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Abstract 

A growing number of studies approach the brain as a complex network, the so-called 

connectome. Adopting this framework, we examine what types or extent of damage the brain 

can withstand – referred to as network robustness – and conversely, which kind of distortions 

can be expected after brain lesions. To this end, we review computational lesion studies and 

empirical studies investigating network alterations in brain tumor, stroke and TBI patients. 

Common to these three types of focal injury is that the topological properties of a node do not 

determine its likelihood to be affected by a lesion. Furthermore, large-scale network effects of 

these focal lesions are compared to those of a widely studied multifocal neurodegenerative 

disorder, Alzheimer’s disease, in which central parts of the connectome are preferentially 

affected. Results indicate that human brain networks are remarkably resilient to different 

types of lesions, compared to other types of complex networks such as random or scale-free 

networks. However, lesion effects have been found to depend critically on the topological 

position of the lesion. In particular, damage to network hub regions – and especially those 

connecting different sub-networks – was found to cause the largest disturbances in network 

organization. Regardless of lesion location, evidence from empirical and computational lesion 

studies shows that lesions cause significant alterations in global network topology. The 

direction of these changes though remains to be elucidated. Encouragingly, both empirical 

and modeling studies have indicated that after focal damage, the connectome carries the 

potential to recover at least to some extent, with normalization of graph metrics being related 

to improved behavioral and cognitive functioning. To conclude, we highlight possible clinical 
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implications of these findings, point out several methodological limitations that pertain to the 

study of brain diseases adopting a network approach, and provide suggestions for future 

research. 
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Introduction  

Throughout the history of cognitive neuroscience, there has been an ongoing debate as to 

whether cognitive functions are localized within specific regions of the brain or emerge from 

dynamical interactions between various brain areas (Catani et al., 2012). Recent advances in 

noninvasive in vivo neuroimaging technology now allow the construction of comprehensive 

whole-brain maps of the structural and functional connections of the human cerebrum at the 

individual level. The ensemble of macroscopic brain connections can then be described as a 

complex network – the connectome (Hagmann, 2005; Sporns et al., 2005). Using graph 

theory, a powerful framework to characterize diverse properties of complex networks, it has 

been consistently demonstrated that the human connectome reflects an optimal balance 

between segregation and integration (Sporns, 2013). Thereby, both perspectives on the origin 

of cognitive functions have been unified. 

 

Providing a novel perspective to study the brain’s organization and functioning in health and 

disease, connectome analysis has found rapid applications in clinical neuroscience. Disturbed 

interactions among brain regions have been found in nearly all neurological, developmental 

and psychiatric disorders (Griffa et al., 2013; van Straaten and Stam, 2013; Cao et al., 2015; 

Fornito and Bullmore, 2015). In addition, relationships between network topology and 

cognitive functioning have been revealed. For example, strong positive associations have been 

found between global efficiency of structural and functional networks and intellectual 

performance (van den Heuvel et al., 2009; Li et al., 2009). Hence, network analysis could be 

used to identify biomarkers of specific brain functions and symptoms, thereby carrying the 

potential to allow more objective diagnosis, to monitor recovery or progression processes over 

time, and to predict effective treatment options. 
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In addition, the availability of structural and functional connectomes has enabled the 

construction and validation of computational models of large-scale neuronal activity (Ghosh 

et al., 2008; Deco and Kringelbach, 2014). In particular, dynamical models can be 

implemented on the structural connectome to simulate brain activity, after which predicted 

and empirical functional connectivity can be compared to evaluate model performance. 

Overall, it has been demonstrated that brain activity strongly depends on the underlying 

structural connectivity (Deco and Corbetta, 2011). By virtually lesioning structural 

connectomes, computational models thus can be used as unique predictive tools to investigate 

the impact of diverse structural connectivity alterations on brain dynamics. That is, 

computational modeling enables to investigate what types or extent of damage the brain can 

withstand – referred to as network robustness – and conversely, which kind of distortions can 

be expected after brain lesions, including those purposively induced by surgery. Furthermore, 

biologically inspired dynamical models can provide insights into the local dynamics 

underlying large-scale network topology in health and disease. Hence, they may provide an 

entry point for understanding brain disorders at a causal mechanistic level. This might lead to 

novel, more effective therapeutic interventions, for example through drug discovery, 

optimized presurgical planning, and new targets for deep brain stimulation (Deco and 

Kringelbach, 2014). 

 

In this review, we briefly discuss how the brain can be studied from a complex networks 

perspective. Adopting this perspective, we focus on the properties of brain networks 

underlying network robustness. In turn, we review computational lesion studies and empirical 

studies investigating network alterations in brain tumor, stroke and TBI patients. Common to 

these three types of focal injury is that there is no clear mapping between the anatomical 

lesion site and its topological characteristics within the brain network. Furthermore, large-
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scale network effects of these focal lesions are compared to those of a widely studied 

multifocal neurodegenerative disorder, Alzheimer’s disease, in which central parts of the 

connectome are preferentially affected. To conclude, we highlight potential clinical 

implications of these findings, point out several methodological limitations that pertain to the 

study of brain diseases adopting a network approach and provide suggestions for future 

research. 

 

Construction and analysis of brain networks  

Network construction 

From a complex networks perspective, the brain can be represented as a graph (Sporns, 

2011a, 2011b). In such a graph, network nodes correspond to brain regions, whereas edges 

describe the connectivity between brain regions. Depending on the nature of these 

connections, at least three different classes of brain networks can be studied (Friston, 1994; 

Sporns, 2011a, 2011b): in structural connectivity networks, edges represent anatomical links 

between brain regions; in functional connectivity networks, edges are defined as statistical 

dependencies between remote neurophysiological events; and in effective connectivity 

networks, edges capture the causal influences of one region on another. In this review, we 

focus on the two most frequently investigated types of large-scale brain network: structural 

and functional. In addition to the type of connectivity being examined, networks can also be 

differentiated into binary versus weighted networks. In binary networks, a specific threshold 

is applied to the connections, resulting in links being either present or absent. In weighted 

networks, on the other hand, links also contain information about connection strength. 

Advances in neuroimaging techniques, and in particular in MRI, have enabled the 

noninvasive in vivo estimation of such structural and functional connections. The most 

popular techniques to map the human connectome include DWI tractography to assess 
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structural connectivity (Sporns, 2011b), and (resting-state) fMRI for the estimation of 

functional couplings (Biswal et al., 2010). In addition, EEG and MEG are also frequently 

employed techniques to examine functional connectivity. Once the nodes and edges have been 

defined and estimated, all information can be summarized in a connectivity matrix. In such 

matrices, rows and columns represent nodes, while matrix entries denote links. Figure 1 

shows the workflow for obtaining a structural and functional connectivity matrix, and 

corresponding brain network.  

