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Experimental feline enteric 
coronavirus infection reveals an 
aberrant infection pattern and 
shedding of mutants with impaired 
infectivity in enterocyte cultures
Lowiese M.B. Desmarets1, Ben L. Vermeulen1, Sebastiaan Theuns1, Nádia Conceição-Neto2,3, 
Mark Zeller2,3, Inge D.M. Roukaerts1, Delphine D. Acar1, Dominique A.J. Olyslaegers1, 
Marc Van Ranst2, Jelle Matthijnssens2,3 & Hans J. Nauwynck1

Feline infectious peritonitis (FIP) results from mutations in the viral genome during a common feline 
enteric coronavirus (FECV) infection. Since many virological and immunological data on FECV infections 
are lacking, the present study investigated these missing links during experimental infection of three 
SPF cats with FECV strain UCD. Two cats showed mild clinical signs, faecal shedding of infectious virus 
from 4 dpi, a cell-associated viraemia at inconsistent time points from 5 dpi, a highly neutralising 
antibody response from 9 dpi, and no major abnormalities in leukocyte numbers. Faecal shedding lasted 
for 28–56 days, but virus shed during this stage was less infectious in enterocyte cultures and affected 
by mutations. Remarkably, in the other cat neither clinical signs nor acute shedding were seen, but virus 
was detected in blood cells from 3 dpi, and shedding of non-enterotropic, mutated viruses suddenly 
occurred from 14 dpi onwards. Neutralising antibodies arose from 21 dpi. Leukocyte numbers were not 
different compared to the other cats, except for the CD8+ regulatory T cells. These data indicate that 
FECV can infect immune cells even in the absence of intestinal replication and raise the hypothesis that 
the gradual adaptation to these cells can allow non-enterotropic mutants to arise.

Feline coronaviruses (FCoVs) occur as two pathotypes, associated with either enteric or systemic diseases in 
cats. Feline enteric coronavirus (FECV) is an enterotropic virus, ubiquitously present in the cat population1,2. The 
enteritis caused by the intestinal replication can manifest as a transient anorexia, weight loss and/or diarrhoea, but 
clinical signs are often too mild to be noticed1,3,4. Feline infectious peritonitis virus (FIPV) most likely arises from 
FECV by accumulation of mutations in individually infected cats5–11. These yet not fully characterized mutations 
abrogate the enterocyte tropism but provide the virus with tools to productively replicate in monocytes/mac-
rophages, causing a highly fatal systemic disease, feline infectious peritonitis (FIP), which is characterised by a 
diffuse vasculitis, polyserositis and severe lymphopaenia12–17. To date, it remains unknown where, when, and how 
this pathotype switch is induced in FECV-infected cats.

Due to its pathogenic behaviour, FIPV has received considerable attention, and clinical, virological, and 
immunological parameters during both natural and experimental FIPV infections have frequently been stud-
ied14–16. The last decade, comprehensive studies on the FIPV parent virus, FECV, have extensively contributed to 
our current understanding of the epizootiology and pathogenesis4,18–20, but many crucial virological and immu-
nological data on the FECV-cat interactions are missing to fully understand the behaviour of this FIPV parent 
virus. Due to the lack of an FECV-susceptible cell line, there is so far no information on the infectivity (and its 

1Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, 
Salisburylaan 133, B-9820 Merelbeke, Belgium. 2Laboratory of Clinical Virology, Department of Microbiology and 
Immunology, Rega Institute for Medical Research, Minderbroedersstraat 10, B-3000 Leuven, Belgium. 3Laboratory 
of Viral Metagenomics, Department of Microbiology and Immunology, Rega Institute for Medical Research, 
Minderbroedersstraat 10, B-3000 Leuven, Belgium. Correspondence and requests for materials should be addressed 
to H.J.N. (email: hans.nauwynck@ugent.be)

Received: 20 October 2015

accepted: 21 December 2015

Published: 29 January 2016

OPEN

mailto:hans.nauwynck@ugent.be


www.nature.com/scientificreports/

2Scientific RepoRts | 6:20022 | DOI: 10.1038/srep20022

correlation with RT-qPCR results) of faeces, and on the generation of neutralising antibodies during FECV infec-
tions. Feline enterocyte cultures sustaining the replication of FECVs have previously been developed21, finally 
allowing the quantification of enterotropic viruses and neutralising antibodies in in vivo experiments. In addition, 
whereas immune responses during FIP development have been extensively studied13,16,17,22, hardly any infor-
mation is available on the dynamics of several leukocyte subsets during FECV infections. Moreover, although 
mutations play a key role in the FCoV pathogenesis, too little is known about the viral genome evolution during 
FECV infections and the impact of these mutations on the infectivity of the faecally shed viruses. Therefore, this 
study aimed at further broadening our knowledge on the FECV pathogenesis, by monitoring various clinical, 
virological (genome evolution, virus infectivity in enterocyte cultures, and onset and duration of viraemia), and 
immunological (presence of neutralising antibodies and the dynamics of several leukocyte subsets) parameters in 
the 3 months following inoculation of three specific pathogen free (SPF) cats with FECV strain UCD.

