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Abstract 

In this study several pre/post-fire differenced spectral indices for assessing burn 

severity in a Mediterranean environment are evaluated. Therefore GeoCBI (Geo 

Composite Burn Index) field data of burn severity were correlated with remotely 

sensed measures, based on the NBR (Normalized Burn Ratio), the NDMI 

(Normalized Difference Moisture Index) and the NDVI (Normalized Difference 

Vegetation Index). In addition, the strength of the correlation was evaluated for 

specific fuel types and the influence of the regression model type is pointed out. The 

NBR was the best remotely sensed index for assessing burn severity, followed by the 

NDMI and the NDVI. For this case study of the 2007 Peloponnese fires, results show 

that the GeoCBI-dNBR (differenced NBR) approach yields a moderate-high R
2
 = 

0.65. Absolute indices outperformed their relative equivalents, which accounted for 

pre-fire vegetation state. The GeoCBI-dNBR relationship was stronger for forested 

ecotypes than for shrub lands. The relationship between the field data and the dNBR 

and dNDMI (differenced NDMI) was non-linear, while the GeoCBI-dNDVI 

(differenced NDVI) relationship appeared linear. 

1 Introduction 

Wildfires play a major role in Mediterranean Type Ecosystems (MTEs) (Pausas 2004) 

as they partially or completely remove the vegetation layer and affect post-fire 

vegetation composition, water and sediment regimes, and nutrient cycling (Kutiel and 

Inbar 1993). As such they act as a natural component in vegetation succession cycles 

(Trabaud 1981, Capitanio and Carcaillet 2008) but also potentially increase 

degradation processes, such as soil erosion (Thomas et al. 1999, Fox et al. 2008). 

Assessment of the fire impact is thus a major challenge to understand the potential 
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degradation after fire (Kutiel and Inbar 1993, Fox et al. 2008) and to comprehend 

ecosystem’s post-fire resilience (Lentile et al. 2007). 

Fire severity and burn severity assessments are two different approaches to 

quantify the fire impact, describing the amount of damage (Hammill and Bradstock 

2006), the physical, chemical and biological changes (Chafer et al. 2004, Cocke et al. 

2005) or the degree of alteration (Brewer et al. 2005) that fire causes to an ecosystem. 

Fire severity quantifies the short-term fire effects in the immediate post-fire 

environment (Lentile et al. 2006) and is usually measured in an initial assessment 

scheme (Key and Benson 2005). As such, it mainly quantifies vegetation consumption 

and soil alteration. Burn severity, on the other hand, quantifies both the short- and 

long-term impact as it includes response processes (e.g. resprouting, delayed 

mortality), which is evaluated in an extended assessment (EA) that incorporates both 

first- and second-order effects (Lentile et al., 2006). In this study burn severity, 

defined as the degree of environmental change caused by a fire (Key and Benson 

2005), is estimated one year post-fire. 

Several remote sensing studies have discussed the potential of satellite 

imagery as an alternative for extensive field sampling to quantify both fire and burn 

severity over large areas. These studies evaluated the use of spectral unmixing (Rogan 

and Yool 2001, Lewis et al. 2007), simulation techniques (Chuvieco et al. 2006, De 

Santis and Chuvieco 2007) and spectral indices to assess fire/burn severity (for a 

comprehensive review of remote sensing techniques for fire/burn severity assessment, 

see French et al. 2008). These spectral indices were based on Normalized Difference 

Spectral Indices (NDSIs), such as the Normalized Difference Vegetation Index 

(NDVI) (a.o. Chafer et al. 2004, Hammill and Bradstock 2006) or the widely used 

Normalized Burn Ratio (NBR) (e.g. Lopez-Garcia and Caselles 1991, Epting et al. 

2005, Key  and Benson 2005, Miller and Thode 2007). The NDVI combines the 

reflectance in the R (red) and NIR (near infrared) spectral region and is a measure for 

the amount of green vegetation, whereas the NBR relates to vegetation moisture by 

combining the NIR with MIR (mid infrared) reflectance (Gao 1996). Since fire effects 

on vegetation produce a reflectance increase in the R and MIR spectral regions and a 

NIR reflectance drop (Pereira et al. 1999), bi-temporal image differencing is 

frequently applied on pre- and post-fire NDVI or NBR images. This results 

respectively in the differenced Normalized Difference Vegetation Index (dNDVI) 

(Chafer et al. 2004, Hammill and Bradstock 2006) and the differenced Normalized 

Burn Ratio (dNBR) (Key and Benson 2005). The advantage of these pre/post-fire 

differenced indices is that they permit a clear discrimination between unburned 

sparsely vegetated areas and burnt areas, which is difficult in mono-temporal imagery 

(Key et al. 2005). Additionally, Miller and Thode (2007) proposed a relative version 

of the dNBR (RdNBR). This index takes into account the pre-fire amount of biomass, 

and therefore, rather than being a measure of absolute change, reflects the change 

caused by fire relative to the pre-fire condition. 