 

Network analysis by means of graph metrics  

Based on a connectivity matrix, topological properties of a network can be examined by a rich 

array of graph metrics provided by the general framework of graph theory. Graph metrics can 

be largely classified into measures covering aspects of segregation, integration, and centrality 

(Rubinov and Sporns, 2010) (Fig. 2A). In this section, we briefly discuss the most important 

graph measures within each of these categories. Table 1 gives an overview of all graph 

metrics used in this review. For more details and an in-depth discussion of graph metrics, we 

refer the interested reader to Rubinov and Sporns (2010). 

 

Segregation refers to the ability for specialized processing to occur within densely 

interconnected groups of brain regions. The clustering coefficient of a node is an important 

measure of segregation, quantifying the number of connections that exist between the direct 

neighbors of a node as a proportion of the maximum number of possible connections (Watts 

and Strogatz, 1998). If a node’s neighbors are densely interconnected, they form a cluster or 

clique, and they are likely to share specialized information. The average clustering coefficient 

across all network nodes is the clustering coefficient C of the network, which is used as a 

global metric of the network’s level of segregation. Another measure of segregation is 
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modularity, which not only describes the presence of densely interconnected groups of nodes, 

but also estimates the size and composition of these individual groups. The modular structure 

can be revealed by subdividing the network into modules by maximizing the number of 

within-group links and minimizing the number of between-group links (Girvan and Newman, 

2002; Guimerà and Amaral, 2005). Hubs – highly interconnected nodes (Sporns et al., 2007; 

see below) – can then be described in terms of their roles in this community structure. That is, 

provincial hubs link primarily to other nodes in the same module, whereas putative connector 

hubs have links that are distributed across multiple different modules (Guimerà and Amaral, 

2005; Bassett et al., 2006). 

 

Integration, on the other hand, relates to the capacity of the network to rapidly combine 

specialized information from distributed brain regions. Measures of integration are commonly 

based on the concept of communication paths and their path lengths. A path is a unique 

sequence of nodes and links that represents a potential route of information flow between 

pairs of brain regions, and path length is given by the number of steps (in a binary graph) or 

the sum of the edge weights (in a weighted graph). Hence, path length indicates the potential 

for integration between brain regions, with shorter paths implying stronger potential for 

integration. On a global level, this translates to the characteristic path length of the network, 

calculated as the average shortest path length between all pairs of nodes in the network. A 

related measure is global efficiency (Latora and Marchiori, 2001), defined as the average 

inverse shortest path length. In contrast to the characteristic path length, global efficiency can 

be meaningfully computed on disconnected networks, since paths between disconnected 

nodes have infinite path lengths and correspondingly zero efficiency. 
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Centrality measures describe the importance of network nodes and edges to network 

functioning. The simplest index of centrality is node degree – the number of links connected 

to a given node. Combining the degree of all nodes in the network yields the degree 

distribution, which is an important marker for network development and resilience. Another 

measure of importance is betweenness centrality, defined as the fraction of all shortest paths 

in the network that pass through a given node (edge). Bridging nodes (edges) that connect 

disparate parts of the network often have a high betweenness centrality. As such, degree and 

betweenness centrality are two of several metrics to identify brain regions that play a key role 

in global information integration between different parts of the network, so-called hubs 

(Sporns et al., 2007).  

 

In order to make more meaningful inference about the topological organization of the 

connectome, graph metrics have to be normalized, since raw values of network measures are 

influenced by basic low level network properties such as the number of nodes, connection 

density, and degree distribution (van Wijk et al., 2010). Specifically, network metrics are 

typically benchmarked to appropriate null or reference networks that share the same basic 

properties (i.e., number of nodes, connection density, and degree distribution), but have other 

properties destroyed through construction. The exact definition of an “appropriate” reference 

network depends on the network measure that is being benchmarked and the connectivity 

measure used to derive edge weights (for a more elaborate discussion on this topic, see 

Fornito et al., 2013 and Zalesky et al., 2012). Nonetheless, the most simple and frequently 

used reference model is a random network generated with a rewiring algorithm that preserves 

the degree distribution of the network under study (Maslov and Sneppen, 2002). The two 

most commonly reported normalized graph measures include the normalized clustering 

coefficient γ, and the normalized characteristic path length λ.  
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By combining different values of clustering coefficient and characteristic path length, 

different network topologies can be described (Fig. 2B). The extremes have either a high 

clustering coefficient and long characteristic path length (regular lattice network), or a low 

clustering coefficient and a short characteristic path length (random network). The 

intermediate small-world topology (Watts and Strogatz, 1998) is characterized by a clustering 

coefficient greater than that of an equivalent random network (γ > 1), yet it has approximately 

the same characteristic path length as an equivalent random network (λ ≈ 1). The ratio σ = γ/λ 

is often used and must be greater than 1 to define small-worldness of a network (Humphries et 

al., 2006; Humphries and Gurney, 2008). Such a network topology is commonly thought to 

reflect an optimal balance between segregation and integration. A small-world architecture 

seems to be the key common feature shared by many complex systems (Watts and Strogatz, 

1998), and there is mounting evidence that healthy structural and functional brain networks 

also show this kind of organization across various modalities (Stam, 2010). 

 

Robustness of brain networks 

The brain can be highly robust to physical damage. However, relatively small lesions 

sometimes have broader effects than would be predicted based on their extent and location. In 

order to clarify this somewhat contradictory picture, several studies (Albert et al., 2000; 

Kaiser and Hilgetag, 2004; Achard et al., 2006; Kaiser et al., 2007; Alstott et al., 2009; Joyce 

et al., 2013) have investigated the organizational properties underlying network robustness. 