Results
Clinical signs. Mild clinical signs were seen in cat 1 and cat 3 during the first week after inoculation. They 
consisted of diminished appetite and moderate weight loss, to 95.4 and 88.4% of the initial weight for cat 1 and 3, 
respectively. Cat 1 also showed an increased body temperature at 4 (39.5 °C) and 6 (39.7 °C) dpi. No diarrhoea or 
changes in faecal consistency were observed. From day 9, both cats started to recover and reached their original 
(or slightly higher) weight at 21 dpi. Cat 2 showed no loss of appetite, weight loss or abnormal stool consistency 
during the entire experiment, but a slightly raised temperature (39.3 °C) was found at 7 dpi (Fig. 1).

Viral shedding. Faecal shedding was quantified by 2 different RT-qPCRs and by virus titration in feline 
enterocyte cultures. These 2 RT-qPCRs were used to assess the overestimation of genomic RNA by the generally 
used 3′  RT-qPCR23, as this RT-qPCR detects not only genomic RNA, but also all subgenomic mRNAs. As shown 
in Fig. 2, two different excretion patterns were detected. Cat 1 and cat 3 started shedding viral RNA from day 2–4 
onwards. For these 2 cats, faecal shedding peaked at 5 dpi, whereupon shedding slightly decreased but remained 
at high levels until 28 dpi, and even a second small peak was seen at 28 and 21 dpi for cat 1 and 3, respectively. 
Thereafter, viral RNA levels dropped and both cats had ceased shedding by 84 dpi. Viral RNA quantities were 
3–4.3 log10 higher with the 3′  RT-qPCR compared to the 5′  RT-qPCR, indicating that only 1/1000 to 1/20000 of 
all copies detected with the 3′  RT-qPCR are viral genomic RNA copies. Infectivity titration of faecal suspensions 
in feline enterocyte cultures showed that infectious virus was detectable from day 4 until day 21 (cat 1) or day 28 
(cat 3), but that infectious virus titres declined more rapidly than the RT-qPCR titres. In contrast to cat 1 and 3, an 
aberrant shedding pattern was found in cat 2. At day 2, viral RNA was detected with the 3′  RT-qPCR, but not with 
the 5′  RT-qPCR. Thereafter, viral RNA was undetectable until 14 dpi. From then, faecal RNA shedding appeared 
and remained high during the remainder of the experiment, and this cat ultimately stopped shedding 6 months 
after inoculation (data not shown). Remarkably, no virus replication was observed at any of the time points when 
faecal samples were inoculated on intestinal epithelial cell cultures.

Figure 1. Clinical parameters followed during the entire FECV UCD infection course. (A) Rectal 
temperature was monitored daily during the first week, and on day 9, 14, 21, 28, 56, and 84 pi. (B) Body weight 
was measured at day 0, 3, 5, 7, 9, 14, 21, 28, 56, and 84, and expressed relative to the weight before inoculation.
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RNA levels in saliva were the highest in all cats directly after inoculation. Subsequently, the days at which the 
samples were positive varied considerably between cats, and positive samples always contained very low amounts 
of RNA (data not shown).

Immunological parameters. Neutralising antibodies. For cat 1 and 3, neutralising antibodies were 
detected from 9 dpi and peaked at 21 (cat 3) or 28 (cat 1) dpi. In cat 2 with the delayed shedding pattern, similar 
signs of seroconversion occurred only after the onset of intestinal replication, with the first detectable antibodies 
appearing at 21 dpi. In all cats, antibody titres remained high until the end of the experiment (Fig. 2).

Dynamics of leukocyte subsets. For all cats, the absolute number of T cells, B cells, monocytes, and granulocytes 
were determined in blood taken at regular time points after inoculation. No abnormal leukocyte numbers were 
noticed in any of the cats, except for a depletion of peripheral granulocytes in cat 1 during the first 3 weeks pi. 
For each cat, T and B cell numbers followed a similar trend. All cats showed a small decrease in lymphocyte 
numbers, which started to resolve from 21 dpi, but this recovery phase was much more pronounced in cat 1 and 
3 compared to cat 2. Indeed, whereas lymphocyte numbers remained at pre-infection levels for cat 2, both cat 1 
and 3 showed a slight lymphocytosis, which coincided with cessation of shedding in both cats. Monocytes of cat 
1 and 2 slightly declined to rise back to pre-infection levels at 28 dpi, but numbers always remained within the 
normal limits (Fig. 3).

Quantification of natural killer (NK) and regulatory T cells (Tregs) showed no abnormal high or low NK cell- 
or Treg numbers during the infection. However, some trends were visible. In all cats, NK cells slowly declined 
until 14 or 21 dpi, whereupon they rose again to pre-infection level at 56 dpi. Treg counts similarly declined and 
rose in all cats. When analysing a subset of Tregs (CD8+ Tregs), which has been associated with suppression of gut 
immune responses, it was noticed that the delayed shedder had higher numbers of CD8+ Tregs, which increased 
until 7 dpi, whereas the number of CD8+ Tregs was slightly decreased during the first week for the other 2 cats 
(Fig. 4).

Viraemia. Both cell-free and cell-associated viraemia were assessed at regular time points for all cats, using 
the 5′  RT-qPCR. No cell-free viraemia was detected, but a cell-associated viraemia was observed at infrequent 
time points for all cats. In contrast to cat 1 and 3, viraemia in cat 2 was detected before the onset of faecal shedding 
(3 and 5 dpi), and no longer thereafter (Table 1).

