UNIVERSITEIT
GENT

biblio.ugent.be

The UGent Institutional Repository is the electronic archiving and dissemination platform for all
UGent research publications. Ghent University has implemented a mandate stipulating that all
academic publications of UGent researchers should be deposited and archived in this repository.
Except for items where current copyright restrictions apply, these papers are available in Open
Access.

This item is the archived peer-reviewed author-version of:
A dynamically optimized finite difference scheme for large-eddy simulation
Fauconnier D., De Langhe C., Dick E.

In: Journal of Computational and Applied Mathematics, 234, 2080-2088, 2010

To refer to or to cite this work, please use the citation to the published version:

Fauconnier D., De Langhe C., Dick E. (2010). A dynamically optimized finite difference
scheme for large-eddy simulation. Journal of Computational and Applied Mathematics,
(234) 2080-2088. 10.1016/j.cam.2009.08.066
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Abstract

A low-dispersivedynamic finite dference schemfor Large-Eddy Simulation is developed. The dynamic scheme
is constructed by combining Taylor series expansions ondifferent grid resolutions. The scheme is optimized
dynamically through the real-time adaption of a dynamiditoient according to the spectral content of the flow, such
that the global dispersion error is minimal. In case of DNSetution, the dynamic scheme reduces to the standard
Taylor-based finite dierence scheme with formal asymptotic order of accuracy. Vgioémg to LES-resolution, the
dynamic scheme seamlessly adapts to a dispersion-refatserving scheme. The scheme is tested for Large-Eddy
Simulation of Burgers equation. Very good results are oletzi

Key words: Dynamic finite diference approximation, dispersion-relation preservimgse, Large-Eddy
Simulation

1. Introduction

The necessity for numerical quality in Direct Numerical 8lations (DNS) and Large-Eddy Simulations (LES) of
turbulent flows, has been recognized by many researcher&kasal [1], Kravchenket al.[2] and Chowet al. [3].
In a fully resolved DNS, the smallest resolved scales aratémtfar into the dissipation range. Since these scales have
only a very small energy-content in comparison with thedatgesolved scales in the flow, they are often considered
to have a negligible influence on the mean flow statistics. large-Eddy Simulation, however, where only the most
important large scale structures are resolved, the smadieslved scales are part of the inertial subrange andiconta
relatively more energy than those in the dissipation ramtgnce, the smallest resolved scales in Large-Eddy Simu-
lation are not negligible and have a significant influencehenevolution of the LES-flow. The accuracy with which
these small scales are described is therefore expecteditopoetant. Moreover, some advanced subgrid modeling
techniques such as the dynamic procedure or multiscalelingagrongly rely on the smallest resolved scales in LES,
making their accurate resolution even more important. Gaoderical quality for anféordable LES is thus vital for
accurate flow prediction as it directly influences resolvieggics as well as subgrid modeling.
Aside from aliasing errors, which should be prevented bmiglating scales beyond. = %Kmax, as motivated by
Orszag [4], discretization errors are mainly responsibtetlie loss of numerical accuracy. Since it is highly desir-
able in LES to maximize the ratio between the physical regmitand the grid resolutior./kmax in order to lower
computational costs, standard second-order central ssheray not be dficient. Ghosal [1] and Chowet al.[3] rec-
ommend the filter-to-grid cufratio to be at mosﬁ—cax = ;11 when using a second-order central scheme. This ensures
the magnitude of the discretization errors to be smaller tha magnitude of the modeled force of the subfilter scales,
but is prohibitively expensive for most 3D LES computatiohsstead, one could apply higher-order discretizations
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allowing larger filter-to-grid cutfi-ratios. However, acceptable dispersion errors up to %Kmax, which is the maxi-
mum resolution that can be obtained when using #t8dealiasing procedure, requires at least a standard tedé
central scheme, or a sixth-order compact@®scheme, which inevitably leads to increased complexitycamputa-
tional costs.

In the present work, we developdgnamiclow-dispersive finite dference scheme for Large-Eddy Simulation. This
scheme, is constructed by combining Taylor series expasgio two dfferent grid resolutions similar to Richardson
Extrapolation. A first attempt of this technique has proveccessful for obtaining higher accuracy in laminar flows
in Fauconnieet al.[5, 6]. Further, we show the agreements of the new dynamiersetwith the dispersion-relation
preserving scheme of Taat al.[7]. In contrast to their work, the constructed scheme isnoiged dynamically during
the simulation according to the flow’s spectral propertied dispersion errors are minimized through the real-time
adaption of a dynamic céigcient. In case of DNS-resolution, the dynamic scheme redtacthe standard finite dif-
ference scheme which has an asymptotic order of accurasye¥dw, going to LES-resolution, the dynamic scheme
seamlessly adapts to a dispersion-relation preservingnsehThis could be particularly interesting for transiest d
veloping flows, or in case of grid refinement studies with fikigdr width.