 

In general, it has been found that robustness of complex networks depends critically upon the 

organizational structure of the network and the nature of the attack. Regarding the organizing 

principle of the network, network architectures can be defined according to the graph 
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properties described above, leading to main classes such as random, small-world, scale-free, 

hierarchical, and geometrical networks (Albert and Barabási, 2002). Three of those have been 

compared extensively with regard to their robustness properties, namely random, scale-free 

and small-world networks. In random networks, edges exist between any pair of vertices with 

probability p, causing the majority of nodes to have a similar number of connections. The 

resulting degree distribution follows a binomial probability distribution. For a large number of 

nodes, this can be approximated by a Poisson distribution, and hence the term “exponential 

degree distribution” is also used to define these types of networks (Bollobas, 1985). In 

contrast, the degree distribution of many real large networks has been shown to follow a 

power law distribution. Since power laws are free of a characteristic scale, these networks are 

referred to as scale-free networks (Barabási and Albert, 1999; Barabási et al., 1999). This 

implies that many nodes have few connections, whereas a small number of nodes has many 

connections. Small-world networks (Watts and Strogatz, 1998), then, are a type of scale-free 

network, defined by the small-worldness parameter σ, as discussed before (Amaral et al., 

2000). With regard to the nature of the attack, two types of attack are commonly investigated 

(Bullmore and Sporns, 2009): random deletion of nodes/edges, and targeted attack of 

nodes/edges based on their centrality within the network. By deletion of nodes or edges, 

removal of specific brain regions or connections between regions is respectively simulated. 

Network robustness is then typically assessed by measuring the ability of the graph not to 

fragment into subgraphs when elements of the graph are removed. 

 

Applied to the study of robustness features of the mammalian brain, Kaiser et al. (2007) found 

that the intact structural connectivity organization of cat and macaque monkey cortices bears 

more resemblance to scale-free networks than to random or small-world networks. After 

lesioning nodes or edges from the structural connectivity matrix (Kaiser and Hilgetag, 2004; 
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Kaiser et al., 2007), relatively high robustness of the networks was found against random 

node or edge failure. This came at a high cost, though, since the networks were extremely 

vulnerable to targeted attack of their most central nodes and edges. These results further 

corroborate general findings on robustness properties in scale-free networks (Albert et al., 

2000). 

 

Human brain networks, in contrast, have been shown to have an exponentially truncated 

power law degree distribution (Achard et al., 2006; Wang et al., 2009), at least when studied 

at macro-level (Guye et al., 2010). This type of degree distribution is associated with a lower 

probability of very high degree nodes, compared to networks with a pure power law degree 

distribution. Studies examining robustness properties of human networks (Achard et al., 2006; 

Alstott et al., 2009; Joyce et al., 2013; Crossley et al., 2014) have indicated that the human 

connectome is approximately as resilient to random failure compared to random and scale-

free networks. On the other hand, they were found to display significant vulnerability to 

targeted attack of central nodes. In comparison to scale-free networks with pure power law 

degree distributions, however, they were still relatively robust to targeted attack of central 

nodes.  

 

Lesion effects predicted by computational modeling studies 

The fact that human brain networks show remarkable resilience to different kinds of attack 

compared to other types of complex network configuration of course does not imply that they 

are immune to any type or extent of lesion. Given the availability of whole-brain structural 

and functional connectivity maps and large-scale computational models to simulate 

biophysically plausible neural activity, several studies (Young et al., 2000; Sporns et al., 

2007; Honey and Sporns, 2008; Alstott et al., 2009; Stam et al., 2010; Cabral et al., 2012; 
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Váša et al., 2015) have assessed the effects of structural lesions on the brain’s wiring diagram 

(Table 2). As depicted in figure 3, this can be achieved by virtually lesioning a structural 

connectivity matrix and subsequently applying an appropriate computational model to this 

lesioned matrix in order to simulate brain activity. Lesion effects can then be evaluated by 

comparison of simulated and empirical unlesioned functional connectivity matrices, for 

example by calculating various graph measures. 

 

One of the first studies investigating the consequences of structural lesions was performed by 

Sporns et al. (2007), using macaque and cat cortical connectivity data. They first sought to 

identify hub regions within the networks, since lesions in these regions may have unusually 

large consequences on the remaining network’s organization. Results indicated that the 

intersection of node degree, motif fingerprint, betweenness and closeness centrality allows for 

the identification of hubs. In addition, they distinguished between provincial and connector 

hubs (Guimerà and Amaral, 2005; Bassett et al., 2006). Simulating a lesion by deletion of 

either a provincial or connector hub node was found to have opposite effects on the small-

world organization of the remaining structural network. In particular, lesions of connector 

hubs led to large increases in the small-worldness index, caused by an increased distance 

between clusters combined with an even larger increase in functional segregation (i.e., 

increased clustering coefficient). In contrast, removal of provincial hubs resulted in decreases 

in small-worldness, caused by a decrease in clustering accompanied by a smaller effect 

(increase or decrease) in characteristic path length. 

 

Moving beyond these purely structural analyses, subsequent studies have implemented 

various large-scale dynamical models to predict resting-state functional connectivity after 

virtual lesions (Young et al., 2000; Honey and Sporns, 2008; Alstott et al., 2009; Stam et al., 
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2010; Cabral et al., 2012; van Dellen et al., 2013; Váša et al., 2015). Overall, it has been 

found that lesions cause specific patterns of altered simulated functional connectivity among 

distant, even contralateral, regions of the cortex. However, network position of the lesion – 

both anatomically and topologically – appeared of critical importance in predicting the 

magnitude of lesion effects. Topologically, it was found that lesions of hub regions within the 

network have the largest effects on simulated functional connectivity patterns, though lesion 

impact sometimes differed according to the specific centrality metric that was used to define 

hub nodes. In addition, a distinction has to be made between two types of hub nodes based on 

their position within the community structure of the network, corroborating previous findings 

on structural connectivity alterations after virtual lesions (Sporns et al., 2007). That is, lesions 

of connector hubs were found to cause the largest and most widespread disturbances in 

simulated functional connectivity, particularly within the default-mode network. This was 

explained by the resulting increased characteristic path length of the remaining network. 

Alterations after lesioning provincial hubs, on the other hand, were found to be more confined 

to the hub’s own cluster. Regarding the lesion’s anatomical position, results indicated that 

especially lesions along the cortical midline (comprising the medial frontal and medial 

parietal regions), the temporo-parietal junction and the frontal cortex result in the largest 

disturbances in simulated functional connectivity. Interestingly, parts of some of these 

anatomically vulnerable regions, such as the posterior cingulate cortex and precuneus, appear 

to overlap with both the default-mode network and a core group of structural hubs identified 

by Hagmann et al. (2008).  

 

Further evaluation of lesion effects using graph measures (Stam et al., 2010; Cabral et al., 

2012) showed that virtual lesions result in a reorganization of simulated functional network 

topology. The direction of these changes was however inconsistent between both studies. 
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Probably, this can be attributed to methodological differences, given that both studies used 

different structural (data), dynamical and lesion models.  

