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ABSTRACT 

Recently, there has been wide interest in the effects of transcranial direct current stimulation (tDCS) of the 

dorsolateral prefrontal cortex (DLPFC) on cognitive functioning. However, many methodological questions 

remain unanswered. One of them is whether the time interval between active and sham-controlled stimulation 

sessions, i.e. the Interval Between Sessions (IBS), influences DLPFC tDCS effects on cognitive functioning. 

Therefore, a systematic review and meta-analysis was performed of experimental studies published in PubMed, 

Science Direct, and other databases from the first data available to February 2016. Single session sham-

controlled within-subject studies reporting the effects of tDCS of the DLPFC on cognitive functioning in healthy 

controls and neuropsychiatric patients were included. Cognitive tasks were categorized in tasks assessing 

memory, attention, and executive functioning. Evaluation of 188 trials showed that anodal vs. sham tDCS 

significantly decreased response times and increased accuracy, and specifically for the executive functioning 

tasks, in a sample of healthy participants and neuropsychiatric patients (although a slightly different pattern of 

improvement was found in analyses for both samples separately). The effects of cathodal vs. sham tDCS (45 

trials), on the other hand, were not significant. IBS ranged from less than one hour to up to one week (i.e. 

cathodal tDCS) or two weeks (i.e. anodal tDCS). This IBS length had no influence on the estimated effect size 

when performing a meta-regression of IBS on reaction time and accuracy outcomes in all three cognitive 

categories, both for anodal and cathodal stimulation. Practical recommendations and limitations of the study are 

further discussed.  
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INTRODUCTION 

In recent years, researchers have become increasingly interested in the effects of transcranial direct current 

stimulation, a non-invasive brain stimulation (NIBS) technique. tDCS operates by means of the delivery of a 

low-intensity direct current (e.g. 1-2 mA) via an anodal electrode and a cathodal electrode attached to the scalp 

surface. This way, tDCS modulates spontaneous cortical activity. More specifically, anodal stimulation increases 

motor cortical excitability (Nitsche and Paulus 2000; Nitsche and Paulus 2001; Purpura and McMurtry 1965), 

whereas cathodal stimulation decreases motor cortical activity (Nitsche and Paulus 2000; Nitsche et al. 2003). 

Nevertheless, the neurophysiology of tDCS is more complex, particularly for brain areas other than the motor 

cortex. Not only synaptic processes have been demonstrated to be involved (e.g. NMDA-receptor dependent 

changes in synaptic strength; Liebetanz et al. 2002), non-synaptic processes and prolonged neurochemical 

changes may be of importance as well (Brunoni et al. 2012). The dorsolateral prefrontal cortex (DLPFC) is one 

of the most frequently targeted stimulation sites in tDCS studies. Studies have shown that tDCS has modulatory 

effects on attention (Gladwin et al. 2012b; Kang et al. 2009; Kang et al. 2012; Nelson et al. 2014; Nozari and 

Thompson-Schill 2013), memory and verbal processing (Fertonani et al. 2010; Fertonani et al. 2014; Metuki et 

al. 2012; Sela et al. 2012; Vannorsdall et al. 2012; Wirth et al. 2011), and executive functioning (including 

working memory; Andrews et al. 2011; Berryhill and Jones 2012; Boggio and Khoury 2009; Boggio et al. 2006; 

Dockery et al. 2009; Filmer et al. 2013; Fregni et al. 2005; Gladwin et al. 2012a; Hammer and Mohammadi 

2011; Harty et al. 2014; Hoy et al. 2014; Jo et al. 2009; Keshvari et al. 2013; Leite et al. 2011; Leite et al. 2013; 

Mulquiney and Hoy 2011; Penolazzi et al. 2010; Plewnia et al. 2013; Saidmanesh et al. 2012; Vanderhasselt et 

al. 2013a; Vanderhasselt et al. 2013b; Wu et al. 2014; Zmigrod et al. 2014); for a meta-analysis of the effects of 

tDCS on working memory, see Brunoni and Vanderhasselt (2014), among others.  