2. Construction of the dynamic finite difference scheme

We start by writing the Taylor series expansion for tifeorder derivativen = 0,1, 2, ..., for ak-order central
discretization schemé& & 2,4, 6, ...) on two grid resolutions, characterized by grid spaciigs: A andA, = 2A
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u(x) denotes the discrete representation of a continuum_phy'ﬁémhu(x) to the discrete grid, while the finite dif-

ference approximation of the partial derivative is dencaeg; = % The codficientcy,, is actually known from the
Taylor series expansion. However, suppose that the leaddey truncation terms in (1) and (2) are discretized with a
minimal orderé (A2) and that the Taylor series are truncated to ordéa**?). Then it would be possible to obtain a
new value ofck, by combining (1) and (2). The neay, will not necessarily have the same value as the one obtained
from identification of the Taylor series, as it is a functidrigx), and its derivatives. Moreover, we expect the value of
Ck.n to be optimized with respect i(x), such that deficiencies of the finitefidirence approximation, e.g. dispersion
errors are minimized. This will be explained later. We firsbgeed by writing the truncated Taylor series with the
discretized leading order truncation terms and we intredublending factof in the second equation
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To explain the purpose of this blending factioe [0, 1] we illustrate the casek = 0 andf # 0. Remark that, unless
ckn has the exact Taylor value, the order of accuracy in bothesgions remaing (Ak).

2.1. Asymptotic high-order scheme foref0
For f = 0, the cofficientcy, can be obtained by subtracting the truncated expressid@n4(3), leading to
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Although the left-hand-side and the right-hand-side fiditéerence approximations do not necessarily have identi-
cal stencils, they represent the same derivative. Thisioelavill be used further in this work for simplifications.
Substitution of (5) into (3), eliminating, finally leads to the finite dierence approximation of ordkr 2
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= T + 0 (A%2) (6)

which is the well-known Richardson’s Extrapolation formult should be emphasized that the same result is obtained
by combining (1) and (2) which proves that expression (6)nisapproximation with formal asymptotic order of
accuracyk + 2. Since the aim is to construct optimized finitéfeiience schemes with good Fourier characteristics,
abandoning the concept of formal asymptotic order of aayybviously f needs to be fiierent from zero.

2.2. Optimized scheme for# 0

For the casd # 0, we proceed in a somewhalfféirent manner as fof = 0. Straightforward elimination of
cn from Taylor series (3) and (4), would lead to a substitutibrgg, with a nonlinear expression. The resulting
field for ¢, would be pointwise varying in space, in contrast to the camstalue obtained from the Taylor series
identification. Here we restrict ourselves to a global gndependent and constant valuecgf, leaving the other
possibilities for obtainingy , for future work. Therefore, we proceed by subtracting (4)fr(3) and obtain
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These expressions can be rewritten into a simpler expressica single grid resolution using the generally valid
relation (5), giving
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werec; , andc,;, are constant caicients known from Taylor series expansion. Rot 1 andk = 2 the codicients
arec; = —g andc;; = —7. Forn = 2 andk = 2 the codficients arec; | = —f; andc;; = —3. The optimized
codficient can be extracted by least squares minimization ofitfierdnce
0
&%) =0 12
OCn < > (12)
(-y denoting an averaging operator, resulting finally in theadyit codficient
dyn - _ (,Z///) (13)
N (//[j/)

In this work, we restrict ourselves to global uniform avenggover the entire domain. This leads to a constant value
codticient. Substitution of this cdicient into the fine resolution Taylor series leads todiramic finite dference
approximation
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The optimal value off, will be determined in section 2.3. In order to analyze tl@e/mlynamic scheme, the Fourier
characteristics will be investigated.
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2.3. Fourier Analysis

For further investigation of expression (14), we performaurer analysis on the optimized finitefiéirence
approximation of the"-order derivative. In Fourier space, th€ finite difference derivative can be written as

