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Abstract 25 

The purpose of this study is to investigate (1) the induction of epigenetic effects in the 26 

crustacean Daphnia magna using DNA methylation as an epigenetic mark and (2) the 27 

potential stable transfer of such an epigenetic effect to non-exposed subsequent generations. 28 

Daphnids were exposed to chemical substances known to affect DNA methylation in 29 

mammals: vinclozolin, 5-azacytidine, 2’-deoxy-5-azacytidine, genistein and biochanin A. 30 

Effects on overall DNA cytosine methylation, body length and reproduction were evaluated 31 

in 21 day experiments. Using a multi-generational experimental design these endpoints 32 

were also evaluated in the F1 and F2 generation of both exposed and non-exposed offspring 33 

from F0 daphnids exposed to 5-azacytidine, genistein or vinclozolin. A reduction in DNA 34 

methylation was consistently observed in daphnids exposed to vinclozolin and 5-35 

azacytidine. Only in organisms exposed to 5-azacytidine was this effect transferred to the 36 

two subsequent non-exposed generations. A concurrent reduction in body length at day 7 37 

was observed in these treatments. For the first time, exposure to environmental chemicals 38 

was shown to affect DNA methylation in the parental generation of D. magna. We also 39 

demonstrated a transgenerational alteration in an epigenetic system in D. magna, which 40 

indicates the possibility of transgenerational inheritance of environment-induced epigenetic 41 

changes in non-exposed subsequent generations.  42 

 43 

Keywords.  2’-deoxy-5-azacytidine, 5-azacytidine, biochanin A, ecotoxicology, 44 

epigenetics, genistein, inheritance, vinclozolin 45 

 46 

1 Introduction 47 

 48 

Epigenetics has been defined as the inheritance of DNA activity that does not depend on 49 

the naked DNA nucleotide sequence (Esteller 2008b). Three mechanisms involved in 50 

epigenetic control are: DNA methylation, Polycomb and Trithorax group proteins in 51 

association with histone modifications and non-coding RNA molecules (Feil 2008). 52 

Numerous forms of interplay between these mechanisms have been reported (Chuang et al. 53 

2007; Guil et al. 2009).  54 

Exposure to environmental toxicants can induce epigenetic changes (Reamon-Buettner et 55 
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al. 2008). A recent review lists several environmental chemicals - such as metals, 56 

peroxisome proliferators, air pollutants and endocrine-disrupting chemicals - that are 57 

capable of modifying epigenetic marks (Baccarelli et al. 2009). In most cases DNA 58 

methylation is affected, but also histone modifications and microRNA expression can be 59 

altered by toxic stress. Different mechanisms may underlie the interaction between 60 

environmental toxicants and epigenetic changes. Tributyltin and triphenyltin for example 61 

have been shown to induce hypomethylation in the liver of the false kelpfish Sebastiscus 62 

marmoratus (Wang et al. 2009). This was attributed to imbalances in the transmethylation 63 

reaction between DNA and S-adenosylmethionine (SAM) / S-adenosylhomocysteine. 64 

The inheritance of epigenetic factors can be mitotic, i.e. between cells of one organism or 65 

between different organisms in case of mitotic parthenogenesis, or meiotic, i.e. between 66 

different generations of sexually reproducing organisms. Although most studies on 67 

transgenerational epigenetic inheritance deal with plants or mammals, it has also been 68 

reported in insects (Youngson et al. 2008). Transgenerational activation of a 69 

polycomb/trithorax response element and histone H4 hyperacetylation have been 70 

demonstrated in Drosophila (Cavalli et al. 1998). Transgenerational transfer of 71 

chromosome sets with hypomethylated DNA has been reported in the mealybug 72 

Planococcus citri (Bongiorni et al. 1999; Bongiorni et al. 2009). 73 

An interesting aspect of epigenetics for the field of environmental sciences is that 74 

environment-induced epigenetic changes can be transferred to subsequent generations even 75 

if the triggering environmental factor is removed. Mice fed with a methyl donor 76 

supplemented diet during gestation resulted in a shift in fenotypes up to two generations 77 

later, demonstrating a germ-line epigenetic change in a specific allele (Cropley et al. 2006). 78 

Anway et al. (2005) reported that non-exposed offspring of gestating female rats transiently 79 

exposed to vinclozolin and methoxychlor, exhibited reduced reproduction and altered DNA 80 

methylation patterns. If wide-spread epigenetic effects of environmental exposure are 81 

transferred to non-exposed future generations, this may have major consequences for the 82 

way ecological risk assessments of chemicals are performed as temporary exposures to 83 

contaminants may then compromise the future status of ecosystem structure and 84 

functioning. 85 

DNA methylation, which is the addition of a methyl group on the 5 position of DNA 86 
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cytosines, is one of the best studied epigenetic marks (Clark et al. 1994; Oakeley 1999; 87 

Bird 2002; Watson et al. 2002). It is hypothesized that DNA methylation at CpG sites 88 

represses transcriptional initiation, but not necessarily represses transcription as such (Bird 89 

1995). Recent research supports this hypothesis for infrequently transcribed genes 90 

(Mandrioli 2007; Suzuki et al. 2007). This implies that the presence or absence of DNA 91 

methylation at transcription start sites may have important consequences for various 92 

cellular processes. 93 

Recently, DNA methylation in CpG sites has been detected in the waterflea Daphnia 94 

magna, an important species in many aquatic ecosystems and a model organism used in 95 

aquatic toxicology and environmental risk assessment (Vandegehuchte et al. 2009a). The 96 

total amount of cytosine methylation in D. magna DNA is lower than in mammals and 97 

plants, but was shown to differ in daphnids with different exposure histories. Although 98 

local hypo- or hypermethylation could not be measured with the LC-MS based technique 99 

used, it was shown that one generation exposure to a sublethal Zn concentration caused an 100 

overall reduction in DNA methylation in the F1 offspring, which, however, was not passed 101 

on to the next generation (Vandegehuchte et al. 2009b). Daphnia has an interesting life 102 

cycle. It reproduces mainly through female parthenogenesis. However, certain 103 

environmental triggers (e.g. light, food) induce the production of males resulting in sexual 104 

reproduction (Zaffagnini 1987). In the laboratory, daphnids are maintained in their 105 

parthenogenetic state, in which diploid eggs develop into adult females. Oogenesis is in this 106 

case not fully meiotic nor strictly mitotic. However, no recombination occurs during 107 

parthenogenesis and as such parthenogenetic offspring are genetically identical to their 108 

mother (Hebert 1987). This makes Daphnia an ideal model organism for studying 109 

epigenetic transgenerational changes. It has been suggested that transgenerational effects in 110 