However, some recent systematic reviews have suggested otherwise, i.e. that tDCS effects may be mixed and 

contradictory (Tremblay et al. 2014), or even absent (Horvath et al. 2015; however, see also Price and Hamilton 

2015). One reason for such findings is that tDCS presents a number of fundamental methodological issues 

(Horvath et al. 2014), and that this heterogeneity could hammer the internal validity of the growing body of 

research conducted on the area. Particularly, little is known regarding the influence of the time between the 

administration of an active and a sham stimulation in within-subject, single-session, sham-controlled tDCS 

studies. Often, the time of the Interval Between Sessions (IBS) is chosen empirically, with lengths varying 

between less than one hour (Fertonani et al. 2010; Fregni et al. 2005; Gladwin et al. 2012b; Knechtel et al. 

2014a; Knechtel et al. 2014b), to up to two weeks (Ohn et al. 2008). Although studies on motor cortical 
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excitability showed that the after-effects of tDCS may last several hours (Nitsche et al. 2008), no such systematic 

exploration for cognitive measures has been conducted yet. Comprehension of the IBS length-effect would, 

however, greatly impact on tDCS cognition research. If, for instance, the length has little-to-no effect on 

cognitive outcome measures, the study duration could be shortened (i.e. days instead of weeks). This would be 

advantageous as, with a large IBS, other subject variables (e.g. menstrual cycle, mood, stress) can vary more 

compared to a short IBS. To date however, the IBS length has been increasing steadily, which can introduce 

noise to the study. Furthermore, studies can become more standardized if a universal IBS is used in future 

studies. 

Therefore, our aim is to evaluate whether the effects of tDCS applied to the DLPFC on cognitive outcome 

measures is influenced by the length of the IBS. To this end, we performed a systematic review and meta-

analysis of tDCS studies using cross-over, single session, sham-controlled designs that investigate the effects of 

DLPFC neuromodulation on cognitive measures in healthy volunteers and neuropsychiatric patients. Our main 

focus is on the effects of tDCS on neuropsychological functioning. Therefore, only studies investigating DLPFC 

are included in the systematic review. Accordingly, studies targeting other brain regions (e.g. motor cortex) and 

investigating the effects of neuromodulation on other functions (e.g. movement) were not included. Given that 

anodal tDCS and cathodal tDCS have opposing effects on cortical excitability, respectively increasing and 

decreasing activity in the neural tissue being stimulated, analyses were performed for each polarity separately. 

Anodal prefrontal tDCS is expected to decrease response times and increase the percentage of correct responses, 

whereas cathodal prefrontal tDCS is expected to increase response times and decrease accuracy (although, see 

Jacobson et al. 2012).  

 

MATERIAL AND METHODS 

We conducted a systematic review and meta-analysis according to the recommendations of the Cochrane group 

guidelines (Higgins and Green 2008), including the following procedures: literature review, selection of eligible 

articles according to predefined inclusion and exclusion criteria, assessment of quality of the included studies, 

data extraction of outcomes and other relevant variables, and a quantitative synthesis and meta-analysis of the 

results. This report follows PRISMA guidelines (Liberati et al. 2009). Discrepancies were resolved by 

consensus.  
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Literature review. The first step was a literature search of following databases: PubMed, Web of Science, 

Google Scholar and Science Direct. Published articles were searched from the first data available to 5 February 

2016 (incl. articles available online-only). We used the following key words: (1) (“transcranial direct current 

stimulation” OR “tDCS”) and (“dorsolateral prefrontal cortex” OR “DLPFC”), and (2) “transcranial” OR 

“transcranial direct current stimulation” OR “tDCS” OR “direct current stimulation”. We also looked for 

additional references in retrieved articles and reviews. Subsequently, we checked each article according to our 

inclusion criteria.  

Eligibility criteria. The included studies had to: (a) be written in English; (b) have a single-session within-

subject design; (c) be randomized and sham-controlled; (d) enroll either healthy volunteers or neuropsychiatric 

patients; (e) perform transcranial direct current stimulation on dorsolateral prefrontal cortex; (f) provide data (in 

the article or upon request) of the mean and standard deviation (SD) on cognitive measures. Furthermore, case 

studies, studies on preconditioning, reviews, duplicates and unrelated studies were excluded.  

Quality assessment. We used the Cochrane risk of bias tool that assesses the following criteria (according to the 

Cochrane guidelines; Higgins and Green 2008): (a) sequence generation – whether randomization and/or 

counterbalancing was performed; (b) allocation concealment – if the method for randomization was concealed 

properly; (c) blinding participants – whether subjects and/or investigators were blind to the allocation group and 

if a reliable sham method was used; (d) incomplete outcome data – whether all data was obtained by the 

researchers; (e) selective outcome reporting – whether the authors reported on the results for all the pre-specified 

primary objectives.  