Field data are used to evaluate the proposed remotely sensed indices for 

estimating fire/burn severity, ranging from accuracy assessments on index based 

severity classifications (a.o. White et al. 1996, Chafer et al. 2004, Epting et al. 2005, 

Hammill and Bradstock 2006) to empirical fitting models between spectral indices 

and field measurements. In this context, a wide range of field data has been 

considered: % live trees (Lopez-Garcia and Caselles 1991, Alleaume et al. 2005) or % 

tree mortality (Kushla and Ripple 1998), basal area mortality (Chappell and Agee 

1996) combustion completeness (Alleaume et al. 2005), changes in Leaf Area Index 

(LAI) (Boer et al. 2008) and fractional cover of several components (Lewis et al. 



2007). However, by far the most widely used field measurement is the Composite 

Burn Index (CBI) (Key and Benson 2005). The CBI is a semi-quantitative field 

sampling approach based on an expert judgement procedure, developed as an 

operational methodology for validating remotely sensed assessments of fire/burn 

severity on a national scale in the USA as part of the FIREMON (Fire Effects 

Monitoring and Inventory Protocol) project. Recently, De Santis and Chuvieco (2009) 

developed GeoCBI, a modified version of the CBI that accounts for the fraction of 

coverage (FCOV) of the different vegetation strata. Although the relationship between 

the CBI and several spectral indices has been recently confirmed by empirical fitting 

for many vegetation types in the North American boreal region (Epting et al. 2005, 

Allen and Sorbel 2008, Hall et al. 2008, Hoy et al. 2008, Murphy et al. 2008), no 

uniform relationship could be established. The CBI-dNBR relationship showed large 

dependencies on pre-fire land cover type (Key and Benson 2005, French et al. 2008) 

and the regression model used (Hall et al. 2008). Consequently, it is essential to 

independently validate the spectral indices based burn severity approach with field 

data for specific regions and vegetation types (Cocke et al. 2005, Key and Benson 

2005, Lentile et al. 2006, Fox et al. 2008) to (i) determine if the technique is capable 

of producing information relevant to burn severity assessment (French et al. 2008) 

and to (ii) quantify the relationship between field data and burn severity 

measurements derived from satellite imagery. To our knowledge outside North 

America, only one study (De Santis and Chuvieco 2007) ascertained the empirical 

relationship between CBI field data and spectral indices. As the technique is 

conceptually and computationally easy, burn severity maps based on spectral indices 

could form an important instrument for post-fire management practices in the fire-

prone Mediterranean biome. As the patchy and heterogeneous nature of the 

Mediterranean landscape potentially influences the relationship between field data 

and spectral indices, there is a need to validate independently the approach in this 

ecoregion. Therefore the primary objectives of this study are (i) to evaluate the 

relationship of several pre/post-fire differenced spectral indices, including the dNBR, 

the RdNBR and the dNDVI, against GeoCBI field data in the fire-prone biome of the 

Mediterranean Basin and (ii) to test this relation for specific land cover types. In 

addition (iii) the influence of the regression model type (linear versus non-linear) is 

examined. 

2 Material and methods 

2.1 Study area 

The study area is situated at the Peloponnese peninsula, in southern Greece (36°30’-

38°30’ N, 21°-23° E) (see figure 1). The topography is rugged with elevations ranging 

between 0 and 2404 m above sea level. The climate is typically Mediterranean with 

hot, dry summers and mild, wet winters. For the Kalamata meteorological station 

(37°4’ N, 22°1’ E) the average annual temperature is 17.8 °C and the mean annual 

precipitation equals 780 mm (Hellenic National Meteorological Service, 

www.hnms.gr). 