Daphnia, such as differences in the size of defensive helmets in offspring of females 111 

exposed to different predator kairomone concentrations, are based on gametic epigenetic 112 

inheritance (Agrawal et al. 1999; Youngson et al. 2008). 113 

The aim of this study is to investigate whether DNA methylation in D. magna is affected by 114 

exposure to substances with a well-known effect on DNA methylation in mammals. Second 115 

it is hypothesized that such an epigenetic effect can be transferred to multiple non-exposed 116 

generations of D. magna. Effects on global DNA methylation levels are measured, as well 117 
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as effects on length and reproduction of the daphnids. Two active pharmaceutical 118 

compounds that are known to inhibit DNA methyltransferases (DNMTs) were examined: 5-119 

azacytidine and 2’-deoxy-5-azacytidine (Piekarz et al. 2009). The isoflavones genistein and 120 

biochanin A were also evaluated as they have been associated with DNA hypermethylation. 121 

These substances were also shown to reduce DNMT activity and directly or indirectly alter 122 

DNA methylation (Fang et al. 2005; Dolinoy 2006; Dolinoy 2007). Finally the endocrine 123 

disrupting fungicide vinclozolin was tested as this compound induces aberrant methylation 124 

patterns after intraperitoneal injection in rats (Anway et al. 2005). 125 

 126 

2 Materials and Methods 127 

 128 

2.1 Daphnia cultures and experimental design 129 

Daphnia magna Straus (clone K6) used in all our experiments was originally collected 130 

from a pond in Kiel (Antwerp, Belgium) and has been successfully cultured under 131 

controlled laboratory conditions for more than 10 years. The culture medium used in all 132 

experiments consisted of aerated carbon filtered tap-water, enriched with selenium and 133 

vitamins (Elendt et al. 1990).  134 

Preliminary acute tests were performed according to OECD 202 guideline (OECD 1994). A 135 

series of five concentrations was made based on concentrated stock solutions of 5-136 

azacytidine (7000 mg/L in culture medium), 5-aza-2’-deoxycytidine (2333 mg/L in culture 137 

medium), Biochanin A (28426 mg/L in DMSO), Genistein (27 024 mg/L in DMSO) or 138 

Vinclozolin (350 g/L in acetone). All chemicals were purchased from Sigma-Aldrich, 139 

Bornem, Belgium. The actual test concentrations are given in the electronic supplementary 140 

material. Solvent controls were prepared for acetone and DMSO. Three replicate glass 141 

vessels were used with ten neonate daphnids in 25 mL test medium. Immobility was 142 

assessed after 48 hours as the number of daphnids that remained immobile for ≥ 10 s after 143 

test vessel swirling.  144 

Chronic tests were performed according to OECD guideline 211 (OECD 1998). 145 

Concentrated stock solutions of 5-azacytidine (50000 mg/L in DMSO), 5-aza-2’-146 

deoxycytidine (27000 mg/L in DMSO), Biochanin A (28426 mg/L in DMSO), Genistein 147 

(27 024 mg/L in DMSO) or Vinclozolin (71980 mg/L in DMSO), which were stored at -148 
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20°C, were used to make up 4 test concentrations of each substance. The actual test 149 

concentrations are given in the electronic supplementary material. For this test and for the 150 

multigeneration experiment, 5-azacytidine and 5-aza-2’-deoxycytidine were purchased 151 

from Carbosynth, Compton, UK. To ensure minimal mortality, test concentrations were all 152 

lower than the lowest concentration which caused a significant effect in the acute test. 153 

Solvent controls with 0.0176% and 0.05% DMSO were also tested. Ten replicate glass 154 

vessels with a single neonate daphnid in 50 mL test medium were maintained for 21 days at 155 

20°C ± 1 °C under a 16h/8h light/dark cycle. Media were renewed three times per week 156 

during which the number of living offspring were counted and discarded. Daphnids were 157 

fed daily with an algae mix consisting of Pseudokirchneriella subcapitata and 158 

Chlamydomonas reinhardtii in a 3/1 cell number ratio. The amount fed increased during the 159 

test: 250 µg/day in the first week, 500 µg/day in the second week and 750 µg/day in the 160 

third week. The length of each daphnid from the top of the head to the base of the spine was 161 

measured on day 7 and day 21 by analyzing a microscopic image with UTHSCSA Image 162 

Tool 3.0 (San Antonio, TX, USA).  163 

A multigeneration experiment was performed with daphnids exposed to 5-azacytidine, 164 

genistein and vinclozolin. Based on the results of the chronic test, concentrations were 165 

selected which were shown to have an effect on DNA methylation or on reproduction, but a 166 

limited or no effect on mortality. Nominal concentrations were 7.4 mg/L 5-azacytidine, 4.4 167 

mg/L genistein and 3.6 mg/L vinclozolin. Measured concentrations in freshly prepared 168 

medium were 2.9 ± 0.4 mg/L in F0, 2.3 ± 0.3 mg/L in F1 for 5-azacytidine; 4.7 ± 0.7 mg/L 169 

in F0-F2 for genistein and 0.54 ± 0.19 mg/L in F0, 0.45 ± 0.16 mg/L in F1, 0.18 ± 0.15 mg/L 170 

in F2 for vinclozolin. Organisms were cultured in a semi-static manner in glass vessels, 171 

using a volume of 10 mL per daphnid for the first week and 20 mL per daphnid from the 172 

second week onwards (Muyssen et al. 2006). Media were renewed three times per week. 173 

