
Stochastic Collocation for Device-level Variability Analysis in
Integrated Photonics

Yufei Xing,1 Domenico Spina,2 Ang Li,1 Tom Dhaene,2 and Wim Bogaerts1, 3, ∗

1Photonics Research Group, Department of Information Technology,

Center for Nano and Biophotonics, Ghent University imec, Ghent B-9000, Belgium
2Department of Information Technology, Internet Based Communication Networks and Services (IBCN),

Ghent University iMinds, Gaston Crommenlaan 8 Bus 201, B-9050 Gent, Belgium
3Luceda Photonics, 9200 Dendermonde, Belgium

compiled: January 27, 2016

We demonstrate the use of stochastic collocation to assess the performance of photonic devices under the effect
of uncertainty. This approach combines high accuracy and efficiency in analyzing device variability with the
ease of implementation of sampling-based methods. Its flexibility makes it suitable to be applied to a large
range of photonic devices. We compare the stochastic collocation method to a Monte Carlo technique on a
numerical analysis of the variability in silicon directional couplers.

OCIS codes: (130.3120) Integrated optics devices; (000.5490) Probability theory, stochastic processes,
and statistics; (230.7370) Waveguides

http://dx.doi.org/10.1364/XX.99.099999

1. Introduction
Integrated Photonics, and in particular, silicon photon-
ics, is rapidly enabling complex photonic functions on
a chip [1]. However, variability due to fabrication pro-
cesses and operational conditions limits the complexity
of the circuits that can be implemented [2, 3]. A proper
analysis of the effects of the variability in geometrical,
electrical and optical parameters on the performance of
the photonic building blocks and circuits has become
crucial. Indeed, the variability introduced by the varia-
tions of the manufacturing process is a primary source of
degradation of larger photonic circuits, especially when
wavelength-selective filters are implemented [4]. The pri-
mary functional parameters that are affected are the
waveguide propagation constants (the effective index)
and the coupling coefficients in coupling structures.

The Monte Carlo (MC) method [5] is considered the
standard approach for variability analysis, thanks to its
accuracy and ease of implementation. Unfortunately,
the MC analysis has a slow convergence rate, and it
requires a large number of data points (simulations or
measurements). Therefore, MC has a very high compu-
tational cost, considering that accurate simulations of
photonic devices can be time and resource intensive.

The generalized polynomial chaos (gPC) expansion
has been applied in several domains as an efficient al-
ternative to the classic MC method [6–8] and, recently,
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it has been proposed for the variability analysis of pho-
tonic devices [9, 10].

The gPC-based modeling approach aims at express-
ing a stochastic process as a series of orthogonal basis
functions with suitable coefficients and gives an analyti-
cal representation of the variability of the system on the
random variables under consideration [11].

In this paper, we propose a stochastic collocation (SC)
method as an efficient alternative to characterize pho-
tonic devices under the effect of uncertainty. The fun-
damental principle of the SC approach is to approxi-
mate the unknown stochastic solution by interpolation
functions in the stochastic space. The interpolation is
constructed by repeatedly solving (sampling) the deter-
ministic problem at a pre-determined set of nodes in the
stochastic space. This approach offers similar high ac-
curacy and efficiency as the stochastic gPC method, but
at the same time, it is easy to implement, like sampling-
based methods (e.g. MC approach).

We apply the SC method to analyze the variability of
a key building block for Silicon photonic circuits: the
directional coupler. This device is essential in the con-
struction of wavelength filters, as it implements an ar-
bitrary fractional 2× 2 power coupling, but at the same
time, it is extremely sensitive to fabrication variations:
a small shift in linewidth or thickness of the core can
dramatically change the coupling coefficients.

The paper is organized as follows: Section 2 gives a
general introduction of SC methods. It provides the
essential mathematics knowledge that readers need to
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know to understand its application in the photonic do-
main. Section 3 uses directional coupler as an example
to test the performance of SC in performing variability
analysis of photonic devices. Section 4 draws the con-
clusions.

