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Abstract 

Spatial econometrics and also multilevel modelling techniques are increasingly part of the regional scientists‟ 

toolbox. Both approaches are used to model spatial autocorrelation in a wide variety of applications. However, it 

is not always clear on which basis researchers make a choice between spatial econometrics and spatial multilevel 

modelling. Therefore it is useful to compare both techniques. Spatial econometrics incorporates neighbouring 

areas into the model design; and thus interprets spatial proximity as defined in Tobler‟s first law of geography. 

On the other hand, multilevel modelling using geographical units takes a more hierarchical approach. In this case 

the first law of geography can be rephrased as „everything is related to everything else, but things in the same 

region are more related than things in different regions‟. The hierarchy (multilevel) and the proximity (spatial 

econometrics) approach are illustrated using Belgian mobility data and productivity data of European regions. 

One of the advantages of a multilevel model is that it can incorporate more than two levels (spatial scales). 

Another advantage is that a multilevel structure can easily reflect an administrative structure with different 

government levels. Spatial econometrics on the other hand works with a unique set of neighbours which has the 

advantage that there still is a relation between neighbouring municipalities separated by a regional boundary. 

The concept of distance can also more easily be incorporated in a spatial econometrics setting. Both spatial 

econometrics and spatial multilevel modelling proved to be valuable techniques in spatial research but more 

attention should go to the rationale why one of the two approaches is chosen. We conclude with some comments 

on models which make a combination of both techniques. 
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1 Introduction 

 

Numerous lists and classifications of geographic and spatial concepts exist. Table 1 gives the 

list of Fellman et al. (1999 p.7-18). Researchers implicitly and explicitly incorporate these 

concepts in different types of models, like gravity, 

spatial lag and spatial multilevel models. In what 

follows, we will focus on hierarchy, which is related to 

„Place Similarity and Regions‟, and proximity, which is 

part of „Interaction Among Places‟. Since concepts are 

related, other concepts than proximity and hierarchy 

will be mentioned, like scale. 

 

To understand „Interaction Among Places‟, one should first understand the first item showed 

in Table 1, i.e. the location of a place. Location becomes meaningful when considering the 

position of a place in relation to other places or activities. Indeed, the relative location relates 

to spatial interconnection and interdependence, and is as a consequence related to the concept 

of „Interaction Among Places‟. Just as for location, not the absolute, but the relative distance 

matters (e.g. time distance). Hereby, distance is a measure for nearness, like in Tobler‟s First 

Law of geography: “everything is related to everything else, but near things are more related 

than distant things” (Anselin, 2002; Miller, 2004). In short, things in each others proximity 

are more related. 

 

Next to proximity, we will focus on hierarchy, which is related to „Place Similarity and 

Regions‟. The division of the earth‟s surface into regions is the basic tool of spatial (areal) 

generalisation. This generalisation is necessary to understand the overwhelming diversity and 

complexity of the earth‟s surface. The concept of „Place similarity‟ indicates that a region 

contains significant elements of internal uniformity (spatial similarity) and external difference 

from surrounding territories. A region thus contains a less or more uniform set of physical, 

cultural and/or organisational features. The basic characteristics of regions are their location, 

spatial extent, boundaries and hierarchical arrangement (nesting of regions). Especially this 

hierarchical arrangement of regions is of our interest. 

 

-Location, Direction and Distance 

-Size and Scale 

-Physical and Cultural Attributes 

-Changing Attributes of Place (Time) 

-Interaction Among Places 

-The Structured Content of Place 

-Place Similarity and Regions  

Table 1: geographic concepts (Fellman et al., 1999) 



In this paper, we will investigate how proximity and hierarchy are incorporated in spatial 

regression models. As Anselin (2002) points out, a fundamental problem in the analysis of 

spatial correlation is the lack of identification of the parameters of the complete covariance 

matrix. Therefore, it is necessary to impose a structure on the variance–covariance. Three 

main approaches can be considered in spatial regression analysis. The first is a geostatistics 

approach, which defines space as a continuous surface. In regional science however, 

observations are usually discrete objects. As a consequence, we will not focus on 

geostatistical models or on techniques like point pattern analysis. The second approach uses 

an object view and the corresponding lattice model. In this case, a spatial structure is imposed 

using a spatial weights matrix that underlies a spatial process model. The third way to impose 

a spatial structure is the spatial error components approach, as used in spatial multilevel 

modelling (Anselin, 2002). 