For each treatment, ten individual daphnids were maintained in parallel as described above. 174 

The length of these daphnids was measured on day 7 and 15. 175 

The culturing scheme is represented in Fig. 1. Neonates from the laboratory culture were 176 

divided into four batches. One batch of thirty daphnids was transferred into standard 177 

medium with 0.015% DMSO and cultured in this medium for three generations as a control 178 

(F0C-F2C). A second batch of organisms was transferred to a medium containing 5-179 
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azacytidine (A+), a third batch to medium spiked with genistein (G+) and the fourth batch to 180 

medium containing vinclozolin (V+). Third brood F1 neonates born from this F0A+, F0G+ or 181 

F0V+ generation were divided into two batches, of which one was transferred to the control 182 

medium (F1A-, F1G- or F1V-). These daphnids were thus only briefly exposed to the test 183 

substances during the first hours of their life cycle. The other batch was kept in the medium 184 

containing 5-azacytidine (F1A+), genistein (F1G+) or vinclozolin (F1V+). F1A-, F1G- and 185 

F1V- third brood, non-exposed offspring were further cultured in the control medium (F2A-, 186 

F2G- and F2V-), while offspring from F1A+, F1G+ and F1V+ were cultured in the same 187 

medium as their parents (F2A+, F2G+ and F2V+). Organisms were fed daily with an algae 188 

mix consisting of P. subcapitata and C. reinhardtii in a 3/1 cell number ratio. The amount 189 

fed increased during the test: 119 µg/org/day in the first week and 250 µg/org/day from the 190 

second week onwards. 191 

 192 

2.2 Chemical analysis 193 

Samples from the different treatments were taken at the beginning and end of the acute test, 194 

just before and after medium renewals in the chronic test and in each generation of the 195 

multigeneration experiments. Samples were stored in glass tubes at -20°C prior to analysis.  196 

The (deoxy)nucleoside analogues 5-azacytidine and 5-aza-2’-deoxycytidine were analyzed, 197 

after filtration of the incubation medium over a 0.45 μm filter, using LC-MS/MS with an 198 

external standard series in methanol. Chromatography was carried out on a Thermo 199 

Finnigan Surveyor LC system (San Jose, CA, USA) comprising a quaternary pump and an 200 

autosampler, equipped with a 5 µm 2.5 x 450 mm Sphinx C18 column obtained from 201 

Macherey-Nagel (Düren, Germany). Compounds were eluted at a flow rate of 400 µL/min 202 

using a linear gradient starting with a mixture of 50% A (0.01% aqueous formic acid) and 203 

50% B (acetonitrile) for 5 min. The methanol percentage was increased from 50 to 100 % 204 

during a 5 minute period. Analytes were detected with an LTQ ion trap mass spectrometer 205 

(Thermo Finnigan, San Jose, CA, USA) in the MS-MS positive ion mode using a Heated 206 

Electrospray Ionisation (HESI) interface at 180°C. Mass 245 ([M +H]+) was isolated for 5-207 

azacytidine or mass 229 ([M +H]+) for 5-aza-2’-deoxycytidine. The precursor isolation 208 

width was set to 2 Da, the activation Q to 0.25, and the collision energy to 40 %.  209 

The isoflavones genistein and biochanin A were extracted from the incubation media (2 210 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

8 
 

mL) by solid phase extraction using Isolute C18 columns (500 mg). Prior to extraction, 211 

chrysene (200 ng) was supplemented as an internal standard in both the samples and in the 212 

biochanin A and genistein standard series. The Isolute cartridges were preconditioned with 213 

4 mL methanol and 4 mL water. After passing the eluate and washing the cartridges with 4 214 

mL water and 2 mL hexane, elution was performed with 4 mL methanol. Subsequently, the 215 

extracts were evaporated to dryness under a stream of nitrogen and redissolved in 120 μL 216 

of methanol- 0.5% formic acid (50:50). Finally the extracts were centrifuged during 10 min 217 

at 2500xg and 4°C and injected into the LC-MS/MS in a volume of 30 μL. The HPLC 218 

apparatus consisted of a HP 1100 series pump, an AS3000 autosampler and HP vacuum 219 

degasser (Agilent, Palo Alto, USA), equipped with a Symmetry C18 column (5 µm, 150 x 220 

2.1 mm, Waters, Milford, USA). For separation of the different compounds, a linear 221 

gradient was used starting with a mixture of 50% A (0.5% aqeous formic acid) and 50% B 222 

(methanol). The methanol percentage was increased from 50 to 100 % during a 15 minute 223 

period. The flow rate was set at 300 μL/min. Between each sample the column was allowed 224 

to equilibrate at initial conditions (10 minutes). Analysis was carried out using an LCQDECA 225 

Ion Trap Mass Analyzer (Thermo Electron, San Jose, USA) with an electrospray ionization 226 

(ESI) interface (Thermo Electron). The compounds were detected in the MS-MS positive 227 

ion mode. Alternating scans were used to isolate [M +H]+ ions at masses 269.30 for 228 

genistein and 283.20 for biochanin A. The precursor isolation width was set to 2 Da, the 229 

activation Q to 0.25, and the collision energy to 45 %.  230 

Vinclozolin was extracted from the incubation medium (1 or 5 mL) by liquid /liquid 231 

extraction using three sequential extraction steps with equal volumes of hexane/diethylether 232 

(50:50). Prior to extraction, heptachlor was supplemented to the incubation medium (50 μL 233 

of 20 mg/L) to serve as internal standard. After centrifugation of the solvent-incubation 234 

medium mixture at 2500xg for 5 min, the different solvent fractions were pooled and dried 235 

under a nitrogen stream at 40°C.  Finally, the extract was redissolved in hexane and 236 

subsequently measured by GC-MS/MS. These analyses were performed using a Trace Gas 237 

