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GENERAL INTRODUCTION AND OBJECTIVES 

Moulds are able to grow on different kinds of food and feed commodities, such as grains, meat 

products, dairy products, fruit and vegetables, nuts, etc. Their presence is very often undesirable 

as mould growth is in many cases associated with spoilage (e.g. off-flavours and discolouration) 

and in certain cases with mycotoxin contamination. Both mould and mycotoxin contamination 

poses a major obstacle in addressing sustainable food and nutritional security, and in increasing 

international trade. Food spoilage due to fungal growth negatively affects the microbial stability 

and consequently shelf life of products. Moreover, it may lead to great economic and 

environmental losses because of disposal of contaminated food and feed. In addition to these 

losses, mycotoxins also imply substantial risks for humans and animals due to their adverse 

health effects including birth defects, liver and kidney disease. 

Despite efforts to control or avoid contamination by moulds and their mycotoxins, they remain 

to occur frequently in food commodities widespread. Chocolate confectionery and apples are 

two important Belgian food products, each characterised by their own fungal problems and 

related economic implications. The correct identification and physiology of those fungi of 

relevance for specific food products, and the mechanisms involved in regulating fungal growth 

and mycotoxin biosynthesis, are very complex and specific, and still remain to be elucidated. 

Therefore, prevention and control strategies can only be successful when the identity and 

characteristics of the associated mycobiota are well known. Hence, the main goal of this PhD 

thesis was detection, identification and characterisation of the mycobiota associated with 

chocolate confectionery and apples. Within this goal, focus was put on optimizing and 

developing methodologies through the application of a multidisciplinary research approach, i.e. 

a combination of conventional, molecular and/or chemotaxonomical analysis. 

Chocolate confectionery fillings are generally regarded as microbiologically stable. Their 

stability is largely due to a low water activity (<0.60), which does not allow microbial growth, 

to the general practice of adding either preservatives or alcohol, or by maintaining a relatively 

short shelf life. Increased consumer demands for high-quality products containing less sugar, 

fat and preservatives direct the industry towards the production of innovative formulations 

(non-alcoholic or “clean label”). In addition, export of these products is of great economic 

importance to the Belgian food industry and demands sufficiently long shelf life. Changes in 

composition of chocolate confectionery fillings can impede the stability of these products and 

may lead to spoilage by xerophilic fungi. 
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One strategy to prevent early spoilage of sweet intermediate moisture foods is by controlling 

the growth of spoilage organisms in the final product. Another strategy to address the problem 

is by controlling the initial sources of contamination. Hence, the first objective of the first part 

of this thesis was to determine the presence and prevalence of fungal spoilage organisms in 

both the production environment of Belgian chocolate confectionery factories as well as in 

commonly used ingredients of chocolate confectionery fillings. This information provides 

insight into potentially important contamination sources and species of fungi that may 

negatively affect the quality and shelf life of chocolate confectionery products (CHAPTER 2). 

Based on the obtained results, CHAPTER 3 focused on the importance of nuts as potential 

source of fungal contamination of confectionery fillings. The application of heat-treatment of 

walnuts was investigated as a possible preventive measure to reduce initial fungal 

contamination that may end up in the final product. 

Apples, as a seasonal product, need a prolonged shelf life in order to supply the market 

throughout the year. Penicillium expansum is a commonly distributed fungal species in apple 

orchards in the temperate regions, easily disseminated by different vectors in the orchard and 

by field equipment at harvest. After harvest, apples are transported to storage rooms of packing 

houses. During long-term storage, P. expansum is the principal cause of blue mould rot, one of 

the most severe post-harvest diseases of apples worldwide. Spoilage by blue mould rot poses 

an economic concern to the fresh fruit industry. However, more important is the fact that 

P. expansum is capable of producing the mycotoxin patulin, which may end up in secondary 

products such as apple juice. Long-term storage of apples at low temperature combined with 

controlled atmosphere (i.e. reduced O2 and elevated CO2) is a commonly applied strategy to 

extend their shelf life and secure a year-round supply. Baert (2007) demonstrated that this 

storage step is most decisive for the final patulin contamination of apple juice. Therefore, the 

second part of this thesis, focused further on the effect of temperature and atmosphere on 

patulin biosynthesis of various P. expansum strains. First, a sensitive High Performance Liquid 

Chromatography-UV (HPLC-UV) method, based on the AOAC Official method 2000.02, was 

optimized and validated for the high-throughput analysis of patulin in in vitro experiments on 

Apple Puree Agar Medium (APAM) and apple products (CHAPTER 4). This method was used 

to investigate the extent to which each successive step during long-term storage contributes to 

patulin production in various P. expansum isolates (CHAPTER 5). Finally, a sensitive and 

reliable molecular technique was developed to quantify the expression of the isoepoxydon 

dehydrogenase gene (idh) involved in the patulin biosynthesis of P. expansum (CHAPTER 6). 
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This newly developed RT-qPCR method was subsequently utilized to determine the influence 

of temperature and atmosphere on idh gene expression. In addition, idh gene expression levels 

were correlated with the patulin production that was quantified simultaneously by means of the 

earlier developed HPLC-UV method. 

A general overview of the PhD thesis is presented below. 
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CHAPTER 1 FUNGI IN FOODS 

 

1.1 FUNGI 

1.1.1 Introduction 

The term “Fungi” comprises of organisms known as mushrooms, moulds and yeasts. This 

doctoral thesis focuses on moulds. Moulds can cause allergies, plant diseases and mycoses. 

They are able to grow on different kinds of food and feed commodities resulting in spoilage 

(e.g. off-flavours and discolouration) and possibly mycotoxin contamination. Spoilage typically 

involves shortened shelf life of food products or disposal of contaminated food and feeds, and 

mycotoxins imply substantial risks for humans and animals due to their adverse health effects. 

Each commodity has its own associated mycobiota. Attempts to prevent mould spoilage and 

mycotoxin contamination can only be successful if these so-called associated mycobiota are 

known. This thesis focuses on the characterisation of the mycobiota of chocolate confectionery 

fillings and apples. Before characterising those fungi that are of importance for these foods, it 

is relevant to start by situating them among other living organisms on Earth. 

1.1.2 Classification 

During history, living organisms have been classified in a variety of ways based on all different 

kinds of features, e.g. mode of nutrition (photosynthesis, ingestion and absorption) and cell 

structure (nucleus). In 1969, Whittaker proposed a five-kingdom classification, with the fungi 

as one of five kingdoms of living organisms, all with equal taxonomic status. Around the 

beginning of the 21st century, modern molecular and cladistic (phylogenetic) approaches 

yielded a wealth of new insights into the evolutionary relationships between organisms. This 

has led to the classification of living organisms into the Tree of Life, exhibiting seven kingdoms 

of which two are prokaryotic and five are eukaryotic (Figure 1.1). 
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Figure 1.1 Phylogenetic tree indicating the relationship between the two 

prokaryotic and five eukaryotic kingdoms. The tree is unrooted, involving no 

assumptions about the point where the common ancestor is situated, but indicating 

the amount of evolutionary change and pattern of divergence, based on the extent 

of differences between the small subunit (SSU) ribosomal ribonucleic acid (rRNA) 

sequences (Carlile et al., 2001). 

 

The Fungi are recognised as one of the five eukaryotic kingdoms, the others being the Animalia 

(animals), Chromista (roughly taken the algae), Plantae (plants) and Protozoa (mainly 

phagotrophic, unicellular organisms) (Carlile et al., 2001; Whittaker, 1969). However, this 

delineation is not always as clear as one should think as the fungi, studied by mycologists, can 

be found in three different kingdoms: the slime moulds are assembled within the kingdom 

Protozoa and the water moulds (Oomycetes) are common microfungi that belong to the 

kingdom Chromista. The kingdom Fungi consists exclusively of fungi that are hyphal or clearly 

related to hyphal species. 

Ainsworth and Bisby ’s Dictionary of the Fungi (9th edition) as well as numerous phylogenetic 

studies of the fungal kingdom employing multi-gene sequencing, and a large collaborative 

analysis of the Assembling the Fungal Tree of Life (AFTOL) project gave rise to a first attempt 

of a higher-level phylogenetic classification that described seven phyla within the kingdom 

Fungi: Ascomycota, Basidiomycota, Chytridiomycota, Blastocladiomycota, 

Neocallimastigomycota, Glomeromycota and Microsporidia (Hibbett et al., 2007; Kirk et al., 

2008; Lutzoni et al., 2004; Schussler et al., 2001).
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1.1.3 Nomenclature 

Unlike most organisms, fungi can produce sexual spores (meiospores) and asexual spores 

(mitospores), which can be referred to as the teleomorph (sexual phase) and anamorph (asexual 

phase) of the fungus, respectively. Mitosporic fungi, solely known for the formation of asexual 

spores, were formerly classified as Deuteromycetes or Fungi Imperfecti. The whole fungus or 

the holomorph is defined as “a fungus in its all meiotic or mitotic, sexual and asexual potential 

expressions of morphological nature and covers the unknown and known morphs of the fungus”. 

Not surprisingly, the manifestation of more than one type of reproductive morphology by one 

single entity has been a major challenge for taxonomists in naming and classifying them. As a 

result, the teleomorph of a whole fungus has been traditionally classified and named separately 

from their anamorphs. Consequently, a whole fungus finds itself in two classification and 

nomenclature systems against the principle of natural classification (Hennebert, 2003; 

Hennebert and Weresub, 1977; Kirk et al., 2008; Seifert et al., 2003). Hence, Penicillium and 

Aspergillus species that had not yet been found to produce a sexual state could keep their 

Penicillium and Aspergillus names, because of a special nomenclatural “exception” in the 

International Code of Nomenclature for algae, fungi, and plants (ICN) (Art. 59) that allowed 

to use two names for a specific fungal species, one for the anamorph and one for the teleomorph. 

Despite this, it was recommended to use the sexual name for the whole fungus, whenever a 

sexual state had been found. For this reason many species in Penicillium were renamed 

Eupenicillium or Talaromyces and many Aspergillus species were renamed Chaetosartorya, 

Emericella, Eurotium, Fennellia, Hemicarpenteles, Hemisartorya, Neocarpenteles, 

Neopetromyces, Neosartorya, Petromyces, Saitoa, Sclerocleista, or Warcupiella (Frisvad, 

2015). As this was an exception to one of the basic principles of the ICN (according to which a 

taxon circumscribed in a particular way can have only one correct name (Principle IV)), it has 

become increasingly anomalous to have separate names for the anamorph and the teleomorph 

phases of a single fungal species. Since July 2011, mycologists have increasingly supported the 

concept of one name for one fungus (McNeill et al., 2005; McNeill and Turland, 2011). The 

International Commission of Penicillium and Aspergillus (ICPA) has decided to keep 

Penicillium, Talaromyces and Aspergillus as monophyletic clades, i.e. as big genera 

accomodating species from other genera instead of using several smaller genera (for example 

Penicillium includes among others Eupenicillium and Aspergillus includes among others 

Eurotium). 
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Proposed lists of accepted species in the genera Penicillium, Talaromyces and Aspergillus have 

been reported by Hubka et al. (2013), Samson et al. (2014), Visagie et al. (2014) and Yilmaz et 

al. (2014). 

Throughout this thesis, all organisms studied are filamentous microfungi corresponding to the 

kingdom Fungi, and will further on be mentioned as fungi or moulds. The nomenclature of 

Eurotium has been used throughout this thesis but the newly proposed Aspergillus names of the 

fungal isolates that were identified in CHAPTER 2 have been included in Table 2.3. 

1.1.4 Diversity – prevalence 

Based on the Dictionary of the Fungi and the addition of Microsporidia as a fungal group, a 

total of about 99,000 species of known and described fungi has been reported today (Kirk et al., 

2008; Lee et al., 2010). Of those, the total number of most commonly occurring species in food 

and indoor environments is estimated around 175 (Samson et al., 2010). In 1991, an important 

paper provided an estimation of 1.5 million species of fungi, based on a 6:1 ratio of known 

fungi to vascular plant species in regions where both were considered to be well-studied 

(Hawksworth, 1991). However, the estimation is considered to be conservative, as different 

regions remain understudied and results from molecular methods were not included. More 

recent estimates, based on data acquired from high-throughput environmental sequencing, have 

predicted as many as 5.1 million species of fungi (Hawksworth, 2001; O'Brien et al., 2005; 

Taylor et al., 2010). 

The large gap between known and estimated numbers of fungi has led to the rise of important 

questions such as “which regions of the Earth harbor fungal diversity?”. Fungi are able to grow 

in almost all habitats on Earth (soil and air of tropical to cold regions, desserts, fresh and marine 

waters, etc.), bypassed only by some bacteria in their ability to withstand certain extremes in 

temperature, water activity (aw), and carbon source (Blackwell, 2011). 

Although difficulty of isolation and failure to apply molecular methods may contribute to lower 

numbers of species in certain groups, there is no doubt that the Ascomycota and Basidiomycota 

make up the vast majority of fungal diversity. The phylum of the Ascomycota comprises around 

75% of all currently known fungi including almost all xerophilic fungi (e.g. genus Eurotium) 

and the species Penicillium expansum, that are of interest for chocolate confectionery and 

apples, respectively. 
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1.1.5 Growth and reproduction of Ascomycota 

With the exception of yeasts, fungi are multicellular. Each cell consists of a nucleus and cell 

organelles. Typically, fungi possess a rigid cell wall containing chitin as well as glucan, 

chitosan and other components. The cells are long, narrow and cylindrical and make up a 

network of branching tubes or hyphae called the mycelium. Yeasts grow by budding or fission 

and hyphae grow apically and branch laterally. Most yeasts and filamentous Ascomycota are 

haploid, but some species, Saccharomyces cerevisiae for example, can also be diploid. The 

Ascomycota can make spores sexually (ascospores or meiospores) and asexually (conidia or 

mitospores). 

A schematic representation of the reproductive cycle of the Eurotiales, comprising most 

xerophiles and P. expansum, is given in Figure 1.2. (Pitt and Hocking, 2009; Samson et al., 

2010; Taylor et al., 2006). 

 

 

Figure 1.2 Life cycle in the Eurotiales, demonstrating teleomorph and anamorph relation 

(Samson et al., 2010). The Eurotiales is one of the 68 orders belonging to the phylum 

Ascomycota and consists of the genera Penicillium and Aspergillus of which the 

teleomorphs are termed Eupenicillium/Talaromyces and 

Emericella/Eurotium/Neosartorya, respectively (Kirk et al., 2008). 
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During growth, fungi utilize substrates ranging from simple sugars to cellulose, lignin, pectins 

and others. They secrete extracellular enzymes allowing them to degrade the substrate and to 

absorb the resulting, soluble nutrients. Fungal growth is however influenced by a variety of 

intrinsic (e.g. nutrients, aw, pH), extrinsic (e.g. temperature, gas composition) and implicit 

factors (e.g. accompanying flora) (Samson et al., 2004a). The mechanisms involved in 

regulating fungal growth seem to be very complex and may not easily be generalized but are 

most probably species-, media- and concentration-dependent (Yigit and Korukluoghlu, 2007). 

Within the scope of this dissertation, factors influencing growth of xerophilic fungi and 

P. expansum and its patulin production will be described in more detail in paragraph 1.2 and 

1.3, respectively. 

1.1.6 Occurrence: economic significance (applications/implications) 

In terrestrial ecosystems, plant litter decomposition and mineral nutrient recycling are among 

the most prominent processes regulated by saprotrophic fungi. Besides their essential role as 

decomposers, they may form mutualistic symbiotic associations with plants and animals or their 

mycelium may provide a direct food source to small animals. Fungi are of great economic 

significance for humans as they have yielded an increasing range of valuable products, 

including antibiotics (mainly penicillins and cephalosporins), other pharmaceutical drugs (e.g. 

for controlling cholesterol synthesis, immunosuppressive responses, blood pressure) and 

agrochemicals (fungicides and plant growth regulators). In addition, they have been largely 

exploited in the food industry (Carlile et al., 2001; Turk et al., 2006). Noteworthy is the large-

scale industrial production of citric acid mainly through the growth of Aspergillus niger on 

molasses, a byproduct of sugar production (Max. et al., 2010). Perhaps one of the best known 

applications of microfungi in the food industry is in cheese-making, notably Penicillium 

camemberti that is used as a starter culture for the manufacture of camembert cheese and 

Penicillium roqueforti for blue-veined cheeses such as roquefort, stilton, and Danish blue (Kirk 

et al., 2008). 

Next to the economic benefits fungi represent, their presence may also result in great economic 

losses, as fungi are very important agents of biodeterioration of wooden structures and stored 

timber, building stones, storage tanks of aviation fuel, etc. (Allsopp et al., 2004; Carlile et al., 

2001). 
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In addition, their presence in food and feed commodities is very often undesirable as they may 

cause spoilage (e.g. off-flavours and discolouration). Fact is that moulds can grow on the crops 

in the field (pre-harvest) as well as on harvested and processed feed/food commodities and 

beverages (post-harvest) of all kinds, e.g. silage, cereals, meat, dairy products, fruit, vegetables, 

nuts, etc. (Filtenborg et al., 1996). Some fungi are major plant and insect pathogens, e.g. the 

fungal species Ophiostoma ulmi and Ophiostoma novo-ulmi are the causal agents of Dutch elm 

disease across Europe, North America, and Southwest and Central Asia (Brasier and Buck, 

2001). In addition, some fungal agents are capable of causing disease in vertebrates. Animals 

as well as humans may suffer allergies, mycoses and mycotoxicoses. Mycoses, as the result of 

fungal growth on animal or human hosts, range from being merely inconvenient (e.g. athlete’s 

foot) to life threatening (e.g. invasive aspergilliosis). The ordinary portal of entry is through the 

pulmonary tract via inhalation of spores from the environment or by unusual growth of a 

commensal species that is normally resident on human skin or the gastrointestinal tract. 

Mycotoxicoses are the diseases caused by mycotoxins (e.g. “St Anthony’s fire” or ergotism) 

(Bennett and Klich, 2003; Gravesen, 1979). Defining these mycotoxins is not as straightforward 

as one would think. In general, they are low-molecular weight natural products produced as 

secondary metabolites by filamentous fungi and exerting (acute or chronic) toxic effects on 

humans and animals after exposure (Bennett and Klich, 2003; Hussein and Brasel, 2001; 

Peraica et al., 1999). Mycotoxins are mostly consumed through contaminated food and feed 

(CAST, 2003). It has been estimated that 25% of the world’s crops, in both developing and 

developed countries, are contaminated to some extent with mycotoxins (Bryden, 2007; FAO, 

2003; Fink-Gremmels, 1999). Exposure to high concentrations of mycotoxins will lead to acute 

mycotoxicosis, having a rapid onset and an obvious toxic response (in the worst case even 

death). However, in a normal diet, constant exposure to low levels of several toxins is more 

likely to occur (Kumar et al., 2008). The corresponding chronic toxicity is characterised by a 

low-dose exposure over a long time and can result in diseases like cancer and other adverse 

effects such as irritation of the pulmonary or of the digestive tract, feed refusal, poor feed 

conversion and nutrient absorption, diminished body-weight gain, increased disease incidence 

due to immune suppression, reduced vaccination efficacy and disturbance of the endocrine and 

exocrine system (Coulombe, 1993; Kubena et al., 1998). 
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1.1.7 Identification 

Attempts to prevent mould spoilage and mycotoxin contamination of food/feed can only be 

successful, if the so-called associated mycobiota, are known. The identity of the species will 

reveal important characteristics of the spoilage organism. It is however, not easy to define a 

fungal species. Research on the fungi that can cause food spoilage and the mycotoxins they 

produce, has to be based on accurate identification. Reliable results are obtained when applying 

a polyphasic approach, i.e. a combination of morphological, molecular and/or 

chemotaxonomical analysis. 

1.1.7.1 Cultivation 

For morphological identification, it is important to start by cultivating each pure isolate on 

appropriate media in order to achieve typical growth and sporulation patterns. Malt Extract 

Agar (MEA), V8 juice agar (V8) and Czapek Yeast Autolysate agar (CYA) are recommended 

as general purpose media. In the case of xerophilic fungi, the media Dichloran 18% Glycerol 

agar (DG18) or Malt extract Yeast extract 50% Glucose agar (MY50G) can be used. Besides 

these general purpose media, a variety of selective isolation media exists that may be used to 

select for more specific groups of fungi or even particular fungal species. It is advised to use at 

least two different media for identification (Samson et al., 2010). A Petri dish containing a 

certain medium is in most cases inoculated with a single culture at three points, equidistant from 

the centre and the edge of the plate and from each other (Pitt and Hocking, 2009). Most fungi 

can be incubated in the dark at 25°C and identified after 5-10 days. Some fungi, however, 

demand special incubation conditions to produce typical sporulation. For example, Phoma 

should be incubated in the dark for seven days followed by seven days in alternating 

darkness/diffuse daylight to show its typical sporulation pattern (Samson et al., 2010). 

Within the scope of this doctoral thesis, selection of media and incubation regimes for detection, 

isolation and identification of xerophilic fungi will be discussed in more detail in paragraph 

1.2.1. Cultivation and identification of the fungal species P. expansum was conducted using a 

combination of general and more selective media including MEA, CYA, creatine agar (CREA), 

and yeast extract sucrose agar (YES), as recommended by Samson et al. (2010). Standard 

incubation conditions of seven days at 25°C in the dark were applied. 
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1.1.7.2 Morphological identification 

After cultivation, macro- and microscopic identification can be achieved by examining 

qualitative and quantitative features, which rely on observations of colonial and microscopic 

morphology, along with tables, keys and textbook descriptions. Examples of qualitative 

features are colony texture/colour(s) and ornamentation of the conidia, while commonly used 

quantitative features are for example colony diameter and conidia size (Pitt and Hocking, 2009; 

Samson et al., 2010). Unfortunately, microscopic identification is time-consuming, requires 

thorough taxonomic expertise and can be insufficient for separating species within species 

complexes. Additional constraints can be atypical morphology, failure to sporulate, long 

incubation periods and the sometimes-subjective nature of this approach (Balajee et al., 2007). 

In the course of this thesis, morphological identification was used for classification of the fungal 

isolates to genus level as shown in the first steps of Figure 1.3. Subsequent identification to 

species level was conducted by means of molecular analysis (1.1.7.3). 

1.1.7.3 Molecular identification 

In the past, identification was primarily based on morphologically identified phenotypic 

characteristics. The constraints associated with phenotype-based methods have led to increasing 

use of genotype-based methods. Various techniques, such as DNA sequencing and random 

amplification of polymorphic DNA (RAPD) have been used for species recognition, but DNA 

sequencing is most frequently used for identification purposes. Nowadays, comparative 

sequence-based identification strategies can be considered as the “gold standard” for fungal 

species identification (Summerbell et al., 2005). 

The flow chart in Figure 1.3 describes the different steps of molecular identification to species 

level. Different genes can be used for identification and an important step before starting the 

analysis is the selection of a good genetic marker. This selection is based on some important 

criteria such as a) easy to amplify, b) the presence of enough variability to allow species 

identification with low levels of intraspecies variation, and c) the availability of a reference 

dataset for comparison of the sequences obtained. 
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Figure 1.3 Flow chart showing the procedure to prepare and analyse a fungal culture for 

morphological- and molecular-based identification (Samson et al., 2010). 
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Sequencing of the Internal Transcribed Spacer (ITS) region along with “housekeeping genes” 

such as calmodulin, β-tubulin and elongation factor 1-α is commonly applied for identification 

of food spoilage and mycotoxigenic fungi in the genera Aspergillus (Geiser et al., 2007; 

Peterson, 2008), Penicillium (Peterson, 2004; Peterson, 2006; Serra et al., 2008; Wang and 

Zhuang, 2007) and Fusarium (Leslie et al., 2007; O'Donnell et al., 2004; Scott and Chakraborty, 

2006). 

There is no locus that can be used for all fungi and selection of a good genetic marker is 

genus/species dependent. More recently however, the ITS was accepted as the official barcode 

for fungi. ITS is the most widely sequenced marker for fungi, and universal primers are 

available (Schoch et al., 2012). As such, it is good practice to include ITS sequences whenever 

new species need to be identified. Unfortunately, for Penicillium, Aspergillus and other genera 

of Ascomycetes, the ITS is not variable enough for distinguishing all closely related species. 

Because of these limitations, a secondary barcode or identification marker is often needed for 

identifying isolates to species level. Based on the earlier described criteria for a good genetic 

marker, β-tubulin was proposed as the best option for Penicillium and Talaromyces, and 

calmodulin for Aspergillus (Samson et al., 2014; Visagie et al., 2014; Yilmaz et al., 2014) 

(Figure 1.3). 

Primers designed for amplification of common loci including ITS, β-tubulin and calmodulin of 

fungal species are clearly described in literature (de Hoog and Gerrits van den Ende AH, 1998; 

Glass and Donaldson, 1995; Hong et al., 2006; Jaklitsch et al., 2005; Masclaux et al., 1995; 

O'Donnell and Cigelnik, 1997; Peterson, 2004; Peterson, 2008; Vilgalys and Sun, 1994; White 

et al., 1990). An overview of recommended loci and databases for identification of different 

groups of filamentous fungi is given in Table 1.1. 

One of the main disadvantages remains the high number of misidentified strains in public 

databases, meaning these databases accept all sequences submitted and cannot always verify 

the taxonomic names attributed to the sequences (Nilsson et al., 2006). This problem can be 

overcome by using (if present) specific databases and by comparing sequences to type strains 

(if available) (Table 1.1). In a step towards cleaning up misidentified Genbank sequences, the 

RefSeq initiative was launched (http://www.ncbi.nlm.nih.gov/refseq/), which contains only 

verified ITS sequences (Samson et al., 2014; Visagie et al., 2014). However, much care should 

be given to the result obtained. 
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Table 1.1 Overview of recommended loci and databases for species identification of filamentous fungi (modification of 

Samson et al., 2010). 

Genus Databases Recommended locus Reference 

Aspergillus and 

teleomorphs 

Genbank
1
; CBS website

2
 ITS

3
 

Calmodulin 

Samson et al. (2014) 

Penicillium and 

teleomorphs 

Genbank
1
; CBS website

2
 ITS

3
 

β-tubulin 

Visagie et al. (2014) 

Talaromyces Genbank
1
; CBS website

2
 ITS

3
 

β-tubulin 

Yilmaz et al. (2014) 

Fusarium FUSARIUM-ID database  

(http://isolate.fusariumdb.org/) 

ITS 

TEF 

Geiser et al. (2004) 

Trichoderma TrichOKEY (http://www.isth.info/)
3
 ITS

3
 Druzhinina et al. (2005) 

  EF-1α
4
 Kopchinskiy et al. (2005) 

Zygomycetes TrichBLAST (http://www.isth.info/)
3
 ITS Schwarz et al. (2006) 

Alternaria   Gpd
5
 Hong et al. (2005) 

1 http://blast.ncbi.nlm.nih.gov/Blast.cgi (go to “nucleotide blast” for comparison of nucleotide sequences) and the reference 

sequence data set for ITS on http://www.ncbi.nlm.nih.gov/refseq/;2 www.cbs.knaw.nl (go to “databases” and a drop-down 

menu will appear with several databases);3 Identification based on ITS sequences sometimes fails to distinguish between closely 

related species;4 Glyceraldehyde-3-phosphate dehydrogenase (gpd) sequences differentiate only between the Aspergillus 

infectoria-group and the Aspergillus arborescens/Aspergillus tenuissima group but not between the last two species groups.5 

Elongation factor 1 α. 
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1.2 XEROPHILIC FUNGI IN SWEET INTERMEDIATE MOISTURE FOOD 

1.2.1 Xerophilic fungi 

1.2.1.1 Habitats and physiology 

Two major types of environment provide habitats for the most xerophilic organisms, namely 

foods preserved by some form of dehydration or enhanced sugar levels, and hypersaline sites 

where water availability is limited by a high concentration of salts (usually NaCl) (Grant, 2004). 

Microorganisms exposed to a low aw environment all rely on a common strategy for survival, 

namely the intracellular accumulation of a solute or solutes, known as compatible solutes, to 

balance the external water activity (aw), thus preventing the mass movement of water out of the 

cell (Hocking, 1988). Glycerol has been shown to be the major compatible solute accumulated 

internally by xerophilic fungi in response to decreased aw (Beuchat and Hocking, 1990; Brown, 

1978). 

Mannitol, arabitol, xylitol, dulcitol, and sorbitol may also be accumulated but are usually 

regarded as storage products of carbohydrate metabolism rather than compatible solutes 

(Beuchat and Hocking, 1990). Some xerophilic moulds may grow equally well on substrates 

containing high concentrations of sugars or sodium chloride, while others prefer specific 

solutes. Wallemia sebi for example can grow on a wide range of solutes, while Xeromyces 

bisporus and Chrysosporium fastidium grow best in high-sugar environments, and 

Polypaecilum pisce and Basipetospora halophila prefer high-salt media (Andrews and Pitt, 

1987; Beuchat and Pitt, 1990; Luard and Griffin, 1981; Pitt and Hocking, 1977; Wheeler and 

Hocking, 1988). Scott (1957) reported that Eurotium amstelodami grew 50% faster at its 

optimal aw (0.96) when aw was controlled by glucose rather than magnesium chloride, sodium 

chloride or glycerol. A similar effect was shown for Eurotium chevalieri (Pitt and Hocking, 

1977). Next to the presence of particular solutes, the type of carbon source can also exert 

additional effects on the growth of fungi. Whereas bacteria are more likely to spoil 

proteinaceous foods, fungal metabolism is best suited to substrates high in carbohydrates. Most 

common mould species appear to be able to assimilate almost any food-derived carbon source. 

However, some xerophiles have been shown to be more demanding. Ormerod (1967) for 

example reported that growth of W. sebi was strongly stimulated by the amino acid proline. 
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Besides the presence of nutrients, one of the most important factors for determining fungal 

growth is aw. Water activity is defined as the ratio of water vapour pressure of the food substrate 

to the vapour pressure of pure water at the same temperature (Jay, 2000): 

aw = p/po, 

where p = vapour pressure of the solution and po = vapour pressure of water. The aw of pure 

water is 1.00 and the aw of a completely dehydrated food is 0.00. 

Water activity can be defined as a measure of the unbound water in the food product, which is 

available for microorganisms to grow. Table 1.2 lists the approximate aw values of some 

common food categories and the approximate minimum aw values for the growth of different 

microorganisms relevant to food. It must be emphasized that these are approximate values 

because solutes can vary in their ability to inhibit microorganisms at the same aw value. On the 

aw scale, growth of microorganisms exists over the range of >0.99 to 0.60. Most bacterial 

pathogens are controlled at water activities well above 0.86 and only S. aureus can grow and 

produce toxin below aw 0.90 (Mossel et al., 1995). In most fresh, high aw foods, fungi do not 

grow well due to competition from bacteria. In food products, which have conditions such as 

low aw, especially moulds and some yeasts may proliferate (Kirk et al., 2008). Filamentous 

fungi belonging to the phylum Ascomycota comprise most of the organisms capable of growth 

below 0.90 aw and those capable of growth below 0.85 aw are the earlier described xerophilic 

fungi (Table 1.2).  

Table 1.2 Water activity (aw) of food products in relation to approximate minima for growth of different 

microorganisms as reported in literature (adapted from ICMSF (1996) and Pitt and Hocking (2009)). 

aw Foods Bacteria Yeasts Moulds 

>0.99 Milk, fruit, vegetables,fresh meat 

and fish 

   

0.95-0.99 Cooked ham, smoked salmon Gram-negative 

bacteria (e.g. 

Escherichia coli) 

Basidiomycota Basidiomycota, most soil 

fungi 

0.90-0.95 Bread Gram-positive 

bacteria (e.g. Listeria 

monocytogenes) 

Most Ascomycota Mucor, Fusarium 

0.85-0.90 Dry salami Staphylococcus 

aureus 

Zygosaccharomyces 

rouxii (salt) 

Rhizopus, Cladosporium 

0.60-0.85 Dried fruit, grains, confectionery, 

salt fish, honey, fruit cakes, soy 

sauce, chocolate fillings, jams 

Salt lake halophiles Zygosaccharomyces 

bailii, Z. rouxii 

(sugar) 

xerophilic Penicillia and 

Aspergilli, Eurotium, 

Chrysosporium, W. sebi, 

X. bisporus 

0.20-0.60 Dry pasta, spices    

0.10-0.25 Freeze-dried products     
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Higher aw values are generally required for spore formation rather than spore germination. 

Furthermore, minimum aw levels for growth are lower than those required for mycotoxin 

production. Minimum aw for mycotoxin production is 0.80, with the majority not producing 

mycotoxins at aw<0.85 (Beuchat et al., 2013). Xerophilic fungi exhibit no special temperature 

requirements for growth and can commonly grow over a broad pH range of 3-8 (Pitt and 

Hocking, 2009). Most filamentous xerophiles grow best in the 22 to 25°C range and the optimal 

pH for growth is around 6.5 to 6.8 (Beuchat and Hocking, 1990). 

1.2.1.2 Terminology 

Xerophilic fungi are distinguished by their ability to grow under conditions of reduced aw, i.e. 

to complete their life cycles on substrates that have been dried or concentrated, in the presence 

of high levels of soluble solids such as salts or sugars. Authors have discussed the use of various 

terminologies such as “halophile” (capable of growth in high salt concentrations), “osmophile” 

(capable of growth at high osmotic pressure), “xerophile” (capable of growth at low aw), and 

“xerotolerant” (tolerance of low aw) for fungi growing at low aw (Pitt and Hocking, 2009). A 

quite comprehensive and practical working definition of Pitt (1975) describes a xerophile as a 

fungus capable of growth, under at least one set of conditions, at a aw below 0.85. Moderately 

xerophilic fungi are than defined as fungi that are capable of growth below aw 0.85 but that do 

not require this, nor is it there optimal condition. Xerophilic species of the genera Penicillium, 

Aspergillus and Eurotium, the species W. sebi, and a few others belong to this group. Strictly 

xerophilic fungi are those that require low aw for growth and grow poorly on media in which 

the controlling solute is something other than sugars. X. bisporus, C. fastidium, Chrysosporium 

farinicola, Chrysosporium inops, Chrysosporium xerophilum, Eremascus albus and Eremascus 

fertilis, and the halophilic xerophiles Pol. pisce and B. halophila are in this group (Beuchat and 

Hocking, 1990; Pitt and Hocking, 2009). 
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1.2.1.3 Laboratory growth media 

As a rule of thumb, the laboratory growth media chosen for detection, enumeration and isolation 

of xerophilic fungi should reflect the characteristics of the food or food-processing environment 

to be analysed, or the species suspected to be present. Glucose, sucrose, or glycerol 

supplemented media should be used for analysis of high-sugar products, while for high-salt 

foods, the use of media containing sodium chloride, perhaps in combination with a sugar, is 

more suitable. 

In general, media used for the isolation and enumeration of fungi in food products and other 

substrates have traditionally been of high aw values (0.99). Although such media are satisfactory 

for enumeration and isolation of fungi from fresh foods such as fruit, vegetables, dairy products 

and meat, they are inadequate for sampling the fungal flora of (semi)-dried foods (Beuchat, 

1992). Hocking and Pitt (1980) were the first to develop Dichloran 18% Glycerol agar (DG18; 

aw 0.95), a medium for the enumeration and isolation of xerophilic fungi from intermediate 

moisture food (IMF) products such as stored grains, nuts, flour, spices, dried fruits, and dried 

meat and fish products. It has been shown that this medium supports growth of the common 

Aspergillus, Penicillium and Fusarium species, as well as most yeasts, and many other common 

foodborne and airborne fungi. So, on the one hand, DG18 has been described as a general 

purpose isolation and enumeration medium for samples of high aw, i.e. aw>0.90. On the other 

hand, it is also recommended for the detection and enumeration of moderately xerophilic 

species in samples with aw<0.90 and in dry food processing environments. Extreme xerophiles 

grow slowly on DG18 and are quickly overgrown by rapidly spreading xerophiles such as 

common Eurotium species. An effective medium, suitable for all except halophilic species, and 

recommended for foods with aw<0.70, is Malt extract Yeast extract 50% Glucose agar 

(MY50G; aw 0.89) (ISO 21527-2, 2008; Pitt and Hocking, 2009; Samson et al., 2010). Other 

commonly used media for isolating and enumerating xerophiles are: Malt extract Yeast extract 

containing 20% (MY20G; aw 0.97), 40% (MY40G; aw 0.93) or 60% (MY60G; aw 0.85) Glucose, 

Malt extract Yeast extract 70% Glucose Fructose (MY70GF; aw 0.76), Malt extract Yeast 

extract 5% salt 12% glucose (MY5-12; aw 0.95). Other sugar-supplemented agars include malt 

extract agar containing 50% sucrose, used for analysing jams and jellies, fruit concentrates, and 

dried fruits. Czapek Yeast autolysate agar supplemented with 20% Sucrose (CY20S) enhances 

the probability of detecting xerophiles, particularly Eurotium species, in dry cheeses, grains, 

cured meats, and baked goods. 
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Malt Salt Agar (MSA) was developed in the 1940’s for enumerating moulds in flour (Beuchat 

and Hocking, 1990). A comparison of DG18, which is typically supplemented with 

chloramphenicol, to DG18 supplemented with Triton X-301 (DG18T) and DG18 supplemented 

with Iprodione (DG18I) for enumerating xerophiles in wheat flour, proposed DG18T to be 

superior to DG18 and DG18I (Beuchat and Hwang, 1996). 

1.2.1.4 Detection, enumeration and isolation techniques 

In the food industry, fungal spoilage of raw materials or final products may occur and is often 

connected to the development of a specially adapted mycobiota in the factory environment. In 

order to obtain a complete picture, one should combine mycological analysis of raw materials 

and final products with analysis of surface and air samples originating from the indoor 

environment of production and storage areas. 

As well as special media, extreme xerophiles require special techniques for isolation. Direct 

plating of low aw commodities provides a good means of estimating the extent of xerophilic 

fungal infection (Mislivec and Bruce, 1977). In most situations, food particles should be surface 

disinfected before plating in order to effectively measure the inherent mycological quality. 

However, surface disinfection should be omitted where surface contaminants become part of 

the downstream mycobiota, for example, in nuts intended for confectionery fillings. Visible 

fungal growth on food or industrial or building materials can be examined directly under the 

microscope. Whether the fungi are detected directly on a food or surface substrate, or as mixed 

cultures on isolation media after plating, pure cultures of each isolate should be prepared by 

streak-inoculation on specific media as described in § 1.2.1.3. Sampling of surfaces can be 

conducted in a variety of ways, e.g. by means of a mycometer test, sellotape preparations, direct 

plating, contact plate sampling and swab sampling. Air sampling of the indoor environment 

may be performed both volumetric (quantitative) as well as non-volumetric (qualitative). The 

sedimentation-, settle- or gravity-plate method is a non-volumetric air sampling technique in 

which petri dishes with appropriate media are exposed to the air for a given amount of time. 

Volumetric air sampling is conducted by using air sampler devices, e.g. Andersen, Reuter 

Centrifugal air Sampler (RCS) and MAS100, that impact a defined quantity of air onto a strip 

or plate containing appropriate growth media (Pitt and Hocking, 2009; Samson et al., 2010) 



24 CHAPTER 1 FUNGI IN FOODS 

 

After sampling, plates and strips should be incubated upright and the standard incubation 

conditions as specified by the International Commission on Food Mycology (ICFM) are 25°C 

for 5 days in darkness. It is recommended to continue incubation up till 2 to 3 weeks to allow 

germination and growth of slow growing fungi such as the extreme xerophile X. bisporus. 

An example of analysing the xerophilic fungal flora on walnut samples is presented in Figure 

1.4. 