 

Lastly, one study (Stam et al., 2010) explored effects of acute virtual lesions over time, 

thereby focusing on recovery and plasticity of brain networks after lesions. Results revealed 

that over time, the network recovered most of its original structure, though the recovery rate 

and pattern was different for different network properties. In particular, normalized clustering, 

normalized characteristic path length and modularity showed an exponential approximation to 

the original values, whereas the degree correlation showed a transient positive peak some time 

after the lesions. Based on these findings, the authors hypothesize that recovery from a lesion 

reflects, to some extent, a replay of events during network evolution.  

 

Focal brain lesion effects: Empirical evidence from brain tumors, stroke 

and TBI 

In this section, we review the empirical literature regarding the effects of brain tumors, stroke, 

and TBI on the brain’s structural and functional organization. Common to these three types of 

focal injury is that there is no unequivocal relationship between the anatomical lesion site and 

its topological features within the brain network .  

 

Gratton et al. (2012) examined a heterogeneous group consisting of stroke, brain tumor and 

TBI patients to investigate the effects of these lesions on the functional connectome. Using 

resting-state fMRI data and a graph theoretical analysis framework, results showed that 

damage to brain regions important for communication between sub-networks (i.e., connector 

hubs) lead to decreases in modularity. In addition, this network dysfunction extended to the 

structurally intact hemisphere. In contrast, lesions located in brain regions important for 
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communication within sub-networks (i.e., provincial hubs), did not have this effect. A 

subsequent study by Warren et al. (2014) further corroborated the importance of the network 

community structure to predict lesion effects. In particular, they used resting-state fMRI data 

of patients with focal lesions that were classified as situated in either “target” or “control” 

locations, depending on whether the lesion location exhibits correlated activity with multiple 

brain systems in the healthy connectome. Specifically, target locations were defined as brain 

regions with high system density (a measure of the physical proximity of multiple brain 

systems) and high participation coefficient (a measure of the number of different systems with 

which a node has strong signal correlations). On the other hand, control locations were 

identified as regions with high degree centrality, and low system density and participation 

coefficient. Results indicated that damage to target locations is associated with severe 

impairments across several cognitive and behavioral domains, whereas lesions to control 

locations has more limited consequences. Hence, from these studies it can be concluded that 

the three types of focal brain lesions considered can have a widespread, nonlocal impact on 

functional brain network organization, especially when lesions are situated in regions 

important for communication between sub-networks, with significant implications for 

cognitive functioning and behavior. 

 

In the next sections, we provide a more in-depth discussion of studies examining brain 

tumors, stroke and TBI, and their influence on the connectome. 

 

Brain tumors 

A brain tumor can be described as a mass or growth of abnormal cells in the brain. In adults, 

the most common types of primary brain tumors are gliomas, developing from glial cells, and 

meningiomas, developing in the meninges (Fisher et al., 2007). The malignancy of brain 
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tumors can be described based on the World Health Organization grading system, with grade I 

tumors being the least malignant and grade III (for meningioma) or IV (for glioma) tumors 

being the most malignant. Hereby, malignancy relates to the speed with which the disease 

evolves, the extent to which the tumor infiltrates healthy brain tissue, and chances of 

recurrence or progression to higher grades of malignancy. As such, tumor grade is an 

important component in predicting patients’ treatment response and prognosis. Of note, grade 

I and II brain tumors are often referred to as low-grade tumors, whereas grade III and IV are 

described as high-grade tumors. Regardless of tumor grade, size or location, however, brain 

tumor patients frequently suffer from impairments in various cognitive domains, which are 

often difficult to explain based solely on the focal structural damage caused by the tumor 

(Taphoorn and Klein, 2004). Hence, it is probable that brain tumors interfere with global 

functional network organization, rather than impacting only the site of the lesion. Therefore, 

several studies have been conducted aimed at characterizing network topology alterations in 

brain tumor patients, before and after tumor resection (Table 3). 

 

To explore brain tumor patients’ functional network topology, the first studies used resting-

state MEG (Bartolomei et al., 2006; Bosma et al., 2009; van Dellen et al., 2012). Initial 

results revealed significant network alterations in the presence of a brain tumor, with lower 

segregation and higher integration compared to healthy controls. Subsequent studies 

distinguished between different tumor types, and showed that LGG patients’ functional 

networks are less well integrated compared to those of healthy controls and HGG patients. 

Network segregation, on the other hand, was found to be decreased in high frequencies and 

increased in low frequencies. In contrast, network topology of HGG patients did not differ 

significantly from healthy controls. Using resting-state fMRI data (Xu et al., 2013; Huang et 

al., 2014), LGG patients’ functional networks showed lower integration. In addition, 
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functional network hubs were displaced from right insula and right posterior cingulate cortex 

in controls to right thalamus and right posterior cingulate cortex in patients. Results regarding 

network segregation, on the other hand, were less consistent. 

 

After tumor resection, H. Wang et al. (2010) demonstrated an increase in beta band 

segregation and integration in a sample of meningioma, LGG, and HGG patients. Using a 

minimum spanning tree analysis approach (Tewarie et al., 2015), van Dellen et al. (2014) 

aimed to characterize functional network topology changes after epilepsy surgery in a group 

consisting of mainly LGG patients. Their results indicated an increase in minimum spanning 

tree leaf fraction and a decrease in minimum spanning tree betweenness centrality and 

eccentricity after tumor resection in patients who were seizure-free after surgery, compared to 

patients who still had post-operative seizures. These findings indicate that the global 

functional network of patients whose surgery was successful was characterized by a more 

integrated topology. The authors hypothesized that this finding might be related to the 

surgical removal of local pathological hubs. In contrast, Huang et al. (2014) did not find 

significant network alterations after frontal LGG resection. 

 

Thus far, only one study has examined structural network alterations in a sample of 

meningioma, LGG, and HGG patients (Yu et al., 2016). Results revealed only minor 

differences in global structural network properties, compared to healthy controls. In 

particular, increased normalized clustering was found in patients compared to controls, 

whereas no significant group differences were detected in other global measures of 

integration, nor in network segregation. Furthermore, network hub locations differed slightly 

between patients and healthy controls, though the majority of network hubs (10/15) was 

shared by both groups.  
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In conclusion, these studies indicate that the global organization of functional networks is 

affected by the presence of brain tumors, and especially LGG tumors. In particular, LGG 

patients’ functional networks are characterized by decreased segregation in high frequencies 

and decreased global integration. Hence, preliminary results from longitudinal analyses could 

point towards a “normalization” of functional network topology after tumor resection. In 

addition, associations between graph metrics and cognitive functioning have been found, 

suggesting these metrics may be of potential clinical value. For example, LGG patients that 

showed higher MEG-theta normalized clustering tended to show worse executive functioning 

skills (van Dellen et al., 2012), whereas lower global efficiency was related to lower full, 

verbal, and performance IQ scores (Xu et al., 2013). Furthermore, significant alterations in 

network centrality measures have been found, both before and after tumor resection.  

