks old) were housed under standard 

conditions as blood donors. Peripheral blood was collected 

on heparin from the jugular vein of four pigs. Subsequently, 

neutrophils were isolated by density gradient centrifugation 

on a discontinuous Percoll gradient (68% and 75%; GE 

Healthcare) as described previously.31 To examine the immu-

nostimulating characteristics of the particles, the ability of the 

GPs to induce an oxidative burst response by porcine neu-

trophils was investigated. The production of reactive oxygen 

species (ROS) was measured by the chemiluminescence 

assay described by Donne et al32 with some modifications. 

Neutrophils were seeded in a 96-well plate at 2.0×105 cells/

well in Roswell Park Memorial Institute (RPMI) without 

phenol red. The plates were incubated at 37°C for 2 hours in 

a humidified atmosphere with 5% CO
2
 to allow the cells to 

adhere to the plastic surface. Subsequently, the supernatant 

was replaced by 175 µL luminol (0.5 mM). After 5 minutes 

of background measurement at 37°C, 25 µL of the indicated 

GPs (400, 200, or 100 µg/mL) were added. Stimulation of 

the cells with phorbol myristate acetate (PMA; 50 µg/mL) 

was used as a positive control. ROS production was then 

measured during 120 minutes in the integration mode. All 

stimulations were performed in duplicate. The ROS produc-

tion is expressed as relative light units.

Determination of the β-glucan receptor 
in porcine neutrophils
To analyze the role of dectin-1 and CR3 in the immunostimu-

lating characteristics of these GPs, the production of ROS by 

neutrophils was measured using the chemiluminescence assay 

(as already described) with some modifications. Neutrophils 

were seeded in a 96-well plate at 2.0×105 cells/well. The plates 

were incubated at 37°C for 2 hours in a humidified atmosphere 

with 5% CO
2
 to allow the cells to adhere to the plastic surface. 

Then, the cells were pretreated with the β-glucan receptor 

inhibitors for 1 hour at 37°C. To inhibit dectin-1, laminarin 

(1 mg/mL) was added to the cells. To inhibit CR3-mediated 

responses, monoclonal antibodies (mAbs; mouse IgG
1
 iso-

types) against CD18 (5 µg/mL) and CD11R3 (15 µg/mL) 

(Bio-Rad Laboratories Inc.) were added. These antibodies 

were dialyzed against phosphate-buffered saline to remove 

sodium azide. An isotype-matched mAb control (IgG
1
) was 

added to the cells to measure background inhibition. Sub-

sequently, luminol was added to the cells (0.5 mM diluted 

in Hanks’ balanced salt solution + Ca2+ Mg2+), and, after  

5 minutes of background measurement at 37°C, 25 µL of GPs 

(200 µg/mL) was added. Stimulation of the cells with PMA 

(50 µg/mL) was used as a positive control. ROS production 

was then measured after 120 minutes in the integration mode. 

All stimulations were performed in duplicate. ROS produc-

tion is expressed as relative light units.

generation of monocyte-derived 
dendritic cells
Peripheral blood monomorphonuclear cells (PBMCs) were 

isolated by density gradient centrifugation on Lymphop-

rep (Nycomed Pharma AS, Thermo Fisher Scientific). 
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Furthermore, monocytes were enriched from the PBMCs 

to a purity of .95% by positive immunomagnetic bead 

selection (MACS; Miltenyi Biotec, Bergisch Gladbach, 

Germany) using the anti-SIRPα monoclonal antibody 

(clone 74-12-15a33). These cells were seeded in a 24-well 

plate at a density of 0.5×106 cells/mL in monocyte-derived 

dendritic cell (MoDC) medium (Dulbeccos’ Modified 

Eagle Medium supplemented with 10% fetal calf serum, 

1% penicillin–streptomycin, recombinant porcine 1/200 

GM-CSF34 and 5 ng/mL IL-4). After 3 days incubation 

at 37°C in a humidified atmosphere at 5% CO
2
, fresh 

medium supplemented with GM-CSF and IL-4 at the same 

concentration to cells was added to generate MoDCs as 

previously described.35

antigen presentation assay
To investigate whether incorporation of FedF inside the 

particles is necessary to induce FedF-specific cellular 

immune responses, a coculture of MoDCs and CD6+ T-cells 

was set up. So, T-cells isolated from pigs immunized intra-

muscularly with 250 µg purified FedF in incomplete Freund’s 

adjuvant were used.36 CD6+ T-cells were enriched from 

PBMCs to a purity of .95% by positive immunomagnetic 

selection with the α-CD6 mAb (IgG
1
, clone a38b237) and goat 

anti-mouse microbeads (MACS, Miltenyi Biotec). MoDCs 

were stimulated with 8 µg FedF or FedF-loaded GPs (8 µg 

FedF encapsulated) for 24 hours or left untreated (control). 

These stimulated MoDCs were subsequently cocultured at 

titrated numbers with 1.0×105 autologous CD6+ T-cells for 

5 days, and then the [3H] methyl-thymidine (1 µCi/well; 

Amersham plc) incorporation (18 hours) was measured 

using a β-scintillation counter (PerkinElmer Inc., Waltham, 

MA, USA).

statistics
Data are presented as the mean ± standard error of the mean. 

Data were analyzed with GraphPad Prism 5 (GraphPad 

Software, Inc., La Jolla, CA, USA) using the paired t-test 

for comparison of two data and using a repeated measures 

analysis of variance (post hoc: Tukey) for comparison 

of multiple data sets. Data were considered significant at 

P,0.05.

