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ABSTRACT

In this contribution, we provide an exact BER analysis for
M-QAM transmission over arbitrarily correlated Nakagami-
m fading channels with maximal-ratio combining (MRC) and
imperfect channel estimation at the receiver. Assuming an
arbitrary joint fading distribution and a generic pilot-based
channel estimation method, we derive an exact BER expres-
sion that involves an expectation over (at most) 4 variables,
irrespective of the number of receive antennas. The resulting
BER expression includes well-known PDFs and the PDF of
only the norm of the channel vector. In order to obtain the
latter PDF for arbitrarily correlated Nakagami-m fading, sev-
eral approaches from the literature are discussed. For identi-
cally distributed and arbitrarily correlated Nakagami-m chan-
nels with integerm, we present several BER performance
results, which are obtained from numerical evaluation and
confirmed by straightforward computer simulations. The nu-
merical evaluation of the exact BER expression turns out to
be much less time-consuming than the computer simulations.

1. INTRODUCTION

Diversity combining techniques are efficient means of miti-
gating the destructive effects of multipath fading on the per-
formance of wireless communication systems [1, Chapt. 9].
When the channel state information (CSI) is known at the re-
ceiver, maximal-ratio combining (MRC) is the optimal way
to combine the multiple received signals into a single sig-
nal with improved signal-to-noise ratio (SNR) [2]. In many
practical applications, due to closely spaced diversity anten-
nas, there exists correlated fading between the received diver-
sity signals that results in a degradation of the diversity gain
obtained [1]. Numerous papers deal with MRC performance
analysis in the presence of arbitrarily correlated Nakagami-m
fading channels, e.g., see [3–10] and references therein. The
Nakagami-m distribution includes the Rayleigh distribution
(m = 1) and the one-sided Gaussian distribution (m = 1/2)
and is considered as a versatile statistical distribution that ac-
curately models a variety of fading environments [11].

In practice, however, the CSI is not a priori available and
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the receiver has to estimate the diversity channels. The ef-
fect of estimation errors on the SNR of MRC in Rayleigh
fading channels was examined in [12] and [13]. The symbol
error probability (SEP) of antenna subset diversity (ASD),
including the case of MRC, was studied in [14] forM-ary
quadrature amplitude modulation (M-QAM) and phase-shift
keying (M-PSK) on Rayleigh fading channels with imperfect
channel estimation (ICE). The exact bit error rate (BER) for
square/rectangular QAM with MRC and ICE in non-identical
Rayleigh fading channels was given in [15]. A similar analy-
sis for Rician fading channels was provided in [16]. In [17],
approximate BER expressions were given forM-QAM with
both MRC and equal-gain combining (EGC) in Nakagami
fading channels with ICE. In [18], the exact bit error prob-
ability (BEP) for MRC diversity systems utilizing binary
phase-shift keying (BPSK) was derived for arbitrary fading
channels with ICE. The resulting BEP expression requires
the evaluation of a single finite-range integral provided that
one can obtain the moment generating function (MGF) of
the norm square of the channel vector. However, since the
analysis in [18] is based on the result of [19, Appendix B], it
cannot be extended to non-binary signaling constellations.

In this paper, we provide an exact BER analysis forM-
QAM signals with ICE and MRC at the receiver over arbi-
trarily correlated fading channels. In Section 2 we describe
the observation model which includes theL arbitrary fading
channels and a generic pilot-based linear channel estimation
method. In Section 3, the exact BER is expressed as an
expectation over (at most) 4 variables that includes known
probability density functions (PDFs) and the PDF of the
norm of the channel vector. In order to obtain the latter PDF
for arbitrarily correlated Nakagami-m fading, several ap-
proaches from the literature are discussed in Section 4. Nu-
merical and computer simulation performance evaluation re-
sults are presented and discussed in Section 5, assuming arbi-
trarily correlated and identically distributed (i.d.) Nakagami-
m channels with integerm. The conclusions of the paper can
be found in Section 6.