 

HGG patients’ functional network topology, on the other hand, did not differ significantly 

from that of healthy controls as reported by one preliminary study (van Dellen et al., 2012). 

This result could be explained by considering the temporal pattern of the injury inflicted to the 

brain. That is, in a study on the difference in reorganization patterns between acute and slow-

growing lesions (Desmurget et al., 2007), it was hypothesized that it might take time before 

network reorganization becomes evident on a global scale. Since HGGs often present as 

acute, fast-growing tumors, this might explain the lack of topological alterations in this group 

of patients. Therefore, future research might benefit from distinguishing between different 

tumor types, according to the specific (temporal) disease mechanism.  

 

Regarding structural network alterations in brain tumor patients, results from the first study 

indicate that global network topology is mostly preserved. Nonetheless, it has been 
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demonstrated that lesion-specific histological features are associated with different white 

matter alterations (Campanella et al., 2014). In particular, displacement of white matter 

pathways was found in meningioma tumors. In LGG patients, a mixed pattern of tract 

deviation and disruption was found, whereas HGG tumors were associated with an almost 

complete disruption of fiber bundles. Hence, future research is warranted to investigate 

whether structural network alterations also differ according to tumor-specific 

histopathological features.  

 

Stroke 

A stroke occurs when blood flow to an area of the brain is cut off, resulting in cell death. 

Stroke is one of the main causes of adult disability worldwide, with many patients suffering 

from motor deficits (Lawrence et al., 2001), aphasia (Berthier, 2005) or spatial neglect 

(Appelros et al., 2002), depending on the lesion location. Nevertheless, only few studies so far 

have examined functional and structural network topology in stroke patients (Table 4).  

 

With regard to stroke patients’ functional network organization, de Vico Fallani et al. (2009) 

used EEG data recorded during a motor task from one asymptomatic stroke patient and a 

group of healthy control subjects. Results indicated that, compared to healthy controls, the 

patient’s functional network showed lower local and global efficiency, and lower mean node 

degree. Next, a longitudinal resting-state fMRI study was conducted in stroke patients with 

motor deficits, examining functional topology of the motor execution network over time (L. 

Wang et al., 2010). In the acute phase after stroke, no significant differences were found in 

normalized clustering, normalized characteristic path length, or betweenness centrality 

between patients and healthy controls. Over one year of recovery, though, patients showed 

lower normalized clustering within the motor execution network, suggesting a shift takes 
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place towards a more random network configuration with less functional segregation. 

Moreover, this shift was correlated with restoration of function, reflected by improved motor 

skills, decreased degree of disability in daily activities, and less stroke symptoms. Hence, this 

change towards a more random network configuration could possibly represent an adaptive 

recovery process. A similar longitudinal study investigated whole-brain functional network 

organization in stroke patients suffering from motor impairments, using task-based fMRI data 

(Cheng et al., 2012). Results indicated that after three months of recovery, patients with right-

hemisphere stroke show decreased network integration during an ipsilateral finger tapping 

task. In contrast, no significant trends were found during a contralateral finger tapping task, or 

for left-hemisphere stroke patients.  

 

The topology of stroke patients’ structural networks was investigated by Crofts et al. (2011) 

and Falcon et al. (2015), using DWI data of chronic stroke patients and healthy controls. 

Using traditional integration and centrality graph metrics (global efficiency, betweenness 

centrality and degree centrality), no significant differences were detected between healthy 

controls and chronic stroke structural connectomes. However, Crofts et al. (2011) also 

computed communicability (Estrada and Hatano, 2008) as a measure of the ease with which 

“information” can spread across the network. This measure did reveal significant group 

differences. In particular, they found that communicability is reduced in patients in regions 

surrounding the lesion in the affected hemisphere, as well as in homologous locations in the 

contralesional hemisphere for a subset of these regions. They also identified regions with 

increased communicability in patients that could represent adaptive, plastic changes post-

stroke.  
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In sum, stroke seems to mainly affect functional network topology, while disturbances in 

structural organization in the chronic phase after stroke appear limited. However, further 

(whole-brain) investigation is clearly needed to clarify the inconsistencies found in functional 

network alterations after stroke. In addition, relationships between stroke symptoms and 

changes in network topology should be subject of further examination, in order to foster 

development of novel therapeutic interventions. 

 

Traumatic brain injury 

Traumatic brain injury occurs when an external mechanical force traumatically injures the 

brain, resulting for example from traffic accidents and falls. Even years after the insult, many 

TBI patients suffer from disability, particularly due to cognitive impairments (Whitnall et al., 

2006; Chen and D’Esposito, 2010). Although focal brain injury often occurs as a result of 

TBI, the location and extent of such lesions are often insufficient to explain the persistent 

cognitive deficits (Bigler, 2001). Besides focal lesions, however, TBI also results in 

diffuse/traumatic axonal injury, affecting the integrity of long-distance white matter tracts 

(Povlishock and Katz, 2005). Given that cognitive functions depend on the coherent activity 

of widely distributed brain networks (Mesulam, 1998) – that might have become disconnected 

as a result of diffuse axonal injury – several studies have adopted a network approach to 

examine the effects of TBI (Table 5). 

 

Firstly, alterations in structural network topology have been found in TBI patients 

(Caeyenberghs, Leemans, De Decker, et al., 2012; Caeyenberghs et al., 2014; Fagerholm et 

al., 2015; Hellyer et al., 2015; Yuan et al., 2015). Regarding network segregation, TBI 

patients’ structural networks showed increased segregation in the acute phase post-injury 

compared to patients with orthopedic injuries, whereas similar or decreased segregation was 
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found in the chronic phase in comparison with healthy structural connectomes. In both acute 

and chronic TBI patients, however, structural networks have been consistently found to show 

decreased integration. Furthermore, a trend towards decreased centrality has been found in 

acute and chronic TBI patients, both for the network as a whole and for specific network 

hubs. Moreover, sub-optimal integration and centrality measures were found to be associated 

with cognitive and behavioral impairments, illustrating their potential clinical value. 

Specifically, reduced global efficiency was related to poorer executive function 

(Caeyenberghs et al., 2014), reduced node degree in two hubs was associated with TBI 

symptom severity (Yuan et al., 2015), reduced mean degree was related to poorer balance 

performance (Caeyenberghs, Leemans, De Decker, et al., 2012), and reduced overall 

betweenness and eigenvector centrality correlated with the extent of cognitive impairment, 

both in patients with and without microbleed evidence of diffuse axonal injury (Fagerholm et 

al., 2015). 