Analysis of viral genome evolution in faeces. As mentioned above, several inconsistencies between the 
results for the faecal RNA shedding and the infectivity titration in enterocyte cultures were observed, including 
a total lack of infectivity for cat 2 during the entire study, and a reduction in in vitro enterocyte tropism for cat 1 
and 3 from 14–21 dpi onwards. To find an explanation for this discrepancy, the complete genomes of the faecally 
shed viruses were determined at different time points.

Table 2 shows the nucleotide and amino acid differences between the inoculum and the viruses found at an 
early shedding stage (day 7, 21, and 9 for cat 1, 2, and 3, respectively). Although inoculated with the same strain, 
every cat developed its own quasispecies very rapidly. The most striking difference was found in the viruses shed 
by cat 2, since 83.8% of all reads showed a 101 bp deletion in the 7b gene, resulting in the formation of a truncated 
7b protein with only 143 amino acids instead of 206. Surprisingly, this deletion was no longer found at a later time 
point (84 dpi) (Table 3), suggesting that viruses with an intact 7b protein were in time selected over the mutants 
containing the deletion. Other amino acid substitutions were found for this cat in nsp2, nsp5, and nsp6. In cat 1, 
no amino acid substitutions had occurred by 7 dpi, whereas for cat 3, single amino acid substitutions were found 
in a minority of the viruses in nsp6, nsp9, nsp12, and the spike protein at 9 dpi.

In contrast to the early shedding, viruses shed by all cats at the end of the infection had undergone numer-
ous changes in the viral genome, with the spike protein being the most affected in all cats (Table 3). Most of the 
mutations in the spike protein occurred in the globular S1 domain. These changes included deletions (cat 1 and 3)  

Figure 2. Faecal shedding and neutralising serum antibody response during FECV UCD infection. Faeces 
(or faecal swabs if faeces were not available) were taken at regular time points pi, and the total amount of viral 
RNA was quantified by RT-qPCR using either primers targeting the 3′  part of the genome and subgenomic 
mRNAs (3′  RT-qPCR, black dashed line) or primers against the ORF1b to detect only genomic RNA (5′  RT-
qPCR, black line). The amount of infectious virus was determined by titration of faecal suspensions in feline 
enterocyte cultures (orange dashed line). Neutralising antibody titres were assessed in the serum on day 0, 3, 5, 
7, 9, 14, 21, 28, 56, and 84 pi by virus neutralisation assay in enterocytes using FECV UCD (blue line).
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and various amino acid substitutions with possibly a high impact on the charge, polarity and/or glycosylation 
potential. Amino acid 33 was a hotspot for mutation, since the proline residue had changed to serine in cat 1 
(thereby adding a potential N-glycosylation site as predicted by the NetNGlyc server) and leucine in cat 2. In cat 
3, 90% of all viruses had a deletion of 8 amino acids in this region, whereas the other 10% showed the proline to 
serine substitution. All other changes in the S1 region of the spike protein differed between the cats, except for the 
amino acid substitution K665N that occurred in both cat 1 and 2. In contrast to the S1 domain, the S2 domain of 
the spike was less affected by mutations, as only one amino acid change had occurred in cat 2 and cat 3. One of 
these mutations (T1107I in cat 2) occurred in the heptad repeat 1 (HR1), a region that was recently shown to be 
affected by mutations in many FIP cats24,25. If one or more of these mutations in the spike protein can be linked 
to the reduced in vitro enterocyte tropism requires further investigation. Apart from the spike protein, mutations 
were also found in other proteins, which again differed between cats. All these results indicate that there is a 
strong selection pressure during FECV infections, which forces the virus to rapidly evolve, hence resulting in the 
onset of virus quasispecies that differ among cats.

Discussion
Feline infectious peritonitis (FIP) arises by mutations in the viral genome during a common feline enteric coro-
navirus (FECV) infection. However, studies on the latter, parental virus are scarce1,4,18–20, and many crucial data 
on FECV infections are lacking, which hampers our understanding of the pathogenesis. The present study reports 
a detailed investigation of various clinical, virological, and immunological parameters during an experimental 
FECV infection in three cats.

Analysis of the faecal shedding revealed two distinct excretion patterns. In cat 1 and 3, ingestion of the virus 
resulted in acute shedding of viral RNA, peaking at 5 dpi, followed by a plateau and a small second peak at 21–28 
dpi. Finally, shedding declined to undetectable levels at 84 dpi. This RNA excretion pattern is reminiscent of 
previous reports on experimental FECV infections4,19,20. Virus shedding determined by infectivity titration in 
feline enterocytes cultures was more transient, since infectivity titres declined already from 14–21 dpi, which 
made the ratio genomic RNA copies/infectious virus titre increase from 3–4 log10 during the first week, to up to 
8 log10 at 28 dpi. As the decrease in infectivity coincided with the onset of neutralising antibodies in cat 1 and 
3, a possible explanation for this lack of correlation is that neutralising antibodies in faeces caused an increased 