Data extraction. From each article, we extracted data of sample characteristics (i.e. extraction of the sample 

size, whether subjects were healthy volunteers or not, gender, age), study design (i.e. randomization and/or 

counterbalancing, blinding, how missing data were handled, interval-between-sessions), characteristics of tDCS 

intervention (i.e. for sham and active stimulation, the site of anodal and/or cathodal stimulation), and 

characteristics of the cognitive task (i.e. type). IBS length was operationalized differently across studies. When 

the exact or average IBS length was not reported (or not communicated personally), and rather the authors 

described an IBS interval (e.g. “48h-72h”) or the minimum IBS length (e.g. “at least 48h”) that was used, the 

minimum length was used in our analysis (i.e. 48h in the examples above). IBS lengths were subsequently 

converted to days (d) when necessary. Finally, we extracted data on perceived blinding and adverse effects. 
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For the cognitive outcomes, we extracted the following data: (a) mean RT and standard deviation (SD) of RT; 

(b) percentage of correct responses and the corresponding SD, and; (c) percentage of errors and the 

corresponding SD. Data post-tDCS was always extracted and, if available, data pre-tDCS was extracted as well. 

However, due to a small amount of trials measuring error percentages, and a small amount of studies testing the 

cognitive outcomes at baseline (pre-tDCS), we could not include these data in the analyses.  

For data reduction of the cognitive outcomes, cognitive tasks were categorized in three different task types 

according to specific theoretical models: (1) Memory: all memory tasks not assessing working memory were 

classified in this category; We did not specify a language category since these tasks mostly measure memory 

processes (e.g. semantic memory, object recognition, picture naming, among others). (2) Attention: tasks 

assessing sustained attention (e.g. detection task) and divided attention (e.g. dual auditory and visual 

discrimination task), among others were included in the attention category (Cohen et al. 1993). However, it must 

be mentioned that all tasks included in this meta-analysis measure attention to a certain degree; and (3) 

Executive functioning: according to Miyake et al. (2000) tasks that evaluate shifting, inhibition and updating (i.e. 

working memory) can be considered executive functioning tasks. Therefore, working memory tasks (e.g. n-back) 

were classified in this category.  

Quantitative analysis. All analyses were performed using Stata software version 12 (Statacorp, TX, USA). 

First, we categorized all experiments as either anodal tDCS (+ reference), cathodal tDCS (+ reference), or bi-

frontal tDCS (e.g. simultaneous stimulation of the left and the right DLPFC). Bi-hemispheric trials were then 

mostly allocated to the anodal tDCS category as many authors indicate a shift of neural activity towards the 

hemisphere under anodal stimulation. However, in one study in which bi-frontal stimulation was used, Nelson et 

al. (2014) specifically make a distinction between an anodal condition and a cathodal condition. In this case, we 

follow this distinction made by the authors. In order to meta-analyze the results across studies, an effect size had 

to be estimated for each trial comparing the effects of either anodal tDCS and sham tDCS, or cathodal tDCS and 

sham tDCS on the cognitive outcomes. Therefore, for each outcome, we calculated the standardized mean 

difference (SMD) and the pooled standard deviation for each comparison. Cohen’s d was used as measure of 

effect size (ES). Subsequently, the effect sizes needed to be pooled into a measure of the effect size across 

studies. A random-effects model was used to measure the pooled effect size, weighted by the inverse variance 

method. To answer our research question, the effect size of the difference between active tDCS (anodal vs. 

cathodal) and sham tDCS across studies was then plotted against the IBS length of each study using meta-

regression techniques. The Chi-square test was used to assess heterogeneity for each outcome. Egger’s test and 
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Begg’s funnel plot were used to assess risk of publication bias. Meta-regression was used to assess heterogeneity 

and identify moderators influencing the results. The following variables were meta-regressed: age (continuous), 

clinical condition (healthy vs. psychiatric patients), gender (% females), and laterality (left vs. right). Only one 

variable was meta-regressed at a time.  