FIGURE 1 HERE 

In the 2007 summer, after a severe drought period, large wildfires struck the 

Peloponnese. The fires consumed a large amount (more than 100 000 ha) of 

coniferous forest, broadleaved forest, shrub lands (maquis and phrygana 

communities) and olive groves. Black pine (Pinus nigra) is the dominant conifer 



species. The shrub layer can be divided into maquis and phrygana communities. 

Maquis communities consist of sclerophyllous evergreen shrubs of 2-3 m high 

(Polunin 1980). Phrygana is dwarf scrub vegetation (< 1 m), that prevails on dry 

landforms (Polunin 1980). The shrub layer is characterised by e.g. Kermes oak 

(Quercus coccifera), Hungarian oak (Q. frainetto), mastic tree (Pistacia lentiscus), 

sageleaf rockrose (Cistus salvifolius), hairy rockrose (C. incanus), tree heath (Erica 

arborea), thorny burnet (Sarcopoterum spinosum). The olive groves consist of Olea 

europaea trees whereas oaks are the dominant broadleaved species. 

2.2 Field data 

To assess burn severity in the field, field data were collected in September 2008, i.e. 

one year post-fire. The field data consist of 160 GeoCBI (Geo Composite Burn Index) 

plots. The GeoCBI is a modified version of the Composite Burn Index (CBI) (De 

Santis and Chuvieco 2009). The (Geo)CBI is an operational tool used in conjunction 

with the Landsat dNBR approach to assess burn severity in the field (Key and Benson 

2005). The GeoCBI divides the ecosystem into five different strata, one for the 

substrates and four vegetation layers. These strata are: (i) substrates, (ii) herbs, low 

shrubs and trees less than 1 m, (iii) tall shrubs and trees of 1 to 5 m, (iv) intermediate 

trees of 5 to 20 m and (v) large trees higher than 20 m. In the field form, 20 different 

factors can be rated (e.g. soil and rock cover/colour change, % LAI change, char 

height) (see table 1) but only those factors present and reliably rateable, are 

considered. The rates are given on a continuous scale between 0 and 3 and the 

resulting factor ratings are averaged per stratum. Based on these stratum averages, the 

GeoCBI is calculated in proportion to their corresponding fraction of cover, resulting 

in a weighted average between zero and three that expresses burn severity. 

TABLE 1 HERE 

The 160 sample points were selected based on a stratified sampling approach, 

taking into account the constraints on mainly accessibility and time, that encompasses 

the whole range of variation found within the burns. Contributing to this objective 10 

out of the 160 plots were measured in unburned land, with a consequent GeoCBI 

value of zero. The field plots consist of 30 m by 30 m squares, analogous to the 

Landsat pixel size. The pixel centre coordinates were recorded with a handheld GPS 

(Global Positioning System) receiver. The plots were at least 90 m apart and chosen 

in relatively homogeneous areas of at least 60 m by 60 m, although preferably more 

(Key and Benson 2005). This homogeneity refers both to the fuel type and the fire 

effects. Of the 160 field plots 67 plots were measured in shrub land, 58 in coniferous 

forest, 17 in broadleaved forest and 18 in olive groves. The photographs in figure 2 

show examples of low, moderate and high severity plot for the most prevailing fuel 

types, namely coniferous forest and shrub land. 

FIGURE 2 HERE 

2.3. Imagery and preprocessing 

For assessing burn severity of the summer 2007 (July and August) Peloponnese fires 

two anniversary date Landsat TM images with path/row 184/34 were used (23 July 

2006 and 13 August 2008). The images were acquired in summer season, minimizing 

effects of vegetation phenology and differing solar zenith angles. The images were 

subjected to geometric, radiometric, atmospheric correction and topographic 

correction. 



The 2008 image was geometrically corrected using 34 ground control points 

(GCPs), recorded in the field with a GPS receiver. The resulting Root Mean Square 

Error (RMSE) was 0.42 pixels. The 2006 and 2008 images were co-registered with a 

0.37 pixels RMSE. All images were registered in Universal Transverse Mercator 

(zone 34S), with ED 50 (European Datum 1950) as geodetic datum. 