 

1.1 Hierarchy 

Hierarchy deals with the inequalities between geographical objects. These objects can be 

grouped or classified using different hierarchical levels. The most well-known example of 

hierarchy in geography is that of the differentiation between centres, like in Christaller‟s 

theory of central places. However, in the market and transport principles, lower level units are 

shared by several higher level units (Pumain and Saint-Julien, 2001). In this paper we use the 

term hierarchy only for lower level units which are just part of one higher level unit, like in 

Christaller‟s administration principle. A higher level unit is thus a group of lower level units.  

 

In spatial multilevel models, levels are geographical units, like municipalities, districts, 

regions and countries. Multilevel modelling is increasingly used to incorporate contextual and 

compositional factors in regressions and to investigate the role of higher geographical scales. 

Examples can be found in health (Langford et al., 1998), housing market (Orford, 2000) and 

commuting research (Schwanen et al., 2004). Langford et al. (1998) state that „including 

higher levels of geographical aggregation simultaneously in a model of smaller units is 

essential to draw useful conclusions from the data analysed.’ Next to this, data characteristics 

can motivate the choice for a hierarchical spatial structure. Data are often available at 

different geographical scales and aggregating the data at the highest level means information 

loss and the risk of ecological fallacy (Langford et al., 1998; Groenewegen et al., 1999), while 

Langford et al. (1998) also demonstrate ‟the dangers of using aggregated data, taken from 



different sources, without specifying an appropriate hierarchy’. Moreover, distributing 

neighbourhood characteristics over individual cases leads to underestimating the standard 

errors of the higher-level regression coefficients, increasing the probability of statistically 

significant, but non-existent relationships (Groenewegen et al., 1999; Luke, 2004). 

 

Despite the rise of spatial multilevel modelling, the use of predefined spatial hierarchies is 

often contested (Brunsdon et al., 1998). Chaix et al. (2005b) propose the use of a continuous 

notion of space to avoid the dependence on a space fragmented into arbitrary administrative 

areas. Unlike this critique, they acknowledge that the hierarchical approach „may be the 

appropriate choice when the context is defined in a way that is not strictly geographical (for 

example, workplaces or schools); when investigating processes that operate on the scale of 

administrative areas (for example, matters related to public policies); or when spatial 

correlation can be reduced to the correlation within areas’ (Chaix et al., 2005a; Chaix et al., 

2005b). Groenewegen et al. (1999) link „the usual assumption that spatial units are given, 

meaningful and fixed’ to the `modifiable areal unit problem' (MAUP). MAUP is the 

„phenomenon whereby different results are obtained in analysis of the same data grouped into 

different sets of areal units’ (Manley et al., 2006). This problem can be subdivided in a scale 

and a zoning effect. The zonation issue concerns the effect of the arbitrary nature of the 

boundary division, while the scale issue covers the change of results when the level of 

analysis changes (Manley et al., 2006; Kwan and Weber, 2008). The zonation issue is not 

necessarily a problem if a variable is a real contextual variable in stead of the aggregation of 

individual characteristics, or so-called compositional factors (Groenewegen et al., 1999). This 

division between compositional and contextual data received much attention in literature 

(Duncan et al., 1998; Subramanian et al., 2001; Mohan et al., 2005; French and Jones, 2006). 

Indeed, a more nuanced view of geography questions if regional variation is „real‟, or just an 

artefact of geography, i.e. a compositional effect. Thereby, a compositional effect is nothing 

more than the weighted sum of patterns at smaller scales, while a „real‟ neighbourhood effect 

is separated from the individual characteristics of individuals in a region. In the latter case, 

places only differ because different kinds of people live in different places (Johnston et al., 

2007). When these compositional effects are taken into account, one can investigate at which 

scale processes occur. The scale issue in MAUP changes from a problem to an opportunity 

and enables researchers to detect the spatial scales that matter. As a consequence, a 

hierarchical spatial analysis has the potential to detect the origin of spatial variation. 

