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Chapter 1

Introduction

1.1 Background
After Zadeh introduced the concept of fuzzy sets in his pioneering work ([99], Zadeh
1965), a huge amount of works in fuzzy set theory and fuzzy logic appeared, both theo-
retical and applied. There are two main branches in the study of fuzzy logic, fuzzy logic
in the narrow sense and fuzzy logic in the broad sense [30], [66]. Fuzzy logic in the nar-
row sense is a form of many-valued logic [71] constructed in the spirit of classical binary
logic. It is symbolic logic concerned with syntax, semantics, axiomatization, soundness,
completeness, etc. [29], [30]. Fuzzy logic in the broad sense can be seen as an extension
of fuzzy logic in the narrow sense. It is a way of interpreting natuaral language to model
human reasoning [66].
A very important part of research in fuzzy logic (both in the narrow sense and in the broad
sense) focuses on extending the classical binary logic operators negation (denoted as ¬),
conjunction (denoted as ∧), disjunction (denoted as ∨) and implication (denoted as→) to
fuzzy logic operators. This thesis contributes a deep study on the extension of the classi-
cal binary implication to fuzzy logic in the broad sense. These extensions are called fuzzy
implications .
Table 1.1 gives the truth table of the classical binary implication ‘→’.

Table 1.1: Truth table of the classical binary implication
p q p→ q
0 0 1
0 1 1
1 0 0
1 1 1
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A fuzzy implication I is defined as a [0, 1]2 ⇀ [0, 1] mapping that at least satisfies the
boundary conditions

I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0. (1.1)

Let us first have an overview of the research in the literature on fuzzy implications in
fuzzy logic in the broad sense.

1. Fundamental requirements of fuzzy implications.
The implication in classical binary logic works only on two truth values 0 and 1
while a fuzzy implication is a [0, 1]2 ⇀ [0, 1] mapping. So besides the boundary
condition (1.1), the first step to work on fuzzy implications is naturally to deter-
mine which fundamental requirements a fuzzy implication should fulfill. Most
considerations are taken either from the point of view that a fuzzy implication is
a generalization of the implication in classical binary logic (e.g., [19], [26], [35],
[86], [86], [96]), or from the point of view of fulfilling different requirements from
specific applications, especially approximate reasoning (e.g., [7], [20], [21], [87],
[88], [94], [95]). Among these works, an axiomatic system of 13 axioms for fuzzy
implications were determined (for details see Section 1.2).

2. Generate basic classes of fuzzy implications.
In the earlier literature, different authors have proposed many individual definitions
of fuzzy implications. See in Table 1.2. Besides these individual definitions of
fuzzy implications, Trillas et al. proposed in ([86], Trillas 1981) and ([85], Trillas
1985) two classes of fuzzy implications generated from the fuzzy logic operators
negation, conjunction and disjunction. They are strong implications (S-implications
for short) and residuated implications (R-implications for short). S-implications are
defined based on

p→ q = ¬p ∨ q (1.2)

in classical binary logic, where p and q are two propositions. R-implications are
defined based on the fact that the implication is residuated with and in the classi-
cal binary logic. S- and R- implications are widely used in the early works about
approximate reasoning (e.g., [20], [87]). Besides S- and R- implications, there is
another class of fuzzy implications generated from the fuzzy logic operators nega-
tion, conjunction and disjunction coming from quantum logic. So they are called
quantum logic implications (QL-implications for short). S-, R- and QL- implica-
tions are the most important classes of fuzzy implications which are widely studied
in different aspects from the beginning until now. Examples of very recent works
are: ([4], Baczyński 2006) and ([5], Baczyński 2007) work on the properties of
S-implications generated from non-strong negations. Chapter 2 of ([6], Baczyński
2008) and ([53], Mas 2007) work on the interrelationship between S-, R- and QL-
implications. ([51], Mas 2006), ([83], Trillas 2000) and ([78], Shi 2008) work on
the properties of a group of QL-implications. ([54], Mesiar 2004) and ([67], Pei
2002) work on the properties of R-implications generated from left-continuous t-
norms. ([60], Morsi 2002), ([84], Trillas 2008) and ([91], Whalen 2007) work on
how fuzzy rules are represented by S-, R- and QL-implications.
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Table 1.2: Individual Definitions of Fuzzy Implications
Name and symbol Definition

Kleene-Dienes [42] [17] Ib(x, y) = max(1− x, y)
Reichenbach [70] Ir(x, y) = 1− x+ xy

Most Strict [44] IM (x, y) =
{

1, if x = 0
y, if x > 0

Largest [44] ILS(x, y) =

 y, if x = 1
1− x, if y = 0
1, if x < 1 and y > 0

Least Strict [44] ILR(x, y) =
{
y, if x = 1
1, if x < 1

Łukasiewicz [45] IL(x, y) = min(1− x+ y, 1)

R0 [23] (I(min0))N (x, y) =
{

1, if x ≤ y
max(N(x), y), if x > y

Gödel [27] Ig(x, y) =
{

1, if x ≤ y
y, if x > y

Weber [90] IWB(x, y) =
{

1, if x < 1
y, if x = 1

Goguen [28] I∆(x, y) =
{

1, if x ≤ y
y/x, if x > y

Early Zadeh [101] Im(x, y) = max(1− x,min(x, y))
Standard Strict-Star [59] Isg(x, y) = min(Is(x, y), Ig(1− x, 1− y))
Standard Star-Strict [59] Igs(x, y) = min(Ig(x, y), Is(1− x, 1− y))
Standard Star-Star [59] Igg(x, y) = min(Ig(x, y), Ig(1− x, 1− y))

Standard Strict-Strict [59] Iss(x, y) = min(Is(x, y), Is(1− x, 1− y))
Willmott [92] I](x, y) = min(max(1− x, y),

max(x, 1− x),max(y, 1− y))

Standard Sharp [59] I�(x, y) =
{

1, if x < 1 or y = 1
0, if x = 1 and y < 1

Wu1 [93] I1b(x, y) =
{

1, if x ≤ y
min(1− x, y), if x > y

Wu2 [93] I1e(x, y) =
{

0, if x < y
y, if x ≥ y

Yager [94] IE(x, y) = yx

3. Other definitions of fuzzy implications with different motivations.
Besides S-, R- and QL- implications, there are many other classes of fuzzy implica-
tions which are not generated from the fuzzy logic operators negation, conjunction
and disjunction. For example, ([96], Yager 1999) and ([97], Yager 2004) define
two parameterized classes of fuzzy implications generated from additive generating
functions. Chapter 5 of ([6], Baczyński 2008) defines fuzzy implications generated
from uninorms. ([32], Hatzimichailidis 2006) also defines a new class of fuzzy im-
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plications.
Moreover, besides the fuzzy implications defined on the real [0, 1], there are dis-
crete fuzzy implications [50], [52], and fuzzy implications defined on a finite chain
[64]. They have their meaning and applications in approximate reasoning, fuzzy
morphology, etc..

4. Compare different effects of fuzzy implications in approximate reasoning and other
applications.

Definition 1.1. [38] Let U be an ordinary non-void set (the universe of discouse).
A mapping A : U ⇀ [0, 1] is called a fuzzy set.
The support of A is

suppA = {x ∈ U |A(x) > 0}.

The kernel of A is

kerA = {x ∈ U |A(x) = 1}

A is called normal if kerA 6= ∅.

In a fuzzy rule-based system, the approximate reasoning procedure is realized
through using generalized modus ponens, generalized modus tollens, generalized
fuzzy method of cases, etc., which are finally interpreted in Zadeh’s compositional
rule of inference [100]. For example, let X and Y be two linguistic variables on
the universes of discourse U and V , respectively, A, A

′
be fuzzy sets on U , and

B, B
′

be fuzzy sets on V . The generalized modus ponens based on a single-input-
single-output IF-THEN rule is represented by

IF X is A THEN Y is B
X is A

′

Y is B
′
.

We obtain B
′

through Zadeh’s compositional rule of inference

(∀y ∈ V )(B
′
(y) = sup

x∈U
T (A

′
(x), R(A(x), B(y)))), (1.3)

where T denotes a t-norm and R denotes a fuzzy relation on U × V .
One of the most important applications of fuzzy implications is to represent the
fuzzy relation R in (1.3). Different rule-based system may have different require-
ments for reasoning results. That is the motivation to compare different effects of
fuzzy implications in approximate reasoning [16], [58], [57], [56], [55] [59], [60],
[61], [84].
Besides approximate reasoning, a fuzzy implication has its applications in different
aspects as a [0, 1]2 ⇀ [0, 1] mapping with the boundary condition (1.1), and some-
times, with the first place antitonicity and second place isotonicity. For example,
([36], Jayaram 2008) uses fuzzy implications to define similarity measures. ([31],
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Hajek 1996) and ([37], Jayaram 2009) uses fuzzy implications to define general-
ized quantifiers. ([68], Pei 2008) uses fuzzy implications to define a new reasoning
algorithm. ([98], Yan 2005) uses fuzzy implications to define implication operators
in data mining.

5. Fuzzy implications used to define fuzzy set inclusions.
There are several methods to define a fuzzy set inclusion [15], [79], [40] among
which a fuzzy set inclusion based on a fuzzy implication is a very widely used one
[8], [9], [11], [15]. Fuzzy set inclusions can be used to define fuzzy morphological
operators in image processing, which is also one part of this thesis.

In the next sections we introduce various topics in this thesis.

1.2 Fuzzy Implication Axioms
The axiomatic system of a fuzzy implication I includes 13 axioms. They are:

FI1. the first place antitonicity (FA):
(∀(x1, x2, y) ∈ [0, 1]3)(x1 < x2 ⇒ I(x1, y) ≥ I(x2, y));

FI2. the second place isotonicity (SI):
(∀(x, y1, y2) ∈ [0, 1]3)(y1 < y2 ⇒ I(x, y1) ≤ I(x, y2));

FI3. dominance of falsity of antecedent (DF): (∀x ∈ [0, 1])(I(0, x) = 1);

FI4. dominance of truth of consequent (DT): (∀x ∈ [0, 1])(I(x, 1) = 1);

FI5. boundary condition (BC): I(1, 0) = 0;

FI6. neutrality of truth (NT): (∀x ∈ [0, 1])(I(1, x) = x);

FI7. exchange principle (EP): (∀(x, y, z) ∈ [0, 1]3)(I(x, I(y, z)) = I(y, I(x, z)));

FI8. ordering principle (OP): (∀(x, y) ∈ [0, 1]2)(I(x, y) = 1⇔ x ≤ y);

FI9. the mapping N
′

defined as (∀x ∈ [0, 1])(N
′
(x) = I(x, 0)), is a strong fuzzy

negation (SN);

FI10. consequent boundary (CB): (∀(x, y) ∈ [0, 1]2)(I(x, y) ≥ y);

FI11. identity (ID): (∀x ∈ [0, 1])(I(x, x) = 1);

FI12. contrapositive principle (CP): (∀(x, y) ∈ [0, 1]2)(I(x, y) = I(N(y), N(x))), where
N is a strong fuzzy negation;

FI13. continuity (CO): I is a continuous mapping.

These axioms are determined because of their substantial meanings. For example, let U
and V be two universes of discourse. A and B are fuzzy sets on U and V , respectively.
I(A(u), B(v)) represents a fuzzy relation on U×V . FI3 means that if we consider a point
u ∈ U such that A(u) = 0, then the corresponding value of v is completely not deter-
mined [20]. We will state the meanings of the other fuzzy implication axioms in Chapter
3. There are two main topics about fuzzy implication axioms in the literature. One is to
investigate if a class of fuzzy implications satisfies these axioms, or under which condi-
tions does the class of fuzzy implications satisfy these axioms (e.g., [4], [5], [23], [34],
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[51], [82], [97]). The other is to investigate the interrelationships among these axioms
(e.g., [2], [10],[24]), which helps to characterize some classes of fuzzy implications or to
solve some functional equations about fuzzy implications [35]. The study of fuzzy im-
plication axioms is still of great importance. For example, which QL-implications satisfy
the axiom FI1 remains undetermined, while FI1 does has its significance in applications.
Here are three examples:

1. In Zadeh’s compositional rule of inference
Let A and B be two normal fuzzy sets on the universes of discourse U and V ,
respectively (that is, there exists a u0 ∈ U such that A(u0) = 1 and there exists a
v0 ∈ V such thatB(v0) = 1). A andB represent the antecedent and the consequent
of the generalized modus ponens, respectively. Given a fact A

′
, which is also a

normal fuzzy set on U , we obtain the inference result B
′

through

(∀v ∈ V )(B
′
(v) = sup

u∈U
T (A

′
(u), I(A(u), B(v)))),

where T denotes a t-norm and I denotes a fuzzy implication. Consider the situation
where two given facts are precise i.e., represented as singletons

A
′

1(u) =
{

1, if u = u1

0, otherwise

and

A
′

2(u) =
{

1, if u = u2

0, otherwise

Thus the two inference results are obtained by:

(∀v ∈ V )(B
′

1(v) = I(A(u1), B(v)))

and

(∀v ∈ V )(B
′

2(v) = I(A(u2), B(v))).

According to ([97], Observation 2), if B
′

1 and B
′

2 are normal and B
′

1(v) ≥ B
′

2(v),
for all v ∈ V , then B

′

2 is a stronger inference result than B
′

1. If A(u1) < A(u2)
which means the given fact A

′

2 is more similar to the antecedent A than the given
fact A

′

1, then it is reasonable to require that B
′

2 be a stronger inference result than
B
′

1. If I satisfies FI1, then I also satisfies FI4. We will have

(∀(u1, u2) ∈ U × V )(A(u1) < A(u2)⇒ I(A(u1), B(v)) ≥ I(A(u2), B(v))).

Since there exists a v0 ∈ V such that B(v0) = 1 we obtain

I(A(u1), B(v0)) = I(A(u2), B(v0)) = 1.

Thus B
′

1 and B
′

2 are normal. Hence if I satisfies FI1, then the more similar the
given fact to the antecedent of the generalized modus ponens is, the stronger the
inference result is.
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2. In determining the association rules
In the study of fuzzy quantitative association rules, a fuzzy implication I (denoted
as FIO in [98]) is used to determine the degree of implication (denoted as DImp in
[98]) of a rule. According to [98], I should satisfy FI1 (see the proof of Theorem 1
in [98]) and it should satisfy the additional constraint:

(∀(x, y) ∈ [0, 1]2)(1 + T (x, y)− x = I(x, y)) (1.4)

where T is a t-norm. In this case the degree of implication can be generated from
the degree of support ((denoted as Dsupp in [98])) so that there is no need to scan
the database again to obtain the degree of implication. Therefore it avoids database
scanning in the process of calculating rules’ DImps.

3. In fuzzy DI-subsethood measure
In [11], a fuzzy DI-subsethood measure is defined to indicate the degree to which a
fuzzy set A is contained in another fuzzy set B. The authors proved in Theorem 1
of [11] that the operator σDI which is generated by an aggregation operator M and
a fuzzy implication I is a DI-subsethood measure iff I satisfies FI1, FI6, FI8 and
FI9.

In this thesis, we will study the fuzzy implication axioms for S-, R- and QL-implications,
especially for QL-implications in Chapter 3, and the complete interrelationships among
the fuzzy implications axioms FI6-FI13 in Chapter 4.

1.3 Approximate Reasoning in Fuzzy Rule-based Systems

A fuzzy rule-based system can be applied to fuzzy control or to fuzzy decision making.
There are four procedures of a fuzzy rule-based system: fuzzification, fuzzy rule base,
approximate reasoning, and defuzzification. Fuzzy implications play significant roles in
the approximate reasoning procedure in a fuzzy rule-based system. We give below an
overview of the four procedures of a fuzzy rule-based system, and state the role fuzzy
implications play in the approximate reasoning procedure.

1.3.1 Fuzzification

Let A be a fuzzy set on the universe of discourse U . The value A(x), x ∈ U expresses
the degree of membership of x in A. In a fuzzy rule-based system, a linguistic variable
X takes values which are lingustic terms characterized by fuzzy sets Ai, i = 1, 2, · · · , n,
n ∈ N. In this case, these fuzzy sets are called the membership functions ofX . For exam-
ple, for the linguistic variable pressure, the membership functions can be very low, low,
middle, high and very high. Normally membership functions have the form of triangular,
trapezoidal, Gaussian functions or generalized Bell functions.
The fuzzification aims to turn input and output numerical variables of the rules of the
system into linguistic variables, and to determine the membership functions. The experts’
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opinions or training from existing data (e.g., neural network, genetic algorithms) can de-
termine the supports and kernels of these membership functions [72].
Once the membership functions are determined in the rules, the real inputs in practice can
also be fuzzy sets, or numerical values that called singletons. A singleton x0 ∈ U can be
expressed as a fuzzy set of the form:

A(x) =
{

1, if x = x0

0, if x 6= x0
, x ∈ U. (1.5)

Singletons inputs are widely used in early fuzzy control rule-based systems.

1.3.2 Fuzzy Rule Base
Let a fuzzy rule-based system havem inputs (m linguistic variables on the universe of dis-
course U1, U2, · · · , Um) and n outputs (n linguistic variables on the universe of discourse
V1, V2, · · · , Vn). Suppose the ith input has ai membership functions Ai1, Ai2, · · · , Aiai ,
and the jth output has bj membership functions Bj1, Bj2, · · · , Bjbj . Then generally an
IF-THEN rule of this fuzzy system has the form:

IF X1 is A1i1 AND X2 is A2i2 AND · · ·AND Xm is Amim

THEN Y1 is B1j1 AND Y2 is B2j2 AND · · ·AND Yn is Bnjn ,
(1.6)

where ik = 1, 2, · · · , ai, i = 1, 2, · · · ,m, and jl = 1, 2, · · · , bj , j = 1, 2, · · · , n.
In this case, there are in total

∏m
i=1 ai possible rules and each rule contains n out-

puts. To have more efficient reasoning that less computing resource costs, we can split
the multi-input-multi-output (MIMO) rules represented by (1.6) into single-input-single-
output (SISO) rules, and then use an aggregation operator to obtain the final n output
fuzzy sets. A SISO rule has the form:

IF Xi is Aiik THEN Yj is Bjjl (1.7)

ik = 1, 2, · · · , ai, i = 1, 2, · · · ,m, and jl = 1, 2, · · · , bj , j = 1, 2, · · · , n.

Hence
∏m
i=1 ai rules are reduced to

∑m
i=1 ai rules and each rule contains one output.

Each SISO rule represented by (1.7) can be viewed as a fuzzy relation on

U × V = (U1 × U2 × · · · × Um)× (V1 × V2 × · · · × Vn),

[73].

1.3.3 Approximate Reasoning
The approximate reasoning procedure is based on the generalized modus ponens, general-
ized modus tollens, generalized fuzzy method of case , etc., and realized through Zadeh’s
compositional rule of inference (1.3). Recall that the generalized modus ponens of a SISO
rule has the form
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IF X is A THEN Y is B
X is A

′

Y is B
′
,

where X and Y are linguistic variables on the universe of discourse U and V , respec-
tively. A and A

′
are fuzzy sets on U , and B and B

′
are fuzzy sets on V .

The output fuzzy set B
′

is determined by Zadeh’s compositional rule of inference (1.3).
The generalized modus tollens of an SISO rule has the form

IF X is A THEN Y is B
Y is B

′

X is A
′
,

whereX and Y are linguistic variables on the universe of discourseU and V , respectively.
A and A

′
are fuzzy sets on U , and B and B

′
are fuzzy sets on V .

The output fuzzy set A
′

is determined by Zadeh’s compositional rule of inference:

(∀x ∈ U)(A
′
(x) = sup

y∈V
T (B

′
(y), R(A(x), B(y)))), (1.8)

where T denotes a triangular norm (for details about triangular norms see in Chapter 2)
and R denotes a fuzzy relation on U × V .
There are two different types of fuzzy systems w.r.t. R. In a conjunctive-type fuzzy
system [49], R is a t-norm. In an implicative-type fuzzy system [14], R is a fuzzy impli-
cation. The different choices of t-norms and fuzzy implications in (1.3) and (1.8) make
the approximate reasoning procedure flexible. If the input A

′
in the generalized modus

ponens is a singleton defined in (1.5), then (1.3) becomes

(∀y ∈ V )(B
′
(y) = R(A(x0), B(y))). (1.9)

If the input B
′

in the generalized modus tollens is a singleton defined in (1.5), then (1.8)
becomes

(∀x ∈ U)(A
′
(x) = R(A(x), B(x0))). (1.10)

In a MIMO fuzzy rule-based system withm inputs and n outputs, there are
∑m
i=1 ai SISO

rules for each output. We have two ways to aggregate these rules to obtain the final fuzzy
set for the jth output, first aggregate then inference (FAFI in short) and first inference
then aggregate (FIFA in short) . For FAFI we have for the jth output in generalized
modus ponens:

(∀y ∈ V )(B
′

j(y) = sup
x∈U

T (A
′
(x), AggkI(Ak(x), Bj(y)))), (1.11)

where k = 1, 2, · · · ,
∑m
i=1 ai, and Agg denotes an aggregation operator.

For FIFA we have for the jth output in generalized modus ponens:

(∀y ∈ V )(B
′

j(y) = Aggk sup
x∈U

T (A
′
(x), I(Ak(x), Bj(y)))), (1.12)
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where k = 1, 2, · · · ,
∑m
i=1 ai, and Agg denotes an aggregation operator.

In FAFI, to obtain B
′

j , we need to calculate the implication operation
∑m
i=1 ai times

and Zadeh’s compositional rule of inference one time, while in FIFA, we need to calcu-
late both the implication operation and Zadeh’s compositional rule of inference

∑m
i=1 ai

times. That is to say, FAFI is more efficient. Observe that if the inputs are singletons, then
FAFI is equivalent to FIFA. The result for generalized modus tollens is similar.
Once the t-norm T and the aggregation operator Agg are determined in (1.9), (1.10) or
(1.11), the flexibility of the approximate reasoning procedure depends on the choice of
fuzzy implications. There are different criteria that we can consider to choose a demanded
fuzzy implication in the approximate reasoning procedure. For example, in [97], the cho-
sen fuzzy implications determine the strictness of the approximate reasoning result. In
[47] and [48], the chosen fuzzy implications determine whether or not the approximate
reasoning procedure can approximate any continuous mappings on a compact set to an
arbitrary degree of accuracy. In [12], the chosen fuzzy implications determine the robust-
ness which is called the δ-equalities of fuzzy sets of the approximate reasoning result. In
Chapter 5 and Chapter 6, we will choose demanded fuzzy implications for the case that
there are repeated information in the antecedent in an IF-THEN rule, and for the case that
there are perturbations in the antecedent and the consequent in a determined IF-THEN
rule in the rule base, respectively.

1.3.4 Defuzzification

In a fuzzy control rule-base system, when we obtain a final fuzzy set Bj for the jth
output, j = 1, 2, · · · , n, we need to defuzzify Bj to get a numerical output as the control
signal. The most common defuzzifier is the center of area (COA for short), or the mean
of maxima (MOM for short). For further information we refer to [89].

1.4 Fuzzy Morphology

Another important application of fuzzy implications is to generate fuzzy morphological
operations. Mathematical morphology is an important theory developed in image pro-
cessing to analyze the geometric features of n-dimensional images [74] while fuzzy mor-
phology is developed to process gray-scale images [63]. Fuzzy morphological operations
are basic tools in fuzzy morphology. In the fuzzy morphology based on fuzzy set in-
clusion (see [63]), fuzzy morphological operations are generated from fuzzy implications
and conjunctions on the unit interval. The algebraic properties of these fuzzy implications
and conjunctions on the unit interval are worthy of investigating. We will have deep study
of this topic in Chapter 7.
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1.5 Outline
This thesis targets to develop the classes and axioms of fuzzy implications and to compare
the effects of different fuzzy implications under different requirements in approximate
reasoning as well as in fuzzy morphology.

• Chapter 2 gives preliminaries for the fuzzy logic operators, S-, R- and QL- impli-
cations, and parameterized fuzzy implications.

• Chapter 3 investigates the characterizations of S- and R-implications, and the ax-
ioms of QL-implications.

• Chapter 4 gives a complete determination of the interrelationship between the fuzzy
implication axioms FI6-FI13.

• Chapter 5 investigates a tautology in the approximate reasoning and solves the cor-
responding functional equations for S-, R- and QL- implications.

• Chapter 6 compares the robustness against perturbations of different fuzzy logic
operators in approximate reasoning.

• Chapter 7 works on the fuzzy morphological operations generated from fuzzy im-
plications and conjunctions on the unit interval.

• The last chapter concludes the research conducted in this thesis.





Chapter 2

Preliminaries and
Classifications of Fuzzy

Implications

2.1 Introduction
In fuzzy logic, the classical binary negation, conjunction, disjunction and implication are
extended to mappings that take values in the unit interval respectively. A fuzzy nega-
tion operator is normally modelled as a fuzzy negation. A fuzzy conjunction operator
is normally modelled as a conjunction on the unit interval or (more usually) as a trian-
gular norm (t-norm for short). A fuzzy disjunction operator is normally modelled as a
triangular conorm (t-conorm for short). There are many approaches to model a fuzzy
implication operator. It can be constructed from the other three fuzzy logic operators, or
it can be constructed from some parameterized generating functions. In this chapter we
give the definitions and basic properties of the negation operators, conjunction operators,
disjunction operators and implication operators in fuzzy logic.
The concepts of automorphism and conjugate will be useful in the whole chapter.

Definition 2.1. ([10], Definition 0) A mapping ϕ : [a, b] ⇀ [a, b] ([a, b] ⊂ R) is an
automorphism of the interval [a, b] if it is continuous and strictly increasing and satisfies
the boundary conditions: ϕ(a) = a and ϕ(b) = b.

Lemma 2.2. If ϕ is an automorphism of the unit interval, then ϕ−1 is also an automor-
phism of the unit interval.

PROOF. This proof is followed directly by Definition 2.1.

Lemma 2.3. (The chain rule) The composition of two automorphisms of the interval [a, b]
is again an automorphism of the interval [a, b].
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Table 2.1: Truth table of the classical binary negation
p ¬p
0 1
1 0

PROOF. Let γ = ϕ ◦ φ (i.e., γ(x) = ϕ(φ(x)), for all x ∈ [0, 1]), where ϕ and φ are two
automorphisms of the interval [a, b]. We have

γ(a) = ϕ ◦ φ(a) = ϕ(a) = a,

γ(b) = ϕ ◦ φ(b) = ϕ(b) = b.

Moreover, γ is continuous strictly increasing becauseϕ and φ are continuous strictly
increasing. So according to Definition 2.1, γ is an automorphisms of the interval
[a, b].

Definition 2.4. ([2], Definition 2) Two mappings F , G: [0, 1]n ⇀ [0, 1], n ∈ N , are
conjugate, if there exists an automorphism ϕ of the unit interval such thatG = Fϕ, where

Fϕ(x1, x2, · · · , xn) = ϕ−1(F (ϕ(x1), ϕ(x2), · · · , ϕ(xn))). (2.1)

2.2 Negations

The truth table of the classical binary negation ¬ is given in Table 2.1. In many-valued
logic we extend the classical binary negation to the unit interval as a [0, 1] ⇀ [0, 1]
mapping as follows:

Definition 2.5. A mapping N : [0, 1] ⇀ [0, 1] is a fuzzy negation if it satisfies:

N1. boundary conditions: N(0) = 1 and N(1) = 0,

N2. monotonicity: (∀(x, y) ∈ [0, 1]2)(x ≤ y ⇒ N(x) ≥ N(y)).

Moreover, a fuzzy negationN is said to be strict ifN is a continuous and strictly decreas-
ing mapping.
A fuzzy negation N is said to be strong if N(N(x)) = x, for all x ∈ [0, 1].
For any continuous fuzzy negation N , there exists a unique equilibrium point e ∈ ]0, 1[
such that N(e) = e and for all x < e, N(x) > e > x, for all x > e, N(x) < e < x [[10],
Section 1.1].

Notice that a strong fuzzy negation is strict and it is a continuous mapping. We give
examples of non-continuous fuzzy negations, a continuous but non-strict fuzzy negation, a
strict but non-strong fuzzy negation and a strong fuzzy negation, respectively, as follows.
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Example 2.1 1. The fuzzy negation N1a:

N1a(x) =
{

0 if x = 1,
1 otherwise , x ∈ [0, 1] (2.2)

and N1b:

N1b(x) =
{

1 if x = 0,
0 otherwise , x ∈ [0, 1] (2.3)

are not continuous.

2. The fuzzy negation N2:

N2(x) =

 1− x if x ∈ [0, 0.4],
0.6 if x ∈ [0.4, 0.6]
−1.5x+ 1.5 otherwise

, x ∈ [0, 1] (2.4)

is continuous but not strict.

3. The fuzzy negation N3:

N3(x) = 1− x2, x ∈ [0, 1] (2.5)

is strict but not strong.

4. The fuzzy negation N0:

N0(x) = 1− x, x ∈ [0, 1] (2.6)

is strong.
N0 is the standard strong fuzzy negation. We have the next theorem for strong
fuzzy negations.

Theorem 2.6. [81] A fuzzy negationN is strong iff there exists an automorphism ϕ of the
unit interval such that

N(x) = ϕ−1(1− ϕ(x)), x ∈ [0, 1]. (2.7)

2.3 Conjunctions
The truth table of the classical binary conjunction ∧ is given in Table 2.2. In many-valued
logic we extend the classical binary conjunction to the unit interval as a [0, 1]2 ⇀ [0, 1]
mapping as follows:

Definition 2.7. A mapping C: [0, 1]2 ⇀ [0, 1] is a conjunction on the unit interval if it
satisfies:

C1. boundary conditions: C(0, 0) = C(0, 1) = C(1, 0) = 0 and C(1, 1) = 1,
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Table 2.2: Truth table of the classical binary conjunction
p q p ∧ q
0 0 0
0 1 0
1 0 0
1 1 1

C2. monotonicity: (∀(x, y, z) ∈ [0, 1]3)(x ≤ y ⇒ C(x, z) ≤ C(y, z) and C(z, x) ≤
C(z, y)).

Definition 2.8. A mapping T : [0, 1]2 ⇀ [0, 1] is a triangular norm (t-norm for short) if
for all x, y, z ∈ [0, 1] it satisfies:

T1. boundary condition: T (x, 1) = x,

T2. monotonicity: y ≤ z implies T (x, y) ≤ T (x, z),

T3. commutativity: T (x, y) = T (y, x),

T4. associativity: T (x, T (y, z)) = T (T (x, y), z).

A t-norm T always satisfies T (x, x) ≤ x, for all x ∈ [0, 1].
Every t-norm is a conjunction on the unit interval. In fuzzy logic, t-norms are widely used
to model conjunction operators. Besides T1-T4, there are also some additional require-
ments of t-norms. Here we mention seven of them as examples:

T5. continuity: T is continuous,

T6. left-continuity: the partial mappings of T are left-continuous,

T7. idempotency: T (x, x) = x, for all x ∈ [0, 1],

T8. subidempotency: T (x, x) < x, for all x ∈ ]0, 1[ ,

T9. Archimedean property: for all (x, y) ∈ ]0, 1[ 2, there exists an n ∈ N such that
T (x, x, ..., x︸ ︷︷ ︸

n times

) < y [[43], Definition 2.9 (iv)],

T10. strictness: T is continuous and 0 < y < z < 1 ⇒ T (x, y) < T (x, z), for all
x, y, z ∈ ]0, 1],

T11. nilpotency: T is continuous and for all x ∈ ]0, 1[ , there exists a y ∈ ]0, 1[ such that
T (x, y) = 0.

Proposition 2.9. A t-norm T satisfies T (x, x) ≤ x, for all x ∈ [0, 1].
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Remark 2.10. According to ([43], Definition 2.1 (i)), an element x ∈ [0, 1] such that
T (x, x) = x is called an idempotent element of T . The numbers 0 and 1, which are
idempotent elements for each t-norm T , are called trivial idempotent elements of T . Each
idempotent element in ]0, 1[ will be called a non-trivial idempotent element of T . Thus
T satisfying subidempotency is equivalent to T having only trivial idempotent elements.
Hence according to ([43], Fig. 2.2), the subidempotency is equivalent to the Archimedean
property only for continuous t-norms.

Five very important t-norms ([43], Example 1.2, [23]) are commonly used:

1. TM(x, y) = min(x, y), (minimum)

2. TP(x, y) = xy, (product)

3. TL(x, y) = max(x+ y − 1, 0), (Łukasiewicz t-norm)

4. TD(x, y) =
{

min(x, y) if x = 1 or y = 1
0 otherwise, (drastic product)

5. (Tmin0)N (x, y) =
{

min(x, y) if y > N(x)
0 otherwise (nilpotent minimum), where

N denotes a strong fuzzy negation.

The minimum TM is the only idempotent t-norm ([44], Theorem 3.9). The nilpotent
minimum Tmin0 was first introduced by Fodor in [23]. It is a left-continuous t-norm. The
drastic product TD is not left-continuous (continuous).
Klement et al. state in their book [43] a collection of parameterized families of t-norms
which are interesting from different points of view. They are:

1. Family of Schweizer-Sklar t-norms

TSSs (x, y) =


TM(x, y), if s = −∞
TP(x, y), if s = 0
TD(x, y), if s = +∞
(max(xs + ys − 1, 0))

1
s , if s ∈ ]−∞, 0[ ∪ ]0,+∞[

, (2.8)

2. Family of Hamacher t-norms

THs (x, y) =


TD(x, y), if s = +∞
0, if s = x = y = 0

xy
s+(1−s)(x+y−xy) , if s ∈ [0,+∞[ and (s, x, y) 6= (0, 0, 0)

,

(2.9)

3. Family of Yager t-norms

TYs (x, y) =


TD(x, y), if s = 0
TM(x, y), if s = +∞
max(1− ((1− x)s + (1− y)s)

1
s , 0), if s ∈]0,+∞[

, (2.10)
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4. Family of Dombi t-norms

TDs (x, y) =


TD(x, y), if s = 0
TM(x, y), if s = +∞

1

1+(( 1−x
x )s+( 1−y

y )s)
1
s
, if s ∈ ]0,+∞[

, (2.11)

5. Family of Sugeno-Weber t-norms

TSWs (x, y) =


TD(x, y), if s = −1
TP(x, y), if s = +∞
(max(x+y−1+sxy

1+s , 0), if s ∈ ]− 1,+∞[
, (2.12)

6. Family of Aczél-Alsina t-norms

TAAs (x, y) =


TD(x, y), if s = 0
TM(x, y), if s = +∞
(e−((− log x)s+(− log y)s)

1
s , if s ∈ ]0,+∞[

(2.13)

7. Family of Frank t-norms

TFs (x, y) =


TM(x, y), if s = 0
TP(x, y), if s = 1
TL(x, y), if s = +∞
logs(1 + (sx−1)(sy−1)

s−1 ), otherwise

, (2.14)

8. Family of Mayor-Torrens t-norms

TMT
s (x, y) =

{
max(x+ y − s, 0), if s ∈ ]0, 1] and (x, y) ∈ [0, s]2

min(x, y), if s = 0 or x > s or y > s
.