Throughout this paper, the superscriptH represents the
vector (matrix) conjugate transpose, while diag{x}, det(X)
andE[x] denote the diagonal matrix with the elements of the
vectorx in the main diagonal, the determinant of matrixX,
and the expected value ofx, respectively. Furthermore, un-
less otherwise indicated, the indexesk, ℓ, andn take values
from the alphabet{1,2, . . . ,L}.



2. SYSTEM MODEL

Let us consider a wireless single-input multiple-output
(SIMO) communication system with 1 transmit andL receive
antennas, operating over a slow frequency non-selective arbi-
trarily correlated fading channel. Transmission is organized
in frames consisting ofKp known pilot symbols andK un-
coded data symbols. The pilot symbols are used by the re-
ceiver to estimate the channel, which is assumed to be con-
stant within one frame ofNfr = K +Kp symbols and changes
independently from one frame to another (block fading). The
L×Nfr received signal matrixRtot is given by

Rtot =
[

RpR
]

= h
[√

Epap
√

Esa
]

+
[

WpW
]

, (1)

whereh is theL×1 complex channel vector with elements
hℓ = rℓ exp(− j φℓ) whererℓ is the fading envelope,j2 =−1,
andφℓ is the random phase that is assumed to be uniformly
distributed over the range[0,2π). The 1×Kp pilot vector
ap and the 1×K data vectora = [a1,a2, . . . ,aK ] consist of
the pilot symbols and the information symbols, respectively.
TheL×Nfr matrix

[

WpW
]

describes additive spatially and
temporally white noise and consists of independent and iden-
tically distributed (i.i.d.) zero-mean circularly symmetric
complex Gaussian (ZMCSCG) random variables (RVs) with
varianceN0. We assume a normalizedM-QAM constella-
tion for the information symbols (E

[

|ai|2
]

= 1, 1≤ i ≤ K),
such that their average transmitted energy isEs. Similarly,
the energy of the transmitted pilot symbols isEp.

In order to estimateh from the known pilot vectorap and
the corresponding received signal matrixRp, the receiver
uses a linear channel estimator of the form

ĥ =
α

Kp
√

Ep
Rpa

H
p , (2)

with α ∈ R, such that̂h can be decomposed into the sum of
two statistically independent contributions as

ĥ = αh+n, (3)

where the entries ofn =
(

α/(Kp
√

Ep)
)

Wpa
H
p are ZMC-

SCG RVs; the real and imaginary parts of the entries ofn

have a varianceσ2
n = α2N0/(2KpEp). Hence, when condi-

tioned onh, the channel estimatêh is a complex Gaussian
RV with meanαh and diagonal covariance matrix with di-
agonal elements 2σ2

n. Both least-squares and linear MMSE
estimation satisfy (2) withα = 1 andα = KpEp/(KpEp+N0),
respectively [20].

Allocating a large total energyKpEp to pilot symbols
yields an accurate channel estimate, but on the other hand
gives rise to a reduction of the symbol energyEs. WhenEb

denotes the energy per information bit andγ , Ep/Es is the
ratio of the pilot energy to the data energy, we have

Es =
K

K + γKp
log2(M)Eb, (4)

whereM denotes the number of constellation points. Hence,
Es decreases when the number of pilot symbolsKp is in-
creased.

3. BER FOR M-QAM OF MRC WITH ICE

We consider a mismatchedL-branch MRC receiver that uses
the estimated channel vectorĥ in the same way an MRC re-
ceiver with perfect channel knowledge (PCK) would use the
actual channel vectorh. In this way, the detection algorithm
reduces to symbol-by-symbol detection:

âi = argmin
ã

|ui − ã| , 1≤ i ≤ K. (5)

where the MRC decision variablesui are given by

ui =
ĥ

H
rk√

Es
∣

∣ĥ
∣

∣

2 , (6)

with R = [r1,r2, . . . ,rK ].
In this contribution, squareM-QAM transmission with