 

 

Figure 1.4 Detection and enumeration of fungal species on walnuts by direct plating 

of 1 g crushed walnuts on three petri plates containing Dichloran 18% Glycerol agar 

(DG18) medium followed by incubation for 5 days at 25°C (obtained during the 

course of this thesis). 
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1.2.1.5 Identification 

As described earlier, a polyphasic approach, i.e. combining morphological, molecular and/or 

chemotaxonomical analysis, is advised to ensure a correct identification of unknown fungal 

isolates. Morphological characterization is based on observations of colonial and microscopic 

morphology, along with tables, keys and textbook descriptions. Pitt and Hocking (2009) present 

a very useful identification key of food spoilage fungi with a specific section of xerophiles, 

encompassing the genera Aspergillus, Basipetospora, Bettsia, Chrysosporium, Eremascus, 

Eurotium, Polypaecilum, Wallemia and Xeromyces. For practical reasons, the authors had given 

a different and much narrower circumscription to the term xerophile, by which a species was 

included solely if after seven days at 25°C, colony diameters on 25% Glycerol Nitrate agar 

(G25N) exceeded those on CYA and MEA. As such, many xerophilic fungi (e.g. Pencillium 

brevicompactum) that meet the definition of Pitt (1975) do not meet this criterion and were 

consequently not keyed within this particular section. Another equally useful key to identify 

the most common food and indoor fungi including xerophilic species is presented in Samson et 

al. (2010). Molecular analysis of xerophilic species has to be conducted as described in 

§ 1.1.7.3. 

An example of cultivating a xerophilic isolate for morphological characterization is illustrated 

in Figure 1.5. 

 

 

Figure 1.5 Three-point inoculation of a pure culture of E. repens isolated from nuts. Colonies 

grown on Malt Extract Agar (MEA) (left) and Dichloran 18% Glycerol agar (DG18) (right) 

after 7 days at 25°C (obtained during the course of this thesis). 
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1.2.2 Two common xerophilic species: Eurotium repens and Penicillium brevicompactum 

1.2.2.1 E. repens 

E. repens forms colony diameters of 10-20 mm on both CYA and MEA after 7 days incubation 

at 25°C. The species is capable of growing over a temperature range between 4 and 40°C, and 

has an optimal growth at 25-27°C (Panasenko, 1967). Minimum aw for germination in NaCl 

and glycerol medium were reported as 0.83 and 0.72, respectively, with optima at 0.95 and 0.91 

aw, respectively (Andrews and Pitt, 1987). There was only a slight influence of pH from 4.0-

6.5, with an optimal pH around 4.5-5.5. E. repens produces ascospores, also known as ‘heat-

resistant vehicle’, that survive heating to 60-70°C for 10 min. The species is not known to 

produce any mycotoxins (Pitt and Hocking, 2009). Mycophenolic acid production, by E. repens 

isolated from agricultural and indoor environments, was more recently reported for the first 

time by Séguin et al. (2014). Mycophenolic acic is an extrolite that has been shown to be a 

potent pharmaceutical used as an immunosuppressant in organ transplantations (Bentley, 2000). 

E. repens is a very common species and has been isolated from a broad range of food products 

including spoiled prunes, strawberry puree, cake, nuts, cheese, and other products. It is of 

common occurrence in stored grains (e.g. maize) and on processed and dried meat or fish (e.g. 

salami, dried salted fish) (Pitt and Hocking, 2009). 

1.2.2.2 P. brevicompactum 

After 7 days incubation at 25°C, P. brevicompactum reaches colony diameters of 20-30 mm 

and 12-22 mm on CYA and MEA medium, respectively. The minimum and maximum 

temperature for growth are -2 and 30°C, respectively, with an optimal growth near 23°C 

(Mislivec and Tuite, 1970). Minimum aw for germination and growth is 0.78 at 25°C (Hocking 

and Pitt, 1979) categorising it as one of the most xerophilic Penicillia. The species is reported 

to produce a wide range of metabolites (e.g. asperphenamate, Raistrick phenols) including the 

most toxic compound botryodiploidin. However the frequency of producing isolates and the 

significance of this mycotoxin is not clear. In addition, the fungus is well known for the 

production of mycophenolic acid (Frisvad and Samson, 2004). P. brevicompactum is very 

common in the arctic, temperate and subtropical regions, and is widely occurring on a broad 

range of food products. The species has been found in dried foods (e.g. beans and nuts), on 

meat products (e.g. hams and salami), dairy products (e.g. cheese and margarine), fruit purée, 

curry paste, bakery products and in bottled water and tap water. 
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Moreover, it can behave as a weak pathogen already having caused spoilage of stored apples, 

mushrooms, cassava, potato, pumpkin, grapes, yams and lychees (Pitt and Hocking, 2009). 

P. brevicompactum also occurs in soil, indoor air, and on water-damaged building materials 

(Samson et al., 2010). 

1.2.3 Sweet intermediate moisture food (IMF) 

1.2.3.1 Introduction 

The economic importance of sweet intermediate moisture food (IMF), e.g. jams, bakery 

products and chocolate fillings, in Belgium can be illustrated with data collated from The Royal 

Belgian Association of the Biscuit, Chocolate, Pralines and Confectionery, abbreviated 

Choprabisco. Among the different branches of the Belgian food industry, the Biscuit, 

Chocolate, Pralines and Confectionery branch represents 10.4% of its global turnover, 16.7% 

of its exports and realises a turnover of 5 billion euro (Choprabisco). 

The focus of this thesis is put on fillings of the Belgian chocolate confectionery products 

“pralines”. Typical fillings consist of butter, liquor, sugar, fruit, nuts, marzipan or different 

kinds of chocolate such as ganache (a mixture of cream and chocolate). These fillings contain 

between 20 and 50% (w/w) of water and a high amount of soluble compounds, which results in 

low aw values of 0.60-0.85. Most microorganisms cannot grow below 0.90 aw, hence, microbial 

spoilage of confectionery fillings is mainly caused by specialized xerophilic fungi and 

osmophilic yeasts (Pitt and Hocking, 2009). Typical spoilage is seen as production of off-

flavours, slime formation, gas production that leads to cracking of the chocolates or visible 

growth on the surface of the liquid fraction (Fleet, 1992; Mossel and Sand, 1968). Chocolate 

confectionery products are generally regarded as microbiologically stable, largely due to their 

low aw or the addition of alcohol or preservatives, which considerably reduces the risk of 

spoilage and extends shelf life. 

Nowadays, increasing consumer demands direct the industry towards high-quality products 

consisting of less sugar, fat and preservatives (so-called ‘clean label’, i.e. ingredient list without 

E-numbers) but maintaining long shelf life. In addition, the use of alcohol to reduce the risk of 

spoilage is not allowed in some importing countries. Changes in composition of chocolate 

confectionery fillings and the reduction or elimination of preservatives can impede the stability 

of these fillings and cause spoilage by growth of osmophilic yeasts and xerophilic fungi. 
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1.2.3.2 Occurrence of xerophilic fungi 

Table 1.3 presents literature data regarding the isolation of xerophilic mould species from sweet 

IMF products that may be used in the chocolate confectionery industry. Nuts were not included 

as numerous literature regarding the isolation of a wide range of fungal species belonging to a 

variety of genera including Aspergillus, Penicillium, Fusarium, Cladosporium, Eurotium, 

Rhizopus and Mucor were clearly described in Pitt and Hocking (2009). 

 

Table 1.3 Reports regarding fungal species isolated from sweet IMF of relevance for chocolate confectionery products. 

Sweet confectionery product Fungal species Reference 

Cake (intermediate moisture) Eurotium chevalieri, Eremascus fertilis, 

Eurotium repens, Eurotium rubrum, Penicillium 

brevicompactum, Wallemia sebi 

CBS, 2007; Membré et al., 2000; Pitt 

and Hocking, 2009 

Caramel W. sebi Patriarca et al., 2011 

Chocolate (bars, glazing, 

sauce, confectionery) 

Bettsia alvei, Chrysosporium farinicola, 

Chrysosporium inops, Chrysosporium 

xerophilum, E. chevalieri, E. rubrum, W. sebi, 

X. bisporus 

CBS, 2007; Dallyn and Everton, 1969; 

Hocking et al., 1994; Kinderlerer, 

1997; Larumbe et al., 1991; Pitt, 1966, 

Pitt and Hocking, 2009; Vytrosova et 

al., 2002 

Chocolate praline fillings 

(sugar- and cream-based with 

marzipan, fruit, nuts, spices 

and/or coffee) 

Aspergillus niger, Aspergillus oryzae, 

Aspergillus terreus, Aspergillus tubingensis,  

E. amstelodami, E. repens, P. brevicompactum, 

Penicillium chrysogenum, Penillium 

corylophilum 

Marvig et al., 2014 

Dried fruits (prunes, vine) Aspergillus flavus, A. niger, Aspergillus 

ochraceus, Aspergillus restrictus, C. farinicola, 

Chrysosporium fastidium, E. amstelodami,  

E. chevalieri, E. repens, Eurotium herbariorum, 

E. rubrum, W. sebi, X. bisporus 

Dallyn and Everton, 1969; Iamanaka et 

al., 2005; Leong et al., 2011; Pitt, 

1966; Pitt and Christian, 1968; Pitt and 

Hocking, 2009; Valero et al., 2007 

Fruit jam E. amstelodami, E. rubrum, W. sebi Cantoni et al., 2007; Pitt and Hocking, 

2009; Vytrosova et al., 2002 

Gelatine confectionery C. inops, X. bisporus Pitt and Hocking, 2009 

Sugar solution E. amstelodami, E. herbariorum, W. sebi Vytrosova et al., 2002 

Syrup E. rubrum, W. sebi Pitt and Hocking, 2009 
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1.2.3.3 Preservation of IMF 

Preservation of IMF is based on the delay or prevention of mould and yeast growth. It must 

therefore operate through those factors that most effectively influence growth of these spoilage 

organisms. Except for the addition of preservatives to food products, the most important 

intrinsic and extrinsic parameters (e.g. aw, pH and temperature) governing growth of xerophilic 

fungi have been previously discussed in paragraph 1.2.1.1. 

The use of preservatives in food products in Europe is regulated by the Commission Regulation 

(EU) (2011) No 1129/2011. Traditional weak-organic acids, e.g. sorbic- and benzoic acids, or 

their salts are among the most commonly used food preservatives. They are allowed in 

concentrations of up to 1500 ppm in confectionery products. However, the suitability and 

efficacy of these weak-acid preservatives is not always as straightforward as one may think. 

Some limitations to be considered are: odour, solubility, adverse health effects, pH-dependent 

efficacy and sub-optimal concentration risk. Several publications have linked traditional 

preservatives (e.g. sorbic- and propionic acid) with adverse health effects e.g. suppression of 

the immune system (Maier et al., 2010; Murr et al., 2005; Winkler et al., 2006). In addition, the 

use of sub-optimal levels of weak-acid preservatives in the control of mould growth has been 

studied in bakery products (Guynot et al., 2002; Guynot et al., 2005; Marín et al., 2002). Marín 

et al. (2002) for example studied the hurdle technology approach to prevent fungal growth of 

common contaminants of bakery products including isolates belonging to the genera Eurotium, 

Aspergillus and Penicillium. Several levels (0.003%, 0.03% and 0.3%) of calcium propionate, 

potassium sorbate and sodium benzoate were assayed on a model agar system in a full-factorial 

experimental design in which the other factors assayed were pH (4.5, 6 and 7.5) and aw (0.80, 

085, 0.90 and 0.95). Potassium sorbate was found to be the more suitable preservative to be 

used in combination with the common levels of pH and aw in Spanish bakery products. 

However, sub-optimal concentrations (0.003% and sometimes 0.03%) led to an enhancement 

of fungal growth, and none of the preservatives had a significant inhibitory effect at neutral pH. 

It has to be noted that 0.15% is the maximum allowed concentration of these weak-acid 

preservatives in confectionery products. Moreover, the effective levels of preservatives might 

differ considerable in between different food products and in between the food product itself 

and the simulation medium used for the in vitro study.  
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Besides traditional preservatives, ‘natural’ antifungal components such as alcohol, other 

‘natural’ weak organic acids (e.g. acetic- and lactic acid) and essential oils can be applied to 

extend the shelf life of confectionery products. In Commission Regulation No 1129/2011, 

maximum levels for both acetic acid and lactic acid are reported as “quantum satis” meaning 

you can add the amount needed, which emphasizes their more harmless character. There is no 

specific legislation on the use of ethanol, except for the labeling of beverages (Commission 

Regulation (EC), 2000). However, earlier research reported the rejection of cake and bread 

containing more than 2% alcohol on the basis of flavour and/or odour (Seiler, 1978). Moreover, 

the use of alcohol in chocolate confectionery products is restricted or not allowed in some 

importing countries. The applicability of acetic acid is rather restrained due to the sharp taste 

and smell of the acid (Smith et al., 2004). The use of lactic acid, which has a milder taste, may 

imply some risks on food spoilage because, under some conditions, growth stimulation instead 

of inhibition was noted for the osmotolerant yeast Zygosaccharomyces bailii (Vermeulen et al., 

2008). The use of natural extracts (e.g. cinnamon, oregano and garlic) can be promising only 

when combined with the right type of confectionery filling as their particular flavour may be a 

major drawback. Over the last years, the use of additives in food products has been more and 

more criticized, due to the possible adverse health effects (e.g. suppression of the immune 

system), pH-dependent efficacy and sub-optimal concentration risk, and negative consumer 

perception towards food additives in general. 

An option to enhance preservative effect and meet consumer demands in reducing the use of 

preservatives is the application of the hurdle concept or the combined preservation method. The 

principle of this technique is that combining multiple hurdles or stress factors may act 

synergistically through interference with the homeostasis of microbial cells (Gould, 1996; 

Leistner, 2000). 

Predictive modeling is a very useful quantitative tool to predict the effect of a combination of 

factors on the growth of particular spoilage organisms. Predictive growth/no growth (G/NG) 

models have been developed for Zygosaccharamyces rouxii in sweet IMFs such as fillings of 

chocolate confectionery products. Z. rouxii is one of the few and most notorious yeast species 

causing spoilage of high sugar products (Fleet, 1992; Martorell et al., 2005). Vermeulen et al. 

(2012) developed a model including the factors aw (0.76-0.88), pH (5.0-6.2), ethanol (0-14.5% 

(w/w) in water phase), sorbic acid (1500 ppm), acetic acid (0-3.5% (w/w) in water phase) and 

temperature (8-25°C). Microbial stability of sweet IMF could not be guaranteed by simply 

lowering pH and aw.  
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Even with the addition of ethanol and acetic acid, it was impossible to prevent growth of Z. 

rouxxi at the highest pH (6.2) and aw (0.88) tested. The model was further extended by 

incorporating the factors storage and temperature. The authors determined that storage of sweet 

IMFs at refrigerated temperatures is beneficial for their microbial stability. However, this also 

has consequences on the product itself (texture, taste, mouth feeling, etc.) and on the energy 

requirements in the process chain of these products (Vermeulen et al., 2015). Several IMFs, 

such as fruit-based chocolate confectionery fillings and jams, have lower aw and pH values than 

included in the previous models. Therefore, Marvig et al. (2015) developed additional G/NG 

models covering acidic sweet IMFs incorporating the factors aw (0.65-0.80), pH (2.5-4.0) and 

ethanol (0-14.5% (w/w) in water phase). The influence of ethanol and aw was most pronounced 

during the first 30 and 60 days of incubation, respectively, and the effect of pH was almost 

negligible in the tested range. Besides spoilage by Z. rouxii, W. sebi and Eurotium herbariorum 

are two important xerophilic moulds capable of spoiling sugar-rich products (Deschuyffeleer et 

al., 2011; Samson et al., 2010). G/NG models were built including the factors aw (0.75-0.90), 

pH (5.0-6.2) and ethanol concentration (0 and 5% (w/w) in water phase). Growth could only be 

inhibited for a prolonged time (>3 months) if an ethanol concentration of 5% was present. Based 

on these predictive models, it seems difficult to guarantee the microbial stability of sweet IMF 

products over a prolonged time without the addition of alcohol or preservatives. 

One strategy to prevent early spoilage of sweet IMFs is by assuming that post-contamination 

cannot be excluded and that the growth of spoilage organisms can only be controlled in the final 

product. However, another strategy to address the problem is by controlling the initial sources 

of contamination. Studies concerning mould spoilage of bakery products suggest two possible 

sources of contamination: 1) exposure to airborne fungal spores that may originate directly from 

the air or that originate from dry ingredients and spread throughout the processing environment; 

or 2) direct introduction of fungal spores via ingredients such as sugars and nuts (Legan, 1993; 

Ooraikul et al., 1987; Ueda and Kuwabara, 1982). Quite some research has been performed on 

fungal spoilage of bakery products but little is known about the fungal environment of chocolate 

confectionery factories. 
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1.3 P. EXPANSUM AND PATULIN IN FOOD 

1.3.1 P. expansum 

P. expansum was one of the first Penicillium species to be described. Today, it is one of 58 

species belonging to the genus Penicillium subgenus Penicillium, which is in turn classified 

within the family of the Trichocomaceae, order Eurotiales, subclass Eurotiomycetidae, class 

Eurotiomycetes, phylum Ascomycota (Frisvad and Samson, 2004; Kirk et al., 2008). 

1.3.1.1 Morphology 

P. expansum colonies on Czapek Yeast Autolysate (CYA) medium are fast growing at 25°C, 

reaching 26-50 mm diameter after seven days (Figure 1.6 A). The upper side of the colony is 

blue-green to green while the reverse appears cream to yellow with a brown center. The colonies 

often exhibit a broad white margin and the presence of hyaline to light yellow exudate droplets 

is quite common. P. expansum is a typically fasciculate species that can sporulate heavily. From 

a microscopic point of view, they are distinguished by their brush-like ter- to quarterverticillate 

conidiophores (Figure 1.6 C). The stipe is usually smooth-walled, in some strains occasionally 

rough-walled, terminating in more or less cylindrical metulaes, each bearing five to eight flask-

shaped phialides. Conidia, deriving from these phialide structures, are around 3-3.5 × 2.5-3 µm 

in size, and mostly smooth-walled, ellipsoidal shaped (Frisvad and Samson, 2004). 

 

Figure 1.6 P. expansum. A-B) Colonies grown at 25°C for seven days on (A) CYA and (B) MEA. C-E) Conidiophores 

and conidia (adapted from Samson et al., 2010). 
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1.3.1.2 Physiology, ecology and occurrence in food 

P. expansum is considered to be a psychrophile. In particular, minimum temperatures for 

growth have been reported as -6°C (Pitt and Hocking, 2009), -3°C (Panasenko, 1967) and 

-2°C (Mislivec and Tuite, 1970). The maximum growth temperature is near 35°C (Panasenko, 

1967). Baert et al. (2007b) provided excellent data regarding the optimum growth temperature 

varying between 24 to 27°C, which is in accordance with optimal growth temperature of 25-

26°C earlier reported by Panasenko (1967) and 24°C (pH 5.1 and aw 0.99) as predicted recently 

by Tannous et al. (2015). The minimum aw value permitting germination are reported between 

0.82-0.83 (Hocking and Pitt, 1979a; Mislivec and Tuite, 1970) and 0.85 (Judet-Correia et al., 

2011). Growth of Penicillium species can occur over a wide pH range of 3-8 and 2.5-7 as 

reported in Pitt and Hocking (2009) and Tannous et al. (2015), respectively. The species has 

very low requirements for oxygen given that its growth was virtually unaffected by oxygen 

levels as low as 2.1%. When a reduction in growth rate did occur, it was rather correlated with 

higher temperatures (Golding, 1945). Growth of certain species including P. expansum, seemed 

to be stimulated by carbon dioxide (CO2) concentrations up to 15% in air, but growth rates 

declined at higher CO2 levels (Pitt and Hocking, 2009). 

Filamentous fungi are capable of synthesizing and accumulating primary and secondary 

metabolites. While primary metabolites like enzymes, DNA, polysaccharides, etc. are directly 

needed for vegetative growth, the role and factors controlling the production of secondary 

metabolites like mycotoxins is not always as clear and can only be explained in specific cases 

rather than explaining the phenomenon as a whole (Reverberi et al., 2010). 

At first, P. expansum was reported to be capable of producing no fewer than 50 different 

secondary metabolites. Later reports, suggested the spectrum of different metabolites to be more 

limited: patulin, citrinin, chaetoglobosins A, B, C and others, communesins A and B, 

roquefortines C and D, expansolides A and B (Andersen et al., 2004; Frisvad and Samson, 

2004). The presence of P. expansum on a particular substrate does not necessarily mean that 

these metabolites are produced. Both the primary and secondary metabolism is influenced to a 

large extent by a variety of environmental factors, and by a network of interactions between the 

different factors (Calvo et al., 2002; McCallum et al., 2002; Northolt et al., 1978). 
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P. expansum mostly occurs in temperate climate regions where it is commonly distributed in 

the soil and sometimes in the indoor air (Domsch et al., 1980). In addition, the species has been 

found on household waste, lumber and wall paper (Frisvad and Samson, 2004). P. expansum 

has been established as the principle cause of spoilage of pomaceous fruits (Raper and Thom, 

1949) (Figure 1.7). 

 

Figure 1.7 Blue mould rot on apple caused by P. expansum 

(obtained during the course of this thesis). 

 

Isolates are therefore predominantly originating from apples and pears, but have also been 

isolated from a wide variety of other fruits including tomatoes, strawberries, avocados, 

mangoes, grapes, cherries, peaches, plums, papaya, gooseberries, rowanberries, black currants, 

apricots and prunes (Andersen et al., 2004; Frisvad and Samson, 2004; Pitt and Hocking, 2009). 

The species has been repeatedly found on nuts including pecans, pistachios, peanuts, walnuts, 

acorns and pine cones (Aziz et al., 2006; Frisvad and Samson, 2004; Pitt and Hocking, 2009). 

Its presence on meat and meat products is widespread as well (Lacumin et al., 2009; Pitt and 

Hocking, 2009). Although the occurrence on cereals and grains is rare, especially in comparison 

with other Penicillium species, isolations have been reported from maize, wheat, rice, barley, 

corn and a variety of retail cereal products (Andersen et al., 2004; Aziz et al., 2006; Pitt and 

Hocking, 2009). P. expansum isolates from vegetables such as onions, carrots, cabbages, 

Brussels sprouts, beetroots and licorice roots are uncommon but have been reported as well 

(Andersen et al., 2004; Lugauskas et al., 2005). 
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Other records from which P. expansum isolates originate include olives, cheese, margarine, 

beans, dried beans, rapeseed, dried fish, frozen fruit pastries, fruit yoghurt, jellied fruit desserts, 

apple sauce and apple juice, and some Southeast Asian commodities like for example soybeans 

(Hayaloglu and Kirbag, 2007; Hocking, 1994; Pitt et al., 1994; Pitt and Hocking, 2009). 

1.3.2 Patulin 

1.3.2.1 History 

Following the discovery of penicillin by Alexander Flemming in 1928, great interest has arisen 

concerning the production of fungal substances that inhibit bacterial growth and development. 

Consequently, in the 1940’s, the compound patulin was isolated as an antibiotic. This antibiotic 

was simultaneously detected and named by various research groups as a metabolite of different 

fungal species such as Aspergillus clavatus (clavacin) (Moake et al., 2005), 

Penicillium claviforme (Penicillium vulpinum) (claviformin) (Chain et al., 1942; Wilkins and 

Harris, 1942), Penicillium patulum (Penicillium urticae, Penicillium griseofulvum) (patulin) 

(Birkinshaw et al., 1943) and A. clavatus (clavatin) (Moake et al., 2005). Anslow et al. (1943) 

found that patulin, previously isolated as a metabolic product from P. patulum, was also 

produced by various strains of P. expansum isolated from rotting fruit. Although research first 

suggested it to be useful in the treatment of nasal congestion and a common cold, not long after, 

it was proven to be not only toxic to fungi and bacteria but also to animals and higher plants 

(Moake et al., 2005). Mycotoxins are mostly consumed through contaminated food and feed. 

Consequently, the presence of patulin in food and feed implies substantial risks to animal and 

human health due to its toxicological properties. 
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1.3.2.2 Chemical properties, toxicology and legislation 

Patulin or 4-hydroxy-4H-furo[3,2-c]pyran-2(6H)-one is an α,β-unsaturated, heterocyclic γ-

lactone (Figure 1.8). It is a relatively small molecule represented by the empirical formula 

C7H6O4 and a molecular weight of 154.12 Da. Patulin is a neutral substance, which is soluble 

in water and most organic solvents including ethyl acetate, ethanol, acetone and diethyl ether 

(Ciegler et al., 1976). It is stable in acidic conditions (pH 3.3-6.3) and relatively stable to 

thermal degradation in the pH range of 3.5 to 5.5, with a lower pH leading to greater stability 

(Lovett and Peeler, 1973). P. expansum is capable of producing organic acids during sugar 

metabolism, by which the stability of patulin is improved (McCallum et al., 2002). Patulin is 

unstable in an alkaline solution due to hydrolysis of the lactone ring (Dombrink-Kurtzman and 

Blackburn, 2005). 

 

 

Figure 1.8 Structural formula of patulin. 

 

The genotoxic and cytotoxic properties are believed to be related to the high reactivity of patulin 

with cellular nucleophiles (Glaser and Stopper, 2012). In fact, patulin has a strong affinity for 

sulfhydryl-containing amino acids (e.g. cysteine), glutathione or proteins (Fliege and Metzler, 

1999). This affinity explains its potential to inhibit many enzymes (Arafat et al., 1985). Patulin 

adducts formed with cysteine are less toxic than the unmodified compound in acute toxicity, 

teratogenicity, and mutagenicity studies. However, it is unlikely that the toxicity is systemic 

since patulin is degraded quickly after penetrating the gastric wall. This degradation is caused 

partly by its reaction with glutathione and probably also proteins. However, the significant 

depletion of glutathione in gastric tissue can lead to local toxic effects (Rychlik et al., 2004; 

Rychlik, 2015). 
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More recently, the mechanisms of patulin-induced genotoxicity were further elucidated by 

Glaser et al. (2012). As a mechanistic hypothesis, patulin was suspected to cause structural 

DNA damage by cross-linking, yielding nucleoplasmic bridges and as a later consequence, 

micronucleus formation. 

Patulin has been reported to be acutely toxic (Escoula et al., 1988; Hayes et al., 1979; WHO, 

1995), genotoxic (Alves et al., 2000; Liu et al., 2003), cytotoxic (Liu et al., 2007; Riley and 

Showker, 1991), teratogenic (Ciegler et al., 1976) and immunosuppressive (Escoula et al., 

1988; Puel et al., 2010). Few studies have been performed on the long-term toxicity effect of 

patulin in experimental animals. Based on those, there is inadequate evidence for 

carcinogenicity, hence, the International Agency for Research on Cancer (IARC) classified 

patulin as category 3, i.e. “not classifiable as to its carcinogenicity to humans” (IARC, 1986). 

Due to its toxicological properties, the Joint Food and Agriculture Organization/World Health 

Organization Expert Committee on Food Additives (JECFA) established a provisional 

maximum tolerable daily intake (PMTDI) for patulin of 0.4 µg per kg bodyweight per day. This 

PMTDI is based on a no-observed effect level (NOEL) of 43 µg per kg bodyweight per day and 

a safety factor of one hundred (WHO, 1995). Based on this TDI, the European Commission 

(EC) (2006a) established maximum limits for patulin of 50 µg kg-1 in apple juices, 25 µg kg-1 

in apple purees and 10 µg kg-1 for apple products intended for infants and young children. 

1.3.2.3 Patulin producing fungi 

Early studies reported patulin to be produced by more than 60 fungal species belonging to over 

30 genera. Several more recent studies, however, allowed a revision of these numbers of patulin 

producing genera and species (Puel et al., 2010). Patulin producers have been isolated from the 

genera Penicillium, Aspergillus, Byssochlamys and Paecilomyces. An overview by Frisvad et 

al. (2004) described 14 patulin producing species among the Penicillium genus: 

Penicillium carneum, Penicillium clavigerum, Penicillium concentricum, Penicillium 

coprobium, Penicillium dipodomyicola, P. expansum, Penicillium formosanum, Penicillium 

glandicola, Penicillium gladioli, P. griseofulvum, Penicillium marinum, Penicillium paneum, 

Pencillium slerotigenum and P. vulpinum. Houbraken et al. (2010) and Vansteelandt et al. 

(2012) further reported the isolation of patulin from the species Penicillium psychrosexualis 

and Penicillium antarcticum cultures, respectively. The genus Aspergillus is probably limited 

to only three patulin producers belonging to the Clavati group: A. clavatus, 

Aspergillus giganteus and Aspergillus longivesica (Varga et al., 2007). 
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A comparative study of all Byssochlamys and Paecilomyces species showed that only 

Byssochlamys nivea and Paecilomyces saturates are capable of producing patulin (Samson et 

al., 2009). 

1.3.2.4 Occurrence in food 

The presence of patulin producing fungi on food products does not necessarily guarantee that 

patulin will be produced. As mentioned before, fungal growth and mycotoxin production is 

influenced to a large extent by environmental and intrinsic factors typical for the substrate. 

However, defining ranges and optimal conditions for patulin production is not as easy and 

straightforward as one might think. The production is not only influenced by each individual 

factor but also by interactions between factors, which makes it a very complex issue. In the case 

of patulin production by P. expansum, the fungus is capable of production over a broad 

temperature range of 0 to 30°C, with optimal reported at 16°C (CYA medium), 17°C (apples) 

and 25°C (pears) (Paster et al., 1995; Tannous et al., 2015). While P. expansum is capable of 

growing over a broad pH range and at rather low aw, patulin production by P. expansum is more 

restricted with a minimum aw value reported around 0.95 at 25°C (bread analogue). The bread 

analogue consisted of bread dough (flour, margarine, salt, baking powder, yeast extract), which 

was sterilised and aseptically cut into pieces and placed onto Petri dishes (Patterson and 

Damoglou, 1986). A recent study of Tannous et al. (2015) described the detection of traces of 

patulin at aw 0.90 and 0.95 (CYA medium) with pH and temperature values fixed to 5.2 and 

25°C, respectively. 

A scientific Cooperation (SCOOP) study conducted by the Directorate – General Health and 

Consumer Protection of the European Union (EU) on the assessment of the dietary intake of 

patulin by the population of EU member states showed that apple juice and apple nectar are the 

main sources of patulin intake in most countries, particularly for young children (SCOOP, 

2002). 

An overview of reports regarding worldwide contamination of apple juice by patulin is given 

in Table 1.4. Although, apples and their respective products are of highest concern for patulin 

contamination, compiling research has shown patulin to occur naturally in a variety of other 

food sources as well. An overview of reports regarding patulin contaminated fresh and 

processed foods is presented in Table 1.5. 
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Table 1.4 Reports regarding worldwide contamination of apple juice by patulin (- = not specified). 

Country Amount of samples 

positive/total 

Patulin levels (range) in 

positive samples (µg/l) 

Reference 

Australia -/- 5 - 646 Reddy et al., 2010 

Austria -/- - Moake et al., 2005 

Belgium 22/177 6 - 123 Baert et al., 2006 

 -/- - Gillard et al., 2009 

 35/43 3 - 39 Tangni et al., 2003 

Brazil 1/30 17 de Sylos and Rodriguez-Amaya, 1999  

 4/100 3 - 7 Iha and Sabino, 2008 

 -/16 15 - 46 Welke et al., 2009 

Canada -/- - Moake et al., 2005 

China 2/25 34 - 39 Zhou et al., 2012 

Czech Republic 5/6 4 - 28 Vaclavikova et al., 2015 

Finland 21/84 30 - 16400 Lindroth and Niskanen, 1978 

France 27/27 <610 Barkai-Golan, 2008 

Germany 12/12 6 - 26 Rychlik and Schieberle, 1999 

Greece 29/29 1 - 12 Moukas et al., 2008 

Holland 1/36 >25 Boonzaaijer et al., 2005 

India 10/40 24 - 1839 Saxena et al., 2008 

Iran 47/65 15 - 285 Cheraghali et al., 2005 

 64/72 15 - 151 Forouzan and Madadlou, 2014 

 54/58 11 - 122 Karimi et al., 2008 

 17/64 11 - 191 Rahimi and Jeiran, 2015 

Italy -/- 0 - 1150 Beretta et al., 2000 

 28/57 1 - 69 Piemontese et al., 2005 

 6/15 1 - 56 Ritieni, 2003 

 25/53 <48 Spadaro et al., 2007 

 12/22 1 - 22 Versari et al., 2007 

Japan 15/76 1 - 46 Ito et al., 2004 

 9/30 1 - 15 Kataoka et al., 2009 

 9/188 6 - 15 Watanabe and Shimizu, 2005 

Malaysia 1/13 27 Lee et al., 2014 

Portugal 28/68 <42 Barreira et al., 2010 

Romania 41/50 <102 Oroian et al., 2014 

Saudi Arabia -/120 57 - 104 Gashlan, 2009 

South Africa 4/17 5 - 45 Llegott and Shephard, 2001 

 5/22 10 - 45 Moake et al., 2005 

South Korea 3/24 3 - 9 Cho et al., 2010 

Spain 30/71 <25 Cano-Sancho et al., 2009 

 5/17 2 - 51 Gonzàlez-Osnaya et al., 2007 

 2/28 3 - 6 Marín et al., 2011 

 4/12 2 - 25 Marsol-Vall et al., 2014 

 66/100 1 - 119 Murillo-Arbizu et al., 2009 

 21/47 <37 Piqué et al., 2013 

 82/100 <170 Prieta et al., 1994 

Sweden -/- - Moake et al., 2005 

 5/39 <50 Thuvander et al., 2001 

Taiwan 12/105 15 - 40 Lai et al., 2000 
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Tunisia 11/30 0 - 167 Zaied et al., 2013 

 12/42 4 - 122 Zouaoui et al., 2015 

Turkey 27/45 19 - 733 Yurdun et al., 2001 

 215/215 7 - 376 Gökmen and Acar, 1998 

 -/482 <376 Gökmen and Acar, 2000 

USA 23/40 10 - 350 Brackett and Marth, 1979 

 -/- <2700 Harris et al., 2009 

  8/13 44 - 309 Moake et al., 2005 
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Table 1.5 Reports regarding patulin occurrence in fresh and processed food products (- = not specified). 

Fresh or processed food 

products 

Amount of 

samples 

positive/total 

Patulin levels (range) in 

positive samples (µg/l) 

References 

Apple -/- - Beretta et al., 2000 

 32/35 1010 - 120400 Celli et al., 2009 

 -/- 150 - 267 de Sylos and Rodriguez-Amaya, 1999 

 28/61 154 - 136154 Harwig et al., 1973 

 100/100 150000 - 1000000 Hasan, 2000 

 10/21 1 - 44572 Piemontese et al., 2005 

 1/3 415 Vaclavikova et al., 2015 

 -/- - Walker, 1969 

Apple cider 92/493 - Harris et al., 2009 

 2/8 5 - 10 Leggott and Shephard, 2001 

 -/- - Moake et al., 2005 

 2/8 1 - 4 Piemontese et al., 2005 

 3/7 3 - 6 Tangni et al., 2003  

 2/2 12 - 48 Vaclavikova et al., 2015 

 -/- 244 - 3993 Wheeler et al., 1987 

 9/100 <45000 Wilson and Nuovo, 1973 

Apple jam 6/26 17 - 39 Funes and Resnik, 2009 

 1/1 - Lindroth and Niskanen, 1978 

 5/15 5 - 554 Zouaoui et al., 2015 

Apple juice   see Table 1 

Apple leather 35/35 7 - 2559 Montaseri et al., 2014 

Apple puree 4/8 22 - 221 Funes and Resnik, 2009 

 6/18 8 - 28 Gonzàlez-Osnaya et al., 2007 

 6/46 6 - 50 Piqué et al., 2013 

 3/6 16 - 74 Ritieni, 2003 

 7/35 2 - 77 Zouaoui et al., 2015 

Apricot juice (concentrate) 2/2 12 - 15 Moukas et al., 2008 

 7/27 2 - 32 Spadaro et al., 2008 

Baby food 5/76 3 - 6 Barreira et al., 2010 

 -/- - Beretta et al., 2000 

 79/120 3 - 9 Bonerba et al., 2010  

 42/124 <10 Cano-Sancho et al., 2009  

 6/16 5 - 20 Leggott and Shephard, 2001 

 3/3 4 - 7 Moukas et al., 2008 

 10/40 1 - 13 Piemontese et al., 2005 

 2/10 13 - 18 Ritieni, 2003 

 -/- - Sarubbi et al., 2016 

 2/24 2 - 5 Vaclavikova et al., 2015 

 7/25 0 - 165 Zaied et al., 2013 

Beer with 35% apple 

concentrate 

1/3 10 Marsol-Vall et al., 2014 

Blackcurrant jam -/- - Moake et al., 2005 

Blackcurrant juice 1/1 <1 Rychlik and Schieberle, 1999 

Blueberry jam -/- - Moake et al., 2005 

Bread -/- - Moake et al., 2005 

Cheddar cheese -/- - Moake et al., 2005 
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Cherry juice -/- - Moake et al., 2005 

 1/1 <1 Rychlik and Schieberle, 1999 

Corn -/- - Moake et al., 2005 

Dairy products (apple-based) 3/6 4 - 15 Gonzàlez-Osnaya et al., 2007 

Dried figs -/- 5 - 152 Karaca and Nas, 2006 

Fruit juices 2/6 5 Leggott and Shephard, 2001  

 12/12 3 - 11 Moukas et al., 2008 

 1/1 1 Rychlik and Schieberle, 1999 

 22/82 2 - 55 Spadaro et al., 2007 

 9/29 2 - 25 Spadaro et al., 2008 

 12/30 0 - 125 Zaied et al., 2013  

 17/34 10 - 56 Zouaoui et al., 2015  

Fruit leather (apple- or pear-

based) 

14/36 4 - 58 Maragos et al., 2015 

Fruit salad 1/1 14 Vaclavikova et al., 2015 

Grape juice 21/55 - Altmayer et al., 1982 

 4/24 5 - 16 Cho et al., 2010 

 -/- - Moake et al., 2005 

 3/20 5 - 17 Rahimi and Jeiran, 2015 

 2/2 5 Rychlik and Schieberle, 1999 

Hawthorn beverages 6/43 20 - 207 Li et al., 2007 

Hawthorn juice 1/13 12 Zhou et al., 2012 

Lychee juice 1/6 13 Lee et al., 2014 

Orange juice 2/24 10 - 31 Cho et al., 2010 

 3/3 3 - 11 Moukas et al., 2008 

 1/1 <1 Rychlik and Schieberle, 1999 

Passion fruit juice -/- - Moake et al., 2005 

Peach -/- 92 - 174 de Sylos and Rodriguez-Amaya, 1999 

Peach juice (concentrate) 4/15 9 - 21 Marín et al., 2011 

 3/30 5 - 35 Rahimi and Jeiran, 2015 

 2/30 2 - 5 Spadaro et al., 2008 

Pear -/- 134 - 245 de Sylos and Rodriguez-Amaya, 1999 

 1/3 42 Vaclavikova et al., 2015 

Pear jam 1/6 25 Funes and Resnik, 2009 

 7/16 17 - 325 Zouaoui et al., 2015 

Pear juice (concentrate) 5/10 67 - 74 Marín et al., 2011  

 -/- - Moake et al., 2005 

 5/15 1 - 61 Piemontese et al., 2005 

 2/15 5 - 31 Rahimi and Jeiran, 2015 

 25/39 2 - 33 Spadaro et al., 2008  

 2/3 12 - 39 Vaclavikova et al., 2015  

 20/42 5 - 231 Zouaoui et al., 2015 

Pineapple juice (concentrate) 1/6 33 Lee et al., 2014 

 -/- - Moake et al., 2005 

 1/1 8 Moukas et al., 2008 

Pomegranate juice 1/12 8 Rahimi and Jeiran, 2015 

Red fruits (soft) 4/50 - Van de Perre et al., 2014 

Strawberry jam -/- - Moake et al., 2005 

Sweet bell pepper 5/44 - Van de Perre et al., 2014 

Tomato 17/158 - Van de Perre et al., 2014 
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1.3.2.5 Biosynthesis pathway: precursors and enzymology 

Patulin is like most fungal secondary metabolites and several major mycotoxins a polyketide 

metabolite. Fungal polyketides are synthesized by type I polyketide synthases (PKSs), which 

are multidomain proteins that are related to eukaryotic fatty-acid synthases and contain similar 

domain structures. For a PKS, short-chain carboxylic acids (usually acetyl coenzyme A (acetyl 

CoA) and malonyl CoA) are condensed to form carbon chains of varying lengths. In the fungal 

PKSs, the ketoacyl CoA synthase, acyl transferase and acyl carrier domains are essential for 

polyketide synthesis (Keller et al., 2005). Historically, 6-methylsalicylic acid synthase 

(6MSAS), involved in the first step of the patulin biosynthesis pathway, was the first PKS to 

be studied and characterized in vitro. The biosynthetic pathway of patulin additionally involves 

a number of different post-polyketide synthesis steps. In fact, the patulin biosynthesis pathway 

consists of about ten steps as suggested by several biochemical studies and by the identification 

of several mutants that were blocked at various steps in the pathway (Puel et al., 2010) (Figure 

1.9 A). 

Subsequent to the original isolation of patulin from the growth filtrates of P. griseofulvum 

(Birkinshaw et al., 1943), the first pathway intermediate 6-methylsalicylic acid (6MSA) was 

isolated from these filtrates. The enzyme 6MSAS is responsible for the formation of 6MSA by 

the condensation of one acetyl-CoA and three malonyl-CoA units (Tanenbaum and Bassett, 

1959). In addition to patulin and 6MSA, investigation succeeded in isolating various other 

metabolites including gentisyl alcohol, gentisaldehyde, gentisic acid (Birkinshaw et al., 1943), 

m-hydroxybenzyl alcohol (Rebstock, 1964), m-cresol, m-hydroxybenzaldehyde, m-

hydroxybenzoic acid and toluquinol (Puel et al., 2010) (Figure 1.9 A). 