(2.15)

Theorem 2.11. ([44], Theorem 3.11) T is a continuous Archimedean t-norm iff there
exists a decreasing generator f such that

T (x, y) = f (−1)(f(x) + f(y)), ∀x, y ∈ [0, 1], (2.16)

where a decreasing generator f is defined as a continuous and strictly decreasing map-
ping from [0, 1] to [0,+∞[ such that f(1) = 0. The pseudo-inverse of f , f (−1): [0,+∞[
⇀ [0, 1] is defined as

f (−1)(x) =
{
f−1(x) if x ∈ [0, f(0)]
0 if x ∈ ]f(0),+∞[ , (2.17)

where f−1 denotes the ordinary inverse of f .
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It has been proved that a continuous Archimedean t-norm is either strict or nilpotent [[43],
p.33].

Theorem 2.12. ([43], Corollary 5.7)

i) A t-norm T is strict iff it is conjugate with the product TP, i.e., there exists an
automorphism ϕ of the unit interval such that

T (x, y) = ϕ−1(ϕ(x)ϕ(y)), x, y ∈ [0, 1]. (2.18)

ii) A t-norm T is nilpotent iff it is conjugate with the Łukasiewicz t-norm TL, i.e., there
exists an automorphism ϕ of the unit interval such that

T (x, y) = ϕ−1(max(ϕ(x) + ϕ(y)− 1, 0)), x, y ∈ [0, 1]. (2.19)

We can generate a fuzzy negation from a t-norm [6].

Definition 2.13. Let T be a t-norm. The natural negation NT of T is defined as

(∀x ∈ [0, 1])(NT (x) = sup{t ∈ [0, 1]|T (x, t) = 0}). (2.20)

We give here examples of natural negations of the aforementioned five important t-
norms.

Example 2.2 1. The natural negation of the minimum TM is:

NTM(x) = sup{t ∈ [0, 1]|min(x, t) = 0} = N1b(x). (2.21)

2. The natural negation of the product TP is:

NTP(x) = sup{t ∈ [0, 1]|xt = 0} = N1b(x). (2.22)

3. The natural negation of the Łukasiewicz t-norm TL is:

NTL(x) = sup{t ∈ [0, 1]|max(x+ t− 1, 0) = 0} = N0(x). (2.23)

4. The natural negation of the drastic product TD is:

NTD(x) = sup{t ∈ [0, 1]|TD(x, y) = 0} = N1b(x). (2.24)

5. The natural negation of the nilpotent minimum (Tmin0)N is:

NTD(x) = sup{t ∈ [0, 1]|(Tmin0)N (x, y) = 0} = N(x). (2.25)

The natural negation of a t-norm plays an important role in the law of excluded middle
(LEM for short).
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Theorem 2.14. A left-continuous t-norm T and a fuzzy negation N satisfy

(∀x ∈ [0, 1])(T (x,N(x)) = 0) (2.26)

iff
(∀x ∈ [0, 1])(N(x) ≤ NT (x)). (2.27)

PROOF. ⇐=: Because T is left-continuous, equation (2.20) can be rewritten as

(∀x ∈ [0, 1])(NT (x) = max{t ∈ [0, 1]|T (x, t) = 0}). (2.28)

Then T (x,NT (x)) = 0. Because of T2, if N(x) ≤ NT (x), then T (x,N(x)) = 0.
=⇒: Because T (x,N(x)) = 0,

N(x) ∈ {t ∈ [0, 1]|T (x, t) = 0}.

So

N(x) ≤ max{t ∈ [0, 1]|T (x, t) = 0} = NT (x).

Remark 2.15. For a non left-continuous t-norm T and a fuzzy negation N , condition
(2.27) is necessary but not sufficient for them to satisfy equation (2.26).

Theorem 2.16. ([10], Theorem 2) A continuous t-norm T and a strict fuzzy negation N
satisfy equation (2.26) iff T is conjugate with the Łukasiewicz t-norm TL, and

(∀x ∈ [0, 1])(N(x) ≤ ϕ−1(1− ϕ(x))). (2.29)

Continuous t-norms have been well studied. We have the next definition and theorem.

Definition 2.17. ([43], Theorem 3.44) Let {Tm}m∈M be a family of t-norms and
{[am, bm]}m∈M be a non-empty family of non-overlapping, closed, proper subintervals
of [0, 1], whereM is a finite or countable index set. Then a t-norm To is called the ordinal
sum of {[am, bm], Tm}m∈M if

To(x, y) =
{
am + (bm − am)Tm( x−am

bm−am ,
y−am
bm−am ) if (x, y) ∈ [am, bm]2

TM(x, y) otherwise
. (2.30)

Remark 2.18. If there exists only one subinterval [a1, b1] of [0, 1] with a1 = 0, b1 = 1,
then To = T1. Henceforth we always assume for the ordinal sum defined in (2.30) that
there exists at least one subinterval [ak, bk] such that ak 6= 0 or bk 6= 1.

Theorem 2.19. ([24], Section 1.3.4, [43], Theorem 5.11) T is a continuous t-norm iff at
least one of the following conditions holds:

i) T = TM
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ii) T is continuous Archimedean

iii) there exists a family {[am, bm], Tm} where {[am, bm]} is a countable family of non-
overlapping, closed, proper subintervals of [0, 1] with each Tm being a continuous
Archimedean t-norm such that T is the ordinal sum of this family.

Table 2.3 shows for which parameters the aforementioned parameterized families of
t-norms are continuous, Archimedean, strict, and nilpotent.
For Frank t-norms we have the following proposition:

Table 2.3: Parameterized families of t-norms and their properties
Family Continuous Archimedean Strict Nilpotent

TSSs s ∈ [−∞,+∞[ s ∈ ]−∞,+∞] s ∈ ]−∞, 0] s ∈ ]0,+∞[

THs s ∈ [0,+∞[ s ∈ [0,+∞] s ∈ [0,+∞[ none

TYs s ∈ ]0,+∞] s ∈ [0,+∞[ none s ∈ ]0,+∞[

TDs s ∈ ]0,+∞] s ∈ [0,+∞[ s ∈ ]0,+∞[ none

TSWs s ∈ ]− 1,+∞] s ∈ [−1,+∞] s = +∞ s ∈ ]− 1,+∞[

TAAs s ∈ ]0,+∞] s ∈ [0,+∞[ s ∈ ]0,+∞[ none

TFs s ∈ [0,+∞] s ∈ ]0,+∞] s ∈ ]0,+∞[ s = +∞

TMT
s s ∈ [0, 1] s = 1 none s = 1

Proposition 2.20. A Frank t-norm or an ordinal sum T defined in (2.30) where each Tm,
m ∈M , is a Frank t-norm different from TM, satisfies the 1-Lipschitz property:

(∀(x1, x2, y) ∈ [0, 1]3)(x1 ≤ x2 ⇒ T (x2, y)− T (x1, y) ≤ x2 − x1) (2.31)

There is another important conjunction on the unit interval:

Definition 2.21. ([43], Definition 9.4) A mapping C : [0, 1]2 ⇀ [0, 1] is a (two dimen-
sional) copula if for all x, x∗, y, y∗ ∈ [0, 1] with x ≤ x∗ and y ≤ y∗, it satisfies:

C1. C(x, y) + C(x∗, y∗) ≥ C(x, y∗) + C(x∗, y)

C2. C(x, 0) = C(0, x) = 0

C3. C(x, 1) = C(1, x) = x

Theorem 2.22. ([43], Theorem 9.10) A t-norm T is a copula iff T satisfies the 1-Lipschitz
property (2.31).

For more results and applications of t-norms, we refer to [43].
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2.4 Disjunctions
The truth table of the classical binary disjunction ∨ is given in Table 2.4. The disjunction

Table 2.4: Truth table of the classical binary disjunction
p q p ∨ q
0 0 0
0 1 1
1 0 1
1 1 1

in fuzzy logic is often modeled as follows:

Definition 2.23. A mapping S: [0, 1]2 ⇀ [0, 1] is a triangular conorm (t-conorm for
short) if for all x, y, z ∈ [0, 1] it satisfies:

S1. boundary condition: S(x, 0) = x,

S2. monotonicity: y ≤ z implies S(x, y) ≤ S(x, z),

S3. commutativity: S(x, y) = S(y, x),

S4. associativity: S(x, S(y, z)) = S(S(x, y), z).

A t-conorm S always satisfies S(x, x) ≥ x, for all x ∈ [0, 1].
Similar to t-norms, we mention here six more properties of t-conorms:

S5. continuity: S is continuous,

S6. idempotency: S(x, x) = x, for all x ∈ [0, 1],

S7. subidempotency: S(x, x) > x, for all x ∈ ]0, 1[ ,

S8. Archimedean property: for all (x, y) ∈ ]0, 1[ 2, there exists an n ∈ N such that
S(x, x, ..., x︸ ︷︷ ︸

n times

) > y [[43], Remark 2.20 (AP*)],

S9. strictness: S is continuous and 0 < y < z < 1 ⇒ S(x, y) < S(x, z), for all
x, y, z ∈ [0, 1[ ,

S10. nilpotency: S is continuous and for all x ∈ ]0, 1[ , there exists a y ∈ ]0, 1[ such that
S(x, y) = 1.

Proposition 2.24. A t-conorm S satisfies S(x, x) ≥ x, for all x ∈ [0, 1].

Remark 2.25. ([43], Remark 2.20, Fig. 2.2) Similar to that four t-norms, the subidem-
potency is equivalent to the Archimedean property only for continuous t-conorms.

Four important t-conorms [[43], Example 1.14] are commonly used:
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1. SM(x, y) = max(x, y), (maximum)

2. SP(x, y) = x+ y − xy, (probabilistic sum)

3. SL(x, y) = min(x+ y, 1), (Łukasiewicz t-conorm, bounded sum)

4. SD(x, y) =
{

max(x, y) if x = 0 or y = 0
1 otherwise. (drastic sum)

The maximum SM is the only idempotent t-conorm [11, Theorem 3.14].

Theorem 2.26. ([44], Theorem 3.16 ) S is a continuous Archimedean t-conorm iff there
exists an increasing generator g such that

S(x, y) = g(−1)(g(x) + g(y)), ∀x, y ∈ [0, 1], (2.32)

where an increasing generator g is defined as a continuous and strictly increasing map-
ping from [0, 1] to [0,+∞[ such that g(0) = 0. The pseudo-inverse of g, g(−1): [0,+∞[
⇀ [0, 1] is defined as

g(−1)(x) =
{
g−1(x) if x ∈ [0, g(1)]
1 if x ∈ ]g(1),+∞[ , (2.33)

where g−1 denotes the ordinary inverse of g.

Similar to t-norms, it has been concluded that a continuous Archimedean t-conorm is
either strict or nilpotent ([43], Remark 2.20).

Theorem 2.27. ([24], Theorem 1.8, Theorem 1.9)

i) A t-conorm S is strict iff it is conjugate with the probabilistic sum SP, i.e., there
exists an automorphism ϕ of the unit interval such that

S(x, y) = ϕ−1(ϕ(x) + ϕ(y)− ϕ(x)ϕ(y)), x, y ∈ [0, 1]. (2.34)

ii) A t-conorm S is nilpotent iff it is conjugate with the Łukasiewicz t-conorm SL, i.e.,
there exists an automorphism ϕ of the unit interval such that

S(x, y) = ϕ−1(min(ϕ(x) + ϕ(y), 1)), x, y ∈ [0, 1]. (2.35)

Definition 2.28. The dual t-conorm S of a t-norm T w.r.t. a strong fuzzy negation N is
defined as

(∀(x, y) ∈ [0, 1]2)(S(x, y) = N(T (N(x), N(y))). (2.36)

Example 2.3 Let N be a strong fuzzy negation. The dual t-conorm of the nilpotent
minimum (Tmin0)N nilpotent maximum is represented as:

(Smax0)N (x, y) =
{

max(x, y) if N(y) > x
1 else . (2.37)
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The Frank t-norms proposed by Frank [25] are to solve the Frank equation of a t-norm
T and a t-conorm S:

(∀(x, y) ∈ [0, 1]2)(S(x, y) + T (x, y) = x+ y). (2.38)

The next theorem presents the solution of equation (2.38).

Theorem 2.29. ([43], Theorem 5.14) A t-norm T and a t-conorm S satisfy the Frank
equation (2.38) iff T is a Frank t-norm or an ordinal sum defined in (2.30) where each
Tm, m ∈ M , is a Frank t-norm different from TM, and S is the dual t-conorm of T
defined in (2.36) with N = N0.

We can generate a fuzzy negation from a t-conorm.

Definition 2.30. Let S be a t-conorm. The natural negation NS of S is defined as

(∀x ∈ [0, 1])(NS(x) = inf{t ∈ [0, 1]|S(x, t) = 1}). (2.39)

We give here examples of natural negations of the aforementioned four important t-
conorms and the nilpotent maximum.

Example 2.4 1. The natural negation of the maximum SM is:

NSM(x) = inf{t ∈ [0, 1]|max(x, t) = 1} = N1a(x). (2.40)

2. The natural negation of the probabilistic sum SP is :

NSP(x) = inf{t ∈ [0, 1]|x+ t− xt = 1} = N1a(x). (2.41)

3. The natural negation of the Łukasiewicz t-conorm SL is:

NSL(x) = inf{t ∈ [0, 1]|min(x+ t, 1) = 1} = 1− x = N0(x). (2.42)

4. The natural negation of the drastic sum SD is:

NSD(x) = inf{t ∈ [0, 1]|SD(x, t) = 1} = N1b(x). (2.43)

5. The natural negation of the nilpotent maximum (Smax0)N is:

N(Smax0 )N (x) = inf{t ∈ [0, 1]|(Smax0)N (x, t) = 1} = N(x). (2.44)

The natural negation of a t-conorm plays an important role in the LEM.

Theorem 2.31. A right-continuous t-conorm S and a fuzzy negation N satisfy

(∀x ∈ [0, 1])(S(x,N(x)) = 1) (2.45)

iff
(∀x ∈ [0, 1])(N(x) ≥ NS(x)). (2.46)
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PROOF. ⇐=: Because S is right-continuous, equation (2.39) can be rewritten as

(∀x ∈ [0, 1])(NS(x) = min{t ∈ [0, 1]|S(x, t) = 1}). (2.47)

Then S(x,NS(x)) = 1. Because of S2, if N(x) ≥ NS(x), then S(x,N(x)) = 1.
=⇒: Because S(x,N(x)) = 1, N(x) ∈ {t ∈ [0, 1]|S(x, t) = 1}. So

N(x) ≤ min{t ∈ [0, 1]|S(x, t) = 1} = NS(x).

Remark 2.32. For a non right-continuous t-conorm S and a fuzzy negation N , condition
(2.46) is necessary but not sufficient for them to satisfy equation (2.45).

Theorem 2.33. ([10], Theorem 1) A continuous t-conorm S and a strict fuzzy negationN
satisfy equation (2.45) iff S is conjugate with the Łukasiewicz t-conorm SL, and N(x) ≥
ϕ−1(1− ϕ(x)).

Similar to continuous t-norms, we have the next definition and theorem for continuous
t-conorms.

Definition 2.34. Let {Sm}m∈M be a family of t-conorms and {[am, bm]}m∈M be a
non-empty family of non-overlapping, closed, proper subintervals of [0, 1], where M
is a finite or countable index set. Then a t-conorm So is called the ordinal sum of
{[am, bm], Sm}m∈M if

So(x, y) =
{
am + (bm − am)Sm( x−am

bm−am ,
y−am
bm−am ) if (x, y) ∈ [am, bm]2

SM(x, y) otherwise
. (2.48)

Remark 2.35. If there exists only one subinterval [a1, b1] of [0, 1] with a1 = 0, b1 = 1,
then So = S1. Henceforth we always assume for the ordinal sum defined in (2.48) that
there exists at least one subinterval [ak, bk] such that ak 6= 0 or bk 6= 1.

Theorem 2.36. ([24], Section 1.4.4)([43], Corollary 3.58) S is a continuous t-conorm iff
one of the following conditions holds:

i) S = SM

ii) S is continuous Archimedean

iii) there exists a family {[am, bm], Sm} where {[am, bm]} is a countable family of non-
overlapping, closed, proper subintervals of [0, 1] with each Sm being a continuous
Archimedean t-conorm such that S is the ordinal sum of this family.

Definition 2.37. If

(∀(x, y, z) ∈ [0, 1]3)(S(x, T (y, z)) = T (S(x, y), S(x, z))), (2.49)

then we say that the t-conorm S is distributive over the t-norm T ([43], Proposition 2.22).
Similarly, if

(∀(x, y, z) ∈ [0, 1]3)(T (x, S(y, z)) = S(T (x, y), T (x, z))), (2.50)

then we say that the t-norm T is distributive over the t-conorm S.

The only distributive pair is TM and SM ([43], Proposition 2.22).



26 PRELIMINARIES AND CLASSIFICATIONS OF FUZZY IMPLICATIONS

2.5 Fuzzy Implications Generated from Other Fuzzy Logic
Operators

The truth table of the classical binary implication→ is given in Table 2.5. In many-valued

Table 2.5: Truth table of the classical binary implication
p q p→ q
0 0 1
0 1 1
1 0 0
1 1 1

logic we extend the classical binary implication to the unit interval as a [0, 1]2 ⇀ [0, 1]
mapping as follows:

Definition 2.38. A mapping I: [0, 1]2 ⇀ [0, 1] is a fuzzy implication if it satisfies the
boundary conditions:

I1. I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0.

As mentioned in [[10], Section 2] that all fuzzy implications are obtained by general-
izing the implication of classical binary logic. There are three important ways to generate
fuzzy implications through classical binary logic: S-implications, R-implications, and
QL-implications.

2.5.1 S-implications

S-implications are the short for strong implications. An S-implication is generated from a
fuzzy negation and a t-conorm, getting idea from the proposition in classical binary logic:

p→ q ⇔ ¬p ∨ q.

Definition 2.39. Let S be a t-conorm and N be a fuzzy negation. An S-implication is
defined as

I(x, y) = S(N(x), y), ∀x, y ∈ [0, 1]. (2.51)

Remark 2.40. N is assumed to be a strong fuzzy negation (e.g., in [[10], Section 4] [[24],
Definition 1.16]). However, N is not necessary supposed to be strong, even not necessary
to be continuous [[43], Definition 11.5], [4] (where the authors call the S-implications
generated from a fuzzy negation N and a t-conorm S (S,N )-implications).



2.6 Other Methods to Generate Fuzzy Implications 27

2.5.2 R-implications
R-implications are the short for residual implications. An R-implication is generated
from a conjunction on the unit interval (usually, a second place left-continuous mapping),
getting idea from the equality in classical set theory:

Ac ∪B = (A−B)c = ∪{Z|A ∩ Z ⊆ B}.

where c denotes a set-complement operator and − denotes a set-difference operator. An
R-implication can be generated from a conjunction C on the unit interval:

Definition 2.41. Let C be a conjunction on the unit interval. An R-implication is defined
as

I(x, y) = sup{t ∈ [0, 1]|C(x, t) ≤ y}, ∀x, y ∈ [0, 1]. (2.52)

In Definition 2.41, if C is second place left-continuous, then (2.52) can be rewritten as

I(x, y) = max{t ∈ [0, 1]|C(x, t) ≤ y}, ∀x, y ∈ [0, 1]. (2.53)

R-implications generated from t-norms play an important role in the literature. An R-
implication generated from a t-norm T is represented by [29]

I(x, y) = sup{t ∈ [0, 1]|T (x, t) ≤ y}, ∀x, y ∈ [0, 1]. (2.54)

If T is a left-continuous t-norm, then (2.54) can be rewritten as

I(x, y) = max{t ∈ [0, 1]|T (x, t) ≤ y}, ∀x, y ∈ [0, 1]. (2.55)

2.5.3 QL-implications
QL-implications are the short for quantum logic implications. A QL-implication is gener-
ated from a strong fuzzy negation, a t-conorm and a t-norm, getting idea from the equiv-
alency in classical binary logic:

p→ q ⇔ (¬p ∨ (p ∧ q)). (2.56)

Definition 2.42. Let S be a t-conorm, N be a strong fuzzy negation and T be a t-norm.
A QL-implication is defined by:

I(x, y) = S(N(x), T (x, y)), ∀x, y ∈ [0, 1]. (2.57)

Table 2.6 lists the popular fuzzy implications in the literature, which belong to the
classes S-, R- or QL-implications. For the intersections of S-, R- and QL-implications,
we refer to [6].

2.6 Other Methods to Generate Fuzzy Implications
There are several approaches to define a fuzzy implication besides to define it from the
other fuzzy logic operators.
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2.6.1 Fuzzy Implications Generated from Additive Generating Func-
tions

Yager [97] introduced a class of fuzzy implications generated from additive generating
functions, and analysed their roles in approximate reasoning. They are fuzzy implications
generated from f -generators .

Definition 2.43. A generator f is a continuous [0, 1] ⇀ [0,+∞[ mapping which is
strictly decreasing and f(1) = 0. Moreover the pseudo-inverse of f , f (−1) is defined as

f (−1)(x) =
{
f−1(x), if x ≤ f(0)
0, otherwise . (2.58)

Definition 2.44. A f -generated implication If is defined as

(∀(x, y) ∈ [0, 1]2)(If (x, y) = f (−1)(xf(y))). (2.59)

Remark 2.45. Observe that if the generator f is defined as f(x) = − log x, then the
f -generated implication is the widely-known Yager implication IY (see in [94]):

(∀(x, y) ∈ [0, 1]2)(IY (x, y) = yx). (2.60)

2.6.2 Parameterized Fuzzy Implications Used in Fuzzy Morphology
Mathematical morphology is an important theory developed in image processing to ana-
lyze the geometric features of n-dimensional images. These images can be binary images
which are represented as subsets of Rn or gray-scale images which are represented as
Rn ⇀ [0, 1] mappings [62]. Morphological operations are the basic tools in mathemati-
cal morphology. They transform an image A by using another image B which is called
the structuring element. Fuzzy morphological operations can be constructed from con-
junctions on the unit interval and fuzzy implications. Besides the aforementioned fuzzy
implications, we have still the following definitions.

Definition 2.46. The Zadeh implication [102] is defined as

(∀(x, y) ∈ [0, 1]2)(IZ(x, y) =
{

1, if x ≤ y
0, if x > y

). (2.61)

Other two are parameterized fuzzy implications:

Definition 2.47. ([39]) A generalized Łukasiewicz implication is defined as:

(∀(x, y) ∈ [0, 1]2)(Iλ(x, y) = min(λ(x) + λ(1− y), 1)), (2.62)

where λ is a [0, 1] ⇀ [0, 1] mapping that is decreasing with λ(0) = 1 and λ(1) = 0 and
satisfies the following conditions:

Λ1. λ(x) = 0 has a unique solution,
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Λ2. (∀α ∈ [0.5, 1])(λ(x) = α has a unique solution),

Λ3. (∀x ∈ [0, 1])(λ(x) + λ(1− x) ≥ 1).

Example 2.5 Two examples of λ-mappings with a parameter n are given as follows:

(i)
(∀x ∈ [0, 1])(λn(x) = 1− xn), n ≥ 1. (2.63)

Notice that if n = 1 in this case, then λn(x) = 1− x, which is the standard strong
fuzzy negation. Moreover, the corresponding implication via (2.62) is the famous
Lukasiewicz implication IL.

(ii)

(∀x ∈ [0, 1])(λn(x) =
1− x

1 + nx
), n ∈ ]− 1, 0]. (2.64)

Definition 2.48. ([41]) A Kitainik’s implication is defined as:

(∀(x, y) ∈ [0, 1]2)(Iϕ(x, y) = ϕ(max(x, 1− y),min(x, 1− y))), (2.65)

where ϕ is a Tτ ⇀ [0, 1] mapping that is decreasing with ϕ(0, 0) = ϕ(1, 0 = 1) and
ϕ(1, 1) = 0. Tτ is the triangle defined as:

Tτ = {(x, y)|(x, y) ∈ [0, 1]2 and x ≥ y}. (2.66)

2.7 Summary
In this chapter we gave preliminaries of fuzzy negations, fuzzy conjunctions, fuzzy dis-
junctions, and fuzzy implications generated from these fuzzy logic operators as well as
from some generated functions. We listed in Table 2.6 for the most famous fuzzy implica-
tions in the literature if they are generated from the other fuzzy logic operators, and which
class they belong to.
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Table 2.6: Popular fuzzy implications and their classes
Name and symbol I(x, y) = S- R- QL-

Kleene-Dienes max(1− x, y) S = SM − S = SL
Ib N = N0 N = N0

T = TL
Reichenbach 1− x+ xy S = SP − S = SL

Ir N = N0 N = N0

T = TP

Most Strict
{

1, x = 0
y, otherwise S = SM − −

IM N = N1b

Largest

 y, x = 1
1− x, y = 0
1, otherwise

S = SD − −

ILS N = N0

Least Strict
{
y, x = 1
1, otherwise S = SM T = TD S = SM

ILR N = N1a N = N1a

T = TM
Łukasiewicz min(1− x+ y, 1) S = SL T = TL S = SL

IL N = N0 N = N0

T = TM

R0

{
1, x ≤ y
max(N(x), y), otherwise S = Smax0 T −

(I(min0))N N any strong = (Tmin0)N
fuzzy negation

Gödel
{

1, x ≤ y
y, otherwise − T = TM −

Ig

Goguen
{

1, x ≤ y
y/x, otherwise − T = TP

I∆
Early Zadeh max(1− x,min(x, y)) − − S = SM

Im N = N0

T = TM
Klir and Yuan 1 1− x+ x2y − − S = SP

Ip N = N0

T = TP

Klir and Yuan 2

 y, x = 1
1− x, x 6= 1, y 6= 1
1, x 6= 1, y = 1

− − S = SD

Iq N = N0

T = TD



Chapter 3

Fuzzy Implication Axioms

3.1 Introduction
A fuzzy implication I is an extension of the implication operator in the classical binary
logic. So I must satisfy at least the boundary conditions

I1. I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0.

Besides I1, there are several other potential axioms for I to satisfy in different theories
and applications, among which the most important ones are (notice that FI5 is a part of
I1):

FI1. the first place antitonicity (FA):
(∀(x1, x2, y) ∈ [0, 1]3)(x1 < x2 ⇒ I(x1, y) ≥ I(x2, y));

FI2. the second place isotonicity (SI):
(∀(x, y1, y2) ∈ [0, 1]3)(y1 < y2 ⇒ I(x, y1) ≤ I(x, y2));

FI3. dominance of falsity of antecedent (DF): (∀x ∈ [0, 1])(I(0, x) = 1);

FI4. dominance of truth of consequent (DT): (∀x ∈ [0, 1])(I(x, 1) = 1);

FI5. boundary condition (BC): I(1, 0) = 0;

FI6. neutrality of truth (NT): (∀x ∈ [0, 1])(I(1, x) = x);

FI7. exchange principle (EP): (∀(x, y, z) ∈ [0, 1]3)(I(x, I(y, z)) = I(y, I(x, z)));

FI8. ordering principle (OP): (∀(x, y) ∈ [0, 1]2)(I(x, y) = 1⇔ x ≤ y);

FI9. the mapping N
′

defined as (∀x ∈ [0, 1])(N
′
(x) = I(x, 0)), is a strong fuzzy nega-

tion (SN);

FI10. consequent boundary (CB): (∀(x, y) ∈ [0, 1]2)(I(x, y) ≥ y);

FI11. identity (ID): (∀x ∈ [0, 1])(I(x, x) = 1);

FI12. contrapositive principle (CP): (∀(x, y) ∈ [0, 1]2)(I(x, y) = I(N(y), N(x))), where
N is a strong fuzzy negation;
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FI13. continuity (CO): I is a continuous mapping.

FI1 and FI2 mean that the decreasing of the antecedent and/or the increasing of the conse-
quent cause the non-decreasing of I . FI3 means that falsity implies everything. FI4 means
that anything implies tautology. FI6 means that if the antecedent is a tautology, then the
value of the implication is equal to the consequent. FI7 comes from the proposition in the
binary logic:

if P1 then (if P2 then P3)⇔ if P2 then (if P1 then P3).

FI8 means that I determines an ordering. FI9 means that if the consequent is false, then
the implication is equal to the complement of the antecedent. FI10 comes from the propo-
sition in the binary logic:

P → (Q→ P ).

FI11 comes from that P → P is always true. FI12 reperesents a relationship betweem
modus ponens and modus tollens. F13 means that a small change of the antecedent or the
consequent will not cause a chaotic change in the implication.
In this chapter we investigate for the three classes of fuzzy implications generated from
fuzzy logical operators, namely the S-, R- and QL-implications, how many of the 13
axioms they satisfy, in general, or under some extra requirements. S- and R-implications
are widely studied while QL-implications not. So we focus especially on QL-implications
satisfying these 13 axioms.

3.2 Axioms of S-implications
First we observe the axioms of S-implications generated from t-conorms and any fuzzy
negations.

Proposition 3.1. ([6], Proposition 2.4.3) An S-implication I generated from a t-conorm
S and a fuzzy negation N satisfies FI1-FI7 and FI10.

Remark 3.2. If the fuzzy negation N is not strong, then the converse of Proposition
3.1 is not true. To see this we first suppose that I is a [0, 1]2 ⇀ [0, 1] mapping that
satisfies FI1-FI7 and FI10 but not FI12, and there exists a proper t-conorm S and a non-
strong fuzzy negation N such that for all x, y ∈ [0, 1], I(x, y) = S(N(x), y). Then
S(y,N(x)) = I(N(y), N(x)). Because I does not satisfy FI12, there exist x1, y1 ∈ [0, 1]
such that I(N(y1), N(x1)) 6= I(x1, y1). So

S(y1, N(x1)) = I(N(y1), N(x1)) 6= I(x1, y1) = S(N(x1), y1).

Thus S does not satisfy commutativity (S3), i.e., S is not a t-conorm, which is a contra-
diction.

For an S-implication generated from a t-conorm and a strong fuzzy negation, we have
the following characterization:
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Theorem 3.3. A [0, 1]2 ⇀ [0, 1] mapping I is an S-implication generated from a t-conorm
S and a strong fuzzy negation N iff it satisfies FI1-FI7, FI9, FI10 and FI12.

PROOF. =⇒: According to ([24], Theorem 1.13) and ([5], Theorem 1.6), if I is an S-
implication generated from a t-conorm S and a strong fuzzy negation N , then I
satisfies FI1-FI7 and FI12. Moreover, we have for all x ∈ [0, 1],

N
′
(x) = I(x, 0) = S(N(x), 0) = N(x) by S1.

So I satisfies FI9. According to Proposition 2.24, for all x ∈ [0, 1] we have:

I(x, y) = S(N(x), y) ≥ y.

So I satisfies FI10.
⇐=: Straightforward from the ‘if’ part of ([24], Theorem 1.13) and ([5], Theorem
1.6).

The ‘⇐=’ part of Theorem 3.3 shows that if a [0, 1]2 ⇀ [0, 1] mapping satisfies FI1-FI7,
FI9, FI10 and FI12, then there exists a proper t-conorm S and a proper strong fuzzy nega-
tion N such that I is the S-implication generated from S and N .
Besides FI1-FI7 and FI10, S-implications generated from t-conorms and any fuzzy nega-
tion satisfy the other axioms under certain additional conditions.

Theorem 3.4. Let I be an S-implication generated from a t-conorm S and a fuzzy nega-
tion N . Then the following three conditions are equivalent:

(i). I satisfies FI9;

(ii). N is a strong fuzzy negation;

(iii). I satisfies FI12.

PROOF. (i) =⇒ (ii): Straightforward.
(ii) =⇒ (iii): Because N is a strong fuzzy negation, we have for all x, y ∈ [0, 1]:

I(N(y), N(x)) = S(N(N(y)), N(x)) = S(N(x), y) by S3
= I(x, y).

So I satisfies FI12.
(iii) =⇒ (i): We have for all x, y ∈ [0, 1],

I(x, 0) = I(N(0), N(x)) w.r.t. the strong fuzzy negation N
= I(1, N(x)) = N(x) by FI6.

So I satisfies FI9.

Theorem 3.5. ([6] An S-implication generated by a t-conorm S and a fuzzy negation N
satisfies FI8 iff N = NS is a strong fuzzy negation and the pair (S,NS) satisfies LEM.
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Theorem 3.6. Let I be an S-implication generated by a continuous t-conorm S and a
fuzzy negation N . Then the following three conditions are equivalent:

(i) I satisfies FI8,

(ii) S = (SL)ϕ and N = (N0)ϕ,

(iii) I = (IL)ϕ.

Remark 3.7. If an S-implication I satisfies the conditions (i) and (ii) stated in Theo-
rem 3.6, then it is also an R-implication generated from the t-norm (TL)ϕ and a QL-
implication generated from the t-conorm (SL)ϕ, the fuzzy negation Nϕ and the t-norm
TM. Namely I is an fuzzy implication that is conjugated to the Łukasiewicz implication
IL.

An S-implication I generated by a t-conorm S and a fuzzy negation N satisfies FI11 iff
S and N satisfy the law of excluded middle . For further results, see Theorems 2.14 and
2.16 in Chapter 2.

Theorem 3.8. An S-implication I generated by a t-conorm S and a fuzzy negation N is
continuous iff both S and N are continuous.

PROOF. ⇐=: Straightforward.
=⇒: If S is not continuous, then it is straightforward that I is also not continuous.
Suppose N is not continuous. We have I(x, 0) = S(N(x), 0) = N(x). Then the
[0, 1] ⇀ [0, 1] mapping F (x) = I(x, 0), ∀x ∈ [0, 1] is not continuous. So if I is
continuous, then S and N must be continuous.

3.3 Axioms of R-implications Generated by T-norms
First we observe the axioms of R-implications generated from any t-norm.

Proposition 3.9. ([6], Theorem 2.5.4) An R-implication generated from a t-norm T sat-
isfies FI1-FI6, FI10 and FI11.

Remark 3.10. The converse of Proposition 3.9 is not true. To see this we assume T to be
a left-continuous t-norm, and I is an R-implication generated from T satisfying FI1-FI6,
FI10 and FI11 but not FI8. Then according to Equation (2.55), we have

(∀(x, y) ∈ [0, 1]2)(T (x, y) = min{t|I(x, t) ≥ y}). (3.1)

Because I satisfies FI2 and FI11 but not FI8, there exists x0, y0 ∈ [0, 1] such that x0 > y0

and I(x0, y0) = 1. Then we have

T (x0, 1) = min{t|I(x0, t) = 1} < x0,

which means T does not satisfy T1. Thus T is not a t-norm, which is a contradiction.
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For an R-implication generated from a left-continuous t-norm, we have the following
characterization:

Theorem 3.11. ([24], Theorem 1.14) A [0, 1]2 ⇀ [0, 1] mapping is an R-implication
generated by a left-continuous t-norm iff it satisfies FI1-FI8, FI10-FI11, and it is right-
continuous w.r.t. the second variable.

We see from the next corollary that a t-norm can also be generated by an R-implication.

Corollary 3.12. ([2], Corollary 10) A mapping T : [0, 1]2 ⇀ [0, 1] is a left-continuous
t-norm iff T can be represented by

T (x, y) = min{t ∈ [0, 1]|I(x, t) ≥ y} (3.2)

for some mapping I : [0, 1]2 ⇀ [0, 1] which satisfies FI2, FI7, FI8 and right-continuity in
the second argument.