2. Stochastic Collocation Methods
SC methods are based on interpolation schemes to com-
pute stochastic quantities. The interpolation is con-
structed by repeatedly solving (sampling) the determin-
istic problem at a pre-determined set of nodes in the
stochastic space [12] (also defined as collocation points).
Indeed, a stochastic process Y (ξ) can be expressed as

Y (ξ) =

Q∑
i=1

Y (ξi)Li (ξ) (1)

where ξ denote the N stochastic parameters and
{Li(ξ)}Nn=1 represents the interpolation basis functions.

For a photonic device, the process Y could correspond
to the functional parameters such as the waveguide prop-
agating constants and the coupling coefficients in cou-
pling devices. The stochastic variables ξi correspond to
device properties affected in a stochastic way by fabri-
cation and operational conditions (e.g. waveguide line,
width or temperature).

In (1) different types of interpolation schemes can be
adopted (e.g. piecewise linear [12, 13], Lagrange [11, 14]
or interpolation methods that belong to the general class
of positive interpolation operators, like multivariate sim-
plicial methods [15]). However, the key issue for this ap-
proach is the selection of the support nodes, such that
using the minimal number of nodes one achieves a good
approximation.

For example, if the Lagrange interpolation scheme is
chosen, the element Li in (1) for a one-dimensional in-
terpolation can be expressed as

Li (ξ) =

Q∏
i=1, i 6=j

ξ − ξi
ξj − ξi

(2)

where Li is equal to 1 for ξ = ξj and is equal to 0 for
ξ = ξi. Next, for interpolation in multiple dimensions, a
tensor-product approach can be used and equation (1)
becomes

Y (ξ) =

Qk1∑
i1=1

···
QkN∑
iN=1

Y
(
ξk1
i1
, . . . , ξkN

iN

)(
Lk1
i1
⊗ · · · ⊗ LkN

iN

)
(3)

where ξki is the i−th node in the k−th direction and the
total number of nodes used in (3) is

Q =

N∏
n=1

Qkn (4)

As it can be seen from (4), the number of nodes re-
quired by the full tensor product increases rapidly with

the number of random parameters N . For example, if
three random variables are considered and 10 colloca-
tion points are used for each parameter, a total of 1000
nodes are required by the full tensor product approach.
Hence, the performance of the photonic device under
study must be evaluated for 1000 different combinations
of the random variables considered, leading to an expen-
sive computational time.

The required number of nodes can be significantly re-
duced by adopting sparse grids in the stochastic space,
based on the Smolyak algorithm [12, 16–19]. By choos-
ing the collocation points correctly, Smolyak algorithm
drastically reduces the total number of nodes used in
the interpolation with respect to the full tensor product
approach while preserving a high level of accuracy.

It is important to remark that the SC models are ex-
panded using interpolation functions of independent ran-
dom variables ξ [11]. In the general case of correlated
random variables, decorrelation can be obtained via a
variable transformation, such as the Nataf transforma-
tion [20] or the Karhunen-Loéve expansion [21].

The stochastic moments (mean, variance, ...) can be
computed utilizing analytical formulas and then very ef-
ficiently, once the analytical form of the interpolation
functions {Li(ξ)}Nn=1 has been decided. For example, if
the random variables ξ are defined in the sample space
Ω, the mean of Y (ξ) is defined as

µ (Y (ξ)) =

∫
Ω

Y (ξ)W (ξ) dξ (5)

where W (ξ) is the joint probability density function
(PDF) of the random variables ξ. Using equation (1)
in (5) leads to