Identification of these P. griseofulvum metabolites provided the basis for determining the 

sequence of reactions in the conversion of 6MSA into patulin. A first step of this conversion 

involves the 6MSA decarboxylase-mediated decarboxylation of 6MSA into m-cresol (Light, 

1969; Puel et al., 2010). Based on studies using radioactively labeled intermediates, methyl 

hydroxylation of m-cresol to m-hydroxybenzyl alcohol was suggested to represent an important 

reaction in the pathway leading to patulin formation. On the other hand, ring hydroxylation of 

m-cresol to toluquinol appeared to be a side reaction functional at higher concentrations of m-

cresol. 
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Both hydroxylation reactions seemed to be catalyzed by typical mixed-function oxidases 

involving an NADPH-dependent reductase and a pigment-like cytochrome P450 (Murphy et 

al., 1974). 

 

Figure 1.9 Schematic representation of the patulin biosynthesis pathway. (A) Metabolites, enzymology and genes 

encoding enzymes. (B) Patulin gene cluster and comparison of the positional organisation of the genes in A. clavatus 

and P. expansum (adapted from Artigot et al. (2009) and Tannous et al. (2014)). 
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The study by (Murphy and Lynen, 1975) was able to characterize the ring hydroxylation of m-

hydroxybenzyl alcohol to gentisyl alcohol. As with both m-cresol hydroxylases, m-

hydroxybenzyl alcohol hydroxylase was suggested to be catalyzed by a mixed-function oxidase 

reaction of the cytochrome P450, requiring oxygen and NADPH for activity. More recently, 

the involvement of cytochrome P450 monooxygenases in the hydroxylation of m-cresol and m-

hydroxybenzyl alcohol was confirmed by Artigot et al. (2009). The first cytochrome that 

catalyzed the hydroxylation of m-cresol to yield m-hydroxybenzyl alcohol was termed 

CYP619C3. The second, termed CYP619C2, catalyzed the hydroxylation of m-hydroxybenzyl 

alcohol and m-cresol to gentisyl alcohol and toluquinol, respectively. Forrester and Gaucher 

(1972) described the partial purification of an alcohol dehydrogenase specific for the 

interconversion of m-hydroxybenzyl alcohol and m-hydroxybenzaldehyde. Scott et al. (1973) 

reported that m-hydroxybenzaldehyde was an efficient precursor of patulin. However, neither 

Scott and Beadling (1974), nor Murphy and Lynen (1975) were able to demonstrate direct 

conversion of the aldehyde to patulin. According to Murphy and Lynen (1975), the failure to 

detect an m-hydroxybenzaldehyde 2-hydroxylase activity in preparations of P. griseofulvum 

under their laboratory conditions, implies that patulin biosynthesis must proceed from m-

hydroxybenzyl alcohol through gentisyl alcohol, rather than m-hydroxybenzaldehyde to 

gentisaldehyde and patulin. The possibility exists that the enzyme involved is extremely 

unstable and, hitherto undetectable. Although its conversion to m-hydroxybenzyl alcohol and 

m-hydroxybenzoic acid are demonstrable, the importance as a patulin precursor remains 

uncertain. Scott and Beadling (1974) isolated and partially purified two inseparable 

dehydrogenase activities catalyzing the reversible conversions of m-hydroxybenzyl alcohol and 

gentisyl alcohol to their corresponding aldehydes. They were also able to show that the rate of 

gentisaldehyde production from gentisyl alcohol in crude fungal extracts was of the same order 

of magnitude as the detectable gentisaldehyde to patulin conversion rate, suggesting a 

dioxygenase mechanisms for patulin synthesis from gentisaldehyde. 

Until 1978, the post-gentisaldehyde portion of the pathway was believed to consist of a single, 

dioxygenase-mediated ring cleavage. Since then, extensive studies of patulin-minus mutants 

have shown that patulin is synthesized via isoepoxydon, phyllostine, neo-patulin (isopatulin) 

and (E)-ascladiol (Sekiguchi et al., 1983; Sekiguchi and Gaucher, 1979a; Sekiguchi and 

Gaucher, 1979b) (Figure 1.9 A). 
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The authors suggested isoepoxydon to be an obligatory precursor of phyllostine. Both structures 

suggest they are metabolically interconverted by a simple alcohol dehydrogenase-mediated 

redox reaction. The enzymes involved in the interconversion of isoepoxydon and phyllostine, 

and the conversion of phyllostine to neopatulin, have been purified and termed isoepoxydon 

dehydrogenase (IDH) and neopatulin synthase, respectively (Puel et al., 2010). Following 

neopatulin, literature data reported the production of the E and Z isomers of ascladiol by 

P. griseofulvum. Sekiguchi et al. (1983) suggested that neopatulin was first reduced to (E)-

ascladiol by NADPH and then either oxidized to patulin or isomerized to a side product, (Z)-

ascladiol. 

1.3.2.6 Biosynthesis pathway: gene cluster 

Fungal genes encoding enzymes involved in the production of secondary metabolites are 

usually contained in clusters on chromosomes (Keller et al., 2005; Keller and Hohn, 1997). A 

large number of gene clusters related to secondary metabolite production have been discovered 

and particularly those responsible for the biosynthesis of several mycotoxins, e.g. aflatoxins, 

fumonisins, trichothecenes, ergot alkaloids and zearalenone (Puel et al., 2010). In contrast, the 

gene cluster related to patulin biosynthesis has been elucidated only recently by Artigot et al. 

(2009) and Tannous et al. (2014) (Figure 1.9 B). 

The 6-methylsalicylic acid synthase gene (6msas) and isoepoxydon dehydrogenase gene (idh) 

were the first isolated and sequenced, both from P. griseofulvum (Beck et al., 1990; Gaucher 

and Fedeshko, 2000). Next, White et al. (2006) reported the cloning of the full-length idh gene 

and a partial fragment of the 6msas gene from P. expansum. In addition, the authors cloned a 

partial fragment of a putative ATP binding cassette (ABC) transporter gene (peab1). Dombrink-

Kurtzman MA (2007) compared the partial gene fragment and corresponding amino acid 

sequences of idh between P. griseofulvum and P. expansum strains. They found 12 amino acid 

differences between the coding regions of both species. The differences correlated with the 

amount of patulin previously described for in vitro production, with strains of P. griseofulvum 

producing the greatest amounts of patulin. The absence or substitution of certain key amino 

acids at positions involved in protein folding or in binding a cofactor may lead to lower enzyme 

activity. 
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As the genes involved in patulin biosynthesis are most likely arranged in a cluster, the same 

authors performed a Gene Walking approach to identify genes upstream and downstream of the 

idh gene of P. griseofulvum (Dombrink-Kurtzman, 2008). They were the first to report the 

presence of an isoamyl alcohol oxidase gene (iao). However, at this point, further research was 

necessary to determine its relevance for the patulin biosynthesis pathway. 

Artigot et al. (2009) identified two cytochrome P450 genes in the genome sequence of the 

patulin-producing A. clavatus. Both genes are located in a 40 kb cluster consisting of 

approximately 15 genes: one putative transcription factor gene (patL); three transporter genes, 

namely one ABC transporter gene (patM), one Major Facilitator Superfamily (MFS) gene 

(patC) and one acetate transporter gene (patA); one gene encoding a putative dioxygenase 

(patJ); one gene with unknown function (patF); and nine biosynthesis genes, i.e. the 6msas 

gene (patK), the genes encoding CYP619C2 and CYP619C3 (patI and patH), the idh gene 

(patN), a putative iao gene (patO), a gene encoding a putative decarboxylase displaying an 

amido hydrolase conserved domain (patG), and two genes encoding, respectively, a putative 

Zn-dependent alcohol dehydrogenase and a glucose-methanol choline oxidoreductase (patD 

and patE) (Figure 1.9 B). Continuous research regarding the patulin gene cluster of A. clavatus 

resulted in the identification of patG as the gene encoding the 6MSA decarboxylase (Snini et 

al., 2014). Recently, the same research institute was able to elucidate the patulin biosynthetic 

gene cluster from P. expansum. The study consisted of the identification and positional 

organization of above described genes (Tannous et al., 2014) (Figure 1.9 B). Li et al. (2015) 

and Ballester et al. (2015) independently identified the gene cluster involved in patulin 

biosynthesis of P. expansum. The first authors also revealed that patL encodes a Cys6-zinc 

finger regulatory transcription factor. Characterisation of patL, encoding a Cys6-zinc finger 

regulatory factor, has been reported around the same time by Snini et al. (2016). 
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CHAPTER 2 DETECTION AND IDENTIFICATION OF 

XEROPHILIC FUNGI IN BELGIAN CHOCOLATE CONFECTIONERY 

FACTORIES 

 

ABSTRACT 

Chocolate confectionery fillings are generally regarded as microbiologically stable. The 

stability of these fillings is largely due to the general practice of adding either alcohol or 

preservatives. Consumer demands are now stimulating producers to move away from adding 

alcohol or other preservatives to their confectionery fillings and instead to search for innovative 

formulations. Such changes in composition can influence the shelf life of the product and may 

lead to spoilage by xerophilic fungi. The aim of this chapter was to test whether the production 

environments of Belgian chocolate confectionery factories and common ingredients of 

chocolate confectioneries could be potential sources of contamination with xerophilic fungal 

species. In the factory environment, the general and strictly xerophilic fungal spore load was 

determined using an RCS Air Sampler device in combination with DG18 and MY50G medium, 

respectively. Four basic ingredients of chocolate confectionery fillings were also examined for 

fungal spore levels using a direct plating technique. Detected fungi were identified to species 

level by a combination of morphological characterisation and sequence analysis. Results 

indicated a general fungal spore load in the range of 50-250 colony forming units per cubic 

meter of air (CFU/m³ air) and a more strict xerophilic spore load below 50 CFU/m³ air. These 

results indicate rather low levels of fungal spores present in the factory environment. The most 

prevalent fungi in the factory environment were identified as Penicillium spp., particularly 

P. brevicompactum. Examination of the basic ingredients of confectionery fillings revealed 

nuts to be the most likely potential source of direct contamination. In nuts, the most prevalent 

fungal species identified were Eurotium, particularly E. repens. 
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2.1 INTRODUCTION 

Chocolate, cocoa and confectioneries represent 13.2% of the Belgian food industry’s global 

turnover and 14.6% of Belgium’s food exports. Currently, other European countries are the 

main importers (75%) of Belgian chocolate confectionery products. The international fame and 

distribution of these products demands a high level of quality and a sufficiently long shelf life. 

Chocolate confectionery fillings are intermediate moisture food (IMF) products with water 

activity values (aw) of 0.70 to 0.90. These fillings are generally regarded as microbiologically 

stable, often because alcohol or preservatives are added to reduce the risk of microbial spoilage. 

But consumer demands for clean label products are on the rise, and addition of alcohol in 

confections is not allowed in some countries. Confectionery producers are therefore stimulated 

to reduce or eliminate the use of preservatives and search for more innovative formulations 

(Vermeulen et al., 2015). Changes in composition can potentially influence the stability, and 

consequently the shelf life, of these chocolate confectionery products. 

Intermediate moisture foods are susceptible to spoilage by xerophilic fungi and osmophilic 

yeasts (Beuchat and Hocking, 1990; Kinderlerer, 1997; Pitt and Hocking, 1997). Spoilage of 

sweet IMF products is mainly caused by Eurotium species and xerophilic Aspergillus and 

Penicillium species (Abellana et al., 2000). All Eurotium species are sexual forms of 

Aspergillus. The most important factors determining the growth of these organisms on food 

products are water activity, pH and temperature (Fustier et al., 1998; Guynot et al., 2002; Huang 

et al., 2010). Industrial processing of cocoa beans results in edible chocolate with low water 

activity values that does not allow for microbial growth (Copetti et al., 2011; ICMSF, 2005; 

Kinderlerer, 1997; Schwan and Wheals, 2004). Yet xerophilic fungi have been isolated from 

chocolate products. Such contamination was suggested to be the result of post-process 

contamination due to increased water availability at the interface of the chocolate and its 

packaging (Beckett, 2000; ICMSF, 2005; Kinderlerer, 1997). 

Little is known about the mycoflora of chocolate confectionery factories. Bakeries and 

chocolate confectionery factories are both “dry food processing environments”, thus data for 

bakeries may have some relevance for the little-studied situation of chocolate confectionery 

factories. A difference between bakeries and chocolate confectionery is the load of dust and 

particles. This load is usually much higher in bakeries and consequently leads to a higher fungal 

load in the environment. 
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Studies concerning mould spoilage of bakery products suggest two possible sources of 

contamination: 1) exposure to airborne fungal spores that may originate directly from the air or 

that originate from dry ingredients and spread throughout the processing environment; or 2) 

direct introduction of fungal spores via ingredients such as sugars and nuts (Abellana et al., 

1999; Fustier et al., 1998; Legan, 1993; Ooraikul et al., 1987). 

Final chocolate confectionery fillings are made by mixing basic ingredients in a kitchen 

processor. Depending on the final product, liquid chocolate may be poured in premade forms, 

after which a cooling step is applied. The fillings may be added onto the cooled chocolate base 

or fillings may be directly added onto the production belt, after which toppings or coatings are 

added. The final products are immediately brought to the packing area, where the products are 

packed manually. 

The aim of this chapter was to determine the presence and prevalence of fungal spoilage 

organisms in both the production environment of Belgian chocolate confectionery factories as 

well as in some of the ingredients used in chocolate confectionery fillings. Environmental and 

ingredient samples were examined for their load of general and xerophilic fungal spores. The 

xerophilic fungi detected were subsequently isolated and identified to species level. This 

information provides insight into some of the potential sources and species of fungi that may 

negatively affect the quality and shelf life of chocolate confectionery products. 

 

2.2 MATERIAL AND METHODS 

2.2.1 Media 

Three media were used in this study: Malt Extract Agar (MEA) (Oxoid Ltd, Basingstoke, 

Hampshire, UK), Dichloran 18% Glycerol agar (DG18) (Oxoid Ltd) and Malt extract Yeast 

extract 50% Glucose agar (MY50G). DG18 and MY50G are selective media with relatively 

low water activity (aw ± 0.95 and ± 0.85, respectively). These were chosen for sampling and 

subsequent detection and enumeration. DG18 medium is recommended for the detection and 

enumeration of filamentous fungi in dry indoor environments such as chocolate confectionery 

factories, and in products with a water activity less than or equal to 0.95. 
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DG18 has been proven suitable for detecting a broad range of food and indoor fungi, ranging 

from moderately xerophilic to xerotolerant species (ISO 21527-2, 2008; Samson et al., 2010). 

MY50G is a selective medium specifically for xerophilic fungi (Samson et al., 2010). MEA is 

a general-purpose medium used for the detection and enumeration of fungi. For isolation, 

morphological characterization and DNA extraction, we used both MEA and DG18 (see 

Methods below). MEA and DG18 were prepared according to the manufacturer’s instructions 

(Oxoid Ltd). DG18 was prepared without the addition of chloramphenicol. MY50G consisted 

of 3 g malt extract (Oxoid Ltd), 3 g yeast extract (Oxoid Ltd), 5 g neutralized bacteriological 

pepton (Oxoid Ltd), 15 g bacteriological agar nr. 1 (Oxoid Ltd), 500 g dextrose (Oxoid Ltd), 

and 474 g demineralized water for a total volume of 1000 g medium. MY50G was sterilized by 

autoclaving at 115°C for 10 minutes. Water activity values of the final media were checked 

using an Aqualab Series 3 with an accuracy of ± 0.003 aw units (Decagon Devices, Pullman, 

WA, USA). 

2.2.2 Sampling 

Chocolate confectionery factories were sampled during August 2012, October 2012 and April 

2013 in Belgium. In August 2012, production air and ingredients of seven chocolate 

confectionery factories were sampled. During October 2012 and April 2013, three of these 

seven factories were sampled for a second and third time to evaluate the effect of the season. 

Air samples were obtained using a Reuter Centrifugal Air Sampler (RCS) (HYCON® Biotest 

AG, Dreieich, Germany) operating at a flow rate of 40 L/min. Within each factory, three sites 

of the manufacturing area were sampled, i.e. the kitchen (i.e. the processing station containing 

an industrial kitchen processor for mixing up the ingredients in order to prepare fillings), the 

production line and the packing area. Air was sampled during 8 min using the RCS Air Sampler, 

which was loaded with DG18 and MY50G agar strips. At each sampling moment, various 

ingredients of chocolate confectionery fillings (nuts, fruit filling, ganache (a mixture of cream 

and chocolate) and fondant sugar) were also collected. 

2.2.3 Enumeration of fungi 

After transfer to the laboratory, air sample agar strips (DG18, MY50G) were incubated at 25°C 

for 2 weeks. Ingredients were directly plated by distributing 1 g of each ingredient onto three 

DG18 plates as well as three MY50G plates. 
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Nuts were first aseptically transferred to a Stomacher® bag and ground into small pieces. As 

needed for ease of plating, ganache was transferred to a Stomacher bag and melted in a water 

bath at 40°C prior to plating. The standard incubation regime is 5-7 days at 25°C. The petri 

dishes were incubated at 25°C for two weeks. The agar strips and petri dishes were examined 

after five days as well as two weeks of incubation to ensure sufficient grow-out time. Results 

were expressed in colony forming units per cubic meter of air (CFU/m³) and colony forming 

units per gram of sample (CFU/g), respectively. Almost no fungi were detected after 5 days on 

MY50G. Therefore, the results of enumeration on MY50G were expressed after 2 weeks of 

incubation instead of 5 days incubation for DG18. 

2.2.4 Morphological identification 

After incubation of the samples collected during the second sampling in October 2012, fungal 

spores and/or mycelium of macroscopically different colonies were isolated for each sample 

and purified by streaking onto MEA and DG18. These plates were incubated at 25°C for seven 

days. Purity of the isolates was confirmed visually and pure fungal cultures were subsequently 

added to the laboratory culture collection of the Institute for Agricultural and Fisheries Research 

(ILVO, Melle, Belgium). Sporulating mycelia of isolated fungal colonies were scraped off the 

surfaces and three-point inoculated onto MEA and DG18. After incubation for seven days at 

25°C, macroscopic characteristics (colony diameter and color) as well as microscopic 

characteristics were determined for classification to genus level using the identification key 

published in Samson et al. (2010). 

2.2.5 Sequence analysis 

Genomic DNA extraction and subsequent visualization was carried out as described by Van 

Pamel et al. (2012). Molecular identification of the isolates was performed using the internal 

transcribed spacer (ITS) region and/or partial β-tubulin gene sequence, depending on the 

identified genus (Samson et al., 2010). PCR amplification was conducted using the forward 

primer ITS1 and reverse primer ITS4 for the ITS region (White et al., 1990) and the forward 

primer Bt2a and reverse primer Bt2b for the β-tubulin gene (Glass and Donaldson, 1995). The 

PCR assay and PCR conditions were performed as described by Van Pamel et al. (2012), with 

some minor modifications as follows: the PCR mixture contained 3 µL of template DNA and 

1x buffer II (Applied Biosystems). 
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The primer used annealed for 30 s at 50°C. A 100 bp DNA ladder (Invitrogen Ltd) was used as 

control for DNA size. A negative control using water and a positive control using P. expansum 

(CBS 325.48T) genomic DNA were included in all PCR runs. The PCR products were 

visualized after staining a 1.5% (w/v) Seakem LE agarose gel (Lonza, Rockland, ME, USA) 

with ethidium bromide (2 µg/mL). DNA fragment purification and DNA sequencing were 

performed at Macrogen Europe (Amsterdam, the Netherlands). Identification was conducted 

by comparing the DNA sequences against those available in the EMBL database conducting a 

BLAST search. A similarity percentage of at least 98% with a sequence of a strain of a reputable 

culture collection (CBS, ATCC and others), was taken into account for identification of the 

fungal isolates to species level. 

2.2.6 Statistical analysis 

Statistical analysis was done using the Statistical Analysis System software (SAS®, version 9.4, 

SAS Institute Inc., Cary, NC, USA), except for the non-parametric analysis, which was done 

using SPSS® version 22 (IBM, New York, USA). CFU data were transformed prior to statistical 

analysis to y = log (CFU/m³). A variety of statistics were calculated to characterize the data 

distribution of the variables. Data were obtained during the summer of August 2012 from seven 

chocolate confectionery factories (A-G). Within each factory, the air of three processing 

stations (kitchen, production line and packing area) was sampled using agar strips. The data 

obtained from these sampling events did not follow a normal distribution. Therefore, a non-

parametric Kruskal-Wallis test was performed with CFU as dependent variable and with either 

factory or manufacturing site as independent variable. For the CFU data obtained from MY50G 

agar strips (dependent variable), a one-way analysis of variance (ANOVA) was carried out with 

either chocolate confectionery factory or manufacturing site as independent variable. Post-hoc 

comparison was conducted using a Bonferroni test. The CFU data of three out of seven 

chocolate confectionery factories (B, C and F) at three time points using DG18 and MY50G 

media follow a normal distribution. To test the effect of time and location (independent 

variables) on CFU using DG18 and MY50G (independent variables), mixed regression models 

were performed. Factory was included as a random effect to correct for repeated measurements 

(three time points) within one factory. Post-hoc comparison was done using a Bonferroni test. 

P values ≤0.05 were considered significant. 
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2.3 RESULTS 

2.3.1 General and xerophilic fungal spore load in the production air of chocolate 

confectionery factories 

During the summer of August 2012, three processing stations (kitchen, production line and 

packing area) of seven chocolate confectionery factories (A-G) were sampled (Figure 2.1) using 

an air sampler (RCS) fitted with DG18 (Figure 2.1 I) and MY50G (Figure 2.1 II) agar strips (7 

factories × 3 sites × 2 media). After five days of incubation at 25°C on DG18, a general fungal 

spore load in the range of 50-250 CFU/m³ air was detected in 63% of all air samples. The 

remaining 37% had a fungal spore load below 50 CFU/m³ air. After two weeks of incubation 

at 25°C on MY50G, 80% of all air samples were characterized by a xerophilic fungal spore 

load below 50 CFU/m³ air. No fungal spore load above 250 CFU/m³ air was detected either on 

DG18 or on MY50G. On DG18, chocolate confectionery factory D showed a fungal spore load 

below 50 CFU/m³ air, unlike the majority of DG18 samples obtained from other factories. The 

fungal spore load measured in chocolate confectionery factory D is significantly lower (p = 

0.04) from factories A, B and C. On MY50G, a significant difference (p = 0.05) was found in 

between factory D and factory B. In general, when comparing the different manufacturing sites, 

no significant differences (p > 0.05) were observed between the kitchen, production line and 

packing area. 
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Figure 2.1 Fungal spore load expressed in CFU/m³ on DG18 (I) and MY50G (II) at seven chocolate confectionery 

factories (A-G). * No data available due to overgrow by fast-growing mould genera such as Mucor, Rhizopus, etc. Bars 

with different letters (a-b) are significantly different at P values ≤0.05. 

 

2.3.2 General and xerophilic fungal spore load in the factory air at different time points 

The fungal spore load in the air of three out of the seven chocolate confectionery factories (B, 

C and F) was further investigated at three time points (3 factories × 3 sites × 3 time points × 

2 media) (Figure 2.2). After five days of incubation at 25°C on DG18 (Figure 2.2 I), 76% of all 

air samples was characterized by a general fungal spore load in the range of 50-250 CFU/m³ 

air. The other 24% was distributed below 50 CFU/m³ air and above 250 CFU/m³ air, with an 

upper range of 940 CFU/m³ air. After two weeks of incubation on MY50G at 25°C, 

enumeration of the air samples revealed that 78% of all samples had a xerophilic fungal spore 

load below 50 CFU/m³ air (Figure 2.2 II). For the majority of all DG18 air samples and all of 

the MY50G air samples, fungal spore loads detected were within a relatively small range of 50-

250 CFU/m³ air and below 50 CFU/m³ air, respectively. No significant differences between 

time points (p > 0.05) were detected. In addition, no significant differences among the 

processing stations of a factory were found. The results of the sampling in April 2013 at the 

production line of factory B on both DG18 and MY50G showed the highest fungal loads, 

namely 940 CFU/m³ air and 910 CFU/m³ air, respectively. 
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Figure 2.2 Fungal spore load expressed in log10 CFU/m³ on DG18 (left panel) and MY50G (right panel). Samples were 

taken at three manufacturing sites; the kitchen, production line and packing area of chocolate confectionery factory B 

(upper panel), factory C (middle panel) and factory F (lower panel). * No data available due to overgrow by fast-

growing mould genera such as Mucor, Rhizopus, etc. Bars with different letters (a-b) are significantly different at P 

values ≤0.05. 
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2.3.3 Fungal spore levels of ingredients 

Of all four ingredients examined, the majority of samples of ganache, fruit filling and fondant 

sugar showed no or low (<10 CFU/g) fungal counts. Of a total of 12 samples of ganache 

collected and plated on DG18 and MY50G, no fungal spore contamination was observed in 8 

and 9 out of 12 samples, respectively. Also, no viable fungal spores were detected on DG18 in 

11 out of 12 samples of fruit filling; no viable fungal spores could be detected in 10 out of 12 

samples plated on MY50G. The results of the fondant sugar showed no fungal spore 

contamination for 8 (DG18) and 9 (MY50G) out of 13 samples investigated. Samples of the 

abovementioned ingredients (37 samples in total) plated on DG18 resulted in one sample of 

ganache with a general fungal load in the range of 10-100 CFU/g and one sample of fondant 

sugar contaminated with more than 100 fungal CFU/g. For the sample of fondant sugar 

examined on MY50G, a xerophilic fungal spore load of more than 100 CFU/g was detected. 

The majority of samples of nuts (hazelnuts, walnuts, etc.) contained some fungal contamination 

(Table 2.1). On DG18, 15 out of 17 samples of nuts were contaminated, five of which had 

viable fungal spores with levels above 10 CFU/g. Even on MY50G, more than half of the 

samples of nuts collected showed fungal spore loads. Six of these had fungal counts above 10 

CFU/g. The highest levels of fungal contamination were found in walnuts. 

 

Table 2.1 Distribution of fungal spore levels in CFU/g, determined on DG18 and MY50G, of different types of nuts. 

Ingredient Medium  No. of samples
a
  No. of samples

b
    

      <1 CFU/g [1-10] CFU/g [10-100] CFU/g >100 CFU/g 

Hazelnuts  DG18 7 1 5 1 0 

 MY50G  5 1 1 0 

Walnuts DG18 4 0 0 1 3 

 MY50G  1 0 1 2 

Others (almond,  DG18 6 1 4 0 0 

pistachio, brésilienne) MY50G  2 2 1 1 

Total DG18 17 2 9 2 3 

 MY50G  8 3 3 3 
a Number of samples of each type of nut (ingredient) collected and analyzed. 
b Number of samples of each type of nut with a fungal spore load within one of the above described ranges. 
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2.3.4 Species identification 

After enumeration of the CFU detected in the samples obtained during the second sampling 

round in the three factories, a total of 116 fungi were isolated from both DG18 and MY50G 

media (Table 2.2). For both air and ingredients, 73% were isolated from DG18 medium, while 

27% were isolated from MY50G. Of a total of 83 fungal isolates originating from the air of 

three chocolate confectionery factories, 20 were isolated from the kitchen area, 31 came from 

the production line and 32 came from the packing area. Of the four types of ingredients 

analyzed, nuts were found to contain the highest number of isolates. The 116 fungal isolates, 

of which 85 isolates were identified to species level, were classified into 14 genera and 

35 species (data not shown). The most common genera were Penicillium, Eurotium and 

Aspergillus, comprising 38%, 27% and 14% of the total number of isolates, respectively. Most 

(72%) of the total number of isolates originated from the air, while 28% came from the 

ingredients. This distribution was also found in the isolates belonging to the genera Penicillium 

and Aspergillus. Exactly 75% and 25% originated from the air and from the ingredients, 

respectively, for both Penicillium and Aspergillus. Eurotium isolates showed a less pronounced 

distribution: 61% of these isolates were derived from the air and the remaining 39% from 

ingredients. 

 

Table 2.2 Total number of fungal isolates originating from the air of the factory environments and ingredients of three 

out of seven chocolate confectionery factories (B, C and F), during October 2012. 

Source Total no. of samplesa Total no. of isolates Mediumb 

    DG18 MY50G 

Air  Kitchen 3 20 13 7 

 Production line 3 31 25 6 

 Packing area 3 32 23 9 

 Total 9 83 61 22 

Ingredients  Nuts 6 29 20 9 

 Fruit filling 2 0 0 0 

 Ganache  3 3 3 0 

 Fondant sugar 3 1 1 0 

 Total 14 33 24 9 

Total   116 85 31 
a Total number of samples taken from the air at three manufacturing sites, and from different types of ingredients both at three 

chocolate factories (B, C and F). 
b Number of isolates detected on DG18 and MY50G medium. 
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Table 2.3 lists the identification results of all fungal isolates originating from the air and 

ingredients of chocolate confectionery factories B, C and F. P. brevicompactum and E. repens 

were the most commonly identified species. Penicillium crustosum, Penicillium chrysogenum 

and E. herbariorum were also isolated repeatedly. Three out of four W. sebi isolates originated 

from ingredients. Cladosporium sp. could only be detected on DG18 and was seven out of eight 

times isolated from the air. Common species such as Aspergillus sydowii, E. herbariorum, 

E. repens, P. brevicompactum, P. chrysogenum, Penicillium corylophilum and P. crustosum 

were often detected in more than one manufacturing site of the same factory. A total of 14 

species could be identified from different types of nuts. All except for Penicillium scabrosum 

were detected on DG18. Besides P. scabrosum, P. brevicompactum, three Eurotium species 

and W. sebi could also be detected on MY50G. 

 

Table 2.3 Species identification results of all fungal isolates originating from the air and ingredients of chocolate 

confectionery factories B, C and F. Isolates listed as sp. could not be identified to species level with a similarity 

percentage of at least 98% if possible with a sequence of a type strain, or a strain of a reputable culture collection (CBS, 

ATCC, and others). 

Species Chocolate 
confectionery factory 

Manufacturing 
site/ 

ingredient 

Medium Identity % Reference strain Accession number 

Alternaria arborescens B Production line DG18 100 DHMJ20 JN986772 

Alternaria sp. B Kitchen DG18    

Apiospora montagnei B Production line DG18 100 MUCL 1684 AB220322 

Aspergillus niger C Packing area DG18 99.1 IHEM 17902 EF422213 

A. niger F Packing area DG18 99.8 CBS 113.33 HQ632731 

Aspergillus penicillioides C Production line MY50G 98.9 NRRL 4548 EF651928 

Aspergillus sp. B Kitchen MY50G    

Aspergillus sp. B Nuts (walnuts) DG18    

Aspergillus sp. C Packing area MY50G    

Aspergillus sp. F Packing area MY50G    

Aspergillus sp. F Production line MY50G    

Aspergillus sp. F Production line DG18    

Aspergillus sp. C Nuts (almonds) DG18    

Aspergillus sydowii B Packing area DG18 100 NRRL 4768 JN853936 

A. sydowii B Production line DG18 100 CBS 593.65 JN853935 

A. sydowii F Kitchen DG18 100 NRRL 5585 EF428373 

Aspergillus tubingensis C Nuts (almonds) DG18 100 ATCC 10550 HQ632759 

A. tubingensis F Nuts (walnuts) DG18 100 IHEM 22370 AB574056 

Aspergillus westerdijkiae B Kitchen DG18 100 CBS 588.68 FN185743 

Cladosporium cladosporioides C Packing area DG18 100 isolaat 258 FJ490620 

C. cladosporioides F Packing area DG18 100 T3B1c. 10P JQ780660 

Cladosporium sp. B Kitchen DG18    
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Cladosporium sp. B Production line DG18    

Cladosporium sp. C Production line DG18    

Cladosporium sp. F Nuts (almonds) DG18    

Cladosporium sp. B Packing area DG18    

Cladosporium sp. C Production line DG18    

Cladosporium sphaerospermum F Production line DG18 99.8 CBS 109.14 DQ780350 

Epicoccum nigrum B Production line DG18 100 CBS 115825 FJ427109 

Ep. nigrum C Production line DG18 100 CBS 161.73 GU563404 

Eurotium amstelodami B Packing area DG18 100 NRRL 35696 EF651901 

E. amstelodami B Production line DG18 100 NRRL 4716 EF651899 

E. amstelodami C Production line MY50G 99.7 CCF 4069 FR775356 

Eurotium appendiculatum = 
Aspergillus appendiculatus* 

B Production line DG18 100 CBS 101746 HE801334 

Eurotium chevalieri  
= Aspergillus chevalieri* 

C Nuts (almonds) DG18 100 KACC 46341 JN696382 

Eurotium herbariorum  
= Aspergillus glaucus* 

B Nuts (walnuts) MY50G 98.6 NRRL 114 EF651885 

E. herbariorum  
= A. glaucus* 

C Kitchen MY50G 99.3 NRRL 71 EF651885 

E. herbariorum  
= A. glaucus* 

C Packing area MY50G 98.4 NRRL 71 EF651888 

E. herbariorum  
= A. glaucus* 

F Production line DG18 100 NRRL 117 EF651886 

E. herbariorum  
= A. glaucus* 

F Nuts (hazelnuts) DG18 100 KACC 46352 JN696391 

Eurotium repens  
= Aspergillus pseudoglaucus* 

B Nuts (walnuts) MY50G 100 NRRL 13 FR775359 

E. repens  
= A. pseudoglaucus* 

B Packing area MY50G 100 CCF 3283 FR775359 

E. repens  
= A. pseudoglaucus* 

B Production line MY50G 100 KACC 46361 JN696398 

E. repens  
= A. pseudoglaucus* 

C Nuts (almonds) DG18 100 CCF 1454 EF651915 

E. repens  
= A. pseudoglaucus* 

C Packing area DG18 99.6 NRRL 13 JN696398 

E. repens  
= A. pseudoglaucus* 

F Kitchen MY50G 100 NRRL 13 EF651915 

E. repens  
= A. pseudoglaucus* 

F Nuts (almonds) MY50G 100 NRRL 13 EF651915 

E. repens  
= A. pseudoglaucus* 

F Nuts (hazelnuts) DG18 99.7 KACC 46363 JN696396 

E. repens  
= A. pseudoglaucus* 

F Nuts (hazelnuts) MY50G 100 CCF 1454 FR775360 

E. repens  
= A. pseudoglaucus* 

F Packing area DG18 98.8 KACC 46363 EF651915 

Eurotium rubrum  
= Aspergillus ruber* 

F Nuts (hazelnuts) DG18 100 KACC 46366 JN696401 

E. rubrum  
= A. ruber* 

F Nuts (walnuts) MY50G 100 NRRL 52 EF651920 

Eurotium sp.  
= Aspergillus sp.* 

B Packing area DG18    
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Eurotium sp.  
= Aspergillus sp.* 

C Packing area DG18    

Eurotium sp.  
= Aspergillus sp.* 

F Nuts (walnuts) MY50G    

Eurotium sp.  
= Aspergillus sp.* 

C Nuts (almonds) DG18    

Eurotium sp.  
= Aspergillus sp.* 

C Packing area DG18    

Eurotium sp.  
= Aspergillus sp.* 

C Packing area DG18    

Eurotium sp.  
= Aspergillus sp.* 

C Packing area MY50G    

Eurotium sp.  
= Aspergillus sp.* 

C Production line DG18    

Eurotium sp.  
= Aspergillus sp.* 

F Production line DG18    

Hypocrea sp. F Packing area DG18    

Paecilomyces variotii F Nuts (almonds) DG18 100 CBS 121581 EU037080 

Penicillium bialowiezense F Nuts (walnuts) DG18 99.3 CBS 110104 AY674440 

P. bialowiezense F Packing area DG18 99.7 CBS 112.882 AY674441 

Penicillium brevicompactum B Kitchen DG18 98.1 CBS 110067 EU587345 

P. brevicompactum B Nuts (walnuts) MY50G 100 SCCM 10-B8 EU587359 

P. brevicompactum B Packing area DG18 100 CBS 48084 DQ645795 

P. brevicompactum B Production line DG18 99.3 CBS 25729 AY674434 

P. brevicompactum C Ganache DG18 99.4 DAOM 215331 AY674436 

P. brevicompactum C Production line DG18 100 ATCC 10111 AY674438 

P. brevicompactum C Production line MY50G 100 CBS 48084 AY674438 

P. brevicompactum F Kitchen DG18 97.9 NRRL 28139 EU587352 

P. brevicompactum F Nuts (hazelnuts) DG18 99.0 CBS 110067 AY674438 

P. brevicompactum F Packing area DG18 98.1 CBS 110067 AY674434 

Penicillium chrysogenum B Kitchen MY50G 98.5 CBS 478.84 AY495981 

P. chrysogenum B Packing area DG18 100 CBS 302.67 GQ498300 

P. chrysogenum B Packing area MY50G 100 NRRL_A_6200 EU597708 

P. chrysogenum B Production line DG18 98.4 CBS 306.48 JX996926 

P. chrysogenum F Packing area MY50G 100 L4 AY495988 

Penicillium commune B Production line DG18 100 CBS 311.48 AY213672 

Penicillium corylophilum B Kitchen DG18 100 CBS 330.79 GU944519 

P. corylophilum F Packing area DG18 99.1 CBS 330.79 GU944519 

P. corylophilum F Production line MY50G 99.5 CBS 330.79 GU944519 

Penicillium crustosum B Kitchen DG18 100 CBS 47184 FJ930934 

P. crustosum C Kitchen DG18 99.6 CBS 101025 FJ930935 

P. crustosum F Kitchen DG18 100 CBS 101025 AY674351 

P. crustosum F Kitchen MY50G 99.6 CBS 101025 AY674351 

P. crustosum F Nuts (hazelnuts) DG18 100 CBS 101025 FJ930935 

P. crustosum F Nuts (walnuts) DG18 99.5 CBS 101025 FJ930934 

P. crustosum F Packing area DG18 99.7 CBS 101025 AY674351 

P. crustosum F Production line DG18 100 CBS 47184 AY674351 

Penicillium expansum B Nuts (walnuts) DG18 98.7 CBS 325.48 JQ965099 
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Penicillium glabrum F Packing area MY50G 100 CBS 125543 GU981619 

Penicillium multicolor B Kitchen MY50G 100 CBS 501.73 JN799645 

Penicillium polonicum F Nuts (walnuts) DG18 99.8 CBS 101479 AY674306 

Penicillium roseopurpureum B Packing area MY50G 100 CBS 28139 JN606839 

Penicillium scabrosum F Nuts (walnuts) MY50G 100 DAOM 214786 DQ285610 

Penicillium solitum B Packing area DG18 99.5 CBS 14786 AY674355 

P. solitum B Production line DG18 100 KACC 45929 AY674355 

P. solitum F Packing area DG18 99.7 CBS 14786 JF521535 

Penicillium sp. B Kitchen DG18    

Penicillium sp. C Kitchen MY50G    

Penicillium sp. C Production line DG18    

Penicillium sp. F Ganache DG18    

Penicillium sp. F Kitchen DG18    

Penicillium spinulosum B Nuts (walnuts) DG18 100 CBS 271.35 GQ367505 

Phaeosphaeria sp. F Ganache DG18    

Talaromyces ruber F Production line DG18 100 CBS 195.88 JX965350 

Thysanophora penicillioides C Production line DG18 98.2 WCN 1152 AB175272 

Trichoderma atroviride B Kitchen DG18 100 UASWS 0364 HM236004 

Trichoderma sp. B Packing area DG18    

Wallemia sebi+ F Fondant sugar DG18    

W. sebi+ F Nuts (almonds) DG18    

W. sebi+ F Nuts (almonds) MY50G    

W. sebi+ F Production line DG18    

* Newly proposed species names (Hubka et al., 2013; Samson et al., 2014). + Identification based on morphological 

characteristics. 