Besides FI1-FI8 and FI10-FI11, R-implications generated from t-norms also satisfy
the other axioms under certain additional conditions.

Theorem 3.13. ([23], Corollary 2) An R-implication I generated from a continuous t-
norm T satisfies FI12 w.r.t. a strong fuzzy negation N iff there exists an automorphism ϕ
of the unit interval such that T = (TL)ϕ and N = (N0)ϕ. In this case I = (IL)ϕ.

Proposition 3.14. ([23], Corollary 1) If an R-implication I generated from a left-continuous
t-norm satisfies FI12, then I satisfies FI9.

Proposition 3.15. If an R-implication generated by a t-norm T is continuous, then T is
not necessary to be continuous.

3.4 Axioms of QL-implications
QL-implications satisfy less axioms than S-implications and R-implications generated
from t-norms. First we see which axioms a QL-implication satisfies.

Proposition 3.16. ([6], Proposition 2.6.2) A QL-implication I generated from a t-conorm
S, a strong fuzzy negation N and a t-norm T satisfies FI2, FI3, FI5, FI6 and FI9.

Remark 3.17. The converse of Proposition 3.16 is not true. The Most Strict implica-
tion IM given in Tabel 2.6 also satisfies FI2, FI3, FI5, FI6 and FI9 (because it is an
S-implication). We prove that IM is not a QL-implication:
Assume IM to be a QL-implication. Then there exist a t-conorm S, a strong fuzzy nega-
tion N and a t-norm T such that

IM (x, y) = S(N(x), T (x, y)) = SM (N1b(x), y).

Take y = 0, we have N(x) = N1b(x). So

IM (x, y) = S(N1b(x), T (x, y))
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=
{

1, if x = 0
T (x, y), otherwise

=
{

1, x = 0
y, otherwise.

So we obtain T (x, y) = y, for all x > 0. If we take x0 = 0.1 and y0 = 0.2, then
T (x0, y0) = 0.2 while T (y0, x0) = 0.1, which means that T does not satisfy T3. So
T is not a t-norm, which is a contradiction with the assumption. Thus IM is not a QL-
implication. Hence a [0, 1]2 ⇀ [0, 1] mapping satisfying FI2, FI3, FI5, FI6 and FI9 is not
always a QL-implication.

In the rest of this section we investigate under which conditions a QL-implication
satisfies the other axioms.
Both S-implicatons and R-implications generated from t-norms satisfy FI1-FI5 which are
used to define a fuzzy implication in some papers in the literature [6], [10], [11], [24],
[36], [97]. However, not every QL-implication satisfies FI1 or FI4. We first study the
QL-implications satisfying the other axioms as well as the relationship between their
satisfying them and FI1. We then obtain the conditions under which a QL-implication
satisfies FI1.

3.4.1 Interrelationship between QL-implications Satisfying the Ax-
ioms

Proposition 3.18. Let S be a t-conorm, T be a t-norm and N be a strong fuzzy negation.
The QL-implication I(x, y) = S(N(x), T (x, y)) satisfies FI4 iff S andN satisfy the LEM
(2.45).

PROOF. By straightforward verification.

Proposition 3.19. Let S be a t-conorm, T be a t-norm and N be a strong fuzzy nega-
tion. Then the LEM (2.45) is a necessary condition for the QL-implication I(x, y) =
S(N(x), T (x, y)) to satisfy FI1, FI7, FI8 or FI12.

PROOF. We have I(x, 1) = S(N(x), x). Moreover, according to Proposition 3.16, I
satisfies FI3, i.e., I(0, y) = 1, for all y ∈ [0, 1].
If I satisfies FI1, then for all x ∈ [0, 1], I(x, 1) ≥ I(1, 1) = 1, which means
S(N(x), x) = 1.
If I satisfies FI7, then for all x ∈ [0, 1], I(x, 1) = I(x, I(0, 1)) = I(0, I(x, 1)) =
1, which means S(N(x), x) = 1.
If I satisfies FI8, then for all x ∈ [0, 1], x ≤ 1 ⇔ I(x, 1) = 1, which means
S(N(x), x) = 1.
If I satisfies FI12, then for all x ∈ [0, 1], I(x, 1) = I(N(1), N(x)) = I(0, N(x)) =
1, which means S(N(x), x) = 1.

Example 3.1 Condition (2.45) is not sufficient for a QL-implication to satisfy FI1, FI7,
FI8 or FI12 as can be seen from the following examples:
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(i) Set ϕ(x) = x2, for all x ∈ [0, 1]. Consider the t-norm

T (x, y) = (TL)ϕ(x, y) =
√

max(x2 + y2 − 1, 0)

and the QL-implication

I(x, y) = SL(N0(x), T (x, y))

= min(1− x+
√

max(x2 + y2 − 1, 0), 1).

SL and N0 satisfy condition (2.45). However, for x1 = 0.7, x2 = 0.8 and y = 0.8,
we have I(x1, y) ≈ 0.661 while I(x2, y) ≈ 0.729, which is against FI1.

(ii) Consider the strong fuzzy negation N(x) =
√

1− x2 and the QL-implication

I(x, y) = SL(N(x), TP(x, y)) = min(
√

1− x2 + xy, 1). (3.3)

Observe that SL and N satisfy condition (2.45). Take x = 0.6, y =
√

0.99 and
z = 0.1. Then I(x, I(y, z)) ≈ 0.9197 while I(y, I(x, z)) ≈ 0.9557, which is
against FI7.

(iii) Let the QL-implication I be stated in (3.3). Take x = 0.8 and y = 0.5. Then
I(x, y) = 1 while x > y, which is against FI8.

(iv) Again, consider the QL-implication I stated in (3.3). Notice that according to ([82],
Lemma 1), if a QL-implication generated by a t-conorm S, a t-norm T and a strong
fuzzy negation N satisfies FI12 w.r.t. a strong fuzzy negation N

′
, then N

′
= N .

Take x = 0.8 and y = 0.49. Then I(x, y) = 0.992 while I(N(y), N(x)) = 1,
which is against FI12.

Remark 3.20. According to Propositions 3.18 and 3.19, once a QL-implication satisfies
FI1, FI7, FI8 or FI12, it also satisfies FI4. From Example 3.1 we know that the converse
is not true.

For the case that the t-conorm S is continuous, Propositions 3.18 and 3.19 can be further
refined by the next proposition, according to ([10], Theorem 1) and ([51], Section 3.1).

Proposition 3.21. Let S be a continuous t-conorm, T be a t-norm and N be a strong
fuzzy negation. A sufficient and necessary condition for the QL-implication I(x, y) =
S(N(x), T (x, y)) to satisfy FI4 (and therefore a necessary condition for I to satisfy FI1,
FI7, FI8 or FI12) is that there exists an automorphism ϕ of the unit interval such that

S = (SL)ϕ and (∀x ∈ [0, 1])(N(x) ≥ (N0)ϕ(x)). (3.4)

Proposition 3.22. ([51], Remark 2) If a QL-implication satisfies FI7, then it also satisfies
FI12.

Proposition 3.23. ([10], Lemma 1 (ii)) If a [0, 1]2 ⇀ [0, 1] mapping satisfies FI2 and
FI12, then it also satisfies FI1.
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Theorem 3.24. A QL-implication I satisfies FI7 iff it is also an S-implication.

PROOF. ⇐=: Directly from Theorem 3.3.
=⇒: According to Propositions 3.22 and 3.23, I satisfies FI12 and FI1. Thus
according to Remark 3.20, I satisfies FI4. Moreover according to Proposition 3.16,
I also satisfies FI2, FI3, I5 and I6. Thus according to Theorem 3.3, it is also an
S-implication.

Next theorems and corollaries treat the case that the t-conorm S which constructs the QL-
implication I is continuous and I satisfies FI1, FI7 or FI12, i.e., according to Proposition
3.21, there exists an automorphism ϕ of the unit interval such that condition (3.4) is
fulfilled. Thus the QL-implication is expressed by the formula

(∀(x, y) ∈ [0, 1]2)(I(x, y) = (SL)ϕ((N0)ϕ(x), T (x, y))), (3.5)

where T is a t-norm.
Observe that I(x, y) stated in (3.5) is equal to ϕ−1(1−ϕ(x)+ϕ(T (x, y))), which means
that I depends only on T and ϕ.
The authors of [51] have worked out the condition of a t-norm T under which the QL-
implication stated in (3.5) satisfies FI1.

Theorem 3.25. ([51], Proposition 9) The QL-implication stated in (3.5) satisfies FI1 iff
Tϕ−1 satisfies the 1-Lipschitz property (2.31).

According to Theorem 2.29, we immediately have the next corollary.

Corollary 3.26. The QL-implication stated in (3.5) satisfies FI1 iff Tϕ−1 is a copula.

Theorem 3.27. ([51], Corollary 1) The QL-implication stated in (3.5) with Tϕ−1 satisfy-
ing the 1-Lipschitz property (2.31) satisfies FI7 iff Tϕ−1 is a Frank t-norm.

Corollary 3.28. The QL-implication stated in (3.5) satisfies FI7 iff Tϕ−1 is a Frank t-
norm.

PROOF. ⇐=: If Tϕ−1 is a Frank t-norm, then according to Proposition 2.20, Tϕ−1 sat-
isfies the 1-Lipschitz property (2.31). Thus according to Theorem 3.27, I satisfies
FI7.
=⇒: If I satisfies FI7, then according to Remark 3.20, it also satisfies FI1. Thus
according to Theorem 3.25, Tϕ−1 satisfies the 1-Lipschitz property (2.31). Hence
according to Theorem 3.27, Tϕ−1 is a Frank t-norm.

Theorem 3.29. ([51], Proposition 11) The QL-implication stated in (3.5) satisfies FI12
iff Tϕ−1 and its dual t-conorm satisfy the Frank equation (2.38).

Corollary 3.30. The QL-implication stated in (3.5) satisfies FI12 iff Tϕ−1 is a Frank t-
norm or an ordinal sum defined in (2.30) where Tm, m ∈ M , is a Frank t-norm different
from TM.
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PROOF. Straightforward from Theorems 3.29 and 2.29.

Remark 3.31. Comparing Corollary 3.30 with Corollary 3.28, we can see that there exist
QL-implications that satisfy FI12 but not FI7. For example, let

T1(x, y) =
{
a1 + (b1 − a1)TP ( x−a1

b1−a1
, y−a1
b1−a1

), if (x, y) ∈ [a1, b1]2

TM(x, y), otherwise

where a1 = 1
2 and b1 = 1. Then T1 is an ordinal sum of the Frank t-norm TP , but T1

itself is not a Frank t-norm because it is not strict and different from TM and TL. Thus
the QL-implication defined by SL(N0(x), T1(x, y)) satisfies FI12 but not FI7.

Remark 3.32. Because I always satisfies FI2, according to Proposition 3.23, if a QL-
implication I satisfies FI12, then it also satisfies FI1. But a QL-implication satisfying FI1
does not necessarily satisfy FI12. We will give a counterexample in Remark 3.45. More-
over, according to Proposition 3.22, if I satisfies FI7, then it also satisfies FI1. According
to Remark 3.31, there exist QL-implications that satisfy FI1 but not FI7.

Now we consider the condition under which a QL-implication satisfies FI8. From Propo-
sition 3.22 and Remark 3.32 we see that if a QL-implication satisfies FI7, then it imme-
diately satisfies FI12 and FI1. Hereafter we give an example to show that there exists a
QL-implication which satisfies FI7 (and hence also FI12) but not FI8.

Example 3.2 Let I be the QL-implication generated by the t-conorm SL, the t-norm TP

and the strong fuzzy negation N0. Then I(x, y) = 1 − x + xy. I is the S-implication
SP(N0(x), y) which is called the Reichenbach implication ([24], Table 1.1). Thus I
satisfies FI7, according to Theorem 3.3. But 1 − x + xy = 1⇔ x = 0 or y = 1, which
means I does not satisfy FI8.

Remark 3.33. One question is still open here: does a QL-implication satisfying FI1, FI8
and FI12 also satisfies FI7?

Theorem 3.34 gives a sufficient and necessary condition for the QL-implication gen-
erated by the t-conorm (SL)ϕ, a continuous t-norm and a strong fuzzy negation to satisfy
FI8.

Theorem 3.34. Let ϕ be an automorphism of the unit interval, T be a continuous t-norm
and N be a strong fuzzy negation. The QL-implication

(∀(x, y) ∈ [0, 1]2)(I(x, y) = (SL)ϕ(N(x), T (x, y))) (3.6)

satisfies FI8 iff
(∀x ∈ [0, 1])(T (x, x) = (N0)ϕ(N(x))) (3.7)

and
(∀x ∈]0, 1])(∀y ∈ [0, x[)(T (x, y) < T (x, x)). (3.8)
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PROOF. =⇒: If I satisfies FI8, then for a fixed x ∈ ]0, 1],

y ∈ [0, x[ ⇒ I(x, y) < 1⇔ ϕ(N(x)) + ϕ(T (x, y)) < 1,

and

y ∈ [x, 1]⇒ I(x, y) ≥ 1⇔ ϕ(N(x)) + ϕ(T (x, y)) ≥ 1.

Since y 7→ ϕ(N(x)) +ϕ(T (x, y)) is continuous, taking y = x, we get ϕ(N(x)) +
ϕ(T (x, x)) = 1. Moreover, because ϕ(N(0)) + ϕ(T (0, 0)) = 1, we get

ϕ(N(x)) + ϕ(T (x, x)) = 1⇔ T (x, x) = (N0)ϕ(N(x)),

for all x ∈ [0, 1]. And for all x ∈ ]0, 1] and y ∈ [0, x[, T (x, y) < (N0)ϕ(N(x))
(because ϕ(N(x)) + ϕ(T (x, y)) < 1, i.e., T (x, y) < T (x, x)).
⇐=: If T satisfies (3.7), then (N0)ϕ(N(x)) ≤ T (x, y), for all y ∈ [x, 1], which
means I(x, y) = 1 when x ≤ y. Moreover, if T satisfies (3.8), then (N0)ϕ(N(x))
> T (x, y), for all x ∈ ]0, 1] and y ∈ [0, x[ , which means I(x, y) < 1 when x > y.
Hence I satisfies FI8.

Corollary 3.35. If the QL-implication stated in (3.6) satisfies FI8, then T can neither be
nilpotent nor an ordinal sum defined in (2.30) where there exists a nilpotent Tm, m ∈M .

PROOF. According to Theorem 3.34, if I satisfies FI8, then T must satisfy condition
(3.8). However, if T is nilpotent, then there always exist x0 ∈ ]0, 1[ and y0 ∈
[0, x0[ such that T (x0, y0) = T (x0, x0) = 0, which is against the condition (3.8).
Moreover, if T is an ordinal sum defined in (2.30) where there exists a nilpotent
Tm, m ∈ M , then there always exist x0 ∈ ]am, bm[ ⊆ ]0, bm[ and y0 ∈ [am, x0[
⊆ [0, x0[ such that T (x0, y0) = T (x0, x0) = am, which is against the condition
(3.8).

According to Proposition 3.21, Theorem 3.34 and Corollary 3.35, we conclude that if the
QL-implication generated by a continuous t-conorm, a continuous t-norm and a strong
fuzzy negation satisfies FI8, then the t-norm can only be TM, or strict or an ordinal sum
defined in (2.30) where each Tm, m ∈ M , is strict. Now we give examples of QL-
implications that satisfy FI8.

Example 3.3
(i) Let ϕ be an automorphism of the unit interval, T = TM and N = (N0)ϕ. Then

T and N satisfy conditions (3.7) and (3.8). Thus according to Theorem 3.34, the
QL-implication

I(x, y) = (SL)ϕ((N0)ϕ(x), TM(x, y))

= ϕ−1(min(1− ϕ(x) + ϕ(y), 1))

for all (x, y) ∈ [0, 1]2, satisfies FI8. Furthermore, I is an R-implication generated
by the t-norm (TL)ϕ as well as an S-implication generated by the t-conorm (SL)ϕ
and the strong fuzzy negation (N0)ϕ. Actually I is the fuzzy implication conjugated
to the Łukasiewicz implication.
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(ii) Let ϕ(x) = x, for all x ∈ [0, 1] and φ(x) =
{
e−( 1−x

x ), if x ∈ ]0, 1]
0, if x = 0

. The strict

t-norm T is defined as

T (x, y) = (TP)φ(x, y) = φ−1(φ(x)φ(y)) =
{ xy

x+y−xy , if (x, y) 6= (0, 0)
0, if (x, y) = (0, 0)

.

Actually T is one of the Dombi t-norms, with the parameter λ = 1 ([43], Example
4.11). Moreover let N(x) = 2−2x

2−x . Then N is a strong fuzzy negation which
satisfies N(x) ≥ N0(x), for all x ∈ [0, 1]. Thus T and N satisfy conditions (3.7)
and (3.8). Hence according to Theorem 3.34, the QL-implication

I(x, y) = SL(N(x), T (x, y))

=

{
min( 2x+2y−2xy−2x2+x2y

2x+2y−3xy−x2+x2y , 1), if (x, y) 6= (0, 0)
1, if (x, y) = (0, 0)

for all (x, y) ∈ [0, 1]2, satisfies FI8. Furthermore, taking x0 = 0.4 and y0 = 0.2, we
have N(y0) = 8

9 and N(x0) = 3
4 . Thus I(x0, y0) = 47

52 while I(N(y0), N(x0)) =
31
35 6= I(x0, y0). Therefore I does not satisfy FI12. According to Proposition 3.22,
I does not satisfy FI7 either. Hence according to Theorems 3.3 and 3.11, I is neither
an S-implication nor an R-implication generated by a left-continuous t-norm.

Remark 3.36. From Example 3.3 (ii) a QL-implication satisfying FI8 does not neces-
sarily satisfy FI7 or FI12. In Corollary 3.58 we will investigate when QL-implications
satisfying FI8 also satisfy FI1, and in particular the QL-implication presented in Example
3.3 (ii) satisfies FI1.

Proposition 3.37. If a QL-implication I satisfies FI1, then I satisfies FI10.

PROOF. According to Proposition 3.16, I satisfies FI6. Then because I satisfies FI1, we
obtain

I(x, y) ≥ I(1, y) = y.

Thus I satisfies FI10.

Example 3.4 The converse of Proposition 3.37 is not true. Let N be any strong fuzzy
negation. Consider the QL-implication

I(x, y) = SP(N(x), TL(x, y))

=
{

1, if x+ y ≤ 1
x− xN(x) +N(x) + (1−N(x))y, if x+ y > 1

Because for all x ∈ [0, 1], x(1 −N(x)) ≥ 0, we obtain for all y ∈ [0, 1], x − xN(x) +
N(x) + (1 − N(x))y ≥ y. So for all x, y ∈ [0, 1], I(x, y) ≥ y. Thus I satisfies FI10.
However, according to Theorem 2.33, SP and N does not satisfy the LEM 2.45. So
according to Proposition 3.19, I does not satisfy FI1. Thus I satisfying FI10 does not
imply I satisfying FI10.
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3.4.2 QL-implications and the First Place Antitonicity

Some work on whether a QL-implication satisfies FI1 or not has been done in [22], [83]
and [51]. In [22], the conditions under which a QL-implication I and a t-norm T∗ satisfy
the residuation property:

(∀x, y, z ∈ [0, 1]) (T∗(x, z) ≤ y ⇔ z ≤ I(x, y))

are found. This means that I is an R-implication as well ([22], Example 4.5). Hence I
satisfies FI1 provided these conditions are fulfilled. However, being an R-implication is
sufficient but not necessary for a QL-implication to satisfy FI1 (see Remarks 3.42, 3.47,
3.51 in [22]). In [83], the authors show how a QL-implication satisfies FI1 as well as the
exchange principle FI7 ([83], Definition 1, Theorem 7, Theorem 11). It is proved that such
a QL-implication is an S-implication as well. Again, being an S-implication is sufficient
but not necessary for a QL-implication to satisfy FI1 (see Remarks 3.42, 3.47 in [83]).
And in [51], the authors illustrate for a group of QL-implications the conditions under
which they satisfy FI1. They restrict the relationship between the continuous t-conorm S
and the strong fuzzy negation N which construct the QL-implications ([51], Proposition
14, Corollary 2).
In this section, we study the QL-implications generated by a t-conorm S, a t-norm T
and a strong fuzzy negation N that satisfy FI1, especially for the cases that both S and
T are continuous. We also indicate whether a QL-implication satisfying FI1 is also an
S-implication or an R-implication.
First we give a lemma that will be useful in the following work.

Lemma 3.38. Let ϕ be an automorphism of the unit interval. Then a QL-implication I
satisfies FI1 iff (I)ϕ satisfies FI1.

For the t-norm TM, we have the next theorem.

Theorem 3.39. ([51], Proposition 6) Let S be a t-conorm and N be a strong fuzzy nega-
tion. The QL-implication

I(x, y) = S(N(x), TM(x, y)) = S(N(x),min(x, y))

satisfies FI1 iff the condition (2.45) holds. In this case the QL-implication has the follow-
ing form

I(x, y) =
{

1, if x ≤ y
S(N(x), y), if x > y

According to Proposition 3.21, the next corollary is for the special case that S is a
continuous t-conorm.
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Corollary 3.40. Let S be a continuous t-conorm and N be a strong fuzzy negation. The
QL-implication

(∀(x, y) ∈ [0, 1]2)(I(x, y) = S(N(x), TM(x, y)))

satisfies FI1 iff there exists an automorphism of the unit interval ϕ such that the condition
(3.4) holds.

Remark 3.41. The QL-implication I defined in Theorem 3.39 with the condition (2.45)
being fulfilled is also an S-implication that is expressed by I(x, y) = S(N(x), y). More-
over, if there exists an automorphism ϕ of the unit interval such that S = (SL)ϕ and
N = (N0)ϕ, then I is also an R-implication generated by a left-continuous t-norm as
well as an S-implication:

I(x, y) = sup{t ∈ [0, 1]|(TL)ϕ(x, t) ≤ y} = (SL)ϕ((N0)ϕ(x), y)

for all (x, y) ∈ [0, 1]2. It is the fuzzy implication, which is conjugated to the Łukasiewicz
implication.

In the rest of this chapter, we focus on the case that the t-conorm that constructs a
QL-implication I is continuous. According to Proposition 3.21, if I satisfies FI1, then
there exists an automorphism ϕ of the unit interval such that the condition (3.4) holds.
Recall that the authors of [51] have done the work for the special case that N = (N0)ϕ,
see in Theorem 3.25. In Section 4.1 we give some examples and remarks for Theorem
3.25 and Corollary 3.26.

QL-implications generated by (SL)ϕ, a t-norm T and (N0)ϕ

Next examples will give the t-norms that satisfy the 1-Lipschitz property and therefore
have been identified as copulas. According to Theorem 3.25 and Corollary 3.26, the QL-
implication stated in (3.5) satisfies FI1 if Tϕ−1 being one of the t-norms.

Example 3.5
(i) According to Proposition 2.20, the Frank t-norm T s defined in (2.14) and the t-

norm To which is an ordinal sum defined in (2.30) where each Tm, m ∈ M , is a
Frank t-norm different from TM, satisfy the 1-Lipschitz property (2.31).

(ii) Some subfamilies of the parameterized families of t-norms given from equation
(2.8) to equation (2.15) are copilas ([43], Example 9.13). They are:

(ii.1) Subfamily of family of Schweizer-Sklar t-norms

(TSSs )(x, y) =


TM(x, y), if s = −∞
TP(x, y), if s = 0
(max(xs + ys − 1, 0))

1
s , if s ∈ ]−∞, 0[ ∪ ]0, 1]
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(ii.2) Subfamily of family of Hamacher t-norms

(THs )(x, y) =
{

0, if s = x = y = 0
xy

s+(1−s)(x+y−xy) , if s ∈ [0, 2] and (s, x, y) 6= (0, 0, 0)

(ii.3) Subfamily of family of Yager t-norms

(TYs )(x, y) =
{
TM(x, y), if s = +∞
max(1− ((1− x)s + (1− y)s)

1
s , 0), if s ∈ [1,+∞[

(ii.4) Subfamily of family of Dombi t-norms

(TDs )(x, y) =

{
TM(x, y), if s = +∞

1

1+(( 1−x
x )s+( 1−y

y )s)
1
s
, if s ∈ [1,+∞[

(ii.5) Subfamily of family of Sugeno-Weber t-norms

(TSWs )(x, y) =
{
TP(x, y), if s = +∞
(max(x+y−1+sxy

1+s , 0), if s ∈ [0,+∞[

(ii.6) Subfamily of family of Aczél-Alsina t-norms

(TAAs )(x, y) =

{
TM(x, y), if s = +∞
(e−((− log x)s+(− log y)s)

1
s , if s ∈ [1,+∞[

.

Remark 3.42. Let I be the QL-implication stated in (3.5) with Tϕ−1 satisfying the 1-
Lipschitz property (2.31). If Tϕ−1 is a Frank t-norm, then according to Theorem 3.27, I
satisfies FI7 and according to Theorem 3.24 it is also an S-implication. If on the contrary
Tϕ−1 is not a Frank t-norm, e.g., an ordinal sum defined in (2.30) where each Tm,m ∈M ,
is a Frank t-norm different from TM, then according to Theorem 3.27, I does not satisfy
FI7. Thus according to Theorem 3.3 and Theorem 3.11, I is neither an S-implication nor
an R-implication generated by a left-continuous t-norm.

Remark 3.43. In the study of fuzzy quantitative association rules, a fuzzy implication I
(denoted as FIO in [98]) is used to determine the degree of implication (denote as DImp
in [98]) of a rule. According to [98], I should satisfy I1 (see the proof of Theorem 1 in
[98]) and it should satisfy the additional constraint:

(∀(x, y) ∈ [0, 1]2)(1 + T (x, y)− x = I(x, y)), (3.9)

where T is a t-norm. This avoids database scanning in the process of calculating rules’
Dimps.
Let T be TM or TP or TL or an ordinal sum defined in (2.30) where each Tm, m ∈ M ,
is TP or TL. It is easy to see that T always satisfies the 1-Lipschitz property (2.31). Thus
according to Theorem 3.25, the QL-implication

(∀(x, y) ∈ [0, 1]2)(I(x, y) = SL(N0(x), T (x, y)))

satisfies FI1. Moreover, I satisfies (3.9). Therefore it can be a candidate for the fuzzy
implication used to construct the association rules’ Dimps in [98].
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Besides the QL-implications generated by the t-conorm (SL)ϕ, the t-norm T and the
strong fuzzy negation (N0)ϕ, which we discussed above, there exist other combinations
of a continuous t-conorm S, a t-norm T and a strong fuzzy negation N to generate a
QL-implication I which satisfies FI1. Next we discuss the case that both S and T are
continuous, and examine which conditions N should fulfill to make I satisfy FI1. We
will consider the cases where T is either strict (i.e., conjugated to TP) or nilpotent (i.e.,
conjugated to TL) or an ordinal sum defined in (2.30) where each Tm, m ∈ M , is strict
or nilpotent.

QL-implications generated by a nilpotent t-conorm (SL)ϕ, a strict t-norm (TP)ϕ

and a strong fuzzy negation

Theorem 3.44. Let N be a strong fuzzy negation and define a mapping f as
f(x) = 1−N(x)

x , for all x ∈ ]0, 1]. Then the QL-implication

I(x, y) = SL(N(x), TP(x, y)) = min(N(x) + xy, 1), (3.10)

for all (x, y) ∈ [0, 1]2, satisfies FI1 iff f is increasing.

PROOF. =⇒: Assume, that the QL-implication generated by the t-conorm SL, t-norm
TP and a strong fuzzy negation N satisfies FI1. According to Proposition 3.21, we
have N(x) ≥ 1 − x, for all x ∈ [0, 1]. So f(x) ∈ ]0, 1], for all x ∈ ]0, 1]. Let
us fix arbitrarily x1, x2 ∈ ]0, 1] such that x1 < x2 and take y0 = f(x2). Then
I(x2, y0) = 1. In order for I to satisfy FI1, it is necessary that

I(x2, y0) = 1⇒ I(x1, y0) = 1,

i.e., f(x1) ≤ y0. Thus f(x1) ≤ f(x2). Hence f is increasing in ]0, 1].
⇐=: Assume now that the mapping f defined above is increasing. Let us fix arbi-
trarily x1, x2 ∈ ]0, 1] and y ∈ [0, 1] such that x1 < x2. We will consider several
cases now.

(i) If I(x1, y) = 1, then it is always greater than, or equal to I(x2, y), so I
satisfies FI1 in this case.

(ii) If I(x2, y) = 1, then

N(x2) + x2y ≥ 1⇒ y ≥ 1−N(x2)
x2

.

Since f is increasing, we have

1−N(x2)
x2

≥ 1−N(x1)
x1

⇒ y ≥ 1−N(x1)
x1

⇒ N(x1) + x1y ≥ 1
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⇒ I(x1, y) = 1.

So I satisfies FI1 in this case also.
(iii) Assume now that I(x1, y) < 1 and I(x2, y) < 1. Then

N(x1) + x1y < 1 and N(x2) + x2y < 1

⇒ x1 > 0, x2 > 0, y <
1−N(x1)

x1
and y <

1−N(x2)
x2

.

Since f is increasing, we have

1−N(x2)
x2

≥ 1−N(x1)
x1

⇒ N(x1)x1 −N(x2)x1 ≥ x2 − x2N(x1)− x1 +N(x1)x1

⇒ N(x1)−N(x2)
x2 − x1

≥ 1−N(x1)
x1

> y

⇒ N(x1) + x1y > N(x2) + x2y

⇒ I(x1, y) ≥ I(x2, y).

Hence I satisfies FI1.

Example 3.6 Consider the QL-implication I stated in (3.3). Observe that I is the QL-
implication stated in (3.10) where N(x) =

√
1− x2. Thus the mapping f defined in

Theorem 3.44 for N is: f(x) = 1−N(x)
x = 1−

√
1−x2

x , for all x ∈ ]0, 1]. Since df(x)
dx =

1−
√

1−x2
√

1−x2x2 ≥ 0, f is increasing. Hence I satisfies FI1.

Remark 3.45. According to Example 3.1 (iv), the QL-implication mentioned in Example
3.6 does not satisfy FI12. Thus a QL-implication satisfying FI1 does not necessarily
satisfy FI12.

We now give a negative example, i.e., the example of a strong fuzzy negationN satisfying
N(x) ≥ 1 − x, for all x ∈ [0, 1], but the mapping f defined in Theorem 3.44 for this N
is not increasing.

Example 3.7 Let N be defined by

N(x) =


−1
4 (x− 1

2 ) + 3
4 , if x ∈ [ 1

6 ,
7
10 ]

−4(x− 7
10 ) + 7

10 , if x ∈ [ 7
10 ,

5
6 ]

1− x, otherwise

Because N(N(x)) = x, for all x ∈ [0, 1], N is a strong fuzzy negation. Moreover, we
have N(x) ≥ N0(x), for all x ∈ [0, 1]. The mapping defined in Theorem 3.44 for N is
f(x) = 1−N(x)

x . We have f( 1
2 ) = 1

2 and f( 7
10 ) = 3

7 . Thus f is not increasing. Hence the
QL-implication I defined by I(x, y) = SL(N(x), TP (x, y)) does not satisfy FI1.
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Corollary 3.46. Let ϕ and φ be two automorphisms of the unit interval. Define a mapping
f as f(x) = 1−(N0)γ(x)

x , for all x ∈ ]0, 1] with γ = φ ◦ ϕ−1. Then the QL-implication

I(x, y) = (SL)ϕ((N0)φ(x), (TP)ϕ(x, y))

= ϕ−1(min(ϕ((N0)φ(x)) + ϕ(x)ϕ(y), 1)) (3.11)

for all (x, y) ∈ [0, 1]2, satisfies FI1 iff f is increasing.

PROOF. Since γ = φ ◦ ϕ−1,

I(x, y) = ϕ−1(SL((N0)γ(ϕ(x)), TP(ϕ(x), ϕ(y)))).

According to Lemma 2.2 and Lemma 2.3, γ is also an automorphism of the unit
interval. So (N0)γ is a strong fuzzy negation. Thus
I(x, y) = ϕ−1(I

′
(ϕ(x), ϕ(y))), where I

′
(x, y) = SL((N0)γ(x), TP(x, y)).

According to Theorem 3.44, I
′

satisfies FI1 iff f is increasing. And according
to Lemma 3.38, I satisfies FI1 iff I

′
satisfies FI1. Thus I satisfies FI1 iff f is

increasing.

In general the automorphisms to conjugate SL and TP need not be the same. This case
will be studied in Theorem 3.56.

Remark 3.47. Let I be the QL-implication stated in (3.10) and f be the mapping defined
in Theorem 3.44 with f being increasing. Then I is an S-implication iff N = N0. More-
over I is not an R-implication generated by a left-continuous t-norm. The proof is given
below:
Because f(x) ≤ f(1) = 1, for all x ∈ ]0, 1], N(x) ≥ N0(x), for all x ∈ ]0, 1]. Since
N(0) = N0(0), we have N(x) ≥ N0(x), for all x ∈ [0, 1]. Now we will consider two
cases:

(i) If N = N0, then

I(x, y) = SL(N0(x), TP(x, y)) = 1− x+ xy

which is also an S-implication SP(N0(x), y), i.e., the Reichenbach implication.
Reichenbach implication is not an R-implication generated by a left-continuous t-
norm.

(ii) If N 6= N0, then consider:

I(x, I(y, z)) = min(N(x) + x ·min(N(y) + yz, 1), 1)

=
{
N(x) + x(N(y) + yz), if N(y) + yz < 1 and
1, otherwise

and

I(y, I(x, z)) = min(N(y) + y ·min(N(x) + xz, 1), 1)
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=
{
N(y) + y(N(x) + xz), if N(x) + xz < 1 and
1, otherwise

Because N 6= N0, there exists x1 ∈ ]0, 1[ such that 1−x1
N(x1) < 1. As we also

have 1−0
N(0) = 1, the continuity of 1−x

N(x) in [0, 1[ implies that there exists x2 ∈

]0, x1[ such that 1−x2
N(x2) =

1+
1−x1
N(x1)

2 < 1. Thus 1−x1
N(x1) 6=

1−x2
N(x2) . Take y0 ∈

]N(min( 1−N(x1)
x1

, 1−N(x2)
x2

)), 1[ , we have

N(x1) + x1N(y0) < 1 and N(x2) + x2N(y0) < 1

and
1− y0

N(y0)
6= 1− x1

N(x1)
or

1− y0

N(y0)
6= 1− x2

N(x2)
.

If 1−y0
N(y0) 6=

1−x1
N(x1) , then let x0 = x1. If on the contrary 1−y0

N(y0) 6=
1−x2
N(x2) , then let

x0 = x2. Therefore we have

1−N(x0)
x0

−N(y0)
y0

> 0 and
1−N(x0)

x0
−N(y0)
y0

6=
1−N(y0)

y0
−N(x0)

x0
.

We now consider two cases.