 

RESULTS 

Overview. We obtained 3119 references on Science Direct, Web of Science, Google Scholar and PubMed using 

our specific search criteria. However, 3018 studies were excluded after title and abstract review for reasons 

described earlier (cf. methods, eligibility criteria). In total, 101 articles were more closely inspected. However, 

following a full-text evaluation, another 40 references were further excluded due to ineligibility (for an 

overview, see Online Resource 1). For example, either the reports did not assess cognitive outcome measures, 

the studies used a variant of tDCS  (e.g. a three- or four-electrode setup, intermittent tDCS, slow oscillatory 

tDCS), the studies did not evaluate single sessions, or the studies were excluded for other reasons (e.g. no overall 

RT, accuracy or error rates were reported, a subliminal face paradigm was used, stimulation effects were 

analyzed simultaneously for DLPFC and parietal cortex stimulation, and not for DLPFC separately). Finally, 5 

eligible studies were excluded due to the requested data not being provided by the authors. In sum, 61 studies 

were included in the review (for a flow-chart, see Online Resource 2). However, some studies reported more 

than one experiment (e.g. different samples), while many reported more than one comparison (e.g. tDCS in 

different samples, diverse outcome facets). Therefore, each experiment/comparison was considered a different 

dataset (total amount of trials, n=233; anodal tDCS studies, n=188 trials; cathodal tDCS studies, n=45 trials; see 

Online Resource 3). 

Quality assessment. Quality assessment showed that all studies have a crossover single-session within-subject 

design. Furthermore, in 14 reports there was a random allocation of subjects to the different stimulation 

conditions, while in 27 studies stimulation conditions were counterbalanced across subjects. In the remainder of 

the studies, randomization as well as counterbalancing was used. Unfortunately, in only 6 out of 61 studies there 

was a low risk of allocation concealment bias (i.e. almost all studies did not report if and how concealment took 

place). In most studies, sham stimulation was performed by turning off the electric current shortly after 

stimulation onset. The length of the active period of stimulation during the sham session differed between 

studies, ranging from 5 seconds (Fregni et al. 2005; Mylius et al. 2012) up to 2 minutes and 45 seconds 
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(Andrews et al. 2011; Hoy et al. 2013; Hoy et al. 2014). However, in 3 studies tDCS was given with a placebo 

stimulator (Keeser et al. 2011; Balconi and Canavesio 2014; Balconi and Vitaloni 2014), while in 1 study, the 

stimulator was turned off for the entire session (Beeli et al. 2008). Regarding blinding, 47 out of the 61 studies 

were single-blind. The other 14 studied used a double-blind design. To this end, the tDCS apparatus was either 

turned off automatically by entering a code prior to tDCS administration (Hoy et al. 2013; Hoy et al. 2014; 

Nieratschker et al. 2014; Plewnia et al. 2013; Teo et al. 2011; Turi et al. 2014; Wolkenstein and Plewnia 2013; 

Wolkenstein et al. 2014) or the person delivering tDCS was not the person analyzing the data (Kang et al. 2009; 

Kang et al. 2012). In the remaining 3 studies, the procedure for double blinding was not mentioned (Gill et al. 

2014; Powell et al. 2014; Sela et al. 2012). The time period in between the active stimulation session and the 

sham stimulation session ranged from 3.5 minutes (Beeli et al. 2008) to two weeks (Ohn et al. 2008). However, 

there is a large variety in the lengths of IBS. The risk of incomplete outcome data and selective outcome 

reporting were generally low across studies. Only two studies have a high risk of incomplete outcome data 

(Cerruti and Schlaug 2009; Dockery et al. 2009) and three studies have a high risk of selective outcome reporting 

(Cerruti and Schlaug 2009; Javadi and Cheng 2013; Kang et al. 2012). To date, researchers investigating the 

effects of tDCS are advised to evaluate the occurrence of adverse effects as well. Of the studies included in this 

review, however, only 35 of the 61 studies report having evaluated side effects or adverse effects (i.e. either in 

the article or upon request). Most studies only included right-handed participants. Other exclusion criteria were 

more diverse. Clinical samples of the included studies were on a stable dose (Hoy et al. 2014; Kang et al. 2012; 

Knechtel et al. 2014a; Powell et al. 2014; Vercammen et al. 2011; Wolkenstein and Plewnia 2013) or did not 

take psychiatric medication (Boggio et al. 2006; Gorini and Lucchiari 2014). Psychiatric interviews and/or 

questionnaires were used to screen patients. In summary, the procedures that were used for including and 

excluding subjects, and for randomization, counterbalancing, sham stimulation, and sham blinding suggest 

overall good quality of the studies (Cochrane risk of bias, Online Resource 4).  