 

Functional network topology changes after TBI are more variable, possibly due to the great 

heterogeneity in neuroimaging modalities that were adopted. In the (sub)acute phase (i.e., 

within six months) after TBI (Nakamura et al., 2009; Castellanos et al., 2011; Tsirka et al., 

2011), a modest trend towards increased segregation and integration compared to healthy 

controls was revealed during resting-state. In addition, the mean strength in MEG delta band 

functional connectivity networks was increased, and the degree distribution showed slower 

decay compared to healthy controls, indicating an increase in the number of highly 

interconnected regions. However, almost all metrics were found to be normalized to levels 

approximating those observed in healthy subjects after standard treatment (Nakamura et al., 

2009; Castellanos et al., 2011).  
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In chronic TBI patients, Pandit et al., (2013) found increased integration in patients’ 

functional networks compared to healthy controls, though this was only the case in patients 

who also showed evidence of diffuse axonal injury, as measured by reduced fractional 

anisotropy and increased mean diffusivity in long-distance white matter tracts. In contrast, in 

a study by Caeyenberghs, Leemans, Heitger, et al. (2012) no significant alterations in 

functional network integration were found, though their sample consisted almost exclusively 

of TBI patients with signs of diffuse axonal injury. On the other hand, the authors did report 

increased local efficiency in patients compared to healthy controls. Both studies, however, 

indicated changes in functional network centrality measures. In particular, Caeyenberghs, 

Leemans, Heitger, et al. (2012) found increased mean degree and strength in TBI patients’ 

functional networks compared to healthy controls. Additionally, they identified hub nodes in 

the right dorsolateral prefrontal cortex and left dorsal premotor cortex in patients, in addition 

to the hub in the right insular lobe found in healthy controls. Pandit et al., (2013), on the other 

hand, found decreased degree and betweenness centrality in the posterior cingulate cortex, a 

region forming part of the brain’s structural core (Hagmann et al., 2008). As such, it became 

less of a hub in patients compared to controls. 

 

These studies thus suggest that although TBI temporarily disrupts optimal functional network 

organization, some network properties may restore over time. This normalization hypothesis 

is supported by the observed associations between restored graph metrics and improved 

measures of cognitive functioning. In particular, Castellanos et al. (2011) showed an 

association between normalization of delta band characteristic path length and Performance 

IQ of the WAIS-III intelligence task, whereas Caeyenberghs, Leemans, Heitger, et al. (2012) 

found a positive correlation between mean degree on the one hand and executive functioning 

and TBI symptom severity on the other hand. Normalization of functional network centrality 
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measures, however, appears to be more limited, and may account for the persistent cognitive 

impairments in TBI patients (Crossley et al., 2014). 

 

Finally, one study has compared structure and function in the same sample of chronic TBI 

patients and healthy controls (Caeyenberghs et al., 2013). Their results showed increased 

functional connectivity strength within the switching network, implying a relatively more 

dense network structure compared to healthy controls. Segregation and integration of patients’ 

functional networks, on the other hand, did not differ significantly from those of healthy 

controls, supporting the normalization hypothesis of functional network topology. Regarding 

structural network alterations, also no significant group differences were found. Additionally, 

no significant association was found between graph metrics of structural and functional 

connectivity in both the TBI and the healthy controls group. Hence, topological properties of 

the functional networks could not be solely accounted for by properties of the underlying 

structural networks. However, combining complementary information from both imaging 

modalities did improve prediction accuracy of executive control performance.  

 

Computational lesion modeling versus empirical results of focal damage 

In this section, we evaluate the correspondence between predictions made by computational 

lesion studies and results from empirical studies examining focal brain lesions.  

 

Regarding the prediction of lesion effects, converging evidence from both computational 

modeling and empirical studies point to the critical importance of the topological position of 

lesions. In particular, lesions in hub regions within the network – and especially those 

connecting different sub-networks (i.e., connector hubs) – were found to have the largest 

impact on network topology. In order to identify these hub regions, various studies have 
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indicated that node degree or strength is insufficient. Rather, other centrality measures such as 

betweenness centrality, closeness centrality, or participation coefficient, or a combination 

thereof, are more suited to identify hub nodes of the network. Concerning the lesion’s 

anatomical position, one modeling study (Alstott et al., 2009) predicted that especially lesions 

along the cortical midline, the temporo-parietal junction and the frontal cortex have the largest 

and most widespread effects on functional connectivity. Interestingly, parts of some of these 

anatomically vulnerable regions, such as the posterior cingulate cortex and precuneus, overlap 

with the core group of structural hubs identified by Hagmann et al. (2008). Hence, these 

results appear to further corroborate the importance of the topological lesion position in 

predicting lesion effects. 

 

Regardless of the specific lesion type and location, alterations in network segregation and 

integration properties have generally been found, both in computational lesion and empirical 

studies. However, the direction of these changes remains unclear. Presumably, several 

inconsistencies in the direction of network alterations across studies can be attributed to 

heterogeneity in lesion etiology within studies and differences in neuroimaging modality 

between studies. In addition, it has been shown that preprocessing and network construction 

techniques can also substantially influence graph theoretical results (e.g., Fornito et al., 2013). 

Further methodological research, possibly leading to a consensus approach regarding network 

construction and analysis, is thus required to clarify large-scale network effects of various 

types and stages of brain damage. 

 

Lesion effects on network hubs and centrality measures in general were investigated less 

frequently in clinical studies, and have not been addressed in computational lesion studies so 

far. Yet, preliminary empirical results indicate that focal brain lesions cause displacement of 
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network hubs and alterations in centrality properties of structural and functional networks. 

Although additional research focusing on network centrality changes after brain lesions is 

definitely warranted, these preliminary findings appear to corroborate and extend a recent 

meta-analysis performed by Crossley et al. (2014). In this extensive meta-analysis, a total of 

26 neurological and psychiatric disorders were investigated, with results pointing towards a 

central role of brain hubs in various brain disorders. Specifically, in nine out of 26 disorders, 

including Alzheimer’s disease and schizophrenia, lesions were significantly more likely to be 

located in hubs of the normal structural connectome. The authors hypothesize at least two 

major convergent factors could explain the implication of hubs in various brain disorders. 

First, hubs are more functionally valuable, especially for “higher-order” cognitive functions. 