(ii.1) If
1−N(x0)

x0
−N(y0)

y0
>

1−N(y0)
y0

−N(x0)

x0
, then there exists z0 such that

1−N(y0)
y0

−N(x0)

x0
< z0 <

1−N(x0)
x0

−N(y0)
y0

≤ 1−N(y0)
y0

.

In this case,

N(y0) + y0z0 < 1 and N(x0) + x0(N(y0) + y0z0) < 1
and N(y0) + y0(N(x0) + x0z0) ≥ 1,

which means I(y0, I(x0, z0)) = 1 while I(x0, I(y0, z0)) < 1.

(ii.2) If
1−N(x0)

x0
−N(y0)

y0
<

1−N(y0)
y0

−N(x0)

x0
, then there exists z0 such that

1−N(x0)
x0

−N(y0)
y0

< z0 <

1−N(y0)
y0

−N(x0)

x0
≤ 1−N(x0)

x0
.

In this case,

N(x0) + x0z0 < 1 and N(y0) + y0(N(x0) + x0z0) < 1
and N(x0) + x0(N(y0) + y0z0) ≥ 1,

which means I(x0, I(y0, z0)) = 1 while I(y0, I(x0, z0)) < 1.
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Thus I does not satisfy FI7. According to Theorem 3.3 and Theorem 3.11, I is nei-
ther an S-implication nor an R-implication generated by a left-continuous t-norm.

Analogously, let I be the QL-implication stated in (3.11) and f be the mapping defined
in Corollary 3.46 with f being increasing. Then we have (N0)φ(x) ≥ (N0)ϕ(x), for all
x ∈ [0, 1]. If (N0)φ = (N0)ϕ, then I is also an S-implication which is conjugated to
the Reichenbach implication. On the contrary, if (N0)φ 6= (N0)ϕ, then I is neither an
S-implication nor an R-implication generated by a left-continuous t-norm.

QL-implications generated by a nilpotent t-conorm (SL)ϕ, a nilpotent t-norm (TL)ϕ

and a strong fuzzy negation

Theorem 3.48. Let N be a strong fuzzy negation. The QL-implication

I(x, y) = SL(N(x), TL(x, y)) = min(N(x) + max(x+ y − 1, 0), 1)

for all (x, y) ∈ [0, 1]2, satisfies FI1 iff N = N0.

PROOF. ⇐=: Straightforward from Remark 3.43. Observe that in this case we obtain
the well-known Kleene-Dienes implication: I(x, y) = max(1 − x, y) ([24], Table
1.1).
=⇒: First notice that N(0) = N0(0) = 1. Now take any x ∈ ]0, 1]. For all z ∈
]0, x[ and all y ∈ ]1− z, 2−N(z)− z[ , we have

min(N(x) + x+ y − 1, 1) = I(x, y) ≤ I(z, y) = N(z) + z + y − 1 < 1

So N(x) + x+ y − 1 < 1 for , and therefore

N(x) + x+ (2−N(z)− z)− 1 ≤ 1.

Thus for any z ∈ ]0, x[ , N(x) + x ≤ N(z) + z. The continuity of N now implies
that

N(x) + x ≤ N(0) + 0 = 1,

in other words N(x) ≤ 1 − x. In combination with 1 − x ≤ N(x), we conclude
that N(x) = 1− x. So also for x > 0, N(x) = N0(x).

Corollary 3.49. Let ϕ and φ denote two automorphisms of the unit interval. Then the
QL-implication

I(x, y) = (SL)ϕ((N0)φ(x), (TL)ϕ(x, y))

= ϕ−1(min(ϕ((N0)φ(x)) + max(ϕ(x) + ϕ(y)− 1, 0), 1))

for all (x, y) ∈ [0, 1]2, satisfies FI1 iff (N0)φ = (N0)ϕ.
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PROOF. Putting γ = φ◦ϕ−1, then ϕ((N0)φ(x)) = (N0)γ(ϕ(x)). According to Lemma
2.2 and Lemma 2.3, γ is also an automorphism of the unit interval. So (N0)γ is a
strong fuzzy negation. Thus

I(x, y) = ϕ−1(SL((N0)γ(ϕ(x)), TL(ϕ(x), ϕ(y))))

= ϕ−1(I
′
(ϕ(x), ϕ(y)))

where I
′
(x, y) = SL((N0)γ(x), TL(x, y)). According to Theorem 3.48, I

′
satisfies

FI1 iff (N0)γ = N0. And according to Lemma 3.38, I satisfies FI1 iff I
′

satisfies
FI1. Thus I satisfies FI1 iff (N0)γ = N0. So for all x ∈ [0, 1],

(N0)γ(x) = 1− x⇒
(N0)γ(ϕ(x)) = 1− ϕ(x)⇒
ϕ((N0)φ(x)) = 1− ϕ(x)⇒
(N0)φ(x) = ϕ−1(1− ϕ(x)).

Hence (N0)φ = (N0)ϕ.

Remark 3.50. A characterization of automorphisms which satisfy the equality (N0)φ =
(N0)ϕ is given in ([24], Proposition 1.1).

In general the automorphisms conjugated to SL and TL need not be the same. This case
will be studied in Corollary 3.57.

Remark 3.51. Notice that TL is a Frank t-norm. Thus according to Remark 3.42, the
QL-implication defined in Theorem 3.48 with N = N0 and the QL-implication defined
in Corollary 3.49 with (N0)φ = (N0)ϕ are both S-implications. And according to The-
orem 3.11 and Corollary 3.35, they are not R-implications generated by left-continuous
t-norms.

Next we consider the t-norm T which is an ordinal sum defined in (2.30) where each
Tm, m ∈M , is TP or TL. The t-norms conjugated to T are also taken into account.

QL-implications generated by a nilpotent t-conorm (SL)ϕ, a t-norm which is an
ordinal sum of continuous Archimedean t-norms and a strong fuzzy negation

Theorem 3.52. Let To be the ordinal sum defined in (2.30) where each Tm, m ∈ M , is
TP, and N be a strong fuzzy negation. Define fm(x) = 1−N(x)−am

x−am , for all m ∈ M and
x ∈ ]am, bm]. Then the QL-implication

(∀(x, y) ∈ [0, 1]2)(I(x, y) = SL(N(x), To(x, y)))

satisfies FI1 iff N(x) ≥ N0(x), for all x ∈ [0, 1] and fm is increasing, for all m ∈M .

PROOF. =⇒: According to Proposition 3.21, if I satisfies FI1, then N(x) ≥ N0(x), for
all x ∈ [0, 1]. Thus fm(x) ≤ 1. Let m ∈ M and let us fix arbitrarily x1, x2 ∈
]am, bm] such that x1 < x2. We will consider two cases.
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(i) If fm(x2) ≤ 0, then 1 − N(x2) − am ≤ 0. Since N(x1) > N(x2), we get
1−N(x1)− am ≤ 0. But x2 − am > x1 − am > 0, so fm(x2) ≥ fm(x1),
i.e., fm is increasing in this case.

(ii) If fm(x2) > 0, then fm(x2) ∈ ]0, 1]. There exists a y0 ∈ ]am, bm] such that
fm(x2) = y0−am

bm−am . Thus I(x2, y0) = 1. In order for I to satisfy FI1, it is
necessary that

I(x2, y0) = 1⇒ I(x1, y0) = 1,

i.e., fm(x1) ≤ y0−am
bm−am . Thus fm(x1) ≤ fm(x2).

Hence fm is increasing in ]am, bm].
⇐=: Fix arbitrarily x1, x2 and y ∈ [0, 1] and assume x1 < x2. We will consider
three cases w.r.t. the positions of x1, x2 and y:

(i) For all m ∈M , (x1, y) /∈ [am, bm]2. Then

I(x1, y) = min(N(x1) + min(x1, y), 1)

=
{

1, if x1 ≤ y
min(N(x1) + y, 1), otherwise

Thus we need only to consider the situation that x2 > x1 > y. In this case
(x2, y) /∈ [am, bm]2. Therefore I(x1, y) = min(N(x1)+y, 1) and I(x2, y) =
min(N(x2) + y, 1). Since N is a decreasing mapping,
I(x1, y) ≥ I(x2, y).

(ii) There exists an m ∈ M such that (x1, y) ∈ [am, bm]2 and x2 /∈ [am, bm].
This situation happens only if there exists [am, bm] such that bm < 1. In this
case,

I(x1, y) = min(N(x1) + am +
(x1 − am)(y − am)

bm − am
, 1)

I(x2, y) = min(N(x2) + y, 1)

and x2 > bm. Thus we have 1−N(x2)−am
bm−am > 1−N(bm)−am

bm−am .
We now consider two cases.

(ii.1) If x1 ∈ ]am, bm], then since fm is increasing,

1−N(x2)− am
bm − am

>
1−N(x1)− am

x1 − am
⇔

N(x1)−N(x2)
bm − x1

>
1−N(x1)− am

x1 − am
.

Assume y−am
bm−am < 1−N(x1)−am

x1−am . Then we have

y − am
bm − am

<
N(x1)−N(x2)

bm − x1
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⇔N(x1) + am +
(x1 − am)(y − am)

bm − am
> N(x2) + y,

which means that if both I(x1, y) < 1 and I(x2, y) < 1, then
I(x1, y) > I(x2, y).
Now assume y ≥ 1−N(x2). Then we have

y ≥ (1−N(x1)− am)(bm − am)
x1 − am

+ am,

which means that if I(x2, y) = 1, then I(x1, y) = 1. Hence I(x1, y) ≥
I(x2, y) always holds.

(ii.2) If x1 = am, then I(x1, y) = min(N(am) + am, 1) = 1 ≥ I(x2, y).

(iii) There exists an m ∈M such that x1, x2, y ∈ [am, bm]. In this case,

I(x1, y) = min(N(x1) + am + (x1 − am) · y − am
bm − am

, 1)

I(x2, y) = min(N(x2) + am + (x2 − am) · y − am
bm − am

, 1)

We now consider two cases.

(iii.1) If x1 ∈ ]am, bm], then since fm is increasing,

1−N(x2)− am
x2 − am

≥ 1−N(x1)− am
x1 − am

⇔

N(x1)−N(x2)
x2 − x1

≥ 1−N(x1)− am
bm − am

.

Assume y−am
bm−am < 1−N(x1)−am

x1−am . Then we have

y − am
bm − am

<
N(x1)−N(x2)

x2 − x1
⇔

N(x1) + am + (x1 − am) · y − am
bm − am

≥ N(x2) + am + (x2 − am) · y − am
bm − am

,

which means that if both I(x1, y) < 1 and I(x2, y) < 1, then
I(x1, y) ≥ I(x2, y).
Now assume y−am

bm−am ≥ 1−N(x2)−am
x2−am . Then since fm is increasing,

y−am
bm−am ≥

1−N(x1)−am
x1−am , which means that if I(x2, y) = 1, then

I(x1, y) = 1. Hence I(x1, y) ≥ I(x2, y) always holds.
(iii.2) If x1 = am, then I(x1, y) = 1 ≥ I(x2, y).
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Example 3.8 Let To be the ordinal sum defined in (2.30) where each Tm, m ∈ M ,
is TP, and N be defined by: N(x) =

√
1− x2. Note that N(x) ≥ N0(x), for all

x ∈ [0, 1]. Then for each m ∈ M , the mapping fm defined in Theorem 3.52 for N is
fm(x) = 1−

√
1−x2−am
x−am . We have

(∀x ∈ ]am, bm])(
dfm(x)
dx

=
1− amx+ (am − 1)

√
1− x2

(x− am)2
√

1− x2
).

Since am + (1 − am) = 1 and x ≤ 1,
√

1− x2 ≤ 1, amx + (1 − am)
√

1− x2 ≤ 1,
dfm(x)
dx ≥ 0, for all x ∈ ]am, bm]. Hence fm is increasing. Therefore the QL-implication

I defined by I(x, y) = SL(N(x), To(x, y)), for all (x, y) ∈ [0, 1]2 satisfies FI1.

Theorem 3.53. Let To be the ordinal sum defined in (2.30) where each Tm, m ∈ M , is
TL, and N be a strong fuzzy negation. Then the QL-implication

(∀(x, y) ∈ [0, 1]2)(I(x, y) = SL(N(x), To(x, y)))

satisfies FI1 iff

i) for all x ∈ [0, 1], N(x) ≥ N0(x), and
ii) for all x ∈ [am, bm], if N(bm) + am < 1, then the mapping x 7→ N(x) + x is

decreasing in [N(1− am), bm].

PROOF. =⇒: According to Proposition 3.21, if I satisfies FI1, then N(x) ≥ N0(x), for
all x ∈ [0, 1].
Moreover, if N(bm) + am < 1, then there exists an x0 ∈ [am, bm[ such that
N(x0) + am = 1, i.e., x0 = N(1 − am). Since N is strictly decreasing, N(x) +
am < 1, for all x ∈ ]x0, bm]. Letm ∈M and let us fix arbitrarily x1, x2 ∈ ]x0, bm]
and assume x1 < x2. Then there exists a y0 ∈ ]am, bm[ such that

0 ≤ N(x1) + x1 − 1 < bm − y0 < x1 − am < x2 − am.

Thus

I(x1, y0) = N(x1) + x1 + y0 − bm < 1
I(x2, y0) = min(N(x2) + x2 + y0 − bm, 1).

If I satisfies FI1, then it is necessary that I(x2, y0) ≤ I(x1, y0), i.e.,

N(x2) + x2 + y0 − bm ≤ N(x1) + x1 + y0 − bm.

Hence the mapping x 7→ N(x) + x must be decreasing in ]x0, bm]. Because the
mapping x 7→ N(x)+x is continuous, it is decreasing in [x0, bm], i.e., the mapping
x 7→ N(x) + x is decreasing in [N(1− am), bm].
⇐=: Fix arbitrarily x1, x2 ∈ [0, 1] and assume x1 < x2, then for all y ∈ [0, 1],

I(x1, y) = min(N(x1) + To(x1, y), 1))
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I(x2, y) = min(N(x2) + To(x2, y), 1)).

We consider three cases according to the positions of x1, x2 and y w.r.t. am and
bm:

(i) For all m ∈M , (x1, y) /∈ [am, bm]2. In this case,

I(x1, y) = min(N(x1) + min(x1, y), 1)

=
{

1, if x1 ≤ y
min(N(x1) + y, 1), otherwise

Thus we need only to consider the situation that x2 > x1 > y. In this case
(x2, y) /∈ [am, bm]2. Therefore I(x1, y) = min(N(x1)+y, 1) and I(x2, y) =
min(N(x2) + y, 1). Since N is a decreasing mapping, we get I(x1, y) ≥
I(x2, y).

(ii) There exists an m ∈ M such that (x1, y) ∈ [am, bm]2 and x2 /∈ [am, bm].
This situation happens only if there exists [am, bm] such that bm < 1. In this
case, x2 > bm and

I(x1, y) = min(N(x1) + am + max(x1 + y − am − bm, 0), 1)
I(x2, y) = min(N(x2) + y, 1).

We consider two subcases now.

(ii.1) IfN(bm)+am < 1, then there exists an x0 ∈ [am, bm[ such thatN(x0)+
am = 1, i.e., x0 = N(1 − am). Since N is strictly decreasing, we have
N(x) + am > 1, for all x ∈ [am, x0[ , and N(x) + am < 1, for all
x ∈ ]x0, bm]. If x1 ∈ [am, x0], then I(x1, y) = 1 ≥ I(x2, y). If x1 ∈
]x0, bm], then since the mapping x 7→ N(x) + x is decreasing,

N(x2) + bm < N(bm) + bm ≤ N(x1) + x1.

Thus am+bm−x1 < 1−N(x2). We will consider three cases according
to the position of y w.r.t. am + bm − x1 and 1−N(x2).

(ii.1.1) y ≥ 1−N(x2). In this case,

N(x1) + x1 + y − bm > N(x2) + y ≥ 1.

Thus I(x1, y) = I(x2, y) = 1.
(ii.1.2) am + bm − x1 < y < 1−N(x2). In this case,

N(x2) + y < 1 and N(x1) + x1 + y − bm > N(x2) + y.

Thus I(x1, y) > I(x2, y).
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(ii.1.3) y ≤ am + bm − x1. In this case,

y +N(x2) ≤ am + bm − x1 +N(x2) < N(x1) + am.

Thus I(x1, y) > I(x2, y)
(ii.2) If N(bm) + am ≥ 1, then N(x) + am > 1, for all x ∈ [am, bm[ .

Thus I(x1, y) = 1 ≥ I(x2, y).

Hence I(x1, y) ≥ I(x2, y) provided N(bm) + am < 1.

(iii) There exists an m ∈M such that x1, x2, y ∈ [am, bm]. In this case,

I(x1, y) = min(N(x1) + am + max(x1 + y − am − bm, 0), 1)
I(x2, y) = min(N(x2) + am + max(x2 + y − am − bm, 0), 1).

We consider two subcases now.

(iii.1) IfN(bm)+am < 1, then there exists an x0 ∈ [am, bm[ such thatN(x0)+
am = 1, i.e., x0 = N(1 − am). Since N is strictly decreasing, we have
N(x) + am > 1, for all x ∈ [am, x0[ , and N(x) + am < 1, for all x ∈
]x0, bm]. If x1 ∈ [am, x0], then I(x1, y) = 1 ≥ I(x2, y). If x1, x2 ∈
]x0, bm], then we consider three cases according to the position of y w.r.t.
am+bm−x2 and am+bm−x1. Notice that am+bm−x2 < am+bm−x1.

(iii.1.1) y ≤ am + bm − x2. In this case,

I(x1, y) = N(x1) + am and I(x2, y) = N(x2) + am.

Since N is strictly decreasing, I(x1, y) > I(x2, y).
(iii.1.2) am + bm − x2 < y ≤ am + bm − x1. In this case,

I(x1, y) = N(x1) + am

I(x2, y) = min(N(x2) + x2 + y − bm, 1).

Since the mapping x 7→ N(x) + x is decreasing in [x0, bm],

N(x2) + x2 + y − bm ≤ N(x1) + x1 + y − bm ≤ N(x1) + am.

Thus I(x1, y) ≥ I(x2, y).
(iii.1.3) y > am + bm − x1. In this case,

I(x1, y) = min(N(x1) + x1 + y − bm, 1)
I(x2, y) = min(N(x2) + x2 + y − bm, 1).

Since the mapping x 7→ N(x) + x is decreasing in [x0, bm], we get
I(x1, y) ≥ I(x2, y).

Hence I(x1, y) ≥ I(x2, y) provided N(bm) + am < 1.
(iii.2) If N(bm) + am ≥ 1, then N(x) + am > 1, for all x ∈ [am, bm[ . Thus

I(x1, y) = 1 ≥ I(x2, y).
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Example 3.9 Let To be the ordinal sum defined by:

To(x, y) =
{
a1 + (b1 − a1)TL( x−a1

b1−a1
, y−a1
b1−a1

), if (x, y) ∈ [a1, b1]2

TM(x, y), otherwise

where a1 = 0.4 and b1 = 0.9, and N be defined by N(x) =
√

1− x2. Then N(x) ≥
N0(x), for all x ∈ [0, 1] and N(0.9) + 0.4 < 1. We have

(∀x ∈ [N(1− 0.4), 0.9])(
d(N(x) + x)

dx
= − x√

1− x2
+ 1).

Since x ≥ N(1− 0.4) = 0.8 > 1√
2

, d(N(x)+x)
dx < 0 in [N(1− 0.4), 0.9], x 7→ N(x) + x

is decreasing in [N(1 − 0.4), 0.9]. Therefore the QL-implication I defined by I(x, y) =
SL(N(x), To(x, y)), for all (x, y) ∈ [0, 1]2 satisfies FI1.

Combining Theorems 3.52 and 3.53, we have the next corollary.

Corollary 3.54. Let {[aj , bj ]}j∈J and {[ak, bk]}k∈K be two non-empty families of non-
overlapping, closed, proper subintervals of [0, 1] and

{[am, bm]}m∈M = {[aj , bj ]}j∈J ∪ {[ak, bk]}k∈K ,

where J ,K andM are finite or countable index sets. To is the ordinal sum of {[am, bm], Tm}m∈M ,
which is expressed as:

To(x, y) =


aj + (bj − aj)TP( x−ajbj−aj ,

y−aj
bj−aj ), if (x, y) ∈ [aj , bj ]2

ak + (bk − ak)TL( x−akbk−ak ,
y−ak
bk−ak ), if (x, y) ∈ [ak, bk]2

TM(x, y), otherwise
. (3.12)

Moreover, let N be a strong fuzzy negation and define fj(x) = 1−N(x)−aj
x−aj , for all j and

x ∈ ]aj , bj ]. Then the QL-implication

(∀(x, y) ∈ [0, 1]2)(I(x, y) = SL(N(x), To(x, y)))

satisfies FI1 iff

i) for all x ∈ [0, 1], N(x) ≥ N0(x), and
ii) fj is increasing, for all j ∈ J , and

iii) for all x ∈ [ak, bk], if N(bk) + ak < 1, then the mapping
x 7→ N(x) + x is decreasing in [N(1− ak), bk].

Example 3.10 Let To be the ordinal sum defined by:

To(x, y) =


a1 + (b1 − a1)TP( x−a1

b1−a1
, y−a1
b1−a1

), if (x, y) ∈ [a1, b1]2

a2 + (b2 − a2)TL( x−a2
b2−a2

, y−a2
b2−a2

), if (x, y) ∈ [a2, b2]2

TM(x, y), otherwise
,
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where a1 = 0.1, b1 = 0.2, a2 = 0.4 and b2 = 0.9, and N be defined by N(x) =√
1− x2, for all x ∈ [0, 1]. Then N(x) ≥ N0(x), for all x ∈ [0, 1]. The mapping f1

defined in Corollary 3.54 for N is f1(x) = 1−N(x)−0.1
x−0.1 , for all x ∈ ]0.1, 0.2]. According

to Example 3.8, f1 is increasing. Moreover, according to Example 3.9, we have N(b2) +
a2 < 1 and the mapping x 7→ N(x) + x is decreasing in [N(1 − a2), b2]. Thus the QL-
implication I defined by I(x, y) = SL(N(x), To(x, y)) for all (x, y) ∈ [0, 1]2 satisfies
FI1.

For the QL-implications conjugated to the one defined in Corollary 3.54, we have the
next corollary.

Corollary 3.55. Let To be a t-norm defined as (3.12), N be a strong fuzzy negation and
ϕ be an automorphism of the unit interval. Define fj(x) = 1−ϕ(N(ϕ−1(x)))−aj

x−aj , for all j
and x ∈ ]aj , bj ]. Then the QL-implication

(∀(x, y) ∈ [0, 1]2)(I(x, y) = (SL)ϕ(N(x), (To)ϕ(x, y)))

satisfies FI1 iff

i) for all x ∈ [0, 1], N(x) ≥ (N0)ϕ(x), and

ii) fj is increasing, for all j ∈ J , and

iii) for all x ∈ [ak, bk], ifϕ(N(ϕ−1(bk)))+ak < 1, then the mapping x 7→ ϕ(N(ϕ−1(x)))+
x is decreasing in [ϕ(N(ϕ−1(1− ak))), bk].

PROOF. Let N
′
(x) = ϕ(N(ϕ−1(x))). According to Lemma 3.38, I satisfies FI1 iff

(I)ϕ−1 , which is expressed as

(∀(x, y) ∈ [0, 1]2)((I)ϕ−1(x, y) = SL(N
′
(x), To(x, y)))

satisfies FI1. According to Corollary 3.54, (I)ϕ−1 satisfies FI1 iff the following
three conditions are fulfilled:

i) for all x ∈ [0, 1], N
′
(x) ≥ N0(x), and

ii) f
′

j is increasing, for all j ∈ J , and

iii) for all x ∈ [ak, bk], if N
′
(bk) + ak < 1, then the mapping x 7→ N

′
(x) + x is

decreasing in [N
′
(1− ak), bk],

where f
′

j(x) = 1−N
′
(x)−aj

x−aj for all x ∈ ]aj , bj ]. They are equivalent to

i) for all x ∈ [0, 1], N(x) ≥ (N0)ϕ(x), and
ii) fj is increasing, for all j ∈ J , and

iii) for all x ∈ [ak, bk], if ϕ(N(ϕ−1(bk))) + ak < 1, then the mapping x 7→
ϕ(N(ϕ−1(x))) + x is decreasing in [ϕ(N(ϕ−1(1− ak))), bk].



58 FUZZY IMPLICATION AXIOMS

Until now we have investigated the fulfillment of property FI1 for a QL-implica- tion I
generated by particular combinations of a t-conorm S, a t-norm T and a strong fuzzy
negation N . Indeed cases of the following two types have been considered:

(i) S = (SL)ϕ (with ϕ being an automorphism of the unit interval), N = (N0)ϕ, T
arbitrary;

(ii) S = (SL)ϕ, T fixed and continuous, N arbitrary.

QL-implications generated by a nilpotent t-conorm (SL)ϕ, a continuous t-norm and
a strong fuzzy negation (general case)

Theorem 3.56. Let ϕ be an automorphism of the unit interval, T be a continuous t-norm
and N be a strong fuzzy negation. Define for each y ∈ [0, 1], Fy(x) = ϕ(N(x)) +
ϕ(T (x, y)), for all x ∈ [0, 1]. Then the QL-implication

(∀(x, y) ∈ [0, 1]2)(I(x, y) = (SL)ϕ(N(x), T (x, y)))

satisfies FI1 iff for all y, there exists an x0 ∈ [0, 1] such that Fy(x0) = 1 with Fy(x) ≥ 1,
for all x ∈ [0, x0] and Fy decreasing in [x0, 1].

PROOF. From the definition of Fy we get: I(x, y) = ϕ−1(min(Fy(x), 1)), for all
(x, y) ∈ [0, 1]2.
=⇒:

(i) First we consider y = 1. In this case F1(x) = ϕ(N(x)) + ϕ(x), for all
x ∈ [0, 1]. If I satisfies FI1, then according to Proposition 3.21, N(x) ≥
(N0)ϕ(x), for all x ∈ [0, 1]. Since F1(1) = 1, we have F1(x) ≥ 1, for all
x ∈ [0, 1]. So we take x0 = 1.

(ii) Second we consider y ∈ [0, 1[ . In this case Fy(0) = 1 and Fy(1) = ϕ(y) <
1. We now consider two cases.

(ii.1) If there exists an x
′ ∈ ]0, 1[ such that Fy(x

′
) ≥ 1, then since Fy is

continuous, there exists x0 ∈ [x
′
, 1[ such that Fy(x0) = 1 and Fy(x) <

1, for all x ∈ ]x0, 1]. Since I satisfies FI1, once I(x, y) < 1, Fy should
be decreasing. Thus Fy is decreasing in ]x0, 1]. Since Fy is continuous,
Fy is decreasing in [x0, 1]. Moreover, since I(x0, y) = 1, it is necessary
that I(x, y) = 1, for all x ∈ [0, x0]. Thus Fy(x) ≥ 1, for all x ∈ [0, x0].

(ii.2) If Fy(x) < 1, for all x ∈ ]0, 1[ , then Fy(x) ≤ 1, for all x ∈ [0, 1]. So

I(x, y) = ϕ−1(min(Fy(x), 1)) = ϕ−1(Fy(x)),

for all x ∈ [0, 1]. Since I satisfies FI1, once I(x, y) < 1, Fy should be
decreasing. Thus Fy is decreasing in ]0, 1]. Since Fy is continuous, Fy is
decreasing in [0, 1].

⇐=: Take a fixed y ∈ [0, 1]. Let x0 be the point for which Fy(x0) = 1 and
Fy(x) ≥ 1, for all x ∈ [0, x0] and Fy decreasing in [x0, 1] and x1, x2 ∈ [0, 1]
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with x1 < x2. Suppose 0 ≤ x1 ≤ x0, then I(x1, y) = 1 ≥ I(x2, y). Suppose
0 ≤ x0 ≤ x1 < x2, then since Fy is decreasing in [x0, 1], I(x1, y) ≥ I(x2, y).
Thus I satisfies FI1.

Notice that the result of Theorem 3.56 is valid for all the QL-implications that are gener-
ated by the t-conorm SL, a continuous t-norm T and a strong fuzzy negation N . We give
some examples below to illustrate the mapping Fy for several QL-implications studied
above that have been proved to satisfy FI1.

Example 3.11
(i) Let I be the QL-implication defined in Corollary 3.40 with

S = SL and N(x) =
√

1− x2. Then the corresponding Fy(x):

Fy(x) =
√

1− x2 + TM(x, y) =
{ √

1− x2 + x, if x ≤ y√
1− x2 + y, if x > y

for all x ∈ [0, 1]. For a fixed y0 ∈ [0, 1], Fy0(x) ≥ 1, for all x ∈ [0,
√

2y0 − y2
0 ].

If x >
√

2y0 − y2
0 ≥ y0, then Fy0(x) =

√
1− x2 + y0 < 1. Since the mapping

x 7→
√

1− x2 is decreasing, Fy0 is decreasing in [
√

2y0 − y2
0 , 1]. Thus Fy0 fulfills

the conditions required in Theorem 3.56.
(ii) Let I be the QL-implication defined in Example 3.6. Then the corresponding

Fy(x):

Fy(x) =
√

1− x2 + xy.

for all x ∈ [0, 1]. For a fixed y0 ∈ ]0, 1[ , one can verify that Fy0( 2y0
1+y2

0
) = 1 with

Fy0(x) ≥ 1 for all x ∈ [0, 2y0
1+y2

0
], and x√

1−x2 ≥
2y0

1+y2
0
> y0 for all x ∈ [ 2y0

1+y2
0
, 1].

Thus

d(
√

1− x2 + x · y0)
dx

= y0 −
x√

1− x2
< 0,

for all x ∈ [ 2y0
1+y2

0
, 1], which means Fy0 is decreasing in [ 2y0

1+y2
0
, 1]. Moreover,

we have F0(0) = 1 with F0 decreasing in [0, 1] and F1(1) = 1 with F1(x) =√
1− x2 + x ≥ 1, for all x ∈ [0, 1]. Thus Fy fulfills the conditions required in

Theorem 3.56 with x0 = 2y
1+y2 , for all y ∈ [0, 1].

Following Theorem 3.56, if we take the t-norm T as conjugated to TL, then we obtain
the following corollary:

Corollary 3.57. Let ϕ and φ be two automorphisms of the unit interval andN be a strong
fuzzy negation. Define for each y ∈ [0, 1],

(∀x ∈ [0, 1])(Fy(x) = ϕ(N(x)) + ϕ((TL)φ(x, y))).
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Then the QL-implication

(∀(x, y) ∈ [0, 1]2)(I(x, y) = (SL)ϕ(N(x), (TL)φ(x, y)))

satisfies FI1 iff F1(x) ≥ 1, for all x ∈ [0, 1] and Fy is decreasing in [0, 1], for all y ∈ [0, 1[
.

PROOF. (i) First we consider y = 1. In this case F1(x) = ϕ(N(x)) + ϕ(x). We now
consider two cases.

(i.1) If there exists x
′ ∈ ]0, 1[ such that F1(x

′
) < 1, then since F1(1) = 1,

there exists no x0 ∈ [0, 1] such that F1(x0) = 1 with F1(x) ≥ 1 for all
x ∈ [0, x0] and F1 decreasing in [x0, 1].

(ii.2) If F1(x) ≥ 1, for all x ∈ [0, 1], then take x0 = 1, we have F1(x0) = 1
with F1(x) ≥ 1, for all x ∈ [0, 1]. Thus the sufficient and necessary
condition in Theorem 3.56 is fulfilled iff F1(x) ≥ 1, for all x ∈ [0, 1].

(ii) Second we consider y ∈ [0, 1[ . In this case,

Fy(x) = ϕ(N(x)) + ϕ((TL)φ(x, y))

= ϕ(N(x)) + ϕ(φ−1(max(φ(x) + φ(y)− 1, 0))).

If x ∈ [0, (N0)φ(y)], then Fy(x) = ϕ(N(x)). So Fy(x) < 1, for all x ∈
]0, (N0)φ(y)]. Thus there exists no x0 ∈ ]0, 1] such that Fy(x0) = 1 with
Fy(x) ≥ 1 for all x ∈ [0, x0]. Therefore the sufficient and necessary condition
in Theorem 3.56 is fulfilled iff we take x0 = 0 and Fy being decreasing in
[0, 1].

In Theorem 3.34 and Corollary 3.35 we have studied how the QL-implication generated
by the t-conorm (SL)ϕ, a continuous t-norm T and a strong fuzzy negation N satisfies
FI8. Using the result of Theorem 3.56, we can see how a QL-implication satisfying FI8
also satisfies FI1.

Corollary 3.58. Let ϕ be an automorphism of the unit interval, T be a continuous t-norm
and N be a strong fuzzy negation. The QL-implication

(∀(x, y) ∈ [0, 1]2)(I(x, y) = (SL)ϕ(N(x), T (x, y)))

satisfies FI1 and FI8 iff conditions (3.7) and (3.8) are fulfilled and for all 0 ≤ y < x1 <
x2 ≤ 1,

ϕ(T (x2, x2))− ϕ(T (x1, x1)) ≥ ϕ(T (x2, y))− ϕ(T (x1, y)) (3.13)

PROOF. =⇒: According to Theorem 3.34, if I satisfies FI8, then T and N fulfill condi-
tions (3.7) and (3.8). Thus defining for each y ∈ [0, 1[ ,

(∀x ∈ [0, 1])(Fy(x) = ϕ(N(x)) + ϕ(T (x, y))),
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we get Fy(x) = 1 − ϕ(T (x, x)) + ϕ(T (x, y)). According to Theorem 3.56, if I
satisfies FI1, then Fy is decreasing in ]y, 1]. Therefore we have

ϕ(T (x2, x2))− ϕ(T (x1, x1)) ≥ ϕ(T (x2, y))− ϕ(T (x1, y)),

for all y < x1 < x2.
⇐=: If T and N fulfill conditions (3.7) and (3.8), then according to Theorem 3.34,
I satisfies FI8. Moreover, if T and N fulfill conditions (3.7), (3.8) and (3.13), then

Fy(x) = ϕ(N(x)) + ϕ(T (x, y)) = 1− ϕ(T (x, x)) + ϕ(T (y, y)),

for all x, y ∈ [0, 1] and we have Fy(y) = 1 with Fy(x) ≥ 1, for all x ∈ [0, y] and
Fy decreasing in ]y, 1]. Since Fy is continuous, Fy is decreasing in [y, 1]. Thus
according to Theorem 3.56, I satisfies FI1.

Example 3.12 Let the automorphism ϕ, the t-norm T , the strong fuzzy negation N and
the QL-implication I be defined as those in Example 3.3 (ii). Consider any 0 ≤ y < x1 <
x2 ≤ 1, we have

ϕ(T (x2, x2))− ϕ(T (x1, x1)) =
x2 − x1

(1− x2
2 )(1− x1

2 )

ϕ(T (x2, y))− ϕ(T (x1, y)) =
x2 − x1

x2
y2 + 1

y −
x2
y

.

Since 1− x2
2 ≤ 1 ≤ x2

y2 + 1
y −

x2
y , we obtain x2−x1

(1− x22 )(1− x12 )
≥ x2−x1

x2
y2

+ 1
y−

x2
y

. Thus ϕ and T

fulfill the condition (3.13). Recall that T and N fulfill conditions (3.7) and (3.8). Hence I
is a QL-implication that satisfies FI1 and FI8. According to Example 3.3 (ii), I is neither
an S-implication nor an R-implication generated by a left-continuous t-norm.