Main results. Only response time (RT) data and data on the percentage of accurate responses (i.e. accuracy; 

ACC) are included in the analysis. Data on the percentage of erroneous responses was not included due to small 

amount of trials (n=44; 18.88% of the trials reported the percentage of errors). Furthermore, baseline data was 

not included in the analysis for the same reason (n=65; 27.89% of the trials reported baseline data) as most 

studies (73.77%) did not perform a baseline assessment.  

Response times. For anodal tDCS (N of RT trials = 124) Cohen’s d for the pooled random-effects 

standardized mean difference (SMD) was -0.107 (95% CI -0.17 to -0.05, p<0.01, Fig. 1a). Overall, 
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participants were faster in responding after anodal vs. sham non-invasive brain stimulation. In sub-

analyses for the three task categories separately, the significant effect of anodal tDCS on RT was found 

for executive functioning tasks only (Cohen’s d-0.0117, 95% CI -0.17 to -0.05, p<0.01). No significant 

effects of anodal tDCS on RT were found for memory tasks (Cohen’s d -0.108, 95% CI -0.27 to 0.05, 

p=0.19) and attention tasks (Cohen’s d -0.04, 95% CI -0.21 to 0.13, p=0.61). No significant 

heterogeneity was observed (I² = 0%; χ²(123) = 73.24, p = 1). Meta-regression analysis showed no 

significant effect of laterality (left vs. right anodal stimulation) on the effect sizes (β = 0.05, SE = 0.046, 

p = 0.25). More importantly, there was no significant effect of IBS on the effect size (β = 0.005, SE = 

0.009, p = 0.58; Fig. 1b). Cathodal tDCS (N of RT trials = 36) had no significant effect on overall RT 

(Cohen’s d 0.18, 95% CI -0.07 to 0.44, p=0.16; Fig. 2a), nor was a significant effect found when 

splitting the data over memory tasks (Cohen’s d -0.04, 95% CI -0.28 to 0.19, p=0.71), attention tasks 

(Cohen’s d 0.42, 95% CI -0.24 to 1.09, p=0.21) and executive functioning tasks (Cohen’s d 0.12, 95% 

CI -0.07 to 0.31, p=0.21). However, significant heterogeneity was observed for the overall analysis (I² = 

82.50%; χ²(35) = 199, p<0.01), as well as specifically for the attention sub-category (I² = 82.50%; 

χ²(13) = 178, p < 0.01). Meta-regression analysis showed no significant effect of laterality (left vs. right 

cathodal stimulation) on the effect sizes (β = -0.03, SE = 0.26, p = 0.91). Finally, there was no 

significant effect of the IBS on the effect sizes (β = -0.069, SE = 0.06, p = 0.26; Fig. 2b). Although for 

the cathodal vs. sham analyses all effects are non-significant, it is interesting to notice that anodal tDCS 

decreases RT, while cathodal tDCS tends to increase RT. Statistical testing for the anodal tDCS trials 

and the cathodal tDCS trials using Egger’s test for small-study effects showed no effect of bias and the 

funnel plot showed only a few outliers (Online Resource 5a and 5b for anodal and cathodal tDCS trials 

respectively). Percentage of correct responses. In this analysis we identified two important significant 

outliers that were excluded as they presented large, positive effect sizes (Knechtel (Exp-1) and Metuki 

(Exp-1)) – these studies presented Cohen’s d three standard deviations above of the mean and, since our 

aim was to explore stimulation parameters through meta-regressions, these studies would be influential 

points in our slopes. Interestingly Egger’s test was significant before (p<0.01) but not after the 

exclusion of the outliers (p=0.18). For anodal tDCS (N of ACC trials = 165), significant heterogeneity 

was observed (I² = 52.50%; χ²(164) = 344.9, p<0.01). The pooled random-effects standardized mean 

difference (SMD) gave a Cohen’s d of 0.18 (95% CI 0.03 to 0.18, p<0.01, Fig. 3a), i.e., participants 

responded significantly more correct after active vs. sham non-invasive brain stimulation. When 
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splitting the data over the three task types an increase in the percentage of accurate responses in 

executive functioning tasks following anodal tDCS (Cohen’s d 0.08, 95% CI 0.01 to 0.16, p<0.05) was 

found. No significant effects of anodal tDCS vs. sham were found for memory tasks (Cohen’s d 0.18, 

95% CI -0.11 to 0.47, p=0.22) and attention tasks (Cohen’s d 0.15, 95% CI -0.29 to 0.34, p=0.10). 