Gray mapping is considered, which is equivalent to
√

M-
PAM transmission for both the in-phase and quadrature in-
formation bits. Because of the rotational symmetry of the
M-QAM constellation, it is readily verified that the BERs re-
lated to the in-phase and quadrature bits are equal. Hence,
it is sufficient to carry out the BER analysis for the in-phase
bits only. Also, since the conditional BER is the same for all
data symbolsai, irrespective ofi, we may drop the indexi in
the BER analysis. In this way, the BER for the mismatched
MRC receiver is obtained by averaging the conditional BER
for the in-phase bits (conditioned on the channelh, the chan-
nel estimatêh and the transmitted symbola). It is shown
in [21, eq. (23)] that the resulting BER expression can be
reduced to

BER=
∫

BERR(x1,x2,z,u)

p(x1,x2,z
∣

∣|h| = u)p(u)dx1dx2dzdu (7)

where |h| is the norm ofh, p(u) is the PDF of|h| and
BERR(x1,x2,z,u) is derived in [21, eq. (10)–(22)]. When
conditioned on|h|, x1, x2, z are independent variables given
by [21, eq. (20)–(22)], which satisfy the following proper-
ties:
• x1 is a Gaussian RV with meanα|h| and varianceσ2

n.
• x2 is a Gaussian RV with zero-mean and varianceσ2

n.
• z/σn is a chi-distributed RV with 2L−2 degrees of free-

dom [22].
It is important to note that instead of the joint distrib-

ution p(h) of the L complex-valued fading gains, we need
only the distribution of the norm|h|. Hence, the BER for
M-QAM involves an expectation over only 4 random vari-
ables. The expectation (7) is evaluated numerically by ap-
proximating the 4-fold integral by a 4-fold sum, running over
discretized versions of the continuous variablesx1, x2, z and
u. Considering the PDFs of the independent variablesx1,
x2 and z (conditioned on|h|), the integrand in (7) is, apart
from p(u), the product of well-known analytical functions.
Since the numerical evaluation of (7) requires the variableu
to be discretized, the PDFp(u) of |h| can be available either
in analytical form or as a (discrete) histogram obtained from
experiments.

The number of random variables to be considered in the
expectation (7) can be further reduced for PAM and BPSK
constellations and/or real-valued channels [21].



4. PDF OF THE NORM OF THE CHANNEL
VECTOR IN CORRELATED NAKAGAMI-M FADING

Let rℓ’s (with ℓ ∈ {1, . . . ,L} andL ≥ 2) be arbitrarily corre-
lated and not necessarily i.d. Nakagami-m distributed RVs
with marginal PDFs given by [11, eq. (22)]

prℓ (r) =
2r2mℓ−1

Γ(mℓ) Ωmℓ
ℓ

exp

(

− r2

Ωℓ

)

U (r) , (8)

with Γ(·) being the Gamma function [23, eq. (8.310/1)],
U (r) being the unit step function,Ωℓ = E

[

r2
ℓ

]

/mℓ being a
parameter related to the average fading power, andmℓ ≥ 1/2
being the fading parameters. The (k,n)-th element of the
power correlation matrix,Σ, of rℓ’s is given byΣk,n = 1 for
k = n andΣk,n = Σ

n,k = ρk,n for k 6= n with 0≤ ρk,n < 1. The
ρk,n’s are the Nakagami-m power correlation coefficients,
i.e., the correlation betweenr2

k andr2
n [1, eq. (9.195)].

Different approaches have been presented for deriving
analytical expressions for the distribution of|h|2 when as-
suming arbitrarily correlated Nakagami-m fading channels,
e.g., see [3, 5–10] and references therein. These approaches
obtain arbitrarily correlated Nakagami-m RVs either from
Gamma RVs [7–9] or from Gaussian RVs for integer val-
ues ofmℓ [3, 5, 6, 10]. Analytical expressions for the mo-
ment generating function (MGF) of|h|2 have been derived
for integermℓ = m, ∀ℓ [3, 5, 10], integermℓ [6] and arbitrary
mℓ [9]. Although, the obtained expressions in [3,5,10] can be
straightforwardly used for the derivation ofp(u), this seems
complicated using the MGF expression presented in [6] and
rather difficult with that in [9]. On the other hand, the PDF-
based approach has been used for deriving the distribution of
|h|2 for arbitrarymℓ = m, ∀ℓ [7] and for integermℓ with the
restriction thatΩ1 6= Ω2 6= · · · 6= ΩL [8].