_(o"u o
#(5) = wrso (15)
wherek;, is the modified wavenumber. The ratio of the modified waveramib the exact wavenumber represents
the error of the discrete derivatives for a single wave wétlative wavenumbex/«max. The real part of the modified
wavenumbek;, represents dispersion errors, whereas the imaginarygggsents dissipation errors. Remind that the
latter are absent in central schemes. The modified wavemuhbescheme can be obtained by substitution of the dis-
crete wavei (x;r) = €< into the finite diference approximations. Applying this to the dynamic finit&edence
approximation for the ¥ derivative for basic 2 order of accuracyk = 2) leads to the modified wavenumber

(1= 2 sin(ka) + ¢ sin(2«A)
Ky = A (16)

and for the 29 derivative

(2-8¢5") (1 - cos(kA)) + 2¢5”" (1 - cos(2«A))
A2

in which the dynamic cd&cientsc)’" = ngl” andcy" = ngzn have a constant value. Obviously tH&-drder approxi-

mation is recovered if these dﬁelents equal the theoretlcal values obtained from Tayldes@xpansion. However,
reminding expression (13), this will generally not be thegaand the value of the dfieientsc™”" and c3’" will
depend mainly on the properties of the flow field, its derixediand the value of. Since the ﬂow field properties
are reflected by the energy spectrum, an attempt is made bhzamathe behaviour of the dynamic déeients, by
transforming the dference definition into Fourier space. Ustgp denote the Fourier transform, theéfdrence (7)
is given in Fourier space by

2
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in which ¢, is the constant dynamic cfieeient and

W = n(2-1)A(iKen) T (19)
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With this, we can define an error spectrundénotes the complex conjugate)
E-W) = 86 =07 +anll D + 0T+ Codl Ml (21)

The optimal value for the cdigcientc,, can be found by a least square approximation in Fourier spafi@ed as

9 fog Ez (k) dx (22)
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Working out this integral expression leads to
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Figure 1: Parametric plot of the dynamic ma'entscﬂy” = cﬁ‘rﬁ", n = 1,2 as function of cutfi wavenumbek.; and the blending factof.

in which the productit" represents the energy spectriin(x) of the physical fieldi (x). Once the shape of the energy
spectrum of the physical field is known or a model spectrunsssimed and a value of the blending factor f is chosen,
it is possible to calculate the dynamic ¢@aent for that spectrum from the integral expression (28)hls work we
assume a uniform Heaviside-like spectrum shape

B0 = 1-HG-xd={ g A 24)
with k. indicating the highest appearing wavenumber in the sigmatutdf wavenumber. We note that this shape
is chosen for reasons of simplicity, and turbulent specilisbe investigated in future work. The uniform spectrum
makes the expression analytically integrable, and thdthegwequation describes a surface of thefGognt as func-
tion of xc and f. This surface is represented as a parametric plot in FiguioL f = O the theoretical values, |
obtained from Taylor series are recovered, regardlesgptietrsl content of the signal which is expressed by the ratio
kc/kmax Note also that for smooth signals, with a low ratigkmax the codficients converge to the theoretical value
Cin- In case off # 0, different profiles focﬁ}:’ as function ofkc/kmax appear. The performance is illustrated in the

modified wavenumber plots of Figure 2, where the spectralerdrof the field is assumegf:x = % Clearly, the

dynamic finite diference approximation acts as an optimizatiteorder finite diference scheme, in whicrl:gi’]” is
obtained dynamically (for a certain f), according to the flolysics indicated by.. As can be seen from the figures,
different values off lead to diferent behavior of the dynamic scheme anfiledlent accuracy. It is clear that if the
ratio 0 < dy”/c;;n < 1, the schemes Fourier characteristic will lie between dfiahe k"-order and(k + 2)"%-order

C
k,n
standard scheme, and does not result into the desired behkhareover, ifcﬂ{]” has an opposite sign in comparison

with its Taylor value, i.e.ciﬁ”/c;;n < 0, poor Fourier characteristics are observed that lie béawof thek™-order
dyn

scheme. Hence, thievalues should be chosen such th%{f/c;;n > 1 for all values of:/kmax. Moreover, since:kyn
acts like a sensor for the wavenumber content in the fi€lq, it should be a monotonic function ef/«max such that
each value otﬁﬁ” corresponds to a unique valueQfxmax. Hence, the blending factdrshould be determined such

that monotonicity ofcg}:]” in the wavenumber range © «. is guaranteed. It can be understood from the modified
wavenumber plots (Figure 2) that for a certain rati@gkmayx an optimal value of exists that satisfies both previous
conditions and for which the corresponding value:g?{f leads to an optimal finite ffierence scheme.