To convert the raw digital numbers (DN) to reflectance values the COST method of 

Chavez (1996) was used: 
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); d is the earth-sun distance (astronomical units); and zθ  is the solar 

zenith angle. The COST method is a dark object subtraction (DOS) approach that 

assumes 1 % surface reflectance for dark objects (e.g. deep water). Band-specific 

parameters to calculate the at-sensor radiance were provided by the European Space 

Agency (ESA, http://earth.esa.int/pub/ESA_DOC). After applying the COST 

atmospheric correction, pseudo-invariant features (PIFs) such as deep water and bare 

soil pixels, were inspected in the images. No further relative normalisation between 

the images was considered. 

It was necessary to correct for different illumination effects due to topography. 

This was done based on the C correction method (Teillet et al. 1982) using a digital 

elevation model (DEM) and knowledge of the solar zenith and azimuth angle at the 

moment of image acquisition. Topographical slope and aspect data were derived from 

90 m SRTM (Shuttle Radar Topography Mission) elevation data (Jarvis et al. 2006) 

resampled and coregistered with the Landsat images. The illumination is modelled as: 
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where iγ  is the incident angle (angle between the normal to the ground and the sun 

rays); 
pθ  is the slope angle; zθ  is the solar zenith angle; aφ  is the solar azimuth 

angle; and oφ  is the aspect angle. Then the terrain corrected reflectance tρ  is defined 

as: 
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where ck is a band specific parameter kkk mbc = , for ikka mb γρ cos+= . Since 

topographic normalisation works better when applied separately for specific land 

cover types (Bishop and Colby 2002) burnt area specific c-values were calculated by 

masking the burnt area after manual digitisation. 

2.4. Spectral indices 

In this study the potential of three Normalised Difference Spectral Indices (NDSIs) 

for assessing burn severity is evaluated using the TM bands that are most sensitive to 

post-fire reflectance changes: TM3 (630-690 nm), TM4 (760-900 nm), TM5 (1550-

1750 nm) and TM7 (2080-2350 nm). Reflectance in the visual (TM3) and mid 

infrared (TM5 and TM7) regions increases after fire, while the NIR region (TM4) is 

characterised by a reflectance drop (Pereira et al. 1999). To capture this information, 

The Normalized Difference Vegetation Index (NDVI) combines R (TM3) band with 



NIR (TM4) band information whereas the Normalized Difference Moisture Index 

(NDMI) (Wilson and Sader 2002) and the Normalized Burn Ratio (NBR) combine the 

NIR (TM4) band with a MIR (TM5 and TM7, respectively) band. The NBR has 

become the standard spectral index for assessing burn severity, especially in North 

American regions, whereas the NDMI has not been evaluated before for burn severity 

applications. Nevertheless, Tucker (1980) suggested that TM5 is well suited for 

remote sensing of canopy water content. Consequently it might also reflect post-fire 

reflectance changes and was included in this study. Burned land typically has low 

NDVI, NDMI and NBR values. 

To determine the magnitude of change caused by fire, the post-fire image is 

subtracted from the pre-fire image. After bi-temporal differencing, burned land is 

associated with high values in the differenced NDVI (dNDVI), differenced NDMI 

(dNDMI) and differenced NBR (dNBR) maps. The relative version of the dNBR 

(RdNBR) assesses the magnitude of change relative to the pre-fire vegetation 

condition by dividing the dNBR by the square root of the absolute value of the pre-

fire NBR. As a consequence, in heterogeneous landscapes, the severity of fire in 

sparsely vegetated areas can be compared more adequately with the severity of fire in 

a more lush land cover type. For this case study in a heterogeneous Mediterranean 

landscape, the RdNBR and analogous relative versions of the dNDVI and dNDMI 

(RdNDVI and RdNDMI) were tested. In summary, the pre/post-fire differenced 

spectral indices evaluated in this study are the dNDVI, the dNDMI, the dNBR, the 

RdNDVI, the RdNDMI and the RdNBR (see table 2). 

TABLE 2 HERE 

2.5 Statistical analysis 

Linear and second-degree polynomial regressions were performed to correlate the 

spectral indices (independent variables) and GeoCBI field data of fire/burn severity 

(dependent variables). The relationship between the field data and the remotely sensed 

indices was evaluated both separately for each fuel type (coniferous forest, 

broadleaved forest, shrub land and olive groves) and for the pooled dataset. 