Moreover, modelling different scales simultaneously, like in spatial multilevel modelling, 



allows overcoming both the atomistic fallacy of individual-based studies, and the ecological 

fallacy of aggregated research (Duncan et al., 1998; Langford et al., 1998; Subramanian et al., 

2001; Mohan et al., 2005; French and Jones, 2006). However, a spatial pattern in general 

originates from several distinct processes operating at several different spatial scales, and 

these scales may vary over space as well (Langford et al., 1998; Manley et al., 2006). Spatial 

multilevel modelling is thus a useful tool, but not a „wonder‟ technique which can solve all 

problems in spatial analyses. 

 

1.2 Proximity 

The basic concept in a spatial econometric approach is geographical proximity, and these 

spatial econometric techniques are increasingly part of the regional scientists‟ toolbox (Arbia 

and Fingleton, 2008). The main characteristic of these techniques is the use of a spatial 

weights matrix to take into account the role of proximity (Ciriaci and Palma, 2008). Such a 

matrix contains the spatial relations between observations. The relations can be expressed as 

1‟s for neighbours and 0‟s for non-neighbours, as a function of the distance between 

observations, or as a function of other factors, like interregional trade (Le Gallo and Dall'erba, 

2008). The arbitrary nature of the weights matrix is the main focus of spatial econometrics 

critics (Arbia and Fingleton, 2008). Nevertheless, the spatial econometric approach proved to 

be useful to detect spatial (e.g. knowledge) spillover effects, and to counterbalance spatial 

autorcorrelation. As a consequence, numerous studies use this approach to investigate 

inequalities and convergence between European regions (Tselios, 2008; Dall'erba and Le 

Gallo, 2008; Geppert and Stephan, 2008; Le Gallo and Dall'erba, 2008; Olejnik, 2008). Next 

to spatial autocorrelation, spatial heterogeneity is an important topic in the spatial econometric 

literature. This heterogeneity means that different processes have a different impact in 

different places. For instance subsidies may have a different effect in poor and in rich regions. 

Such groups of regions are also called spatial regimes, and can be considered as a higher level 

in a spatial multilevel modelling approach.  

 

The ways in which spatial autocorrelation and heterogeneity are treated in spatial econometric 

models is diverse. Le Gallo and Dall‟erba (2008) for instance, compared a distance- and a 

time-based weights matrix and distinguished only two spatial regimes among European 

regions (core and periphery) using dummy variables interacting with the other variables. 

Olejnik (2008) introduced next to a weights matrix with the three nearest neighbours, one 



dummy variable for new EU member countries. Bosker (2009) also separated Eastern 

European regions from those of the „Old Europe‟ and concluded that in Eastern Europe 

country-specific factors are more important than in Western Europe. This conclusion is based 

on an exploratory map and the conditioning of the region‟s GDP per capita on the GDP per 

capita of the country the region belongs to. He referred to Quah (1996) who indicated that 

proximity (neighbour-relative per capita incomes) accounts for more observed regional 

inequality than hierarchy (state-relative per capita incomes), but that both spatial and national 

spillovers are important. Tselios (2008) directly incorporated the spatial regimes in the 

weights matrix by considering only regions which are part of the same welfare regime as 

potential neighbours. Dall‟erba and Le Gallo (2008) stressed the importance of country-

effects and mention the use of country dummies, but restricted their analysis to two regimes, 

core and periphery. Geppert and Stephan (2008) used country dummy variables and 

concluded that income disparities decreased between countries but not within countries. 

Finally, the awarded paper of Elhorst and Zeilstra (2007) found evidence of spatial 

autocorrelation between regions, and of variety in the autocorrelation coefficients across 

countries. Therefore, they developed a mixed model of random coefficients for regional-level 

variables and fixed coefficients for national-level variables, the model also contained a spatial 

weigths matrix based on passenger traffic travel times between regions to counterbalance the 

spatial autocorrelation. Summarizing, this model combined a spatial multilevel with a spatial 

econometrics approach since both the institutional framework (country) and the proximity of 

regions matter. 