Chromatograph 2000 fitted with a Polaris ion trap mass spectrometer (Thermo Fisher, 238 

Austin, TX, USA) and a Carlo Erba AS2000 Autosampler (Thermo Fisher). Helium 239 

(99.99% purity, Air Liquide, France) was used as carrier gas at a flow rate of 1 mL min-1 240 

and perfluorotributylamine (FC43) was used as calibration gas. A sample volume of 1 µL 241 
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was injected (split flow 60 mL min-1, splitless time 1 min). Chromatographic separation of 242 

the analytes and internal standard was performed on a BPX5 capillary column (25 m x 0.22 243 

mm ID) with a 5% phenyl-polysilphenylene-siloxane phase (0.25 µm film) (SGE 244 

Analytical Science Pty. Ltd., Victoria, Australia). The temperature program started at an 245 

initial temperature of 80°C. Temperature was increased to 140°C applying a ramp of 50°C 246 

min-1. Subsequently, an increase to 260°C was assessed using a ramp of 5°C min-1, holding 247 

this temperature for 3 minutes. Spectra were obtained in positive electron impact ionisation 248 

(EI) mode MS-MS scan. Mass range depended on the selected precursor ion, and the 249 

collision energy ranged from 1.15 to 1.30 V.  250 

For all analyses data processing was performed using Xcalibur® 2.0 software (Thermo 251 

Electron).  252 

 253 

2.3 DNA methylation analysis 254 

DNA was extracted from 21 day-old daphnids at the end of the chronic test and from 255 

daphnids on the first day the third brood was observed (day 14 to day 16) in the 256 

multigeneration experiment. This was not possible in the F1A+ treatment, in which no 257 

reproduction was observed up to day 21. Here DNA extraction of the 21 day-old daphnids 258 

was performed. The MasterPureTM kit (Epicentre, Madison, WI, USA) was used following 259 

the protocol for DNA extraction from tissue as provided by the manufacturer. Four to six 260 

adult organisms per replicate were rinsed with deionized water, blotted dry and shock 261 

frozen in liquid nitrogen prior to extraction. Hydrolysis of DNA was performed following 262 

Crain (Crain 1990). A sample of 1.3 to 4.25 µg DNA was adjusted to 16.8 µL with Tris-263 

HCl (1 mM, pH 7.4). The DNA was denatured by heating at 100 °C for 3 min in a warm 264 

water bath. The denatured DNA was hydrolyzed by adding 0.75 µL (1.5 units) nuclease P1 265 

(Sigma-Aldrich, Bornem, Belgium) and 1/10 volume of 0.1 M NH4OAc (pH 5.3). This was 266 

incubated at 45°C for 2 h. Subsequently, 0.002 units phosphodiesterase I (Sigma-Aldrich, 267 

Bornem, Belgium) and 1/10 volume of 1 M NH4HCO3 at pH 7.8 were added to the sample. 268 

This was incubated at 37 °C for 2 h. Phosphates were removed by adding 0.5 units alkaline 269 

phosphatase (Fermentas, St. Leon-Rot, Germany) and 1/10 volume phosphatase buffer and 270 

this mixture was incubated at 37 °C for 1 h, after which it was stored at -20°C prior to 271 

analysis. 272 
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Hydrolyzed DNA samples were analyzed for the detection of 5-methyl-2’-deoxycytidine on 273 

a Waters Acquity Ultra Performance Liquid Chromatography (UPLC) system with a 274 

Tandem Quadrupole (TQ) detector (Waters, Zellik, Belgium). The system was controlled 275 

by MassLynx software (version 4.1, Waters). LC separation was performed on a Waters 276 

Acquity UPLC HSS T3 1.8 µm column of 2.1 x 100 mm at a flow rate of 300 µL/min. A 277 

binary solvent system was used: 0.1% formic acid in water and 0.1% formic acid in 278 

acetonitrile. Inlet method, gradient, mass spectrometric methods and conditions, standard 279 

curves and monitored transition pairs were as described before (Vandegehuchte et al. 280 

2009b) For a number of samples the solvent flow was 350 µL/min and for the samples from 281 

the multigeneration experiment a different inlet method was used to optimize system 282 

stability. From t = 0 min to t = 2 min elution remained isocratic at 300 µL/min and 99% of 283 

water, after which a gradient was created to 70.9 % aqueous at t = 4.40 min. This dropped 284 

to 65% aqueaous at t = 4.50 min and was set to a washing step of 90% organic from t= 4.51 285 

min to t = 5.51 min. Subsequently an equilibration step at initial conditions but with a flow 286 

of 500 µL/min followed from t = 5.52 min to t = 7.51 min, after which the flow was set 287 

back to the initial 300 µL at the end of the run at t = 7.52 min.  288 

The relative 5-methyl-2’-deoxycytidine (mdC) content is expressed as a fraction of the total 289 

measured dG concentration or as % [mdC]/[dG] (Song et al. 2005). Both [mdC] and [dG] 290 

were quantified using an external standard series prepared with commercially available 291 

mdC (US Biological, Swampscott, MA, USA) and dG (Aldrich, Bornem, Belgium).  292 

It should be clear that this method measures overall cytosine methylation, implying that 293 

effects on the DNA methylation at specific loci may go undetected, e.g. when 294 

hypomethylation in a certain region of the genome is accompanied by hypermethylation in 295 

another region. 296 

 297 

2.4 Statistical analysis 298 

EC50s (Effective Concentration causing immobility in 50% of the daphnids) for the acute 299 

tests were calculated with the trimmed Spearman-Karber method using the US EPA 300 

software (http://www.epa.gov/nerleerd/stat2.htm) (Hamilton et al. 1977). All other statistics 301 

were performed with Statistica (Statistica, Tulsa, USA) or with Excel (Microsoft, 302 

Redmond, USA). Differences in reproduction (total number of juveniles per surviving 303 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