Figure 3. Absolute quantity of different leukocyte subsets during FECV infection. The absolute numbers 
of T cells, B cells, monocytes, and granulocytes were assessed by flow cytometric analysis of cells present in 
regularly taken blood samples. Two horizontal dashed lines represent reference values in healthy animals.
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underestimation of infectious virus in the cell culture-based assay. However, it cannot be excluded that this 
decreased in vitro infectivity was caused by one of the mutations found at this stage of the infection. In sharp 
contrast to these two cats, cat 2 showed a remarkably different and atypical excretion pattern. This cat lacked the 
acute shedding phase but suddenly started shedding virus from 14 dpi, without ever showing any of the clini-
cal signs associated with intestinal replication (anorexia and weight loss) seen in the other 2 cats or previously 
reported FECV UCD infected cats4. The shedding was also more prolonged compared to the other cats. A delay 
in faecal shedding has been described in one previous study, reporting no faecal shedding before 10 dpi in a cat 
inoculated with a weak-positive faecal extract26. However, in the present study all cats were infected with a high 
dose of the same inoculum (1011.3 RNA copies), and another previous study reported the successful inoculation of 
cats with FECV UCD at a dose as low as 105.7 RNA copies, without noticing this delay4. Another possible explana-
tion for this delay is that the original inoculation failed, and that this cat became infected later on by inadvertent 
transmission of the virus shed by one of the other cats. This explanation seems also very unlikely, as 1) cats were 
housed separately and precautions were taken to avoid inadvertent transmission, 2) FCoV RNA was found in 
saliva of this cat until 2 days after inoculation (data not shown), 3) viral RNA was found in faeces at day 2, indi-
cating passage of the inoculum without any further infection, and 4) the FECV genome in cat 2 differed markedly 

Figure 4. Number of NK cells and Tregs during FECV infection. NK cells, Tregs, and CD8+ Tregs were 
quantified by flow cytometry in regularly taken blood samples. Two horizontal dashed lines represent reference 
values in healthy animals.

Day pi

Cat 1 Cat 2 Cat 3

Plasma Cell- associated Plasma Cell- associated Plasma Cell- associated

0 — — — — — —

3 — — — Cq 34.2 — —

5 — — — Cq 32.7 — Cq 36.1

7 — Cq 35.8 — — — —

9 — Cq 29.3 — — — Cq 37

14 — Cq 36.5 — — — Cq 32.4

21 — — — — — —

28 — — — — — Cq 37.6

56 — — — — — —

84 — — — — — —

Table 1.  Detection of viraemia during the entire infection course.
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from the other cats. Indeed, a surprising finding resulting from full genome sequencing was that 83.8% of all 
viruses shed by cat 2 showed a 101 bp deletion in the 7b gene, resulting in a clearly shorter translation product 
(143 amino acids instead of 206). So far, the role of the 7b protein remains enigmatic, but this protein is believed 
to play a crucial role during natural FCoV infections as it is conserved in field strains11,16,27. Up to now, large 
7b deletions (56–406 bp) have only been seen in laboratory strains, whereas the gene is intact or only affected 
by small deletions (max 12 bp) in field strains (both FECV and FIPV)28. Therefore, it is interesting to find that 
FECV continues to replicate in the absence of an intact 7b, yet there was a positive selection pressure to restore 
its function as infection progressed. Because no 7b deletion mutants were found in the inoculum, this cannot be 
the reason why the virus did not replicate in the gut after inoculation. Consequently, the most plausible reason 
for the lack of acute shedding in cat 2 is that cat-dependent factors (such as harsh digestive conditions, absence 
of receptors and/or strong innate immunity) restricted the virus to replicate in the intestinal epithelial cells upon 
oral inoculation, as it is known that some cats are resistant to FECV infection29. However, this cat did suddenly 
start shedding virus from 14 dpi, and these viruses were not only affected by a 7b deletion, they were also no 
longer infectious in enterocytes, at least in vitro, as no additional inoculation studies were done with the faecal 
suspensions of this cat to confirm this feature. Nevertheless, given the huge differences in infectivity compared 
to the other 2 cats, it can be questioned if this virus was indeed shed by enterocytes, and not by another cell type 
residing in the intestinal mucosa, since the gradual adaptation to these non-enterocytes can explain the delay and 
can result in phenotypic changes induced by mutation or altered post-translational modifications. It is known 
that FECV is not confined to the intestinal epithelial cells but can also be found at low level throughout the body 
in cells of the monocytic lineage19,30. This systemic spread is supported by the cell-associated viraemia detected in 
the present study, although a recent report indicated that care should be taken when interpreting RT-qPCR-based 
viraemia data due to the occurrence of false positives at the limits of the assay (from Cq values of 37 onwards)17. 
In cat 2, a cell-associated viraemia with Cq values of 34.2 and 32.7 was noticed at day 3 and 5 pi, respectively, 
indicating a systemic spread in this cat. This early uptake by (most probably monocytic) immune cells, in addition 
to the initial lack of replication in enterocytes, can support the idea that the delayed shedding of mutant viruses 
that completely lacked in vitro enterocyte infectivity might have resulted from the gradual adaptation to the rep-
lication in locally present, mucosa-associated immune cells. The gradual adaptation to non-enterocytes may also 
give another explanation for the inconsistencies seen between RT-qPCR titres and infectivity titres at later stages 
of the infection in the other 2 cats.