3.5 Summary
In this chapter, we have characterized S- and R- implications and have extensively stud-
ied QL-implications. We investigated under which conditions QL-implications satisfy the
axioms required to obtain a suitable conclusion in fuzzy inference. Especially fuzzy im-
plication axiom FI1 of QL-implications has been studied. Propositions, Theorems and
Corollaries in Section 3.4.1 and Corollary 3.58 in Section 3.4.2 give general conditions
under which a QL-implication can satisfy different commonly required axioms. Also the
relationship between these axioms and FI1 is given. Moreover, Theorems and Corollaries
in Section 3.4.2 state sufficient and necessary conditions for QL-implications generated
by different combinations of a t-conorm, a t-norm and a strong fuzzy negation to satisfy
FI1. Whether the QL-implications satisfying FI1 are equivalent to S- or R- implications
has been illustrated in Remarks 3.41, 3.42, 3.47 and 3.51.
We still have an open question: does a QL-implication satisfying I1, I8 and I9 also satis-
fies I7?





Chapter 4

Dependence versus
Independence of the Fuzzy

Implication Axioms

4.1 Introduction
In the previous chapter we investigated for the three classes of fuzzy implications gen-
erated from fuzzy logical operators under which conditions they satisfy the axioms FI1-
FI13. Observe that in many papers or books a fuzzy implication I is defined as a [0, 1]2 ⇀
[0, 1] mapping that satisfies FI1-FI5. This is because in many applications of fuzzy impli-
cations FI1-FI5 are strongly required [6], [10], [11], [24], [36], [97], [98].

Remark 4.1. Notice that if a [0, 1]2 ⇀ [0, 1] mapping satisfies FI3, FI4 and FI5, it also
satisfies the boundary conditions I1 stated in Definition 2.38. There are several equivalent
definitions for a fuzzy implication to satisfy FI1 to FI5. For example, according to ([3],
Lemma 1), the assumption that I satisfies I1, FI1 and FI2 is an equivalent definition.

In this chapter we investigate for any fuzzy implication satisfying FI1-FI5 the depen-
dence and the independence between the axioms. The motivation of this investigation
includes the following three aspects:

1. Łukasiewicz implication IL is the well-known fuzzy implication that satisfies all
the axioms from FI1 to FI13. Through this investigation we can obtain different
examples of fuzzy implications that satisfy different combinations of the axioms
which fulfill different requirements in different applications.

2. Through this investigation we want to improve some existing theorems. For ex-
ample, Baczyński (2004) improves the theorem of Smets-Magrez (1987) through
proving that one of the four axioms (FI2) in the theory depends on the other three
(FI7, FI8 and FI13).
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3. To solve some functional equations with fuzzy implications we need the help of
this investigation.

Existing works have mainly studied a few interrelationships between axioms FI6-FI13
[2], [6], [10], [24]. But the results are not complete. This chapter aims to determine a full
view of the interrelationships between FI6-FI13.

4.2 Interrelationships between 8 Fuzzy Implication Ax-
ioms

4.2.1 Getting FI6 from the Other Axioms
Theorem 4.2. ([6], Lemma 1.54(v), Corollary 1.57 (iii)) A fuzzy implication I satisfying
FI9 and FI12 satisfies FI6 iff N = N

′
.

In the rest of this section we consider the condition that N
′ 6= N .

Proposition 4.3. ([2], Lemma 6) A fuzzy implication I satisfying FI7 and FI8 satisfies
FI6.

Proposition 4.4. ([6], Lemma 1.56(ii)) A fuzzy implication I satisfying FI7 and FI9 sat-
isfies FI6.

Proposition 4.5. A fuzzy implication I satisfying FI7 and FI13 satisfies FI6.

PROOF. Because I satisfies FI7, we have for all x ∈ [0, 1],

I(1, N
′
(x)) = I(1, I(x, 0)) = I(x, I(1, 0)) = I(x, 0) = N

′
(x). (4.1)

Because I is a continuous mapping, N
′

is a continuous mapping. Thus expression
(4.1) is equivalent to I(1, a) = a, for all a ∈ [0, 1]. Hence I satisfies FI6.

Remark 4.6. In Proposition 4.3, Proposition 4.4 and Proposition 4.5 we considered the
following 3 cases:

FI7 ∧ FI8⇒ FI6

FI7 ∧ FI9⇒ FI6

FI7 ∧ FI13⇒ FI6

So we still need to consider the following 2 cases:

FI7 ∧ FI10 ∧ FI11 ∧ FI12 ?⇒ FI6

FI8 ∧ FI9 ∧ FI10 ∧ FI11 ∧ FI12 ∧ FI13 ?⇒ FI6

Proposition 4.7. A fuzzy implication I satisfying FI7, FI10, FI11 and FI12 does not
necessarily satisfy FI6.
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Example 4.1 The fuzzy implication I1 stated in [18] is represented by

I1(x, y) =
{

0 if x = 1 and y = 0
1 else , x, y ∈ [0, 1].

we have

I1(x, I1(y, z)) =
{

1, if x < 1 or y < 1 or z > 0
0, else , x, y, z ∈ [0, 1].

= I1(y, I1(x, z))

So I1 satisfies FI7. Moreover, for all x, y ∈ [0, 1],

I1(x, y) ≥ y.

I1(x, x) = 1.

I1(N(y), N(x)) = I1(x, y), for any strong fuzzy negation N .

So I1 satisfies FI10, FI11 and FI12 w.r.t. any strong fuzzy negation N . However, in case
that x 6= 1, I1(1, x) = 1 6= x. So I1 does not satisfy FI6.

Proposition 4.8. A fuzzy implication satisfying FI8, FI9, FI10, FI11, FI12 and FI13 does
not necessarily satisfy FI6.

Example 4.2 Let a fuzzy implication I2 be represented by

I2(x, y) =
{

1 if x ≤ y√
1− (x− y)2 if x > y

, x, y ∈ [0, 1].

For all x, y ∈ [0, 1],

I2(x, y) = 1 iff x ≤ y.

N
′
(x) = I2(x, 0) =

√
1− x2 = ϕ−1(1− ϕ(x)), where ϕ(x) = x2 is an automor-

phism of the unit interval. So N
′

is a strong fuzzy negation.

I2(x, y) ≥ y.

I2(x, x) = 1.

I2(1− y, 1− x) = I2(x, y).

I2 is a continuous mapping.

So I2 satisfies FI8, FI9, FI10, FI11, FI12 w.r.t. the standard strong fuzzy negation N0,
and FI13. However, in case that x 6= 1, I2(1, x) =

√
2x− x2 6= x. So I2 does not satisfy

FI6.

So we considered all the possibilities that the fuzzy implication axiom FI6 can be im-
plied from the other 7 axioms. Moreover we stated for each independent case a counter-
example. We summary the results of this section in Table 4.1.
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Figure 4.1: Example 4.2

Table 4.1: Getting FI6 from the other axioms
FI7∧ FI8⇒ FI6
FI7∧ FI9⇒ FI6

FI7∧ FI13⇒ FI6
FI7∧ FI10∧ FI11 ∧ FI12 6⇒ FI6

FI8∧ FI9∧ FI10∧ FI11∧ FI12∧ FI13 6⇒ FI6

4.2.2 Getting FI7 from the Other Axioms
Proposition 4.9. A fuzzy implication I satisfying FI6, FI8, FI9, FI10, FI11, FI12 and
FI13 does not necessarily satisfy FI7.

Example 4.3 Let a fuzzy implication I3 be represented by

I3(x, y) =
{

1 if x ≤ y
(x− y)(y(1− x)− 1) + 1 if x > y

, x, y ∈ [0, 1].

For all x, y ∈ [0, 1],

I3(1, x) = x.
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I3(x, y) = 1 iff x ≤ y.

N
′
(x) = I3(x, 0) = 1− x.

I3(x, y) ≥ y.

I3(x, x) = 1.

I3(1− y, 1− x) = I3(x, y).

I3 is a continuous mapping.

So I3 satisfies FI6, FI8, FI9, FI10, FI11, FI12 w.r.t. the standard strong fuzzy negationN0,
and FI13. However, take x0 = 0.3, y0 = 0.9 and z0 = 0.1, we obtain I(x0, I(y0, z0)) =
0.9214 and I(y0, I(x0, z0)) = 0.9210. So I3 does not satisfy FI7.

Figure 4.2: Example 4.3

Remark 4.10. The fuzzy implication IMM presented in ([6], Table 1.5) is also an exam-
ple that satisfies FI6, FI8, FI9, FI10, FI11, FI12 w.r.t. the standard strong fuzzy negation
N0, and FI13 but not FI7.

So FI7 is independent with any of the other 7 axioms.
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4.2.3 Getting FI8 from the Other Axioms

Proposition 4.11. A fuzzy implication I satisfying FI6, FI7, FI9, FI10, FI11, FI12 and
FI13 does not necessarily satisfy FI8.

Example 4.4 Given the strong fuzzy negation N(x) =
√

1− x2, for all x ∈ [0, 1].
The S-implication I4 generated by the t-conorm SL and the strong fuzzy negaton N is
represented by

I4(x, y) = SL(N(x), y) = min(
√

1− x2 + y, 1), x, y ∈ [0, 1].

Because I4 is an S-implication generated from a continuous t-conorm and a strong fuzzy
negation, it satisfies FI6, FI7, FI9, FI10, FI12 and FI13 [24]. Moreover, for all x, y ∈
[0, 1], I4(x, x) = x. So I4 also satisfies FI11. However, take x0 = 0.5 and y0 = 0.4, we
obtain I(x0, y0) = 1 while x0 > y0. So I4 does not satisfy FI8.

Figure 4.3: Example 4.4

So FI8 is independent with any of the other 7 axioms.
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4.2.4 Getting FI9 from the Other Axioms
Proposition 4.12. ([6], Lemma 1.5.4(v)) A fuzzy implication I satisfying FI6 and FI12
satisfies FI9. Moreover, N = N

′
.

Corollary 4.13. A fuzzy implication I satisfying FI7, FI8 and FI12 satisfies FI9. More-
over, N = N

′
.

PROOF. Straightforward from Propositions 4.3 and 4.12.

Corollary 4.14. A fuzzy implication I satisfying FI7, FI12 and FI13 satisfies FI9. More-
over, N = N

′
.

PROOF. Straightforward from Propositions 4.5 and 4.12.

Proposition 4.15. ([2], Lemma 14)([24], Corollary 1.1) A fuzzy implication I satisfying
FI7, FI8 and FI13 satisfies FI9.

Remark 4.16. In Proposition 4.12, Corollary 4.13, Corollary 4.14 and Proposition 4.15
we considered the following 4 cases:

FI6 ∧ FI12⇒ FI9
FI7 ∧ FI8 ∧ FI12⇒ FI9
FI7 ∧ FI8 ∧ FI13⇒ FI9
FI7 ∧ FI12 ∧ FI13⇒ FI9

So we still need to consider the following 5 cases:

FI6 ∧ FI7 ∧ FI8 ∧ FI10 ∧ FI11 ?⇒ FI9
FI6 ∧ FI7 ∧ FI10 ∧ FI11 ∧ FI13 ?⇒ FI9
FI6 ∧ FI8 ∧ FI10 ∧ FI11 ∧ FI13 ?⇒ FI9
FI7 ∧ FI10 ∧ FI11 ∧ FI12 ?⇒ FI9
FI8 ∧ FI10 ∧ FI11 ∧ FI12 ∧ FI13 ?⇒ FI9

Proposition 4.17. ([24], Table 1.1) A fuzzy implication I satisfying FI6, FI7, FI8, FI10
and FI11 does not necessarily satisfy FI9.

Example 4.5 The Gödel implication

Ig(x, y) =
{

1, if x ≤ y
y, if x > y

, x, y ∈ [0, 1]. (4.2)

is an R-implication generated by the continuous t-norm TM. So Ig satisfies FI6, FI7, FI8,
FI10 and FI11 [24]. However we have for all x ∈ [0, 1],

N
′
(x) = Ig(x, 0) =

{
1, if x = 0
0, if x > 0 .

So Ig does not satisfy FI9.
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Proposition 4.18. A fuzzy implication I satisfying FI6, FI7, FI10, FI11 and FI13 does
not necessarily satisfy FI9.

Example 4.6 Let a fuzzy implication I5 be represented by

I5(x, y) =
{

1, if x2 ≤ y
1− x2 + y, if x2 > y

, x, y ∈ [0, 1].

For all x, y ∈ [0, 1],

I5(1, x) = x.

I5(x, y) ≥ y.

I5(x, x) = 1.

I5 is a continuous mapping.

So I5 satisfies FI6, FI10, FI11 and FI13. Now we check axiom FI7 for I5.
First consider the case that y2 ≤ z, then because I5 satisfies FI10, y2 ≤ I5(x, z). So we
obtain I5(x, I5(y, z)) = I5(x, 1) = 1 and I5(y, I5(x, z)) = 1. This is the same for the
case that x2 ≤ z. Next we consider the case that y2 > z and x2 > z. We have

I5(x, I5(y, z)) =
{

1, if x2 ≤ 1− y2 + z
2− x2 − y2 + z, else , x, y, z ∈ [0, 1].

and

I5(y, I(x, z)) =
{

1, if y2 ≤ 1− x2 + z
2− x2 − y2 + z, else , x, y, z ∈ [0, 1].

Thus I5(x, I(y, z)) = I(y, I(x, z)), for all x, y, z ∈ [0, 1], i.e., I5 satisfies FI7. However,
we have for all x ∈ [0, 1]

N
′
(x) = I5(x, 0) = 1− x2

which is not a strong fuzzy negation. So I5 does not satisfy FI9

Proposition 4.19. A fuzzy implication I satisfying FI6, FI8, FI10, FI11 and FI13 does
not necessarily satisfy FI9.

Example 4.7 Let a fuzzy implication I6 be represented by

I6(x, y) =
{

1, if x ≤ y
(1−
√

1−x)y
x +

√
1− x, if x > y

, x, y ∈ [0, 1].

For x, y ∈ [0, 1]
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Figure 4.4: Example 4.6

I6(1, x) = x.
I6(x, y) = 1 iff x ≤ y.
I6(x, y) ≥ y.
I6 is a continuous mapping.

So I6 satisfies FI6, FI8, FI10 and FI13. However, we have for all x ∈ [0, 1]

N
′
(x) = I6(x, 0) =

√
1− x

which is not a strong fuzzy negation. So I6 does not satisfy FI9

Proposition 4.20. A fuzzy implication I satisfying FI7, FI10, FI11 and FI12 does not
necessarily satisfy FI9.

The fuzzy implication I1 stated in Example 4.1 satisfies FI7, FI10, FI11 and FI12. How-
ever, we have

N
′
(x) = I1(x, 0) =

{
1, if x < 1
0, if x = 1 , x ∈ [0, 1],

So I1 does not satisfy FI9.
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Figure 4.5: Example 4.7

Proposition 4.21. A fuzzy implication satisfying FI8, FI10, FI11, FI12 and FI13 does not
necessarily satisfy FI9.

Example 4.8 Let a fuzzy implication I7 be represented by

I7(x, y) =
{

1, if x ≤ y√
1− (x− y), if x > y

, x, y ∈ [0, 1].

For all x, y ∈ [0, 1],

I7(x, y) = 1 iff x ≤ y.
I7(x, y) ≥ y.
I7(x, x) = 1.
I7(1− y, 1− x) = I7(x, y).
I7 is a continuous mapping.

So I7 satisfies FI8, FI10, FI11, FI12 w.r.t. the standard strong fuzzy negation N0, and
FI13. However, we have for all x ∈ [0, 1]

N
′
(x) = I5(x, 0) =

√
1− x

which is not a strong fuzzy negation. So I7 does not satisfy FI9.
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Figure 4.6: Example 4.8

Remark 4.22. The fuzzy implication IBZ presented in ([6], Example 1.5.10(iv)) is also
an example that satisfies FI8, FI10, FI11, FI12 w.r.t. the standard strong fuzzy negation
N0, and FI13 but not FI9.

So we considered all the possibilities that the fuzzy implication axiom FI9 can be
implied from the other 7 axioms. Moreover we stated for each independent case a counter-
example. We summary the results of this section in Table 4.2.

4.2.5 Getting FI10 from the Other Axioms
Proposition 4.23. ([10],Lemma 1 (viii)) A fuzzy implication I satisfying FI6 satisfies
FI10.

Corollary 4.24. A fuzzy implication I satisfying FI7 and FI9 satisfies FI10.

PROOF. Straightforward from Propositions 4.4 and 4.23.

Corollary 4.25. A fuzzy implication I satisfying FI7 and FI13 satisfies FI10.

PROOF. Straightforward from Propositions 4.5 and 4.23.
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Table 4.2: Getting FI9 from the other axioms
FI6∧ FI12⇒ FI9

FI7∧ FI8∧ FI12⇒ FI9
FI7∧ FI12∧ FI13⇒ FI9
FI7∧ FI8∧ FI13⇒ FI9

FI6∧ FI7∧ FI8∧ FI10∧ FI11 6⇒ FI9
FI7∧ FI10∧ FI11∧ FI12 6⇒ FI9

FI6∧ FI7∧ FI10∧ FI11∧ FI13 6⇒ FI9
FI6∧ FI8∧ FI10∧ FI11∧ FI13 6⇒ FI9

FI8∧ FI10∧ FI11∧ FI12∧ FI13 6⇒ FI9

Proposition 4.26. ([2],Lemma 6) A fuzzy implication I satisfying FI7 and FI8 satisfies
FI10.

Remark 4.27. In Proposition 4.23, Corollary 4.24, Corollary 4.25 and Proposition 4.26
we considered the following 4 cases:

FI6⇒ FI10

FI7 ∧ FI8⇒ FI10

FI7 ∧ FI9⇒ FI10

FI7 ∧ FI13⇒ FI10

So we still need to consider the following 2 cases:

FI7 ∧ FI11 ∧ FI12 ?⇒ FI10

FI8 ∧ FI9 ∧ FI11 ∧ FI12 ∧ FI13 ?⇒ FI10

Proposition 4.28. A fuzzy implication I satisfying FI7, FI11 and FI12 does not neces-
sarily satisfy FI10.

Example 4.9 Let a fuzzy implication I8 be represented by

I8(x, y) =
{

1, if x ≤ 0.5 or y ≥ 0.5
0, else , x, y ∈ [0, 1].

We obtain

I8(x, I8(y, z)) =
{

1, if x ≤ 0.5 or y ≤ 0.5 or z ≥ 0.5
0, else , x, y ∈ [0, 1].

= I8(y, I8(x, z))

So I8 satisfies FI7. Moreover, for all x, y ∈ [0, 1],

I8(x, x) = 1.

I8(1− y, 1− x) = I8(x, y).
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Figure 4.7: Example 4.9

So I8 satisfies FI11 and FI12 w.r.t. the standard strong fuzzy negation N0. However, take
x0 = 1 and y0 = 0.1, we obtain I8(x0, y0) = 0 < y0. So I8 does not satisfy FI10.

Proposition 4.29. A fuzzy implication I satisfying FI8, FI9, FI11, FI12 and FI13 does
not necessarily satisfy FI10.

Example 4.10 Let a fuzzy implication I9 be represented as

I9(x, y) =
{

1, if x ≤ y
(1−

√
x− y)2, if x > y

, x, y ∈ [0, 1].

For all x, y ∈ [0, 1],

I9(x, y) = 1 iff x ≤ y.

N
′
(x) = I9(x, 0) = (1 −

√
x)2 = ϕ−1(1 − ϕ(x)), where ϕ(x) =

√
x is an

automorphism of the unit interval.

I9(x, x) = 1.

I9(1− y, 1− x) = I9(x, y).

I9 is a continuous mapping.
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So I9 satisfies FI8, FI9, FI11, FI12 w.r.t. the standard strong fuzzy negationN0, and FI13.
However, take x0 = 1 and y0 = 0.64, we obtain I9(x0, y0) = 0.16 < y0. So I9 does not
satisfy FI10.

Figure 4.8: Example 4.10

So we considered all the possibilities that the fuzzy implication axiom FI10 can be im-
plied from the other 7 axioms. Moreover we stated for each independent case a counter-
example. We summary the results of this section in Table 4.3.

Table 4.3: Getting FI10 from the other axioms
FI6⇒ FI10

FI7∧ FI9⇒ FI10
FI7∧ FI13⇒ FI10
FI7∧ FI8⇒ FI10

FI7∧ FI11 ∧ FI12 6⇒ FI10
FI8∧ FI9∧ FI11∧ FI12 ∧ FI13 6⇒ FI10
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4.2.6 Getting FI11 from the Other Axioms

Proposition 4.30. A fuzzy implication I satisfying FI8 satisfies FI11.

PROOF. Straightforward.

Remark 4.31. In Proposition 4.30 we considered the following case:

FI8⇒ FI11.

So we still need to consider the following case:

FI6 ∧ FI7 ∧ FI9 ∧ FI10 ∧ FI12 ∧ FI13 ?⇒ FI11

Proposition 4.32. A fuzzy implication I satisfying FI6, FI7, FI9, FI10, FI12 and FI13
does not necessarily satisfy FI11.

Example 4.11 The Kleene-Dienes implication Ib(x, y) = max(1−x, y), for all (x, y) ∈
[0, 1]2 is an S-implication generated from the t-conorm SM and the standard strong fuzzy
negation N0. So Ib satisfies FI6, FI7, FI9, FI10, FI12 w.r.t. the standard strong fuzzy
negation N0, and FI13. However, take x0 = 0.1, we obtain Ib(x0, x0) = 0.9 6= 1. So Ib
does not satisfy FI11.

So we considered all the possibilities that the fuzzy implication axiom FI11 can be implied
from the other 7 axioms, and stated for the independent case a counter-example.

4.2.7 Getting FI12 from the Other Axioms

Proposition 4.33. ([10],Lemma 1(ix)) A fuzzy implication I satisfying FI7 and FI9 satis-
fies FI12 w.r.t. the strong fuzzy negation N

′
.

Proposition 4.34. ([2]) A fuzzy implication I satisfying FI7, FI8 and FI13 satisfies FI12.

Remark 4.35. In Proposition 4.33 and Proposition 4.34 we considered the following 2
cases:

FI7 ∧ FI9⇒ FI12

FI7 ∧ FI8 ∧ FI13⇒ FI12

So we still need to consider the following 3 cases:

FI6 ∧ FI7 ∧ FI8 ∧ FI10 ∧ FI11 ?⇒ FI12

FI6 ∧ FI7 ∧ FI10 ∧ FI11 ∧ FI13 ?⇒ FI12

FI6 ∧ FI8 ∧ FI9 ∧ FI10 ∧ FI11 ∧ FI13 ?⇒ FI12

Proposition 4.36. A fuzzy implication I satisfying FI6, FI7, FI8, FI10 and FI11 does not
necessarily satisfy FI12.
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According to Example 4.5, the Gödel implication Ig satisfies FI6, FI7, FI8, FI10 and
FI11. However, for any strong fuzzy negation N we obtain

Ig(N(y), N(x)) =
{

1, if x ≤ y
N(x), if x > y

.

In case that N(x) 6= y, Ig(N(y), N(x)) 6= Ig(x, y). So Ig does not satisfy FI12 w.r.t.
any strong fuzzy negation.

Proposition 4.37. A fuzzy implication satisfying FI6, FI7, FI10, FI11 and FI13 does not
necessarily satisfy FI12.

The fuzzy implication I5 stated in Example 4.6 satisfies FI6, FI7, FI10, FI11 and FI13.
However, for any strong fuzzy negation N we obtain

I5(N(y), N(x)) =
{

1, if (N(y))2 ≤ N(x)
1− (N(y))2 +N(x), if (N(y))2 > N(x) , x, y ∈ [0, 1].

In case that y ∈ ]0, 1[ and (N(y))2 < N(x) < N(y), I5(N(y), N(x)) = 1 while
I5(x, y) < 1. So I5 does not satisfy FI12 w.r.t. any strong fuzzy negation.

Proposition 4.38. A fuzzy implication satisfying FI6, FI8, FI9, FI10, FI11 and FI13 does
not necessarily satisfy FI12.

Example 4.12 Let a fuzzy implication I10 be represented by

I10(x, y) =

{
1, if x ≤ y
y+(x−y)

√
1−x2

x , if x > y
, x, y ∈ [0, 1].

For all x, y ∈ [0, 1],

I10(1, x) = x.
I10(x, y) = 1 iff x ≤ y.
N
′
(x) = I10(x, 0) =

√
1− x2 = ϕ−1(1 − ϕ(x)), where ϕ(x) = x2 is an auto-

morphism of the unit interval.
I10(x, x) = 1.
I10 is a continuous mapping.

So I10 satisfies FI6, FI8, FI9, FI11 and FI13. If I10 satisfies FI12 w.r.t. a strong fuzzy
negation N , then for all x ∈ [0, 1], we obtain

N(x) = I10(1, N(x)) = I10(x, 0) = N
′
(x) =

√
1− x2.

However, take x0 = 0.8 and y0 = 0.1, we obtain I10(x0, y0) = 0.65 and I10(N(y0), N(x0)) ≈
0.643. So I10 does not satisfy FI12 w.r.t. any strong fuzzy negation N .

So we considered all the possibilities that the fuzzy implication axiom FI12 can be
implied from the other 7 axioms. Moreover we stated for each independent case a counter-
example. We summary the results of this section in Table 4.4.
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Figure 4.9: Example 4.12

Table 4.4: Getting FI12 from the other axioms
FI7 ∧ FI9⇒ FI12

FI7 ∧ FI8 ∧ FI13⇒ FI12
FI6 ∧ FI7 ∧ FI8 ∧ FI10 ∧ FI11 6⇒ FI12

FI6 ∧ FI7 ∧ FI10 ∧ FI11 ∧ FI13 6⇒ FI12
FI6 ∧ FI8 ∧ FI9 ∧ FI10 ∧ FI11 ∧ FI13 6⇒ FI12

4.2.8 Getting FI13 from the Other Axioms

Proposition 4.39. A fuzzy implication I satisfying FI6, FI7, FI8, FI9, FI10, FI11 and
FI12 does not necessarily satisfy FI13.

Example 4.13 Let N be a strong fuzzy negation. Recall the R0-implication stated in
[67] which is represented by

(Imin0)N (x, y) =
{

1, if x ≤ y
max(N(x), y), if x > y

, x, y ∈ [0, 1].

(Imin0)N is the R-implication generated by the left-continuous t-norm, nilpotent mini-
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mum [23]:

(Tmin0)N (x, y) =
{

min(x, y), if y > N(x)
0, if y ≤ N(x) , x, y ∈ [0, 1].

(Imin0)N satisfies FI6, FI7, FI8, FI9, FI10, FI11 and FI12 w.r.t. N , and is right-continuous
in the second place [67] but it is not continuous.

Figure 4.10: Example 4.13

So FI13 is independent with any of the other 7 axioms.

4.3 Summary
From Sections 4.2.2, 4.2.3 and 4.2.8 we see that axioms FI7, FI8 and FI13 are quite
essential because they are totally independent from the other axioms. On the other hand,
these three axioms are really important because the combination of them can imply all
the other five axioms. From Section 4.2.6 we see that axiom FI11 is relatively essential
because only FI8 can imply it. The combination of the other six axioms cannot imply
FI11. However, none of the other axioms are dependent on FI11.
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Table 4.5: Summary of the interrelationships between the eight axioms
FI7∧ FI10∧ FI11 ∧ FI12 6⇒ FI6

FI8∧ FI9∧ FI10∧ FI11∧ FI12∧ FI13 6⇒ FI6
FI7∧ FI8⇒ FI6
FI7∧ FI9⇒ FI6
FI7∧ FI13⇒ FI6

FI6∧ FI8∧ FI9∧ FI10∧ FI11∧ FI12∧ FI13 6⇒ FI7
FI6∧ FI7∧ FI9∧ FI10∧ FI11∧ FI12∧ FI13 6⇒ FI8

FI6∧ FI7∧ FI8∧ FI10∧ FI11 6⇒ FI9
FI6∧ FI12⇒ FI9

FI7∧ FI8∧ FI12⇒ FI9
FI7∧ FI12∧ FI13⇒ FI9

FI7∧ FI10∧ FI11∧ FI12 6⇒ FI9
FI7∧ FI8∧ FI13⇒ FI9

FI6∧ FI7∧ FI10∧ FI11∧ FI13 6⇒ FI9
FI6∧ FI8∧ FI10∧ FI11∧ FI13 6⇒ FI9

FI8∧ FI10∧ FI11∧ FI12∧ FI13 6⇒ FI9
FI6⇒ FI10

FI7∧ FI9⇒ FI10
FI7∧ FI13⇒ FI10
FI7∧ FI8⇒ FI10

FI7∧ FI11∧ FI12 6⇒ FI10
FI8∧ FI9∧ FI11∧ FI12∧ FI13 6⇒ FI10

FI8⇒ FI11
FI6∧ FI7∧ FI9∧ FI10∧ FI12∧ FI13 6⇒ FI11

FI6∧ FI7∧ FI8∧ FI10∧ FI11 6⇒ FI12
FI7∧ FI9⇒ FI12

FI7∧ FI8∧ FI13⇒ FI12
FI6∧ FI7∧ FI10∧ FI11∧ FI13 6⇒ FI12

FI6∧ FI8∧ FI9∧ FI10∧ FI11∧ FI13 6⇒ FI12
FI6∧ FI7∧ FI8∧ FI9∧ FI10∧ FI11∧ FI12 6⇒ FI13

Table 4.5 summarizes the results we obtained in Sections 4.2.1-4.2.8.
Let S1 denote a subset of

A = {FI6,FI7,FI8,FI9,FI10,FI11,FI12,FI13},

and

S2 = A− S1.

Then from Table 4.5 we can judge if a fuzzy implication satisfies all the axioms in S1 then
it also satisfies the axioms of S2. For example, let

S1 = {FI7,FI9,FI11},
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then

S2 = {FI6,FI8,FI10,FI12,FI13}.

According to rows 4, 7, 18, 26 and 30 of Table 4.5,

S1 ⇒ {FI6,FI10,FI12}.

Finally we summarize all the examples in this chapter in Table 4.6, where ‘Y’ denotes
‘yes’ and ‘N’ denotes ‘no’.

Table 4.6: Summary of the examples of fuzzy implications satisfying the indicated axioms
FI6 FI7 FI8 FI9 FI10 FI11 FI12 FI13 examples
N Y N N Y Y Y N I1
N N Y Y Y Y Y Y I2
Y N Y Y Y Y Y Y I3
Y Y N Y Y Y Y Y I4
Y Y N N Y Y N Y I5
Y N Y N Y Y N Y I6
N N Y N Y Y Y Y I7
N Y N N N Y Y N I8
N N Y Y N Y Y Y I9
Y N Y Y Y Y N Y I10

Y Y Y N Y Y N N Ig
Y Y N Y Y N Y Y Ib
Y Y Y Y Y Y Y N Imin0

Y Y Y Y Y Y Y Y IL



Chapter 5

Tautologies and a Functional
Equation

In this Chapter and the next we will investigate for the three classes of fuzzy implications
S-, R- and QL- implications, as well as the other fuzzy logic operators, their properties
under different requirements in approximate reasoning.

5.1 Introduction
In [[69], Section 4], the authors analyzed some non-standard aspects in the construction
of fuzzy set theory and dealt with the derived boolean properties of fuzzy operations,
among which the iterative boolean-like laws [1] are considered as derived boolean laws
not valid in any standard fuzzy set theories. In [1], the authors studied a class of functional
equations ([[1], Definition 4.1]) with the boolean background ([1, Definition 4.2]), named
as iterative boolean-like laws which are formulated in fuzzy logic where some variables
appear several times because they come from boolean identities where no simplifications
such as the application of idempotency or distributivity, absorption, etc. have been made.
In [[1], Section 5], the authors analyzed some standard iterative boolean-like laws in fuzzy
logic such as (A ∪ A) ∩ co(A ∩ A) = ∅, A ∪ B = (A ∩ B) ∪ [(A ∪ B) ∩ co(A ∩ B)],
(A ∪ B ∪ B) ∪ (A ∩ B ∩ B) = A ∪ B, and solved the functional equations derived
from them. But only laws containing fuzzy conjunctions, fuzzy disjunctions and fuzzy
negations were considered. Since fuzzy implications are also fuzzy operations that play
an important role in fuzzy logic, we will analyze some iterative boolean-like laws with
fuzzy implications.
In classical binary logic, let ∧ denote ‘AND’ and→ denote IMPLY. Then because

(p ∧ p ∧ · · · ∧ p)︸ ︷︷ ︸
n times p

→ q ≡ p→ q, n = 1, 2, 3, · · · ,
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and→ and ∧ are residuated,

p→ (p→ · · · → (p︸ ︷︷ ︸
n times p

→ q) · · · ) ≡ p→ q, n = 1, 2, 3, · · · (5.1)

always holds. The inference scheme (5.1) means that repeating antecedents n times, the
inference will remain the same. However, this equivalence does not hold for every fuzzy
implication derived from classical binary logic. In order to judge if a fuzzy implication I
has this feature in fuzzy inference, we need to investigate if I satisfies

I(x, y) = I(x, I(x, y)), ∀x, y ∈ [0, 1]2. (5.2)

Authours of [10] have solved the functional equation (5.2) for the special case when y =
0. In this chapter we solve the functional equation (5.2) for fuzzy implications generated
from fuzzy negations, t-norms, and t-conorms, for all x, y ∈ [0, 1].

5.2 Solutions of the Functional Equation for S-, R- and
QL-implications

Now we analyze under which conditions the three classes of fuzzy implications satisfy
(5.2).

5.2.1 Solutions for S-implications
Theorem 5.1. An S-implication I generated by a t-conorm S and a fuzzy negation N
satisfies (5.2) iff the range of N is a subset of the set of idempotent elements of S.

PROOF.⇐=: We obtain by S4

I(x, I(x, y)) = S(N(x), S(N(x), y)) = S(S(N(x), N(x)), y).

If the range of N is a subset of the set of idempotent elements of S, then for all
x ∈ [0, 1], S(N(x), N(x)) = N(x) and hence I satisfies (5.2).
=⇒: By S1, for all x ∈ [0, 1], I(x, 0) = S(N(x), 0) = N(x) and

I(x, I(x, 0)) = S(N(x), S(N(x), 0)) = S(N(x), N(x)).

If I satisfies (5.2), then I(x, 0) = I(x, I(x, 0)), and hence
N(x) = S(N(x), N(x)), for all x ∈ [0, 1]. So for all y ∈ rng(N), S(y, y) =
y.

The next corollary is a strong result for the condition that N refers to a continuous fuzzy
negation in the above theorem.

Corollary 5.2. An S-implication I generated by a t-conorm S and a continuous fuzzy
negation N satisfies (5.2) iff S = SM.
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PROOF.⇐=: Straightforward.
=⇒: If N is continuous, then rng(N) = [0, 1]. According to Theorem 5.1, I
satisfies (5.2) iff the subset of the set of idempotent elements of S is [0, 1] i.e., S is
an idempotent t-conorm. Since max is the only idempotent t-conorm, S = SM.