11 
 

female adult), length or DNA methylation between treatments in the chronic and 304 

multigeneration experiment were assessed using Dunnett’s test based on the pooled residual 305 

standard deviation, which was calculated with ANOVA. If an increase or decrease in 306 

reproduction, length or DNA methylation could be expected a priori, a one-tailed Dunnett’s 307 

test was used. In all other cases a two-tailed Dunnett’s test was performed. For DNA 308 

methylation as % [mdC]/[dG], a bootstrapping method was used to incorporate the error 309 

due to the uncertainty of the standard curves of mdC and dG (Vandegehuchte et al. 2009b). 310 

The method (either with or without the bootstrapping) resulting in the largest standard 311 

deviation was used for assessing differences between treatments. For reproduction in the 312 

multigeneration experiment, F0A+ and F1A+ were treated as outliers due to the large number 313 

of replicates with zero reproduction (which caused the variance in these treatments to be 314 

very low). Assumptions of normality and homoscedasticity were tested with Shapiro-315 

Wilk’s test and Bartlett’s test, respectively. When the homoscedasticity assumption was not 316 

met, a Kruskal-Wallis non parametric test was used. If differences between treatments were 317 

detected with Kruskal-Wallis, treatments were compared with controls using Mann-318 

Whitney U tests. When the DNA methylation between a treatment and a control was 319 

compared with Mann-Whitney U, a bootstrapping method was also used to incorporate the 320 

uncertainties on the standard curves of mdC and dG. For both treatments with r replicates, a 321 

random replicate was sampled r times (with replacement). For each selected replicate, a 322 

random value was selected from the t distribution associated with the uncertainty of the 323 

regression curves. This was repeated 2000 times. On these 2000 sets of two treatments, a 324 

Mann-Whitney U test was performed, with an associated p-value. The average of these 325 

2000 p-values was taken as the final p-value for this Mann-Whitney U test. In all tests, the 326 

limit of significance was set at p = 0.05. 327 

 328 

3 Results 329 

 330 

3.1 Acute tests 331 

Control immobility was 0 % in all controls, including the solvent controls. EC50s are 332 

summarized in Table 1. For 5-aza-2’-deoxycytidine, no immobility was observed in any of 333 

the concentrations tested, while for vinclozolin, only 2 out of 30 daphnids were immobile 334 
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after 48 h exposure to the highest concentration. The EC50s are based on concentrations 335 

measured at the beginning of the test. The concentrations generally decreased during the 336 

48h tests. At the end of the test, the concentrations of 5-azacytidine, 5-aza-2’-deoxycytidine 337 

and vinclozolin were reduced to the following fractions of the initial concentrations: 6 to 77 338 

%, 29% and 1 to 15%, respectively (see electronic supplementary material). The isoflavone 339 

concentrations remained rather constant throughout the test. From nominal concentration of 340 

≥ 3.6 mg/L (measured concentration 0.182 ± 0.099 mg/L) vinclozolin, small non-dissolved 341 

particles could be observed in the test medium. This is in accordance with the water 342 

solubility of 3.5 mg/L vinclozolin at 20 °C (Vallero et al. 2003). 343 

 344 

3.2 Chronic experiments  345 

Differences between treatments will only be discussed when they are statistically 346 

significant (p < 0.05). 347 

LOECs are expressed as average measured concentrations in freshly prepared medium 348 

(Table 2). The concentration of some compounds decreased considerably between two 349 

medium renewals. 5-azacytidine and 5-aza-2’-deoxycytidine were not detectable after three 350 

days, while after two days on average 22% and 49% (respectively) of the original 351 

concentration was present in the medium. For biochanin A and genistein, there was no 352 

consistent trend. Vinclozolin concentrations decreased to approximately 0.4 to 1.5% of the 353 

initial concentration after three days.  354 

Two quality controls (QCs) for DNA methylation were measured in triplicate, resulting in 355 

relative standard deviations (RSDs) of 2.5% and 7.4% for mdC and 1.3% and 1.6% for dG. 356 

Relative Errors (REs) were -0.1% for mdC for both QCs and 5.2 and 0.3% for dG.  357 

No difference was detected in reproduction, length or DNA methylation between controls 358 

with 0, 0.0176 and 0.05% DMSO that were started with the same batch of daphnids. These 359 

controls were pooled for the calculation of the pooled residual standard deviation with 360 

ANOVA for the experiments with biochanin A, genistein and vinclozolin.  361 

For all test substances, an effect on at least one of the endpoints (reproduction, length and 362 

overall DNA methylation) could be observed. Vinclozolin did not elicit an effect on 363 

reproduction at the tested concentrations. 5-aza-2’-deoxycytidine did not induce an effect 364 

on body length at any of the tested concentrations, while biochanin A, 5-aza-2’-365 
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deoxycytidine and genistein did not affect overall DNA cytosine methylation.  366 

The initial two highest concentrations of the 5-azacytidine test caused 100% mortality after 367 

two days. Therefore, two lower 5-azacytidine concentrations and a new control were 368 

introduced into the design. Reproduction was determined as the number of living juvenile 369 

daphnids per surviving female adult. In the 5-azacytidine experiment, a large number of 370 

aborted broods was observed at the three highest concentrations.  371 

 372 

3.3 Multigeneration experiment 373 

As observed also in the chronic experiment, the 5-azacytidine concentration decreased 374 

between medium renewals, with no detectable concentration after three days and on 375 

average 29% of the initial concentration after two days. The genistein concentration of 4.7 376 

± 0.7 mg/L was very similar to the highest concentration in the chronic experiment and 377 

remained stable throughout the multigeneration experiment. Vinclozolin concentrations 378 

measured in the fresh test media of the multigeneration experiment decreased with time 379 

from 0.54 ± 0.19 mg/L in F0 to 0.45 ± 0.16 mg/L in F1 and 0.18 ± 0.15 mg/L in F2. The 380 

vinclozolin concentration decreased between two renewals. After three days, approximately 381 