Full genome sequencing revealed that the virus was faced with a high selection pressure in all cats, but none 
of the hitherto described FIPV-specific mutations in the spike and 3c genes were ever found during the entire 
study5,9,31,32. The onset of mutant viruses is not surprising, since RNA viruses generally have a high mutation rate, 
resulting in the formation of a genetic heterogeneous virus population (quasispecies) that allows these viruses 
to rapidly evolve by selecting new variants33. In the present study, notably the amino-terminal part of the spike 
protein had extensively mutated in all cats, and two of the three cats even showed small deletions (3 and 8 amino 
acids in cat 1 and 3, respectively) in this domain. The high mutation rate in the S1 part of the spike protein is 
not really unexpected, since it is known that this region is an important target for immunological selection, and 
hence antigenic drift25,27. However, the presence of deletions and the clearly diminished infectivity of these viruses 
observed in the present study will make it worthwhile to closer investigate the impact of such mutations. Indeed, 
to our knowledge, S1 deletions have been observed in various FIPV strains11,31,34, but not in enteric strains, which 
indicates that this region is potentially required for enterocyte infections, but dispensable for FIP development, as 

Sample
Affected nt position 

(compared to the inoculum1) Protein
Type of nt 

change
Amino-acid 

change

Cat 1 day 72
14284 nsp12 A >  G no

15049 nsp12 A >  G no

Cat 2 day 213

428 nsp1 C >  T no

763 nsp2 A >  G K159R5

9100 nsp5 C >  T S2938L6

9880 nsp6 C >  T S3198F7

17329 nsp14 T >  C no

28796–28896 7b 101bp deletion Y142L, H143L, 
early stop (143 aa)8

Cat 3 day 94

6287 nsp3 C >  T no

9880 nsp6 C >  T S3198F9

11647 nsp9 A >  G D3787G10

12844 nsp12 T >  C no

12846 nsp12 T >  C I171T11

21925 Spike S1 G >  T E518Y12

21927 Spike S1 G >  T E518D13

Table 2.  Nucleotide and amino acid changes in the viral genome during early shedding. 1GenBank 
accession number KU215419. 2GenBank accession number KU215420. 3GenBank accession numbers 
KU215421 (with 7b deletion) and KU215422 (without 7b deletion). 4GenBank accession number KU215423. 
582.4%, 662.3%, 744.6%, 883.8%, 931%, 1021.9%, 1140%, 12,1332.7% of all reads.
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suggested before34. Since this region is also a determinant for the enterotropism of the related alphacoronavirus 
TGEV35,36, one or more of these mutations may give an explanation for the loss of infectivity in enterocyte cul-
tures. In addition, some of the mutations could have an impact on the glycosylation of the virus, and hence change 
its interaction with C-type lectins that have been shown to be involved in FIPV infection of monocytes37–39. Apart 
from the amino-terminal spike protein, SNPs were also found in the more distal S1 domain, the S2 domain, 
nucleocapsid protein, membrane protein, and various non-structural proteins encoded by ORF1a. Although it is 
difficult at this point to make conclusions on the link between any of the observed mutations and the phenotype 
changes of the virus, the present study indicates that potentially not all faecally shed viruses in healthy cats are 