Example 5.1 1. Consider the fuzzy negation N1b. Because the range of N1b is {0, 1}
and for every t-conorm, 0 and 1 are idempotent elements, when the S-implication I
is generated by N1b and any t-conorm, I = IM and (5.2) holds.

2. The set of the idempotent elements of the nilpotent maximum (Smax0)N0 is [0, 0.5[
∪ {1}. Consider the fuzzy negation

N(x) =

 1 x = 0
f(x) x ∈ ]0, 0.5]
0 x ∈ ]0.5, 1],

where f denotes a strictly decreasing mapping

satisfying f(0) = 0.5, f(0.5) = 0, for all x ∈ [0, 0.5]. The range of N is equal to
the set of the idempotent elements of S. So the S-implication generated by S and
N satisfies (5.2).

5.2.2 Solutions for R-implications
Theorem 5.3. A mapping I : [0, 1]2 ⇀ [0, 1] satisfies the fuzzy implication axioms FI2,
FI7, FI8, right-continuity in the second argument and (5.2) iff I is the Gödel implication
defined in Table 2.6.

PROOF. ⇐=: By definition, the Gödel implication Ig satisfies FI2, FI7, FI8, right-
continuity in the second argument and (5.2).
=⇒: Since I satisfies FI2, FI7, FI8 and right-continuity in the second argument,
according to Corollary 3.12, a left-continuous t-norm T can be generated through
equation 3.2. And if we denote an R-implication generated from T as IT , then
according to the proof of Theorem 1.14 in [24], IT = I .
We will first show that T (x, x) = x, for all x ∈ [0, 1].
Indeed, from the formula (3.2), we have for all x ∈ [0, 1],

T (x, x) = min{t ∈ [0, 1]|I(x, t) ≥ x}.

Obviously, when t ∈ [x, 1], I(x, t) = 1 ≥ x holds by FI8. Assume that there exists
a t0 ∈ [0, x[ such that I(x, t0) ≥ x. Then by FI8, I(x, I(x, t0)) = 1. Since we
have for all (x, y) ∈ [0, 1]2, I(x, y) = I(x, I(x, y)), I(x, t0) = I(x, I(x, t0)) = 1.
And by FI8, x ≤ t0. This is a contradiction with the assumption that t0 < x. So if
t
′ ∈ {t ∈ [0, 1]|I(x, t) ≥ x}, then t

′ ≥ x, i.e.,

T (x, x) = min{t ∈ [0, 1]|I(x, t) ≥ x} = x, ∀x ∈ [0, 1].

Hence, T = TM. Hence,

I(x, y) = sup{t ∈ [0, 1]|min(x, t) ≤ y}
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=
{

1 x ≤ y
y otherwise

= Ig(x, y).

Corollary 5.4. An R-implication I generated by a left-continuous t-norm T satisfies (5.2)
iff T = TM.

PROOF.⇐=: The R-implication generated by T = TM is the Gödel implication Ig and
hence it satisfies (5.2).
=⇒: According to Theorem 3.11, an R-implication I satisfying FI2, FI7, FI8 and
right-continuity in the second argument is generated by a left-continuous t-norm T .
From Theorem 5.3, if I satisfies (5.2) additionally, it is the Gödel implication Ig .
Denote TIg as the t-norm generated by Ig via (3.2) and ITIg as the R-implication
generated by TIg via equation (2.55), then according to Theorem 3.11 and its corol-
lary, Ig = ITIg i.e., Ig is generated by TIg through (2.55) where TIg is the t-norm
generated by Ig through (3.2), that is TIg = TM.

Remark 5.5. A continuous t-norm is also left-continuous. So Theorem 5.3 and its corol-
lary are strong results for R-implications generated by a left-continuous t-norm. They are
also proper for those R-implications generated by a continuous t-norm.

Remark 5.6. In [2], Theorem 1, which was first proposed by Smets and Magrez [80],
shows that a mapping I: [0, 1]2 ⇀ [0, 1] is continuous and satisfies FI2, FI7 and FI8 iff
I is conjugate with Ia, which means the fuzzy implications being conjugate with Ia are
the ones and only the ones to be continuous and to satisfy FI2, FI7 and FI8. Since TM is
conjugate only with itself, by Proposition 12 in [2], we know that Ig is also conjugate with
itself. Thus Theorem 5.3 shows that the fuzzy implications being conjugate with Ig are
the ones and only the ones to be right-continuous in the second argument and to satisfy
FI2, FI7 and FI8. Thus Theorem 5.3 is an analogous result to Theorem 1 in [2].

5.2.3 Solutions for QL-implications
According to (2.57), a QL-implication I is generated by a t-conorm S, a t-norm T and
a strong fuzzy negation N . In this section, let N denote any strong fuzzy negation. We
suppose both S and T are continuous and intend to investigate all possible combinations
of S and T and find the sufficient and necessary conditions for I to satisfy (5.2). In Table
5.1 we list all possible combinations of S and T .

Theorem 5.7. A QL-implication I generated by the t-conorm SM, a continuous t-norm T
and a strong fuzzy negation N satisfies (5.2) iff

i) T = TM or
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Table 5.1: Nine possible combinations of S and T to generate a QL-implication
S = SM S is continuous S is an ordinal sum

Archimedean
T = TM 1 4 7
T is continuous 2 5 8
Archimedean
T is an ordinal sum 3 6 9

ii) T is the ordinal sum of a family {[am, bm], Tm} where {[am, bm]} is a countable
family of non-overlapping, closed, proper subintervals of [0, 1] with each Tm being
a continuous Archimedean t-norm, and for all [am, bm], bm ≤ e, where e denotes
the equilibrium point of N .

PROOF. Here we have

(∀(x, y) ∈ [0, 1]2)(I(x, y) = max(N(x), T (x, y)))

and

I(x, I(x, y)) = max(N(x), T (x,max(N(x), T (x, y)))).

⇐=:

i) Because SM is distributive over TM, we obtain

I(x, I(x, y)) = max(N(x),min(x,max(N(x),min(x, y))))
= min(max(N(x), x),max(N(x),max(N(x),min(x, y))))
= min(max(N(x), x),max(N(x),min(x, y)))

by S4 and the idempotency of max,
= min(max(N(x), x),min(max(N(x), x),max(N(x), y))
= min(max(N(x), x),max(N(x), y))

by T4 and the idempotency of min
= max(N(x),min(x, y)) = I(x, y).

ii) Suppose T is the ordinal sum of the corresponding family {[am, bm], Tm}
with each bm ≤ e. For an arbitrary pair (x0, y0) ∈ [0, 1]2, if for all [am, bm],
(x0, y0) /∈ [am, bm]2, then according to (2.30), T (x0, y0) = min(x0, y0),
from the proof above we can see that

I(x0, y0) = I(x0, I(x0, y0)).

If on the contrary there exists an interval [am, bm] such that (x0, y0) ∈ [am, bm]2,
then since for x0 ≤ bm ≤ e, N(x0) ≥ x0 holds, we have

N(x0) ≥ x0 ≥ T (x0, y0)
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and

N(x0) ≥ x0 ≥ T (x0,max(N(x0), T (x0, y0))).

Thus

I(x0, I(x0, y0)) = N(x0) = I(x0, y0).

Hence (5.2) holds for I .

=⇒: According to Theorem 2.19, if T is a continuous t-norm, then T is either TM,
or continuous Archimedean, or the ordinal sum of a family {[am, bm], Tm}. Thus
we prove this part through proving that if T is a continuous Archimedean t-norm
or the ordinal sum of a family {[am, bm], Tm} and there exists an interval [am, bm]
such that bm > e, then (5.2) does not hold.

i) Let T be continuous Archimedean. SinceN is continuous, there always exists
an x0 ∈ ]0, 1[ such that N(x0) < x0. For y = 1, we have

I(x0, 1) = max(N(x0), x0) = x0

and

I(x0, I(x0, 1)) = max(N(x0), T (x0, x0)).

Since T is continuous Archimedean, T (x0, x0) < x0. Thus (5.2) does not
hold.

ii) Let T be the ordinal sum of a family {[am, bm], Tm} and suppose there exists
[am, bm] such that bm > e. Take y = bm and x0 ∈ ] max(am, e), bm[, then
N(x0) < e < x0. Thus according to (2.30),

I(x0, bm) = max(N(x0), T (x0, bm))

= max(N(x0), am + (bm − am)Tm(
x0 − am
bm − am

,
bm − am
bm − am

))

= max(N(x0), x0) = x0.

Since Tm is continuous Archimedean and according to (2.30),

T (x0, x0) = am + (bm − am)Tm(
x0 − am
bm − am

,
x0 − am
bm − am

)

< am + (bm − am)
x0 − am
bm − am

= x0.

Thus

I(x0, I(x0, bm)) = max(N(x0), T (x0, x0)) < x0.

Hence (5.2) does not hold.
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Remark 5.8. Theorem 5.7 treats the three possible combinations in the first column of
Table 4.1:
CASE 1: a QL-implication generated by SM and TM satisfies (5.2);
CASE 2: a QL-implication generated by SM and a continuous Archimedean T does not
satisfy (5.2);
CASE 3: a QL-implication generated by SM and an ordinal sum T satisfies (5.2) iff T
satisfies the extra condition as mentioned in Theorem 5.7.

Theorem 5.9. A QL-implication I generated by a continuous t-conorm S, the t-norm TM
and a strong fuzzy negation N satisfies (5.2) iff

i) S = SM or

ii) S is the ordinal sum of a family {[am, bm], Sm} where {[am, bm]} is a countable
family of non-overlapping, closed, proper subintervals of [0, 1] with each Sm being
a continuous Archimedean t-conorm, and for all [am, bm], am ≥ e, where e denotes
the equilibrium point of N .

PROOF. Here we have

(∀(x, y) ∈ [0, 1]2)(I(x, y) = S(N(x),min(x, y)))

and

I(x, I(x, y)) = S(N(x),min(x, S(N(x),min(x, y)))).

⇐=:

i) Straightforward from the proof of Theorem 5.7.

ii) Suppose S is the ordinal sum of the corresponding family {[am, bm], Sm}
with each am ≥ e. For an arbitrary N(x0) ∈ [0, 1], if for all [am, bm],
N(x0) /∈ [am, bm], then according to (2.48), for all y ∈ [0, 1], we have

I(x0, y) = max(N(x0),min(x0, y))

and

I(x0, I(x0, y)) = max(N(x0),min(x0,max(N(x0),min(x0, y)))).

Thus according to the proof of Theorem 5.7,

I(x0, y) = I(x0, I(x0, y)).

If on the contrary there exists [am, bm] such that N(x0) ∈ [am, bm], then we
have for all y ∈ [0, 1],

min(x0, y) ≤ x0 ≤ e ≤ am ≤ N(x0).
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a) If min(x0, y) = e, then x0 = e = N(x0) = am. Thus according to
(2.48),

I(x0, y) = S(e, e) = e

and

I(x0, I(x0, y)) = S(e,min(x0, e)) = S(e, e) = e = I(x0, y).

b) If min(x0, y) < e, then min(x0, y) < am. According to (2.48),

I(x0, y) = max(N(x0),min(x0, y)) = N(x0)

and

I(x0, I(x0, y)) = S(N(x0),min(x0, N(x0))) = S(N(x0), x0).

If x0 = e, then am = e = N(x0). Thus according to (2.48),

I(x0, I(x0, y)) = S(e, e) = e = N(x0) = I(x0, y).

If x0 < e, then x0 < am. Thus according to (2.48),

I(x0, I(x0, y)) = max(N(x0), x0) = N(x0) = I(x0, y).

Hence I satisfies (5.2). =⇒: According to Theorem 2.36, if S is a continuous t-
conorm, then S is either SM, or continuous Archimedean, or the ordinal sum of
a family {[am, bm], Sm}. Thus we prove this part through proving that if S is
continuous Archimedean or the ordinal sum of a family {[am, bm], Sm} and there
exists an interval [am, bm] such that am < e, then (5.2) does not hold.

i) Let S be continuous Archimedean. SinceN is continuous, there always exists
N(x0) ∈ ]0, 1[ such that N(x0) < x0. For y = 0, we have I(x0, 0) = N(x0)
and

I(x0, I(x0, 0)) = S(N(x0),min(x0, N(x0))) = S(N(x0), N(x0)).

Since S is continuous Archimedean, S(N(x0), N(x0)) > N(x0). Thus (5.2)
does not hold.

ii) Let S be the ordinal sum of a family {[am, bm], Sm} and suppose there ex-
ists [am, bm] such that am < e. Since N is continuous, there always exist
N(x0) ∈ ]am,min(bm, e)[ and x0 > e > N(x0). Take y = 0, since Sm is
continuous Archimedean and according to (2.48),

I(x0, I(x0, 0)) = S(N(x0),min(x0, N(x0))) = S(N(x0), N(x0))

= am + (bm − am)Sm(
N(x0)− am
bm − am

,
N(x0)− am
bm − am

)
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> am + (bm − am)
N(x0)− am
bm − am

= N(x0).

Since I(x0, 0) = N(x0), (5.2) does not hold.

Remark 5.10. Theorem 5.9 treats the three possible choices in the first row of Table 4.1:
CASE 1 a QL-implication generated by SM and TM satisfies (5.2);
CASE 4: a QL-implication generated by a continuous Archimedean S and TM does not
satisfy (5.2);
CASE 7: a QL-implication generated by an ordinal sum S and TM satisfies (5.2) iff S
satisfies some extra condition as mentioned in Theorem 5.9.

Lemma 5.11. A necessary condition for a QL-implication I generated by a continuous
Archimedean t-conorm S, a continuous t-norm T and a strong fuzzy negationN to satisfy
(5.2) is the LEM (2.26).

PROOF. Suppose there exists x0 ∈ [0, 1] such that T (x0, N(x0)) > 0, then x0 > 0 and
N(x0) > 0. Since N is strong, x0 > 0 implies N(x0) < 1. According to (2.32)
and (2.33), there exists a strictly increasing generator g and its pseudo-inverse g(−1)

such that

S(N(x0), T (x0, N(x0))) = g(−1)(g(N(x0)) + g(T (x0, N(x0)))) ={
g−1(g(N(x0)) + g(T (x0, N(x0)))) g(N(x0)) + g(T (x0, N(x0))) ∈ [0, g(1)]
1 otherwise

If S(N(x0), T (x0, N(x0))) = 1, then S(N(x0), T (x0, N(x0))) > N(x0).
If S(N(x0), T (x0, N(x0))) < 1, then

S(N(x0), T (x0, N(x0))) = g−1(g(N(x0)) + g(T (x0, N(x0)))).

Since g and g−1 are strictly increasing, T (x0, N(x0)) > 0 implies

g−1(g(N(x0)) + g(T (x0, N(x0)))) > g−1(g(N(x0))) = N(x0)
⇒ S(N(x0), T (x0, N(x0))) > N(x0).

According to (2.57), I(x0, 0) = N(x0) and

I(x0, I(x0, 0)) = S(N(x0), T (x0, N(x0))).

That is to say, I(x0, 0) < I(x0, I(x0, 0)), and hence, I does not satisfy (5.2).

Remark 5.12. According to Theorem 2.16, a continuous t-norm T satisfying
T (x,N(x)) = 0, for all x ∈ [0, 1] iff T is conjugate with the Łukasiewicz t-norm TL.
Thus Lemma 5.11 treats the case 6 of Table 4.1: a QL-implication generated by a contin-
uous Archimedean S and an ordinal sum T does not satisfy (5.2).
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Lemma 5.13. A necessary condition for a QL-implication I generated by a continuous
Archimedean t-conorm S, a continuous Archimedean t-norm T and a strong fuzzy nega-
tion N to satisfy (5.2) is S(x,N(x)) = 1, for all x ∈ [0, 1].

PROOF. Suppose there exists x0 ∈ [0, 1] such that S(x0, N(x0)) < 1, then
x0 ∈ ]0, 1[ . According to (2.16) and (2.17),

T (x0, S(N(x0), x0)) = f (−1)(f(x0) + f(S(N(x0), x0)))

=
{
f−1(f(x0) + f(S(N(x0), x0))) f(x0) + f(S(N(x0), x0)) ∈ [0, f(0)]
0 otherwise

Since f is strictly decreasing and f(1) = 0,

S(N(x0), x0) < 1
=⇒ f(S(N(x0), x0)) > 0.

If f(x0) + f(S(N(x0), x0)) ∈ [0, f(0)], then

T (x0, S(N(x0), x0))

= f−1(f(x0) + f(S(N(x0), x0)))

< f−1(f(x0)) = x0.

If

f(x0) + f(S(N(x0), x0)) ∈ ]f(0),∞],

then

T (x0, S(N(x0), x0)) = 0 < x0.

Thus T (x0, S(N(x0), x0)) < x0 always holds.
According to (2.32) and (2.33),

S(N(x0), x0) < 1 =⇒ S(N(x0), x0) = g−1(g(N(x0)) + g(x0)),

and we have g(N(x0)) + g(x0) ∈ [0, g(1)[ .
Because T (x0, S(N(x0), x0)) < x0 and g is strictly increasing,

g(T (x0, S(N(x0), x0))) < g(x0).

Thus

g(N(x0)) + g(T (x0, S(N(x0), x0))) < g(N(x0)) + g(x0)
=⇒g(N(x0)) + g(T (x0, S(N(x0), x0))) ∈ [0, g(1)[.
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Thus we obtain

S(N(x0), T (x0, S(N(x0), x0)))

= g−1(g(N(x0)) + g(T (x0, S(N(x0), x0)))).

Since g−1 is also strictly increasing and g(N(x0)) + g(x0) ∈ [0, g(1)[ ,

g−1(g(N(x0)) + g(x0)) > g−1(g(N(x0)) + g(T (x0, S(N(x0), x0))))
=⇒S(N(x0), x0) > S(N(x0), T (x0, S(N(x0), x0))).

According to (2.57), I(x0, 1) = S(N(x0), x0) and

I(x0, I(x0, 1)) = S(N(x0), T (x0, S(N(x0), x0))).

That is to say, I(x0, 1) > I(x0, I(x0, 1)), and hence, I does not satisfy (5.2).

Corollary 5.14. If a QL-implication I generated by a continuous Archimedean t-conorm
S, a continuous Archimedean t-norm T and a strong fuzzy negationN satisfies (5.2), then
neither S nor T can be strict.

PROOF. Straightforward from Lemma 5.11, Lemma 5.13, Theorem 2.16 and Theorem
2.33.

Lemma 5.15. If a QL-implication I generated by a continuous t-conorm S, a continuous
Archimedean t-norm T and a strong fuzzy negation N satisfies (5.2), then there does not
exist a countable family {[am, bm]} of non-overlapping, closed, proper subintervals of
[0, 1] such that S can be the ordinal sum of the corresponding family {[am, bm], Sm} with
each Sm being a continuous Archimedean t-norm.

PROOF. According to (2.57), take y = 1, then I(x, 1) = S(N(x), x) and

I(x, I(x, 1)) = S(N(x), T (x, S(N(x), x))).

We will prove this lemma by contraposition.
Let e denote the equilibrium point of N and suppose there exists a countable fam-
ily {[am, bm]} such that S can be the ordinal sum of the corresponding family
{[am, bm], Sm} with each Sm being a continuous Archimedean t-norm.
If for all [am, bm], [0, e] 6⊆ [am, bm], then since N is continuous, there always ex-
ists N(x0) ∈ ]0, e[ such that
N(x0) /∈ [am, bm] and x0 > e > N(x0). Thus

I(x0, 1) = S(N(x0), x0) = max(N(x0), x0) = x0.

And since T is continuous Archimedean and x0 ∈ ]e, 1[ , T (x0, x0) < x0. Thus by
(2.57) and (2.48),

I(x0, I(x0, 1)) = S(N(x0), T (x0, x0)) = max(N(x0), T (x0, x0)) < x0.
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Hence (5.2) does not hold.
If on the contrary there exists [am, bm] such that [0, e] ⊆ [am, bm], then we have
am = 0 and bm ∈ [e, 1[ . Take x1 ∈ ]bm, 1[ , then N(x1) < N(bm) ≤ bm < x1.
And since T is continuous Archimedean, T (x1, x1) < x1.
Thus by (2.57) and (2.48), we have

I(x1, 1) = S(N(x1), x1) = max(N(x1), x1) = x1,

and

I(x1, I(x1, 1)) = I(x1, x1) = S(N(x1), T (x1, x1))

=
{
am + (bm − am)Sm(N(x1)−am

bm−am , T (x1,x1)−am
bm−am ) T (x1, x1) ∈ [am, bm]

max(N(x1), T (x1, x1)) otherwise

If T (x1, x1) ∈ [am, bm], then I(x1, I(x1, 1)) ∈ [am, bm], i.e., I(x1, I(x1, 1)) <
x1.
If T (x1, x1) /∈ [am, bm], then

I(x1, I(x1, 1)) = max(N(x1), T (x1, x1)) < x1.

Therefore we always have I(x1, I(x1, 1)) < I(x1, 1). Hence (5.2) does not hold.

Remark 5.16. Lemma 5.15 treats the case 8 of Table 4.1: a QL-implication generated by
an ordinal sum S and a continuous Archimedean T does not satisfy (5.2).

Hence besides the theorems and lemmas above, there are only two combinations of S and
T to be investigated: the case 5 and the case 9. And from Corollary 5.14, we know that
for the case 5, it is necessary that both S and T are nilpotent.

Theorem 5.17. Let ϕ be an automorphism of the unit interval. A QL-implication I gen-
erated by the t-conorm (SL)ϕ, the t-norm (TL)ϕ and a strong fuzzy negation N satisfies
(5.2) iff N = (N0)ϕ.

PROOF. According to Lemma 5.11 and Lemma 5.13, I satisfies (5.2) iff for all x ∈
[0, 1], T (x,N(x)) = 0 and S(N(x), x) = 1. And according to Theorem 2.16
and Theorem 2.33, T (x,N(x)) = 0 and S(N(x), x) = 1 iff N(x) = ϕ−1(1 −
ϕ(x)).

Remark 5.18. Actually, if there exists an automorphism ϕ of the unit interval such that
the QL-implication I is generated by the t-conorm (SL)ϕ, the t-norm (TL)ϕ and the strong
fuzzy negation (N0)ϕ, then

I(x, y) = (SL)ϕ((N0)ϕ(x), (TL)ϕ(x, y))

= max(ϕ−1(1− ϕ(x)), y) = max((N0)ϕ(x), y),

i.e., I is an S-implication generated by SM and the strong fuzzy negation (N0)ϕ, and
hence according to Corollary 5.2, it satisfies (5.2).
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Theorem 5.19. Let ϕ and φ denote two different automorphisms of the unit interval. The
QL-implication I generated by (SL)ϕ, the t-norm (TL)φ and a strong fuzzy negation N
satisfies (5.2) iff N satisfies

(∀x ∈ [0, 1])(ϕ−1(1− ϕ(x)) ≤ N(x) ≤ φ−1(1− φ(x))), (5.3)

and I is expressed by

I(x, y) =

 N(x) T (x, y) = 0
y 0 < T (x, y) < ϕ−1(1− ϕ(N(x)))
1 T (x, y) ≥ ϕ−1(1− ϕ(N(x)))

. (5.4)

PROOF. Here we have for all (x, y) ∈ [0, 1]2, I(x, y) = S(N(x), T (x, y)) and

I(x, I(x, y)) = S(N(x), T (x, S(N(x), T (x, y)))). (5.5)

=⇒: Suppose that I satisfies (5.2), then according to Lemma 5.11, Lemma 5.13,
Theorem 2.16 and Theorem 2.33, we have

ϕ−1(1− ϕ(x)) ≤ N(x) ≤ φ−1(1− φ(x)).

Hence (5.3) holds. Next we will prove that I satisfy (5.4).
According to (2.57), T (x, y) = 0 implies I(x, y) = N(x). And

T (x, y) ≥ ϕ−1(1− ϕ(N(x)))

implies I(x, y) = 1. Thus in order to prove that I satisfies (5.4), we only need to
prove:

0 < T (x, y) < ϕ−1(1− ϕ(N(x)))⇒ I(x, y) = y.

Indeed, if T (x, y) < ϕ−1(1− ϕ(N(x))), then

I(x, y) = ϕ−1(ϕ(N(x)) + ϕ(T (x, y))) < 1.

If I satisfies (5.2), then I(x, I(x, y)) < 1. Thus according to (5.5), we have

I(x, I(x, y)) = ϕ−1(ϕ(N(x)) + ϕ(T (x, ϕ−1(ϕ(N(x)) + ϕ(T (x, y)))))).

Since I(x, y) = I(x, I(x, y)) and both ϕ and ϕ−1 are strictly increasing mappings,
we have

T (x, y) = T (x, ϕ−1(ϕ(N(x)) + ϕ(T (x, y)))).

Because T (x, y) > 0, T (x, y) = φ−1(φ(x) + φ(y)− 1). And

T (x, ϕ−1(ϕ(N(x)) + ϕ(T (x, y))))

= φ−1(φ(x) + φ(ϕ−1(ϕ(N(x)) + ϕ(T (x, y))))− 1).
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Since both φ and φ−1 are strictly increasing mappings, we have

y = ϕ−1(ϕ(N(x)) + ϕ(T (x, y)))
=⇒ I(x, y) = y.

Hence (5.4) holds.
⇐=: Suppose N and I satisfy (5.3) and (5.4), then we will prove that I satisfies
(5.2). According to (5.4), if T (x, y) = 0, then I(x, y) = N(x). And

I(x, I(x, y)) = I(x,N(x)) = S(N(x), T (x,N(x))).

Since N satisfies (5.3), T (x,N(x)) = 0, for all x ∈ [0, 1]. Thus

S(N(x), T (x,N(x))) = S(N(x), 0) = N(x) = I(x, y).

If T (x, y) ≥ ϕ−1(1− ϕ(N(x))), then I(x, y) = 1. Thus

I(x, I(x, y)) = I(x, 1) = S(N(x), x).

Since N satisfies (5.3), S(N(x), x) = 1 for all x ∈ [0, 1]. Thus I(x, I(x, y)) =
1 = I(x, y).
If 0 < T (x, y) < ϕ−1(1 − ϕ(N(x))), then I(x, y) = y. Thus I(x, I(x, y)) =
I(x, y). Hence I satisfies (5.2).

Remark 5.20. Corollary 5.14, Theorem 5.17 and Theorem 5.19 treat the case 5 of Ta-
ble 4.1: a QL-implication generated by a continuous Archimedean S and a continuous
Archimedean T satisfies (5.2) providing both are nilpotent and satisfy some extra condi-
tions as stated.

Theorem 5.21. Let {[am, bm]} and {[cm, dm]} denote two countable families of non-
overlapping, closed, proper subintervals of [0, 1]. And let T be a t-norm which is the
ordinal sum of the corresponding family {[am, bm], Tm} with each Tm being a continuous
Archimedean t-norm and S be a t-conorm which is the ordinal sum of the corresponding
family {[cm, dm], Sm} with each Sm being a continuous Archimedean t-conorm. Then
the QL-implication I generated by S, T and a strong fuzzy negation N satisfies (5.2) iff
for all [am, bm], bm ≤ e and for all [cm, dm], cm ≥ e, where e denotes the equilibrium
point of N .

PROOF. We will first derive some special instances of I(x, I(x, y)). According to (2.57)
and (5.5), for y = 1, we obtain I(x, 1) = S(N(x), x) and

I(x, I(x, 1)) = S(N(x), T (x, S(N(x), x))).

And for y = 0, we obtain I(x, 0) = N(x) and

I(x, I(x, 0)) = S(N(x), T (x,N(x))).

⇐=: In order to prove the ‘⇐=’ part, we will consider three cases according to the
position of x w.r.t. e:
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i) For all x < e, we have N(x) > e, x < N(x), and x < cm, for all cm. Since
for all y ∈ [0, 1], T (x, y) ≤ x < cm and

T (x, S(N(x), T (x, y))) ≤ x < cm,

according to (2.48), we have:

I(x, y) = S(N(x), T (x, y)) = max(N(x), T (x, y)) = N(x)

and

I(x, I(x, y)) = S(N(x), T (x, S(N(x), T (x, y))))
= max(N(x), T (x, S(N(x), T (x, y)))) = N(x).
⇒ I(x, y) = I(x, I(x, y)).

ii) For all x > e, we have N(x) < e, x > N(x),

(∀bm)(x > bm) and (∀cm)(N(x) < cm).

Then by (2.48) and (2.30), for all y ∈ [0, 1],

I(x, y) = max(N(x),min(x, y))

and

I(x, I(x, y)) = max(N(x),min(x,max(N(x),min(x, y)))).

Thus according to the proof of Theorem 5.7, I(x, y) = I(x, I(x, y)).

iii) For x = e, we have N(x) = e and

I(x, y) = I(e, y) = S(e, T (e, y)).

Two subcases will be considered depending now on the position of the vari-
able y:

(1) y ≤ e.
If for all [am, bm], (e, y) /∈ [am, bm]2, then according to (2.30),
T (e, y) = min(e, y) = y.
If on the contrary there exists an interval [am, bm] such that (e, y) ∈
[am, bm]2, then bm = e. According to (2.30),

T (e, y) = am + (e− am)Tm(
e− am
e− am

,
y − am
e− am

) = y.

That is to say, T (e, y) = y, for all y ≤ e. Thus I(x, y) = S(e, y).
And if for all [cm, dm], (e, y) /∈ [cm, dm]2, then according to (2.48),
S(e, y) = max(e, y) = e.
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If on the contrary there exists an interval [cm, dm] such that (e, y) ∈
[cm, dm]2, then cm = y = e. According to (2.48),

S(e, y) = e+ (dm − e)Sm(
e− e
dm − e

,
y − e
dm − e

) = y = e.

That is to say, I(x, y) = I(e, y) = e, for all y ≤ e.
(2) y > e.

In this case y > bm. Thus according to (2.30), T (e, y) = min(e, y) = e
and hence

I(x, y) = S(e, T (e, y)) = S(e, e).

Now we look at the position of cm (≥ e) w.r.t. e.
If cm > e, then according to (2.44), S(e, e) = max(e, e) = e.
If cm = e, then according to (2.48),

S(e, e) = e+ (dm − e)Sm(
e− e
dm − e

,
e− e
dm − e

) = e.

That is to say, I(e, y) = e, for all y > e. Hence I(e, y) = e, for all
y ∈ [0, 1]. Therefore we have

I(x, I(x, y)) = I(e, I(e, y)) = S(e, T (e, I(e, y))) = S(e, T (e, e)).

Finally we consider the position of the upper bound bm (≤ e) w.r.t. e.
If bm < e, then according to (2.30), T (e, e) = min(e, e) = e.
If bm = e, then according to (2.30),

T (e, e) = am + (e− am)Tm(
e− am
e− am

,
e− am
e− am

) = e.

Thus S(e, T (e, e)) = S(e, e) = e, according to the proof above. There-
fore

I(x, I(x, y)) = e = I(e, y) = I(x, y).

Hence we can conclude that I satisfies (5.2).
=⇒: The reverse implication (‘=⇒’) will be proved by contraposition.

i) First assume there exists an interval [am, bm] such that bm > e.
If for all [cm, dm], cm > N(bm), then since N is continuous, there exists
an x0 such that N(x0) ∈ ]N(bm),min(cm, e)[ and x0 ∈ ] max(am, e), bm[ .
Thus

I(x0, 1) = S(N(x0), x0) = max(N(x0), x0) = x0
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and

I(x0, I(x0, 1)) = S(N(x0), T (x0, S(N(x0), x0)))
= S(N(x0), T (x0, x0))
= max(N(x0), T (x0, x0)).

Since Tm is continuous Archimedean and according to (2.30),

T (x0, x0) = am + (bm − am)Tm(
x0 − am
bm − am

,
x0 − am
bm − am

) < x0.

Thus I(x0, I(x0, 1)) < x0. Hence (5.2) does not hold.
If on the contrary there exists an interval [cm, dm] such that cm ≤ N(bm),
then cm < e. Since N is continuous, there exists an x1 such that N(x1) ∈
]cm,min(dm, e)[ and x1 ∈ ]bm, 1[ . Thus

I(x1, I(x1, 0)) = S(N(x1), T (x1, N(x1)))
= S(N(x1),min(x1, N(x1)))
= S(N(x1), N(x1)).

Since Sm is continuous Archimedean and according to (2.48),

S(N(x1), N(x1))

= cm + (dm − cm)Sm(
N(x1)− cm
dm − cm

,
N(x1)− cm
dm − cm

)

> N(x1).

And

I(x1, 0) = N(x1) < I(x1, I(x1, 0)).

Thus (5.2) does not hold.
So we have proved that if there exists an interval [am, bm] such that bm > e,
then (5.2) does not hold.

ii) Second assume that there exists an interval [cm, dm] such that cm < e and for
all [am, bm], bm ≤ e.
SinceN is continuous, there exists an x0 such thatN(x0) ∈ ]cm,min(dm, e)[
and x0 > bm. Then I(x0, 0) = N(x0) and according to (2.30),

I(x0, I(x0, 0)) = S(N(x0), T (x0, N(x0)))
= S(N(x0),min(x0, N(x0))) = S(N(x0), N(x0))

Since Sm is continuous Archimedean and according to (2.48),

S(N(x0), N(x0))
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= cm + (dm − cm)Sm(
N(x0)− cm
dm − cm

,
N(x0)− cm
dm − cm

)

> N(x0).

Thus (5.2) does not hold.

Remark 5.22. Theorem 5.21 treats the case 9 of Table 4.1: a QL-implication generated
by an ordinal sum S and an ordinal sum T satisfies (5.2) providing both satisfy some extra
conditions as stated.

5.3 Summary
In this chapter, we studied an iterative boolean-like law in which fuzzy implications are
concerned, namely whether I(x, I(x, y)) = I(x, y) holds for all (x, y) ∈ [0, 1]2 or not
where I denotes a fuzzy implication derived from classical logic, which is generated by
t-norms, t-conorms and fuzzy negations.
In Section 5.2 we gave sufficient and necessary conditions for an S-implication generated
by any t-conorm and any fuzzy negation, an R-implication generated by a left continuous
t-norm, and for a QL-implication generated by a continuous t-conorm, a continuous t-
norm and a strong fuzzy negation to satisfy (5.2).
The standard t-norm TM and the standard t-conorm SM play important roles in the results
of the investigated equation (5.2). An S-implication generated by a t-conorm S and a
continuous fuzzy negation N satisfies equation (5.2) iff S = SM . And an R-implication
generated by a left-continuous t-norm T satisfies equation (5.2) iff T = TM . But for a
QL-implication generated by a fuzzy negation N , a t-norm T and a t-conorm S to satisfy
equation (5.2), it is sufficient but not necessary for T to be TM and S to be SM . Instead,
the equilibrium point of the strong fuzzy negation plays an important role in the solution
of (5.2) for a QL-implication.