0.1% to 1.1% of the initial vinclozolin concentration in freshly prepared medium was 382 

detected. 383 

The highest 5-azacytidine concentration of the chronic test, for which a reduction in overall 384 

DNA methylation was observed, yielded a reproduction of only 1.5 juveniles per surviving 385 

female. A reproduction as low as this is not suitable for a multigeneration experiment. 386 

Therefore the second highest concentration was chosen for the A+ exposures. The highest 387 

genistein concentration of the chronic experiment was selected for the G+ exposures, to 388 

confirm the absence of an effect on overall DNA methylation. For vinclozolin, the highest 389 

concentration of the chronic test, in which a reduction in overall DNA methylation was 390 

observed, was chosen as exposure concentration in the multigeneration experiment. 391 

Reproduction was affected in the F0 daphnids exposed to 5-azacytidine and genistein (Fig. 392 

2). This effect was not passed on to the F1G- offspring. The F1A- treatment was accidentally 393 

stopped at day 14, at which time no third brood was present yet. However, reproduction at 394 

day 14 was significantly lower in F1A- compared to F1C (Mann-Whitney U test, p = 0.029). 395 

A clear effect on reproduction was also observed in F1A+, in which no reproduction was 396 
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observed up to the end of the test (day 21). In the F2 generation, none of the treatments 397 

exhibited a significantly lower reproduction than the control. No mortality was observed in 398 

the controls of the three generations. 399 

On day 7, reductions in the length of the daphnids was noted in all exposed treatments 400 

except in F1V+ (Fig. 3). Of the non-exposed F1 and F2 treatments, only A- exhibited a 401 

reduction in length. 402 

Overall DNA methylation expressed as %[mdC]/[dG] ranged from 0.11% to 0.40%. The 403 

two quality controls for DNA methylation showed that the RSDs were 6.9% and 0.7% for 404 

mdC and 2.7% and 0.001% for dG. REs were 2.8% and -6.7% for mdC and -0.4% and 405 

5.4% for dG. The relative proportion of 5mdC in DNA was reduced in F0A+ and F0V+, but 406 

not reduced nor increased in F0G+ (Fig. 4). The reduction in F0A+ was also observed in its 407 

F1A- and F2A- offspring. In the F1A+ treatment, only one replicate could be measured due to 408 

high mortality and low biomass of the organisms. The overall DNA cytosine methylation 409 

level was only 57% of that in the control, but no statistical significance could be attributed 410 

to this. The reduction in methylation observed in F0V+ was also present in the F1V+ 411 

offspring (exposed), but not in the F1V- (non-exposed) offspring. In the subsequent 412 

generation however, the F2V- organisms exhibited a smaller amount of global DNA 413 

methylation than the F2C.  414 

 415 

4 Discussion 416 

 417 

4.1 Acute tests 418 

From the acute test results, it is clear that 2’-deoxy-5-azacytidine (21 mg/L) and vinclozolin 419 

(1.685 mg/L) had no effect on the immobility of the daphnids at the tested concentrations. 420 

This is somewhat unexpected because the material safety data sheet of vinclozolin (Sigma) 421 

reports a (nominal) 48 h EC50 for D. magna of 3.65 mg/L. However, our results are in 422 

agreement with those of Haeba et al. (2008), who found no acute effect of vinclozolin up to 423 

its water solubility. The noted decrease in concentration of the (deoxy)nucleoside analogues 424 

and vinclozolin during the exposure, which was also observed in the subsequent chronic 425 

and multigeneration experiments, was not unexpected. Indeed, 5-azacytidine, 2’-deoxy-5-426 

azacytidine and vinclozolin are not stable in aqueous environments and hydrolyze to 427 
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several by-products (Lin et al. 1981; Szeto et al. 1989; Zhao et al. 2004). However, it was 428 

not the purpose of this study to determine exact effective concentrations of these 429 

substances. Instead the main goal of this study was to investigate whether the substances or 430 

their degradation products could elicit possible transgenerational epigenetic effects (and 431 

this based on measured substance concentrations). 432 

 433 

4.2 Chronic experiments  434 

Based on the results of the acute tests, a range of concentrations was chosen for the chronic 435 

experiment aimed at establishing a sublethal concentration which has an effect on DNA 436 

methylation and reproduction or growth. This concentration could subsequently be used in 437 

the multigeneration experiment. For all five compounds, an effect on length or reproduction 438 

was noted in at least one of the tested concentrations.  439 

No effect on overall DNA methylation was observed in the chronic experiments with 440 

biochanin A, genistein and 2’-deoxy-5-azacytidine. The potential inhibition of DNMT 441 

activity by biochanin A and 2’-deoxy-5-azacytidine, as described by Fang et al.(2005) and 442 

Piekarz et al. (2009) respectively, did not result in an overall decrease in DNA methylation 443 

in exposed Daphnia. Genistein has been shown to inhibit DNMT activity, resulting in 444 

reduced methylation in the methylated promoter regions of three genes in a human 445 

esophagous carcinoma cell line (Fang et al. 2005). On the other hand, genistein induced 446 

hypermethylation in CpG islands and restored hypomethylated loci in mice (Day et al. 447 

2002; Dolinoy 2007). Our results suggest that in D. magna, genistein either did not affect 448 

DNA methylation mechanisms at all, or induced hypomethylation and hypermethylation at 449 

different loci, resulting in an unchanged overall DNA methylation compared to the control. 450 