Further, meta-regression analysis showed no effect of laterality (left vs. right anodal tDCS) on the effect 

sizes (β = -0.03, SE = 0.05, p = 0.61). Finally, IBS length did not influence the effect size (β = 0.01, SE 

= 0.014, p = 0.46; Fig. 3b). Cathodal tDCS vs. sham (N of ACC trials = 28) did not influence overall 

accuracy (Cohen’s d 0.03, 95% CI -0.13 to 0.19, p=0.70; Fig. 4a). No significant effects of cathodal 

tDCS vs. sham were found for memory tasks (Cohen’s d0.01, 95% CI -0.39 to 0.43, p=0.93), attention 

tasks (Cohen’s d 0.26, 95% CI -0.05 to 0.58, p=0.10), and executive functioning tasks (Cohen’s d -0.03, 

95% CI -0.20 to 0.13, p=0.71). Significant heterogeneity was observed in the general analysis (I² = 

33.8%; χ²(27) = 40.79), as well as the sub-analysis for attention tasks (I²=66.50%; χ²(8)=23.8, p<0.01). 

Meta-regression analysis demonstrated a significant influence of laterality (left vs. right cathodal tDCS) 

on the effect sizes (β = 0.27, SE = 0.13, p<0.05), i.e. cathodal tDCS applied to the right DLPFC is 

associated with greater increases in accuracy than cathodal tDCS to the left DLPFC. However, no effect 

of IBS length on effect sizes was found (β = 0.004, SE = 0.03, p = 0.91; Fig. 4b). Statistical testing 

using Egger’s test for small-study effects for the anodal tDCS trials (after exclusion of outliers) and 

cathodal tDCS trials showed no effect of bias and funnel plot showed no outliers (Online Resource 5c 

and 5d for anodal and cathodal tDCS trials respectively). 

------- Insert Figure 1a and 1b, Figure 2a and 2b, Figure 3a and 3b, Figure 4a and 4b around here ------ 

Meta-regression. We ran additional meta-regressions in order to identify possible moderators of our 

results (Table 1). No variable was associated with the RT results as well as the ACC results. However, 

even though the condition to which participants belonged (i.e. healthy participants vs. neuropsychiatric 

patients) did not influence anodal tDCS effects on RT and ACC, we ran the meta-analyses and meta-

regressions once more for the two populations separately. As the available tDCS research in 

neuropsychiatric patients only investigated the effects of anodal tDCS, but not cathodal tDCS, on 

cognitive outcomes, analyses could only be performed for anodal tDCS trials. In summary, for healthy 

participants as well as neuropsychiatric patients, IBS length did not moderate the effects of anodal tDCS 

on cognitive outcomes (for a detailed description of the results, see Online Resource 6).  
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------------------ Insert Table 1 around here -------------------------- 

DISCUSSION 

The aim of this review was to systematically assess whether the effects of DLPFC tDCS on cognitive 

functioning are influenced by the length of the interval between stimulation sessions. To this end, we performed 

a meta-analysis of 61 tDCS studies (233 trials) using cross-over, single session, sham-controlled designs, 

investigating the effects of DLPFC neuromodulation on cognitive measures. Analyses were performed separately 

for anodal tDCS (188 trials) and cathodal tDCS (45 trials), as both stimulation types have opposing effects on 

cortical activity. Furthermore, cognitive tasks that were used in the studies included in the meta-analysis were 

categorized into three categories: memory, attention and executive functioning. By means of this categorization, 

we attempted to decrease the heterogeneity of the data and decrease the type I error.  

Anodal vs. sham tDCS influenced RT and accuracy on cognitive tasks for all three categories. More specific 

analyses showed that anodal tDCS decreased RT and increased the percentage of correct responses only in 

executive functioning tasks. Cognitive functioning was not influenced by anodal tDCS in the two other cognitive 

task categories (attention and memory; although slightly differing patterns of improvement following anodal 

tDCS were found for healthy vs. neuropsychiatric samples, see Online Resource 6). In contrast to the effects 

with anodal neuromodulation, analyses for cathodal tDCS yielded no results. In other words, cathodal vs. sham 

tDCS did not influence RT or accuracy across the three cognitive tasks, nor did it influence RT or accuracy when 

analyzing the task types separately.  