By using the vast majority of the aforementioned ap-
proaches, the PDF of|h|2, f|h|2 (x), is given by either a finite
or infinite sum of terms of the form

Axξ−1 exp(−Bx) U(x), (9)

where the parametersA, ξ andB depend on the Nakagami-m
parametersmℓ, Ωℓ, and on the power correlation matrixΣ.

For integermℓ = m, ∀ℓ, the pdf of|h|2 is given by [3,5]

f|h|2 (x) =
κ

∑
i=1

ci m

∑
q=1

Ci,q

λ q
i (q−1)!

xq−1 exp

(

− x
λi

)

U(x). (10)

Here, λi’s, i = 1,2, · · · ,κ , are the distinct eigenvalues of
Ω

1/2
ΣGΩ

1/2, with corresponding algebraic multiplicities
ci, whereby the (k,n)-th element of the matrixΣG is defined
asΣk,n

G
=

√ρk,n, andΩ = diag{Ω1,Ω2, . . . ,ΩL}. The para-
metersCi,q are given by

Ci,q =
λ q−ci m

i

(ci m−q)!

[

dci m−q

dsci m−q Ψi(s)

]

∣

∣

∣

s=− 1
λi

, (11)

where

Ψi(s) =
κ

∏
j=1
j 6=i

(1+ sλ j)
−c j m . (12)

Alternatively, by applying a tridiagonal decomposition to
W = ΣG

−1 for integermℓ = m andΩℓ = Ω, ∀ℓ, f|h|2 (x) can
be expressed by fast convergent infinite summations [10] as

f|h|2 (x) =
det(W)m ΩLm

(m−1)!

∞

∑
k1,k2,...,kL−1=0

[

L−1

∏
i=1

( pi,i+1

Ω

)2ki

]

×
[

∏L
ℓ=1 (bℓ −1)!

∏L−1
i=1 ki! (ki +m−1)!

]

×
L

∑
i=1

bi

∑
t=1

Di,t

(t −1)!
xt−1 exp

(

− pi,i

Ω
x
)

U(x),

(13)

wherepi, j are the elements of the tridiagonal form ofW [10,
eq. (4)], b1 = k1 + m, bL = kL−1 + m, b j = k j−1 + k j + m,
∀ j = 2,3, . . . ,L−1, and

Di,t =
1

(bi − t)!

[

dbi−t

dsbi−t Φi(s)

]

∣

∣

∣

s=− pi,i
Ω

(14)

with

Φi(s) =
L

∏
j=1
j 6=i

(

s+
p j, j

Ω

)−b j
. (15)

For arbitrarymℓ = m, ∀ℓ, the pdf of |h|2 can be easily
obtained from [7, eq. 5], and includes an infinite summation
of terms of the form (9).

By using (10), (13) or the PDF resulting from [7, eq. 5],
and a standard RVs transformation,p(u) needed in (7) can be
easily obtained for arbitrarily correlated Nakagami-m fading
channels.

5. RESULTS AND DISCUSSION

In this section, we illustrate the exact BER analysis of MRC
over arbitrarily correlated Nakagami-m fading channels by
numerically evaluating (7). Assuming i.d. channels with in-
tegermℓ = m, ∀ℓ, the PDF of the norm of the channel vec-
tor is easily obtained from (10). Channel state information
is either known by the receiver or obtained through linear
MMSE channel estimation (Ep = Es). All numerical results
have been obtained for QPSK transmission. For the correla-
tion matrix (CM),ΣG, the following correlations have been
considered:
i) Uncorrelated CM (U-CM), whereΣG = IL, with IL being

theL×L identity matrix,
ii) Linear CM (L-CM), withΣG given by [5, eq. (38)],

iii) Triangular CM (T-CM), withΣG given by [5, eq. (37)],

iv) Constant CM (C-CM), withΣk,n
G

= 0.6 for k 6= n,
v) Arbitrary CM (A1-CM), with ΣG given by [10, eq.

(14)]), and
vi) Arbitrary CM (A2-CM), with ΣG given by [10, eq.