In the highest genistein concentration, which was selected for the multigeneration 451 

experiment, reproduction was reduced. A negative effect on reproduction has also been 452 

described in mice, where administration of genistein via drinking water resulted in 453 

decreased oocyte maturation and in vitro fertilization, as well as early embryonic 454 

developmental injury (Chan 2009).  455 

Exposure to the nucleoside analog 5-azacytidine caused a concentration dependent effect 456 

on reproduction, with a high number of aborted broods in the highest treatment. This 457 

compound is known to cause preimplantation loss and reduced fertility when administered 458 
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to male rats before mating (Doerksen et al. 1996). The demethylating effect, which was 459 

detected in D. magna exposed to the highest concentration, was expected based on the 460 

known interaction of 5-azacytidine with DNMTs (Ghoshal et al. 2002).  461 

The absence of an effect on reproduction of vinclozolin at the highest tested concentration 462 

of 0.43 mg/L corroborates the results of Haeba et al. (2008) who reported no effects on 463 

reproduction at a nominal concentration of 1 mg/L. However, whereas a small but 464 

significant decrease in body length was observed in daphnids exposed to 0.43 mg/L 465 

vinclozolin in the current study, no such effect was noted by those authors. Vinclozolin 466 

exposure induced both hypermethylation and hypomethylation events at 25 regions in the 467 

rat genome (Anway et al. 2005). Inawaka et al. (2009), however, could not confirm the 468 

vinclozolin-induced DNA methylation changes in one of those regions within the 469 

lysophospholipase gene. In D. magna, we observed a reduction in overall DNA methylation 470 

upon exposure to 0.43 mg/L vinclozolin, indicating that vinclozolin or its degradation 471 

products do interact with DNA methylation.  472 

Global DNA hypomethylation, as observed here in vinclozolin and 5-azacytidine exposed 473 

daphnids, has been associated with cell proliferation and with hypomethylation of 474 

transposable elements which can alter gene expression (Schulz 2006; Huang et al. 2008). 475 

This observation has also been reported in rat, mouse and human cells or tissues after 476 

exposure to various environmental chemicals (Baccarelli et al. 2009)  477 

 478 

4.3 Multigeneration experiment 479 

First, the results of the F0 generation are compared with the results of the chronic 480 

experiment. Effects on length, reproduction and DNA methylation in exposed F0 daphnids 481 

generally corroborate the effects observed in the chronic experiment. In F0A+, however, the 482 

reduced length at day 7 and the reduction in DNA methylation were not observed at the 483 

corresponding nominal concentration in the chronic test. It may be noted that the control 484 

length of 2.61 ± 0.08 mm at day 7 in the multigeneration experiment is lower than that of 485 

2.73 ± 0.12 in the chronic 5-azacytidine experiment. The batch of smaller daphnids with 486 

which the multigeneration experiment was initiated appears to be more sensitive to 5-487 

azacytidine exposure.  488 

The following paragraph discusses the effects in daphnids exposed during consecutive 489 
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generations. Increased effects on reproduction (reduced number of produced eggs) in 490 

different generations under continuous exposure to environmental stress have been reported 491 

for D. magna (Alonzo et al. 2008). Similar continuing phenotypic effects were observed in 492 

our study for reproduction during azacytidine exposure and for length during azacytidine 493 

and genistein exposure. Global DNA hypomethylation in both F0A+ and F1A+ indicates a 494 

possible link with the reduced length and reproduction. In porcine fetal fibroblasts, growth 495 

reduction combined with lower DNA methylation was observed after treatment with 5-496 

azacytidine (Mohana Kumar et al. 2006). No connection between overall DNA methylation 497 

status, which was not altered, and length reduction in genistein exposed daphnids can be 498 

made. The length reduction in the F0V+ daphnids was not observed in the F1V+ daphnids, 499 

but returned in the F2V+ daphnids. The overall DNA-methylation in F1V+ on the contrary 500 

remained smaller than that of the control organisms, while it was not significantly different 501 

from the control in F2V+, suggesting that the length reduction in the V+ treatments is not 502 

directly linked to the reduced DNA methylation.  503 

When evaluating the effects in non-exposed offspring produced by exposed F0 daphnids, a 504 

reduction in length and reproduction was noted in the F1A- daphnids, who were only 505 

exposed to 5-azacytidine during the first hours of their life cycle. This coincided with a 506 

similar decrease in DNA methylation compared to the control as in F0. The reduced DNA 507 

methylation in the non-exposed F2A- daphnids demonstrates, for the first time in Daphnia, 508 

a transgenerational alteration in an epigenetic system. The reproduction in F2A- returned to 509 

a level not significantly differing from the control. However, body length at day 7 remained 510 

reduced. Although we cannot demonstrate any direct relationship with the epigenome, these 511 

observations suggest the possibility of an epigenetic transgenerational effect on juvenile 512 

growth in D. magna. Transgenerational transfer of 5-azacytidine to F2A- is highly unlikely 513 

because of its short half-lives of 1.82 ± 1.51 h in plasma and approximately 4 h in neutral to 514 

alkaline solutions. It can be demonstrated that metabolites of 5-azacytidine do not inhibit 515 

DNMTs (Zhao et al. 2004; Chabner et al. 2006; Esteller 2008a). 516 

The absence of any effect on body length, reproduction/mortality or overall DNA 517 

methylation in F1G- and F1V- reveals that the observed effects in the genistein and 518 

vinclozolin exposed F0 treatments are not transgenerationally heritable to non-exposed 519 

offspring. There is no obvious explanation for the reduction in overall DNA methylation in 520 
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F2V-. If this would be an epigenetic effect induced by the F0V+ vinclozolin exposure, a 521 

similar reduction in DNA methylation should have been observed in F2V+.  522 

It should be noted that with the methylation assessment method used in this study, no 523 

information could be obtained on the location and hence the possible function of the 524 

methylated cytosines in D. magna DNA from different treatments. The D. magna genome 525 

is currently being sequenced at Indiana University’s Center for Genomics and 526 

Bioinformatics and next-generation sequencing also opens new possibilities with regard to 527 

genome wide DNA methylation analysis. Future research should therefore focus on the 528 

specificity of the epigenetic effects on DNA methylation caused by exposure to 529 

environmental chemicals and the molecular pathways involved. This may elucidate the 530 

possible epigenetic mechanism behind the juvenile growth reduction in the offspring of 5-531 

azacytidine exposed daphnids. 532 

 533 

5 Conclusions 534 

 535 

For the first time, direct effects of exposure to chemicals on overall DNA methylation in 536 