Regression model results were compared using two goodness-of-fit measures: 

the coefficient of determination R
2
 and the Root Mean Squared Error (RMSE). The 

coefficient of determination is an estimate of the proportion of the total variation in 

the data that is explained by the model. The RMSE is a measure of how much a 

response variable varies from the model predictions, expressed in the same units as 

the dependent data. The R
2
 and the RMSE are to some degree interlinked. A model 

yielding a high R
2
, will generally have a low RMSE and vice versa. However, because 

the RMSE describes how far points diverge from the regression line, the. regression 

models with equal R
2
 values potentially can have quite different RMSEs. 

The statistical analysis focused on (i) the differences between the dNDVI, 

dNDMI and dNBR approaches, (ii) the comparison of the absolute and relative 

indices, (iii) the fuel-type specific regression models and (iv) the influence of the 

regression model type. 



3 Results 

3.1 Differences between the dNBR, dNDMI and dNDVI approaches 

The distribution plots and regression lines of the GeoCBI and absolute pre/post-fire 

differenced spectral indices are displayed in figures 3(a), 3(b) and 3(c). Comparison 

of these models shows that the GeoCBI-dNBR relationship proved to be the strongest. 

This relationship yielded a moderate-high R
2
 = 0.65 for a polynomial fitting model. 

This was followed by the GeoCBI-dNDMI correlation which had an R
2
 = 0.50. The 

GeoCBI-dNDVI relationship was the weakest (R
2
 = 0.46). The decreasing trend in the 

R
2
 statistic is at the same time associated with an increasing RMSE. 

FIGURE 3 HERE 

The spectral index values of the dNBR approach clearly range more than those 

of the dNDMI and dNDVI approaches. The within-burn dNBR range almost doubles 

the within-burn dNDVI range. Most field plots have dNBR values ranging from 0 and 

0.8 (see figure 3(c)) and dNDMI and dNDVI between 0 and 0.5 (see figures 3(a), 

3(b)). Figures 4(a), 4(b) and 4(c) depict respectively the dNDVI, dNDMI and dNBR 

maps. The dNBR map clearly reveals more contrast in the burnt areas than the other 

maps. 

FIGURE 4 HERE 

3.2 Absolute versus relative indices 

Two main differences can be seen when comparing absolute and relative differenced 

indices. Firstly, the range of the RdNDMI and the RdNBR (see figures 3(e), 3(f)) is 

markedly larger in comparison with their absolute counterparts (see figures 3(b), 3(c)) 

with index values ranging between 0 and 1. This is not the case for the RdNDVI (see 

figure 3(d)) index values which range from 0 to 0.5, similar to the dNDVI (see figure 

3(a)). Secondly, the empirical models for the relative approaches provided slightly 

poorer results than their absolute equivalents with a GeoCBI-RdNBR R
2
 = 0.64, a 

GeoCBI-RdNDMI R
2
 = 0.49 and a GeoCBI-RdNDVI R

2
 = 0.45. Figures 4(d), 4(e) 

and 4(f) display respectively the RdNDVI, RdNDMI and RdNBR maps. Within burn 

contrast is the highest in the RdNBR map, followed by the RdNDMI and RdNDVI 

maps. 

3.3 Fuel type specific regression models 

Burn severity was estimated most accurately for the olive groves class (R
2
 = 0.95), 

followed by coniferous forest (R
2
 = 0.72), broadleaved forest (R

2
 = 0.66) and shrub 

land (R
2
 = 0.56) (GeoCBI-dNBR correlations, see table 3). The remarkably high 

correlation between the field data and the dNBR for olive groves is a striking result. 

However, care must be taken when interpreting the results of the broadleaved forest 

and olive groves fuel types, as only a limited number of field plots were sampled in 

these land cover types (respectively n = 17 and n = 18). 

TABLE 3 HERE 



3.4 Linear versus polynomial regression models 

Second-order polynomial regression models consistently yielded better results than 

linear models for the NBR and NDMI approaches. For the NDVI approaches, the 

polynomial model did not improve the linear model. 

4 Discussion 

4.1 Differences between the dNBR, dNDMI and dNDVI approaches 

The dNBR approach gave the overall best correlation with GeoCBI field data 

followed by the dNDMI and the dNDVI approach. Indices with a mid infrared 

spectral band yielded better results than indices lacking a MIR band. This 

corroborates earlier research findings. Perreira (1999) reported that AVHRR 

(Advanced Very High Resolution Radiometer) spectral indices based on the NIR and 

MIR channels had a higher discriminatory potential for burned surface mapping than 

indices based on the NIR and red channels. Trigg and Flasse (2001) demonstrated the 

importance of the MIR region for burned shrub-savannah discrimination with MODIS 

(Moderate Resolution Imaging Spectroradiometer) data. The study of Escuin et al. 