 

2.4 DISCUSSION 

In this chapter, the fungal spore load and fungal species present in the production air and 

ingredients of Belgian chocolate confectionery factories was examined. The aim was to 

determine whether fungal spoilage organisms, which have a potentially important role in the 

shelf life and quality of chocolate confectionery products, were present in the factory air and 

the ingredients used in confectionery fillings. The majority of the processing stations of the 

chocolate confectionery factories showed a general fungal spore load in the range of 50-

250 CFU/m³ air, with 250 CFU/m³ as the upper limit of spore load detected. No quantitative 

standards for air quality in dry food processing environments are currently available. As part of 

a preventive health policy, the Government of Flanders (Belgium) issued a decision in 2004 

regarding health risks posed by indoor pollution of building offices, houses, etc. This decision 

includes a guideline to maintain fungal spore loads below 200 CFU/m³ air (Flanders’ FOOD, 

2010). 
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Rao et al. (1996) reviewed and compared some existing quantitative standards and guidelines 

for indoor airborne fungi. Those quantitative standards/guidelines ranged from <100 CFU/m³ 

to >1,000 CFU/m³ as the upper limit for non-contaminated indoor environments. Currently, no 

studies are available regarding the fungal contamination of chocolate confectionery factories. 

A number of studies have been conducted on air quality in bakeries, however. The average 

fungal spore load in the air of six British bakeries was found to be in the range of 85 to 2,850 

CFU/m³. Fungal spore concentrations in German bakeries ranged from 85 to 5,000 CFU/m³ in 

the storage rooms, although these concentrations were considerably higher in some production 

areas (approximately 90,000 CFU/m³). Canadian bakeries showed a total of yeast and fungal 

spore counts from 50 to 2,000 CFU/m³ air (Legan, 1993; Ooraikul et al., 1987). Bakeries and 

chocolate confectionery factories have important differences, however. Bakeries use dry 

ingredients with low water activity values, but the final products do not necessarily have low 

water activity. Microbial spoilage of baked goods is therefore a major problem. Fungal counts 

of bakeries found in literature are very high compared to those of the chocolate confectionery 

factories observed in this study. This can largely be explained by the use of dry ingredients such 

as flour. It is well known that flour and other dry ingredients contain substantial amounts of 

spores (Legan, 1993). The lightweight flour dust spreads widely throughout the bakery and 

leads to post-process contamination of bakery products. 

Additionally, several studies have been published on the fungal spore load of houses, 

apartments or office buildings with and without fungal problems (Burge et al., 2000; Codina et 

al., 2008; Herbarth et al., 2003; Hunter et al., 1988; Lehtonen and Reponen, 1993; Verhoeff et 

al., 1990). Most of these studies used different air sampling devices and media for the 

enumeration of viable fungal propagules. Verhoeff et al. (1990) compared several air sample 

devices in combination with various collection media. Air sampling devices can differ in flow 

rate and filter particle size. Because fungi can vary distinctly in structure and spore size, certain 

species will be able to penetrate the mesh while others will be retained. This suggests that care 

should be taken when comparing CFU data and indicates the need for standardized protocols. 

One chocolate confectionery factory (factory D) clearly showed lower concentrations of fungal 

spores compared to the other factories studied. A possible hypothesis is the application of 

different manufacturing and hygienic practices (Codex alimentarius, 2013). Using the RCS Air 

Sampler, Singh et al. (1986) studied the effectiveness of UV rays and microbial filters for air 

disinfection. 
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They found that air filters were most effective, with a reduction in fungal load from 2,100 to 0 

CFU/m3 in 60 min. The type of filters installed in the ventilation system may vary from simple 

dust filters to High Efficiency Particulate Air (HEPA) filters (Codex alimentarius, 2013). The 

type of filter used may affect the fungal load of a factory as well. In addition to good ventilation 

systems, fungal spore concentrations may be reduced by proper disinfection systems and 

guidelines for factory workers entering the work environment, controlled entry of material and 

ingredients, and stringent dry cleaning practices. 

No clear differences in fungal spore load could be observed among the processing stations of 

the chocolate confectionery factories. In addition, the most commonly identified species in the 

air were mostly found in more than one manufacturing site of the same factory. Possible 

explanations for this is the proximity of the kitchen, production line and packing area to each 

other; the lack of separation between the areas; and easy access between areas. All of these 

factors promote distribution of dust and fungal spores from one area to another. 

The enumeration data of sampling during August, October and April showed no significant 

differences. These data suggest that the fungal spore loads are not subjected to large variations. 

In contrast, several other studies have described a seasonal variation in the total indoor fungal 

spore concentrations, showing higher concentrations in summer months (Herbarth et al., 2003; 

Koch et al., 2000). Nevertheless, more data are needed before conclusions can be drawn 

regarding seasonal variation of indoor fungal concentrations. In addition to seasonal variation, 

spore concentrations are also reported to be subjected to possible local increases in air 

movement. Some studies described the increase in spore concentrations associated with 

increasing air velocity (Pasanen et al., 1991), construction work and vacuum cleaning (Hunter 

et al., 1988). Spicher et al. (1967) found that bakery activities such as cleaning and production 

operations clearly affected the spore load. 

The more strictly xerophilic spore load (MY50G counts) present in the air of the chocolate 

factories was found mostly to be below 50 CFU/m3 air. This xerophilic load was partly found 

on DG18, which detects a broad range of species. Some extremely xerophilic species will only 

grow on MY50G due to its lower water activity. This results in less competition with other 

fungal species and implies that detection of species diversity can depend on the media used. 
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Previous air sampling of a confectionery factory described Penicillium, Aspergillus and 

Cladosporium as the main genera isolated from the air of a confectionery factory (Singh et al., 

1986). This was confirmed in the air sampling during our study, which showed the highest 

prevalence of Penicillium, Eurotium and Aspergillus species as well as the occurrence of 

Cladosporium. The most prevalent species isolated from the production environment was 

P. brevicompactum. This species has not yet been described as being a potential spoiler of 

chocolate products, but P. brevicompactum has been isolated from bakery products with 

intermediate water activity (Membré and Kubaczka, 2000). P. brevicompactum is a common 

food and indoor fungal species that can tolerate rather low water activities, i.e. 0.75-0.79 

(Samson et al., 2010; Scott et al., 2008). The water activity of chocolate itself is too low for 

spoilage by this species, but chocolate confectionery fillings, with their water activity in the 

range of 0.70 to 0.90, may be susceptible to spoilage from P. brevicompactum. 

Of all the ingredients of chocolate confectionery fillings investigated in our study, nuts were 

shown to be most frequently and most highly contaminated. The highest levels of fungal 

contamination were found on walnuts. One explanation for this could be the lack of heat 

treatment of walnuts, in comparison to other types of nut preparations such as brésilienne. 

Nearly the same number of nut samples showed fungal levels in the range of 10-100 CFU/g 

and above 100 CFU/g on DG18 as well as on MY50G, suggesting contamination of nuts is 

mainly caused by more strictly xerophilic species. Most of the isolates belong to the genus 

Eurotium: the species detected were E. repens, E. herbariorum and E. rubrum. All of these 

Eurotium species can tolerate very low water activities (in the range of 0.70 to 0.74) (Pitt and 

Hocking, 1997; Samson et al., 2010), which explains how they could be detected on both media. 

In literature, pistachio nut samples were reported with fungal counts of 103-104 CFU/g and 105-

106 CFU/g for harvest and storage, respectively (Heperkan et al., 1994). In retail cashew nuts 

from Lagos, Nigeria, total fungal counts in the range of 102-104 CFU/g on malt extract agar 

with 40% sucrose (MA40) were detected, with the most predominant isolates belonging to the 

genus Aspergillus (Adebajo and Diyaolu, 2003). After plating Brazilian nut kernels on tap water 

agar (TWA), Czapek yeast extract agar (CYA), malt agar with 20% sucrose (M20) and malt 

agar with 40% sucrose (M40), Aspergillus flavus was found to be the most dominant species, 

followed by A. niger (Freire et al., 2000). No Eurotium species were detected. Total fungal 

counts with a wide range between 103-104 CFU/g were found for six types of nuts from Saudi 

Arabia on glucose-Czapek and glycerol agar media. 



CHAPTER 2 DETECTION AND IDENTIFICATION OF XEROPHILIC FUNGI IN BELGIAN 

CHOCOLATE CONFECTIONERY FACTORIES 
69 

 

A. flavus, A. niger and P. chrysogenum were the most prevalent fungal species on both media. 

In contrast, Eurotium species were detected in high frequency on all six types of nuts when 

plated on glycerol agar media, while no Eurotium species were detected on glucose-Czapek 

medium (Abdel-Gawad and Zohri, 1993). These results suggest that A. flavus occurs commonly 

on nuts, although this species was not found in the present study. 

 

2.5 CONCLUSIONS 

Microbiological stability of chocolate confectionery products could be compromised in the 

search for alternative (non-alcoholic or “clean label”) formulations. Xerophilic fungi are 

potential spoilage organisms of these chocolate confectionery fillings. These organisms may 

originate either in the factory environment or in the ingredients used. Results of this study in 

seven Belgian companies demonstrate rather low levels of fungal spores present in the 

confectionery factory environment. Among the ingredients investigated, nuts seem to represent 

an important source of contamination. Penicillium, particularly P. brevicompactum, was most 

dominantly present in the factory environment. Nuts were shown to be mostly contaminated by 

Eurotium, specifically with the species E. repens. Further research is needed to examine 

whether these frequently occurring fungal species are of concern for the quality and shelf life 

of chocolate confectionery products. 

 





 

Chapter 2 presents a survey on the presence and prevalence of xerophilic fungi in the 

production environment of Belgian chocolate confectionery factories as well as in common 

ingredients of chocolate confectionery fillings. Nuts seemed to represent a possibly important 

source of xerophilic fungal contamination of confectionery fillings. Therefore, chapter 3 

focused profoundly on the nuts and investigated some preventive measures to reduce initial 

fungal loads on walnuts. 
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via nuts. Food Research International (submitted) 
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CHAPTER 3 POTENTIAL PREVENTIVE MEASURES AGAINST 

FUNGAL CONTAMINATION OF CHOCOLATE CONFECTIONERY 

FILLINGS INTRODUCED VIA NUTS 

 

ABSTRACT 

Nuts are a common ingredient of confectionery fillings and a potential source of xerophilic 

fungal contamination. The present chapter investigated some preventive measures against 

fungal contaminants of chocolate confectionery fillings that are introduced by nuts. 

Microbiological analysis of the fungal load on a variety of nuts and their corresponding nut-

based fillings indicated that walnuts, and the fillings in which they were used, were highly 

contaminated (>2.5 log10 CFU/g). A challenge test with three xerophilic species (Penicillium 

brevicompactum, Eurotium repens and Wallemia sebi) was conducted on almond-based 

marzipan (aw 0.84 and pH 5.76) without preservatives, with 0.15% potassium sorbate and with 

1% ethanol. The results showed that common xerophiles E. repens and W. sebi are capable of 

growing on marzipan without preservatives. E. repens showed some resistance to 0.15% 

potassium sorbate, hence, spoilage could only be inhibited for at least 25 days if 1% ethanol 

was added. The effect of dry and humid heating with various heating and drying cycle times 

was tested on walnuts. Humid heating completely eliminated the initial fungal load, while dry 

heating did not induce any measurable change. According to sensorial analysis, humid heated 

and unprocessed walnuts tasted significantly different, with a slight indication of preference for 

the heated walnuts. Moreover, hexanal analysis of walnuts demonstrated humid treatment to 

increase the oxidative stability of walnuts, delaying the onset of rancidity during storage. 
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3.1 INTRODUCTION 

A strategy to prevent early spoilage of sweet intermediate moisture food (IMF) is by controlling 

the growth of spoilage organisms in the final product. Predictive growth/no growth (G/NG) 

models are an important tool to predict the long-term microbial stability of innovative food 

products, e.g. confectionery fillings with reduced sugar or fat content or without preservatives. 

W. sebi and E. herbariorum are two important xerophilic moulds known to cause spoilage of 

sugar-rich products (Deschuyffeleer et al., 2015; Samson et al., 2004a). G/NG models for both 

species were developed including parameters aw (0.75 – 0.90), pH (5.0 – 6.2) and ethanol 

concentration (0 and 5% (w/w) in water phase) (Deschuyffeleer et al., 2015). Growth could 

only be inhibited for a prolonged time (>3 months) if an ethanol concentration of 5% was 

present. Based on these predictive models, it seems difficult to guarantee the microbial stability 

of sweet IMF products without the addition of alcohol or preservatives. 

In addition to predictive modeling, the spoilage problem can also be addressed by controlling 

the initial sources of contamination. In CHAPTER 2, a survey study of both the production 

environment of Belgian chocolate confectionery factories as well as some common ingredients 

used in chocolate confectionery fillings was conducted. It was noted that among the ingredients 

investigated, nuts were by far most contaminated and may negatively affect the quality and 

shelf life of the final products. A total of 35 distinct mould species were identified, of which 

P. brevicompactum and E. repens were most frequently isolated from the factory environment 

and ingredients. 

Continuing the results obtained in CHAPTER 2, the present chapter now focuses on the 

importance of nuts as potential source of xerophilic fungal contamination in confectionery 

fillings. First, the fungal load of a variety of nuts (raw material) and their corresponding nut-

based fillings (final product) was examined. Subsequently, a challenge test was conducted to 

investigate the potential growth of some prevalently occurring mould species on a nut-based 

confectionery filling with and without preservatives. Finally, dry and humid heat-treatment as 

possible preventive measures against initial fungal loads was evaluated on the basis of their 

effect on the microbiological load, sensorial quality, and oxidative stability of walnuts. 
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3.2 MATERIAL AND METHODS 

3.2.1 Collection and fungal enumeration of nuts and their corresponding nut-based 

confectionery fillings 

Twenty nut samples, consisting of almonds (8), hazelnuts (7), walnuts (3), coconut (1), and 

pecans (1), were collected from four Belgian chocolate confectionery factories. At the same 

time, their corresponding nut-based chocolate confectionery products were collected as well. 

Additionally, hazelnut samples were collected in triplicate from one Belgian chocolate 

confectionery factory at different steps of processing: before roasting, after 60 min of roasting 

at 185°C, and after grinding into oil. 

Nut samples were aseptically transferred to a Stomacher® bag and ground into small pieces. 

Chocolate confectionery products were aseptically opened and the nut-based fillings were 

transferred to a Stomacher® bag and homogenized. Nuts and nut-based confectionery fillings 

were directly plated by distributing 1 g onto three plates with Dichloran 18% Glycerol agar 

medium (DG18, Oxoid Ltd) as well as three plates with Malt extract Yeast extract 50% Glucose 

agar medium (MY50G). These selective media were prepared as described in § 2.2.1, and have 

an aw around 0.95 and 0.85, respectively. Incubation and subsequent enumeration of fungi was 

conducted as described in § 2.2.3. 

3.2.2 Challenge test marzipan 

3.2.2.1 Marzipan recipes 

A preservative-free marzipan was prepared by adding water (9.1%, w/w) to a bowl of icing 

sugar (50.9%, w/w), and the dissolved sugar was homogeneously mixed with almond powder 

(40%, w/w) by means of a food processor (Kenwood Cooking Chef KM084, Havant, 

Hampshire, UK). Both products were purchased in a horeca specialist store. In addition to the 

reference marzipan, two other variant were prepared, one with 0.15% potassium sorbate 

(Solina-group, Bréal-Sous-Monfort, France) and the other with 1% alcohol (GDC, Jumet, 

Belgium). The aw of the three marzipans was analyzed using an Aqualab Series 3 device 

(Decagon Devices, Pullman, WA, USA) and the acidity was evaluated with a SevenCompact 

pH meter (Mettler Toledo, Greifensee, Switzerland). 
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3.2.2.2 Preparation of inoculum and design of a challenge test 

P. brevicompactum FC207, E. repens FC182 and W. sebi FC255 isolates were selected from an 

in-house laboratory culture collection at the Institute for Agricultural and Fisheries Research 

(ILVO, Melle, Belgium). All three strains originated from nuts that were purchased as raw 

material by chocolate confectionery factories. 

Malt Extract Agar (MEA; Oxoid Ltd, Basingstoke, Hampshire, UK) was prepared according to 

the manufacturer’s instructions and poured into Petri dishes. MEA was inoculated with each 

strain by streaking the stock culture onto the plate with an inoculation needle. Inoculated MEA 

plates were incubated at 25°C for seven days, after which they were evaluated for purity. Pure 

cultures were transferred to new MEA plates and incubation was repeated. Finally, plates with 

well-grown fungal cultures were directly used as inoculum for the marzipan samples. 

For each marzipan recipe a challenge test was designed by filling 80 sterile 200 ml 

polypropylene containers with about 40 g marzipan. Twenty containers were used as controls 

(without inoculum) and the remainders were divided into three equally sized batches, which 

were inoculated with one of the strains by applying the inoculum with a sterile toothpick. All 

inoculated and control samples were incubated at 25°C during 25 days. Samples were visually 

inspected for mould growth at various moments in time. 

3.2.3 Heat-treatment of walnuts 

Shelled walnuts were purchased in closed containers in a horeca specialist store. Two types of 

heating (dry/humid) and various heating and drying cycle times were compared by means of a 

multifunctional chamber (DRKBGO-SE-I-1A, Gernal, Komen, Belgium) that has the purpose 

of processing food products. The parameters for dry and humid heating were based on 

laboratory trials (temperature and cycle times) by means of this particular instrument allowing 

the two types of heating to be compared within the same chamber under the same temperature. 

Cycle times were chosen based on preliminary sensorial testing. Walnuts were spread in the 

chamber onto a shelf with a sieve-like structure. Dry heating was performed at 75 – 80°C and 

50% relative humidity (RH), while humid heating was achieved at 75 – 80°C through the 

injection of steam. Humid treatment was directly followed by a drying cycle at 60°C. 
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The effects of heating and drying were evaluated by varying the duration of each cycle. All 

treatments were repeated three times. Walnuts with and without dry or humid heat-treatment 

were microbiologically analyzed on DG18 as described in § 3.2.1. The aw was measured using 

an Aqualab Series 3 device (Decagon Devices). 

Sensory analysis was performed on walnut samples without treatment and samples heated for 

3 min under humid conditions, followed by a drying cycle of 15 min. These treatment 

conditions were selected on the basis of the results of the microbiological analysis and aw 

values. Untreated and treated walnuts were compared by means of a triangle test (ISO 

4120:2004(E), 2004) of 40 assessors. The analysis was organized in a sensory lab that complies 

with ISO 8589:2007. The walnuts were cut into small pieces, homogenized, and about 15 g of 

the homogenate was transferred to separate cups for blind tasting. Score sheets contained one 

primary question for which assessors indicated which sample was different from the other two. 

A comment section was included to indicate if the assessor was guessing and if he had a 

preference for a specific sample. 

The oxidative stability of the treated and untreated walnuts was evaluated by measuring the 

amount of hexanal, one of the major secondary oxidation products of polyunsaturated fatty 

acids as linoleic acid. A homogenous batch of untreated and treated walnuts (humid heating for 

3 min and drying during 15 min) were divided over 200 ml polypropylene containers, and 

stored in the dark for 9 weeks at 20°C and 55% RH. At different moments in time, both walnut 

batches were analyzed for their hexanal concentration. To this end, whole walnuts were ground 

in a kitchen processor and 5 g of the homogenized sample was carefully weighed in a 50 ml 

Falcon tube. Exactly 15 ml triacetin (Sigma-aldrich, St. Louis, MO, USA) was added as 

extraction solvent, together with 5 µg hexanal-d12 as internal standard. The centrifuge tube was 

capped, thoroughly shaken for 1 h on a horizontal shaker, and centrifuged at 4000 g for 10 min. 

The supernatant beneath the pellet was collected with a syringe fitted with needle, and exactly 

10 ml was transferred to a 20 ml headspace vial. Each vial was capped and stored at -20°C o/n. 
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3.2.4 Analysis of hexanal with gas chromatography/mass spectrometry (GC/MS) 

Hexanal in the solvent extracts was analyzed with automated SPME using a MPS2 multi-

purpose auto sampler (Gerstel GmbH, Mülheim an der Ruhr, Germany), followed by GC/MS 

(7890A/5975C, Agilent Technologies inc., Santa Clara, CA, USA). The sample was 

equilibrated for 20 min at 60°C and extraction was carried out with a DVD/CAR/PDMS fiber 

(Supelco, Bellefonte, PA, USA) during 10 min. Desorption and reconditioning of the fiber was 

achieved directly in the flow of the GC injector for 15 min at 270°C. Helium was used as a 

carrier gas with a column flow of 1 ml/min. A DB5-MS capillary column (30 m x 0.25 mm, 

film thickness: 1 µm), fitted with a retention gap (5 m x 0.25 mm), allowed for separation of 

hexanal and hexanal-d12 during a temperature programmed run. The oven program was as 

follows: 35°C (hold 1 min), 3.5°C/min to 100°C, 30°C/min to 210°C. The mass spectrometer 

was used in selected ion monitoring mode for detection of m/z 82, 72, and 67 (hexanal) and 

m/z 92, 80 and 74 (hexanal-d12). The temperatures of the transfer line, source and quadrupole 

mass analyzer were set at 250, 230 and 150°C, respectively. 

Single ion chromatograms reconstructed at m/z 82 (hexanal) and 92 (hexanal-d12) were used 

for quantification by the internal standard method, and standard solutions in triacetin were used 

for response calibration. The method gave a linear response for hexanal concentrations between 

0.17 and 15 µg/ml (R2 = 0.998) and the precision was less than 5%. Based upon results for 

fortified samples, the extraction efficiency of hexanal was found to be quantitative (data not 

shown). Comparison of results with standard addition experiments showed the method to be 

accurate, with little or no matrix effect (<4%, data not shown). The method detection limit for 

hexanal was estimated from 9 replicate blanks fortified at 10 ng/ml (3 x σ) and was found to be 

4 ng/ml, corresponding to a concentration of 12 ng/g in walnut. 
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3.2.5 Statistical analysis 

Statistical analysis was performed using the Statistical Analysis System software (SAS®, 

version 9.4, SAS Institute Inc., Cary, NC, USA), except for the triangle test (difference test 

only), which was conducted by means of FIZZ Calculations (version 2.50, Biosystèmes, 

Couternon, France). Spearman’s rank correlation (rs) was used to test the association between 

the fungal load of nuts and the fungal load of their corresponding nut-based confectionery 

fillings. Data obtained during the hexanal analysis of treated and untreated walnuts were 

analyzed and a linear regression analysis was performed using hexanal content as dependent 

variable and time and treatment as independent variables. Post-hoc comparison was conducted 

using a Scheffé test. P values ≤0.05 were considered statistically significant. 

 

3.3 RESULTS 

3.3.1 Fungal load of nuts and nut-based confectionery fillings 

An initial survey of 14 Belgian chocolate confectionery factories identified hazelnuts, almonds 

and walnuts as the varieties most commonly used in fillings and as topping of chocolate 

confectionery products. Table 3.1 presents the fungal (spore) levels that were detected on these 

commonly used nuts and their corresponding nut-based confectionery fillings. Among the 20 

samples of different nut types from four factories, walnuts (B6, C4 and C5) exhibited the 

highest fungal load (>2.5 log10 CFU/g) on both DG18 and MY50G media. The corresponding 

fillings of the final products also contained relatively high fungal loads on DG18, with values 

exceeding 1.4 log10 CFU/g. The more selective MY50G medium detected stricter xerophilic 

fungi with values ranging from less than 0 to more than 2.5 log10 CFU/g. Five of six fillings 

obtained from chocolate confectionery factory A showed a fungal (spore) load ≥1.0 log10 

CFU/g, while fungal levels for the nuts used in these fillings were ≤0.6 log10 CFU/g. No 

statistically significant correlation (p > 0.05) was found between the fungal load of nuts and the 

fungal load of their corresponding chocolate confectionery fillings. 
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Table 3.1 Fungal spore levels (log10 CFU/g) observed on DG18 and MY50G media for a variety of nuts and 

corresponding nut-based confectionery fillings. Countable range = 0-2.5 log10 CFU/g. 

Confectionery  

factory 

Sample  

code 

Sample of nut and corresponding  

confectionery filling 
Log10 CFU/g 

DG18 MY50G 

     

A A1 Coconut 0.0 <0.0 

 Buttercream with small coconut slides <0.0 <0.0 

A2 Almonds 0.6 0.5 

 Marzipan 1.2 0.8 

A3 Hazelnuts <0.0 <0.0 

 Praliné containing small pieces of hazelnut 1.2 0.6 

A4 Hazelnuts 0.3 <0.0 

 Praliné containing a complete hazelnut 1.1 0.5 

A5 Hazelnuts <0.0 <0.0 

 Praliné containing small pieces of hazelnut 1.0 <0.0 

A6 Hazelnuts 0.3 <0.0 

 Praliné containing a complete hazelnut 1.1 <0.0 

B B1 Pecans 0.6 <0.0 

 Filling containing a complete pecan <0.0 <0.0 

B2 Almonds 0.0 <0.0 

 Praliné with small almond slides 0.0 <0.0 

B3 Almonds <0.0 <0.0 

 Truffel with almond slides on top 0.3 <0.0 

B4 Hazelnuts 1.0 0.8 

 Praliné containing small pieces of hazelnut 0.3 0.0 

B5 Hazelnuts 1.1 0.5 

 Paste based on hazelnuts 0.8 0.5 

B6 Walnuts >2.5 >2.5 

 Filling containing small pieces of walnut >2.5 >2.5 

     

C C1 Almonds 0.3 <0.0 

 Praliné with complete almond on top 1.9 1.7 

C2 Almonds <0.0 <0.0 

 Praliné containing small almond slides 1.2 1.1 

C3 Hazelnuts 1.0 1.5 

 Praliné containing a complete hazelnut 0.0 0.3 

C4 Walnuts >2.5 >2.5 

 Praliné containing a complete walnut 1.4 <0.0 

C5 Walnuts >2.5 >2.5 

 Praliné with a complete walnut on top >2.5 1.7 

     

D D1 Almonds 0.8 0.0 

 Marzipan (33% almonds) 0.7 0.0 

D2 Almonds 0.3 <0.0 

 Marzipan (20% almonds) <0.0 <0.0 

D3 Almonds 0.3 <0.0 

 Marzipan (40% almonds) <0.0 <0.0 
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The effect of nut processing on the fungal spore load of hazelnuts is detailed in Table 3.2. A 

relatively high fungal (spore) load of 2.1 ± 0.2 and 1.8 ± 0.1 log10 CFU/g was observed for raw 

(unprocessed) hazelnuts using DG18 and MY50G media, respectively, while no fungal load 

was detected after roasting (Table 3.2). Depending on the purpose, roasted hazelnuts are further 

ground into a hazelnut oil. Fungal enumeration of hazelnut oil samples resulted in very low 

amount of spores (0.1 ± 0.2 log10 CFU/g) on DG18 and no spores on MY50G. 

 

Table 3.2 Fungal spore levels (log10 CFU/g) observed on DG18 and 

MY50G media for unprocessed hazelnuts, hazelnuts after roasting, 

and after roasting and grinding. Countable range = 0-2.5 log10 

CFU/g. 

Processing Medium Log10 CFU/ga 

   

Unprocessed DG18 2.1 ± 0.2 

 MY50G 1.8 ± 0.1 

   

Roasted DG18 <0.0 

 MY50G <0.0 

   

Roasted and grinded DG18 0.1 ± 0.2 

 MY50G <0.0 

      
a Average ± standard deviation of triplicate analysis 

 

3.3.2 Challenge test marzipan 

The reference (preservative-free) marzipan had aw and pH values of 0.84 and 5.76, respectively. 

The addition of preservatives resulted in similar aw and pH values, i.e. 0.83 and 5.96 for 

marzipan with potassium sorbate, and 0.84 and 5.77 for marzipan with alcohol, respectively. 

For each marzipan, the fraction of samples showing fungal growth during 25 days of incubation 

at 25°C is presented in Figure 3.1. The fungal species P. brevicompactum was not capable of 

growing in any of the marzipans during the first 25 days after inoculation. Both, E. repens and 

W. sebi were capable of growing on the preservative-free marzipan. Initiation of growth by 

E. repens and W. sebi was visually observed after six and seven days, respectively. Ninety 

percent of the inoculated reference samples presented growth by E. repens and W. sebi after 14 

and 15 days, respectively. 
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The addition of 0.15% potassium sorbate had a complete inhibitory effect on the growth of 

W. sebi but only partially inhibited growth of E. repens (25% of the samples showed visible 

growth) over a 25 day period. The addition of 1% alcohol completely inhibited growth of all 

three fungal species. 

 

 

Figure 3.1 Fraction of marzipan samples (%) showing growth of (A) P. brevicompactum, (B) E. repens, and (C) W. sebi 

over time. Legend: preservative-free marzipan,  marzipan + 0.15% potassium sorbate,  

marzipan + 1% alcohol. 
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3.3.3 Effect of heat-treatment on the fungal load, sensorial quality and hexanal content 

of walnuts 

Table 3.3 presents the aw values and the results of microbiological analysis of walnuts with and 

without heat-treatment. Raw (untreated) walnuts had an aw value of 0.60 and a fungal load 

above 2.5 log10 CFU/g. Dry heating at 75 – 80°C during 5 and 30 min reduced the aw to values 

of 0.40 ± 0.00 and 0.25 ± 0.03, respectively, while the fungal load remained unaffected (>2.5 

log10 CFU/g). A humid heating for 3 and 5 min at 75 – 80°C, followed by a drying process for 

10, 15 and 20 min at 60°C, all resulted in a complete reduction of the initial fungal load. The 

aw values ranged from 0.65 to 0.73, depending on the time of heating and drying. 

 

Table 3.3 Water activity (aw) and fungal spore levels on DG18 (log10 CFU/g) for untreated and 

heat-treated walnuts. Countable range = 0-2.5 log10 CFU/g. 

Treatment Heating cycle 

(min)a 

Drying cycle 

(min)a 

a
w

b Log10 CFU/gb 

     

Untreated 0 0 0.60 >2.5 

Dry heating 5 0 0.40 ± 0.00 >2.5 

Dry heating 30 0 0.25 ± 0.03 >2.5 

Humid heating 3 10 0.71 ± 0.00 <0.0 

Humid heating 3 15 0.68 ± 0.01 0.1 ± 0.2 

Humid heating 3 20 0.65 ± 0.01 <0.0 

Humid heating 5 10 0.73 ± 0.01 <0.0 

Humid heating 5 15 0.70 ± 0.00 <0.0 

Humid heating 5 20 0.67 ± 0.02 <0.0 

          
a Heating at 75-80°C and drying at 60°C 
b Average ± standard deviation for triplicate analysis 

 

The triangle test for evaluating sensorial differences between untreated and humid treated 

walnuts was performed by 40 assessors of which 19 gave a correct answer. This result 

statistically gives a 95.6% certainty that the humid heated walnuts taste differently. Of those 

assessors that gave a correct answer, 42% and 32% had a preference for the treated and 

untreated walnuts, respectively. The remaining 26% indicated to have no specific preference. 
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The hexanal content of untreated and treated walnuts was determined after storage in the dark 

at 20°C and 55% RH (Figure 3.2). Initially (week 0), untreated and treated walnut samples 

contained 4.76 ± 0.12 and 6.46 ± 2.73 µg/g hexanal, respectively. After 9 weeks of storage, 

untreated and treated samples contained 28.9 ± 0.3 and 10 ± 4 µg/g hexanal, respectively. The 

untreated walnuts showed a clear increase in hexanal concentration over time. For the treated 

walnuts, concentrations varied between 5 ± 2 µg/g and 16 ± 5 µg/g. After 4 weeks of storage, 

hexanal concentrations in humid treated walnuts were significantly lower (p < 0.05) compared 

to untreated walnuts. 

 

 

Figure 3.2 Hexanal concentration (µg/g) in untreated and humid treated walnuts stored in the dark at 20°C and 55% 

RH. Bars and error flags represent average and standard deviation of triplicate analysis. Significant differences (P 

≤0.05) between treated and untreated samples are indicated with an asterisk. 
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3.4 DISCUSSION 

Microbiological analysis of the most commonly used types of nuts and nut-based confectionery 

fillings clearly indicated that the nuts and fillings were contaminated with moulds, especially 

walnuts (>2.5 log10 CFU/g) and the fillings in which they are used. Sejiny et al. (1989) found 

fungal densities in the range of 5 – 5.5 log10 CFU/g (Sabourad dextrose agar) on walnuts, 

almonds and hazelnuts collected from markets (Saudi Arabia). Walnuts contained the highest 

average of mould contamination in comparison with the other types of nuts. Another study on 

the microbiology of six types of nuts from Saudi Arabia (almond, cashew nut, chestnut, 

hazelnut, pistachio nut and walnut) detected total fungal counts between 3.3 and 3.9 log10 

CFU/g on glucose-Czapek and glycerol agar media (Abdel-Gawad and Zohri, 1993). Tournas 

et al. (2015) analyzed the fungal contamination on almond, pecan and walnut samples 

purchased from local supermarkets in the Washington D.C. area. Again, the highest yeast and 

mould counts (DG18) were found on walnuts (2.65 – 5.34 log10 CFU/g), followed by almonds 

(<2 – 4 log10 CFU/g) and pecans (<2 – 2 log10 CFU/g). So, based on our results and other 

studies, walnuts seem among the highest contaminated types of nuts. However, compared to 

literature, our study detected relatively low levels of fungal contamination on the other types of 

nuts. The lack of processing of walnuts in comparison to other types of nuts (such as hazelnuts) 

could be a plausible explanation for this result. Hazelnuts are often roasted to improve their 

sensorial quality, hence, roasted hazelnuts are purchased as raw material for chocolate 

confectionery products and were analyzed as such. Indeed, the microbiological analysis of 

hazelnuts at different steps in the processing chain demonstrated that the roasting process of 

hazelnuts completely eliminated the fungal contamination that was initially present. 

No significant correlation was found between the levels of fungal contamination on the nuts 

and those on the corresponding fillings. In fact, our results indicated that nut-based fillings 

could present small amounts of fungal contamination, irrespective of whether the nuts showed 

any contamination or not. In CHAPTER 2, we found rather low levels of fungal spores in the 

factory environment and except for nuts, very few or no fungal spore levels on the other three 

investigated and commonly used ingredients (sugar, fruit fillings and ganache). All the same, 

small contaminations on fillings of confectionery products may be introduced through the air 

or other ingredients. 
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It was also found that the species P. brevicompactum occured most prevalently in the 

production environment of Belgian chocolate confectionery factories. Samson et al. (2010) 

describes it as a common food and indoor fungal species, with minimum aw for germination 

and growth of 0.78 at 25°C (Hocking and Pitt, 1979b), categorizing it as one of the most 

xerophilic Penicillia. Moreover, P. brevicompactum has been previously isolated from dried 

foods, such as nuts, and intermediate moisture bakery products (Membré et al., 2001; Pitt and 

Hocking, 2009). A study by Membré et al. (2001) reported growth on preservative-free cakes 

(aw 0.9 and pH 5) stored at 20°C. However, P. brevicompactum seems to be very restrictive to 

certain intrinsic and extrinsic factors, since the conditions of our challenge test did not support 

its growth, while both E. repens and W. sebi were able to spoil the preservative-free marzipan 

(aw 0.84 and pH 5.76) stored at 25°C. E. repens even showed resistance to 0.15% potassium 

sorbate, but none was resistant to 1% alcohol. As such, the latter had a stronger preservative 

effect than potassium sorbate. 

Various studies already compared the effect of different concentrations of typical weak-acid 

preservatives (calcium propionate, potassium sorbate and sodium benzoate) in combination 

with common levels of pH and aw of bakery products on growth of Aspergillus, Eurotium and 

Penicillium isolates. Of those, potassium sorbate was found to be the most effective in 

preventing fungal spoilage of this type of products, regardless of aw. However, at pH 5.5, fungal 

growth was observed even after the addition of 0.3% potassium sorbate. The authors suggested 

that the latter could be valuable in bakery products of slightly acidic pH (near 4.5) (Guynot et 

al., 2005; Marín et al., 2003). These studies support our findings regarding the observed growth 

of E. repens on marzipan containing 0.15% potassium sorbate (pH 5.96). It is generally known 

that the effectiveness of weak-acid preservatives depends on the pH of the product. Sorbate 

only acts as a preservative at a pH below 6.0-7.5 (Suhr and Nielsen, 2004). Aspergillus and 

Penicillium, although commonly found in bakery products, did not represent an important risk 

if the industrial process is well controlled and the aw is below 0.80. Eurotium species, on the 

other hand, did show a major spoiling potential (Guynot et al., 2002; Marín et al., 2002). 