µ (Y (ξ)) =

∫
Ω

Q∑
i=1

Y (ξi)Li (ξ)W (ξ) dξ (6)

which depends only on the interpolation functions Li (ξ)
and joint PDF W (ξ). Note that, if the choice of the in-
terpolation functions and probability measure does not
allow an analytical computation of the stochastic mo-
ments like (6), an efficient numerical solution can be used
(e.g. by MC analysis of the interpolation model or nu-
merical integration). Finally, it is important to remark
that it is not possible to define a priori the speed-up of
a generic SC modeling technique compared to the MC
method. Indeed, the number of nodes needed to com-
pute an accurate SC model (which is directly related to
the efficiency of SC methods, as described above) can-
not be decided upfront, since depends on the following
factors:

• the impact of the chosen random variables ξ on
the variations of the stochastic process considered
Y (dynamic stochastic processes require a higher
number of collocation points);
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• the interpolation scheme Li adopted (the more
powerful the interpolation scheme, the fewer nodes
are needed);

• the sampling strategy adopted (efficient sampling
strategy limit the number of collocation points
used);

• the number of random variables considered (the
higher the number of variables the more colloca-
tion points are needed).

However, it has been proven in the literature that,
for a limited number of random variables (indicatively
less than ten) SC methods are much more efficient with
respect to the MC analysis, see [11, 12, 14]. For stochas-
tic processes depending on a high number of random
variables, the efficiency of SC methods is significantly
reduced.

Two approaches can be used to increase the effi-
ciency of an SC modeling technique. Using nested sam-
pling schemes allows to adaptively choose the collocation
points (additional details are provided in Section 3.E and
Appendix 5.B). Adopting adaptive sparse grids [16] re-
duces the nodes requirement, which is especially useful
when a high number of random variables is considered.
For a more detailed reference on SC methods, we refer
the reader to [11, 12, 14, 16].

3. Directional Coupler Example

3.A. Benchmark Description

We demonstrate the use of SC for integrated photonics
through the analysis of a directional coupler in a silicon
photonics platform. Silicon photonics is rapidly gain-
ing adoption because its potential for large-scale inte-
gration and volume manufacturing. [22]. However, the
same high index contrast that enables dense integration
also makes silicon photonic waveguides extremely sen-
sitive to small imperfections in their geometry. Also,
the high thermo-optic coefficient of silicon makes sili-
con photonic devices very temperature sensitive. For
instance, a change in linewidth and thickness of waveg-
uide would vary effective index (neff ) of optical modes
noticeably, resulting in a shift of 1nm in the response
of a wavelength-selective filter. This variation leads to
performance degradation in devices such as directional
couplers, Mach-Zehnder interferometers (MZI) and ring
resonators, and limits the number of devices that a single
circuit can have.

Power coupling devices are essential parts for split-
ting and combining power in photonic circuits. Among
them, directional couplers (DC) are widely used for their
simplicity in layout and easy-to-understand operation.
An advantage of directional couplers compared to other
2 × 2 couplers is that the coupling ratio can be con-
tinuously adjusted by choosing the length of the cou-
pling section. Furthermore, DCs constitute the building
blocks of many larger photonic devices such as rings,
MZIs and so on.

A DC consists of two parallel waveguides and con-
necting bend sections: the light in a single waveguide
is mostly confined in the silicon core, but an exponen-
tially decaying field extends into the cladding. When
two waveguides are brought in proximity, the modes of
the two waveguides couple and form two supermodes
with opposite symmetry (an even and an odd mode).
The beating of these supermodes translates in a sinu-
soidal power transfer from one waveguide to the next
and back along the propagation axis z. The power cou-
pling K(z) in a DC can be expressed as [23]

K(z) = sin2(κz + κ0) (7)

The power coupling consists of two parts: the contri-
bution of the straight waveguide κz and of the bend
section κ0. Bend part will introduce an initial phase
in the coupling term. Usually, the bend contribution is
fairly small, and the power coupling is sinusoidally vary-
ing with the waveguide coupling section length z.

The rate of coupling is defined as the field coupling
coefficient κ, which is determined by the geometry of
the coupler cross-section, such as the waveguide width,
thickness, and gap between the waveguide cores.