As a result, lesioned hubs are more likely to be symptomatic than lesioned non-hubs. Second, 

hubs are more biologically costly and therefore more vulnerable to a diverse range of 

pathogenic processes. Examining the involvement of network hubs and the association 

between hub damage and lesion symptoms thus may be a promising path towards 

understanding the effects of different types and stages of focal brain damage. For example, 

future research could investigate whether characteristic stroke symptoms such as aphasia and 

spatial neglect result from damage to domain specific hubs for language and attention, 

respectively. 

 

Finally, both modeling and empirical studies have indicated that after focal lesions, the 

connectome carries the potential to, at least to some extent, recover its original functional 

organization. Moreover, several empirical studies have demonstrated that such recovery is 

related to improved behavioral and cognitive functioning. This provides further support for 

the normalization hypothesis, and highlights the potential clinical usefulness of network 

analysis. 
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Focal brain lesions versus Alzheimer’s disease 

In contrast to focal brain lesions such as TBI, brain tumors and stroke, in which the 

topological properties of a node do not determine its likelihood to be affected by a lesion, it 

has been demonstrated that hub regions are preferentially affected in Alzheimer’s disease, a 

multifocal neurodegenerative disorder (Stam et al., 2009; de Haan et al., 2012). In order to 

examine whether large-scale network results differ according to the way lesions propagate 

through the network, we compare large-scale network alterations after TBI, brain tumor and 

stroke to those observed in patients with Alzheimer’s disease. Specifically, given the plethora 

of studies having addressed structural and functional network changes in Alzheimer’s disease, 

several review studies published in this domain are examined (He et al., 2009; Pievani et al., 

2011; Greicius and Kimmel, 2012; Reid and Evans, 2013; Tijms et al., 2013; Dai and He, 

2014; Dennis and Thompson, 2014).  

 

Regarding network segregation and integration alterations in Alzheimer’s disease patients, 

tentative conclusions drawn by these review studies varied greatly, with some of them even 

being contradictory. In particular, consensus exists in that Alzheimer’s disease results in 

abnormal structural and functional network segregation and integration. However, the 

direction of the alterations remains unclear. Furthermore, although it has been shown that hub 

regions are preferentially affected by Alzheimer’s disease (Stam et al., 2009; de Haan et al., 

2012), the impact of Alzheimer’s disease on network hubs and centrality measures in general 

have not yet been subject of extensive investigation. Scarce evidence though indicates hub 

regions’ centrality within the network decreases, even up to a point where they lose their 

“hub” status, possibly due to atrophy of particular areas. 
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Despite these mixed findings, graph metrics could prove useful in clinical practice, as 

demonstrated by associations between graph metrics and indices of disease severity and 

cognitive functioning. For example, Brier et al. (2014) have found alterations in clustering 

and modularity in preclinical Alzheimer’s disease patients similar to, but smaller than in 

symptomatic patients. Furthermore, lower characteristic path length and higher normalized 

clustering have been found to be associated with more severe cognitive impairments in 

Alzheimer’s disease patients (Stam et al., 2007, 2009). 

 

Based on these findings, it can be concluded that both focal lesions – in which there is no 

unequivocal association between the location of the lesion and its topological features within 

the brain network – as well as Alzheimer’s disease in which hub regions are preferentially 

affected, cause global alterations in structural and functional network topology. At first sight, 

this appears to contradict results from studies examining network robustness properties 

described before. That is, human brain networks were found to be relatively robust to random 

failure, while being especially vulnerable to targeted attack of central nodes in the network. 

However, an important factor that is not taken into account in studies examining network 

robustness properties is that network damage inflicted at random can propagate further 

through the network. In particular, disease processes can spread throughout the network, with 

propagation being determined by the topological organization of the network. As such, it 

seems intuitive that topologically central regions are particularly vulnerable to various 

pathological processes. Hence, mere removal of nodes and their links – used to simulate 

random brain lesions – does not capture the complexity of how disease processes affect the 

connectome.  
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In order to unravel exactly how network organization changes in response to different types 

and stages of brain lesion – a prerequisite for the application of network analysis in clinical 

practice – further research is clearly warranted. In particular, additional efforts are required to 

enable comparison across studies. To this end, future research might benefit from categorizing 

patients according to lesion etiology and/or stage (e.g., LGG vs. HGG; moderate acute vs. 

moderate chronic TBI), as well as a consensus approach on network construction and 

analysis. Lastly, relationships between network properties and cognitive or behavioral indices 

should be subject of further investigation. 

 

Methodological issues in network analysis of lesioned brains and future 

directions 

In interpreting results from the reviewed studies, several methodological issues have to be 

taken into account that pertain to the study of brain diseases adopting a network approach. 

Firstly, detailed lesion descriptions are often lacking. For example, only half of the TBI 

studies discussed in this review reported whether evidence of diffuse axonal injury was 

present in patients. In addition, focal brain lesions are often accompanied by secondary 

disease processes such as Wallerian degeneration after TBI and stroke, or the development of 

edema after different types of brain injury. These limited lesion descriptions hinder the 

possibility of distinguishing effects – both on the network level and on cognition or behavior 

– caused by focal versus diffuse, and primary versus secondary brain injury. 

 

Secondly, it has been shown that the presence of white matter injury – as is often the case 

after TBI – can bias tractography estimation (Hua et al., 2008). In particular, the procedure 

may fail if the amount of white matter damage to a tract is sufficiently large, as fractional 

anisotropy then will often be low enough or the uncertainty high enough to impair 
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performance of tractography algorithms. Therefore, alternative approaches have been 

developed, that use atlases of white matter tracts derived from control subjects, which are 

applied to guide subsequent analyses in patients (Singh et al., 2010; Squarcina et al., 2012). 

However, this technique has only been adopted in two of the most recent DWI studies in TBI 

patients (Fagerholm et al., 2015; Hellyer et al., 2015).  

 

The next issue involves the parcellation scheme applied to define network nodes. To this end, 

various techniques exist, among them anatomical, random, or functional parcellation, or 

without applying a parcellation scheme and analyzing the brain with a node in each voxel. 

However, even in healthy controls, there is no established standard for node definition. In the 

presence of brain lesions, when anatomy is often distorted and underlying function can be 

changed, this issue is further complicated. Nonetheless, a substantial part of the clinical MRI 

studies discussed in this review have overlaid standard anatomical or functional atlases to 

lesioned brains, disregarding potentially large deviations from normal anatomy and function. 

Additional research into parcellation, taking into account these possible deformations, is 

therefore clearly warranted. One possible approach would be to utilize multimodal imaging 

information, for example to identify anatomical regions based on the important white matter 

tracts that connect them. 