Another study examined the resistance of E. amstelodami, E. chevalieri, E. herbariorum, 

E. rubrum and W. sebi against some weak-acid preserving agents (Vytrasová et al., 2002). 
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The authors found the tested Eurotium species to be more resistant to potassium sorbate 

(concentrations between 0.5 and 1%) than W. sebi. These studies confirm our findings that 

E. repens was more resistant to 0.15% potassium sorbate compared to W. sebi. The resistance 

of Eurotium species could be associated with the presence of thick-walled ascospores. A 

drawback of using a challenge test is that the obtained shelf life is only applicable for the 

intrinsic and extrinsic parameters of the studied product. On the other hand, the challenge test 

tells us that commonly occurring species such as E. repens and W. sebi are capable of spoiling 

preservative-free confectionery fillings (such as the tested marzipan) when they are present on 

nuts or in the factory environment. 

Since the roasting of hazelnuts was highly effective for decreasing the fungal contamination, it 

was tested if different heat-treatments (with various heating and drying cycle times) could 

similarly decrease the spore levels of highly contaminated walnuts. Regardless of the duration 

of heating and drying cycles, humid heating completely eliminated the initial fungal 

contamination. This in contrast to dry heating, which did not induce any measurable changes 

in fungal spore levels. Dry heating for more than 30 min was not considered since the sensorial 

properties of these walnuts were unacceptable. 

Within the context of potential application in the food industry, our study further examined the 

effect of humid heating on sensorial quality and oxidative stability of walnuts, the latter being 

an important indicator of quality and shelf life. Humid treated and untreated walnuts tasted 

significantly different, with a slight indication of preference for the heated walnuts. Moreover, 

humid treatment seemed to increase the oxidative stability of walnuts during storage. Walnuts 

have a lipid content of about 60 – 70%. Walnut oil contains high concentrations of 

polyunsaterated fatty acids including linoleic acid, oleic acid and linolenic acid, which makes 

them more susceptible to oxidation. Maillard reaction between amino acids and reducing sugars 

is one of the most well known reactions in heat-treated food products. These reactions have 

already been linked to the increased oxidative stability of different roasted seed oils (Cai et al., 

2013; Chandrasekara and Shahidi, 2011; Wijesundera et al., 2008). Apart from amino acids and 

proteins, amino group containing PLs, such as phosphatidylethanolamine (PE), are also known 

to take part in the Maillard type browning reaction (Lederer and Baumann, 2000). 
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Various studies regarding the PL composition of walnut oil identified PE, phosphatidylinositol 

(PI), phosphatidylserine (PS), phosphatidylcholine (PC) and phosphatidic acid (PA) 

(Angelova-Romova et al., 2013; Pasini et al., 2013). Zamora et al. (2011) showed that Maillard 

type reaction products between PE and reducing sugars are lipophilic and have free radical 

scavenging activity. More particular, studies regarding the roasting of mustard seed oil 

identified PL and its Maillard type reaction products to increase the oxidative stability of 

roasted mustard seed oil, and demonstrated potent antioxidant activity of the identified reaction 

products of PE (Shrestha et al., 2013; Shrestha and De Meulenaer, 2014). Considering these 

facts, we hypothesise that the increased oxidative stability of walnuts after humid heating may 

be explained by the formation of Maillard type reaction products of PE. The lipid fraction of 

walnuts also contains natural antioxidants such as tocopherol, which preserves oil quality by 

retarding the production of off-flavour and rancidity during storage (Abdallah et al., 2015). 

Vaidya and Eun (2013) investigated the effect of roasting on the oxidative stability of walnut 

oil. Initially, roasting seemed to increase the oil peroxide value, but during storage the rate of 

oxidation was significantly lower in roasted than in unroasted walnut oil. Our results of 

decreased hexanal formation in the heat-treated walnuts support these observations. 

 

3.5 CONCLUSIONS 

Nuts as common ingredient of confectionery fillings are a potential source of xerophilic fungal 

contamination. This chapter investigated some preventive measures against fungal 

contamination of confectionery fillings introduced by nuts. Results indicated walnuts, and 

related fillings to be highly contaminated. A challenge test on preservative-free marzipan, a 

typical nut-based confectionery filling, demonstrated that growth of commonly occurring 

E. repens and W. sebi could only be inhibited for over a month with the addition of 1% ethanol. 

The effect of different heat-treatments was tested on walnuts. Humid heating completely 

eliminated the initial fungal contamination. The walnuts tasted significantly different, with a 

slight indication of preference for the heated walnuts. Based on the hexanal content in walnuts, 

humid heating was found to increase the oxidative stability, delaying the onset of rancidity 

during storage. 
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CHAPTER 4 OPTIMIZATION AND VALIDATION OF A METHOD 

WITHOUT ALKALINE CLEAN-UP FOR PATULIN ANALYSIS ON 

APPLE PUREE AGAR MEDIUM (APAM) AND APPLE PRODUCTS 

 

ABSTRACT 

A sensitive High Performance Liquid Chromatography-UV (HPLC-UV) method, based on the 

AOAC Official method 2000.02, was developed and validated for the high-throughput analysis 

of patulin in in vitro experiments on Apple Puree Agar Medium (APAM). The importance of 

repeating the ethyl acetate extraction step at liquid-liquid extraction (LLE) was examined, as 

well as the extent of patulin degradation during the sodium carbonate clean-up. In addition to 

this alkaline clean-up, the efficiency of using an Oasis HLB or C18 cartridge as solid-phase 

extraction (SPE) clean-up was compared. This resulted in a two-step ethyl acetate LLE, 

followed by an Oasis HLB SPE clean-up, without alkaline clean-up conditions. The method 

was fully validated for APAM, cloudy apple juice and apple puree. Average patulin recoveries 

at levels of 100, 500 and 1000 µg kg-1 of APAM varied between 95% and 113% over three 

independent days, with an interday precision (RSDR) of 5 to 10%. Recovery experiments 

carried out with the spiked apple juice (at 50 µg kg-1) and apple puree  

(10 µg kg-1) showed average recovery rates laying between 80-101% (RSDR = 12%) and 77-

100% (RSDR = 9%), respectively. This method offered a detection limit of 3-4 µg kg-1 and a 

quantification limit of 5-8 µg kg-1 for APAM, apple juice and puree. 
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4.1 INTRODUCTION 

The major human dietary exposure to patulin is through the consumption of apple-based 

products, e.g. apple juice made from affected fruit. Patulin has been reported to be acutely toxic 

(Broom et al., 1944), genotoxic (Alves et al., 2000), cytotoxic (Riley and Showker, 1991), 

teratogenic (Ciegler et al., 1976) and immunosuppressive (Escoula et al., 1988). As a 

consequence, the European Commission (EC) (2006a) established maximum limits for patulin 

of 50 µg kg-1 in apple juices, 25 µg kg-1 in apple purees and 10 µg kg-1 for apple products 

intended for infants and young children. These maximum limits have to be enforced and 

therefore, analytical methods are required. 

Throughout the years, several analytical methods have been developed for patulin 

determination in food products. A collaborative study led to the first AOAC Official Method 

974.18 for patulin determination in apple juice using thin-layer chromatography (TLC) and 

silica gel plates for detection. Traditionally, TLC was widely used as it had the advantage to 

quantitatively analyse large amounts of samples with a low operating cost. Later on, High 

Performance Liquid Chromatography (HPLC) became the standard for mycotoxin detection in 

the food industry. It is less time consuming, achieved a higher sensitivity and gave an improved 

resolution for patulin (Shephard and Leggott, 2000). LC coupled to UV detection is particularly 

well suited to determine patulin, since the toxin is relatively polar and exhibits a specific 

absorption wavelength at 276 nm (Gökmen and Acar, 1996; Shephard et al., 2013). Besides 

UV-based detection, patulin detection by LC coupled to diode array detection (DAD) (Katerere 

et al., 2008; Zhou et al., 2012), and especially mass spectrometry (MS) (Beltran et al., 2014; 

Zhang et al., 2014) have been well described. Although HPLC-UV detection is a fast and 

reliable method and so, the method of choice for routine determination of patulin, a number of 

gas chromatography (GC) methods have been developed over time (Kharandi et al., 2013; Xiao 

and Fu, 2012). GC is specific for volatile compounds or compounds that can be made volatile, 

while LC is characterised by a wider application field because it relies on the solubility of 

compounds in the mobile phase. GC methods for patulin analysis generally involved the 

formation of trimethylsilyl ether derivatives with detection by electron-capture or MS 

(Shephard and Leggott, 2000). 
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A collaborative study performed by MacDonald et al. (2000) resulted in the AOAC Official 

Method 2000.02 for the determination of patulin at >25 µg kg-1 in clear and cloudy apple juice 

and apple puree. This method includes a liquid-liquid extraction (LLE), followed by a sodium 

carbonate clean-up and HPLC-UV analysis. However, the clean-up procedures using sodium 

carbonate have been described to degrade patulin since the compound is unstable in alkaline 

conditions. Although this is an often-reported phenomenon, almost no data are available 

demonstrating the extent of this inactivation. Moreover, all these methods have been validated 

for food/feed-based matrices. However, in vitro experiments studying the underlying molecular 

genetics of patulin biosynthesis often make use of the laboratory reference/simulation medium 

“Apple Puree Agar Medium (APAM)”. To carry out this type of research, effective and simple 

analytical methods are needed as well. 

The aim of this chapter was to optimize the official method described by MacDonald et al. 

(2000) for patulin analysis of P. expansum isolates grown on APAM. During optimization, the 

phenomenon of patulin degradation during sodium carbonate clean-up was tested. In order to 

eliminate impurities not removed during LLE, an alternative SPE clean-up step was searched 

for and incorporated. Finally, the optimized method was validated for laboratory APAM, and 

successfully applied for commercial cloudy apple juice and apple puree. 

 

4.2 MATERIAL AND METHODS 

4.2.1 Reagents and chemicals 

Pure patulin standard (≥98%), 5-hydroxymethyl furfural (HMF, ≥99%), acetic acid (99,99%), 

sodium carbonate (NaHCO3) and anhydrous sodium sulfate (Na2SO4) were purchased from 

Sigma-Aldrich (St. Louis, MO, USA). Ethyl acetate (AcOEt, Pesti-S), hexane (Pesti-S) and 

acetonitrile (ACN, LC-grade) were supplied by Biosolve BV (Valkenswaard, The 

Netherlands). Oasis HLB 6 ml LP extraction cartridges (500 mg sorbent) were obtained from 

Waters (Milford, MA, USA) and Octadecyl (C18) 6 ml extraction cartridges (1000 mg sorbent) 

were purchased from JT Baker (Center Valley, PA, USA). HPLC-grade water was generated 

by a Milli-Q grade purification system (Millipore, Darmstadt, Germany) and adjusted to pH 4.0 

with acetic acid. 
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4.2.2 Standard solutions 

Stock solutions of patulin and HMF (1 mg ml-1) were prepared in ACN and stored at -20°C. 

Working solutions were prepared freshly by evaporating the appropriate volume of the stock 

solution under a stream of nitrogen (N2) at room temperature, after which they were dissolved 

in HPLC-grade water pH 4.0. 

4.2.3 APAM preparation 

APAM was prepared as described by Baert et al. (2007a). Jonagold was used as apple cultivar. 

4.2.4 Optimization of the AcOEt LLE and NaHCO3/Na2SO4 clean-up step 

The method for patulin analysis described by MacDonald et al. (2000) was used as a starting 

point for the extraction of patulin from APAM. First, the importance of repeating the AcOEt 

extraction step was examined. Second, the phenomenon of patulin degradation in alkaline 

conditions was studied by measuring the patulin concentrations of the method with and without 

a NaHCO3/Na2SO4 clean-up step. The procedure for optimization is illustrated in Figure 4.1 

and described below. Prior to extraction, all glassware was rinsed with HPLC-grade water pH 

4.0 and AcOEt to remove possible alkaline residues present as a result of the washing of the 

glassware. 

P. expansum isolate FC094, from the laboratory culture collection of the Institute For 

Agricultural and Fisheries Research (ILVO, Melle, Belgium), was grown on Malt Extract Agar 

(MEA) (Oxoid Ltd, Basingstoke, New Hampshire, UK) during seven days at 25°C. Sporulating 

mycelium was scraped off the surface and one-point inoculated on three APAM plates (N = 3). 

The Petri dishes were incubated at 25°C and samples were taken when colony diameters 

reached 0.5 cm. For each APAM plate, exactly half of the mould colony (10 g sample of fungus 

and medium mix) was transferred to a 50 mL Falcon tube, 20 mL of AcOEt was added and the 

Falcon tube was put on a horizontal shaker for 30 min. After centrifugation at 1,500 g for 5 

min, the supernatant was transferred to a new 50 mL tube (protocol 1 and 2). For the other half 

of the same mould colony, the same extraction was performed and repeated a second time, after 

which both organic phases were combined in one 50 mL tube (protocol 3 and 4). 
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All extracts obtained were split into two parts and treated differently. One of the two parts of 

each extract was subjected to a NaHCO3/Na2SO4 clean-up step (protocol 2 and 4), while the 

other part of each extract was left untreated (protocol 1 and 3). During this clean-up, samples 

were first extracted with 4 mL of 1.5% NaHCO3 solution by shaking carefully for 10 s. The 

organic phase was dried by immediately transferring it into a round-bottemed flask through a 

funnel with filter paper containing 15 g anhydrous Na2SO4. The remaining aqueous phase was 

extracted immediately with 10 mL ethyl acetate by shaking for 10 s. The organic phase was 

also dried with anhydrous Na2SO4 and both organic phases were combined. The untreated as 

well as treated (NaHCO3/Na2SO4 clean-up) extracts were now evaporated under vacuum at 

35°C until a volume of about 3 mL. The obtained volume was passed to a glass tube and further 

evaporated to dryness under a gentle stream of N2 at 35°C. The residue was redissolved in 1 

mL HPLC-grade water pH 4.0 and vortexed for 1 min. Finally, the extracts were filtered into 

microvials using 0.45 µm Millex-HV syringe Driven Filter Units (Millipore). Prior to injection, 

samples were 1:10 diluted with HPLC-grade water pH 4.0. Quantification was performed by 

means of an internal calibration curve of increasing concentrations (0-10,000 ng mL-1) of a pure 

patulin standard.  

4.2.5 Alternative SPE clean-up 

Based on the results obtained from the optimization of LLE extraction and NaHCO3/Na2SO4 

clean-up, it was decided to perform a twofold AcOEt extraction and exclude the clean-up step 

based on the use of alkaline NaHCO3. An alternative clean-up step using an SPE-cartridge was 

tested. The efficiency of an Oasis HLB cartridge and a C18 cartridge was compared. Extraction 

solvents used were based on a procedure described by Valle-Algarra et al. (2009). 

In order to compare the clean-up efficiency of two different SPE-cartridges (Oasis HLB and 

C18), blank APAM (10 g) was spiked with 20 µL of patulin standard (250 ng µL-1) at two 

different time points during the extraction procedure. Namely, for each of the cartridges, two 

blank APAM extracts were spiked after LLE but before SPE clean-up (a), and two were spiked 

after SPE clean-up but before evaporating to dryness (b). The spiked extracts of both situations 

were left to equilibrate for 30 min. The extraction efficiency (%) was calculated by means of 

the observed concentrations of a) relative to the observed concentrations of b). The complete 

procedure was the following. 
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Figure 4.1 Schematic illustration of the evaluation of the AcOEt LLE and 

NaHCO3/Na2SO4 clean-up step. 
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Blank APAM (10 g) was twofold extracted by means of AcOEt and subsequently evaporated, 

first under vacuum to a volume of about 3 ml, and finally to dryness under a gentle stream of 

N2 at 35°C. Concerning the volume used on the SPE cartridges, 2 mL was chosen based on a 

study of Gökmen et al. (2005) in which the effect of sample volume on the recovery of patulin 

from cartridges was determined. Therefore, the residue was redissolved in 2 mL of HPLC-grade 

water pH 4.0 and vortexed for 1 min. The Oasis HLB and C18 cartridges were equilibrated by 

subsequently passing 5 mL AcOEt-hexane (80/20) and 5 mL HPLC-grade water pH 4.0 over 

the columns. The redissolved extracts were passed onto each of the cartridges. Each column 

was washed with 5 mL hexane. Subsequent elution in glass tubes containing 30 µL of acetic 

acid, was performed by adding 4 mL AcOEt-hexane (80/20). Eluates were evaporated to 

dryness under a gentle stream of N2 at 35°C. Afterwards, the residues were redissolved in 1 mL 

HPLC-grade water pH 4.0 and vortexed for 1 min. The samples were filtered (0.45 µm Millex-

HV syringe Driven Filter Units, Millipore) into microvials prior to injection in the HPLC 

system. 

4.2.6 HPLC-UV apparatus and conditions 

Liquid chromatography was performed using an HPLC PE series 200 equipped with a Detector 

UV/VIS series 200 set at 276 nm (Perkin Elmer, Waltham, MA, USA). Chromatographic 

separation was carried out with an XBridge C18 column (150 × 2.1 mm, 5 µm; Waters) preceded 

by a C18 Alltima guard column (7.5 × 2.1 mm, 5 µm; Grace/Alltech, Columbia, MD, USA). 

Column and sample temperature were maintained at 20°C and 4°C, respectively. The injection 

volume was set at 6 µL and the sample flow rate at 0.1 mL min-1. Solvent A was an ACN/acetic 

acid (0.1%) (5/95, v/v) solution and solvent B was ACN. Gradient elution was initiated at 100% 

A. After 15 min at 100%, in a time period of 5 min, the flow rate and solvent changed gradually 

to 0.3 mL min-1 and 100% B. This condition was maintained for 10 min after which solvent B 

changed gradually back to 100% A (5 min) and was held for 20 min at 100% A. Subsequently, 

the flow rate decreased to 0.1 mL min-1 in 2 min. 
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4.2.7 Method validation 

For the final method optimized in this chapter and illustrated in Figure 4.2, following validation 

parameters were evaluated: specificity, linearity, recovery (RA), repeatability (RSDr), 

reproducibility (RSDR), limit of detection (LOD) and quantification (LOQ). Specificity was 

tested by analyzing peak separation of patulin and HMF at a level of 1 ng µl-1 pure standard 

containing both compounds. The compound HMF, created when sugar is heated such as during 

pasteurization, is the main interference of patulin as it shares the same UV chromophore at 276 

nm. Linearity was assessed in terms of R2 and least squares regression. This was performed by 

duplicate injections of 10 concentrations of a pure patulin standard in the range of 50 ng ml-1 

to 2,000 ng ml-1. RA percentages for APAM were measured at three concentration levels (100-

500-1,000 µg kg-1). Increasing appropriate concentration ranges were spiked in the matrix to 

obtain a calibration curve. For each concentration level considered, the observed concentrations 

were calculated based on peak areas and by using the calibration curve. Finally, the recovery 

was expressed as a percentage of the measured concentration relative to the concentration 

actually spiked. These data were used to determine the intraday precision or repeatability by 

calculating the relative standard deviation. Reproducibility or interday precision was measured 

by repeating the experiments on three different days. The limit of detection and the limit of 

quantification were calculated as three and six times the standard error of the intercept divided 

by the slope of the calibration curve, respectively. The LOD value was checked in practice by 

evaluating chromatographically if a signal-to-noise of 3 was obtained. 

After validating our method for APAM, it was validated for cloudy apple juice and apple puree. 

The apple products were commercially purchased in the local supermarket. RA was measured 

for cloudy apple juice and apple puree at the maximum regulatory limit of 50 µg kg-1
 and 10 µg 

kg-1, respectively. RSDr, RSDR, LOD and LOQ were determined as described above. The 

expanded measurement uncertainty U (coverage factor 2, 95% confidence level) of the method 

for patulin analysis on both apple product matrices, was determined according to the protocol 

described by FASFC (2008). The decision limit CCα (α = 5%) was calculated, according to the 

Commission Decision 2002/657/EC (2002). Finally, in order to test the accuracy of the method, 

a cloudy apple juice sample was purchased at FAPAS (T1652QC, Fera Science Ltd, Sand 

Hutton, York, UK), and analyzed in our laboratory (N = 6). An assigned value of 38.6 µg kg-1 
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and a concentration range for |z| ≤2 of 21.6-55.6 µg kg-1 was delivered as a fit-for-purpose 

quality control measure. 

 

Figure 4.2 Final method for patulin analysis on APAM and apple products. 

 

4.2.8 Statistical analysis 

Statistical analysis, of the data obtained at optimization of the AcOEt LLE and 

NaHCO3/Na2SO4 clean-up step, was done using SPSS® version 22 (IBM, New York, USA). A 

non-parametric Kruskal-Wallis test was performed with patulin concentration as dependent 

variable and protocol as independent variable. Post-hoc comparison was conducted using a 

Bonferroni test. P values ≤0.05 were considered statistically significant. The recoveries 

obtained during method validation were checked with the Grubbs test for outliers. This was 

performed with R version 3.1.2 (R Foundation for Statistical Computing, Vienna, Austria). 
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4.3 RESULTS AND DISCUSSION 

The AOAC official method 2000.02 for the determination of patulin in apple juice and apple 

puree (MacDonald et al., 2000) includes a liquid-liquid extraction (LLE), followed by a sodium 

carbonate clean-up and HPLC-UV analysis. As APAM has become the medium of choice in 

most research studying the molecular genetics of patulin biosynthesis, this method was first 

optimized, validated and later implemented for high-throughput experiments of P. expansum 

isolates grown on APAM. A LLE consisting of several AcOEt extraction steps and the overall 

use of glassware can be time-consuming. Therefore, the necessity of a twofold extraction was 

examined and the use of disposables, e.g. falcons was incorporated. As the clean-up procedure 

using sodium carbonate has been described to degrade patulin, this possible effect was also 

tested and the use of an alternative SPE clean-up was investigated. 

4.3.1 Evidence of patulin decreasing in alkaline conditions 

On the one hand, the importance of a twofold extraction by means of AcOEt was examined. On 

the other hand, the phenomenon of patulin degradation under alkaline conditions was 

investigated by measuring the patulin concentration of the method with and without a 

NaHCO3/Na2SO4 clean-up step. The results are shown in Table 4.1. 

 

Table 4.1 Average concentration (µg kg-1) and relative standard deviation (RSD) (%) of patulin produced by 

P. expansum on APAM. Comparison of four different extraction protocols (N = 3). 

Protocol Amount of AcOEt  

liquid-liquid extractions 

With (+) or without (-) 

NaHCO
3
/Na

2
SO

4
 clean-up 

Average patulin 

concentration ± SD  

(µg kg
-1

) 

Relative standard 

deviation  

(RSD) (%) 

1  1 - 6285 ± 1635 26 

2  1 + 2047 ± 500 24 

3  2 - 9234 ± 203 2 

4  2 + 5922 ± 512 9 

 

Applying only one AcOEt extraction step with and without NaHCO3/Na2SO4 clean-up 

(protocol 2 and 1) resulted in an average patulin concentration of 2,047 ± 500 µg kg-1 (RSD = 

24%) and 6,285 ± 1,635 µg kg-1 (RSD = 26%) for P. expansum grown on APAM, respectively. 
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Average patulin concentrations of 5,922 ± 512 µg kg-1 (RSD = 9%) and 9,234 ± 203 µg kg-1 

(RSD = 2%) were measured when performing two AcOEt extraction steps with and without a 

subsequent NaHCO3/Na2SO4 clean-up (protocol 4 and 3), respectively. Both protocol 3 and 4, 

containing a twofold AcOEt extraction step resulted in higher patulin concentrations and lower 

relative standard deviations than protocol 1 and 2, respectively. An alkaline clean-up step 

clearly resulted in a decrease of patulin recovery. All together, protocol 3 consisting of two 

AcOEt extractions without subsequent alkaline clean-up led to the highest patulin 

concentrations. Moreover, a significant difference (p = 0.014) was found between protocol 3 

and the other protocols. Katerere et al. (2007) who conducted an evaluation of four methods for 

patulin analysis assumed that a greater variability in the results of certain methods was due to 

the use of the alkaline clean-up. Gökmen et al. (2005) used an alkaline solution in an attempt 

to remove impurities from SPE cartridges. According to the authors, this resulted in a drastic 

decrease of patulin recovery, which made purification of patulin by washing the cartridge with 

alkaline solution questionable. Arranz et al. (2005) noted that washing with alkaline solutions 

should be performed as quickly as possible to avoid any loss. The results obtained in our study 

confirm the studies describing the instability of patulin in alkaline conditions. Moreover, our 

results demonstrate the extent by which the patulin concentration is diminished by comparing 

the same method with and without alkaline clean-up. Average patulin concentrations obtained 

with protocol 2 were 67% lower than those obtained with protocol 1. Protocol 4 resulted in 36% 

lower average patulin concentrations than protocol 3. Altogether, these findings strongly 

suggest that methods for patulin analysis should be performed without applying any alkaline 

solution for clean-up, as this negatively influences the patulin content. 

Nevertheless, a clean-up step is necessary to prolong the shelf life of the XBridge C18 column. 

Therefore, an alternative clean-up without involving alkaline conditions was searched for by 

comparing the efficiency of an Oasis HLB cartridge and a C18 cartridge. The patulin SPE clean-

up efficiency of both cartridges is expressed as a percentage of the average patulin 

concentration of the extracts spiked before clean-up compared to those spiked after clean-up. 

The Oasis HLB clean-up cartridge showed an efficiency of 73% compared to only 58% 

obtained with the C18 cartridge (data not shown). Given the higher efficiency obtained with an 

Oasis HLB cartridge, the latter one was chosen to use for SPE clean-up in our method for 

patulin analysis. 
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The last years, various methods for patulin analysis have included the use of SPE cartridges for 

clean-up. A study of Boonzaaijer et al. (2005) described a method starting an LLE and first 

clean-up step using a C18 column, followed by a second clean-up step by means of a Romer 

#224 column. This method however showed an LOD and LOQ of 25 µg kg-1, not sensitive 

enough for the maximum regulatory limit of patulin in baby food set at 10 µg kg-1. Zhou et al. 

(2012) compared clean-up results of a home-made PVPP-F column with those of a 

MycoSep®228 AflaPat column. Both gave good clean-up performances. The PVPP-F column 

itself is cheaper, but home-made columns are more time-consuming for high-throughput and 

routine analysis and could be less standardized. Desmarchelier et al. (2011) published a 

QuEChERS procedure involving an initial liquid extraction followed by an alkaline partitioning 

and a final clean-up based on dispersive SPE (dSPE). According to Marsol-Vall et al. (2014), 

the above mentioned method resulted in interfering compounds during the chemical analysis. 

An extra clean-up step was added to overcome these interferences, making the latter more 

cumbersome. In our study, the method without performing a clean-up step already showed a 

clear baseline separation of patulin from any interfering compounds. However, the use of an 

Oasis HLB SPE cartridge for sample clean-up, prior to injection on the HPLC, resulted in a 

prolonged shelf life of the XBridge C18 column. All together, the optimization of extraction and 

clean-up steps in our study resulted in a final method for patulin analysis consisting of a simple 

two-step AcOEt LLE and a subsequent Oasis HLB SPE clean-up. This method was 

subsequently validated for APAM, cloudy apple juice and apple puree. 

4.3.2 Analytical method characteristics 

The method developed fulfils the criteria of specificity. In Figure 4.3, chromatograms of patulin 

spiked samples of apple puree, cloudy apple juice and APAM are presented at concentration 

levels of 10, 50 and 100 µg kg-1, respectively. Alongside the spiked samples, the figure also 

exhibits the blank samples of each matrix. A clear baseline separation is shown between patulin 

and its possible interfering compounds (HMF and other matrix compounds). As for the 

linearity, R² of the calibration curve of a pure patulin standard showed to be very adequate (R² 

>0.99). Moreover, the regression analysis indicates that it is highly likely that there is a strong 

relationship between the patulin concentration (x value) and instrument response (y value) (p = 

2.2 10-12). 
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Figure 4.3 Chromatograms of spiked samples (left panel) and blank samples (right panel) of a) apple puree (10 µg kg-

1), b) cloudy apple juice (50 µg kg-1), and c) APAM (100 µg kg-1). The arrow refers to the retention time of patulin. The 

asterisk refers to the retention time of HMF. 

 

Table 4.2 gives the results of the average recoveries obtained for APAM, cloudy apple juice 

and apple puree, as well as the repeatability, reproducibility, and limits of detection and 

quantification. The average patulin recoveries for the three concentration levels (100-500-1,000 

µg kg-1) of APAM varied between 95% and 113% over three independent days, with an interday 

precision (RSDR) of 5 to 10%. The intraday precision (RSDr) shown for each day was calculated 

as the average relative standard deviation of the four samples analyzed on that particular day. 
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RSDr for patulin analysis on APAM medium varied between 5% and 13%. Cloudy apple juice 

at a maximum regulatory limit of 50 µg kg-1 gave recovery percentages in the range of 80 to 

101% with an RSDr varying from 8 to 17% and an RSDR of 12%. The recoveries at a maximum 

regulatory limit of 10 µg kg-1 for apple puree varied between 77% and 100% and exhibited an 

RSDr between 2% and 14% and an RSDR of 9%. The results for apple juice and apple puree 

comply with the performance criteria required by the Commission Regulation (EC) No 

401/2006 for patulin in food products (2006b). Limits of detection of all three matrices show 

similar values of 3 or 4 µg kg-1. The average expanded measurement uncertainty U, for the 

method for patulin analysis, was 46% for both cloudy apple juice and apple puree. This 

percentage lies in the expected order for concentrations <100 µg kg-1, according to the report 

(the relationship between analytical results, measurement uncertainty, recovery factors and the 

provisions of EU Food and Feed legislation) supporting Commission Regulation (EC) 

401/2006 (2006b). The decision limit CCα, at the permitted limits for apple juice and apple 

puree, was 55.45 µg kg-1 and 10.89 µg kg-1, respectively. Patulin analysis of the FAPAS QC 

material resulted in an average patulin concentration of 36.4 ± 9.9 µg kg-1. This result confirms 

the accuracy of the method. 

 

Table 4.2 Validation characteristics: recovery (RA), repeatability (RSDr), reproducibility (RSDR), limit of detection 

(LOD), and limit of quantification (LOQ) of patulin on APAM, cloudy apple juice, and apple puree (N = 4). 

Matrix 
Concentration   

(µg kg
-1

) 

Day 1   Day 2   Day 3 
RSD

R
  

(%)  

LOD  

(µg kg
-1

) 

LOQ  

(µg kg
-1

) R
A
  

(%)  

RSD
r
 

(%) 
  

R
A
  

(%)  

RSD
r
 

(%) 
  

R
A
  

(%)  

RSD
r
 

(%) 

APAM  100 113 6  105 10  107 6 8 3 5 

 500 95 5  96 5  102 6 5   

 1000  102 10  107 6  103 13 10   

Cloudy apple juice  50 85 17  80 8  101 11 12 4 8 

Apple puree 10 100 14  77 11  86 2 9 4 5 
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4.4 CONCLUSIONS 

The AOAC official method 2000.02 for patulin analysis in commercial apple-products was 

optimized and validated for laboratory APAM, the reference medium in most research studying 

the molecular genetics of patulin biosynthesis. The optimized method was subsequently 

validated for commercial cloudy apple juice and apple puree at maximum regulatory limits. 

During optimization, the protocol consisting of two AcOEt extractions without subsequent 

NaHCO3/Na2SO4 clean-up gave the best results. These results strongly suggest that methods 

for patulin analysis should be performed without applying any alkaline solution, as this 

negatively influences the patulin content. Nevertheless, an alternative clean-up step seemed 

necessary to prolong the shelf life of the HPLC column. Therefore, the new method consists of 

a simple two-step AcOEt LLE, followed by an Oasis HLB SPE clean-up and HPLC-UV 

analysis. This sensitive HPLC-UV method for patulin analysis is very useful as monitoring 

system or in our case for further research on the underlying molecular mechanisms of patulin 

biosynthesis, with the aim of minimizing the patulin problem in food. 

 





 

An HPLC-UV method for the high-throughput analysis of patulin in in vitro experiments on 

laboratory APAM, was optimized and validated in chapter 4. This method is now implemented 

to characterise the patulin production capacity of a collection of Penicillium expansum isolates 

from Belgian apples and some reference strains under classical controlled conditions and 

under representative conditions of long-term apple storage. 

 

 

 

 

 

Chapter 5 

Patulin production by  
Penicillium expansum isolates from apples  
during different steps of long-term storage 
 

 

 

 

The content of this chapter is based on: 

De Clercq, N., Vlaemynck, G., Van Pamel, E., Colman, D., Heyndrickx, M., Van Hove, F., De Meulenaer, B., 

Devlieghere, F. and Van Coillie, E. 2016. Patulin production by Penicillium expansum isolates from apples during 

different steps of long-term storage. World Mycotoxin Journal 9: 379-388. 
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CHAPTER 5 PATULIN PRODUCTION BY PENICILLIUM 

EXPANSUM ISOLATES FROM APPLES DURING DIFFERENT STEPS 

OF LONG-TERM STORAGE 

 

ABSTRACT 

Penicillium expansum is the principal cause of blue mould rot and associated production of 

patulin, a weak mycotoxin, in apples worldwide. P. expansum growth and patulin production 

is observed during improper or long-term storage of apples. We have investigated the extent to 

which each successive step during long-term storage contributes to patulin production in 

various P. expansum isolates. Fungal isolates collected on apples from several Belgian 

orchards/industries were identified to species level. Random amplification of polymorphic 

DNA (RAPD) analysis and β-tubulin gene sequencing identified P. expansum and 

Penicillium solitum as the most prevalent Penicillium species associated with Belgian apples. 

All 27 P. expansum isolates and eight reference strains were characterized for their patulin 

production capacity on apple puree agar medium (APAM) for five days under classical constant 

temperature and atmosphere conditions. Under these conditions, a large range of patulin 

production levels was observed. Based on this phenotypic diversity, five P. expansum isolates 

and one reference strain were selected for in vitro investigation of patulin production under 

conditions representative of each step of long-term apple storage. Patulin accumulation seemed 

highly strain dependent and no significant differences between the storage steps were observed. 

The results also indicated that a high spore inoculum may lead to a strong patulin accumulation 

even at cold temperatures (1°C) combined with controlled atmosphere (CA) (3% O2, 1% CO2), 

suggesting that future control strategies may benefit from considering the duration of storage 

under CA conditions as well as duration of deck storage. 
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5.1 INTRODUCTION 

Blue mould is one of the most severe post-harvest diseases of apples and pears worldwide 

(Rosenberger, 1990). Although the disease may be caused by various Penicillium species, 

P. expansum is considered to be the principal cause of blue mould rot (Dombrink-Kurtzman 

and Blackburn, 2005; Moss, 2008). Low quality, over-mature or long-stored fruit is more 

susceptible to infection by this fungus. Blue mould rot has an important economic impact on 

the fresh fruit industry (Rosenberger, 1990) as well as the fruit-processing industry, as 

P. expansum is a major producer of several toxic metabolites, e.g. patulin and chaetoglobosins 

(Andersen et al., 2004). Those metabolites may eventually end up in final products such as fruit 

juices. Although patulin is not a very potent mycotoxin, the European Commission (EC) has 

regulated patulin levels in apple-derived products (Commission Regulation (EC), 2006a). The 

main legal focus is on apples and apple products, especially apple juice, which represents the 

largest source of patulin intake by humans (Moake et al., 2005). Patulin remains stable in the 

acidic conditions of apple juice, even after pasteurisation (Damoglou and Campbell, 1986; 

Wheeler et al., 1987). Control strategies are therefore necessary to minimize the risk of 

P. expansum growth and subsequent patulin contamination of the final product. 

Apple storage at low temperature combined with controlled atmosphere (CA) (i.e. reduced O2 

and elevated CO2) is commonly applied to extend the shelf life of apples during long-term 

storage (Morales et al., 2010). In practice, long-term storage (≥3 months) involves several steps 

under varying conditions (Figure 5.1). First, apples are stored for one day at ambient 

temperature (deck storage), and then a short period (one to six days) at 1°C before CA is 

achieved. CA storage, typically maintained for several months, is at 0.5 to 3.5°C, an O2 level 

between 1 and 3% and a CO2 level between 0 and 3%, depending on the cultivar. When the 

stored apple lot is prepared for processing, the composition of the atmosphere is set equal to 

that of the air. This atmospheric change typically lasts only 1-7 days. After delivery at the apple 

juice producer, apples are kept for one day maximum at ambient temperature (deck storage) 

before processing (Baert et al., 2012). 
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Figure 5.1 Flow diagram of the long-term storage (≥3 months) of apples, based on data obtained by Baert et al. (2012). 

The box indicates the three storage steps simulated during the last experiment of this study. The numbers (1, 2 and 3) 

in the box represent the different storage steps. 

 

Several authors have investigated the effect of temperature and/or atmosphere on P. expansum 

growth and patulin production on apples (Baert et al., 2007a; Baert et al., 2007b; Morales et al., 

2007a; Morales et al., 2007b; Morales et al., 2007c; Salomão et al., 2009; Sydenham et al., 

1997; Welke et al., 2011). Baert et al. (2012) developed a quantitative risk assessment model 

(QRAM) to evaluate different strategies for reducing patulin contamination of apple products. 

One of their conclusions was that the duration of deck storage, between the delivery at the apple 

juice producer and the processing of apples, should become a critical control point (CCP) in 

HACCP systems. 
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Besides extrinsic parameters like temperature and atmospheric composition, fungal growth and 

mycotoxin production are also influenced by intrinsic parameters such as water activity, pH, 

microbial interactions and implicit factors such as the physiological state of the mould and its 

genetic information. Several published studies highlight the effect of some of these factors on 

the growth and mycotoxin production of fungal species. Some reports showed high variability 

between the strains tested (Baert et al., 2007a; Garcia et al., 2011; Menniti et al., 2010; Santos 

et al., 2002), while others found few differences among isolates of the same species (Bellí et 

al., 2004; Pardo et al., 2005). 

In the current chapter, we have investigated the influence of strain variability by including a 

large collection of fungal isolates. Fungal isolates from apples of different Belgian orchards 

and industries were gathered and identified to species level to get better insight into the diversity 

of Penicillium species present. All of the P. expansum isolates and reference strains were 

characterised for their patulin production under classical controlled conditions. Based on this 

phenotypic diversity, six P. expansum isolates with a low, medium or high level of patulin 

production capacity were selected for in vitro investigation of patulin production under 

conditions representative of each step of long-term apple storage. 

 

5.2 MATERIAL AND METHODS 

5.2.1 P. expansum reference strains 

P. expansum strains MUM 00.01, MUM 99.19, MUM 99.20, MUM 99.22, MUM 99.23 and 

MUM 99.24 originated from Portuguese grapes; the strains were obtained from the Centro de 

Engenharia Biológica da Universidade do Minho in Portugal (Braga). Strain MUCL 20453 and 

MUCL 29189 come from the agro-industrial fungi-yeast collection of the Mycothèque de 

l’Université catholique de Louvain, member of the Belgian Coordinated Collections of Micro-

organisms (BCCM/MUCL, Louvain-la-Neuve, Belgium). P. expansum MUCL 20453 

originated from Belgian apples and MUCL 29189 from Californian grapes. 
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5.2.2 Sampling of apples and fungal isolation 

Sound apples (cv. “Jonagold”), collected from organic and conventional orchards in Belgium, 

were sampled at 3 time points (December 2008, February 2009 and April 2009) during long-

term storage. At each sampling moment, 15 apples were taken from the lots originating from 

four organic and five conventional farms. Ten of those apples were placed in a 500 ml jar and 

then immersed in sterile demineralised water with 0.05% Tween® 80 (Merck KGaA, 

Darmstadt, Germany). The filled jar was then placed on a stirrer at 115 rpm during 15 min. 100 

µl of the rinse water were plated onto Malt Extract Agar (MEA) (Oxoid Ltd, Basingstoke, 

Hampshire, UK) with oxytetracycline (0.5%) (Oxoid Ltd). The remaining five apples were 

directly imprinted onto MEA. 10 and 100 ml of the same rinse water were also filtered through 

a Plain White Sterile filter (0.22 µm, 47 mm, Millipore, Darmstadt, Germany). The filters were 

subsequently placed on MEA plates and incubated. In addition, mouldy apples from different 

varieties (Jonagold, Belle de Boskoop and Elstar) were gathered from a Belgian fruit-processing 

factory. Visible fungal mycelium was transferred directly from the apples onto MEA. Petri 

dishes were incubated at 25°C for seven days. After incubation, isolates from each sample were 

further purified by streaking them onto fresh MEA plates followed by incubation at 25°C for 

seven days. Sporulating mycelia of the isolated fungal colonies were scraped off the surface 

and three-point inoculated onto MEA, Czapek Yeast Autolysate agar (CYA) (BD Difco™, NJ, 

USA), Creatine Agar (CREA) and Yeast Extract Xucrose agar (YES). MEA and CYA were 

prepared according to the manufacturer’s instructions. CREA and YES were prepared as 

described by Samson et al. (2004b). After incubation for seven days at 25°C, macroscopic 

characteristics (colony diameter and colour) as well as microscopic characteristics were 

determined for classification to genus level using the identification key published in Frisvad 

and Samson (2004). Pure fungal cultures were added to the laboratory culture collection of the 

Institute for Agricultural and Fisheries Research (ILVO, Melle, Belgium). 
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5.2.3 Random amplification of polymorphic DNA analysis of Penicillium spp. 