Let us assume that, for simplicity, the two waveguides
in a DC are identical. As a result, the straight section
of the DC layout is defined by three parameters: the
waveguide width w, thickness t and gap g (Fig. 1). Fur-
thermore, we assume that, in the lithography process,
the centers of the two waveguides are located at the
designed position. It is a good assumption for optical
lithography techniques, but might be less accurate for
e-beam written devices. With this assumption, the sum
of the gap g and 2× the half-waveguide width w is con-
stant, as shown in Fig. 1. Therefore, in our example, we
can describe the full geometry of the directional coupler
with only two parameters: w and t.

In this study, we will use the SC technique to find
out how geometry variability influences the DC perfor-
mance, namely the coupling coefficient k. Indeed, due
to the fabrication variations, the fabricated linewidth w,
thickness t and gap g are different on the value chosen
during the design phase. To prove the robustness and
modeling power of the proposed approach, we assume
the width w and thickness t of the DC as correlated ran-
dom variables, rather than independent, following the
Gaussian distribution. It is not an unrealistic assump-
tion: thickness variations could induce over-etching on
the sidewalls.

It is good to note that the SC methods can deal with
random variables with arbitrary distribution. It is there-
fore not necessary that the t and w adhere to a Gaussian
distribution.

3.B. Simulation Setup

According to the theory of supermodes, we can write the
coupling coefficient κ as [23]
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Fig. 1: The upper plot shows the perspective view of a
symmetric DC. Red arrows present the flow of light.

Part of the light is coupled from bottom waveguide to
the above one. The cross section is amplified in the

lower plot. The mean width and thickness of the DC
are w0 and t0, respectively. The width w and thickness
t of the fabricated DC are indicated as dashed boxes.
The refractive indexes are nsi = 3.44, nSiO2 = 1.45.

κ =
π

λ
(neff o − neff e) (8)

where neff o and neff e are the effective index of asym-
metrical and symmetrical supermodes in DC. For our
silicon photonics devices, we assume the wavelength to
λ = 1.55 µm. Next, the nominal value of the width and
thickness are w0 = 450 nm and t0 = 220 nm, respec-
tively, while we fix the sum of width w and gap g at 650
nm.

To calculate κ of a given geometry, we define the DC
structure accordingly and simulate neff o and neff e

in the mode solver Fimmwave using its Film Matching
Mode (FMM) solver. For later performance compar-
isons, all simulations are performed on a computer with
an Intel Core i5 2500 quad-core CPU clocked at 3.3 GHz
and 8GB of memory.

3.C. Problem Definition
As mentioned in 3.A, we considered the coupling coef-
ficient K of a directional coupler as a stochastic pro-
cess depending on two correlated random variables with
Gaussian PDFs: the width w and the thickness t. Hence,
the joint PDF of the two random variables considered is
defined as

Wη =
1

2πdet(C)
1
2

exp

(
−1

2
(η − µ)

T
C−1 (η − µ)

)
(9)

Fig. 2: 2D contour plot of field coupling coefficient vs.
waveguide width and thickness.

where η = [w t]
T

is the vector of the correlated random

variables considered, the vector µ = [w0 t0]
T

contains
the corresponding nominal values (mean values) w0 and
t0, and the matrix C is the covariance matrix. The sym-
bol det(·) represents the matrix determinant operator.
The covariance matrix is defined as

C =

[
(w0σw)2 ρw0σwt0σt
ρw0σwt0σt (t0σt)

2

]
where the symbols σw and σt are the normalized stan-
dard deviations of the w and t, while ρ is the correlation
coefficient of these two random variables. The correla-
tion coefficient |ρ| < 1 denotes the strength of correla-
tion: the random variables considered are independent
if ρ = 0 and strongly correlated if |ρ| = 1. Note that, by
describing this example in terms of normalized standard
deviations, we make further analysis independent of the
actual nominal values of our 2 random variables.