Clearly, the dynamic finite dierence approximation is an optimize¥-@rder finite diference scheme with better
performance at the small scales, in Wh@ﬂﬁ‘ is obtained dynamically (for a certain valuefgf according to the flow’s
spectral properties, relatedig These findings display a large agreement with the work of &aah [7] in the field of
computational aeroacoustics, who introduced an explisitetsion-relation preserving finiteffirence scheme (DRP

5



1 ‘ 1
0.9t 1 09
0.8} 1 o8
0.7} 1 o7
0.6} B e, 0, 5 0.6
g TR g
< (a1}
é 05 f=024 WVVVVVVV & % £ 05
a4 o o
% =0 A o e
0.4r N o 04
VVDDq o
0.3} 5o 0.3
f=1 d
021 T, WXL | 02
o
Oooo >0
0.1t oo wg,{ 0.1
O0
0 . . . . oy ! . . .
0 0.2 04 0.6 08 1 0 0.2 0.4 0.6 0.8 1
"{/"{maw K/Kmuw

Figure 2: Modified wavenumber f(% (left) and%u (right). (M) spectral; ) 2"9-order central; (A) 4-order central; (7) 6'-order central; ¢)
8th-order central; ) 10M-order central; ¢) 6™-order tridiagonal Padé; (—p"-order dynamic scheme.

scheme) for accurate simulation of propagating waves, esigch highly non-dispersive and non-dissipative schemes
are required. These DRP schemes are constructed by a pimmization of the dispersion error, represented by the
modified wavenumber in the wavenumber rarge0 — %. Such a scheme can be constructed by finding the optimal
Ckn in (16) and (17). However, in contrast to the DRP schemes fiviéld Fourier characteristics, thiynamic finite
difference schemeptimizes its cofficient according to the flow physics, leading to adaptive Feowharacteristics.
This way, the scheme varies between the asympt&tiordier finite diference approximation and DRP-liké'rder
finite difference scheme, depending on the spectral content regdsemthe grid. As can be seen from the figures,
different values of lead to diferent behavior of the dynamic scheme anftiedént accuracy. As mentioned before,
f-values for which the optimized cﬁia:ientcﬁ‘;” is not monotonically decreasing as function of the spectatent
(e.g. f = 1), lead to poor performance of the schemes. The figuresdtefichat a value of can be found for which

the scheme is optimal for a given spectral conignt

Traditionally, the optimization is done by minimizing theslst squares error of the modified wavenumber and the real
wavenumber [7]. Assume the following error definition

EK = """ -« (& H)M)AT (25)

which represents the error between the exéttlerivative and its finite dierence approximation in Fourier space.
Now we define the error spectrum as

Ez() = && =" -« (k)" A%TT (26)

The productit" represents the energy spectréin(x) of the physical fieldi(x). The optimal value for the blending
factor f can be found by searching the minimum of the integral ovewalle components or

(;if fo T = K (k6 )2 Ey (k) dk = O 27)

Adopting a uniform spectruri, (x) (24), the integral can be calculated analytically leadim@ tather complicated
expression for the optimal blending factor as function @f tiighest appearing wavenumbgr fope = f (xc). Most
dispersive errors exist in the ranéemax < ke < Kmax. HOwever, it is preferable that this wavenumber range idtexhi
in the optimization. Minimizing the errors in this range idbe meaningless, since in a good simulation, this region
should be eliminated because of aliasing errors. Chooaiira:g%KmM the optimal values of the blending factors for
the 1 and 2¢ derivative aref ™ = 0.2403 andf;™ = 0.2315. Using the same methods, an optimiz&ddtder DRP
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scheme can be constructed in which the optistalic codficients in equations (16) and (17) m‘l’én = -0.3344 and
" = ~0.1346, identical ta; (f°pt) andc, (f°p‘) for the uniform spectrum at = 2kmax

3. Numerical test case

For a first evaluation of the developed schemes for LargesEichulation, it may be more useful to consider
a simpler equivalent problem than LES of three-dimensidtalier-Stokes turbulence. Following the work of Das
et al. [8], we select the one-dimensional viscous Burgers’ equatiSimilar to the Navier-Stokes equations, the
Burgers’ equation contains a quadratic nonlinear term aedhibits an inertial range in the energy spectrum as in
real turbulence. Although the small-scale dynamics of thegBrs’ turbulence and real turbulence are substantially
different since the small scales represent shock waves wittndss in the order of the viscous scale, this is of minor
importance for the evaluation of numerical schemes. Thg@&st equation is given in its non-dimensional form by