(2008) showed that, using Landsat TM/ETM+ images, that the NBR was better suited 

than the NDVI for discriminating burns and distinguishing different degrees of 

severity. The results are also consistent with van Wagtendonk et al. (2004) who found 

significant post-fire spectral changes using hyperspectral AVIRIS (Airborne Visible 

and Infrared Imaging Spectroradiometer) data. In previous studies assessing the 

correlation between several spectral indices and CBI field data, Epting et al. (2005) 

ranked the NBR as the first index in pre/post-burn approaches. Similar findings were 

obtained by Hoy et al. (2008) reporting that dNBR outperforms dNDVI. For fires in 

several regions in the USA dNBR yielded higher correlations than dNDVI (Zhu et al. 

2006). In this report the within-burn range of dNDVI values was about half the 

within-burn range of dNBR values, which is similar to our results. They also 

concluded that dNDVI was more influenced by hazy conditions due to the elevated 

potential of atmospheric scattering in the red spectral region. 

Also NDMI based approaches, which have not been evaluated before for 

estimating burn severity, have proven to perform better than NDVI based approaches. 

However, the NBR outperformed the NDMI. This can be explained by the typically 

lower reflectances in Landsat TM band 7 (2080-2350 nm) than in Landsat TM band 5 

(1550-1750 nm) due to a higher degree of water absorption by vegetation for longer 

wavelengths. Therefore fire induced reflectance increase is likely to be more explicit 

in TM7 than in TM5. As a result, an index with TM7 instead of TM5 is able to 

capture a large range of variation in post-fire effects. 

Overall results show a moderate-high correlation between GeoCBI field data 

and dNBR for this case study in a Mediterranean environment. Polynomial fitting 

models resulted in R
2
 = 0.65. These outcomes fall within the range of results of 

previous studies (French et al. 2008). 



4.2 Absolute versus relative indices 

The relative indices resulted in similar or even slightly poorer correlations between 

the remotely sensed indices and the GeoCBI field data in comparison to their absolute 

equivalents. This is a marked outcome as RdNBR was developed as a major 

improvement on the dNBR approach for heterogeneous landscapes (Miller and Thode 

2007). The RdNBR improved the burn severity mapping in the MTE of California, 

USA. The landscape of the Peloponnese is a typical Mediterranean environment with 

its heterogeneous and patchy characteristics. The Peloponnese 2007 fires consumed a 

mixture of forest, shrub land and agricultural land. Even within each fuel type, we 

observed a large range of variation. For example shrub density and shrub height in 

shrub land differ largely in the study area. This is a classic example environment 

where the relative index is expected to improve the burn severity assessment. But 

overall, and even for the shrub land specific regressions, absolute indices 

outperformed their relative equivalents. Dividing the difference maps by the square 

root of the absolute value of the pre-fire index value, enlarges the within-burn index 

range (see figures 3(e), 3(f)). Apparently, however, that does not influence the 

assessment in a beneficial way in our case study. Thus, although their theoretical 

strength, relative indices did not perform better than their absolute counterparts in our 

study. Zhu et al. (2006) also concluded that for different ecosystems across the USA, 

including California, RdNBR trended slightly poorer with CBI field data than dNBR. 

Another problem associated with the relative index is that dividing by a close-to-zero 

value results in unrealistic high positive or low negative relative index values which 

lose their linkage with burn severity. When pre-fire index values are low over 

significantly extensive areas, this can result in speckled images. We recommend an 

in-depth evaluation of the relative indices, especially the RdNBR, in more case 

studies to determine if the theoretical improvement of the RdNBR translates into a 

consistent improvement in heterogeneous landscapes 

4.3 Fuel type specific regression models 

The strength of the GeoCBI-dNBR relationship is also influenced by pre-fire 

vegetation type. Hall et al. (2008) advise a stratified sampling scheme, not only 

covering the whole range of severity, but also equally representing the fuel types 

prevailing in the study area. This could be a major improvement for burn severity 

modelling. However in practice, it is sometimes not possible to sample each land 

cover class equally. Nevertheless in our study, the number of samples of each fuel 

type is more or less proportional to the total area burned of the different fuel types. 