To validate the robustness of the proposed method,
σw and σt are chosen equal to 2% and the correlation
coefficient ρ = 0.9, which is a challenging example to
study since the coupling coefficient is quite dynamic with
respect to the parameters considered, see Fig. 2. The
proposed method is discussed in details in the following
and summarized Fig. 3.

3.D. Variable Transformation
Now, SC methods in the form (1) deal with independent
random variables, as described in Section 2. Hence, to
fit the problem into the SC framework, first of all, it is
necessary to express the coupling coefficient in two in-
dependent Gaussian random variables, starting from the
correlated random variables η, defined by (9). As men-
tioned in Section 2, such decorrelation can be obtained
via a variable transformation. Thanks to the Karhunen-
Loéve expansion [21], it is possible to express the vector
of correlated Gaussian random variables η in the vec-
tor of uncorrelated Gaussian random variables with zero
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Photonic Device
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Computing         SC Model

Choosing Interpolation 

Scheme
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Nodes 
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via 

SC Model
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Random Variables

Evaluating Photonic

Device Performance on Nodes

Fig. 3: Flow chart of the proposed technique.

mean and unit variance ξ = [ξ1, ξ2]T as

η = µ+ VE
1
2 ξ (10)

Where E and V are the diagonal matrix of the eigenval-
ues and the full matrix of the eigenvectors of the covari-
ance matrix C, respectively. Since uncorrelated Gaus-
sian random variables are also independent, we have now
expressed the coupling coefficient as a stochastic process
which depends on the pair of independent Gaussian ran-
dom variables (ξ1, ξ2). An accurate description of the
Karhunen-Loéve expansion for Gaussian random vari-
ables is given in Appendix 5.A.

3.E. SC Model Computation
To compute an SC in the form (1), the first step is choos-
ing the interpolation scheme: the Lagrange interpolation
scheme is adopted in this example for its modeling power
and ease of implementation. Next, a rule which guaran-
tees a good quality of the approximation must be used to
choose the collocation points for each random variable:
ξ1 and ξ2. In this example, the Clenshaw Curtis rule
is adopted [17]: the collocation points for each random
variable are the extrema of the Chebyshev polynomials.

Now, the total number of nodes could be obtained us-
ing the full tensor products of the nodes chosen for each
random variable, but it would not be efficient, as dis-
cussed in Section 2. Instead, the nodes are chosen over
a sparse grid based on the Smolyak algorithm. Indeed,
the adoption of the Smolyak algorithm allows building
our SC model by using only a subset of all the colloca-
tion points given by the full tensor product [17]. Fur-
thermore, the collocation points chosen by the Smolyak
algorithm based on the Clenshaw-Curtis rule are nested:
if additional nodes are required to model the DC accu-
rately, the nodes already computed are kept in the new
sparse grid, reducing the number of evaluation of the
DC coupling coefficient. See Appendix 5.B for addi-
tional details on the Smolyak algorithm. As a result,
only 65 collocation points (Fig. 4) are required to build
the desired SC model, and the values of the coupling co-
efficient at the interpolation nodes are computed using
the Film Matching Mode (FMM) solver Fimmwave.

3.F. Directional Coupler Variability Analysis
Finally, the variability analysis for the coupling coeffi-
cient of the directional coupler under study is performed
using an SC model depending on the pair of indepen-
dent Gaussian random variables (ξ1, ξ2) and the results
obtained are validated through comparison with an MC
analysis based on the Fimmwave FMM solver On the
directional coupler cross section for the couple of corre-
lated random variables (w, t). To compare the perfor-
mance of the two methods, the same set of 10000 sam-
ples for the pair of correlated random variables (w, t)
(see Fig. 5). The corresponding values for the indepen-
dent random variables (ξ1, ξ2) are used to estimate the
device variability features.