ou 1lou> 1 0% 1

ot 29x T Rep@ T (28)
which we subject to periodic boundary conditiaméx,t) = u(x + 2x,1) in the periodic domain & x < 2r. The
initial condition att = 0 imposes the sinusoidal velocity profil€x, 0) = sin(x), representing a single wave mode.
The initial values of the kinetic energy and dissipatioreratek(t = 0) = 1/4 ande(t = 0) = 1/Re. Fort > 0, the
single wave evolves in time and finally runs into a statiorgttgck atx = x, which is damped by viscous forces.
As mentioned before, the corresponding shock wave enemgtrspn exhibits an inertial range?, through which
energy is transferred from the large scales to the smaléscahd finally dissipated in the dissipation range by the
viscosity. The Reynolds number is set to Ré&/v = 500.

3.1. Direct Numerical Simulation of Burgers’ equation

First, a reference solution for the Burgers’ system is gaieer from a Direct Numerical Simulation. A uniform
grid is adopted witi, = 8192 nodes, for which the grid cdfavavenumbeknyax = A— = 4096, such that all scales,
including all viscous scales in the dissipation range, ary well resolved. The simulation is done using a pseudo-
spectral code, avoiding numerical discretization err@saliasing is not required since all scales are well resblve
and no aliasing errors can appear. The standard 4-stagsttwage Runge-Kutta time stepping with fladents
[j, 3 5> 1] is adopted. The time step is setAb= 1e~° and the shock wave is followed untik 10.

3.2. Large-Eddy Simulation of the Burgers’ equation

The goal of LES is to reproduce the dynamics of the filtered BidStion, by resolving only the high-energetic
large scale features (low wavenumbers) in the flow, cormding to ideally 80% of the total kinetic energy, while ne-
glecting the low energetic small scales (high wavenumb@tss philosophy requires the definition of an appropriate
spatial filter. In this work, a sharp spectral Fourier filleused. Applying a sharp Fourier filter with ctite. = Alf to

the continuous equation (28), denofiras the filtered quantity, gives

gu louu_ 1o lor (29)
at 2 dx Redx2 29x

in which the subgrid stress ts= Uu— TU. In this equation, the nonlinear term is explicitly filteriedorder to avoid
aliasing. Now the equation can be discretized from contim@paceR to the discrete space with grid resolution
kmax = %, leading to

5* 15~ 1600 162U 167

*395x T 39x - Res  2x (30)

Remark that the sampled field is denotedias T in order to avoid overload of notation and that the nonlirteam
is discretized in the skew-symmetric form to guarantee flerdte conservation of kinetic energy [9]. Following
the work of Orszag [4] we define, = Kmax Since equations (29) and (30) are unclosed, an approystggrid
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scale model is needed to close the equations. In this workiseeperfect subgrid scale modeh which the exact
subgrid stresses are extracted at each Runge-Kutta stagafsimultaneously running Direct Numerical Simulation.
This results in a perfect LES in which the filtered DNS resalts recovered exactly. The Large-Eddy Simulation
of the Burgers’ equation is done on a uniform mesh with= 256 nodes, for which the grid cufovavenumber is
kmax = % = 128 and the physical cuiowavenumber defined by the filteg = %xmax = 85. Different central finite
difference discretizations will be investigated.

4. Numerical Results

The numerical errors of the fiierent finite diference schemes on the solution of a Large-Eddy Simulation of
Burgers’ equation are investigated after defining an apjatgerror evaluation.

4.1. Quantification of numerical errors

To quantify numerical errors due to finitefildirence approximations, we use the error decompositionfexeddoy
Vremanet al.[10] and Meyerset al. [11], which tries to separate modeling errors from numéeceors. Consider a
reference DNS in which the smallest viscous scale is reptedéyk,, and assume a specific flow variable of interest
¢. The total error inp for a Large-Eddy Simulation with grid resolutiafax = % and filter resolution, = Alf is then
defined as

—_~—

3 —
E¢ total (¢, kmax) = bs (K,,, EKU) — did (K¢, kmax) (31)

—_~—

The error is explicitly defined as function of the LES filtesodution and grid resolution angk (K,], %KW) represents

the filteredspectralDNS solution, whilegq (kc, kmay) represents thénite diferenceLES solution with filter cute
ke on an LES grid with maximum wavenumbeg,x. The total error consists of contributions of numericabesrand
modeling errors and is decomposed as

e~

3 _
8¢,modeI(Kc, Kr]) = ¢s (Krp EKW) — s (Ke, kmax) (32)

8¢,num(Kc, Kmax) = 53 (Kc, Kmax) - afd (KC9 Kmax) (33)

ES(KC, K,]> represents thepectral LES-solution with filter cutéf wavenumbei, and grid cutéf wavenumbeikmax
corresponding to the LES grid, and would be equivalent withfinite djferenceLES-solution on an infinitely fine
grid. The modeling errog, model is related to the adopted subgrid closure whijgum contains aliasing errors as
well as discretization errors. In case of proper dealiagioggh explicit filtering,e, num reduces exactly to the finite
difference discretization errors.