 

2 Measuring proximity and hierarchy 

 

2.1 Measuring proximity 

Proximity, but also hierarchy, can be seen as spatial autocorrelation, being the coincidence of 

value similarity with locational similarity. Spatial correlation is mostly measured using the 

Moran‟s I. This and other related indicators use the values of neighbouring spatial units to 

investigate if these have similar values. In this way, the proximity effect is measured. The 

Moran‟s I is a kind of Pearson correlation coefficient, but in stead of looking at the correlation 

between two different variables, it measures the correlation between the value of a variable 

and the value of the same variable for neighbouring observations (Legendre, 1993; Griffith 

and Layne, 1999).  



 

 

Figures 1 and 2 show the share of cycling and carpooling in Belgian municipalities. A clear 

pattern appeared for bicycle use, municipalities where cycling is popular are located in the 

proximity of municipalities where cycling is also popular. As a consequence, the 

corresponding Moran‟s I is high (0.72). The spatial pattern for carpooling is less clear, 

logically, the Moran‟s I (0.34) is lower than the one for cycling.  

 

 

 

Next to overall measures for spatial autocorrelation, also Local Indicators of Spatial 

Association exist (LISA; (Anselin, 1995). Such measures have a value for each observation 

and indicate both spatial clusters and spatial outliers. These indicators detect spatial patterns 

and are often more meaningful than a single overall measure like the Moran‟s I. Two distinct 

spatial patterns can be distinguished in the LISA maps in Figures 3 and 4. For cycling, a 

Figures 3 and 4: LISA maps of cycling (left) and carpooling (right) in Belgian districts (arrondissements); 

weights matrix based on the 5 nearest districts 

Figures 1 and 2: average % cycling (left) and carpooling (right) employees in Belgian municipalities 



cluster of districts with high values is detected in the north (high-high), and a cluster with low 

values in the south (low-low) of Belgium. Measuring the share of carpooling, a kind of core-

periphery pattern appears, with a 

cluster of districts where carpooling 

is less popular in the centre of 

Belgium (around Brussels), and a 

carpool-cluster in the south and the 

east. A LISA map of carpooling using 

the municipality level (Figure 5) in 

stead of the arrondissement level 

(Figure 4), shows that the spatial 

pattern differs at different scales.  

 

 

2.2 Measuring hierarchy 

Hierarchy means that observations within the same group have similar values, or by 

rephrasing Tobler‟s first law of geography: „everything is related to everything else, but 

things in the same region are more related than things in different regions‟. Multilevel 

indicators in the first place measure the within-area and the between-area correlation. The 

Variance Partition Coefficient (VPC) is regularly used to check which amount of the total 

variance can be attributed to the different levels (Rasbash et al., 2005; Uthman, 2008). The 

VPC is the relative importance of the different levels in the random part of a multilevel model 

(see 3.2). For cycling, 49% of the total variance can be attributed to the district level, 5% to 

the municipality level and 46% to the worksite level. The latter includes also the variance of 

the individual level (Tranmer and Steel, 2001), for which no data were available. Carpooling 

is less explained by a spatial hierarchy, since 95% of the variance can be attributed to the 

lowest level. 

 

Detecting spatial clusters in a hierarchical approach is less meaningful, since the higher level 

units are pre-given clusters. However, observations can be classified as high-high, low-low, 

high-low and low-high to indicate the „performance‟ of units in a multilevel context 

(Subramanian et al., 2001). In other words, such a classification indicates if an observation 

Figure 5: LISA map of carpooling at the municipality level 

(weights matrix based on all municipalities within 30 km) 



has a high or low value relative to the other observations in the same area, which has on its 

turn a low or high value compared to the other areas.  

 

3 Modelling proximity and hierarchy 

 

3.1 Modelling proximity: spatial econometrics 

Spatial econometric regressions model „proximity‟ by incorporating a spatial weights 

matrix W. The most common ways are the spatial lag and the spatial error model given in 

equations (1) and (2) (Anselin, 1988; Anselin, 2002). 