The proposed method shows an excellent accuracy
compared with the classical MC analysis, as shown in
Table 1, Figs. 6, 7. In particular, the mean and the
standard deviation of the coupling coefficient obtained
employing the two methods are reported in Table 1: the
relative error in the estimation of the mean and the stan-
dard deviation is only 9.0×10−5 and 5.6×10−3, respec-
tively. Apart from stochastic moments, more compli-
cated functions of the stochastic process under study
can be estimated: the probability density and cumula-
tive distribution function (CDF) of κ obtained utilizing
the two methods considered are in excellent agreement,
as shown in Fig. 7.

Table 1: Performance summary of Stochastic
Collocation and Monte Carlo simulation.

Monte Carlo Stochastic Collocation

Mean value 65160 65166

S.t.d value 2616.9 2631.4

From the field coupling coefficient, we can also easily
derive performance parameters of a directional coupler
such as 3dB-coupling length from
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Fig. 4: Top: the red exes (×) represent the
interpolation nodes for the normalized independent

random variables ξ1 and ξ2 used to build the SC model.
Bottom: the blue circles (◦) are the corresponding

values for the correlated random variables w and t used
to compute the coupling coefficients in Fimmwave.
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Fig. 5: Sampling points used to perform the MC
analysis through direct Fimmwave simulations for the
correlated random variables (w, t). The corresponding

values for the independent random variables (ξ1, ξ2) are
used to evaluate the SC model computed.
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Fig. 6: Blue circles (◦): coupling coefficient computed
via the MC analysis for the 10000 (w, t) samples shown

in Fig. 5. Red (×)-markers: corresponding values
obtained by evaluating the SC model.
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Fig. 7: The probability density function PDF and CDF
of the coupling coefficient for λ = 1.55µm. The blue

solid and red dashed line are PDF and CDF obtained
by means of the SC model, respectively, while the blue
circles and red squares represent the same quantities

computed by means of the MC analysis.

l3dB = arcsin(sqrt(0.5))/κ. (11)

As shown in Fig. 8, the proposed method shows an
excellent modeling accuracy and a good estimation of
the PDF and the CDF of the 3dB-coupling length l3dB .

Furthermore, as presented in Table 2, the SC method
has dramatically saved computational cost. Note that,
the SC method took a two-step procedure to perform
the same variability analysis. Initially, SC required 65
simulations to compute the coupling coefficient at the
collocation points. Next, we used the SC model over
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Fig. 8: The probability density function PDF and CDF
of the 3dB-coupling length for λ = 1.55µm. The blue
solid and red dashed line are PDF and CDF obtained
by means of the SC model, respectively, while the blue
circles and red squares represent the same quantities

computed by means of the MC analysis.

10000 samples of the independent random variables in
Monte-Carlo method. Hence, the total computational
time of the SC method is 8 min and 59 s, which rep-
resents a speed-up of a factor 146× with respect to the
MC analysis performed in Fimmwave for the couple of
correlated random variables (w, t), which required 21 h
53 min 14 s.

4. Conclusion
This paper has presented the application of a novel tech-
nique for the efficient variability analysis of photonic de-
vices, such as directional couplers. It is based on the use
of stochastic collocation methods. Thanks to the flexibil-
ity in the choice of the interpolation schemes and the ef-
ficiency of sparse grid sampling to choose the collocation
nodes for multiple dimension, the proposed approach is
flexible and can be applied to study a broad range of
photonic devices. The accuracy and efficiency of the
proposed technique have been verified using comparison
with the classic MC analysis for a pertinent numerical
example, achieving a simulation speedup of 146×.