Genomic DNA extraction and subsequent visualisation was carried out as described by Van 

Pamel et al. (2012). RAPD-PCR, performed using random primer Ari1, was done according to 

Geisen et al. (2001), with the exception that 45 cycles were used instead of 42 for PCR 

amplification. PCR was carried out in a 30 µL-reaction mixture containing 15 U Red GoldStar 

buffer (Eurogentec, Seraing, Belgium), 2.5 mM MgCl2, 0.4 mM dNTP, 90 pmol primer, 0.6 U 

Red GoldStar DNA polymerase (Eurogentec) and 1 µL of template DNA. Separation and 

visualisation of the PCR fragments was performed by subsequent gel electrophoresis on a 1.5% 

Seakem LE agarose gel (Lonza, Rockland, ME, USA) and staining with ethidium bromide 

(2 µg/ml). Normalisation and analysis of similarity in band patterns was conducted using the 

Bionumerics 3.5 software package (Applied Maths, St-Martens-Latem, Belgium). The 

relationship between all Penicillium spp. isolates and P. expansum reference strains was scored 

by the Pearson correlation coefficient. Clustering was based on the unweighted pair group 

method with arithmetic average (UPGMA). A similarity percentage of at least 90% between 

isolates was taken into account for discriminating into groups. At least one representative of 

each group was chosen for further identification to species level. 

5.2.4 β-tubulin gene sequencing 

For each of the representative isolates, the partial β-tubulin gene sequence was determined. 

PCR amplification was performed using the forward primer Bt2a and reverse primer Bt2b 

(Glass and Donaldson, 1995). The PCR mix was prepared as described by Van Pamel et al. 

(2012). Initial denaturation at 95°C for 1 min was followed by 30 cycles of denaturation at 95°C 

for 15 s, primer annealing at 56°C for 15 s and extension at 72°C for 30 s, with a final extension 

at 72°C for 8 min. The PCR products were visualised after staining of a 1.5% Seakem LE 

agarose gel with ethidium bromide (2 µg/ml). PCR products were purified using the High Pure 

DNA Purification kit (Roche Applied Science, Mannheim, Germany). The purified PCR 

fragments were sequenced using the forward primer Bt2a and the ABI Prism Big Dye 

Terminator Cycle Sequencing Ready Reaction kit (Applied Biosystems, Foster City, CA, USA) 

and ABI prism 3130xl Genetic Analyzer System (Applied Biosystems). 
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After analysing the obtained DNA sequences with the Sequencing Analysis 5.2 software 

(Applied Biosystems), the sequences were compared against those available in the EMBL 

database using the FASTA function (http://www.ebi.ac.uk/Tools/sss/fasta/nucleotide.html). A 

similarity percentage of at least 97% with a sequence of a CBS strain was taken into account 

for identification of the fungal isolates to species level. 

5.2.5 Detection of P. expansum by PCR 

Isolates were analysed by PCR, based on a specific sequence of the polygalacturonase (peg) 

gene, using forward primer PEF and reverse primer PEG as described by Marek et al. (2003). 

PCR mix, conditions and product visualisation were performed as described above with the 

exception that the primer annealing temperature used was 60°C instead of 56°C. 

5.2.6 Analysis of patulin production capacity of P. expansum 

All P. expansum apple isolates obtained in this study and reference strains from apple or grapes 

were grown on MEA for seven days at 25°C. Sporulating mycelium was picked off and one-

point inoculated onto Apple Puree Agar Medium (APAM) plates using a sterile toothpick (N = 

3). APAM of cv. “Jonagold” (pH 3.6) was prepared according to Baert et al. (2007a). In house 

experiments of fungal spore counting showed that the inoculum size using this toothpick 

method was 5×105-1×106 spores. The toothpick technique was preferred over inoculation with 

a liquid volume to avoid liquid interference. After incubating the inoculated APAM plates for 

five days at 25°C, patulin analysis was performed as described by Baert et al. (2007a). 

5.2.7 Simulation of long-term apple storage steps and corresponding patulin analysis 

The three steps of long-term storage of apples were simulated in vitro using APAM plates. Five 

P. expansum isolates and one reference strain MUM 99.19 were selected based on their 

diversity in patulin production capacity under classical controlled conditions (two strains with 

a high patulin production capacity, two average producers and two low patulin producers). 

Selected strains were first grown on MEA during seven days at 25°C. Sporulating mycelium 

was picked off and one-point inoculated onto APAM plates using a sterile toothpick (N = 3). 
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To determine the effect of CA storage (storage step 1) on patulin production, inoculated Petri 

dishes were placed separately in polypropylene trays (oxygen transmission rate of 192 cm3/m2 

24h) and a gas mixture of 3% O2 – 1% CO2 – 96% N2 (Air Liquide, Paris, France) was 

introduced. A tray sealer (TS400, VC999 Packaging Systems, Herisau, Switzerland) was used 

to seal the trays with a PET/CPP NPAF foil with an oxygen transmission rate of 190 cm3/m2 

24h at 25°C and 50% R.H. Trays were stored under these controlled atmospheric conditions at 

1°C for two months. The gas composition in the trays was checked using a headspace gas 

analyzer (PBI-Dansensor A/S, Denmark). Trays were repacked every 10 days to limit the 

variation (<1.5%) in the O2 level. After two months, APAM plates of each of the selected 

isolates and reference strain were analysed for their patulin content (N = 3). Patulin was 

quantified using the HPLC-UV method described in CHAPTER 4. All remaining trays were 

opened to allow the atmosphere composition to equalise to that of the surrounding air. After 

three days under these normal atmospheric conditions at 1°C (storage steps 1+2), APAM plates 

of each of the isolates and reference strain were analysed as above for patulin content (N = 3). 

The last remaining trays were subsequently transferred for one day to 20°C (storage steps 

1+2+3). Patulin concentration was measured for each of the isolates and the reference strain (N 

= 3). As a reference condition, the selected isolates and reference strain were grown at 20°C for 

three days and their patulin production capacity was analysed (N = 3). 

5.2.8 Statistical analysis 

Statistical analysis was performed using the Statistical Analysis System software (SAS®, 

version 9.4, SAS Institute Inc., Cary, NC, USA). The data obtained on the patulin production 

of all P. expansum isolates and reference strains, incubated for five days at 25°C on APAM, 

followed a normal distribution. Therefore, a one-way analysis of variance (ANOVA) was 

conducted with patulin concentration as dependent variable and origin of the isolate/reference 

strain as independent variable. A post-hoc comparison was conducted using a Bonferroni test. 

The data obtained during the in vitro storage experiment did not follow a normal distribution. 

For this data set, a non-parametric Friedman two-way ANOVA was carried out with patulin 

concentration as dependent variable and P. expansum isolate and storage step as independent 

variables. Post-hoc comparison was conducted using a Scheffé test. P values ≤0.05 were 

considered statistically significant. 
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5.3 RESULTS 

5.3.1 Identification of Penicillium spp. isolated from Belgian apples 

Fungal isolation on apples resulted in a collection of 103 isolates of which 56 isolates (54%) 

were morphologically identified as Penicillium species. Of those, 31 out of 64 isolates and 

reference strains were selected for gene sequencing (Figure 5.2). Gene sequencing resulted in 

the species identification of 24 out of 26 isolates (two unidentified isolates) (Table 5.1). 

Subsequently, RAPD combined with gene sequencing resulted in the species identification of 

54 Penicillium isolates. Of those, 27 and 12 isolates were P. expansum and Penicillium solitum, 

respectively. The other identified species were as follows: four Penicillium bialowiezense 

isolates, three Penicillium polonicum, two P. carneum, one P. corylophilum, one 

Pencillium venetum, one Penicillium citreonigrum, one P. brevicompactum, one 

P. chrysogenum and one Penicillium spinulosum. Of the 17 fungal isolates originating from 

mouldy apples collected from a Belgian fruit-processing factory, 14 were identified as 

P. expansum. Two of the three remaining isolates belonged to the species P. solitum; the third 

isolate was identified as P. polonicum. To confirm the identity of the P. expansum isolates, all 

Penicillium strains were subjected to a species-specific peg-PCR (Marek et al., 2003). All 

isolates identified as P. expansum showed the expected 404 bp DNA fragment, while all the 

others were negative (Figure 5.2). 
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Table 5.1 Species identification of the Penicillium field isolates using the partial β-tubulin gene. 

Penicillium 

isolate  
Identity % 

Reference strain1  

(Accession number) 
Accession number Species 

FC111 100 CBS 14686 (AY674356) KT588910 Penicillium solitum 

FC097 100 CBS 14686 (AY674356) KT588909 P. solitum 

FC122 99.8 CBS 14686 (AY674356) KT588912 P. solitum 

FC112 99.8 CBS 14686 (AY674355) KT588911 P. solitum 

FC083 99.8 CBS 14686 (AY674356) KT588908 P. solitum 

FC126 99.0 CBS 40592
T
 (AY674334) KT588914 Penicillium venetum 

FC088 98.8 DTO 034-E9
T
 (KM088694) KT588898 Penicillium citreonigrum 

FC103    Penicillium sp.  

FC119    Penicillium sp.  

FC110 97.2 CBS 25729
T
 (KF499573) KT588894 Penicillium brevicompactum 

FC114 99.8 CBS 306.48
T
 (AY495981) KT588897 Penicillium chrysogenum 

FC093 99.5 CBS 325.48
T
 (JQ965099) KT588900 Penicillium expansum  

FC094 99.8 CBS 325.48
T
 (JQ965099) KT588901 P. expansum 

FC124 99.8 CBS 325.48
T
 (JQ965099) KT588903 P. expansum 

FC136 99.8 CBS 325.48
T
 (JQ965099) KT588905 P. expansum 

FC134 99.3 CBS 325.48
T
 (JQ965099) KT588904 P. expansum 

FC116 99.0 CBS 325.48
T
 (AY674400) KT588902 P. expansum 

FC090 98.3 CBS n 271.35 (GQ367505) KT588913 Penicillium spinulosum 

FC084 99.8 CBS 112297
T
 (AY674386) KT588895 Penicillium carneum 

FC107 99.6 CBS 112297
T
 (AY674386) KT588896 P. carneum 

FC102 98.8 CBS 312.48
T
 (JX141042) KT588899 Penicillium corylophilum 

FC100 97.8 CBS 22728
T
 (AY674439) KT588893 Penicillium bialowiezense 

FC092 97.9 CBS 22728
T
 (AY674439) KT588891 P. bialowiezense 

FC098 98.0 CBS 22728
T
 (AY674439) KT588892 P. bialowiezense 

FC106 99.5 CBS 101479 (AY674306) KT588907 Penicillium polonicum 

FC095 99.8 CBS 101479 (AY674306) KT588906 P. polonicum 
1 The isolates were identified to species level with a similarity percentage of at least 97% with a sequence of a CBS-KNAW 

Fungal Biodiversity Centre (Utrecht, the Netherlands) strain, and a GenBank accession number was obtained for each identified 

isolate. 
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Figure 5.2 Dendrogram generated with the Unweighted Pair Group Method with Arithmetic Means (UPGMA) and 

Pearson coefficient (optimization 3%) for the RAPD fingerprints generated with random primer Ari1 for the 

Penicillium spp. field isolates and P. expansum reference strains of different origin (substrate, orchard/industry). A 

delineation level of 90% (indicated by the vertical line) was considered for discrimination between groups. At least one 

representative (indicated by *) of each group was chosen for species identification based on β-tubulin gene sequencing. 

The box indicates the group of P. expansum field isolates and reference strains. The last column represents the results 

of the peg-PCR. 1 Sound apples were sampled from storage facilities of conventional and organic orchards, and mouldy 

apples from an apple juice factory (industrial). The five conventional and four organic orchard farms from which 

isolates were sampled are identified by a number. 
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5.3.2 Patulin production capacity of P. expansum strains 

A wide diversity in patulin production capacity was observed between all tested P. expansum 

strains (Figure 5.3). Average patulin concentrations varied from 15 ± 2 mg/kg to 747 ± 

98 mg/kg, with the reference strain MUCL 29189 showing the lowest average patulin 

concentration and isolate FC116 showing the highest, respectively. The group of P. expansum 

contains isolates originating from sound “Jonagold” apples of conventional or organic orchards, 

and isolates originating from mouldy apples from a fruit-processing factory (cv. “Jonagold”, 

“Belle de Boskoop” and “Elstar”). One reference strain originated from Belle de Boskoop 

apples and seven reference strains were isolated from grapes. The group of P. expansum isolates 

from Jonagold apples of conventional and organic origin showed average patulin 

concentrations significantly higher (p < 0.001) than those of the P. expansum reference strains 

from apple and grapes. Medium patulin amounts (no significant differences) were found with 

the group of P. expansum isolates of mouldy apples of different varieties. 

 

Figure 5.3 The patulin production capacity expressed as the average patulin concentration (mg/kg) on Apple Puree 

Agar Medium (APAM) of P. expansum strains after five days incubation at 25°C. N = 3 (except for FC129 and FC132; 

N = 2). * Isolates and reference strain selected for the in vitro long-term storage experiment on APAM. 
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5.3.3 Comparison of patulin production during different steps of long-term storage 

Under the reference condition, average patulin concentrations varied between 12 ± 0 mg/kg and 

33 ± 7 mg/kg APAM, with isolate FC128 producing the lowest and FC116 producing the 

highest amounts of patulin, respectively. Figure 5.4 shows the patulin content measured for 

each of the P. expansum strains after each storage step. Although no statistically significant 

differences were found in patulin concentrations (p > 0.05) measured between the three 

different steps of storage of each strain in vitro, two trends in patulin accumulation during long-

term storage could be observed. The isolates FC109, FC094 and FC096, the highest producers 

under the first cold CA storage step, tended to have a peak in patulin production. These isolates 

showed a slight increase in patulin from the first to the second step of storage, followed by a 

decrease from the second to the third storage step. On the other hand, the isolates FC128, FC116 

and reference strain MUM 99.19 tended to accumulate patulin slowly over time. For the tested 

P. expansum isolates and reference strain, a significant difference (p < 0.001) in their patulin 

production capacities during long-term storage was observed. Under the long-term conditions, 

the highest average patulin concentrations were produced by strains FC109 and FC096, while 

the strains FC116 and FC128 produced the lowest patulin amounts. Isolate FC094 and reference 

strain MUM 99.19 were average producers compared to the others (p < 0.05). During the three 

steps of long-term storage, strain FC128 (lowest patulin production capacity) formed patulin at 

concentrations of 3 ± 5 mg/kg, 3 ± 1 mg/kg and 8 ± 5 mg/kg APAM at each of the three storage 

steps, respectively. Strain FC096, one of the highest patulin producing P. expansum strains, 

was characterised by average patulin concentrations of 249 ± 144 mg/kg, 317 ± 116 mg/kg and 

276 ± 143 mg/kg APAM during the successive steps of storage, respectively. 
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Figure 5.4 The patulin production capacity expressed as the average patulin concentration (mg/kg) on Apple Puree 

Agar Medium (APAM) of P. expansum during the different steps of long-term storage. Significant differences (P ≤0.05) 

in patulin production during storage between strains are indicated with different letters. 

 

5.4 DISCUSSION 

The primary and secondary metabolism of fungi are influenced by a variety of intrinsic, 

extrinsic and implicit factors (McCallum et al., 2002; Northolt et al., 1978). P. expansum 

growth and patulin production occur mainly during long-term storage of apples. To reduce these 

risks, different conditions of temperature and atmosphere composition are applied successively 

during long-term storage. In this chapter, the successive steps of this storage period were 

investigated to determine whether and how these steps contribute to possible differences in 

patulin concentrations. 

The possible presence and potential effect of strain variability on patulin production capacity 

was tested on a large set of Penicillium isolates originating from Belgian apples. RAPD was 

used because it may discriminate between species, genotypes within a species or even between 

strains (Geisen et al., 2001). 
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In the study conducted in this chapter, RAPD was mainly used to reduce the number of gene 

sequencing reactions for species identification. This revealed that P. expansum formed one 

group, clearly separated from the other Penicillium species. Of all Penicillium sp. isolated from 

Belgian apples, P. expansum and P. solitum were the most encountered species in our 

collection. Research on fungal diversity in apple orchards and storage facilities from Uruguay, 

France and the USA (states of Oregon and Washington) found the same commonly-occurring 

species (Amiri and Bompeix, 2005; Pianzzola et al., 2004; Sanderson and Spotts, 1995). These 

findings indicate that P. solitum and P. expansum frequently appear together in apple orchards 

and storage facilities in different parts of the world. Pitt et al. (1991) showed that P. solitum 

and P. expansum were both capable of growing over the tested temperature range of 5 to 30°C 

on MEA. The optimum temperature for growth of P. expansum was 25°C, and for P. solitum 

between 20 and 25°C (no growth at 37°C). However, growth of P. solitum was slower at all 

temperatures. Other data regarding in vitro growth of P. solitum and P. expansum on CYA and 

MEA during 7 days at 25°C also indicated that the growth rate of P. solitum was slower. More 

specific, P. solitum reached colony diameters of 22-28 mm on CYA and 20-28 mm on MEA, 

while P. expansum reached colony diameters of 30-40 mm on CYA and 20-40 mm on MEA 

(Pitt and Hocking, 2009). Pitt et al. (1991) analysed pathogenicity of both species on apple and 

pear fruits and found that lesion diameters were significantly smaller than those of P. expansum. 

The authors concluded that although P. solitum is ubiquitous in fruit packinghouses, it is much 

less aggressive compared to P. expansum. A more recent study found P. solitum in marine 

sediments from Antarctica (Gonçalvez et al., 2013). The authors find similarly that P. solitum 

was capable of growing over the tested temperature ranges of 5 to 30°C. Based on Frisvad and 

Samson (2004), P. solitum does not produce mycotoxins, and no recent data in contraction to 

this report could be found. Although the fungus seems to be a weaker pathogen than 

P. expansum, it has been demonstrated that P. solitum could enhance the establishment of 

P. expansum (Sanderson and Spotts, 1995). Fruits were treated with a P. expansum inoculum 

in challenge inoculations of 0, 1, 7 or 28 days following initial treatment with either P. solitum 

or P. commune, in order to determine the competitive ability of P. expansum relative to these 

species. After incubation, P. expansum became established in wounds (0, 1 or 7 days) after 

initial treatments with P. solitum but not after treatment with P. commune. Incidence of 

infection was even greater after initial treatment with P. solitum than in water. The authors 

suggested that P. solitum may act as a predisposing agent that allows the entry of P. expansum, 

a far more destructive decay, into the wound. Initial infection by P. solitum, served to allow 
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entry of P. expansum into wounds otherwise protected by a wound-healing or other host-

resistance response. Further research is needed to elucidate the nature of these responses. 

Finally, P. solitum has been reported to directly cause decay of pomaceous fruits and showed 

resistance to fungicides that are used to control growth of P. expansum (Pitt and Hocking, 

2009). 

When comparing the results of identification with the origin of the fungal isolates, most of the 

Penicillium isolates originating from mouldy apples were identified as P. expansum. This 

confirms previous research that indicates P. expansum as the principal cause of blue mould rot. 

In contrast to the rather small differences found in the genetic profiles of the P. expansum group, 

a wide diversity in patulin production was observed between all P. expansum isolates and 

reference strains grown on APAM under classical culture conditions. Moreover, many of our 

P. expansum field isolates from apples of conventional and organic origin produced 

significantly more patulin on APAM than the reference strains originating from apple and 

grapes. This lower patulin production observed in all reference strains may be explained by 

fungal strain instability. Especially older, frequently used laboratory collection strains are 

known for degeneration in secondary metabolite production (Kale and Bennett, 1992). 

Based on the phenotypic diversity observed under classical culture conditions, two strains each 

with high, average and low patulin production capacities were selected to investigate how each 

step of long-term storage may influence their patulin production. Our study showed no 

significant difference between the storage steps but demonstrated that patulin accumulation is 

mostly strain dependent. Various studies have been conducted on the effect of temperature 

and/or atmosphere on patulin production. Salomão et al. (2009) reported that apples incubated 

at 20.5°C yielded significantly higher patulin amounts than those incubated at 11°C. Welke et 

al. (2011) stated that the time apples are left at deck storage (25°C) after one month of cold 

storage (4°C) might be critical for patulin increase. This was also confirmed by Morales et al. 

(2007a) who observed a significant increase at the second day at 20°C after a period of storage 

at 1°C. A clear patulin accumulation over time was shown when apples were deck stored at the 

apple juice producer (Sydenham et al., 1997). Based on the QRAM developed by Baert et al. 

(2012), the authors concluded that the duration of deck storage is critical. In contrast, we did 

not find the in vitro simulated deck storage to be the most critical point. This may be partly 

explained by the inoculum size. 
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In our study, an inoculum density of 5×105-1×106 spores was achieved. Above mentioned 

studies used inoculum densities around 2-3×104 spores (Morales et al., 2007a; Welke et al., 

2011). Baert et al. (2008) and Morales et al. (2008b) reported that a higher inoculum led to a 

shorter lag phase, i.e. the period between the spore reaching an apple wound and germination, 

of the mould. Therefore, the high inoculum size emulates a worst case scenario. This may 

explain the high patulin concentrations measured during the first two months of storage at 1°C 

under controlled atmosphere. These results imply that high spore concentrations in storage 

facilities may lead to a strong apple decay and patulin accumulation earlier in the process of 

long-term storage. This finding emphasises the importance of hygiene in the storage facilities 

and suggests that future control strategies may benefit from considering the duration of storage 

under CA conditions as well as duration of deck storage. 

Our study regarding the storage effect of apples on patulin production by P. expansum strains 

was performed in vitro on apple simulation medium. Use of a simulation medium has the 

advantage that it eliminates the high natural variability present in entire apples. Baert et al. 

(2007a) found APAM to be a good model system to evaluate patulin production by P. expansum 

on apples, although a higher patulin production at 1°C was observed on APAM compared to 

apples. 

The patulin accumulation under classical and long-term storage conditions is strain dependent. 

However, it is worthwhile to note that the strain variability in patulin production observed at 

25°C under classical conditions was different from the variability that was found during long-

term storage conditions starting at 1°C. For example, isolate FC116 showed the highest patulin 

production at 25°C (5 days) and 20°C (3 days) but one of the lowest during long-term storage 

(1°C), while the opposite pattern was seen for isolate FC109. Garcia et al. (2011) obtained 

similar results and suggested that a strain specific adaptation to stress conditions may be a 

plausible explanation. On the other hand, a similar variability in the patulin production among 

strains assayed at different temperatures was described by Reddy et al. (2010). These 

inconsistencies demonstrate that a great number of isolates needs to be included when 

investigating the influence of specific conditions on patulin production. 



126 
CHAPTER 5 PATULIN PRODUCTION BY PENICILLIUM EXPANSUM ISOLATES FROM APPLES 

DURING DIFFERENT STEPS OF LONG-TERM STORAGE 

 

Although no significant differences were found in patulin concentrations measured between the 

different steps of storage, two trends in patulin accumulation could be observed. The highest 

patulin producing isolates tend to have a peak production in patulin over time, while the others 

showed a slower and more continual increase in patulin over time. Both types of patulin 

production patterns over time have been previously described by Garcia et al. (2011). An earlier 

study by Damoglou et al. (1985) also described a period of patulin accumulation followed by a 

decrease. They suggested that patulin may be metabolised by intracellular or extracellular 

enzymes released by the fungus itself under a certain stress condition such as the exhaustion of 

carbohydrates. Our results indicate that time may exert a different influence on patulin 

production in long-term storage depending on the P. expansum strain. 

 

5.5 CONCLUSIONS 

P. expansum and P. solitum were the most prevalent Penicillium species associated with 

Belgian apples. The collection of P. expansum isolates showed a high phenotypic diversity 

based on their patulin production on APAM. The in vitro study on the effect of each successive 

step of long-term storage on the patulin production of different P. expansum strains revealed 

no significant differences in patulin between the different storage steps. The results suggested 

that a high spore inoculum may lead to a stronger patulin accumulation already during the first 

steps of long-term storage under controlled atmosphere at 1°C. This finding emphasises the 

importance of hygiene in the storage facilities and suggests that future control strategies may 

benefit from considering the duration of storage under CA conditions as well as duration of 

deck storage. Finally, strain variability is an important factor influencing patulin accumulation 

during long-term storage of apples. 



 

In the previous chapter, patulin production capacity of a large collection of Penicillium 

expansum isolates from Belgian apples was studied under different conditions of temperature 

and atmosphere. The current chapter will now focus on the effect of temperature and 

atmosphere on both the expression of the isoepoxydon dehydrogenase gene (idh), involved in 

patulin biosynthesis, as well as on the patulin production itself. To measure idh gene 

expression, a sensitive RT-qPCR technique was developed. 

 

 

 

 

 

Chapter 6 

Isoepoxydon dehydrogenase (idh) gene 
expression in relation to patulin production 
by Penicillium expansum under different 
temperature and atmosphere 
 

 

The content of this chapter is based on: 

De Clercq, N., Vlaemynck, G., Van Pamel, E., Van Weyenberg, S., Herman, L., Devlieghere, F., De Meulenaer, 

B. and Van Coillie, E. 2016. Isoepoxydon dehydrogenase (idh) gene expression in relation to patulin production 

by Penicillium expansum under different temperature and atmosphere. International Journal of Food Microbiology 

220: 50-57 
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CHAPTER 6 ISOEPOXYDON DEHYDROGENASE (IDH) GENE 

EXPRESSION IN RELATION TO PATULIN PRODUCTION BY 

PENICILLIUM EXPANSUM UNDER DIFFERENT TEMPERATURE 

AND ATMOSPHERE 

 

ABSTRACT 

Penicillium expansum growth and patulin production mainly occur at post-harvest stage during 

the long-term storage of apples. Low temperature in combination with reduced oxygen 

concentrations is commonly applied as a control strategy to extend their shelf life and supply 

the market throughout the year. Our in vitro study investigated the effect of temperature and 

atmosphere on idh gene expression in relation to patulin production of P. expansum. The idh 

gene encodes the isoepoxydon dehydrogenase enzyme, a key enzyme in the patulin biosynthesis 

pathway. First, a reverse transcription real-time PCR (RT-qPCR) method was optimized to 

measure accurately the P. expansum idh mRNA levels relative to the mRNA levels of three 

reference genes (18S, β-tubulin, calmodulin), taking into account important parameters such as 

PCR inhibition and multiple reference gene stability. Subsequently, two P. expansum field 

isolates and one reference strain were grown on Apple Puree Agar Medium (APAM) under 

three conditions of temperature and atmosphere: 20°C – air, 4°C – air and 4°C – controlled 

atmosphere (CA; 3% O2). When P. expansum strains reached a 0.5 and 2.0 cm colony diameter, 

idh expression and patulin concentrations were determined by means of the developed RT-

qPCR and an HPLC-UV method, respectively. The in vitro study showed a clear reduction in 

patulin production and down-regulation of the idh gene expression when P. expansum was 

grown under 4°C – CA. The results suggest that stress (low temperature and oxygen level) 

caused a delay of the fungal metabolism rather than a complete inhibition of toxin biosynthesis. 

A good correlation was found between idh gene expression and patulin production, 

corroborating that temperature and atmosphere affected patulin production by acting at the 

transcriptional level of the idh gene. Finally, a reliable RT-qPCR can be considered as an 

alternative tool to investigate the effect of control strategies on the toxin formation in food.
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6.1 INTRODUCTION 

P. expansum growth and patulin production mainly occur at post-harvest stage during the long-

term storage of apples. Cold temperature is often applied in combination with other strategies, 

e.g. fungicide treatments and controlled atmosphere (CA; 1 to 3% O2 and <1 to 3% CO2), in 

order to improve the effect and extend the shelf life of apples during long-term storage (Morales 

et al., 2010). Various studies have been conducted on the effect of temperature and/or 

atmosphere on P. expansum growth and patulin production in apples (Baert et al., 2007a; Baert 

et al., 2007b; Salomão et al., 2009; Sydenham et al., 1997). Thus strategies for reducing patulin 

contamination and risk assessment models were developed (Baert et al., 2012). However, 

beside the direct effect on the P. expansum growth and patulin production, no information is 

available regarding the effect of temperature and atmosphere on the expression of genes 

involved in the patulin biosynthesis. The patulin biosynthesis pathway consists of about ten 

enzymatic steps (Puel et al., 2010). Isoepoxydon dehydrogenase, encoded by the idh gene, is a 

precursor in the late steps of the patulin biosynthesis pathway. Real-time reverse transcription 

polymerase chain reaction (RT-qPCR) is the method of choice for sensitive, specific and 

reproducible quantification of mRNA amounts transcribed by a gene (Bustin, 2000). However, 

the transcriptome is context-dependent, i.e. mRNA amounts vary with physiology, pathology 

or development, making the information contained within the transcriptome intrinsically 

flexible and variable. Therefore, transcriptome analysis requires successful application of RT-

qPCR, considering each stage of the experimental protocol, starting with the laboratory setup 

and proceeding through sample acquisition, template preparation, RT, and finally the PCR step. 

Every one of these stages needs to be properly validated before the biological significance of 

the data can be reported (Bustin and Nolan, 2004; Vandesompele et al., 2002).In this chapter, 

the effect of temperature and atmosphere was examined on the idh gene expression and patulin 

production of P. expansum. The first objective was to develop a sensitive and reliable molecular 

technique to quantify the expression of the idh gene involved in the patulin biosynthesis of 

P. expansum. By means of the newly developed RT-qPCR, the idh mRNA levels were 

determined under different conditions of temperature and atmosphere. In addition, these idh 

gene expression levels were compared with patulin production, which was quantified by means 

of the HPLC-UV method developed in CHAPTER 4. 
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6.2 MATERIAL AND METHODS 

6.2.1 P. expansum strains 

P. expansum strain MUM 99.19, from Portuguese grapes, was obtained from the Centro de 

Engenharia Biológica da Universidade do Minho in Portugal (Braga). Based on the patulin 

production capacity of P. expansum field isolates on Apple Puree Agar Medium (APAM) under 

classical controlled conditions (CHAPTER 5), a medium (isolate FC094) and high (isolate 

FC116) patulin producing field isolate, obtained from Belgian Jonagold apples of organic 

orchards, were randomly selected from our laboratory culture collection at the Institute for 

Agricultural and Fisheries Research (ILVO, Melle, Belgium). 

6.2.2 Optimization of an RT-qPCR method to measure the idh gene expression of 

P. expansum 

6.2.2.1 RNA extraction and DNase treatment 

A pure culture of P. expansum was inoculated, by means of streaking, onto Malt Extract Agar 

(MEA) (Oxoid Ltd, Basingstoke, Hampshire, UK). MEA was prepared according to the 

manufacturer’s instructions. Inoculated MEA plates were incubated at 25 C for seven days. 

After incubation, sporulating mycelium was one-point inoculated onto APAM of Jonagold 

cultivar using a sterile toothpick (§ 5.2.6). APAM was prepared as described by Baert et al. 

(2007a). After two days incubation at 25°C, 100 mg of fungal spores/mycelium was scraped 

off the surface and transferred to a 2 ml microcentrifuge tube (Eppendorf AG, Hamburg, 

Germany). The sample material was immediately frozen under liquid nitrogen and stored at -

80°C until further analysis. When all samples had been collected, cells were disrupted under 

liquid nitrogen by grinding the mycelium with a pestle. The disrupted cell mixture was 

homogenized and RNA was extracted by means of the Invitrap® Spin Plant RNA mini kit 

(Stratec Molecular, Berlin, Germany) according to the manufacturer instructions. Total RNA 

was eluted in a final volume of 60 µl nuclease-free H2O (Qiagen, Germantown, MD, USA).The 

TURBO DNA-freeTM kit (Ambion®, Carlsbad, CA, USA) was used to remove any residual 

DNA. A 10x TURBO DNase buffer and 2 U TURBO DNase were added to a 200 µl centrifuge 

tube containing 15 µl of total RNA. 
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After gentle inversion, the mixture was incubated for 30 min at 37°C. The RNA mixture and 2 

µl of DNase inactivation reagent were well resuspended by smooth pipetting, and incubated for 

5 min at room temperature with occasional mixing. Centrifugation was conducted for 2 min at 

10,000 g. The supernatant was transferred to a 1.5 ml microcentrifuge tube and stored at -20°C. 

Further analysis was conducted within seven days.  

RNA samples were visually checked after staining a 1.5% (w/v) Seakem LE agarose gel 

(Lonza, Rockland, ME, USA) with ethidium bromide (2 mg/mL). The Nanodrop® ND-1000 

spectrophotometer (Thermo Scientific, Waltham, MA, USA) was used to measure the RNA 

concentration and nucleic acid purity based on the A260/A280 absorbance ratio. A pure RNA 

sample should exhibit an absorbance ratio ~ 2.0. 

6.2.2.2 cDNA synthesis 

Prior to cDNA synthesis by means of reverse transcription (RT), a heat shock treatment was 

applied to the mixture of RNA and primers for sequence denaturation. In this way, the absence 

of secondary structures of the RNA and/or primers is assured, guaranteeing a more efficient 

primer annealing and cDNA synthesis. Hence, a total of 2 µl RNA and 2.5 µM random 

hexamers (Applied biosystems, Foster City, CA, USA) was subjected to a heat shock of 2 min 

at 95°C followed by 2 min cooling on ice. After the heat shock, 5 mM MgCl2, 10x PCR buffer 

II (Applied Biosystems), 1 mM dNTP’s, 40 U RNase inhibitor (Applied Biosystems) and 50 U 

Multiscribe reverse transcriptase (Applied Biosystems) were added to the reaction mixture 

obtaining a final volume of 40 µl. RT was carried out with a GeneAmp PCR System 2400 

(Applied Biosystems) with the following incubation conditions: 10 min at 22°C, 15 min at 

42°C, 5 min at 99°C and 5 min at 5°C. To check for residual genomic DNA (gDNA), each 

RNA sample was also subjected to a cDNA synthesis reaction without addition of RT-enzyme 

(noRT) (Werbrouck et al., 2007). 

6.2.2.3 Quantitative real-time PCR 

Optimization of the quantitative real-time PCR (qPCR) is essential for an accurate 

quantification (Werbrouck et al., 2007). Idh gene expression levels were quantified relative to 

the expression levels of three reference genes: 18S, β-tubulin and calmodulin. 
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Primer selection 

Based on the alignment of DNA sequences of different P. expansum strains obtained from the 

EMBL database, primers were designed with the aid of Primer Express® software v2.0 (Applied 

Biosystems) (Table 6.1). If a single-nucleotide polymorphism (SNP) was present in the selected 

primer-binding site, the nucleotide in the corresponding primer was replaced by an inosine. For 

each gene, three primer sets were designed and tested, taking into account crucial parameters 

such as the quantification cycle (Cq) that should be as low as possible, the slope of the standard 

curve ideally near to -3.3 and primer dimer formation should be absent (qBase+, 2008). 

 

Table 6.1 Primer nucleotide sequence, annealing position and length of the DNA product amplified by each of the 

developed primer sets for the gene of interest idh and for the reference genes 18S, β-tubulin and calmodulin. 

Gene 

Primer set  

(forward/reverse)  

(F/R) 

F primer sequence  

(5' to 3') 

R primer sequence  

(5' to 3') 

5' F/R primer  

annealing 

position* (bp) 

Product  

length  

(bp) 

Idh
a
  RT-PCR1_F/EKRT1R TCACCAATACiGAGTATGATGACTTC GCGATAATCACGTCAATTCGTC 176/332 157 

 
EK-RT-2F/EK-RT-2R GCAGTTTCGCGATCGATGT GTAGGGAGTAGCCGCCTTGA 433/491 59 

 
EK-RT-3F/EK-RT-3R CAAAGATCAACCCGGAATGG TCCCAAACGCTTAAGAGGAATC 706/767 62 

18S
b
  Do_18S_1_F/Do_18S_1_R GGTCTCGTAATTGGAATGAGAACA CGCTATTGGAGCTGGAATTACC 497/597 101 

 
Do_18S_2_F/Do_18S_2_R CAGGTCCAGACAAAATAAGGATTGA AGCAGACAAATCACTCCACCAA 1210/1310 101 

 
Do_18S_3_F/Do_18S_3_R TCTGTGATGCCCTTAGATGTTCTG GGGTTTAACAAGATTACCCAiACCT 1428/1529 102 

β-tubulin
c
  BTub-1F/BTub-1R GCCAGCGGTGACAAGGTACGT TACCGGGCTCCAAATCGA 311/365 55 

 
BTub-2F/BTub-2R GGTCCCTTCGGCAAGCTT TGTTACCAGCACCGGACTGA 386/449 64 

 
BTub-3F/BTub-3R GCAGATGTTCGACCCCAAGA TAGCGGCCGTTACGGAAGT 426/482 57 

Calmodulin
d
  Do_Cmd_1_F/Do_Cmd_1_R CAGAACCCCTCCGAGTCTGA TCAGTGGGTTATGGTCAAGTACCA 276/376 101 

 
Do_Cmd_2_F/Do_Cmd_2_R CAACAACGGCACCATTGACT AGCCATCATGGTGAGGAATTCT 329/429 101 

 
Do_Cmd_3_F/Do_Cmd_3_R CTCACCATGATGGCTCGTAAGA GCGGAAATGAAACCGTTGTT 415/515 101 

a Primer sequences were designed based on the partial idh sequence of P. expansum strain NRRL 32289 (GenBank accession 

number DQ343639). 
b Primer sequences were designed based on the partial 18S sequence of P. expansum strain 898 (GenBank accession number 

DQ912698). 
c Primer sequences were designed based on the partial β-tubulin sequence of P. expansum strains MUCL 29129 and NRRL 

976 (GenBank accession numbers AY674400 and FJ457079). 
d Primer sequences were designed based on the partial calmodulin sequence of P. expansum strain CBS 325.48 (GenBank 

accession number DQ911134). 
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qPCR assay 

The 25 µl reaction-mixtures contained 2x SYBR Green PCR master mix buffer (Applied 

Biosystems), 600 nM of each of the appropriate gene-specific primers and 5 µl of template 

cDNA. Reaction mixtures were added to a white Lightcycler®480 96-well plate (Roche 

Diagnostics, Mannheim, Germany) and sealed using adhesive Lightcycler®480 sealing foil 

(Roche Diagnostics). For each sample, a quantification of the mRNA levels of the gene of 

interest and the reference genes towards their corresponding standard curves was performed 

using a Lightcycler®480 real-time PCR system (Roche Diagnostics). Thermal cycling 

conditions were as follows: 5 min incubation at 95°C to activate the polymerase enzyme, 

followed by 35 cycles of denaturation at 95°C for 10 s, and a one-step annealing and elongation 

during 30 s at 60°C. Cq was defined as the PCR cycle at which the sample fluorescence, 

generated within a reaction, exceeds a chosen threshold based on the background fluorescence. 