 

Spatial lag model:  y = ρWy + Xβ + ε      (1) 

Spatial error model:  y = Xβ + ε       with ε = (1 – ρW)
-1

u   (2) 

 

Common causes of spatial dependence in regional data are measurement problems caused by 

the arbitrary delimitation and/or aggregation of spatial units of observations (MAUP) and, 

most importantly, the presence of spatial externalities and spillover effects. Next to the 

aforementioned Moran‟s I statistic, a set of maximum likelihood tests can be performed to 

detect this spatial dependence. A first Lagrange Multiplier (LM) test is the the LMerr test, 

with as null hypothesis the absence of spatial dependence, and as alternative hypothesis the 

spatial error model. The second LM test, the LMlag test, has the same null hypothesis and as 

alternative hypothesis the spatial lag model (for more details see Anselin (2001)). Bera and 

Yoon (1993) and Anselin et al. 

(1996) also provide a robust 

version of these tests, 

respectively denoted as the 

RLMerr and RLMlag tests. 

These tests are commonly used 

to check if data are spatially 

autocorrelated, and if so, which 

type of spatial econometric 

model is the most appropriate to 

counterbalance this spatial 

dependence.  
Figure 6: regional labour productivity growth in EU 12 (1980-2002) 



We applied this methodology 

(Anselin, 2005) on labour 

productivity growth data of 173 

European regions (Figure 6;see 

Fiaschi et al. (2009) for an 

explanation of data and model). 

As the diagnostics of the first 

model in Table 2 show, a spatial 

error model forces itself on the 

data. However, such a spatial 

error model (the second model in 

Table 2; Figure 7) does not explain  

all residual variance of the first model. Since European regions are nested in countries, the 

VPC can detect if the country level is a source of unexplained variance. Indeed, the second 

model does not take into account the country level, and does not contain variables whose 

dimension is typically national. Table 3 confirms this country hypothesis as no less than 64% 

of the variance in regional labour productivity growth can be attributed to the country level. 

The spatial error model does not account for this spatial hierarchal autocorrelation since 71% 

of the variance in the residuals of the second model in Table 3 can be attributed to the country 

level. A third model, a simple OLS regression with a dummy variable for each country, seems 

to be superior to the spatial error model. Indeed, the LM tests could not detect spatial 

autocorrelation anymore, and the adjusted R² raised from 0.50 for the first model to 0.74 for 

the third model. Logically, no variance in the residuals of the last model can be attributed to 

the country level. To conclude, the detected spatial error correlation is informative about 

country level omitted regressors. Indeed, among others Anselin, Florax and Rey (2004) 

already reported that spatial error correlation can be caused by the omission of relevant 

regressors. This implies that when modelling regional phenomena, we may not ignore the 

hierarchical structure of the data, i.e. the nesting of regions in countries. 

 

 

 

 

 

 

 

Figure 7: residuals of the spatial error model 



  
OLS spatial error model 

OLS with country 

dummies 

Variable Est. S.D. Est.  S.D. Est.  S.D. 