In this work, the previous error decomposition is applietiio different ways. Following the work of Choet al.[3],

we first select the velocity field(x) as the variable of interegt The corresponding error spectrum and global error
norm of the pointwise errors, are then calculated as

E:() = & (—«) (34)
ke = j(; E., (x) dk (35)

Remark that the global error norky corresponds to thé,-norm, often used in error evaluation, by the relation
L, = 27 Vk., and these errors always have a positive sign.

An alternative is to select the energy spectrum of the figl¢k) for ¢. The corresponding error definitions lead to the
error between the energy specita and the total error on the global error nosgy,

ee(k) = AE () (36)
g = fo ™ e (k) dk 37)

suggested by Meyerst al. [11], differs from the previous method in the sense that the errorsvataaged in a
statistical manner instead of a pointwise manner. Rematktiie sign could be either positive or negative.
8



4.2. Results

The numerical error is given by theffirence between the LES-solution with the pseudo-specttiod and the
solution of the finite diierence method. The energy spectra of these errors are givegure 3, at time step= 0.5
before the shock is formed, and= 1.8 after the shock is formed when the dissipation is at maximamt = 0.5

K/ Kmaz K/ Kmae

Figure 3: Error spectr&, on timest = 0.5 (left) andt = 1.8 (right): (») 2"%-order central; {) 4-order central;%) 6M-order central;{) 8"-order
central; (J) 10M-order central; ¢) 2"3-order DRP-scheme; (—)f'3-order dynamic scheme.

the dynamic coficient is optimized only for the Fourier modes in the lower amymber range reachind’order
asymptotic accuracy. At= 1.8 the codicient is optimized for the Fourier modes in the entire waveber range
leading to a 24-order asymptotic accurate optimized scheme, comparalietDRP scheme, exceeding the accuracy
of the higher-order schemes féfﬁ—x ~ 0.4. Although the results of the DRP scheme are similar to tbb#ee dynamic
scheme for a fully developed flow £ 1.8), it tends only to 2-order accuracy for the initial well-resolved flow e.g.
att =0.5.

Figure 4 shows the global error nolfnand the error on the kinetic energyas function of time. It is observed from
these figures that the dynamic scheme seamlessly adaptddtsiee spectrum shape, reachin@j-drder accuracy
fort < 1, while reaching optimal accuracy for- 1. Hence, for a fully developed shock wave the accuracy of the
dynamic scheme exceeds the accuracy of the@ler standard scheme. Although the DRP scheme does ovdy ha
2"d-order accuracy fot < 1, it also reaches very high accuracy fos 1. Notice that the dynamic scheme and the
DRP scheme do not collapse for a fully developed spectrurth 8themes are optimized for uniform spectrum shape.
For the dispersion-relation preserving scheme, thdéfictents themselves are determined a priori. For the dynamic
scheme, only the blending factofsand f, are determined a priori, whereas the dynamicfiecients W n=1,2

C
k.n
are determined according to the spectral flow propertigssttae withk 2.

5. Conclusions

We developed aynamiclow-dispersive finite dference scheme for Large-Eddy Simulation. The scheme is
optimized dynamically during the simulation accordinghe spectral content of the flow and dispersion errors are
minimized through the real-time adaption of the dynamiditdents. In case of DNS resolution, the dynamic scheme
reduces to the standard Taylor-based asymptdtiordler finite diference scheme, whereas for LES resolution, the
scheme seamlessly adapts to an optimiz&go2der finite diference scheme, comparable f§-8rder dispersion-
relation preserving scheme of Taghal.[7]. The results of the numerical test case agree very wéli thie theoretical
predictions and indicate the large potential of the dynasofeme.
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Figure 4: Global error norrk, (upper) and error on the kinetic energy(lower) as function of time. £) 2"%-order central; {) 4-order central;
(>) 6M-order central; ) 8M-order central;[J) 10"-order central; §) 2"-order DRP scheme; (—)"3-order dynamic scheme.
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