(34)]).
Fig. 1 shows the BER curves for a three-branch MRC re-

ceiver (L = 3). The results are shown for both a PCK receiver
and a mismatched receiver using MMSE channel estimation
(with K = 100 andKp = 10), for m ∈ {1,4}, and for dif-
ferent correlation models. These correlation models include
uncorrelated fading, with correlation matrix U-CM accord-
ing to i), and a linear and a triangular antenna array, with
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Figure 1: Three-branch MRC (L = 3) over correlated Naka-
gami-m channels, with uncorrelated (U-CM), linear (L-CM)
and triangular (T-CM) correlation matrices. Computer simu-
lations confirm the analytical curves obtained from numeri-
cal evaluation.

correlation matrices L-CM and T-CM according toii) and
iii), respectively. Also shown in the figure are computer sim-
ulations that perfectly match the analytical curves obtained
from numerical evaluation. From fig. 1, we can see how the
fading severity parameterm, imperfect channel estimation
and branch correlation affect the BER of MRC reception. A
larger m indicates less severe fading and causes improved
BER performance through a larger diversity gain [1, p. 797].
Both imperfect channel estimation and branch correlation de-
grade the BER through a horizontal shift of the BER curve
for large SNR, but without affecting the diversity gain. For
MRC on arbitrarily correlated Nakagami-m fading channels,
the diversity gain equalsmL [24]. Note that for highly corre-
lated channels (e.g., the triangular correlation model T-CM),
the BER degradation due to branch correlation is much larger
than the degradation due to imperfect channel estimation.

Fig. 2 displays the BER curves forL-branch MRC re-
ception over correlated Nakagami-m channels withm = 2,
for several values ofL. We assume a constant correlation
model [4, eq. (11)] with correlation matrix C-CM according
to iv). The results are shown for PCK and MMSE channel
estimation withK = 100 andKp = 10. Again, computer sim-
ulations confirm the result from numerical evaluation. From
fig. 2, it is clear that the number of receive antennasL has
a significant impact on the BER, because the application of
multiple antennas benefits not only from an increased diver-
sity order, but also from an array gain caused by combining
the energy received by each of the antennas.

Fig. 3 shows the BER curves for MRC reception over
arbitrarily correlated Nakagami-m channels. The results are
shown for a PCK receiver and a mismatched receiver using
MMSE channel estimation withK = 100 and several values
of the number of pilot symbols (Kp), and form∈ {1,3}. Both
four-branch (L = 4) and six-branch (L = 6) MRC are consid-
ered with correlation matrices A1-CM and A2-CM according
to v) andvi), respectively. In order not to overload the figure,
computer simulations are not shown in the figure.
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Figure 2: MRC over correlated Nakagami-m channels
(QPSK,m = 2, constant correlation matrix (C-CM)). Results
are shown for several values of the number of receive anten-
nasL. Simulations match the analytical result from numeri-
cal evaluation.
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Figure 3: MRC over correlated Nakagami-m channels
(QPSK,m ∈ {1,3}, L = 4 andL = 6 with corresponding ar-
bitrary correlation matrices A1-CM and A2-CM). Results are
shown for several values of the number of pilot symbolsKp.

6. CONCLUSIONS AND REMARKS

In this contribution, we derived an exact BER expression
for M-QAM transmission over arbitrarily distributed (corre-
lated) fading channels with maximal-ratio combining (MRC)
and imperfect channel estimation (ICE) at the receiver.
Channel state information was assumed to be obtained by a
generic pilot-based linear channel estimation method, which
includes the well-known least-squares estimation and linear
minimum mean-square error (MMSE) estimation as special
cases. The resulting BER expression involves an expecta-
tion over (at most) 4 variables, irrespective of the number
of receive antennas, and includes known probability density
functions (PDFs) and the PDF of the norm of the channel
vector. Several existing approaches to obtain the latter PDF
for arbitrarily correlated Nakagami-m fading were discussed.



Assuming arbitrarily correlated and i.d. Nakagami-m chan-
nels with integerm, numerical and computer simulation per-
formance evaluation results were presented and discussed.
Comparing the computing times resulting from numerical
averaging and from straightforward simulation, it turns out
that the numerical evaluation is to be preferred.
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