Intercept -0.0092 0.0072 -0.030 0.0092  0.0038 0.0066 

PROD.REL.80 -0.0091 0.0015 -0.011 0.0017 -0.016 0.0024 

INV.RATE      0.012 0.010     

EMP.GR -0.0057 0.0017 -0.0041 0.0016 -0.0047 0.0015 

ECO.DEN  0.00041 0.00041         

SCF.on.GVA  0.13 0.068  0.28 0.062  0.19 0.057 

SCF.on.GVA2 -0.78 0.44 -1.3 0.39 -0.87 0.35 

D.SHARE.AGRI  0.015 0.012  0.043 0.012  0.024 0.012 

CON.80  0.0057 0.017  0.018 0.014 -0.031 0.013 

MIN.80 -0.023 0.0096 -0.023 0.0080 -0.026 0.0076 

NON.MRKT.SER.80 -0.0029 0.0071 -0.018 0.0062 -0.027 0.0078 

FIN.80  0.0038 0.023  0.055 0.020  0.035 0.018 

TRANS.80 -0.00080 0.019      0.017 0.015 

OTHER.SERV.80  0.040 0.012  0.042 0.011  0.029 0.011 

BE          0.0053 0.0014 

DK          0.0042 0.0035 

ES         -0.0091 0.0019 

FR          0.00056 0.0010 

GR         -0.012 0.0025 

LU          0.012 0.0039 

IE          0.014 0.0031 

IT         -0.0069 0.0014 

NL          0.00034 0.0016 

PT         -0.013 0.0034 

UK         -0.0035 0.0018 

 Adjusted R²   0.50      0.74   

LM error (df = 1)   8.69   p = 0.0032      2.31   p = 0.13 

LM lag (df = 1)   0.027 p = 0.87      1.60   p = 0.21 

robust LM error (df = 1)  11.00  p = 0.00091      1.07   p = 0.30 

robust LM lag (df = 1)    2.33  p = 0.13      0.36   p = 0.55 

Lambda           0.98     

LR test value         30.22    p: 3.86e-6     

Asymptotic standard err.           0.012  z: 79.38  

p: < 2e-16 

    

Log likelihood (error model)     7024.524     

AIC     -1376.9     

Table 2: results of the three models on European regional labour productivity growth  

 

EU12 y (Growth Rate) Spatial error model 

n=173 estimate (s.e.) VPC estimate (s.e.) VPC 

country level 4.4 e-5 (2.0e-5) 64% 3.4 e-5 (1.5e-5) 71% 

region level 2.5 e-5 (2.8e-6) 36% 1.4 e-5 (1.6e-6) 29% 

constant 0.019   (0.002)   0.0022 (0.0018)   

-2 loglikelihood -1308.932   -1405.201   

Table 3: Variance Partition Coefficients of the dependent variable and of the spatial error model residuals 



3.2 Modelling hierarchy: spatial multilevel modelling 

A multilevel regression model (Goldstein, 1995) has, next to a residual at the lowest level 

(eij), also a residual at a higher level (uoj). More formally, this can be written as: 

 

yij = β0j + β1xij + eij           (3) 

and β0j = β0 + u0j          (4) 

with i = lowest level (e.g. region) and j = second level (e.g. country) 

 

This model allows different level 2 units to have different intercepts and is therefore called 

random intercept model. The u0j–terms are the level 2 random effects or the level 2 residuals. 

Multilevel modelling not only has the advantage of getting a better understanding and more 

clear interpretation of the effects of higher levels, but ignoring the fact that data are grouped 

often causes underestimated standard errors of regression coefficients (Maas and Hox, 2004; 

Rasbash et al., 2005).  

 

Table 4 gives the results of two multilevel models with their corresponding empty models 

(models without variables, but with a hierarchical structure). The data are a selection out of 

the Belgian database Home-to-Work-Travel (Vanoutrive et al., 2009), and contain 2690 

worksites where both carpooling and cycling occur. Since the models have three levels, the 

aforementioned model in equations (3) and (4) is extended with one extra level, but the 

principles remain the same. The standard approach to evaluate a multilevel model is looking 

at the residuals. The so-called caterpillar plots (Figure 8) can be derived for every level. A 

peculiar feature of spatial multilevel models is that these residuals can be mapped, like in 

Figures 9 and 10. The plots in Figure 8 show that the bicycle model largely explains the 

variance between districts, only three of the 43 districts significantly differ from zero. 

Figure 8: caterpillar plot: level 3 residuals of the empty (left) and full (right) bicycle models together with their 

95% confidence intervals 



    

empty bicycle 

model 

full bicycle 

model 

empty carpool 

model 

full carpool 

model 

random part est. s.d. est. s.d. est. s.d. est. s.d. 