Chapter 6

Robustness of Fuzzy Logic
Operators in Fuzzy

Rule-based Systems

6.1 Introduction
Let X be a linguistic variable on the universe of discourse U , Ai and A

′

i be fuzzy sets
on U , Y be a linguistic variable on the universe of discourse V , Bi and B

′

i be fuzzy sets
on V , i = 1, 2, · · · , n, n ∈ N, respectively. In the approximate reasoning process of a
fuzzy rule-based system, the ith single-input-single-output (SISO) IF-THEN rule in the
rule base is represented as:

IF X is Ai THEN Y is Bi

and the input fuzzy set is A
′

i. We obtain the output fuzzy set B
′

i through the generalized
fuzzy modus ponens:

IF X is Ai THEN Y is Bi
X is A

′

i

Y is B
′

i ,

This scheme is realized through using Zadeh’s compositional rule of inference [100]

(∀y ∈ V )(B
′

i(y) = sup
x∈U

T (A
′

i(x), R(Ai(x), Bi(y)))), (6.1)

where T denotes a t-norm and R denotes a fuzzy relation on U × V . If A
′

i are singletons,
i.e.,

A
′

i(x) =
{

1, if x = x0

0, if x 6= x0,
,
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then (6.1) becomes

(∀y ∈ V )(B
′

i(y) = R(Ai(x0), Bi(y))). (6.2)

We then use

(∀y ∈ V )(B
′
(y) = AggiB

′

i(y)) (6.3)

to obtain the final output fuzzy set B on V , where Agg denotes an aggregation operator.
In a conjunction-based system,R is a t-norm andAgg is a t-conorm, and in an implication-
based system, R is a fuzzy implication and Agg is a t-norm. Many authors considered
the robustness of the approximate reasoning process of a fuzzy system (eg.,[12], [13],
[46]), namely the capability to against the perturbations on the input and output variables
or on the definition of the rules. In [46], the authors defined a point-wise sensitivity, a
maximum δ-sensitivity and an average δ-sensitivity to estimate the robustness of the fuzzy
connectives. They considered the perturbations of the input values as bounded values and
mainly analyzed the maximum perturbations of the output value. We intend to regard the
perturbations of the input values not only as bounded unknown values, but also as values
being uniform distributions.
If the input fuzzy sets are singletons and there are small perturbations on the input vari-
able, i.e., there are small perturbations on the first variable of R in (6.2), then we require
that B

′

i in (6.2) does not change much. If there are small perturbations on B
′

i then we
require that B

′
obtained in (6.3) does not change much. If there are small perturbations

on the definition of the rules, i.e., there are small perturbations on the two variables of
R in (6.1), then we require that B

′

i in (6.1) does not change much. That is our motiva-
tion to investigate the capability of a t-norm, a t-conorm or a fuzzy implication against
perturbations either on its first variable or on its second variable or on both variables.
We investigate in Sections 6.2 and 6.3 the robustness of the most important continuous
t-norms, t-conorms and fuzzy implications against unknown bounded perturbation and
uniformly distributed perturbation, respectively.

6.2 Robustness of Fuzzy Logic Operators against Bounded
Unknown Perturbation

6.2.1 Robustness of Fuzzy Logic Operators against Bounded Unknown
Perturbation on One Variable

Definition 6.1. Let F be a [0, 1]2 ⇀ [0, 1] mapping, and δ be a real number that takes
values in [0, 1

2 ] which is the maximal perturbation. Then the supreme aberration of F at
point (x, y) ∈ [0, 1]2 against the bounded unknown perturbation on x is defined as:

SAB1(F, δ, x, y) = sup
x′∈[max(x−δ,0),min(x+δ,1)]

|F (x
′
, y)− F (x, y)|, (6.4)
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and the supreme aberration of F at point (x, y) ∈ [0, 1]2 against the bounded unknown
perturbation on y is defined as:

SAB2(F, δ, x, y) = sup
y′∈[max(y−δ,0),min(y+δ,1)]

|F (x, y
′
)− F (x, y)|.

Moreover, the robustness measure of F against the bounded unknown perturbation on the
first variable of F is defined as:

RMB1(F, δ) =
∫ 1

0

∫ 1

0

SAB1(F, δ, x, y)dxdy, (6.5)

and the robustness measure of F against the bounded unknown perturbation on the second
variable of F is defined as:

RMB2(F, δ) =
∫ 1

0

∫ 1

0

SAB2(F, δ, x, y)dxdy. (6.6)

Now we investigate the robustness measure against the bounded unknown perturba-
tion on the first variable of the three most important continuous t-norms: the minimum
TM, the product TP and the Łukasiewicz t-norm TL. Assume the perturbation bound is
always δ ∈ [0, 1

2 ]. In this case δ ≤ 1− δ.

1. The supreme aberration of TM at (x, y) ∈ [0, 1]2 against the bounded unknown
perturbation on x is:

If x ∈ [0, δ] then

SAB1(TM, δ, x, y) =


y if y ∈ [0, x]
x if y ∈ ]x, 2x]
y − x if y ∈ ]2x, x+ δ]
δ if y ∈ ]x+ δ, 1]

If x ∈ ]δ, 1] then

SAB1(TM, δ, x, y) =

 0 if y ∈ [0, x− δ]
y − x+ δ if y ∈ ]x− δ, x]
δ if y ∈ ]x, 1]

So

If x ∈ [0, δ] then∫ 1

0

SAB1(TM, δ, x, y)dx

=
∫ x

0

ydy +
∫ 2x

x

xdy +
∫ x+δ

2x

(y − x)dy +
∫ 1

x+δ

δdy

= x2 − xδ + δ − 1
2
δ2.
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If x ∈ ]δ, 1] then ∫ x

x−δ
y − x+ δdy +

∫ 1

x

δdy

= −xδ + δ +
1
2
δ2.

So the robustness measure of TM against the bounded unknown perturbation on the
first variable of TM is:

RMB1(TM, δ)

=
∫ δ

0

x2 − xδ + δ − 1
2
δ2dx+

∫ 1

δ

−xδ + δ +
1
2
δ2dx

= −2
3
δ3 +

1
2
δ2 +

1
2
δ.

2. The supreme aberration of TP at (x, y) ∈ [0, 1]2 against the bounded unknown
perturbation on x is:

RMB1(TP, δ)(∀x ∈ [0, 1])(SAB1(TP, δ, x, y) = δy).

So the robustness measure of TP against the bounded unknown perturbation on the
first variable of TP is:∫ 1

0

∫ 1

0

SAB1(TP, δ, x, y)dxdy =
∫ 1

0

δydy =
1
2
δ.

3. The supreme aberration of TL at (x, y) ∈ [0, 1]2 against the bounded unknown per-
turbation on x is:

If x ∈ [0, 1− δ] then

SAB1(TL, δ, x, y) =

 0 if y ∈ [0, 1− x− δ]
x+ y + δ − 1 if y ∈ ]1− x− δ, 1− x]
δ if y ∈ ]1− x, 1]

If x ∈ ]1− δ, 1] then

SAB1(TL, δ, x, y) =


y if y ∈ [0, 1− x]
1− x if y ∈ ]1− x, 2− 2x]
x+ y − 1 if y ∈ ]2− 2x, 1− x+ δ]
δ if y ∈ ]1− x+ δ, 1]

So
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If x ∈ [0, 1− δ] then∫ 1

0

SAB1(TL, δ, x, y)dx

=
∫ 1−x

1−x−δ
(x+ y + δ − 1)dy +

∫ 1

1−x
δdy

= δx+
1
2
δ2.

If x ∈ ]1− δ, 1] then∫ 1

0

SAB1(TL, δ, x, y)dx

=
∫ 1−x

0

ydy +
∫ 2−2x

1−x
(1− x)dy +

∫ 1−x+δ

2−2x

(x+ y − 1)dy +
∫ 1

1−x+δ

δdy

= x2 − 2x+ δx− 1
2
δ2 + 1.

So the robustness measure of TL against the bounded unknown perturbation on the
first variable of TL is:

RMB1(TL, δ)

=
∫ 1−δ

0

(δx+
1
2
δ2)dx+

∫ 1

1−δ
(x2 − 2x+ δx− 1

2
δ2 + 1)dx

=
−2
3
δ3 +

1
2
δ2 +

1
2
δ.

We summarize the robustness measure of the three most important continuous t-norms
against the bounded unknown perturbation on the first variable of them in Table 6.1
Because − 2

3δ
3 + 1

2δ
2 > 0, we obtain

Table 6.1: Robustness measure of the three most important continuous t-norms against the bounded
unknown perturbation on the first variable of them

RMB1(TM, δ) = − 2
3δ

3 + 1
2δ

2 + 1
2δ

RMB1(TP, δ) = 1
2δ

RMB1(TL, δ) = − 2
3δ

3 + 1
2δ

2 + 1
2δ

(∀δ ∈]0,
1
2

])(RMB1(TP, δ) < RMB1(TM, δ) = RMB1(TL, δ)).

This means that among the three t-norms TM, TP and TL, TP has the best robustness
against unknown bounded perturbations on its first variable. TM and TL have the same
robustness against unknown bounded perturbations on their first variable.
For the robustness measure of a t-norm against the bounded unknown perturbation on the
second variable we have the following theorem.
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Theorem 6.2. Let T be a t-norm. Then

(∀δ ∈ [0,
1
2

])(RMB2(T, δ) = RMB1(T, δ)).

PROOF. Because T is communicative, we obtain

RMB2(T, δ) =
∫ 1

0

∫ 1

0

sup
y′∈[max(y−δ,0),min(y+δ,1)]

|T (x, y
′
)− T (x, y)|dxdy

=
∫ 1

0

∫ 1

0

sup
y′∈[max(y−δ,0),min(y+δ,1)]

|T (y
′
, x)− T (y, x)|dxdy

= RMB1(T, δ).

According to Theorem 6.2 we obtain

(∀δ ∈]0,
1
2

])(RMB2(TP, δ) < RMB2(TM, δ) = RMB2(TL, δ)).

This means that among the three t-norms TM, TP and TL, TP has the best robustness
against unknown bounded perturbations on its second variable. TM and TL have the same
robustness against unknown bounded perturbations on their second variable.
For the robustness measure of a t-conorm against the bounded unknown perturbation on
the first or second variable we have the following theorem.

Theorem 6.3. Let T be a t-norm and S be the dual t-conorm of T w.r.t. the standard
fuzzy negation N0. Then

(∀δ ∈ [0,
1
2

])(RMB1(S, δ) = RMB1(T, δ)),

and

(∀δ ∈ [0,
1
2

])(RMB2(S, δ) = RMB2(T, δ)).

PROOF.

RMB1(S, δ) =
∫ 1

0

∫ 1

0

sup
x′∈[max(x−δ,0),min(x+δ,1)]

|S(x
′
, y)− S(x, y)|dxdy

=
∫ 1

0

∫ 1

0

sup
x′∈[max(x−δ,0),min(x+δ,1)]

|1− T (1− x
′
, 1− y)− (1− T (1− x, 1− y))|dxdy

=
∫ 1

0

∫ 1

0

sup
x′∈[max(x−δ,0),min(x+δ,1)]

|T (1− x
′
, 1− y)− T (1− x, 1− y)|dxdy
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=
∫ 0

1

∫ 0

1

sup
1−x′∈[max(1−x−δ,0),min(1−x+δ,1)]

|T (x
′
, y)− T (x, y)|d(1− x)d(1− y)

=
∫ 1

0

∫ 1

0

sup
x′∈[max(x−δ,0),min(x+δ,1)]

|T (x
′
, y)− T (x, y)|dxdy

= RMB1(T, δ).

The proof for RMB2(S, δ) = RMB2(T, δ) is similar.

According to Theorem 6.3, we obtain

(∀δ ∈]0,
1
2

])(RMB1(SP, δ) < RMB1(SM, δ) = RMB1(SL, δ)),

and

(∀δ ∈]0,
1
2

])(RMB2(RMB2(SP, δ) < SM, δ) = RMB2(SL, δ)).

This means that among the three t-conorms SM, SP and SL, SP has the best robustness
against unknown bounded perturbations on its first or second variable, while SM and SL
have the same robustness against unknown bounded perturbations on their first or second
variable.
S-implications generated by N0 and the aforementioned t-norms are all continuous while
R-implications generated by TM and TP are not continuous. The R-implication generated
by TL is the same as the S-implication generated by N0 and SL. We now investigate the
robustness measure of an S-implication against the bounded unknown perturbation on the
first or second variable. We have the following theorem.

Theorem 6.4. Let I be an S-implication generated by a t-conorm S and the standard
fuzzy negation N0. Then

(∀δ ∈ [0,
1
2

])(RMB1(I, δ) = RMB1(S, δ)),

and

(∀δ ∈ [0,
1
2

])(RMB2(I, δ) = RMB2(S, δ)).

PROOF.

RMB1(I, δ) =
∫ 1

0

∫ 1

0

sup
x′∈[max(x−δ,0),min(x+δ,1)]

|I(x
′
, y)− I(x, y)|dxdy

=
∫ 1

0

∫ 1

0

sup
x′∈[max(x−δ,0),min(x+δ,1)]

|S(1− x
′
, y)− S(1− x, y)|dxdy

=
∫ 1

0

∫ 0

1

sup
1−x′∈[max(1−x−δ,0),min(1−x+δ,1)]

|S(x
′
, y)− S(x, y)|d(1− x)dy
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=
∫ 1

0

∫ 1

0

sup
x′∈[max(x−δ,0),min(x+δ,1)]

|S(x
′
, y)− S(x, y)|dxdy

= RMB1(S, δ).

The proof for RMB2(I, δ) = RMB2(S, δ) is similar.

According to Theorem 6.4, we obtain

(∀δ ∈]0,
1
2

])(RMB1(Ir, δ) < RMB1(Ib, δ) = RMB1(IL, δ)),

and

(∀δ ∈]0,
1
2

])(RMB2(Ir, δ) < RMB2(Ib, δ) = RMB2(IL, δ)).

This means that among the three S-implications Ib, Ir and IL, Ir has the best robustness
against unknown bounded perturbations on its first or second variable. Ib and IL have the
same robustness against unknown bounded perturbations on their first or second variable.

6.2.2 Robustness of Fuzzy Logic Operators against Bounded Unknown
Perturbation on Two Variables

Definition 6.5. Let F be a [0, 1]2 ⇀ [0, 1] mapping, and δ be a real number that takes
values in [0, 1

2 ] which is the maximal perturbation. Then the supreme aberration of F at
point (x, y) ∈ [0, 1]2 against the bounded unknown perturbation is defined as:

SAB1,2(F, δ, x, y) = sup
x′∈[max(x−δ,0),min(x+δ,1)]

sup
y′∈[max(y−δ,0),min(y+δ,1)]

|F (x
′
, y
′
)− F (x, y)|. (6.7)

Moreover, the robustness measure of F against the bounded unknown perturbation is
defined as:

RMB1,2(F, δ) =
∫ 1

0

∫ 1

0

SAB1,2(F, δ, x, y)dxdy. (6.8)

For the robustness measure of t-norms against the unknown bounded perturbation we
first have the following theorem.

Theorem 6.6. Let T denote a continuous t-norm. Then

(∀δ ∈ [0,
1
2

])(∀(x, y) ∈ [0, 1]2)(SAB1,2(T, δ, x, y) = δ) (6.9)

iff T = TM .
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PROOF. ⇐=: First we have

SAB1,2(T, δ, x, y) = max(T (x, y)− T (max(x− δ, 0),max(y − δ, 0)),

T (min(x+ δ, 1),min(y + δ, 1))− T (x, y)). (6.10)

In (6.10) if T = TM then we obtain

min(x, y)−min(max(x− δ, 0),max(y − δ, 0))

=
{

min(x, y)(< δ), if x− δ < 0 or y − δ < 0
δ, otherwise

and

min(min(x+ δ, 1),min(y + δ, 1))−min(x, y)

=
{

max(1− x, 1− y)(< δ), if x+ δ > 1 and y + δ > 1
δ, otherwise .

Because δ ∈ [0, 1
2 ], if (x, y) satisfies x − δ < 0 or y − δ < 0, then x + δ ≤ 1 or

y + δ ≤ 1. Similarly, if (x, y) satisfies x + δ > 1 and y + δ > 1, then x − δ > 0
and y − δ > 0. Thus (6.10) is always equal to δ, i.e.,

(∀δ ∈ [0,
1
2

])(∀((x, y) ∈ [0, 1]2)(SAB1,2(TM , δ, x, y) = δ).

=⇒: We have always

SAB1,2(T, δ, 0, 1) = δ

SAB1,2(T, δ, 0, 0) = T (δ, δ)

SAB1,2(T, δ, 1, 1) = 1− T (δ, δ).

Recall that a continuous t-norm is either TM or a continuous Archimedean t-norm
or an ordinal sum of the family {[am, bm], Tm} where {[am, bm]} is a countable
family of non-overlapping, closed, proper subintervals of [0, 1] and Tm is a con-
tinuous Archimedean t-norm associated with each [am, bm] (see Theorem 2.19 in
Chapter 2).
If T is Archimedean, then

(∀δ ∈ [0,
1
2

])(T (δ, δ) < δ),

and

1− T (1− δ, 1− δ) > 1− (1− δ) = δ.

So

SAB1,2(T, δ, 0, 1, ) 6= RMuk
T (0, 0, δ) 6= RMuk

T (1, 1, δ).
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Thus ∃(x, y) ∈ [0, 1]2 such that SAB1,2(T, δ, x, y) 6= δ, for all δ ∈]0, 1
2 ].

If T is the ordinal sum of the family {[am, bm], Tm}, then there at least exists one
subinterval [a, b] of [0, 1], such that

(∀(x, y) ∈ [a, b]2)(T (x, y) = a+ (b− a)TA(
x− a
b− a

,
y − a
b− a

)),

where TA denotes a continuous Archimedean t-norm. Because δ ∈ [0, 1
2 ], 1− δ ∈

[0, 5, 1]. So ∀[a, b] ⊂ [0, 1], there exists a δ ∈ [0, 1
2 ] such that δ ∈]a, b[ or 1 − δ ∈

]a, b[. Thus SAB1,2(T, δ, 0, 0) < δ or SAB1,2(T, δ, 1, 1) > δ. So

SAB1,2(T, δ, 0, 1) 6= SAB1,2(T, δ, 0, 0)

or

SAB1,2(T, δ, 0, 1) 6= SAB1,2(T, δ, 1, 1).

Thus there exists (x, y) ∈ [0, 1]2 that SAB1,2(T, δ, x, y) 6= δ, for all δ ∈ [0, 1
2 ].

Hence if (6.9) holds, then T = TM .

From Theorem 6.6, we obtain

(∀δ ∈ [0,
1
2

])(RMB1,2(TM , δ) = δ).

We use Matlab to calculate RMB1,2(T, δ) for δ ∈ [0, 1
2 ], where T = TM , T = Tp and

T = TL, and illustrate the result in Figure 6.1. We see that

(∀δ ∈ [0,
1
2

])(RMB1,2(TM , δ) ≤ RMB1,2(TP , δ) ≤ RMB1,2(TL, δ)).

This means that among the three t-norms TM, TP and TL, TM has the best robustness
against unknown bounded perturbations on its two variables, while TL has the worst ro-
bustness against unknown bounded perturbations on its two variables.
For the robustness measure of a t-conorm against the bounded unknown perturbation we
have the following theorem.

Theorem 6.7. Let T be a t-norm and S be the dual t-conorm of T w.r.t. the standard
fuzzy negation N0. Then

(∀δ ∈ [0,
1
2

])(RMB1,2(S, δ) = RMB1,2(T, δ)).

PROOF.

RMB1,2(S, δ) =
∫ 1

0

∫ 1

0

sup
x′∈[max(x−δ,0),min(x+δ,1)]

sup
y′∈[max(y−δ,0),min(y+δ,1)]
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Figure 6.1: Robustness of t-norms against unknown bounded perturbation
x-axis: δ, y-axis: RMB1,2(T, δ)

|S(x
′
, y
′
)− S(x, y)|dxdy

=
∫ 1

0

∫ 1

0

sup
x′∈[max(x−δ,0),min(x+δ,1)]

sup
y′∈[max(y−δ,0),min(y+δ,1)]

|1− T (1− x
′
, 1− y

′
)− (1− T (1− x, 1− y))|dxdy

=
∫ 1

0

∫ 1

0

sup
x′∈[max(x−δ,0),min(x+δ,1)]

sup
y′∈[max(y−δ,0),min(y+δ,1)]

|T (1− x
′
, 1− y

′
)− T (1− x, 1− y)|dxdy

=
∫ 0

1

∫ 0

1

sup
1−x′∈[max(1−x−δ,0),min(1−x+δ,1)]

sup
1−y′∈[max(1−y−δ,0),min(1−y+δ,1)]

|T (x
′
, y
′
)− T (x, y)|d(1− x)d(1− y)

=
∫ 1

0

∫ 1

0

sup
x′∈[max(x−δ,0),min(x+δ,1)]

sup
y′∈[max(y−δ,0),min(y+δ,1)]

|T (x
′
, y
′
)− T (x, y)|dxdy
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= RMB1,2(T, δ).

According to Theorem 6.7 we obtain

(∀δ ∈ [0,
1
2

])(RMB1,2(SM , δ) ≤ RMB1,2(SP , δ) ≤ RMB1,2(SL, δ)).

This means that among the three t-conorms SM, SP and SL, SM has the best robustness
against unknown bounded perturbations on its two variables, while SL has the worst ro-
bustness against unknown bounded perturbations on its two variables.
For the robustness measure of an S-implication against the bounded unknown perturba-
tion we have the following theorem.

Theorem 6.8. Let I be an S-implication generated by a t-conorm S and the standard
fuzzy negation N0. Then

(∀δ ∈ [0,
1
2

])(RMB1,2(I, δ) = RMB1,2(S, δ)).

PROOF.

RMB1,2(I, δ) =
∫ 1

0

∫ 1

0

sup
x′∈[max(x−δ,0),min(x+δ,1)]

sup
y′∈[max(y−δ,0),min(y+δ,1)]

|I(x
′
, y
′
)− I(x, y)|dxdy

=
∫ 1

0

∫ 1

0

sup
x′∈[max(x−δ,0),min(x+δ,1)]

sup
y′∈[max(y−δ,0),min(y+δ,1)]

|S(1− x
′
, y
′
)− S(1− x, y)|dxdy

=
∫ 0

1

∫ 1

0

sup
1−x′∈[max(1−x−δ,0),min(1+x+δ,1)]

sup
y′∈[max(y−δ,0),min(y+δ,1)]

|S(x
′
, y
′
)− S(x, y)|d(1− x)dy

=
∫ 1

0

∫ 1

0

sup
x′∈[max(x−δ,0),min(x+δ,1)]

sup
y′∈[max(y−δ,0),min(y+δ,1)]

|S(x
′
, y
′
)− S(x, y)|dxdy

= RMB1,2(S, δ).

According to Theorem 6.8 we obtain

(∀δ ∈ [0,
1
2

])(RMB1,2(Ib, δ) ≤ RMB1,2(Ir, δ) ≤ RMB1,2(IL, δ)).

This means that among the three S-implications Ib, Ir and IL, Ib has the best robustness
against unknown bounded perturbations on its two variables, while IL has the worst ro-
bustness against unknown bounded perturbations on its two variables.
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6.3 Robustness of Fuzzy Logic Operators against Uni-
formly Distributed Perturbation

6.3.1 Robustness of Fuzzy Logic Operators against Uniformly Dis-
tributed Perturbation on One Variable

Definition 6.9. Let F be a [0, 1]2 ⇀ [0, 1] mapping, and δ be a real number that takes
values in [0, 1

2 ] which is the maximal perturbation. Then an average aberration of F at
point (x, y) ∈ [0, 1]2 against the uniformly distributed perturbation on x is defined as:

AAU1(F, δ, x, y) =
1

min(x+ δ, 1)−max(x− δ, 0)

∫ min(x+δ,1)

max(x−δ,0)

|F (x
′
, y)−F (x, y)|dx

′
,

(6.11)
and an average aberration of F at point (x, y) ∈ [0, 1]2 against the uniformly distributed
perturbation on y is defined as:

AAU2(F, δ, x, y) =
1

min(y + δ, 1)−max(y − δ, 0)

∫ min(y+δ,1)

max(y−δ,0)

|F (x, y
′
)− F (x, y)|dy

′
.

Moreover, a robustness measure of F against the uniformly distributed perturbation on
the first variable of F is defined as:

RMU1(F, δ) =
∫ 1

0

∫ 1

0

AAU1(F, δ, x, y)dxdy, (6.12)

and a robustness measure of F against the uniformly distributed perturbation on the sec-
ond variable of F is defined as:

RMU2(F, δ) =
∫ 1

0

∫ 1

0

AAU2(F, δ, x, y)dxdy. (6.13)

Here we investigate the robustness measure against the uniformly distributed pertur-
bation on the first variable of the three most important continuous t-norms: the minimum
TM, the product TP and the Łukasiewicz t-norm TL. Assume the perturbation bound is
always δ ∈ [0, 1

2 ]. In this case δ ≤ 1− δ.

1. The average aberration of TM at (x, y) ∈ [0, 1]2 against the uniformly distributed
perturbation on x is:

If x ∈ [0, δ] then

AAU1(TM, δ, x, y) =



0 if y ∈ [0, x− δ]
1
2δ ( 1

2x
2 + 1

2y
2 − xy + xδ − yδ + 1

2δ
2)

if y ∈ ]x− δ, x]
1
2δ (− 1

2x
2 − 1

2y
2 + xy − δx+ δy + 1

2δ
2)

if y ∈ [x, x+ δ]
δ
2 if y ∈ ]x+ δ, 1].
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If x ∈ ]δ, 1− δ[ then

AAU1(TM, δ, x, y) =


y2

2(x+δ) if y ∈ [0, x]
1
x+δ (− 1

2y
2 + xy − xδ + yδ) if y ∈ ]x, x+ δ]

1
x+δ ( 1

2x
2 + 1

2δ
2) if y ∈ ]x+ δ, 1].

If x ∈ [1− δ, 1] then

AAU1(TM, δ, x, y) =


0 if y ∈ [0, x− δ]

1
1−x+δ ( 1

2x
2 + 1

2y
2 − xy − xδ + yδ + 1

2δ
2)

if y ∈ ]x− δ, x]
1

1−x+δ ( 1
2x

2 − 1
2y

2 − x+ y + 1
2δ

2)
if y ∈ ]x, 1]

.

So the robustness measure of TM against the uniformly distributed perturbation on
the first variable of TM is:

RMU1(TM, δ) =
∫ 1

0

∫ 1

0

AAU1(TM, δ, x, y)dxdy

= −δ3 − 1
4
δ2 + (ln2)δ2 +

1
4
δ.

2. The average aberration of TP at (x, y) ∈ [0, 1]2 against the uniformly distributed
perturbation on x is:

AAU1(TP,x,y, δ) =


y
x+δ ( 1

2x
2 + 1

2δ
2) if x ∈ [0, δ]

y
2δ if x ∈ ]δ, 1− δ[
y

1−x+δ ( 1
2x

2 − x+ 1
2δ

2 + 1
2 ) if x ∈ [1− δ, 1]

.

So the robustness measure of TP against the uniformly distributed perturbation on
the first variable of TP is:

RMU1(TP, δ) =
∫ 1

0

∫ 1

0

AAU1(TM, δ, x, y)dxdy

= −3
4
δ2 + (ln2)δ2 +

1
4
δ.

3. The average aberration of TL at (x, y) ∈ [0, 1]2 against the uniformly distributed
perturbation on x is:

If x ∈ [0, δ] then

AAU1(TL, δ, x, y) =



0 if y ∈ [0, 1− x− δ]
1
x+δ ( 1

2x
2 + 1

2y
2 + xy − x− y + δx+ δy + 1

2δ
2

−δ + 1
2 )

if y ∈ ]1− x− δ, 1− x]
1
x+δ ( 1

2x
2 − 1

2y
2 + y + 1

2δ
2 − 1

2 )
if y ∈ ]1− x, 1

.
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If x ∈ [δ, 1− δ] then

AAU1(TL, δ, x, y) =



0 if y ∈ [0, 1− x− δ]
1
2δ ( 1

2x
2 + 1

2y
2 + xy − x− y + δx+ δy + 1

2δ
2

−δ + 1
2 )

if y ∈ ]1− x− δ, 1− x]
1
2δ (− 1

2x
2 − 1

2y
2 + x+ y − xy + δx+ δy − δ − 1

2 )
if y ∈ ]1− x, 1− x+ δ]

δ
2 if y ∈ ]1− x+ δ, 1]

.

If x ∈ ]1− δ, 1] then

AAU1(TL, δ, x, y) =

{
1

2(1−x+δ)y
2 if y ∈ [0, 1− x]

1
2(1−x+δ) ((1− x)2 + δ2) if y ∈ ]1− x, 1] .

So the robustness measure of TL against the uniformly distributed perturbation on
the first variable of TL is:

RMU1(TL, δ) =
∫ 1

0

∫ 1

0

AAU1(TL, δ, x, y)dxdy

=
1
6

(ln2)δ3 − 3
4
δ2 + (ln2)δ2 +

1
4
δ.

We summarize the robustness measure of the three most important continuous t-norms
against the uniformly distributed perturbation on the first variable of them in Table 6.2.
Because δ ≤ 1

2 , RMU1(TP, δ) ≤ RMU1(TM, δ). Moreover, because 1 + 1
6 (ln2) > 1

2 ,

Table 6.2: Robustness measure of the three most important continuous t-norms against the uni-
formly distributed perturbation on the first variable of them

RMU1(TM, δ) = −δ3 − 1
4δ

2 + (ln2)δ2 + 1
4δ

RMU1(TP, δ) = − 3
4δ

2 + (ln2)δ2 + 1
4δ

RMU1(TL, δ) = 1
6 (ln2)δ3 − 3

4δ
2 + (ln2)δ2 + 1

4δ

RMU1(TM, δ) < RMU1(TL, δ). Thus we obtain

(∀δ ∈ ]0,
1
2

[)(RMB1(TM, δ) < RMB1(TP, δ) < RMB1(TL, δ)).

This means that among the three t-norms TM, TP and TL, TP has the best robustness
against uniformly distributed perturbations on its first variable, while TL has the worst
robustness against uniformly distributed perturbations on its first variable.
For the robustness measure of a t-norm against the uniformly distributed perturbation on
the second variable we have the following theorem.
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Theorem 6.10. Let T be a t-norm. Then

(∀δ ∈ [0,
1
2

])(RMU2(T, δ) = RMU1(T, δ)).

PROOF. The proof is similar to that of Theorem 6.2.

According to Theorem 6.10 we obtain

(∀δ ∈]0,
1
2

[)(RMU2(TP, δ) < RMU2(TM, δ) < RMU2(TL, δ)).

This means that among the three t-norms TM, TP and TL, TP has the best robustness
against uniformly distributed perturbations on its second variable, while TL has the worst
robustness against uniformly distributed perturbations on its second variable.
For the robustness measure of a t-conorm against the uniformly distributed perturbation
on the first or second variable we have the following theorem.

Theorem 6.11. Let T be a t-norm and S be the dual t-conorm of T w.r.t. the standard
fuzzy negation N0. Then

(∀δ ∈ [0,
1
2

])(RMU1(S, δ) = RMU1(T, δ)),

and

(∀δ ∈ [0,
1
2

])(RMU2(S, δ) = RMU2(T, δ)).

PROOF. The proof is similar to that of Theorem 6.3.

According to Theorem 6.11, we obtain

(∀δ ∈]0,
1
2

[)(RMU1(SP, δ) < RMU1(SM, δ) < RMU1(SL, δ)),

and

(∀δ ∈]0,
1
2

[)(RMU2(SP, δ) < RMU2(SM, δ) < RMU2(SL, δ)).

This means that among the three t-conorms SM, SP and SL, SP has the best robustness
against uniformly distributed perturbations on its first or second variable, while SL has the
worst robustness against uniformly distributed perturbations on its first or second variable.
For the robustness measure of an S-implication against the uniformly distributed pertur-
bation on the first or second variable we have the following theorem.

Theorem 6.12. Let I be an S-implication generated by a t-conorm S and the standard
fuzzy negation N0. Then

(∀δ ∈ [0,
1
2

])(RMU1(I, δ) = RMU1(S, δ)),

and

(∀δ ∈ [0,
1
2

])(RMU2(I, δ) = RMU2(S, δ)).
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PROOF. The proof is similar to that of Theorem 6.4.

According to Theorem 6.12, we obtain

(∀δ ∈]0,
1
2

[)(RMU1(Ir, δ) < RMU1(Ib, δ) < RMU1(IL, δ)),

and

(∀δ ∈]0,
1
2

[)(RMU2(Ir, δ) < RMU2(Ib, δ) < RMU2(IL, δ)).

This means that among the three S-implications Ib, Ir and IL, Ir has the best robustness
against uniformly distributed perturbations on its first or second variable, while IL has the
worst robustness against uniformly distributed perturbations on its first or second variable.

6.3.2 Robustness of Fuzzy Logic Operators against Uniformly Dis-
tributed Perturbation on Two Variables

Definition 6.13. Let F be a [0, 1]2 ⇀ [0, 1] mapping, and δ be a real number that takes
values in [0, 1

2 ] which is the maximal perturbation. Then an average aberration of F at
point (x, y) ∈ [0, 1]2 against the uniformly distributed perturbation is defined as:

AAU1,2(F, δ, x, y) =
1

min(x+ δ, 1)−max(x− δ, 0)
1

min(y + δ, 1)−max(y − δ, 0)∫ min(x+δ,1)

max(x−δ,0)

∫ min(y+δ,1)

max(y−δ,0)

|F (x
′
, y
′
)− F (x, y)|dx

′
dy
′
. (6.14)

Moreover, a robustness measure of F against the uniformly distributed perturbation of F
is defined as:

RMU1,2(F, δ) =
∫ 1

0

∫ 1

0

AAU1,2(F, δ, x, y)dxdy, (6.15)

First we use Matlab to calculate RMB1,2(T, δ) for δ ∈ [0, 1
2 ], where T = TM ,

T = Tp and T = TL, and illustrate the result in Figure 6.2. We see that

(∀δ ∈ [0,
1
2

])(RMB1,2(TL, δ) ≤ RMB1,2(TP , δ) ≤ RMB1,2(TM , δ)).

This means that among the three t-norms TM, TP and TL, TL has the best robustness
against uniformly distributed perturbations on its two variables, while TM has the worst
robustness against uniformly distributed perturbations on its two variables.
For the robustness measure of a t-conorm against the uniformly distributed perturbation
we have the following theorem.
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Figure 6.2: Robustness of t-norms against uniformly distributed perturbation
x-axis: δ, y-axis: RMB1,2(T, δ)

Theorem 6.14. Let T be a t-norm and S be the dual t-conorm of T w.r.t. the standard
fuzzy negation N0. Then

(∀δ ∈ [0,
1
2

])(RMU1,2(S, δ) = RMU1,2(T, δ)).

PROOF. The proof is similar to that of Theorem 6.7.

According to Theorem 6.14, we obtain

(∀δ ∈ [0,
1
2

])(RMU1,2(SL, δ) ≤ RMU1,2(SP, δ) ≤ RMU1,2(SM, δ)).