For these anodal and cathodal effects of tDCS, IBS length does not influence the effect of prefrontal tDCS on 

cognitive functioning. Moreover, when response times and accuracy rates were analyzed separately for the three 

different cognitive task types (i.e. memory, attention, executive functioning), no significant effects were found. 

Lastly, separate analyses for healthy participants and neuropsychiatric patients also yielded no significant effects 

of the IBS length on anodal tDCS effects on cognition. Thus, our results demonstrate that the effect sizes of 

studies are independent from a long or short IBS. However, it may be beneficial to use moderate IBS lengths 

instead of really short IBS lengths (e.g. within the same day), considering issues such as practice effects, 

blinding and performance decay when cognitive-demanding tasks are applied in a short interval. Performing the 

same test in a short interval may lead to an increased performance due to practice effects (Falleti et al. 2006). 

However, if the interval is sufficiently long, these practice effect might decrease. Also, it might be possible that a 

very short IBS (i.e., within the same day) might lead to a more vulnerable blinding, as subjects are able to 
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compare between both sessions in a short interval. Nonetheless, our results show that a large IBS (i.e., more than 

one week) is not particularly more beneficial than a shorter (within the same week) interval. Consequently, we 

conclude that the IBS does not significantly contribute to the cognitive tDCS effects over the DLPFC. However, 

considering issues such as the study length, patients’ adherence and intra-circadian biological rhythms we 

suggest that future tDCS trials opt to use relatively short IBS. However, this recommendation may not hold true 

for applying tDCS over non-DLPFC areas. 

The anodal/cathodal tDCS effects on cognition are partly in line with the results of a recent meta-analysis. 

Brunoni and Vanderhasselt (2014) showed that tDCS decreased RTs, although it had no effect on accuracy. 

Differences in the inclusion criteria could explain the contradictory results considering the accuracy outcome 

between the current meta-analysis and the meta-analysis of Brunoni and Vanderhasselt (2014). Particularly, their 

meta-analysis assessed only the n-back task performance whereas the present meta-analysis was much more 

inclusive, evaluating working memory and other executive functions. In a different meta-analysis, Horvath et al. 

(2015) concluded that tDCS does not influence cognitive outcomes. Similar to the present study, Horvath et al. 

(2015) evaluated sham-controlled single-session tDCS data for a variety of cognitive outcomes. However, the 

authors used different categories and classified the tasks differently without basing their decision on a model or 

theory. Most importantly, the analyses were run differently as Horvath et al. (2015) made separate meta-analyses 

for each considered category (e.g. most meta-analyses included only three experiments or less). This way, the 

statistical power of their analyses was significantly decreased. Caution is therefore warranted when interpreting 

their results (for editorial replies, see Nitsche et al. 2015; Price and Hamilton 2015). In our study we have split 

all the data over three different task types without making subdivisions, but performed the meta-analyses on the 

totality of the studies. We also ran an omnibus meta-analysis for each cognitive outcome measure (RT and 

accuracy rate) for all tasks together, thereby including 188 trials for anodal tDCS and 45 trials for cathodal 

tDCS. The evaluation of such a large amount of trials, especially for anodal tDCS studies, adds to the firmness of 

the conclusion made by our systematic review. Moreover, our results are in line with previous research 

investigating the effects of tDCS neuromodulation on cognition, only showing a significant influence of anodal 

tDCS on cognition, and no effect of prefrontal cathodal tDCS (Jacobson et al. 2012).  

This study has several limitations. First, the heterogeneity test was significant in trials investigating the effects of 

anodal and cathodal tDCS on accuracy, and trials investigating the influence of cathodal tDCS on RT, which can 

be attributed to methodological diversity in the original studies (Higgins and Green 2008). Because the tDCS 

technique has relatively low focality (i.e. neighboring brain regions such as the anterior temporal lobe region or 
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the premotor area might be influenced by DLPFC-tDCS; Nitsche et al. 2008), modulating cognitive abilities 

through DLPFC (i.e. tertiary association cortex) tDCS stimulation encompasses a wide array of cognitive 

functions, and research teams use diverse parameter settings, it could be expected that the data would be 

heterogeneous (Jacobson et al. 2012; Tremblay et al. 2014). Nonetheless, we used a random-effects model to 

account for such heterogeneity in our analyses and performed several sub-analyses to decrease variability even 

more (e.g. polarity; polarity x task type; polarity x condition; polarity x condition x task type). Furthermore, 

there was significant publication bias for the accuracy data, although the exclusion of the outliers identified in 

the funnel plot did not impact on our findings. Lastly, approximately half of the studies in this meta-analysis 

involved online data. Results of online tasks should be interpreted with caution because effects of tDCS might be 

occurring only several minutes following the end of tDCS stimulation, and not directly (Price and Hamilton 

2015).  