Level 3 (arrondissement) n= 43  0.90 0.21  0.06 0.02 0.005 0.002  0.00 0.00 

Level 2 (municipality) n = 375  0.09 0.02  0.05 0.01 0.005 0.002  0.003 0.002 

Level 1 (worksite) n = 2690  0.83 0.02  0.64 0.02 0.20 0.01  0.17 0.00 

fixed part                 

Constant -3.00 0.15 -3.55 0.26 0.63 0.02  0.54 0.04 

# Employees (log)   -0.31 0.04   -0.14 0.02 

Car accessibility (log)   -1.45 0.45   -0.31 0.13 

- Rail accessibility (log)    0.20 0.17   -0.22 0.07 

Job Density (log)   -0.13 0.08   -0.03 0.03 

Regular work schedules (log)    0.02 0.01    0.03 0.01 

Slope (log)    -1.24 0.20    0.01 0.06 

Flanders region    1.35 0.27    0.03 0.04 

Walloon region   -0.21 0.28    0.06 0.04 
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Manufacturing   -0.45 0.05    0.19 0.02 

Electricity; gas; water   -0.56 0.13    0.06 0.07 

Construction   -1.19 0.16    0.31 0.08 

Retail   -0.55 0.07    0.04 0.04 

Transport; communications   -1.10 0.08    0.16 0.04 

Finance   -0.90 0.10   -0.01 0.05 

Producer services   -0.73 0.09    0.13 0.04 

Health   -0.12 0.06   -0.22 0.03 

Higher Education    0.21 0.09   -0.25 0.05 

Public Transport companies   -0.28 0.11   -0.21 0.05 

Police    0.48 0.13   -0.21 0.07 

Local Governments    0.51 0.06   -0.05 0.03 

-2 Loglikelihood 7424.609 6603.185 3337.275 2948.272 

Table 4: results of the bicycle and carpool models 

 
Figures 9 and 10: level 3 residuals of the full bicycle model (left) and the corresponding LISA map (right) 



Both Chaix et al. (2005b) and 

Groenwegen et al. (1999) calculated 

the Moran‟s I for the residuals of a 

multilevel model to measure the 

unaccounted spatial autocorrelation. As 

Figures 9 and 10 show, the bicycle 

model does not eliminate all spatial 

autocorrelation at the district level 

(Moran‟s I = 0.11). However, the low 

level 3 variance of the full bicycle 

model reduces the importance of this  

„residual spatial pattern‟. The use of a third level does largely remove the spatial 

autocorrelation at the municipality level, since the estimates of this second level are made 

relative to the third level. Figure 11 shows the level 2 residuals of the carpool model and due 

to the model design, the average level 2 residual within an arrondissement approximates zero. 

As a consequence, detecting spatial patterns is not useful, but the map indicates the level 2 

observations with a high or low value relative to the other observations in the same level 3 

area. This can be used as a kind of performance index. 

 

It is important to notice that the residuals of these multilevel models are shrunken residuals. 

These residuals are not just the average of the lower level units, but also take into account the 

other observations of the entire dataset. This is an advantage for areas with a small number of 

observations, since they in general have a large standard deviation. In other words, the 

observed area mean is shrunken towards the centre of the whole population using a shrinkage 

factor (Rasbash et al., 2005). This shrinkage is relevant when discussing the use of country 

dummy variables. Langford et al. (1998) shows that fixed parameter estimates obtained by 

using dummies for areal units, can differ from the shrunken parameter estimates in a 

multilevel model. The desirability of this shrunk effect „in any particular model is a matter of 

debate, but a general rule is the categorical variables included in the model as a level will 

produce shrunken, or conditional estimates of contrasts whilst including a categorical 

variable as a variable, for example, as a set of dummy vectors, will produce unconditional 

estimates’ (Langford et al., 1998). Including dummy variables for broad classes of spatial 

location can still be useful, but this not allow other coefficients in the model to vary spatially 

(Brunsdon et al., 1998). Moreover, a hierarchical spatial regression analysis can be enriched 

Figure 11: level 2 residuals of the full carpool model 



by creating a random slope model. The multilevel model in equations (3) and (4) can be 

extended towards such a random slope model, as given in equations (5) and (6). The level 2 

regression lines have now an own slope. This kind of model is clearly superior to one with a 

myriad of dummy variables interacting with different other variables. 