Daphnia have been described. Exposure to elevated concentrations of the fungicide 537 

vinclozolin and the nucleoside analog 5-azacytidine (in combination with their degradation 538 

products in aqueous media) resulted in a decrease in overall DNA-methylation. This effect 539 

on DNA methylation was not observed after exposure to lower concentrations of these 540 

substances. The isoflavones genistein and biochanin A and the deoxynucleoside analog 2’-541 

deoxy-5-azacytidine did not induce an effect on overall D. magna DNA methylation at 542 

exposure concentrations for which effects on reproduction were observed. 5-azacytidine 543 

was the only compound for which the effect of reduced DNA methylation was stably 544 

transferred to two subsequent non-exposed generations. The demonstration of a 545 

transgenerational alteration in an epigenetic system in D. magna indicates the possibility of 546 

transgenerational inheritance of environment-induced epigenetic changes in non-exposed 547 

subsequent generations. 548 
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 679 
Figure captions 680 

Fig. 1 Overview of the experimental culture setup for the multigeneration 681 

experiment. F0, F1, F2: generations. White rectangles represent control medium. 682 

Grey rectangles represent medium with Vinclozolin (0.54 ± 0.19 mg/L in F0, 0.45 ± 683 

0.16 mg/L in F1, 0.18 ± 0.15 mg/L in F2), Genistein (4.7 ± 0.7 mg/L in F0-F2 ) or 5-684 

azacytidine (2.9 ± 0.4 mg/L in F0, 2.3 ± 0.3 mg/L in F1). Arrows represent offspring.  685 

 686 

Fig. 2 Mean reproduction in the multigeneration experiment depicted as the 687 

number of living juvenile offspring per surviving female at the day of a third brood 688 

in the control treatment: day 16 for F0, day 15 for F1 and F2. Error bars indicate 689 

standard deviations.      : significantly different from the control in the same 690 

generation (Mann-Whitney U test or Dunnett test, p = 0.0004 and 0.022 for F0A+ and 691 

F0G+, respectively );      : reproduction at day 14, significantly different from control 692 

reproduction at day 14 (Mann-Whitney U test, p = 0.029, see text). 693 

 694 

Fig. 3 Mean length (mm ) at day 7 and 15 for the different treatments of the 695 

multigeneration experiment. Error bars indicate standard deviations.      : 696 

significantly different from the control in the same generation (Mann-Whitney U test 697 

or Dunnett test, p < 0.05). 698 

 699 

Fig. 4 Mean overall DNA cytosine methylation expressed as % [mdC]/[dG] at the 700 

day of the third brood in the different treatments of the multigeneration 701 

experiment. Error bars indicate standard deviations.      : significantly different from 702 

the control in the same generation (Dunnett test or Mann-Whitney U test, p < 0.05).      703 

: Only one replicate could be measured due to high mortality; no reproduction 704 

took place and DNA samples were taken at day 21. 705 
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Table 1 – EC50 (concentration causing 50% immobility) in the acute tests with D. magna 

exposed to 5-azacytidine, 5-aza-2’-deoxycytidine, biochanin A, genistein and 

vinclozolin, based on measured concentrations at the beginning of the test. 

 EC50 ± standard 

deviation(mg/L) 

remarks 

5-azacytidine 310 ± 111 95 % confidence interval: 180-534 mg/L 

5-aza-2’-deoxycytidine > 20.8 ± 0.5 0 % immobility at this concentration 

biochanin A 8.50 ± 0.892 >95 % confidence interval: 6.59 – 14.67 

mg/L 

genistein > 6.933  33 % immobility at this concentration 

vinclozolin > 1.7 ± 1.0 6.7 % immobility at this concentration 

1 Estimated with the trimmed Spearman-Karber method (Hamilton et al. 1977) 
2 Estimated with the binomial method (Stephan 1977) 
3 This value is an underestimation of the real concentration found by extrapolating a 

polynomial standard curve 
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Table 2 – Lowest observed effect concentrations (LOECs) for reproduction, length and 

overall DNA methylation (based one one-tailed Dunnett test or Kruskal-Wallis test with 

Mann-Whitney U test, p < 0.05) as well as relative reproduction, length and DNA 

methylation at the LOEC as a percentage of the control (ctrl) for the chronic tests with 

D. magna exposed to 5-azacytidine, 5-aza-2’-deoxycytidine, biochanin A, genistein and 

vinclozolin. LOECs are given as average measured concentrations (± standard 

deviation) in freshly prepared medium.  
 Reproduction (nr of juveniles 

per surviving female) 
Length (mm) DNA cytosine methylation (% 

[mdC]/[dG]) 
 LOEC (mg/L) % 

of 
ctrl 

Ctrl 
reprodu
c-tion  

LOEC 
(mg/L) 

% of 
ctrl 

Ctrl 
lengt
h  

LOEC 
(mg/L) 

% of 
ctrl 

Ctrl 
methy-
lation 

5-azacytidine 16 ± 2 46 81 27.8 ± 3.4a 91 2.73a 27.8 ± 3.4 30 0.26 
5-aza-2’-
deoxycytidin
e 

4.8 ± 0.5 45 81 > 12.8 ± 
0.5a,b 

- 2.73a, 
3.61b 

> 12.8 ± 0.5 - 0.26 

biochanin A 4.9 ± 0.9 73 76  0.11 ± 
0.04b 

73 3.70b > 4.9 ± 0.9 - 0.20 

genistein 3.4 ± 1.5 56 76 1.8 ± 
0.4a,b 

93a,b 2.84a, 
3.70b  

> 3.4 ± 1.5 129 0.20 

vinclozolin > 0.43 ± 0.09 - 76 0.43 ± 
0.09b 

91b 3.70b 0.43 ± 0.09 69 0.20 

a Length at day 21 
b Length at day 7 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 

 

 