This threshold was determined for each gene separately. The obtained Cq-values of the samples 

were quantified by means of a standard curve based on a dilution series of control plasmids. 

Control plasmids consisted of a pIDTSmart Amp vector with the specific partial gene sequence 

inserted. The partial sequences are based on the reference sequences and selected primers 

represented in Table 6.1. These constructs were ordered at Integrated DNA Technologies Inc. 

(Coralville, IA, USA). The four plasmids (for the idh gene and the three reference genes) were 

tenfold serial diluted, in the range of 2×106 to 2×102 DNA copies/µl, and analyzed in triplicate. 

Samples were tested for residual gDNA by comparing the Cq-values of RT cDNA and noRT 

cDNA reactions. When a ΔCq >7 was obtained, gDNA contamination was considered 

negligible (Werbrouck et al., 2006). A negative control (without cDNA) was included in all 

PCR runs. 

6.2.2.4 qPCR quality control 

High RNA yields and pure RNA samples do not guarantee a cDNA synthesis and/or qPCR free 

of inhibition. To detect the possible presence of inhibition, RNA dilution series were tested to 

check linearity of standard curve. One P. expansum strain (isolate FC094) was middle-point 

inoculated onto two APAM Petri dishes (sample A and B) and incubated at 25°C until a growth 

stage of 0.5 cm colony diameter was achieved. RNA was extracted and subsequently DNase 

treated as described above. 
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RNA concentration and A260/A280 absorbance ratio were determined for both samples. Sample 

A was twofold serial diluted in water. Each dilution was converted to cDNA and tested by 

means of qPCR for all four genes. Inhibition was analysed by comparing the obtained Cq-

values. A twofold dilution, in the absence of inhibition and considering a 100% efficient PCR 

reaction, should be characterized by an increase in Cq-value (ΔCq) ≈ 1. Based on the results 

obtained for the dilution series of sample A, sample B was twofold and tenfold serial diluted 

and tested by means of a qPCR for two of the four genes (18S and calmodulin). 

6.2.2.5 Data analysis 

After quantifying the expression levels of all four genes by means of their corresponding 

standard curves, relative expression of the gene of interest (idh) was determined by calculating 

the ratio of idh expression relative to the expression of the three reference genes using the 

qBase+ software program (Biogazelle, Zwijnaarde, Belgium). First, the stability of each 

reference gene was evaluated by calculating two crucial parameters using the qBase+ software 

program: the stability M-value (M) and the coefficient of variation (CV). If M <1 and CV <0.5, 

the gene was considered as stably expressed (Hellemans et al., 2007). Next, a normalization 

factor was calculated for each stable reference gene. qBase+ is based on a mathematical model 

for normalization by geometric averaging of multiple stable reference genes, taking into 

account gene-specific amplification efficiencies. Calculations and algorithms are detailed in 

Hellemans et al. (2007). 

6.2.3 In vitro assay 

Pure cultures of two P. expansum isolates and one reference strain (CHAPTER 5) were grown 

on MEA during seven days at 25°C. Sporulating mycelium was scraped off and one-point 

inoculated onto APAM plates using a sterile toothpick (N = 3) (§ 5.2.6). To determine the effect 

of different atmospheric conditions, inoculated APAM plates were packed in polypropylene 

trays (307 x 240 x 50 mm; oxygen transmission rate of 192 cm3/m2 24h). For each strain, six 

trays with three APAM plates within each tray, were incubated under conditions of: a) 4°C – 

CA, b) 4°C – air and c) 20°C – air. To simulate CA, trays were introduced with a gas mixture 

of 3% O2 – 1% CO2 – 96% N2 (Air Liquide, Paris, France). A PET/CPP NPAF foil with an 

oxygen transmission rate of 190 cm3/m2 24h at 25°C and 50% R.H. was used to seal the trays 

by means of a tray sealer (TS400, VC999 Packaging Systems, Herisau, Switzerland). 
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Trays with inoculated APAM plates under CA were stored at 4°C. The gas composition in the 

trays was checked using a headspace gas analyzer (PBI-Dansensor A/S, Ringsted, Denmark). 

Trays that were incubated for a longer time period (2.0 cm fungal colony diameters) were 

repacked after 10 days. As such, a rather stable O2 level (3 ± 1% variation) was maintained. 

Trays stored at an atmospheric condition of air were sealed without the introduction of any gas 

mixture and stored at 4 or 20°C. Three trays, of each strain at each temperature/atmosphere 

condition, were collected when fungal colonies reached a 0.5 and a 2.0 cm colony diameter. 

For each tested condition, all strains reached the fixed diameters with a difference of maximum 

24 h. More specific, a 0.5 cm colony diameter was reached after two days and 7-8 days 

incubation at 20°C – air and 4°C – air/CA, respectively. A 2.0 cm colony diameter was reached 

after five days and 20-21 days incubation at 20°C – air and 4°C – air/CA, respectively. In case 

of a 2.0 cm colony diameter, one half of the mould colony was used as sample material for 

RNA extraction and subsequent gene expression analysis by means of RT-qPCR. The other 

half of the APAM and mould colony was used for patulin analysis according to the HPLC-UV 

method described in CHAPTER 4. The method is characterized by a detection limit (LOD) of 

3 µg/kg and a quantification limit (LOQ) of 5 µg/kg for patulin analysis on APAM. In the case 

of a 0.5 cm colony diameter, one half of the mould colony did not provide enough mycelium 

to guarantee successful RNA extraction. Therefore, mycelium of two extra colonies, grown on 

the other APAM plates in the same tray, were used for RNA extraction. Half of one APAM and 

mould colony was used for patulin analysis. 

6.2.4 Statistical analysis 

Statistical analysis was performed using the Statistical Analysis System software (SAS®, 

version 9.4, SAS Institute Inc., Cary, NC, USA). Data obtained during the in vitro assay did 

not follow a normal distribution. Therefore, a non-parametric Friedman two-way analysis of 

variance (ANOVA) was carried out, with idh expression and patulin concentration as dependent 

variables and P. expansum strain and temperature/atmosphere condition (20°C – air, 4°C – air 

and 4°C – CA) as independent variables. Post-hoc comparison was conducted using a Scheffé 

test. Spearman’s rank correlation (rs) was used to test the association between the idh expression 

levels and patulin concentrations. P values ≤0.05 were considered statistically significant. 



136 
CHAPTER 6 ISOEPOXYDON DEHYDROGENASE (IDH) GENE EXPRESSION IN RELATION TO 

PATULIN PRODUCTION BY PENICILLIUM EXPANSUM UNDER DIFFERENT TEMPERATURE 

AND ATMOSPHERE 

 

6.3 RESULTS 

6.3.1 Optimization and data analysis of the RT-qPCR assay 

Three primer sets were designed for the gene of interest and each of the reference genes (Table 

6.1). Based on the absence of primer dimers, lowest Cq-values, and a standard curve slope near 

-3.3, the primer sets EK-RT-2F/ EK-RT-2R (idh), Do_18S_3_F/ Do_18S_3_R (18S), BTub-

2F/BTub-2R (β-tubulin) and Do_Cmd_3_F/ Do_Cmd_3_R (calmodulin) were selected. The 

possible presence of sample inhibition was tested by means of RNA dilution series. At a higher 

dilution (>1/8), inhibition was never observed. However, this was often the case at a dilution 

≤1/8. Therefore, all DNase treated RNA extracts of the in vitro assay were 1/10th diluted before 

converting to cDNA. Based on Nanodrop® ND-1000 spectrophotometer measurements, all 

RNA samples exhibited A260/A280 absorbance ratios ~ 2.0, confirming their nucleic acid purity 

(data not shown). The cDNA was used as a template for qPCR, and gDNA contamination was 

tested by comparing the Cq-values of the RT and noRT cDNA samples. No amplification was 

detected in the noRT reactions, implying that all cDNA samples were free of gDNA. The 

characteristics of the qPCR standard curves, based on a dilution series (107-103 DNA copies) 

of control plasmids containing the specific partial sequence of the genes idh, 18S, β-tubulin and 

calmodulin, are presented in Table 6.2. Calculated by means of the slope of the standard curves 

varying from -3.4 to -3.6, PCR efficiencies in the range of 91-99% were obtained. The Y-

intercept of the standard curve, the Cq-value at which one DNA copy is detected, was reached 

around 38-41.8 Cq-values. 

 

Table 6.2 Characteristics of the standard curves based on a dilution series (107-103 DNA copies) of control plasmids 

containing the specific partial sequence of the gene of interest idh and the reference genes 18S, β-tubulin and calmodulin. 

Gene 
Primer set 

(forward/reverse) (F/R) 

Slope 

standard curve 
qPCR efficiency (%) 

Y-intercept 

(C
q
-value) 

Idh EK-RT-2F/EK-RT-2R -3.5 95 38.8 

18S Do_18S_3_F/Do_18S_3_R -3.4 99 40.3 

β-tubulin  BTub-2F/BTub-2R -3.5 95 38.0 

Calmodulin Do_Cmd_3_F/Do_Cmd_3_R -3.6 91 41.8 
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The melting curves showed only one melting point, indicating that no primer dimer formation 

took place. The qPCR results of the amplified partial idh sequence obtained during the in vitro 

assay are shown in Figure 6.1. All unknown samples fall inside the range of the standard curve. 

No amplification was observed for the negative controls and the noRT cDNA samples. 

Finally, the obtained qPCR data were analyzed by means of the qBase+ software program. The 

reference gene stability values M (CV) were: 0.69 (CV = 0.24) for 18S, 0.78 (CV = 0.33) for 

β-tubulin and 0.63 (CV = 0.23) for calmodulin. Based on these M- and CV-values, all three 

reference genes were considered suitable internal control genes, and subsequently used for 

normalization. 

 

Figure 6.1 In vitro assay qPCR results of the partial idh gene fragment amplified by means of primer set EK-RT-2F/EK-

RT-2R. A) Amplification curves of the dilution series of plasmid DNA in triplicate, all unknown RT cDNA samples and 

seven negative controls (left), and amplification curves of the dilution series of plasmid DNA, all noRT cDNA samples 

and three negative controls (right). B) Standard curve based on tenfold serial dilutions of plasmid DNA in the range of 

107-103 DNA caopies, in triplicate. Cq-values were obtained for each dilution and plotted against known DNA copy 

amounts. C) The melting curves representing the change in fluorescence observed when the amplicon, bound with 

SYBR Green dye, dissociates as the temperature of the reaction increases. The melting point (Tm) of the amplicon, the 

temperature at which a peak fluorescence is followed by a sudden decrease due to the dissociation and subsequent 

release of the dye, occurs at ± 81°C. 
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6.3.2 Idh gene expression and patulin production of Penicillium expansum grown under 

different conditions of temperature and atmosphere 

The effect of temperature and atmosphere on the idh gene expression and patulin production of 

three P. expansum strains, was investigated in vitro on APAM. Figure 6.2 showed the results 

of their average idh expression levels (A.U.) and patulin concentrations (mg/kg) measured at 

two growth stages (0.5 cm and 2.0 cm colony diameter, Figure 6.2 A and B, respectively) (N = 

3). 

 

 

Figure 6.2 Average idh gene expression levels (A.U.) (left panel) and patulin concentrations (mg/kg) (right panel) of two 

P. expansum field isolates and one reference strain, grown under different temperature/atmosphere conditions (20°C-

air, 4°C-air and 4°C-CA), until a growth stage of 0.5 cm (A) and 2.0 cm (B) colony diameter. N = 3 (except at 4°C-CA: 

0.5 cm colony (FC094) and 2.0 cm colony (FC094 and MUM 99.19), N = 2). * Patulin concentrations below the detection 

limit of 3 µg/kg. 
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APAM plates of 0.5 cm P. expansum colonies (Figure 6.2 A) contained less than 50 μg/kg 

patulin after incubation under cold temperature combined with CA (4°C – CA). Under 4°C and 

20°C – air, the detected patulin concentrations were in the range of <3 (LOD)-500 μg/kg and 

800-2,500 μg/kg APAM, respectively. Colonies grown at 4°C – CA, producing less than 

50 μg/kg patulin on APAM, showed very low (≤0.05 A.U.) idh mRNA transcript levels. All 

three P. expansum strains grown at 4°C – air expressed idh in a low range of 0.02-1.34 A.U., 

while at 20°C – air higher expression profiles in between 2.80 and 4.05 A.U. were observed. 

Temperature and O2 concentration seemed to have a statistically significant effect (p < 0.001) 

on both the idh gene expression and the patulin production of 0.5 cm P. expansum colonies. In 

particular, the P. expansum strains grown at 20°C – air showed significantly higher idh 

expression levels and produced significantly more patulin than those grown at cold temperature 

(4°C – air) and cold temperature combined with CA (4°C – CA). No statistically significant 

differences (p > 0.05) in idh expression and patulin production were observed between the 

different P. expansum strains within each temperature/atmosphere condition. 

The patulin concentrations of 2.0 cm large P. expansum colonies grown at 4°C – CA and 4°C 

– air, accumulated to ranges of 10,000-30,000 μg/kg and 20,000-60,000 μg/kg APAM, 

respectively (Figure 6.2 B). Incubation of inoculated APAM plates at 20°C – air led to an 

increase of patulin to a range of 80,000-300,000 μg/kg. Again, low idh mRNA transcript levels 

in ranges of 1.44-2.09 A.U. and 0.70-2.43 A.U. were measured at 4°C – CA and 4°C – air, 

respectively. At 20°C – air, higher average idh expression profiles in between 1.75 and 6.76 

A.U. were observed. As also observed for 0.5 cm P. expansum colonies, the temperature and 

O2 concentration continued to have a statistically significant effect (p < 0.05) on the idh gene 

expression and patulin production of the 2.0 cm large colonies. On average, significantly 

different concentrations of patulin were produced under all three temperature/atmosphere 

conditions. No statistical differences in idh gene expression profiles were observed. In 

particular, the 2.0 cm large colonies of P. expansum reference strain MUM 99.19 showed 

similar idh mRNA amounts under all three temperature/atmosphere conditions (1.80-

2.55 A.U.). Those amounts were more or less equal to those found when the strain reached 0.5 

cm growth at 20°C – air (2.97 A.U.), but much higher than the 0.5 cm colony incubated at 4°C 

– air (0.01 A.U.) and 4°C – CA (0.02 A.U.). 
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The graphs in Figure 6.3 represent the correlation between all measured idh expression levels 

and patulin production data of 0.5 cm and 2.0 cm large P. expansum colonies. The two 

parameters were positively correlated (p < 0.001) at both growth stages. Based on the Spearman 

correlation coefficient, a high correlation (rs = 0.89) was observed between the idh expression 

and patulin production at the start of P. expansum growth (0.5 cm colony diameter). 

 

 

Figure 6.3 Correlation between idh gene expression levels (A.U.) and patulin concentrations (mg/kg) of P. expansum 

strains, grown under different temperature/atmosphere conditions, until a growth stage of 0.5 cm (A) and 2.0 cm (B) 

colony diameter (N = 3). rs = Spearman’s rank correlation coefficient. 

 

6.4 DISCUSSION 

Real-time reverse transcription PCR is a molecular technique that makes it possible to quantify 

fungi in environmental samples and to study host-pathogen interactions and changes in gene 

expression in response to certain treatments (Schena et al., 2004). However, as its application 

has become the method of choice for quantitatively assessing steady-state mRNA levels, it has 

become clear that the reliability to detect transcriptional differences between samples is affected 

by several factors. Therefore, the gene expression assay in the in vitro study was developed 

with great care and important variables such as gDNA contamination, primer dimer formation, 

PCR inhibition, sensitivity and efficiency, as well as multiple reference gene stability were 

taken into account. 
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After selecting gene-specific primer sets with high sensitive and efficient PCR reactions in the 

absence of primer dimer formation, the presence of a certain inhibition during the reverse 

transcription and/or real-time PCR step was noted. PCR inhibitors may originate from the 

sample matrix or may be introduced during processing or nucleic acid extraction. Their 

presence is a major drawback of the PCR as it may decrease sensitivity or give false-negative 

results. A general method to remove PCR inhibitors is the dilution of the sample or extracted 

nucleic acid (Schrader et al., 2012). In our study, a 1/10 dilution of the RNA was sufficient to 

minimize the PCR inhibition effect and was applied to all DNase treated RNA samples before 

conversion to cDNA. 

Most studies regarding the expression kinetics of fungal genes involved in mycotoxin 

biosynthesis were quantified relative to only one reference gene (Doohan et al., 1999; Jiao et 

al., 2008; Mayer et al., 2003; Sanzani et al., 2009; Sweeney et al., 2000). According to the 

studies of Thellin et al. (1999) and Vandesompele et al. (2002), at least two or three stable 

reference genes should be used as internal controls to calculate a normalization factor, as the 

conventional use of a single gene leads to relatively large errors. Therefore, in our study, the 

three genes 18S, β-tubulin and calmodulin were chosen as internal controls. The qBase+ 

software measures the gene stability and pairwise variation of the selected reference genes, 

based on the principle that the expression ratio of two ideal internal control genes is identical 

in all samples. Subsequently, the program calculates the normalization factor by means of the 

geometric mean of the multiple stable reference genes (Vandesompele et al., 2002). This 

normalization strategy was applied as it has been proposed as a prerequisite for accurate RT-

qPCR expression profiling. 

Overall, the results of our in vitro study demonstrate that the temperature and atmosphere affect 

the patulin production of P. expansum on APAM, by acting at the transcriptional level of the 

idh gene. A good correlation was found between idh expression and patulin production of 

P. expansum strains under the different temperature/atmosphere conditions. Especially at small 

contamination levels (low P. expansum colony diameters), the developed RT-qPCR may be an 

interesting alternative approach to detect whether certain patulin amounts are present or not. 
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A lower patulin production and a down-regulation of the idh gene was observed when 

inoculated APAM plates were stored under a combination of cold temperature and controlled 

atmosphere. These observations confirm the results of the study of Baert et al. (2007a) who 

proved that a combination of different stress conditions (e.g. low temperature and low oxygen) 

will result in a reduced formation of patulin. It has to be noted that 4°C – CA resulted in a very 

low expression of the idh gene at the start of colony growth (0.5 cm), while this additional 

reducing effect of controlled atmosphere at the idh mRNA expression level disappeared once a 

larger growth stage (2.0 cm) was achieved. These results suggest that this combination of low 

temperature and CA causes a delay of the fungal metabolism rather than a complete inhibition 

of the toxin biosynthesis. In our study, the highest idh mRNA levels and patulin amounts were 

observed at 20°C – air. Other authors reported independently that the duration of apples stored 

at ambient temperature (20°C – air) is critical for both lesion diameter and patulin accumulation 

(Baert et al., 2012; Morales et al., 2007a; Sydenham et al., 1997; Welke et al., 2011). Those 

studies investigated the direct effect of storage on the P. expansum growth and patulin 

production but no information was available regarding the underlying molecular genetics. 

Another in vitro study by Sanzani et al. (2009) provided evidence that the combined application 

of the two phenolic compounds quercetin and umbelliferone, reduced patulin accumulation by 

acting on the transcript level of five genes, among which idh, involved in the patulin 

biosynthesis. 

Interestingly, in our study, the 2.0 cm large colonies of reference strain MUM 99.19 showed a 

similar expression of the idh gene under all three temperature/atmosphere conditions. The 

extent of expression was comparable to the one found when the strain reached 0.5 cm under 

20°C – air, but much higher than the 0.5 cm growth obtained under stress conditions (4°C; CA). 

This differential expression might be due to the fact that the host of origin of the reference strain 

was grapes instead of apples. Sanzani et al. (2013) investigated the influence of the origin on 

P. expansum pathogenicity/virulence and found that the P. expansum strains produced more 

patulin when grown on the host from which they originated. However, this was not found in 

our study as the patulin amounts of all three strains were more or less similar within each 

temperature/atmosphere condition or the difference was rather strain dependent than origin 

dependent. 
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In fact, our results suggest that the effect of certain stress (cold temperature and/or reduced 

oxygen) on the idh expression and patulin production is more pronounced in the reference strain 

in comparison with the field isolates at the early stage of growth (0.5 cm). However, once the 

strain reaches a later growth stage (2.0 cm), this difference in effect was not observed. 

The use of RT-qPCR to monitor gene expression related to mycotoxin biosynthesis has been 

described for other fungal species as well. Sweeney et al. (2000) monitored the mRNA levels 

of two genes involved in the aflatoxin biosynthesis pathway of Aspergillus parasiticus grown 

in aflatoxin permissive and non-permissive media. Transcription of both genes was observed 

in cultures grown in Yeast Extract Sucrose (YES) but was absent in Yeast Extract Peptone 

(YEP) which did not support aflatoxin production. Mayer et al. (2003) quantified the nor-1 

aflatoxin biosynthetic gene transcription in parallel with the aflatoxin B1 production of 

Aspergillus flavus in wheat samples. Two days after the first nor-1 mRNA amounts were 

measured by means of RT-qPCR, aflatoxin B1 could be detected by means of HPLC-UV. 

Doohan et al. (1999) developed an RT-PCR to quantify Tri5 gene expression of Fusarium 

culmorum under in vitro conditions, and found that the Tri5 expression was directly correlated 

with an increase in deoxynivalenol production over time. The levels of Tri5 expression, and, 

therefore, the levels of trichothecene production appeared to be host plant tissue dependent and 

were significantly influenced after a fungicide treatment. Jiao et al. (2008) investigated the 

effect of different carbon sources on the trichothecene production and on the trichothecene 

induction mechanisms of Fusarium graminearum, a disease agent of cereal crops. The authors 

suggested that F. graminearum recognizes the sucrose molecules, activates Tri gene 

expression, and induces thrichothecene production.  

Our study and the studies mentioned above all describe a certain relationship between the 

expression of genes involved in the mycotoxin biosynthesis and the toxin formation itself in 

response to parameters influencing the metabolism of the fungal species. An accurate and 

specific RT-qPCR method to measure the expression of genes involved in mycotoxin 

biosynthesis is an alternative tool to investigate the effect of potential new control strategies on 

the toxin formation in food. 
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6.5 CONCLUSIONS 

Until now, studies regarding the effect of temperature and atmosphere on patulin contamination 

of apples were focused directly on the P. expansum growth and patulin production itself. This 

chapter investigated the effect of temperature and atmosphere on the idh gene expression in 

relation to the patulin production of P. expansum strains. Although RT-qPCR has become the 

method of choice for quantitatively assessing the mRNA levels transcribed by genes, 

transcription analysis poses some challenges that still need to be considered. Therefore, the 

gene expression assay was developed with great care and important variables, such as reverse 

transcription and/or real-time PCR inhibition and multiple reference gene stability, were taken 

into account. A good correlation, especially at low colony diameter, was found between the idh 

expression and patulin production data. Our results indicate that temperature and atmosphere 

affect the patulin production by acting at the transcriptional level of the idh gene. Moreover, a 

clear reduction in patulin production and a down-regulation of the idh gene expression were 

observed under stress (combination of low temperature and controlled atmosphere). These 

findings suggest that this stress condition causes a delay of the fungal metabolism rather than a 

complete inhibition of the toxin biosynthesis. Finally, a reliable RT-qPCR can be considered as 

an alternative tool to investigate the effect of control strategies on the toxin formation in food. 
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CHAPTER 7 GENERAL DISCUSSION AND PERSPECTIVES 

 

Different foods have different fungal problems that need to be addressed 

In the food industry, the intentional (purposeful) application of moulds for the manufacture of 

desirable food products presumably predates written historical records. Unfortunately, there are 

two sides to every coin and it is no different for the role of moulds in foods. Mould growth is 

in many cases associated with spoilage of food and feed commodities and in certain cases with 

mycotoxin contamination. Mould and mycotoxin contamination pose a major obstacle on the 

way towards more sustainable food products and increased international trade. Fungal growth 

negatively affects the microbiological stability and consequently shelf life of the product. 

Moreover, it may lead to important economic and environmental losses due to the disposal of 

contaminated food and feed. In addition, mycotoxins significantly impact human and animal 

health through loss of human and animal life, increased disability-adjusted life years (DALYs) 

and veterinary costs, and reduced live stock production. For these reasons, the presence of fungi 

in food products and feedstuffs is undesirable. 

A comprehensive view on typical fungal problems that occur in foods and beverages is not 

easily defined. Each product however has its own mycobiota (fungal flora) that may cause these 

problems. Shortly, one might say “certain products have certain fungi”. P. expansum for 

example does not typically grow on citrus fruit, it grows on pomaceous fruit, especially apples. 

One way of describing these problems is by categorising the associated mycobiota as follows: 

(1) mycotoxigenic moulds, e.g. Fusarium species producing fusarium-toxins in corn, (2) 

xerophilic moulds, e.g. E. herbariorum on cake, (3) heat-resistant moulds, e.g. Byssochlamys 

species in non-transparent sportdrink bottles, and (4) preservative-resistant moulds, e.g. 

Trichoderma species on margarine. In this PhD, the first case of chocolate confectionery 

(CHAPTER 2 and CHAPTER 3) and the second case of apples (CHAPTER 4, CHAPTER 5 

and CHAPTER 6) studied the problems posed by the category of xerophilic moulds and 

mycotoxigenic moulds, respectively. 
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During the course of this PhD, several food safety alerts concerning our cases popped up. In 

2012 for example, the Minnesota Department of Agriculture (MDA) and Pepin Heights 

Orchards advised consumers to discard apple cider after routine surveillance confirmed the 

product was affected with patulin levels exceeding the FDA regulatory limits (Food Poison 

Journal, 2012). In 2013, biological apple juice and biological cranberry juice had to be 

withdrawn from American supermarkets for the same reason (VMT Voedselveiligheid, 2013). 

And only last year, government controls found considerable exceedance (65 and 147 µg/kg) of 

the limits for patulin in apple juices originating from Belgium and The Netherlands (VMT 

Voedselveiligheid, 2015b). Next to recalls of all sorts of confectionery and nuts infested with 

high concentrations of non-pathogenic moulds, border rejections of nuts contaminated with 

aflatoxins that exceed regulatory limits are an almost daily issue. In Europe alone, 143,000 tons 

of chocolate confectionery products are discarded each year because of physical-chemical and 

microbiological spoilage, summing up to an annual cost of 1.2 billion euro for the chocolate 

industry (Svanberg, 2012). 

It is therefore unquestionable that mould spoilage of chocolate confectionery products and 

patulin contamination of apples have important economic implications and still pose problems 

that need to be addressed. Within the general scope of this thesis, focus is put on optimizing 

and developing methodologies to detect, identify and characterise the associated mycobiota of 

chocolate confectionery and apples. As such, a polyphasic or multidisciplinary research 

approach was applied which formed the basis to acquire more knowledge that will contribute 

in generating solutions. 

 

Culture-based methods, a solid foundation for identifying fungi in foods 

For starters, culture-based methods were applied to study the associated mycobiota of chocolate 

confectionery and apples. Culture-based methods are very useful for qualitative (e.g. 

identification) as well as quantitative (e.g. enumeration) measurements, when adhering to the 

context-dependent restrictions. In fact, studying the presence of fungi in food and feed 

commodities still largely relies on the traditional subsequent detection, isolation, purification, 

and macro-/microscopic identification on laboratory media. 
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Unfortunately, a single all-purpose medium does not exist since food and feed matrices have 

very different characteristics (aw, pH, nutrient status, etc.). Consequently, the first and utmost 

important issue is the selection of suitable media representative for the food of interest and their 

associated mycobiota. In the first case of this thesis, MEA, DG18 and MY50G medium were 

used for the detection, enumeration, isolation and/or morphological identification of xerophilic 

fungi from (1) air of the production environments of Belgian chocolate confectionery factories, 

(2) common ingredients of chocolate confectionery fillings (CHAPTER 2), and (3) nuts and 

their corresponding nut-based confectionery fillings (CHAPTER 3). In the second case, MEA, 

CYA, CREA and YES medium were used for the detection, isolation and/or morphological 

identification of fungal isolates, e.g. Penicillium spp., on Belgian apples (CHAPTER 5). 

Choices of culture media were carefully thought through and based on solid literature data and 

recommendations by Samson et al. (2010) and Pitt and Hocking (2009). However, sampling 

size needs to be feasible which puts a restriction on the amount of different culture media that 

can be included. Hence possibly certain species will not be isolated/detected or will be 

outcompeted by other faster-growing ones. For example, literature has reported isolation of the 

extreme xerophilic species X. bisporus from chocolate, fruit cakes and cookies, and suggests it 

to be probably much more widespread than current data point out (CBS, 2007; Pitt and Hocking, 

2009). The species is very restrictive in growth, which could explain why it was not identified 

during our survey in the chocolate confectionery industry. So, it has to be noted that selection 

of cultivation media and incubation conditions (temperature and time) will have had its 

influence on the fungal biodiversity reported in this doctoral thesis. 

Besides the drawback posed by laboratory media, conventional plating is also limited in the 

amounts of CFU countable, and it is relatively slow since it may take two to three weeks for 

certain fungi, especially xerophiles (e.g. X. bisporus), to grow. Morphological identification to 

species level requires a great deal of mycological expertise. Consequently, morphological plate 

identification to genus level followed by species identification through gene sequencing, based 

on a fit for purpose locus, is a good objective approach for obtaining reliable data regarding the 

fungal mycobiota of foods. Nowadays, molecular identification by means of outsourcing the 

gene sequencing part is quite cost-effective and worth considering if sample size is feasible. 
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In CHAPTER 5, RAPD was used to cluster the isolates to reduce the number of gene 

sequencing reactions for species identification of Penicillium spp. isolates from Belgian apples. 

In the future, when taking into account cost-effectiveness, a fungal collection as such could be 

immediately outsourced for gene sequencing. 

Important to be mentioned is the fact that with the culture-based approach, only fungal cells 

that are able to grow on the selected medium are detected, this in contrast to emerging culture-

independent methods, e.g. targeted metagenomics. It is based on high-throughput sequencing 

(HTS) and bioinformatics, which allows full characterisation of the total microbiota (i.e. 

thousands of microorganisms), and it highlights the presence of not well-known or yet 

undescribed organisms, in one single sample. In particular, it enables a profoundly detailed, 

semi-quantitative analysis of the diversity of microbial communities in large sample sets. On 

the downside, targeted metagenomics is only semi-quantitative and mostly does not allow 

identification to species level. Moreover, these methods involve a large series of steps from 

sampling, via laboratory handling to bioinformatics, each going hand in hand with some 

challenges and pitfalls (e.g. repeated sampling of single individuals, advanced data analysis, 

etc.) that need to be considered as well (Lindahl et al., 2013). 

At present, HTS methods have been considerably used as a research tool in studying diversity 

of bacterial communities (based upon 16S rRNA) in a wide range of environmental samples of 

water, soil, human gut, food, etc. (Ercolini, 2013; Golebiewski et al., 2014; Maccaferri et al., 

2011; Yergeau et al., 2012). However, the last years, these methods are taking over in fungal 

biodiversity studies as well. In particular, it has been used as primary tool to assess fungal 

communities (based upon 18S rRNA and ITS) inhabiting soil and associated with plants, since 

these are greatly subjected to temporal variations in response to local weather events or cyclic 

in relation to seasons and host plants phenology (Anderson et al., 2003; Hunt et al., 2004). 

In contrast to culture-based techniques, targeted metagenomics detects living as well as dead 

microorganisms. In our case of studying xerophilic spoilage mould diversity, it is possibly more 

relevant to focus only on the living organisms, as these are the ones that will be able to grow 

out and spoil the particular substrate. On the other hand, investigation on health implications 

by fungal organisms in indoor environments of hospital setting, public buildings, houses, etc., 

may be favoured by focusing on both living and dead organisms as the latter ones can also give 

allergic reactions. 
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In conclusion, the metagenomics approach could be interesting for a more in-depth study on 

the mycobiota of chocolate confectionery. These data could be compared with our results 

obtained by means of conventional plating. As such, the relevance and suitability for potential 

application, for example routine air surveillance system, in this food sector could be evaluated. 

 

A case of xerophilic moulds as spoilers of chocolate confectionery: sources of contamination 

and possible solutions 

Legislation/guidelines 

Legislation in Belgium implemented the regulation (EC) No 178/2002 of the European Union 

through the Royal Decision of 14th November 2003 (KB-14/11/2003) regarding self-checking 

(autocontrol), compulsory notification and traceability in the food chain (Belgisch Staatsblad, 

2003). KB-14/11/2003 states that it is mandatory for all business operators with activities in the 

food chain to introduce, implement and sustain a self-checking system to ensure the safety of 

its products. This self-checking system should include good hygiene practices (GHPs) and good 

manufacturing practices (GMPs), which constitute the foundation of Hazard Analysis – Critical 

Control Point (HACCP). Good hygiene practices comprise the conditions and measures 

necessary to ensure the safety and suitability of food at all stages of the food chain (FAO/WHO, 

2007). 

On behalf of the biscuit, chocolate, pralines and confectionery industry as well as the industry 

of breakfast cereals, The Belgian association Choprabisco developed an “Autocontrol guide” 

to help the companies implement KB-14/11/2003 on autocontrol, obliged notification and 

traceability. Their most important objective is to create a summary document containing all 

legal requirements on the one side and to share a valuable tool on the other. In addition, the 

“Code of Hygienic Practice for Low-Moisture Foods”, addresses GMPs and GHPs that will 

help control microbial hazards associated with all stages of the manufacturing of low-moisture 

foods including dried fruits and vegetables, cereals, dry protein products (e.g. dried dairy 

products), confections (e.g. chocolate), snacks (e.g. chips), nuts, nut pastes (e.g. peanut butter), 

seeds for consumption, as well as spices and dried aromatic plants (e.g. teas) (Codex 

alimentarius, 2013). 
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All together, these documents provide a good base of information for each chocolate 

confectionery company to develop, implement and sustain its own solid and functional self-

checking system. As mentioned earlier, a self-checking system is in the first place mandatory 

to ensure food safety, i.e. effective regulatory limits for certain pathogens and contaminants. 

However, it goes without saying that good GMP and GHP substantially impact food quality as 

well. 

Air quality, an indicator for fungal contamination problems 

Based on “prevention rather than cure”, CHAPTER 2 and CHAPTER 3 of this doctoral thesis 

focused on exploring initial potential sources of fungal contamination (e.g. factory air and 

ingredients) that may impede quality and shelf life of the final products. CHAPTER 2 

demonstrated that rather low levels of fungal spores were isolated from the air of chocolate 

confectionery factories. More specific, a general fungal spore load in the range of 50-

250 CFU/m3 air was detected using DG18 medium in combination with an RCS Air Sampler 

operating for 8 min at a flow rate of 40 L/min. 

So far, no real (quantitative) standards exist to estimate fungal contamination in relation to 

hygienic or health implications in food plants, agricultural barns, health care facilities, building 

offices, houses etc. CHAPTER 2 reports the first data regarding fungal loads present in the air 

of the production environment of chocolate confectionery companies. Worthwhile noticing is 

that one chocolate confectionery factory clearly showed lower concentrations of fungal spores 

compared to the other factories studied. The latter could be explained by the application of 

different manufacturing and hygienic practices. 

Therefore, a first recommendation would be to develop and validate GHP and GMP guidelines 

that are used similarly throughout the whole sector. National workshops on personal hygiene 

and technical trainings, specific to each sector in the food industry, could be very helpful for 

plant workers to raise awareness. Once these are established, our method could be implemented 

as a diagnostic tool to regularly monitor xerophilic mould levels in the factory air of the 

chocolate confectionery industry. Finally, it would be interesting to adjust autocontrol guide 

documents with earlier described validated GMP guidelines, GHP trainings and an air sampling 

method as routine air quality monitoring system. 
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This could help the industry to rapidly detect indoor air quality problems caused by fungi and 

to react accordingly by eliminating conditions that promote amplification of these potentially 

hazardous organisms e.g. dampness, humid spots, ventilation/air movement, and manipulation 

of potentially contaminated ingredients in the production environment. 

Remediation of fungal hazards may involve thoroughly cleaning affected areas (e.g. floor and 

wall), decontaminating the Heating, Ventilation and Air Conditioning (HVAC) systems, 

removing contaminated materials (e.g. ingredients), repairing or replacing damaged materials 

or structures, and modifying the environmental conditions in the affected area (e.g. air filters) 

(Federal-Provincial Advisory Committee on Environmental and Occupational Health, 1995). 

Thermal humid treatment of walnuts, a possible solution 

Our research concerning the fungal contamination of commonly used ingredients of chocolate 

confectionery fillings pointed out that nuts, and especially walnuts, were highly contaminated 

and seemed to represent a potential contamination source (CHAPTER 2 and CHAPTER 3). For 

that reason, decontamination of the initial fungal spore load on walnuts was investigated in 

CHAPTER 3. 

Microbiological decontamination of food can be accomplished by means of a variety of 

methods including thermal decontamination methods (e.g. steam and hot air) chemical 

decontamination methods (e.g. chlorine dioxide) and non-chemical and non-thermal 

decontamination methods (e.g. high hydrostatic pressure and irradiation) (Demirci and Ngadi, 

2012). However, food regulations in the European Union are strict. Foods or ingredients of 

foods may or may not be treated with certain methods, others need to be labelled as such in 

order to allow consumers to make an informed choice or others may fall within the novel food 

legislation No 2015/2283 (Commission Regulation (EC), 2015). Historically, thermal 

treatments have been the most common means of food decontamination, either through 

sterilisation or pasteurisation. Such treatments do not pose significant health risks and, as a 

result, are appealing to consumers. However, they affect important properties of the food 

product such as sensorial quality, texture, oxidative stability, etc. Moreover, heat-resistance of 

microorganisms increases in food products of low aw or with a high lipid content, e.g. walnuts 

(Goepfert and Biggie, 1968; Laroche et al., 2005). 
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Against that background, CHAPTER 3 evaluated dry and humid heating (with varying heating 

and drying cycle times) as fungal decontamination strategy on the base of their effect on 

microbiological load, sensorial quality, and oxidative stability of walnuts. Taking these factors 

into account, a humid thermal treatment of 3 min at 75-80°C, followed by a drying cycle for 15 

min at 60°C is proposed as a possible solution to decontaminate walnuts. 

However, nuts are not only dealing with spoilage problems due to mould contamination, they 

are also facing problems that concern food safety (e.g. mycotoxins and pathogenic bacteria). 

During the last decade for example, different types of nuts, e.g. macadamia nuts, walnuts and 

hazelnuts have been reported to contain worrying levels of Salmonella contamination. At the 

moment, both FDA and EFSA are conducting risk analysis on nuts. Anticipating the outcome, 

hazelnut farmers in Oregon (USA) already took action by implementing a steam pasteurization 

process achieving a 5 log10 CFU reduction of Salmonella and other pathogenic bacteria (VMT 

Voedselveiligheid, 2015a). A study on the effect of hot water blanching on Salmonella spp. on 

almonds for example, observed that a minimum time/temperature of 3.09 min at 82.2°C, 2.49 

min at 85°C and 2.00 min at 87.8°C was necessary to obtain a 5-log reduction in Salmonella 

(GMA, 2010). These findings together with our results obtained in CHAPTER 3 suggest one 

single humid thermal decontamination strategy could be beneficial for both 

minimizing/eliminating initial fungal contamination involved in spoilage and pathogenic 

bacterial contamination of importance for its health implications. 