This means that among the three t-conorms SM, SP and SL, SL has the best robustness
against uniformly distributed perturbations on its two variables, while SM has the worst
robustness against uniformly distributed perturbations on its two variables.
For the robustness measure of an S-implication against the uniformly distributed pertur-
bation we have the following theorem.
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Theorem 6.15. Let I be an S-implication generated by a t-conorm S and the standard
fuzzy negation N0. Then

(∀δ ∈ [0,
1
2

])(RMU1,2(I, δ) = RMU1,2(S, δ)).

PROOF. The proof is similar to that of Theorem 6.8.

According to Theorem 6.15, we obtain

(∀δ ∈ [0,
1
2

])(RMU1,2(IL, δ) ≤ RMU1,2(Ir, δ) ≤ RMU1,2(Ib, δ)).

This means that among the three S-implications Ib, Ir and IL, IL has the best robustness
against uniformly distributed perturbations on its two variables, while Ib has the worst
robustness against uniformly distributed perturbations on its two variables.

6.4 Summary
In this chapter we defined robustness measures for a t-norm, a t-conorm and a fuzzy im-
plication against the unknown bounded perturbation and against the uniformly distributed
perturbation on the first or second variables or on both variables, respectively, and have
compared the robustness of the most important continuous t-norms, t-conorms and fuzzy
implications. The minimum TM, the maximum SM and the Kleene-Dienes implication Ib
have the best robustness against the unknown bounded perturbation on the first variable,
the second variable and both variables among the investigated t-norms, t-conorms and
fuzzy implications, respectively. The product TP, the probabilistic sum SP and the Re-
ichenbach implication Ir have the best robustness against the uniformly distributed per-
turbation on the first or second variable among the investigated t-norms, t-conorms and
fuzzy implications, respectively. The Łukasiewicz t-norm TL, the Łukasiewicz t-conorm
SL and the Łukasiewicz implication have the best robustness against the uniformly dis-
tributed perturbation on both variables among the investigated t-norms, t-conorms and
fuzzy implications, respectively.





Chapter 7

Fuzzy Adjunctions and Fuzzy
Morphological Operations

Based on Fuzzy Implications

7.1 Introduction

Mathematical morphology is an important theory developed in image processing to ana-
lyze the geometric features of n-dimensional images. These images can be binary images
which are represented as subsets of Rn or gray-scale images which are represented as
Rn ⇀ [0, 1] mappings [62]. morphological operations are the basic tools in mathematical
morphology. They transform an image A by using another image B which is called the
structuring element. Dilation and erosion are the two basic morphological operations. An-
other two important morphological operations, closing and opening, can be constructed
via dilation and erosion. If a dilation and an erosion form an adjunction in a complete
lattice, then a group of properties of them will be fulfilled, as well for the closing and
opening constructed by them [33].
When extending binary morphology to gray-scale morphology, fuzzy sets in Rn are
proper representations of gray-scale images. Fuzzy dilation and fuzzy erosion can be
defined via a conjunction on the unit interval and a fuzzy implication, respectively [65].
Moreover, a fuzzy implication can be defined as a fuzzy adjunction in the complete lattice
F(Rn), which is the set of all fuzzy sets on Rn. In this chapter, we analyze for different
fuzzy dilations defined by a conjunction on the unit interval and fuzzy erosions defined
by a fuzzy implication when they form adjunctions defined by a fuzzy implication. In
Section 7.2 we give some basic notions and results of conjunctions on the unit interval
and fuzzy implications. And then we define fuzzy morphological operations via conjunc-
tions on the unit interval and fuzzy implications. In Section 7.3 we extend a classical
adjunction to a fuzzy adjunction which is generated by a fuzzy implication. We analyze
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under which conditions a fuzzy dilation which is generated by a conjunction on the unit
interval and a fuzzy erosion which is generated by a fuzzy implication form an adjunction
and then outline the importance of the adjointness between the conjunctions on the unit
interval and the fuzzy implications.

7.2 Fuzzy Morphological Operations Defined by Conjunc-
tions on the Unit Interval and Fuzzy Implications

7.2.1 Conjunctions on the Unit Interval and Fuzzy Implications
Based on the definitions of a conjunction on the unit interval and a fuzzy implication given
in Chapter 2, we have further the following definitions.

Definition 7.1. A conjunction on the unit interval C and a fuzzy implication I are called
adjoint if

(∀(x, y, z) ∈ [0, 1]3)(C(x, z) ≤ y ⇔ z ≤ I(x, y)). (7.1)

According to Definition 7.1 we can define a fuzzy implication I via a conjunction on
the unit interval C by

(∀(x, y) ∈ [0, 1]2)(I(x, y) = sup{t ∈ [0, 1]|C(x, t) ≤ y}). (7.2)

And we define a conjunction on the unit interval C via a fuzzy implication I by

(∀(x, y) ∈ [0, 1]2)(C(x, y) = inf{t ∈ [0, 1]|I(x, t) ≥ y}). (7.3)

Theorem 7.2. ([29], Proposition 5.4.2) Let C be a conjunction on the unit interval and I
be a fuzzy implication defined by (7.2). Then C and I are adjoint iff C is left-continuous
w.r.t. the second variable.

According to the proof of Theorem 7.2, we have the following corollary.

Corollary 7.3. Let I be a fuzzy implication and C be a conjunction on the unit interval
defined by (7.3). Then I and C are adjoint iff I is right-continuous w.r.t. the second
variable.

From Theorem 7.2 and Corollary 7.3, we obtain the following corollaries.

Corollary 7.4. ([29], Corollary 5.4.1) Let C be a conjunction on the unit interval. If C is
left-continuous w.r.t. the second variable, then (7.2) becomes

(∀(x, y) ∈ [0, 1]2)(I(x, y) = max{t ∈ [0, 1]|C(x, t) ≤ y}). (7.4)

Corollary 7.5. Let I be a fuzzy implication. If I is right-continuous w.r.t. the second
variable, then (7.3) becomes

(∀(x, y) ∈ [0, 1]2)(C(x, y) = min{t ∈ [0, 1]|I(x, t) ≥ y}). (7.5)
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We will see later that adjointness of a conjunction on the unit interval and a fuzzy
implication plays an important role in defining a fuzzy dilation and a fuzzy erosion which
can form a fuzzy adjunction in F(Rn).

7.2.2 Fuzzy Morphological Operations
We define binary morphological operations according to [74].

Definition 7.6. Let A, B ⊆ Rn. The binary dilation D(A,B) is defined by

D(A,B) = {y ∈ Rn|Ty(B) ∩A 6= ∅}.

And the binary erosion E(A,B) is defined by

E(A,B) = {y ∈ Rn|Ty(B) ⊆ A},

where Ty(B) = {x ∈ Rn|x− y ∈ B}.

Define for all x ∈ Rn, −B(x) = B(−x). A binary closing C(A,B) is defined by

C(A,B) = E(D(A,B),−B).

And a binary opening O(A,B) is defined by

O(A,B) = D(E(A,B),−B),

where D and E are binary dilation and binary erosion, respectively.
When extending binary morphology to gray-scale morphology, fuzzy sets in Rn are
proper representations of gray-scale images. Using a conjunction on the unit interval to
express the intersection of two fuzzy sets and a fuzzy implication to express the fuzzy set
inclusion, we can fuzzify the binary dilation and the binary erosion into a fuzzy dilation
and a fuzzy erosion.

Definition 7.7. ([65]) Let A, B ∈ F(Rn) and let C be a conjunction on the unit interval
and I be a fuzzy implication. The fuzzy dilation DC(A,B) is defined by

(∀y ∈ Rn)(DC(A,B)(y) = sup
x∈Rn

C(B(x− y), A(x)))

and the fuzzy erosion EI(A,B) is defined by

(∀y ∈ Rn)(EI(A,B)(y) = inf
x∈Rn

I(B(x− y), A(x))).

Observe that according to [62] and [65], several fuzzy approaches to gray-scale mor-
phology are embedded in the approach stated in Definition 7.7. For example, the approach
of fuzzy set inclusion of Zadeh uses the Zadeh implication to define a fuzzy erosion via
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Definition 7.7. The approach of fuzzy set inclusion of Sinha and Dougherty uses the gen-
eralized Łukasiewicz implication to define a fuzzy erosion via Definition 7.7. However
both of the aforementioned approaches use conjunctions on the unit interval generated
by (∀(x, y) ∈ [0, 1]2)(C(x, y) = N(I(x,N(y)))), where N is a strong fuzzy negation
and I = IZ or I = Iλ to define the fuzzy dilation. In the next section, we will see that
it is more proper to define the conjunction on the unit interval C to be adjoint with the
implication I .
Similar to the case in binary morphology, a fuzzy closing CC,I(A,B) is defined by

CC,I(A,B) = EI(DC(A,B),−B)

and a opening OC,I(A,B) is defined by

OC,I(A,B) = DC(EI(A,B),−B),

where DC and EI are fuzzy dilation and binary erosion respectively.

7.3 Fuzzy I-Adjunctions in F(Rn)

7.3.1 Classical Adjunctions and Fuzzy Adjunctions
In this chapter we discuss adjunctions in a complete lattice. Recall that a lattice (L,�) is
a poset such that any two unary elements L1, L2 ∈ L have a supremum and an infimum.
A complete lattice (L,�) is a lattice such that any subset of L has a supremum and an
infimum in L. First we define the classical adjunctions.

Definition 7.8. [33] Let δ and ε be two operations on a complete lattice (L,�). The pair
(δ, ε) is an adjunction in L iff

(∀(L1, L2) ∈ L2)(δ(L1) � L2 ⇔ L1 � ε(L2)).

Define the ordering A ⊆ B ⇔ (∀x ∈ Rn)(A(x) ≤ B(x)) resulting in the complete
lattice (F(Rn),⊆). For any A, B ∈ F(Rn), let δ(A) = DC(A,B) which is a fuzzy
dilation on A by means of B and ε(A) = EI(A,−B) which is a fuzzy erosion on A by
means of −B. If (δ, ε) is a proper adjunction in F(Rn), then the fuzzy dilation DC , the
fuzzy erosion EI and the fuzzy closing and fuzzy opening defined by them will fulfill the
properties below:

(1) ε(
⋂
j∈J Aj) =

⋂
j∈J ε(Aj)

(2) δ(
⋃
j∈J Aj) =

⋃
j∈J δ(Aj)

(3) A � ε(δ(A))
(4) δ(ε(A)) � A
(5) ε(δ(ε(A))) = ε(A)
(6) δ(ε(δ(A))) = δ(A)
(7) ε(A) =

⋃
{B ∈ L|δ(B) � A},

⋃
modeled by sup
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(8) δ(A) =
⋂
{B ∈ L|ε(B) � A},

⋂
modeled by inf

Properties (1) and (2) state that ε is an algebraic erosion on L and δ is an algebraic dilation
on L, respectively. Properties (3) and (4) state that εδ is extensive and δε is restrictive,
respectively. Properties (5) and (6) state that both εδ and δε are idempotent. Properties
(7) and (8) state that one operator from a given adjunction can be generated by the other
one [62].
Authors of [62] defined a fuzzy adjunction by a fuzzy implication I , which extends the
properties of classical adjunctions. The fuzzy implication I needs to fulfill the ordering
principle.

Definition 7.9. Let I be a fuzzy implication that satisfies the ordering principle. More-
over, let δ and ε be two F(Rn) → F(Rn) mappings. Then the pair (δ, ε) is a fuzzy
I-adjunction in F(Rn) iff

(∀(A1, A2) ∈ F(Rn)×F(Rn)( inf
x∈Rn

I(δ(A1)(x), A2(x)) = inf
x∈Rn

I(A1(x), ε(A2)(x)))

Let C be a conjunction on the unit interval, I and I
′

be two fuzzy implications. Next
theorem and propositions will state when (δ, ε) is a fuzzy I-adjunction, where δ(A) =
DC(A,B) and ε(A) = EI′ (A,−B).

Theorem 7.10. Let C be a conjunction on the unit interval and I be a fuzzy implication.
Moreover, let δ(A) = DC(A,B) and ε(A) = EI(A,−B). Then (δ, ε) is a fuzzy IZ-
adjunction iff C and I are adjoint, where IZ is the Zadeh implication.

Proof. According to Definition 7.7, we have

(∀y ∈ Rn)(δ(A1)(y) = sup
x∈Rn

C(B(x− y), A1(x)))

and

(∀y ∈ Rn)(ε(A2)(y) = inf
x∈Rn

I(B(y − x), A2(x))).

According to Definition 7.9, (δ, ε) is a fuzzy IZ-adjunction, which means that

(∀x ∈ Rn)(δ(A1(x)) ≤ A2(x))⇔ (∀x ∈ Rn)(A1(x) ≤ ε(A2(x))).

Because (δ, ε) is a fuzzy IZ-adjunction, we have

(∀y ∈ Rn)( sup
x∈Rn

C(B(x− y), A1(x)) ≤ A2(y))

⇔ (∀y ∈ Rn)(A1(y) ≤ inf
x∈Rn

I(B(y − x), A2(x))), i.e.,

(∀(x, y) ∈ Rn × Rn)(C(B(x− y), A1(x)) ≤ A2(y))
⇔ (∀(x, y) ∈ Rn × Rn)(A1(y) ≤ I(B(y − x), A2(x))), i.e.,
(∀(x, y) ∈ Rn × Rn)(C(B(x− y), A1(x)) ≤ A2(y))
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⇔ (∀(x, y) ∈ Rn × Rn)(A1(x) ≤ I(B(x− y), A2(y)))

which is equivalent to

(∀(a, b, c) ∈ [0, 1]3)(C(a, b) ≤ c⇔ b ≤ I(a, c)),

which means that C and I are adjoint. �

Lemma 7.11. ([29]) Let f be a [0, 1] ⇀ [0, 1] mapping and (ai)i∈I an arbitrary family
in [0, 1]. Then the following statements hold:

• if f is left-continuous and decreasing then: infi∈I f(ai) = f(supi∈I ai);

• if f is left-continuous and increasing then: supi∈I f(ai) = f(supi∈I ai);

• if f is right-continuous and decreasing then: supi∈I f(ai) = f(infi∈I ai);

• if f is right-continuous and increasing then: infi∈I f(ai) = f(infi∈I ai).

Proposition 7.12. Let C be an associative conjunction on the unit interval being left-
continuous w.r.t. the second variable and I be a fuzzy implication which is left-continuous
w.r.t. the first variable and right-continuous w.r.t. the second variable and that satisfies
the ordering principle. Moreover, let δ(A) = DC(A,B) and ε(A) = EI(A,−B). Then
(δ, ε) is a fuzzy I-adjunction if C and I are adjoint.

Proof.

I(C(a, b), c) = max{t|C(C(a, b), t) ≤ c}.

Because C and I are adjoint,

C(a, C(b, t)) ≤ c⇔ C(b, t) ≤ I(a, c).

So

I(b, I(a, c)) = max{t|C(b, t) ≤ I(a, c)}
= max{t|C(b, t) ≤ max{s|C(a, s) ≤ c}}.

Since C is associative, we have

I(b, I(a, c)) = max{t|C(a, C(b, t)) ≤ c}
= max{t|C(C(a, b), t)) ≤ c}
= I(C(a, b), c).

Thus for all A1, A2, B ∈ F(Rn), we get by applying the above formula:

inf
y∈Rn

inf
x∈Rn

I(C(B(x− y), A1(x)), A2(y))
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= inf
y∈Rn

inf
x∈Rn

I(A1(x), I(B(x− y), A2(y))),

or equivalently,
inf
y∈Rn

inf
x∈Rn

I(C(B(x− y), A1(x)), A2(y))

= inf
y∈Rn

inf
x∈Rn

I(A1(y), I(B(y − x), A2(x))).

Since I is left-continuous w.r.t. the first variable and right-continuous w.r.t. the
second variable, according to Lemma 7.11, we have

inf
y∈Rn

I( sup
x∈Rn

C(B(x− y), A1(x)), A2(y))

= inf
y∈Rn

I(A1(y), inf
x∈Rn

I(B(y − x), A2(x)))

⇔ inf
y∈Rn

I(δ(A1)(y), A2(y)) = inf
y∈Rn

I(A1(y), ε(A2)(y)).

Thus according to Definition 7.9, (δ, ε) is an I-adjunction. �

Proposition 7.13. Let C be a conjunction on the unit interval, I be a fuzzy implication
being left-continuous w.r.t. the first variable and right-continuous w.r.t. the second vari-
able and which satisfies the ordering principle, and I

′
a fuzzy implication. Moreover, let

δ(A) = DC(A,B) and ε(A) = EI′ (A,−B). If (δ, ε) is a fuzzy I-adjunction, then C and
I
′

are adjoint.

Proof. If (δ, ε) is a fuzzy I-adjunction, then for all A1, A2, B ∈ F(Rn),

inf
y∈Rn

I(δ(A1)(y), A2(y)) = inf
y∈Rn

I(A1(y), ε(A2)(y)),

or equivalently,
inf
y∈Rn

I( sup
x∈Rn

C(B(x− y), A1(x)), A2(y))

= inf
y∈Rn

I(A1(y), inf
x∈Rn

I
′
(B(y − x), A2(x))).

Since I is left-continuous w.r.t. the first variable and right-continuous w.r.t. the
second variable, according to Lemma 7.11 we have

inf
y∈Rn

inf
x∈Rn

I(C(B(x− y), A1(x)), A2(y))

= inf
y∈Rn

inf
x∈Rn

I(A1(y), I
′
(B(y − x), A2(x))),

or equivalently,
inf
y∈Rn

inf
x∈Rn

I(C(B(x− y), A1(x)), A2(y))
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= inf
y∈Rn

inf
x∈Rn

I(A1(x), I
′
(B(x− y), A2(y))).

Thus we have

(∀(a, b, c) ∈ [0, 1]3)(I(C(a, b), c) = I(b, I
′
(a, c))),

and hence, taking into account that I satisfies the ordering principle, we get:

(∀(a, b, c) ∈ [0, 1]3)(C(a, b) ≤ c⇔ b ≤ I
′
(a, c)).

Hence C and I
′

are adjoint. �

Thus we can see that in the framework of fuzzy adjunctions, it is very important for a
conjunction on the unit interval C and a fuzzy implication I to be adjoint. Let us take a
closer look at this adjointness.

7.3.2 Adjointness between Conjunctions on the Unit Interval and
Fuzzy Implications

For R-implications generated by left-continuous t-norms, the following theorem and corol-
lary hold.

Theorem 7.14. ([24], Theorem 1.14) A [0, 1]2 ⇀ [0, 1] mapping I is an R-implication
generated by a left-continuous t-norm via (2.55) iff it has increasing second partial map-
pings, satisfies the exchange principle and the ordering principle and it is right-continuous
w.r.t. the second variable.

Corollary 7.15. ([2], Corollary 10) A [0, 1]2 ⇀ [0, 1] mapping T is a left-continuous
t-norm iff T can be represented by

T (x, y) = inf{t ∈ [0, 1]|I(x, t) ≥ y} (7.6)

for some [0, 1]2 ⇀ [0, 1] mapping I which has increasing second partial mappings, satis-
fies the exchange principle and the ordering principle and it is right-continuous w.r.t. the
second variable.

We see from Corollary 7.15 that we cannot always generate a left-continuous t-norm
from a fuzzy implication. For example, we cannot generate a t-norm from an S-implication
which is not an R-implication. Using the Reichenbach implication Ir in (7.3), we have

inf{t ∈ [0, 1]|Ir(x, t) ≥ y}
= inf{t ∈ [0, 1]|1− x+ xt ≥ y}

= max(
x+ y − 1

x
, 0),

which is not a t-norm, because of the lack of commutativity.
Nevertheless, the corollary following the next theorem shows that we can generate con-
junctions on the unit interval with fuzzy implications which are not only R-implications.
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Theorem 7.16. A [0, 1]2 ⇀ [0, 1] mapping I is a fuzzy implication being right-continuous
w.r.t. the second variable and satisfies

(∀x ∈ [0, 1])(I(1, x) = 1⇔ x = 1) (7.7)

iff I is generated by a conjunction on the unit interval C via ((7.2)), where C is left-
continuous w.r.t. the second variable and satisfies

(∀x ∈ [0, 1])(C(1, x) = 0⇔ x = 0). (7.8)

Proof. To prove the if-part, assume 0 ≤ x1 < x2 ≤ 1. Then according to Corollary 7.4,

(∀y ∈ [0, 1])(I(x1, y) = max{t|C(x1, t) ≤ y}),

and

(∀y ∈ [0, 1])(I(x2, y) = max{t|C(x2, t) ≤ y}).

Because C has increasing first partial mappings, then

(∀t ∈ [0, 1])(C(x2, t) ≤ y ⇒ C(x1, t) ≤ y).

Thus max{t|C(x2, t) ≤ y} ∈ {t|C(x1, t) ≤ y}. Therefore

max{t|C(x2, t) ≤ y} ≤ max{t|C(x1, t) ≤ y},

i.e., I(x2, y) ≤ I(x1, y). Hence I has decreasing first partial mappings.
Now assume 0 ≤ y1 < y2 ≤ 1. Then

(∀x ∈ [0, 1])(I(x, y1) = max{t|C(x, t) ≤ y1}),

and

(∀x ∈ [0, 1])(I(x, y2) = max{t|C(x, t) ≤ y2}).

We have

(∀t ∈ [0, 1])(C(x, t) ≤ y1 ⇒ C(x, t) ≤ y2).

Thus max{t|C(x, t) ≤ y1} ∈ {t|C(x, t) ≤ y2}. Therefore

max{t|C(x, t) ≤ y1} ≤ max{t|C(x, t) ≤ y2},

i.e., I(x, y1) ≤ I(x, y2). Hence I has increasing second partial mappings.
Now we will verify the boundary conditions for I . We obtain:

I(0, 0) = max{t|C(0, t) = 0} = 1,
I(0, 1) = max{t|C(0, t) ≤ 1} = 1,
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I(1, 1) = max{t|C(1, t) ≤ 1} = 1.

Moreover, because C satisfies (7.8), we get I(1, 0) = max{t|C(1, t) = 0} = 0.
Therefore I is a fuzzy implication. Because C is left-continuous w.r.t. the second
variable, according to Theorem 7.2, C and I are adjoint. Thus we have

C(x, y) ≤ z ⇔ y ≤ I(x, z).

Hence I can be represented by (7.4). Therefore according to Corollary 7.3, I is
right-continuous w.r.t. the second variable. If I(1, x) = max{t|C(1, t) ≤ x} = 1,
then C(1, 1) ≤ x, which implies that x = 1. If x = 1, then we already know
I(1, 1) = 1. Thus I(1, x) = 1 iff x = 1.
Hence I is a fuzzy implication being right-continuous w.r.t. the second variable and
satisfies (7.7).
To prove the ‘only if’ part, define a [0, 1]2 ⇀ [0, 1] mapping C by (7.3). Assume
0 ≤ x1 < x2 ≤ 1. Then

(∀y ∈ [0, 1])(C(x1, y) = min{t|I(x1, t) ≥ y}),

and

(∀y ∈ [0, 1])(C(x2, y) = min{t|I(x2, t) ≥ y}).

Because I has decreasing first partial mappings, then

(∀t ∈ [0, 1])(I(x2, t) ≥ y ⇒ I(x1, t) ≥ y).

Thus min{t|I(x2, t) ≥ y} ∈ {t|I(x1, t) ≥ y}. Therefore

min{t|I(x2, t) ≥ y} ≥ min{t|I(x1, t) ≥ y},

i.e., C(x2, y) ≥ C(x1, y). Hence C has increasing first partial mappings.
Now assume 0 ≤ y1 < y2 ≤ 1. Then

(∀x ∈ [0, 1])(C(x, y1) = min{t|I(x, t) ≥ y1}),

and

(∀x ∈ [0, 1])(C(x, y2) = min{t|I(x, t) ≥ y2}).

We obtain

(∀t ∈ [0, 1])(I(x, t) ≥ y2 ⇒ I(x, t) ≥ y1).

Thus min{t|I(x, t) ≥ y2} ∈ {t|I(x, t) ≥ y1}. Therefore

min{t|I(x, t) ≥ y2} ≥ min{t|I(x, t) ≥ y1}
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i.e., C(x, y2) ≥ C(x, y1). Hence C has increasing second partial mappings.
Now we will consider the boundary conditions of C. We obtain:

C(0, 0) = min{t|I(0, t) ≥ 0} = 0,
C(0, 1) = min{t|I(0, t) = 1} = 0,
C(1, 0) = min{t|I(1, t) ≥ 0} = 0.

Moreover, because I satisfies (7.7), we get C(1, 1) = min{t|I(1, t) = 1} = 1.
Therefore C is a conjunction on the unit interval. Because I is left-continuous w.r.t.
the second variable, according to Corollary 7.3, C and I are adjoint. Thus we have

C(x, y) ≤ z ⇔ y ≤ I(x, z).

Hence I can be represented by (7.5). Therefore according to Corollary 7.2, C is
left-continuous w.r.t. the second variable.
If C(1, x) = min{t|I(1, t) ≥ x} = 0, then I(1, 0) ≥ x, which implies that x = 0.
If x = 0, then we already know C(1, 0) = 0. Thus C(1, x) = 0 iff x = 0.
Hence C is a conjunction on the unit interval being left-continuous w.r.t. the second
variable and satisfying (7.8). �

From the proof of Theorem 7.16, we have the next corollary.

Corollary 7.17. A [0, 1]2 ⇀ [0, 1] mapping C is a conjunction on the unit interval being
left-continuous w.r.t. the second variable and satisfying condition (7.8) iff C is generated
by a fuzzy implication I via (7.3), where I is right-continuous w.r.t. the second variable
and satisfies (7.7).

Below we give several examples of adjoint couples consisting of right-continuous
non-R-implications given in Chapter 2 (Sections 2.5-2.6) and the conjunctions on the unit
interval generated by them via 7.2.

Example 7.1 (i) Observe that S-implications always fulfill (7.7). Consider the Kleene-
Dienes implication Ib(x, y) = max(1 − x, y) which is an S-implication generated
by the t-conorm SM and the standard fuzzy negation, and the Reichenbach impli-
cation Ir(x, y) = 1− x+ xy which is an S-implication generated by the t-conorm
SP. Ib satisfies

(∀(x, y) ∈ [0, 1]2)(Ib(x, y) = 1⇔ x = 0 or y = 1),

and Ir satisfies

(∀(x, y) ∈ [0, 1]2)(Ir(x, y) = 1⇔ x = 0 or y = 1).

Thus Ib and Ir are not residuated with any left-continuous t-norm but they are
right-continuous w.r.t. the second variable. Then

CIb(x, y) = inf{t ∈ [0, 1]|Ib(x, t) ≥ y} =
{

0, if x ≤ y
y, if x > y
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and

CIr (x, y) = inf{t ∈ [0, 1]|Ir(x, t) ≥ y} =
{

max(x+y−1
x , 0), if x ≥ 0

0, if x = 0
.

Ib and Ir are right continuous non R-implications that are adjoint to the conjunc-
tions on the unit interval CIb generated by Ib and CIr generated by Ir, respectively.

(ii) A f -generated implication If also fulfills (7.7). Moreover If satisfies

(∀(x, y) ∈ [0, 1]2)(If (x, y) = 1⇔ x = 0 or y = 1).

Thus If is not residuated to any left-continuous t-norm. Because both f and
f (−1) are continuous mappings, If is continuous w.r.t. the second variable. Then

CIf (x, y) = inf{t ∈ [0, 1]|If (x, t) ≥ y} =
{
f (−1)( f(y)

x ), if x > 0
0, if x = 0

. If is a

right continuous non R-implication that is adjoint to the conjunctions on the unit
interval CIf generated by If .

(iii) Recall the two aforementioned λ-functions.

(iii,1) If λn(x) = 1− xn (n ≥ 1), then

Iλn(x, y) = min(λn(x) + λn(1− y), 1)
= min(1− xn + 1− (1− y)n, 1)
= min(2− xn − (1− y)n, 1).

Thus

CIλn (x, y) = inf{t|min(2− xn − (1− t)n, 1) ≥ y}

= max(1− (2− xn − y)
1
n , 0).

(iii,2) If λn(x) = 1−x
1+nx (n ∈ ]− 1, 0]), then

Iλn(x, y) = min(λn(x) + λn(1− y), 1)

= min(
1− x

1 + nx
+

y

1 + n− ny
, 1).

Thus

CIλn (x, y) = inf{t|min(
1− x

1 + nx
+

t

1 + n(1− t)
, 1) ≥ y}

= max(
(1 + n)(y − 1−x

1+nx )

1 + n(y − 1−x
1+nx )

, 0).

Iλn is a right continuous non R-implication that is adjoint to the conjunctions
on the unit interval CIλn generated by Iλn .
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7.4 Summary
In this chapter we extended classical adjunctions to fuzzy adjunctions. We used a fuzzy
implication I to define a fuzzy I-adjunction in F(Rn). And then we studied the condi-
tions under which a fuzzy dilation which is defined by a conjunction on the unit interval C
and a fuzzy erosion which is defined by a fuzzy implication I

′
form a fuzzy I-adjunction.

These conditions are essential in order that the fuzzification of the morphological oper-
ation of dilation, erosion, opening and closing obey similar properties as their algebraic
counterparts. We found out that the adjointness between the conjunction on the unit in-
terval C and the implication I or the adjointness between the conjunction on the unit
interval C and the implication I

′
play important roles in such conditions. We then worked

out Theorem 7.16 and Corollary 7.17 on the adjointness between a conjunction on the
unit interval and a fuzzy implication. Based on Theorem 7.16 and Corollary 7.17 we
can generate a conjunction on the unit interval from a fuzzy implication so that they are
adjoint. Examples of generating conjunctions on the unit interval from famous existing
fuzzy implications were given at the end.





Chapter 8

Conclusions

8.1 Main Contributions

Four main contributions of this thesis are given below:

1. A deep study of the axioms of QL-implications. Investigating under which condi-
tions a QL-implication satisfies the 13 axioms and the inter-relationship among the
axioms of QL-implications.

2. The interrelationship between the 8 axioms in the axiomatic system of fuzzy impli-
cations for the fuzzy implications satisfying the first 5 axioms.

3. Comparing different effects of fuzzy implications in approximate reasoning from
both a logic point of view and a practice view.

4. Using fuzzy implications and conjunctions on the unit interval to generate fuzzy
morphological operations.

We describe the details of these 4 countibutions below:

1. A deep study of the axioms of QL-implications. Investigating under which
conditions a QL-implication satisfies the 13 axioms and the inter-relationship
among the axioms of QL-implications.
Among the three most important classes of fuzzy implications generated from the
other fuzzy logic operators, S- and R-implications are very widely studied in the
literature of fuzzy set theory while QL-implications not because they do not always
satisfy the first place antitonicity. But sometimes a QL-implication is a good candi-
date for some specific applications. So it is meaningful to find the QL-implications
that satisfy the first place antitonicity. As a result they will also satisfy dominance
of truth of consequent. These QL-implications are then included in the most im-
portant fuzzy implications which satisfy the first 5 axioms in the axiomatic system
of fuzzy implications. Therefore we investigated for the strong fuzzy negation, the
t-norm and the t-conorm that generate a QL-implication I under which conditions
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I satisfies the first place antitonicity and found out a group of QL-implications that
satisfy this axiom. This work is represented in [78].

2. The interrelationship between the 8 axioms in the axiomatic system of fuzzy
implications for the implications satisfying the first 5 axioms.
Different works before worked out some of the interrelationship between the ax-
ioms of fuzzy implications, e.g., the interrelationship between the axioms FI6, FI7,
FI8 and FI11 in [[6], Baczyński 2008]. But the full interrelationship between the
axioms remained not complete. It is meaningful to have a further study of the
complete interrelationship between the axioms to replenish the gaps among the ex-
isted work. We worked out the complete interrelationship between the 8 axioms for
the fuzzy implications satisfying the first 5, and stated for each independence case
a counter-example. These examples are potential candidates for specific require-
ments. Through these dependence and independence we obtained a partition of the
fuzzy implications. Moreover, given a fuzzy implication satisfying some axioms,
we can immediately determine which other axioms it satisfies, which has a signif-
icant meaning in selecting fuzzy implications under different requirements. This
work is represented in [77].

3. Comparing different effects of fuzzy implications in approximate reasoning
from both a logic point of view and a practice view.
We first compared for the three classes of fuzzy implications generated from the
other fuzzy logic operators, namely, S-, R- and QL-implications, if they satisfy the
proposition

p→ (p→ q) = p→ q

in fuzzy logic. This proposition means that if we repeat the antecedent in the gen-
eralized modus ponens n times, the reasoning result remains the same. To find the
answers, we solved the functional equation

(∀(x, y) ∈ [0, 1]2)(I(x, I(x, y)) = I(x, y))

for all the S-, R- and QL- implications I . The results w.r.t. QL-implications are
most interesting. This work is represented in [76]
We then compared for the most important continuous t-norms, their dual t-conorms,
the S-implication generated from the standard fuzzy negation and these dual t-
conorms, the R-implications generated from these continuous t-norms their abil-
ity against the perturbations in the process of approximate reasoning in a fuzzy
rule-based system. We considered the perturbations with some specific probability
distributions, which is a further step of the existing works, e.g., [[12], Cai 2001],
[[13], Cordon 2000] and [[46], Li 2005]. The results show that the compared fuzzy
logic operators have their superior under different probability distributions respec-
tively.
These works are just small parts of investigating the roles fuzzy implications play
in approximate reasoning. But they are indeed good examples of comparing and
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selecting fuzzy implications under different requirements. A part of this work is
represented in [75].

4. Using fuzzy implications and conjunctions on the unit interval to generate
fuzzy morphological operations.
This is the work where we compared different effects of fuzzy implications in an
application other than approximate reasoning. To have the desired algebraic prop-
erties of the fuzzy morphological operations, namely, the fuzzy dilation, the fuzzy
erosion, the fuzzy opening and the fuzzy closing, we obtained that the adjointness
between the fuzzy implication and the conjunction on the unit interval used to gen-
erate a fuzzy dilation and a fuzzy erosion, respectively, is of great importance. An
R-implication and the t-norm from which it is generated constitute a well-known
adjoint couple in the literature. Our contribution resulted in obtaining the adjoint
couples of S-implications and the parameterized fuzzy implications and the cor-
responding conjunctions on the unit interval. This resulted in many other fuzzy
implication candidates than R-implications in fuzzy morphology. This work is rep-
resented in [77].

8.2 Future Work
The future work will be in the below three aspects:

1. We obtained the complete interrelationship between 8 axioms for the most im-
portant group of fuzzy implications that satisfy the other 5 axioms. Our future
work is to determine the complete interrelationship between the 13 axioms for a
[0, 1]2 → [0, 1] mapping that only satisfies

I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0.

2. To compare and select fuzzy implications under different requirements will remain
the most interesting future work of us. First, we will use different fuzzy implica-
tions and t-norms to model the approximate reasoning process in a fuzzy rule-based
system, for example, a fuzzy rule-based system for decision making, to obtain best
results under different requirements. Second we will further study the fuzzy mor-
phological operations generated from fuzzy implications and conjunctions on the
unit interval, and use them in real applications in image processing.

3. We will extend our work with fuzzy morphological operations generated from fuzzy
implications and conjunctions on the uint interval to a lattice (L,�) in general,
investigating their algebraic properties and applying them in image processing.
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