Sample
Affected nt position 

(compared to the inoculum1) Protein Type of nt change Amino acid change

Cat 1 day 282

2986 nsp3 G >  A R900H5

14284 nsp12 A >  G no

15049 nsp12 A >  G no

20470 Spike S1 C >  T P33S6

20609 Spike S1 A >  C H79P7

20932..20940 Spike S1 9bp deletion del aa186-1888

22127 Spike S1 A >  G H585R9

22368 Spike S1 G >  T K665N10

27429 Nucleocapsid T >  G V169G11

28770 7b C >  A no

28797 7b C >  T no

28803 7b C >  T no

Cat 2 day 843

763 nsp2 A >  G K159R12

1946 nsp2 C >  T no

9880 nsp6 C >  T S3198F13

13018 nsp12 C >  T no

18829 nsp15 A >  G no

20471 Spike S1 C >  T P33L14

20570 Spike S1 G >  A G66D15

20615 Spike S1 G >  A G81E16

20695 Spike S1 G >  A E108K17

20726 Spike S1 G >  A R118H18

20846 Spike S1 A >  G K158R19

20872 Spike S1 C >  T R/Q167W20

22368 Spike S1 G >  T K665N21

23693 Spike S2 C >  T T1107I22

26231 Membrane G >  A E37K23

28785 7b A >  G no

Cat 3 day 284

428 nsp1 C >  T no

3060 nsp3 A >  G K925E24

6614 nsp3 T >  C no

9880 nsp6 C >  T S3198F25

17329 nsp 14 T >  C no

20465..20488 Spike S1 24 bp deletion del aa31-38; F39I26

20470 Spike S1 C >  T P33S27

20702 Spike S1 A >  C/T D110A/D110V28

21076 Spike S1 C >  A depends on nt 21077

21077 Spike S1 A >  G Q235K/G29

21558 Spike S1 C >  T no

22084 Spike S1 C >  T P571S30

23135 Spike S2 A >  C N921T31

27199 Nucleocapsid T >  C no

28805 7b A >  G Q145R32

Table 3. Nucleotide and amino acid changes in the viral genome at day 28 (cat 1 and 3) or 84 pi (cat 2). 
1GenBank accession number KU215419. 2GenBank accession numbers KU215424 (with S1 deletion) and 
KU215425 (without S1 deletion). 3GenBank accession number KU215426. 4GenBank accession numbers 
KU215427 (with S1 deletion) and KU215428 (without S1 deletion). 5,6,7,9,12,13,14,15,16,17,18,20,21,22,23,28100%, 897.8%, 
1012.1%, 1118.6%, 1979.3%, 2424.3%, 2536.8%, 2690%, 2710%, 2938.8%, 3015.5%, 3113.9%, 3257.9% of all reads.
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actual enterotropic strains, but rather variant forms with a yet unclear cell tropism. Although no FIPV-associated 
mutations5,9,31,32 were found and none of the cats developed FIP, this continuous selection pressure on the virus 
may successively induce FIPV-specific mutations/glycosylation and/or result in mutations/deletions in no longer 
required (parts of) proteins, explaining the myriad of genetic changes found in FIP affected cats.

FIP development is characterized by extensive changes in blood leukocytes13,17,22, and the severity of the lym-
phopaenia strongly determines the outcome of the disease13,17. In contrast to FIPV, FECV did not induce major 
changes in peripheral leukocyte subsets, except for a granulocytopaenia in cat 1 during the first 3 weeks after 
inoculation, and a slight T and B cell lymphocytosis at 56 dpi for cat 1 and 3. This lymphocytosis coincided with 
the cessation of shedding in these cats. This, together with the fact that shedding did not stop when neutralis-
ing antibodies appeared, indicates that the cell-mediated immunity is not only important to overcome FIPV 
infections, but also to control FECV replication in the gut. FECV infection was characterised by a transient NK 
cell reduction in peripheral blood, which was most probably the result of migration of NK cells to the intestine 
or associated lymphoid tissue, since NK cells had an elevated CD11b and CD62L expression (data not shown). 
FECV infection appeared to be characterised by a transient lowered amount of peripheral Tregs, which can most 
probably also be explained by specific trafficking to the gut or associated lymphoid tissue. Acute or chronic virus 
infections are very often associated with an increase in peripheral Treg frequency or function, a feature that was 
not noticed in the present study. However, gut immunology seems to be substantially different from systemic 
immunity, notably given the fact that the gut has regulatory systems in place to induce tolerance against commen-
sal bacteria and food antigens, in which Tregs play a vital role. Manipulation of Tregs through accumulation or 
activation at sites of infection can also cause immune tolerance against pathogenic microorganisms, as exempli-
fied by protozoan (Leishmania major), nematodic (Heligmosomoides polygyrus) and bacterial (Helicobacter pylori) 
infections40,41. Whether these cells also contribute to the long-lasting or persistent shedding of FECV remains 
to be investigated. In addition, cat 2 showed a deviating pattern in peripheral circulating CD8+ Tregs compared 
to the other cats. This subset has gained substantial interest in the context of gut immunity to colorectal cancer, 
graft-to-host disease and rectal HIV/SIV infection, where they are associated with suppressed immunity42–44. 
However, if and how these cells played a role in the aberrant infection pattern of this cat remains elusive, as not 
much is known about the exact function of these cells.

In conclusion, the simultaneous assessment of various clinical, virological, and immunological parameters 
during experimental FECV infection revealed an aberrant infection pattern in one of the cats. Whereas FCoV 
infections are believed to start with replication in the gut, the aberrant infection pattern shows that FECV has the 
ability to infect (most probably monocytic) immune cells even in the absence of intestinal replication. In addi-
tion, it can be hypothesised that uptake of FECV by mucosa-associated immune cells can induce pressure on the 
virus to adapt to the replication in these cells, thereby changing some virus’ characteristics, which might give an 
explanation for the shedding of mutant viruses that completely lacked in vitro enterocyte tropism. Based on all 
these results, it seems that especially acutely infected animals are the major transmitters of FECV. However, given 
that FIPV arises by mutations and loses its enterocyte tropism, it warrants future research if variant viruses as 
detected in the present study also occur during natural infections and can increase the odds for FIP to occur, not 
only within the cat, but potentially also after transmission to other cats, the latter which might give an explanation 
for infrequently observed epizootics of FIP.

Methods
Ethical statement. All experimental procedures were approved by the Local Ethical and Welfare Committee 
of the Faculty of Veterinary Medicine, Ghent University (EC2012/042), and all methods were carried out in 
accordance with the approved guidelines.

Virus. A faecal suspension containing an unknown titre of the FECV strain UCD (originally isolated at UC 
Davis1) was kindly provided by Dr. P. Rottier (Utrecht University, The Netherlands). This suspension was diluted 
1/10 in phosphate buffered saline and stored at − 70 °C until use. The RNA copy number was determined using 
an RT-qPCR based on SYBR Green detection, using primers described by Gut et al. (1999) (see below). The sus-
pension was centrifuged at 16200 ×  g for 10 min to remove bacterial or host cells, and animals were infected with 
the suspension supernatant.