Results and discussion
Efficient loading of FedF inside GPs
To assess if loading of FedF into GPs affects the antigenic-

ity, we performed Western blotting. FedF was incorporated 

inside the GPs with a loading efficiency of 84.53%±2.89%, 

thereby confirming the high loading efficiency of the GPs 

(Figure 1A). Furthermore, we examined by gel electropho-

resis the correct incorporation of FedF inside the particles. 

Therefore, we first destroyed the β-glucan particles by 

β-glucanases, after which the supernatants with the released 

antigens were loaded on a protein gel electrophoresis and 

detected by monoclonal FedF-specific antibodies (clone 

IMM0438). Figure 1B illustrates the protein FedF in lane 1 

Figure 1 FedF was efficiently incorporated inside GPs.
Notes: (A) The loading efficiency of FedF inside GPs was determined by BCA. Therefore, the unbound FedF protein in the wash fractions was measured by BCA against a 
Bsa standard (0.05–1 mg/ml). (B) FedF incorporation inside the gPs was analyzed by Western blotting after digesting the particles with β-glucanases. FedF was detected 
with specific monoclonal antibodies against FedF. Lane 1 illustrates FedF, while the FedF released from the GPs upon digestion is shown in lane 2.
Abbreviations: gPs, β-glucan microparticles; Bca, bicinchoninic acid assay; Bsa, bovine serum albumin.
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and the FedF released from the digested GPs in lane 2. As 

shown, both FedF and the released FedF migrate near the 

expected molecular weight of 18 kDa. No degradation is 

visible, indicating the correct incorporation of FedF inside 

the particles. On the basis of these results, we conclude that 

FedF is efficiently incorporated inside the particles.

FedF-loaded gPs still possess  
immune-stimulatory effects
To assess the effect of antigen loading on the inherent 

immunostimulating characteristics of the GP, we determined 

the oxygen radical production of porcine neutrophils after 

stimulation with antigen-loaded particles. Figure 2 demon-

strates that FedF-loaded GPs possess immune-stimulatory 

effects. Interestingly, hollow GPs could stimulate ROS 

production by neutrophils more than antigen-loaded particles, 

indicating that antigen loading partially masks the β-glucans 

of the particles from recognition by their receptors, dectin-1, 

and CR3.21

The immune-modulatory effects of gPs 
are mainly mediated by binding to the 
α-subunit of cr3
We further investigated which β-glucan receptor is involved 

in the particle-induced activation of porcine neutrophils. 

As shown in Figure 3, the GPs-induced ROS production 

by neutrophils was significantly inhibited in the presence 

of anti-CD11R3 as compared to its isotype-matched 

control. In contrast to the α-subunit of CR3, the ability of 

CD18-specific mAbs to block ROS production by porcine 

neutrophils was negligible (β-subunit of CR3). Interestingly, 

blocking dectin-1 by laminarin decreased ROS production 

as well, albeit not as much as CD11R3-specific mAbs. 

Although incorporation of antigens inside the particles seems 

to influence the recognition of GPs by dectin-1, CD11R3 is 

still the most important receptor for the GP-induced ROS 

production in porcine neutrophils.

T-cell proliferation is significantly 
increased when FedF is incorporated 
inside gPs
To assess whether GPs could serve as an immune stimulatory 

antigen delivery system, we investigated the FedF-specific 

T-cell proliferation after stimulation of MoDCs with 

FedF-GPs. As illustrated in Figure 4, FedF-loaded GPs 

promoted the antigen presentation capacity of MoDCs 

Figure 2 FedF-loaded gPs still possess their adjuvant function.
Notes: Neutrophils (2×105 cells) were stimulated with gPs at the indicated 
concentrations. rOs production was determined via chemiluminescence. Data are 
shown as the mean rlU ± seM of four pigs. *P,0.01.
Abbreviations: gPs, β-glucan microparticles; rlU, relative light units; rOs, reactive 
oxygen species; seM, standard error of the mean.

Figure 3 cr11r3 is involved in the recognition of gPs by neutrophils.
Notes: Neutrophils (2×105 cells) were incubated with laminarin (1 mg/ml), acD18 (5 µg/ml), acD11r3 (15 µg/ml), or isotype control (Igg1; 15 µg/ml). subsequently, the 
cells were stimulated with 200 µg/ml of the indicated gPs. rOs production was determined via chemiluminescence. Values shown are mean rlU ± seM of four pigs. Values 
of the negative control have been subtracted from the values represented on the graph. *P,0.05; **P,0.01.
Abbreviations: Igg, immunoglobulin g; gP, β-glucan microparticle; rlU, relative light units; rOs, reactive oxygen species; seM, standard error of the mean.
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to porcine CD6+ T-cells as compared to immature and 

FedF-stimulated MoDCs. Surprisingly, FedF stimulation of 

dendritic cells did not elicit T-cell proliferation, suggesting 

that FedF has an inhibitory effect on MoDCs. Clearly, the 

encapsulation of FedF inside immunostimulatory particles 

avoids this inhibitory effect and hence is necessary to induce 

T-cell proliferation.

Conclusion
GPs are emerging particles known for their high antigen-

loading capacity and safety. In this study, we evaluated the 

incorporation of a clinically relevant infectious disease antigen 

FedF, the tipadhesin of F18 fimbriae, inside these particles. 

The results clearly demonstrate that FedF is incorporated 

intact inside the particles with a high loading efficiency 

(84.5%). Besides antigen carrier activity, these particles are 

able to stimulate the innate immune system by binding to the 

α-subunit of CR3. To confirm the duality of these particles, we 

demonstrated in a T-cell proliferation assay that FedF inside the 

particles is processed by MoDCs and subsequently presented 

to T-cells, resulting in their activation and proliferation. Taken 

together, FedF-loaded GPs are promising vaccine candidates in 

the protection of pigs against F18+ ETEC and STEC infections, 

and this study motivates exploring this vaccine in vivo.
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