Results of the less sampled broadleaved forest and olive groves classes must be 

handled with care.  

Model results vary by fuel type. Epting et al. (2005) found a rather strong 

correlation between field data and spectral indices for forested classes. More sparsely 

vegetated classes (e.g. shrubs, herbs) underperformed. Allen and Sorbel (2008) found 

deciduous and tundra plots not having an equally strong correlation between dNBR 

and CBI as observed in black spruce plots. Zhu et al. (2006) also found the 

correlations in forest land clearly stronger than those in sparser vegetation types. In 

our study the general experience from previous studies that forested classes have 

higher performances in estimating burn severity than more sparsely vegetated areas, is 



confirmed. The fuel types are ranked based on their GeoCBI-dNBR correlation as 

olive groves, coniferous forest, broadleaved forest and olive groves (see table 4). The 

GeoCBI-dNBR correlation was unexpectedly high for the olive grove samples with a 

R
2
 even higher than for natural vegetation types. This potentially reveals the strengths 

of the multi-strata CBI approach to assess burn severity in any vegetation type, even 

in cultural landscapes. This is certainly an important advantage for assessing post-fire 

effects in environments, like the Mediterranean region, where man created many 

patches of cultural landscape in a matrix of natural vegetation. 

4.4 Linear versus polynomial regression models 

The regression model type, linear versus non-linear, is another factor that affects the 

degree of correlation. Previous research (van Wagtendonk et al. 2004) showed that 

the relationship between dNBR and CBI field data clearly is non-linear. Polynomial 

models result in higher coefficients of determination and lower RMSEs than linear 

regression models (van Wagtendonk et al. 2004, Hall et al. 2008). The CBI-dNBR 

relation, however, tends to saturate for CBI values that are higher than 2.5 (van 

Wagtendonk et al. 2004). Therefore Hall et al. (2008) proposed a saturated growth 

model that lacks this unwanted feature. However R
2
 obtained by the saturated growth 

model are slightly lower than those of second-order polynomial models. In our study, 

we evaluated both linear and second-order polynomial models. Polynomial models 

gave significantly better results for NBR and NDMI based approaches (see figures 

3(b), 3(c)). For these indices, the relationship with the field data is clearly non-linear. 

The polynomial model indeed saturates for GeoCBI values higher than 2.3. For the 

NDVI approach, the linear model performed as well as the polynomial model. The 

relationship between the NDVI based measures and the field data appears to be linear, 

in contrast with the NBR and NDMI. 

5 Conclusions 

Indices based on a MIR-NIR band combination, the NBR and NDMI, gave better 

results than the NDVI for assessing burn severity. The GeoCBI-dNBR relationship 

proved to be the strongest yielding a moderate-high R
2
 = 0.65 for this case study in 

the Peloponnese, a Mediterranean Type Ecosystem. Although theoretically adapted to 

the characteristics of the study area, relative indices that account for pre-fire 

vegetation state did not perform better than their absolute equivalents. The 

relationship between the remotely sensed indices was stronger for forest ecotypes than 

for more sparsely vegetated areas, except for the high correlation (R
2
 = 0.95) in olive 

groves. These results reveal the potential of the multi-layered CBI approach allowing 

any land cover type, whether or not natural. The relationship between the field data 

and the NBR and NDMI indices derived from remote sensing was clearly non-linear, 

in contrast with the GeoCBI-dNDVI linear relationship. 
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Figure 1. Location of the study area and field plot distribution (Landsat TM 13 

August 2008, RGB-743) 

 

Figure 2. Example photographs of a high, moderate and low severity plot in 

coniferous forest (a, b, c) and of a high, moderate and low severity plot in shrub land 

(d, e and f) 

 

Figure 3. Distribution plots and regression lines for GeoCBI-dNDVI (a), GeoCBI-

dNDMI (b), GeoCBI-dNBR (c), GeoCBI-RdNDVI (d), GeoCBI-RdNDMI (e) and 

GeoCBI-RdNBR (f) 

 

Figure 4. dNDVI (a), dNDMI (b), dNBR (c), RdNDVI (d), RdNDMI (e) and RdNBR 

(f) severity maps 

 



Table 1. GeoCBI criteria used to estimate burn severity in the field (after De Santis 

and Chuvieco 2009) 

 

Table 2. Spectral indices used in this study 

 

Table 3. Land cover specific modelling results with regression model significance 

level of p<0.01 