 

yij = β0 + β1jxij + u0j + eij          (5) 

and β1j = β1 + u1j          (6) 

 

4 A comparison between spatial econometrics and spatial multilevel 

modelling 

 

By means of a comparison between the spatial econometrics and the spatial multilevel 

approach, we will now briefly discuss some relevant topics about regressions using spatial 

data. A multilevel structure can easily reflect administrative structures with different 

government levels, e.g. municipalities which are part of regions which are part of countries. 

An advantage of multilevel modelling is the possibility to incorporate more than two levels 

(spatial scales) in a straightforward way. However, a regression model can contain more than 

one, or a complex spatial weights matrix. But spatial multilevel modelling remains superior in 

modelling different scales simultaneously and in overcoming both the atomistic fallacy of 

individual-based studies, and the ecological fallacy of aggregated research. 

 

Spatial econometrics on the other hand uses a unique set of neighbours for every observation, 

which preserves a relation between neighbouring regions separated by a national boundary. 

Indeed, economic processes often neglect administrative or other boundaries and many 

processes are influenced more by the distance between objects than by their hierarchical 

setting.  

 

Spatial econometric models seldom account for missing neighbouring countries, like the 

absence of Switzerland in models of the European Union. As a result, some regions „jump‟ 

over missing regions to find neighbours, or find neighbours in only one direction. A 

multilevel approach on the other hand, suffers less from this „missing data‟ problem, but 

neglects all cross-boundary effects.  

 



Both approaches deal with the „Modifiable Areal Unit Problem' (MAUP), but while the 

spatial multilevel approach delivers a better understanding of the scale issue, the spatial 

econometrics approach better handles the zonation issue and the related spurious spatial 

autocorrelation. The difference between compositional and contextual data on the other hand, 

is merely a topic of spatial multilevel modelling.  

 

Space remains a challenging thing to incorporate in statistical models since several distinct 

processes operate at several different spatial scales, scales which vary over space as well. We 

started this paper with a list of geographic concepts and while focussing on proximity and 

hierarchy, concepts like scale, distance and location were mentioned. It seems that regional 

scientists may not stick to a single spatial concept. We now will finish with some comments 

on the combination of the proximity and the hierarchy approaches. 

 

5 Combining the two approaches 

 

Both spatial econometrics and multilevel modelling are established regression techniques 

which are extended to other econometric approaches, like for instance multilevel SEM 

(Structural Equation Modelling; (Muthén and Muthén, 2006)) and spatial econometric SEM 

(Oud and Folmer, 2008). Also hybrid approaches exist., like Case (1991) who imposed a 

block structure in the weights matrix and formed as a result a hierarchical spatial model, 

where all units that share a common higher order level are considered to be neighbours. 

Anselin (2002) warns for side effects of this type of model and it seems preferable to use a 

standard multilevel model in stead of a modified spatial econometrics approach. A real 

combination of both approaches is Elhorst and Zeilstra (2007), and also Langford et al. (1999) 

incorporates spatial effects in a multilevel model. But the latter concludes: „models can easily 

become very complex, and this is why we emphasize the need for hypotheses to be properly 

specified before modelling begins… …Complex models can easily be built, but less easily 

interpreted,…’  

 

Model parsimony remains an important evaluation criterion for models. As a consequence, 

complex models which incorporate both hierarchy and proximity must be treated with care. In 

many cases, accessibility variables can cover distance effects and as a result, remove the 

necessity to impose a hierarchical or spatial dependence structure on a model. In the carpool 



model, car and rail accessibility variables account for an important part of the spatial 

variation, as do the economic sector dummy variables, since different economic sectors have 

different spatial patterns. The use of country dummy variables is another example of an 

approach that can reduce model complexity. We showed in a model of labour productivity 

growth that a set of country dummy variables removed the need for a spatial error model. It 

seems that more effort should go not towards increasingly complex models, but towards the 

spatial assessment of models. Only few attempts are made to assess spatial multilevel models 

for spatial autocorrelation, or to look if a spatial econometric model ignores a hierarchical 

structure. This paper illustrated how the proximity and hierarchy approach can learn from 

each other. 
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