To conclude, the present study makes several noteworthy contributions to the field of neuromodulation. First, the 

study evaluated many trials (i.e. 188 trials on anodal tDCS data, 45 trials on cathodal tDCS data, and 233 trials in 

total), ensuring high power of the analysis and thus adding weight to the conclusion that IBS length has no effect 

on the modulation of cognitive outcomes by tDCS. We did not find an association between IBS and tDCS 

cognitive effects. We suggest that further studies should use relatively short IBS considering that some 

biological variables can change in the course of weeks. Furthermore, our study provides additional evidence with 

respect to the effect of tDCS on cognitive outcomes itself (i.e. significant difference anodal tDCS vs. sham for 

accuracy and RT, although slightly different effects are found for healthy vs. neuropsychiatric patients; but no 

significant influence of cathodal tDCS; see also Jacobson et al. 2012).  
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FIGURE CAPTIONS 

Fig. 1a Forest Plot showing the effect sizes from the comparison between anodal vs. sham tDCS for Reaction 

Time (RT) from the Hedges g’ random effects model. Positive values indicate an increase in reaction time 

following transcranial direct current stimulation (tDCS). Negative values indicate a decrease in reaction time 

following tDCS.  Error bars: 95% confidence interval 

Fig. 1b Plot of the meta-regression of the IBS length (in days) to the effect size (ES) for Reaction Time (RT) in 

anodal tDCS trials. The weight given each study is indicated by the diameter of the circle. The estimated slope of 

this curve shows no significant effects of IBS length on the effect sizes for RT results (IBS, Interval-Between-

Sessions; SMD,  Standard Mean Difference) 

Fig. 2a Forest Plot showing effect sizes from the comparison between cathodal vs. sham tDCS for Reaction 

Time (RT) from the Hedges g’ random effects model. Positive values indicate an increase in reaction time 

following transcranial direct current stimulation (tDCS). Negative values indicate a decrease in reaction time 

following tDCS. Error bars: 95% confidence interval 

Fig. 2b Plot of the meta-regression of the IBS length (in days) to the effect size (ES) for Reaction Time (RT) in 

cathodal tDCS trials. The weight given each study is indicated by the diameter of the circle. The estimated slope 

of this curve shows no significant effects of IBS length on the effect sizes for RT results (IBS, Interval-Between-

Sessions; SMD,  Standard Mean Difference) 

Fig. 3a Forest Plot showing effect sizes from the comparison between anodal vs. sham tDCS for Accuracy Rates 

(ACC) from the Hedges g’ random effects model. Positive values indicate an increase in accuracy rates 

following transcranial direct current stimulation (tDCS). Negative values indicate a decrease in accuracy rates 

following tDCS. Error bars: 95% confidence interval 
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Fig. 3b Plot of the meta-regression of the IBS length (in days) to the effect size (ES) for Accuracy Rates (ACC) 

in anodal tDCS trials. The weight given each study is indicated by the diameter of the circle. The estimated slope 

of this curve shows no significant effects of IBS length on the effect sizes for ACC results (IBS, Interval-

Between-Sessions; SMD,  Standard Mean Difference) 

Fig. 4a Forest Plot showing effect sizes from the comparison between cathodal vs. sham tDCS for Accuracy 

Rates (ACC) from the Hedges g’ random effects model. Positive values indicate an increase in accuracy rates 

following transcranial direct current stimulation (tDCS). Negative values indicate a decrease in accuracy rates 

following tDCS. Error bars: 95% confidence interval 

Fig. 4b Plot of the meta-regression of the IBS length (in days) to the effect size (ES) for Accuracy Rates (ACC) 

in cathodal tDCS trials. The weight given each study is indicated by the diameter of the circle. The estimated 

slope of this curve shows no significant effects of IBS length on the effect sizes for ACC results (IBS, Interval-

Between-Sessions; SMD,  Standard Mean Difference) 

 

TABLE CAPTIONS 

Table 1 Results of additional meta-regressions. Coefficient (SE) and p-values are provided. The coefficient 

represents the regression coefficient of each regression 