Inoculation and monitoring. Three 14 to 18 months old SPF cats were orally infected with 800 μ l of faecal 
suspension supernatant, containing 1011.3 viral RNA copies, while stimulating the swallowing reflex. Cats were 
housed in the same room but were separated from each other to avoid any physical contact between the animals. 
Additionally, precautions were taken to prevent exposure to any source of contaminating coronavirus. Briefly, 
with each handling, sterile clothing and footwear was ensured while litter trays, food trays and water bowls were 
cleaned and decontaminated daily. To ensure that no contamination could arise from the litter being used, fine 
sand was washed extensively and autoclaved to serve as litter. The cats were monitored each day during the first 
week after infection and subsequently on day 9, 14, 21, 28, 56, and 84. Each time, the rectal temperature was meas-
ured, lymph nodes were palpated, an oral swab was taken and faeces were collected. If faeces were not available, 
faecal shedding was monitored by inserting a cotton tipped swab (Copan diagnostics, CA, USA) into the rectum. 
Swabs were suspended in 1 ml DMEM supplemented with 1000 U ml−1 penicillin, 0.4 mg ml−1 gentamycin, and 
10% fetal bovine serum (FBS). Faeces were diluted 1:5 (w:v) in the same medium. Suspensions were centrifuged 
(2000 ×  g, 10 min) and supernatant was frozen (− 70 °C) until determination of the viral load. Additionally, on 
day 0, 3, 5, 7, 9, 14, 21, 28, 56 and 84, cats were weighed, and 5 ml blood was taken from the vena jugularis in 
heparin (15 U ml−1).
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One step RT-qPCR for the quantification of the viral RNA load. RT-qPCR for the detection of total 
viral RNA (3′ RT-qPCR). RNA was extracted from the faecal suspension or oral/faecal swab medium using the 
QIAamp Viral RNA Mini Kit. A one step real-time RT-PCR based on SYBR Green detection was performed with 
primers described by Gut et al. (1999), targeting a 102 bp fragment at the 3′  end of the genome23. A 15 μ l PCR 
mixture was used per reaction and contained 0.3 μ l Superscript™  III RT/ Platinum® Taq Mix, 7.5 μ l 2x SYBR® 
Green Reaction Mix with ROX (Superscript™  III Platinum® SYBR® Green One-Step qRT-PCR Kit with ROX, 
Invitrogen), 0.5 μ M forward primer FCoV1128f, 0.5 μ M reverse primer FCoV1229r and 3 μ l FECV UCD RNA 
or diluted standard RNA. A reverse transcription step of 20 min at 50 °C and a denaturation step at 95 °C for 
5 min were followed by 45 cycles each 15 s at 95 °C and 30 s at 60 °C. A first-derivative melting curve analysis 
was performed by heating the mixture to 95 °C for 15 s and then cooling to 60 °C for 1 min and heating back 
to 95 °C at 0.3 °C increments. Reverse transcription, amplification, monitoring and melting curve analysis were 
carried out in a Step One Plus™  real-time PCR system. Ten-fold serial dilutions of cRNA standards were made 
over a dynamic range of 6 log units (107–102) for the generation of the standard curve, showing an efficiency of 
92.41 ±  1.02%, R2 values of 0.99, and Y-intercept values of 44.87 ±  1.11.

RT-qPCR for the detection of genomic RNA (5′ RT-qPCR). RNA was extracted from the faecal suspensions using 
the QIAamp Viral RNA Mini Kit. Primer design and PCR conditions have previously been described21. Ten-fold 
serial dilutions of cRNA standards were made over a dynamic range of 6 log units (107–102) for the genera-
tion of the standard curve, showing an efficiency of 93.96 ±  0.76%, R2 values of 0.99, and Y-intercept values of 
37.61 ±  0.93.

Infectivity titration. Infectivity titrations were performed in feline colonocytes, as previously described21.

Determination of neutralising serum antibody titres. Sera were incubated at 56 °C for 30 min to inac-
tivate complement. Two-fold serial dilutions of the sera were mixed with an equal volume of a virus suspension 
containing 100 TCID50 FECV UCD and incubated for 1 h (37 °C, 5% CO2). Then, colonocytes were added and 
further incubated with the virus-serum suspensions for 3 days. Infection was visualised by means of immunoper-
oxidase monolayer assay, as previously described21. The virus neutralising titres were expressed as the reciprocal 
of the serum dilution that neutralised infection in 50% of the monolayers.

Leukocyte isolation. Blood mononuclear cells were separated on Ficoll-Paque. Maximum 2 ×  107 cells ml−1 
were resuspended in RPMI supplemented with 30% FBS, 100 U penicillin ml−1, 0.1 mg streptomycin ml−1, and 
10% dimethyl sulfoxide (DMSO). Subsequently, cells were frozen by lowering the temperature with 1 °C min−1 
until − 30 °C, followed by a 15 min incubation period at − 30 °C and finally lowering the temperature to − 150 °C 
at a rate of 1 °C s−1. Next, cells were stored in liquid nitrogen.