 

Finally, we believe the field is now ready to move beyond mere descriptions of disease 

processes. That is, future studies should focus on generating hypotheses about underlying 

pathophysiological mechanisms and make clinically useful predictions concerning key 

prognostic indicators. In particular, correlates between graph metrics and specific behavioral 

or cognitive indices have been found in several brain lesion studies, but often these are too 

general to apply as a biomarker in a subject-specific predictive context (Castellanos et al., 
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2013). As demonstrated by a recent study on epilepsy surgery, graph theory analysis may 

however be used to predict the efficacy of neurosurgical treatments and to avoid cognitive 

deficits. In particular, Doucet et al. (2015) demonstrated that graph measures of segregation, 

integration and centrality derived from the presurgical functional connectome of patients with 

temporal lobe epilepsy predicted between 68% and 99% of postsurgical cognitive 

performance across different domains. Hence, it should be investigated whether similar 

predictive associations can be found between graph metrics – based on structural or functional 

connectivity, or a combination of both – and specific behavioral or cognitive functions in 

patients with focal brain lesions, in order to aid treatment planning. In parallel, future 

computational modeling studies could use patient-specific empirical structural connectomes 

combined with biologically inspired dynamical models in order to shed light on the local 

dynamics underlying altered large-scale network topology in different types of brain lesions. 

To this end, The Virtual Brain (www.thevirtualbrain.org) could be applied, a neuroinformatics 

platform for large-scale network simulations using biologically realistic structural 

connectivity (Sanz Leon et al., 2013). This simulation environment enables model-based 

simulation, analysis, and inference of neurophysiological mechanisms across different brain 

scales that underlie the generation of macroscopic neuroimaging signals including fMRI, EEG 

and MEG. A great advantage of this platform is that it allows the reproduction and evaluation 

of personalized configurations of the brain by using individual empirical structural 

connectivity data. This personalization facilitates an exploration of the consequences of 

pathological changes in the system, permitting to investigate potential ways to counteract such 

unfavorable processes. In this regard, one study has examined brain dynamics underlying 

stroke using The Virtual Brain (Falcon et al., 2015). Their results indicated an increase in 

long-range coupling in stroke patients compared to healthy controls, suggesting a 

preponderance of local over long-range brain dynamics. In addition, increased long-range 
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coupling was related to lower values of global efficiency. As such, this study highlights the 

global impact of stroke, despite its relatively focal damage. 

 

Conclusion 

In conclusion, human brain networks appear remarkably resilient to different types of lesions, 

compared to other types of complex networks such as random or scale-free networks. 

Possibly, this could be attributed to the exponentially truncated power law degree distribution 

found in large-scale human brain networks (Achard et al., 2006; Wang et al., 2009). In 

particular, such networks consist of fewer “mega-hubs” compared to scale-free networks with 

pure power law degree distributions, which might render them slightly less vulnerable to 

targeted attack of central nodes within the network. 

 

Of course, this does not imply that human brain networks are immune to any type or extent of 

damage. In particular, lesion effects have been found to depend critically on the topological 

position of the lesion, with damage to network hub regions – and especially those connecting 

different sub-networks (i.e., connector hubs) – causing the largest disturbances in network 

organization. This finding might lead to novel, more effective therapeutic interventions. For 

example, determination of patient-specific network hubs in proximity to brain tumors could 

help guide pre-surgical planning in order to minimize cognitive impairment, and future 

research can investigate whether disease-affected hub regions could serve as new targets for 

deep brain stimulation. 

 

Regardless of the specific lesion location, however, alterations in global network topology 

have been found in empirical studies examining brain tumors, stroke, TBI, and Alzheimer’s 

disease, as well as in computational lesion studies. Therefore, these pathologies can be 
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considered as “disconnection syndromes” from a complex networks perspective (Guye et al., 

2010). In order for these network alterations to become clinically useful, though, much more 

research is required to unravel exactly how network organization changes in response to 

different types and stages of brain damage. To this end, future research would benefit from 

categorizing patients according to lesion etiology and/or stage, as well as a consensus 

approach on network construction and analysis, to facilitate comparison between different 

studies. Once these methodological obstacles are resolved, potential clinical applications are 

numerous. That is, biomarkers of specific brain functions and symptoms could be identified, 

thereby carrying the potential to allow more objective diagnosis, to monitor recovery or 

progression processes over time, and to predict effective treatment options.  

 

Complimentary, computational modeling holds great promise to shed light on the local 

dynamics underlying altered large-scale network topology in different types of brain lesions. 

Though still in its infancy, computational modeling may provide an entry point for 

understanding brain disorders at a causal mechanistic level, possibly leading to novel, more 

effective therapeutic interventions. 

 

In sum, the studies discussed in this review provide the foundation for, and highlight the 

possibility of, applying connectome analysis in clinical practice. Therefore, we would like to 

encourage the neuroscientific community to invest in revealing underlying pathophysiological 

mechanisms and making clinically useful predictions concerning key prognostic indicators, 

making use of this novel and promising complex networks perspective. 
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Figure legends 

Figure 1. Workflow for obtaining structural and functional connectivity matrices and 

corresponding brain network. (a) Structural connectivity strength between any two regions is 

calculated, for example by using the count or density of reconstructed streamlines connecting 

any two regions. For visualization purposes, the logarithm of structural connectivity strength 

is shown in the structural connectivity matrix; (b) Functional connectivity strength is 

calculated as the pairwise statistical dependency between average time series of any two 

regions; (c) Representation of regions (nodes) and connections (edges) in the brain. 

 

Figure 2. Important complex network concepts. (A) Visual representation of segregation, 

integration and centrality concepts within the graph theoretical framework, and corresponding 

frequently used graph metrics. (B) Representation of three important types of complex 

network, with the small-world network representing an intermediary state between regular 

and random networks with regard to integration and segregation properties.  

 

Figure 3. Workflow for computational lesion modeling. (1) Empirical structural connectivity 

(SC) matrix is calculated by parcellating the brain and calculating structural connectivity 

strength between any two regions. Subsequently, the empirical structural connectivity matrix 

is virtually lesioned, for example by removal of a subset of nodes and all their edges. For 

visualization purposes, here the logarithm of structural connectivity strength is shown; (2) An 

appropriate dynamical model is applied to the lesioned structural connectivity matrix, 

resulting in simulated brain activity time series; (3) Simulated brain activity time series are 

converted into a simulated functional connectivity (FC) matrix; (4) Simulated and empirical 

unlesioned functional connectivity (FC) matrices can be compared, for example by utilizing 

graph metrics. Adapted with permission from Falcon et al. (2016).  