5. Appendix
5.A. Karhunen-Loéve expansion and Correlated
Gaussian Random Variables
Let us assume that the correlation matrix CN×N for
the random variables η under study is symmetric and
positive-definite. Then, C and can be diagonalized as

C = VEVT (12)

Thanks to (12), equation (9) becomes

Wη =
1

2πdet(E)
1
2

exp

(
−1

2
(η − µ)

T
VE−1VT (η − µ)

)
(13)

Hence, the Karhunen-Loéve expansion is a simple change
of variables for correlated Gaussian random variables fol-
lowing the non-degenerate multivariate normal distribu-
tion (9). Furthermore, it is possible to express the joint
probability density function (13) with respect to a vector
of independent Gaussian random variable x, with zero

mean and variance equal to [Eii]
N
i=1, as

Wx =
1

2πdet(E)
1
2

exp

(
−1

2
xTE−1x

)
(14)

where

x = VT (η − µ) (15)

Finally, the vector x can be written as

x = E
1
2 ξ (16)

where ξ is a vector of normalized Gaussian random vari-
ables with zero mean and unitary variance. Equation
(10) can be obtained by combining (15) and (16).

5.B. Smolyak algorithm
Let us express a stochastic process Y depending on one
random variable ξ by means of the Lagrange interpola-
tion scheme as [16]

U(ξ) =

Q∑
i=1

Y (ξi)Li (ξ) (17)

where Li is given by equation (2). The Q nodes can
be chosen from a node distribution which guarantees
a good quality of the approximation (i.e. the extrema
of the Chebyshev polynomials). Extending (17) to the
case of multiple random variables can be performed via
tensor product, as it has been shown in Section 2, and
equation (17) becomes

Y (ξ) = Uk1 ⊗ · · · ⊗UkN =

Qk1∑
i1=1

· · ·
QkN∑
iN=1

Y
(
ξk1
i1
, . . . , ξkN

iN

)(
Lk1
i1
⊗ · · · ⊗ LkN

iN

)
(18)

where Ukj represents the interpolation scheme in the
form (17) with respect to the random variable ξj and N
is the number of random parameters considered. The
total number of nodes required to compute (18) is the
given by the product of the nodes used for each random
parameter, as shown in (4). Clearly, the required num-
ber of nodes grows very quickly with respect to the num-
ber of parameters considered. Indeed, if only two nodes
are used for each random variable, the total number of
points required for a full-tensor product interpolation is
Q = 2N .

The Smolyak algorithm allows to build multi-
dimensional interpolation functions based on a minimal
number of nodes by expressing the desired interpolation
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Table 2: Computation time of Stochastic Collocation and Monte Carlo simulation.

Variability analysis technique Simulator Number of points Computation time

Monte Carlo Fimmwave FMM Solver 10000 21 h 53 min 14 s

Stochastic
Collocation

Stochastic Modeling Fimmwave FMM Solver 65 8 min 32 s

MC using stochastic model SC stochastic model 10000 27 s

Total Time 8 min 59 s

as a linear combination of tensor products. In partic-
ular, the property of the one-dimensional interpolation
is conserved for higher dimensions. Indeed, the sparse
interpolant Aq,N given by the Smolyak algorithm is

Aq,N (ξ) =∑
q−N+1≤|k|≤q

(−1)q−|k|

(
N − 1

q − k

)
(Uk1 ⊗ · · · ⊗UkN )

(19)

where q − N is the order of interpolation, AN−1,N = 0
and k = (k1, . . . , kN ) with |k| = k1 + · · · + kN . Hence,
the interpolation function is built by adding a combina-
tion of one dimensional interpolant of order kj with the
constraint that the total sum |k| across all parameters is
between q−N+1 and q. Note that, kj can be considered
as the interpolation level along the j-th direction.

Let us denote Θ as the set of points utilized in the one-
dimensional function interpolation. According to (19),
the stochastic process Y must be computed at the nodes
of the sparse grid Hq,N given by

Hq,N =
⋃

q−N+1≤|k|≤q

Θk1
1 × · · · ×ΘkN

N (20)

It is important to notice that, by choosing a suit-
able node distribution, such as Chebyshev or Gauss-
Lobatto points, the sets of collocation points Θk are
nested. Hence, the sparse grid of order q contains all
the nodes computed for the sparse grid of order q − 1
and the stochastic process Y must be evaluated only on
few new collocation points.
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