Antibodies used for leukocyte staining. Monoclonal antibodies against the epsilon chain of feline CD3 
(NZM1) and against feline CD56 (SZK1) were kindly provided by Dr. Yorihiro Nishimura (Tokyo University, 
Japan)45. Monoclonal antibodies FE5.4D2, and CA2.1D6 recognising feline CD8β , and canine CD21, respec-
tively, were purchased from Bio-Rad. A monoclonal antibody (FJK-16s), directly conjugated with Alexa fluor 647 
(AF647) and cross-reacting with feline Foxp3 was purchased from eBioscience. Monoclonal antibody CAT30A 
against feline CD4 was purchased from Veterinary Medical Research and Development (VMRD). Conjugated 
secondary antibodies (Invitrogen) were goat anti-rat Alexa Fluor 488, goat anti-mouse IgG R-Phycoerythrin, goat 
anti-mouse IgG2a Alexa Fluor 488, goat anti-mouse IgG1 Alexa Fluor 647 and goat anti-mouse IgG3 fluorescein 
isothiocyanate (FITC). When primary antibodies from the same IgG1 isotype were used, one primary antibody 
was labeled with Zenon Alexa Fluor 488 Mouse IgG1.

Leukocyte staining. Phenotyping of cells was performed simultaneously. All analysed cells were first 
stored in liquid nitrogen, facilitating analysis workflow. Several precautions were taken in order to preserve 
immunophenotypic properties as was done in previous research46. Briefly, cells were frozen directly after iso-
lation, they were stored at − 196 °C for the entire storage period and viability of thawed cells was 80–90%. A 
minimum of 1 ×  106 of frozen cells were stained for phenotypic analysis in RPMI supplemented with 1 mM 
Ethylenediaminetetraacetic acid (EDTA). Cells were incubated for 20 min at 4 °C while gently shaking, both with 
the primary and dye-conjugated secondary antibodies. Cells were washed with cold RPMI containing EDTA and 
centrifuged at 300 ×  g for 10 min at 4 °C. During regulatory T cell staining, surface molecules were first stained, 
after which cells were fixed with the fixation/permeabilisation kit optimised for staining of intracellular Foxp3 
(eBioscience). Cells were then stained with anti-Foxp3 antibody, directly conjugated with AF647. Analysis was 
done on a FACSCanto flow cytometer using FACSDiva software. After singlet gating, a minimum of 2 ×  105 
events was analysed.

Illumina sequencing of faecal samples. Faecal suspensions were filtered twice using 0.8 μ m and 0.45 μ m 
membrane filters. Two microliter of Benzonase Nuclease (Novagen), 1 μ l of Micrococcal Nuclease (New England 
Biolabs) and 1 μ l of NEBNext®  RNase III RNA Fragmentation Module (New England Biolabs) in 7 μ l of home-
made buffer (1 M Tris, 100 mM CaCl2 and 30 mM MgCl2, pH =  8) were added to 140 μ l of faecal filtrate, and incu-
bated for 2 h at 37 °C to destroy free and bacterial DNA/RNA. Next, seven microliter of 0.2 M EDTA was added to 
the sample for enzyme inactivation. Extraction of viral RNA was performed using the QIAamp Viral RNA Mini 
Kit according to the manufacturer’s instructions, but without adding carrier RNA. Total RNA was converted into 
cDNA using the Whole Transcriptome Amplification Kit (Sigma Aldrich). Therefore, 0.5 μ l Library Synthesis 
Solution was added to 2.82 μ l of RNA, followed by denaturation for 2 min at 95 °C. RNA was cooled to 18 °C and 
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0.5 μ l Library Synthesis Buffer, 0.4 μ l Library Synthesis Enzyme and 0.78 μ l of water was immediately added to the 
reaction. The mixture was subjected to the following temperature profile: 18 °C, 25 °C, 37 °C, 42 °C, and 70 °C for 
10, 10, 30, 10, and 20 minutes, respectively. Samples were cooled down to 4 °C followed by a brief centrifugation 
step. A mastermix containing 60.2 μ l of nuclease free water, 7.5 μ l of Amplification Mix, 1.5 μ l of WTA dNTP 
mix and 0.75 μ l Amplification Enzyme was added to the sample and incubated as follows: 94 °C for 2 min and 
30 cycles at 94 °C for 30 s and 70 °C for 5 min. WTA products were purified with the MSB® Spin PCRapace kit 
(Stratec) according to the manufacturer’s instructions and prepared for Illumina sequencing using the KAPA 
Library Preparation Kit (Kapa Biosystems), according to the instructions of the manufacturer.

Fragments ranging from 350–600 bp were selected using the BluePippin (Sage Science) according to the man-
ufacturer’s instructions. Sequencing of the samples was performed on a HiSeq™  2500 platform (Illumina) for 300 
cycles (150 bp paired ends). Raw reads were trimmed for quality and adapters, and were de novo assembled into 
contigs using SPAdes47. Scaffolds were classified using a tBLASTx search against all complete viral genomes in 
GenBank using an e-value cut-off of 10−10. Scaffolds with a significant tBLASTx hit were retained and used for a 
second tBlastx search against the GenBank nucleotide database using an e-value of 10−4. The obtained consensus 
sequences, and the identified deletions in the complete FECV genomes were checked and curated by mapping the 
trimmed reads back to the obtained consensus sequences using BWA48.
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