All together, the quality and safety of nuts is of great concern for the different steps in the food 

and feed supply chain (e.g. harvest, storage and processing industry), as well as for animal and 

consumer health. Today even more than ever with the emerging rise of the so called 

“superfoods” and the shift and awareness of our society towards a ‘healthier’ life style. In 

conclusion, good manufacturing and hygienic practices from farm to fork is an important issue 

that needs to be further dealt with in the near future. A mandatory decontamination of all types 

of nuts is a prevention strategy worthwhile considering. CHAPTER 3 of this doctoral thesis 

presents a method for the fungal decontamination of walnuts. After validation, this method 

could be used as a control strategy and should therefore be implemented in the food/feed supply 

chain at the stage of final storage prior to entering the market or processing industries. Last but 

not least, this humid thermal treatment also led to an increased oxidative stability of walnuts. 

This may be translated in a possible delayed onset of rancidity during storage, which is an 

additional advantage in terms of product shelf life. 
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A case of P. expansum as patulin producer on apples 

Why do fungi produce mycotoxins? 

Mycotoxin biosynthesis is influenced by a variety of extrinsic and intrinsic factors, e.g. 

temperature, aw, pH, and nutrient status, and by a network of interactions between these factors. 

For example, the effect of pH on toxin biosynthesis is also influenced by the composition of 

the growth media (Calvo et al., 2002). In addition, fungi react to light in various ways. Although 

the precise relationship still needs to be established, it has been demonstrated that light initiates 

considerable adaptations in metabolic pathways (e.g. fatty acid metabolism) and in the 

regulation of production of secondary metabolites (Tisch and Schmoll, 2010). Moreover, plant 

volatile organic compounds, such as methyl salicylate and oxylipins, trigger sporulation 

(Hountondji et al., 2006) and modulate mycotoxin biosynthesis in pathogenic fungi (Gao and 

Kolomiets, 2009). Consequently, it is evident that we can, as yet, explain only specific cases 

and specific interactions rather than the complexity and diversity of the phenomenon as a whole 

(Reverberi et al., 2010). 

Several factors (e.g. temperature, pH and fruit variety) have been suggested to affect patulin 

accumulation by P. expansum. Analysis of patulin accumulation in different apple cultivars 

demonstrated that patulin accumulation was highly cultivar-dependent (Snini et al., 2016). 

Storage conditions (i.e. temperature and O2 level), carbon, nitrogen and pH have also been 

evaluated as possible inducers of patulin accumulation. In fact, studies indicated that a low pH 

(around 3.5-5.5), or acidic content, might significantly induce patulin accumulation. For 

example, differences in apple acidity affect patulin accumulation, with higher patulin 

accumulation in more acidic apples (Marín et al., 2006; Zong et al., 2015). Zong et al. (2015) 

also found that glucose-containing sugars and complex nitrogen sources were favourable 

conditions for patulin production. Baert et al. (2007) found patulin production to be stimulated 

when temperature decreased from 20 to 4°C, while a further decrease of the temperature to 1°C 

caused a reduction in patulin production. The temperature at which the stimulation changed 

into suppression was strain dependent. Similar results were observed for the O2 level. A 

reduction in O2 level from 20 to 3% stimulated or suppressed patulin production depending on 

the strain, while a clear decrease in patulin production was observed when O2 level was further 

reduced from 3 to 1%. Their results showed that the induction of limited stress to the fungus, 

such as lowering the temperature or the O2 level, stimulates patulin production. 
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However, a combination of different stress conditions (e.g. low temperature and O2 level) 

results in a reduced formation of the toxin. Altogether, these studies indicate that patulin 

accumulation in apples can be affected by environmental, host, and fungal factors including: 

(1) fungal isolates of P. expansum, (2) fruit cultivar and pH, and (3) storage conditions (Barad 

et al., 2016). 

But this still does not answer the question why fungi synthesize mycotoxins? Their role is not 

always clear and still remains to be elucidated. Mycotoxins may provide ecological advantages. 

The most commonly held idea is that mycotoxin-producing fungi are better protected against 

other organisms sharing the same trophic niche (Fox and Howlett, 2008). An example is the 

inhibitory effect mycotoxins exert on the quorum-sensing system of bacteria. Patulin has been 

found to be a potent quorum sensing inhibitor (Rasmussen et al., 2005). Another study on 

ochratoxin A in relation to plant growth reported a clear phytotoxic effect, by inducing an 

evident oxidative burst in the leaves with an increase of ROS and concomitant down-regulation 

of antioxidant defense enzymes (Peng et al., 2010; Ponts, 2015). Conclusively, it can be stated 

that mycotoxins can act as pathogenicity factors or as virulence factors (Hof, 2007). 

Supported by the fact that the importance of mycotoxins in plant pathogenesis has been 

described previously for other diseases, some studies have focused on the role of patulin in the 

pathogenicity of P. expansum. Sanzani et al. (2012) disrupted the patK gene, encoding the 

biosynthetic enzyme 6MSAS, involved in the first step of patulin biosynthesis. The authors 

found that disease incidence and severity were lower in Golden Delicious apples inoculated 

with the mutant strain than in apples inoculated with the wild-type strain. Barad et al. (2014) 

that generated idh-RNAi mutants exhibiting a down-regulation of idh, observed similarly a 

reduction in disease incidence and severity. However, mutants in both studies still produced 

some patulin, making it more difficult to draw definitive conclusions. In contrast to previous 

studies, Ballester et al. (2015) and Li et al. (2015) demonstrated, by using patK and patL 

knockout mutants, that patulin is not required to infect Golden Delicious and Fuji apples, 

respectively. However, a very recent publication by Snini et al. (2016) found a different effect. 

The authors made a deletion of patL, encoding the specific regulatory transcription factor of 

patulin biosynthesis, and studied pathogenicity by inoculating the mutant and wild-type strain 

on several apple cultivars, followed by a 14 days incubation period. 
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During the first 4 days, the mutant, which did not produce patulin in the apple, induced disease 

in a manner similar to the wild-type strain. Then, a clear decrease in the rate of rot progression 

was observed for the mutant compared with the wild-type strain. These results clearly 

demonstrated that patulin acts as an aggressiveness factor (disease severity) that contributes to 

the colonisation of most apple cultivars. The results regarding the cultivar-dependent 

aggressiveness suggest that  the composition of apples (sugars, organic acids, phenolic 

compounds) and oxidant ability of the host in general may greatly influence the development 

of the disease. The authors suggested that the differential results obtained by Ballester et al. 

(2015) and Li et al. (2015) are due to the short incubation period and the apple cultivars used. 

It goes without saying that continuous research in this area is necessary as a full understanding 

of the role and underlying mechanisms of toxigenesis is still incomplete. A profound knowledge 

on the mechanisms underlying the biosynthesis of mycotoxins will contribute to 

defining/identifying new strategies to tackle mycotoxin contamination problems. In order to 

study these mechanisms, reliable techniques are necessary. 

A chemical and molecular approach to characterise patulin production by P. expansum 

in a fast and sensitive way 

Besides culture-based methods, an analytical and molecular method were developed to further 

elucidate characteristics of patulin producing P. expansum on Apple Puree Agar Medium 

(APAM). 

APAM has become the reference medium in most in vitro experiments studying the molecular 

genetics of patulin biosynthesis. CHAPTER 4 of this doctoral thesis reports the first HPLC-UV 

method, optimised and validated for the high-throughput analysis of patulin in in vitro 

experiments on APAM. The optimized method was subsequently validated for commercial 

cloudy apple juice and apple puree. As a result, the analytical method documented in this thesis 

is a useful tool in future research on the underlying mechanisms of patulin biosynthesis on 

APAM, and as routine surveillance method for the apple industry. It has to be noted that APAM 

is a simulation medium for apples, the latter being prone to a high natural variability. For future 

research, it is recommended that studies on apple simulation medium, which may lead to the 

development of new control strategies for reducing patulin contamination, are validated on 

apples as well. 
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Andersen et al. (2004) demonstrated that P. expansum, when contaminating fruits and fruit 

products, can produce toxic metabolites other than patulin. For example, a sample of windfall 

apples contained chaetoglobosins A and C, communesin B, roquefortine C, and patulin. Such 

samples, should they ever reach the consumers, could have unforeseen toxicities, due to 

possible additive or synergistic effects. These results emphasise to focus the attention of 

legislators and people in the food industry, as well as researchers, on the potential problem of 

co-occurring P. expansum metabolites in fruit products. Within this context, our method is 

limited as it is developed to target one specific metabolite. In this case, a targeted metabolomics 

approach, such as multi-mycotoxin LC-MS, could be considered. Targeted metabolomics is the 

unbiased global study of a large range of metabolites in a biological sample under a given set 

of conditions. As a final version of the ‘omics cascade’, it represents the final step in an 

organism’s phenotype, and thus can address the quantitative expression of each metabolite in a 

sample (Johnson and Gonzalez, 2012). A great advantage of this technique is obviously the 

high-throughput capability of spectroscopic and structural information that permits 

characterising a wide range of metabolites simultaneously, with high analytical precision. On 

the other hand, analysing multiple mycotoxins in one single run poses some challenges as well. 

Van Pamel et al. (2011) developed a multi-mycotoxin LC MS/MS method to determine 

mycotoxins produced by pure fungal isolates grown on YES agar. The authors specifically 

pointed out to the possible pitfalls for accurately identifying patulin in between other 

metabolites. 

Real-time reverse transcription PCR (RT-qPCR) is a molecular technique that enables detection 

and quantification of small amounts of nucleic acids in a variety of samples from numerous 

sources in the field of life sciences, agriculture, and medicine. It has become the method of 

choice for sensitive, specific and reproducible quantification of mRNA amounts transcribed by 

a gene. Some pitfalls concerning qPCR assays that need to be taken into account include 

template quality, poor choice of primers, PCR inhibition, efficiency and sensitivity, 

normalization and subjectivity in data analysis and reporting (Bustin and Nolan, 2004; Schrader 

et al., 2012). In 2009, the Minimum Information for Publication of Quantitative real-time PCR 

Experiments (MIQE) guidelines were published to help ensure the integrity of the scientific 

literature, promote consistency between laboratories, and increase experimental transparency 

(Bustin et al., 2009). MIQE is a set of guidelines (for authors, reviewers and editors) that 

describe the minimum information necessary for evaluating and reproducing qPCR 

experiments. 
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Based on these potential pitfalls and proposed guidelines, a robust and reliable RT-qPCR 

method was developed for evaluating expression levels of the idh gene, a key gene for patulin 

biosynthesis in P. expansum (CHAPTER 6). In particular, it is the first report of an RT-qPCR 

method regarding the expression of genes involved in mycotoxin biosynthesis that relatively 

quantified on the base of multiple stably expressed reference genes. Although the presence of 

patulin in by-products of apples is under strict regulatory control, patulin continues to be 

detected in these products so there is further need for new or adapted control strategies. 

Therefore, the relevance of our work lies on the possibility to investigate the effect of abiotic 

parameters on patulin production by P. expansum. Moreover, the carefully detailed method can 

be proposed and incorporated by other research facilities as an interesting tool for testing future 

control strategies that may lead to effectively minimizing patulin formation in food. 

One of the major drawbacks of this method is that the expression of only one gene involved in 

patulin biosynthesis by P. expansum is evaluated. This issue could be handled with a 

transcriptomics approach e.g. RNA sequencing. With the aim of developing control strategies 

for mycotoxigenic moulds or other pathogenic microorganisms in the food supply chain, there 

is a need to determine the physiological state of these organisms when present on the particular 

foods under certain conditions (Bergholz et al., 2014). Over the past 10 years, studies mostly 

assessed transcriptomics of bacteria (e.g. Escherichia coli, Salmonella, Listeria 

monocytogenes) under conditions simulating those that a pathogen may experience in food 

(Goudeau et al., 2013; Kocharunchitt et al., 2012; Liu and Ream, 2008). In the case of 

mycotoxigenic moulds, a transcriptomics approach could be interesting to study genes involved 

in signaling and mycotoxin biosynthesis pathways and as such to further investigate the still 

largely elusive role of secondary metabolism and infection. A drawback of RNA sequencing is 

the fact that the entire genome of the organisms has to be known. For now, databases with entire 

genome sequences of organisms are already available but many still remain to be elucidated as 

well. However, in the case of P. expansum, the entire genome sequence of three P. expansum 

strains has been reported recently by Ballester et al. (2015). This provides a great source of 

information which may lead to a better understanding of how these regulatory pathways directly 

or indirectly control fungal development and secondary biosynthesis, hence this could help in 

finding control strategies to reduce or eliminate contamination. 
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Strain variability, an important factor influencing patulin contamination 

CHAPTER 5 of this doctoral thesis investigated in vitro the patulin production capacity of a 

large collection of P. expansum isolates and reference strains in function of apple storage 

conditions (temperature and atmosphere). Interestingly, within the same test conditions, it was 

noted that variability between strains had a considerable impact on patulin accumulation. 

Besides our findings, a previous study by McCallum et al. (2002) already reported differences 

in growth rates between P. expansum isolates. 

In general, fungal development and mycotoxin synthesis are subject to multiple intrinsic and 

extrinsic parameters. Moreover, it is worth mentioning that both are differentially influenced 

by a very complex network of parameter interactions. The last decade, predictive microbiology 

emerged as a practical tool in the food industry to predict the behaviour of microorganisms 

under certain conditions, through the development of mathematical models. At first, these tools 

were largely employed for bacterial growth control, however later on they found their 

application in modeling fungal growth as well. In the case of P. expansum, studies have been 

conducted to characterise on the one side growth rate as a function of storage temperature, aw 

and oxygen levels (Baert et al., 2007b; Judet-Correia et al., 2011; Marín et al., 2006) and 

independently on the other patulin production as a function of temperature, pH, and fruit 

varieties (Morales et al., 2008a; Salomão et al., 2009). Recently, Tannous et al. (2015) studied 

in vitro the individual effects of temperature, pH and aw on both the growth and patulin 

production by P. expansum, and subsequently developed a mathematical model which enables 

accurate prediction of optimal and marginal conditions for P. expansum growth. Mostly, the 

development of these predictive models is based on data obtained by one single P. expansum 

strain. However, to accurately forecast its behaviour and predict its potential risks on the food 

sector and consumer health, it is recommended to include various strains as our findings clearly 

indicated that strain variability seems to be a very important factor influencing patulin 

accumulation by P. expansum (CHAPTER 5). As such, the relevance of CHAPTER 5 

additionally lies in the potential application of this diverse collection of patulin producing 

P. expansum strains in validating these predictive models. 
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As mentioned earlier, mycotoxins may have a role as pathogenicity or virulence factors. 

Clarifying how certain fungal strains manage to survive, grow and reproduce without 

mycotoxin synthesis and why their metabolism produces lower oxidative bursts without 

compromising their growth is essential if control over mycotoxins has to be achieved. In this 

regard, future research concerning the role and underlying mechanisms of patulin biosynthesis 

may benefit from using a diverse collection of patulin producing P. expansum strains. 

 

To conclude ... 

The problem of mould and mycotoxin contamination of food and feed commodities is a very 

complex issue subject to a complex network of extrinsic, intrinsic and implicit factors. On top 

of that, one needs to consider the variability and diversity of the moulds themselves. So it is 

imperative to approach these problems in a multidisciplinary way. Within this framework, one 

has to take into account that the outcome of in vitro experiments cannot just be extrapolated to 

the in vivo situation. This emphasises the importance of having reliable and rapid methods, 

which is not always a straightforward matter, available to us. Compared to bacterial infections 

and intoxications, mould and mycotoxin contamination still seems a somewhat neglected area. 

Despite the fact that for years now, they are of high economic burden and may pose severe 

public health risks. Together with the tangible shift in climate change, these problems will not 

simply go away, on the contrary, challenges to prevent them will only increase. Altogether, this 

highlights the relevance of research on the stimuli and molecular regulatory mechanisms 

involved in mould and mycotoxin contamination, and underlies the importance to continue this 

type of work in the future. 
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SUMMARY 

 

The ubiquitous nature of fungi leads to losses worldwide because of deterioration of food and 

feed, as well as infections in plants, humans and animals. Their presence in food and feed 

commodities is undesirable as this often causes spoilage (e.g. off-flavour, discolouration, 

reduced nutritional value), and in certain cases mycotoxin contamination and related public 

health concerns. Despite efforts to control or avoid contamination by moulds and their 

mycotoxins, they remain to occur frequently in food commodities widespread. Chocolate 

confectionery and apples are two important Belgian food products, each characterised by their 

own fungal problems and related economic implications. The aspects are highlighted in 

CHAPTER 1 of this doctoral thesis.  

The correct identification and physiology of those fungi of relevance for specific food products, 

and the mechanisms involved in regulating fungal growth and mycotoxin biosynthesis, are very 

complex and specific, and still remain to be elucidated. Therefore, prevention and control 

strategies can only be successful when the identity and characteristics of the associated 

mycobiota are well known. Hence, the general scope of this PhD thesis were the detection, 

identification and characterisation of the mycobiota associated with chocolate confectionery 

and apples. Within this scope, focus was put on optimizing and developing methodologies 

through the application of a multidisciplinary research approach, i.e. a combination of 

conventional, molecular and/or chemotaxonomical analysis. 

Chocolate confectionery fillings are generally regarded as microbiologically stable, mainly due 

to a low water activity (<0.60) inhibiting microbial growth. Stability of fillings with a aw 0.60-

0.85 is maintained through the general practice of adding either preservatives or alcohol, or by 

maintaining a relatively short shelf life. Increasing consumer demands for high-quality products 

containing less sugar, fat and preservatives direct the industry towards the production of 

innovative formulations. In addition, exportation of these products is of great economic 

importance to the Belgian food industry and requires sufficiently long shelf life. Changes in the 

composition of chocolate confectionery fillings can impede the stability of these products and 

may lead to spoilage by xerophilic fungi. 
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In this respect, the aim of CHAPTER 2 was to test whether the production environment of 

Belgian chocolate confectionery factories and common ingredients of chocolate confectioneries 

could be potential sources of contamination with xerophilic fungal species. In the factory 

environment, the general and strictly xerophilic fungal spore load was determined using an RCS 

Air Sampler device in combination with DG18 and MY50G medium, respectively. In addition, 

four basic ingredients (ganache, fruit fillings, nuts and fondant sugar) of chocolate 

confectionery fillings were examined for fungal spore levels using a direct plating technique. 

Results demonstrated a general fungal spore load in the range of 50-250 CFU/m³ air and a 

strictly xerophilic spore load below 50 CFU/m³ air. These results indicate that rather low levels 

of fungal spores were present in the factory environment. Analysis of the basic ingredients of 

confectionery fillings revealed nuts to be the most likely source of direct contamination. 

Besides detection and enumeration, fungi were also identified to the species level by a 

combination of macro-/microscopic characterisation, and gene sequence analysis based upon 

their β-tubulin and/or ITS region. The most prevalently isolated fungi in the factory 

environment were identified as Penicillium spp., particularly P. brevicompactum. In nuts, the 

most commonly isolated species identified were Eurotium, particularly E. repens. 

Based on the survey study conducted in CHAPTER 2, CHAPTER 3 focused profoundly on 

nuts as  the potential initial source of xerophilic contamination of chocolate confectionery 

fillings. In addition, some preventive measures for reducing the initial fungal contamination on 

walnuts were investigated based on their effect on microbiological load, sensorial quality, and 

oxidative stability. Microbiological analysis of the fungal load on a variety of nuts and their 

corresponding nut-based fillings indicated that walnuts, and the fillings in which they were 

used, were highly contaminated (>2.5 log10 CFU/g). In addition, a challenge test on almond-

based marzipan (aw 0.84 and pH 5.76) showed that the previously isolated common xerophiles 

E. repens and W. sebi are capable of growing in such commodity. E. repens even showed some 

resistance to 0.15% potassium sorbate, whereas spoilage could only be inhibited for over a 

month if 1% ethanol ((w/w) in water phase) was added. Within the framework of finding a 

possible decontamination strategy, the effect of dry and humid thermal treatment of walnuts 

with various heating and drying cycle times was tested. Humid heating completely eliminated 

the initial fungal load, while dry heating did not induce any detectable change. 
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According to sensorial analysis, humid heated and unprocessed walnuts tasted significantly 

different, with a slight indication of preference for the heated walnuts. Moreover, hexanal 

analysis of walnuts demonstrated humid treatment to increase the oxidative stability of walnuts, 

hence, delaying the onset of rancidity during storage. 

Apples are a seasonal product and so, need an enlarged shelf life to allow furnishing the market 

all along the year. Penicillium expansum is a commonly occurring fungal species on apples in 

temperate regions, easily disseminated by different vectors in the orchard and by field 

equipment at harvest. After harvest, apples are transported to storage rooms of packinghouses. 

Long-term storage of apples at low temperature combined with controlled atmosphere (i.e. 

reduced O2 and elevated CO2) is a commonly applied strategy to extend their shelf life. 

However, P. expansum has a psychrophilic nature, allowing the fungus to invade the apple 

during post-harvest storage. Moreover it is capable of producing the mycotoxin patulin, which 

may end up in apples as well as by-products such as apple juice. Therefore, the second part of 

this thesis, focused further on the effect of temperature and atmosphere on patulin biosynthesis 

of various P. expansum strains. 

In vitro experiments studying the underlying molecular genetics of patulin biosynthesis often 

make use of the laboratory reference/simulation medium “Apple puree agar medium (APAM)”. 

Within this context, CHAPTER 4 started with the development and validation of a sensitive 

High Performance Liquid Chromatography-UV (HPLC-UV) method, based on the AOAC 

Official method 2000.02, for the high-throughput analysis of patulin in in vitro experiments for 

P. expansum grown on APAM. The importance of repeating the ethyl acetate extraction step at 

liquid-liquid extraction (LLE) was examined, as well as the extent of patulin degradation during 

the sodium carbonate clean-up. In addition to this alkaline clean-up, the efficiency of using an 

Oasis HLB or C18 cartridge as solid-phase extraction (SPE) clean-up was compared. This 

resulted in a two-step ethyl acetate LLE, followed by an Oasis HLB SPE clean-up, without 

alkaline clean-up conditions. After optimization, the method was fully validated for APAM, 

cloudy apple juice and apple puree. Average patulin recoveries at levels of 100, 500 and 1000 

µg kg-1 of APAM varied between 95% and 113% over three independent analysis days, with 

an interday precision (RSDR) of 5 to 10%. Recovery experiments carried out with the spiked 

apple juice (at 50 µg kg-1) and apple puree (10 µg kg-1) showed average recovery rates between 

80-101% (RSDR = 12%) and 77-100% (RSDR = 9%), respectively. 
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This method was  characterised by a detection limit of 3-4 µg kg-1 and a quantification limit of 

5-8 µg kg-1 for APAM, apple juice and puree. In conclusion, this method is a useful monitoring 

system in the apple industry or for further research on the regulation of mechanisms involved 

in patulin biosynthesis on APAM. 

The analytical method for patulin analysis on APAM developed (CHAPTER 4), was  

implemented to investigate the extent to which each successive step during long-term storage 

contributes to patulin production by P. expansum (CHAPTER 5). Therefore, Belgian apples 

from several orchards/industries were collected and the fungi isolated were identified to the 

species level. Random amplification of polymorphic DNA (RAPD) analysis and β-tubulin gene 

sequencing identified P. expansum and P. solitum as the most prevalent Penicillium species 

associated with Belgian apples. All 27 P. expansum isolates and eight reference strains were 

characterised for their patulin production capacity on APAM after five days growth under 

classical constant temperature and atmospheric conditions. Under these conditions, a large 

range of patulin production levels was observed between the different isolates. Based on this 

phenotypic diversity, five P. expansum isolates and one reference strain were selected for in 

vitro investigation of patulin production under representative conditions in each step of long-

term apple storage. The results indicated that a high spore inoculum leads to a strong patulin 

accumulation already during the first step of long-term storage under cold temperature (1°C) 

combined with CA (3% O2, 1% CO2). Finally, patulin accumulation was highly strain 

dependent and for each separate strain were no significant differences between the storage steps 

observed. 

Whereas CHAPTER 5 focused on the patulin production capacity of a large collection of 

P. expansum strains, CHAPTER 6 investigated the effect of temperature and atmosphere on the 

idh gene expression in relation to the patulin production of P. expansum. The idh gene encodes 

the isoepoxydon dehydrogenase enzyme, a key enzyme in the patulin biosynthesis pathway. 

First, a reverse transcription real-time PCR (RT-qPCR) method was optimised to measure 

accurately the P. expansum idh mRNA levels relative to the mRNA levels of three reference 

genes (18S, β-tubulin, calmodulin), taking into account important parameters such as PCR 

inhibition and multiple reference gene stability. Subsequently, two P. expansum field isolates 

and one reference strain were grown on APAM under three conditions of temperature and 

atmosphere: 20°C – air, 4°C – air and 4°C – CA. 
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When P. expansum strains reached a 0.5 cm and 2.0 cm colony diameter, the idh expression 

and patulin concentrations were determined by means of the developed RT-qPCR and HPLC-

UV method, respectively. This in vitro study showed a clear reduction in patulin production 

and down-regulation of idh expression when P. expansum was grown under 4°C – CA. The 

results suggest that stress (low temperature and oxygen level) caused a delay of the fungal 

metabolism rather than a complete inhibition of the toxin biosynthesis. A good correlation was 

found between the idh expression and patulin production, corroborating that temperature and 

atmosphere affecte patulin production by acting at the transcriptional level of the idh gene. 

Finally, our RT-qPCR developed can be considered as a reliable alternative tool to investigate 

for example the effect of control strategies on the toxin formation in food. 

In general, this PhD thesis made use of a multidisciplinary research approach to 

identify/characterise the mycobiota associated with two food commodities, namely chocolate 

confectionery and apples. A rapid, sensitive and reliable chemical (HPLC-UV) and molecular 

(RT-qPCR) method were developed and proposed as useful research tools in future studies 

aiming to develop new control strategies for patulin contamination in apples. Furthermore, 

these methods along with others (e.g. conventional plating and gene sequencing) were applied 

to gather knowledge on the factors involved in mould and mycotoxin contamination. For 

example, P. expansum exhibited a large strain variability, which seemed an important and not 

to be neglected aspect affecting patulin accumulation. Within the case of chocolate 

confectionery, nuts, and especially walnuts, were highlighted as an important source of fungal 

contamination. Humid thermal treatment offers an interesting solution to reduce this initial 

contamination on walnuts, and hence, extending shelf life of the confectionery products. 
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Het wijdverspreide karakter van schimmels heeft een immens negatieve impact wereldwijd; dit 

in de zin van zowel kwalitatieve achteruitgang van voedsel en voeder, als infecties van plant, 

dier en mens. Bijgevolg is hun aanwezigheid in voedsel en voeder ongewenst aangezien 

ongewenste schimmelgroei vaak aanleiding geeft tot bederf (bvb. afwijkende smaak, 

verkleuring, verminderde nutritionele waarde), en in sommige gevallen zelfs tot mycotoxine 

contaminatie en de daarmee gepaard gaande volksgezondheidsimplicaties. Ondanks de grote 

inspanningen om contaminatie ten gevolge van schimmels en mycotoxines te 

beheersen/vermijden, blijven beide alomtegenwoordig en worden ze regelmatig aangetroffen 

doorheen de voedselketen. Zo ook in zoetwaren en appels, welke van economisch belang zijn 

voor de Belgische voedingsindustrie. Tot op heden hebben beide matrixen eigen schimmel-

gerelateerde problemen en daarmee gepaarde gaande economische gevolgen die oplossingen 

vereisen. In HOOFDSTUK 1 worden deze aspecten belicht. 

De juiste identificatie en fysiologische eigenschappen van voedsel-gerelateerde schimmels, en 

de mechanismen bepalend voor groei en mycotoxine synthese, zijn zeer complex en specifiek, 

en tot op heden nog onduidelijk. Beheersmaatregelen zijn enkel succesvol wanneer de identiteit 

en karakteristieken van de geassocieerde mycobiota gekend zijn. Dit doctoraatsonderzoek 

focust zich op de detectie, identificatie en karakterisering van de geassocieerde mycobiota van 

zoetwaren en appels. Binnen dit kader werd gefocust op de optimalisatie en ontwikkeling van 

methodieken via een multidisciplinaire onderzoeksbenadering, d.w.z. een combinatie van 

conventionele, moleculaire en/of chemotaxonomische analyses. 

Zoetwarenvullingen zijn doorgaans microbiologisch stabiel. Deze stabiliteit is grotendeels te 

wijten aan een voldoende lage water activiteit, de toevoeging van bewaarmiddelen of alcohol, 

of door het aanhouden van een relatief korte houdbaarheid. Toenemende vraag van de 

consument naar zeer kwalitatieve producten met minder suiker, vet en bewaarmiddelen zorgt 

voor een continu veranderende productontwikkeling (zonder alcohol of “clean-label”). 

Daarnaast is export een heel belangrijk economisch facet van de voedingsindustrie. Producten 

dienen daarom een voldoende lange houdbaarheid te kunnen garanderen. 
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Verandering van de receptuur kan ten koste gaan van de stabiliteit en bijgevolg tot bederf leiden 

ten gevolge van xerofiele schimmels. 

Derhalve werd in de eerste plaats een studie uitgevoerd naar de aanwezigheid en prevalentie 

van xerofiele schimmels in de productieomgeving van Belgische zoetwarenbedrijven en in de 

grondstoffen van zoetwarenvullingen. De algemene en strikt xerofiele schimmeldruk in de lucht 

van de productieomgeving werd bepaald aan de hand van een RCS lucht staalname toestel 

gevuld met respectievelijk DG18 en MY50G medium. De aanwezige schimmeldruk in vier 

types grondstoffen (ganache, fruitvullingen, noten en suiker) werd onderzocht door middel van 

een directe uitplatingsmethode. Er werden een algemene en strikt xerofiele schimmeldruk van 

respectievelijk 50-250 KVE/m3 lucht en <50 KVE/m3 lucht teruggevonden. Deze resultaten 

wijzen op een relatief lage schimmeldruk in de productieomgeving van de onderzochte 

zoetwarenbedrijven. Uit het onderzoek rond de aanwezige schimmeldruk in grondstoffen 

bleken de noten een mogelijke bron van contaminatie te kunnen zijn. De gedetecteerde 

schimmels werden verder geïsoleerd en geïdentificeerd tot op soortniveau door middel van een 

combinatie van macro-/microscopische karakterisering en moleculaire sequenering op basis 

van het β-tubulin gen en/of ITS region. Penicillium spp., en meer specifiek de soort P. 

brevicompactum, werden overwegend geïsoleerd uit de lucht van de productieomgeving. Het 

genus Eurotium, en meer specifiek de soort E. repens, werd het meest frequent geïsoleerd uit 

de noten. 

Op basis van de survey uitgevoerd in HOOFDSTUK 2, werd in HOOFDSTUK 3 de focus 

gelegd op noten als potentieel belangrijke initiële bron van schimmelcontaminatie van 

zoetwarenvullingen. Bijkomend werden een aantal beheersmaatregelen uitgetest teneinde deze 

initiële contaminatie mogelijk te reduceren. Deze maatregelen werden onderzocht op basis van 

hun effect op de microbiologische schimmeldruk, sensorische kwaliteit en oxidatieve stabiliteit. 

Uit microbiologische analyse van de schimmeldruk op noten en de noot-gebaseerde 

zoetwarenvullingen bleek dat walnoten, alsook de vullingen op basis van walnoten, het sterkst 

gecontamineerd waren (>2.5 log10 KVE/g). Een challengetest op marsepein (aw 0,84 en 

pH 5,76) toonde aan dat de voorheen geïsoleerde xerofiele schimmelsoorten, E. repens en 

W. sebi, in staat zijn uit te groeien. Daarenboven vertoonde E. repens enige resistentie tegen 

0.15% kalium sorbaat. Enkel toevoeging van 1% ethanol kon een groei-inhibitie van minstens 

een maand waarborgen. 
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In het kader van een mogelijke verwijdering van contaminatie, werd het effect van droge en 

vochtige verhittingen met variërende tijdsintervallen uitgetest op walnoten. Vochtige verhitting 

zorgde voor een volledige reductie van de initiële schimmeldruk, daar waar een droge verhitting 

geen direct detecteerbare verandering teweeg bracht. Op basis van een sensorische triangle test 

bleek dat er wel degelijk een verschil in smaak waarneembaar is tussen de vochtig verhitte en 

onbehandelde walnoten, met een lichte voorkeur voor de vochtig verhitte walnoten. 

Daarenboven toonde analyse van de hexanalconcentratie in vochtig verhitte en onbehandelde 

walnoten aan dat een vochtige verhitting resulteerde in hogere oxidatieve stabiliteit en daaruit 

volgend een uitstel van ranzig worden tijdens bewaring. 

Appels zijn een seizoensproduct dat op de markt beschikbaar dient te zijn gedurende het ganse 

jaar door. De schimmelsoort Penicillium expansum is alomtegenwoordig op appels in 

gematigde gebieden. Deze schimmel wordt zeer gemakkelijk verspreid door allerhande 

vectoren aanwezig in de boomgaard, en door gereedschap gebruikt tijdens het oogsten. Na de 

oogst worden deze appels getransporteerd naar bewaarruimtes. Lage temperatuur in combinatie 

met gecontroleerde atmosfeer (d.w.z. verlaagd zuurstofgehalte en verhoogd stikstofgehalte) is 

een zeer algemeen toegepaste strategie om appels gedurende lange termijn te bewaren en de 

markt te kunnen bevoorraden gedurende het ganse jaar. P. expansum is een psychrofiele 

schimmel, wat toelaat appels te infecteren na de oogst gedurende deze lange-termijn bewaring. 

Daarnaast is de schimmel ook in staat om het mycotoxine patuline te produceren. Patuline kan 

bijgevolg naast appels ook verder in de keten terechtkomen in afgeleide producten van appels 

zoals bvb. appelsap. Het tweede luik van dit doctoraatsonderzoek legde de focus op de effecten 

van temperatuur en atmosfeer op de vorming van patuline door verscheidene P. expansum 

stammen. 

In vitro onderzoek naar de mechanismen van patuline biosynthese maakt vaak gebruik van een 

simulatiemedium van appels, met name “appel puree agar medium (APAM)”. Binnen deze 

context beschrijft hoofdstuk 4 de optimalisatie en validatie van een gevoelige hoge 

performantie vloeistofchromatografie-UV (HPLC-UV) methode, gebaseerd op de AOAC 

officiële method 2000.02, voor de high-throughput analyse van patuline in in vitro 

experimenten op APAM. Tijdens de optimalisatie werd in eerste instantie het belang onderzocht 

van een tweevoudige ethylacetaat extractie tijdens vloeistof-vloeistof extractie. Daarnaast werd 

aandacht geschonken aan de mate van patulinedegradatie tijdens de traditionele 

staalopzuivering op basis van natriumcarbonaat. 
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Naast deze alkalische opzuivering werd de efficiëntie uitgetest van een vaste-fase extractie op 

basis van een Oasis HLB en C18 opzuiveringskolom. Dit resulteerde in een tweevoudige 

ethylacetaat vloeistof-vloeistof extractie, gevolgd door een staalopzuivering met behulp van 

een Oasis HLB kolom in een niet-alkalische milieu. Deze geoptimaliseerde methode werd 

vervolgens gevalideerd voor APAM, appelsap en appelmoes. De gemiddelde 

terugvindingspercentages van patuline aan concentraties van 100, 500 en 1000 µg kg-1 APAM 

waren over drie onafhankelijke dagen tussen 95 en 113%, met een interdag precisie (RSDR) 

van 5 tot 10%. Experimenten uitgevoerd ter bepaling van de terugvinding van patuline in 

appelsap (aan 50 µg kg-1) en appelmoes (10 µg kg-1) vertoonden een gemiddelde terugvinding 

respectievelijk tussen 80-101% (RSDR = 12%) en 77-100% (RSDR = 9%). Een detectielimiet 

van 3-4 µg kg-1 en een kwantificatielimiet van 5-8 µg kg-1 werden vastgesteld voor APAM, 

appelsap en appelmoes. Tot besluit, deze methode is een nuttig hulpmiddel als controlesysteem 

in de appelindustrie of voor verder onderzoek omtrent de regulatie van mechanismen die 

betrokken zijn bij de vorming van patuline in APAM. 

De eerder ontwikkelde analytische methode ter bepaling van patuline in APAM 

(HOOFDSTUK 4), werd geïmplementeerd in HOOFDSTUK 5 ter vaststelling van de mate 

waarin elke opeenvolgende stap tijdens lange-termijn bewaring bijdraagt tot de productie van 

patuline door P. expansum. In dit kader, werd in eerste instantie een staalname uitgevoerd van 

Belgische appels afkomstig van verscheidene boomgaarden/industrieën. Aanwezige schimmels 

werden gedetecteerd, geïsoleerd en geïdentificeerd tot op soortniveau. Op basis van Random 

amplification of polymorphic DNA (RAPD) analyse en β-tubuline gensequenering bleken 

P. expansum en P. solitum de meest frequent geïsoleerde schimmelsoorten geassocieerd met 

Belgische appels. Karakterisering van de patulineproductie van 27 P. expansum isolaten en acht 

referentiestammen op APAM onder klassieke constante temperatuur en atmosferische condities 

duidde op een zeer hoge fenotypische diversiteit. Op basis van deze diversiteit werden vijf 

isolaten en één referentiestam geselecteerd voor een in vitro onderzoek rond de 

patulineproductie onder representatieve omstandigheden van lange-termijn bewaring van 

appels. Dit onderzoek toonde aan dat een hoog schimmelsporeninoculum reeds aanleiding geeft 

tot een hoge patulineaccumulatie tijdens de eerste stap van lange-termijn bewaring onder lage 

temperatuur en gecontroleerde atmosfeer. Tot slot bleek dat er een zeer hoge variabiliteit is in 

patulineaccumulatie tussen verschillende stammen. Significante verschillen werden niet 

waargenomen tussen de verschillende stappen van lange-termijn bewaring. 
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HOOFDSTUK 5 legde de focus op de verscheidenheid aan patulinevorming tussen een grote 

verzameling aan stammen, terwijl in HOOFDSTUK 6 werd gefocust op de idh genexpressie in 

relatie tot de patulineproductie door P. expansum. Idh codeert voor het 

isoepoxydondehydrogenase, een essentieel enzyme betrokken in de biosyntheseweg van 

patuline. In eerste instantie werd een reverse transcription real-time PCR (RT-qPCR) methode 

ontwikkeld ter bepaling van de hoeveelheid idh mRNA in relatie tot de hoeveelheid mRNA van 

drie referentiegenen (18S, β-tubuline, calmoduline). Tijdens de ontwikkeling van deze methode 

werd rekening gehouden met belangrijke parameters zoals PCR-inhibitie en stabiliteit van 

meerdere referentiegenen. Twee P. expansum isolaten en één referentiestam werden 

geïnoculeerd op APAM en geïncubeerd onder verschillende omstandigheden van temperatuur 

en atmosfeer: (1) 20°C – lucht, (2) 4°C – lucht, en (3) 4°C – gecontroleerde atmosfeer. Idh 

expressie en patulinevorming werden bepaald wanneer een koloniediameter van 0,5 cm en 2 

cm werden bereikt. Genexpressie en patulineproductie werden gekwantificeerd met behulp van 

de respectievelijk ontwikkelde RT-qPCR en HPLC-UV methodes. Onder 4°C – gecontroleerde 

atmosfeer werd een sterk verminderde patulineproductie en idh expressie geobserveerd. Dit 

suggereert dat dergelijke stres stimuli (lage temperatuur en laag zuurstofgehalte) geen 

aanleiding geven tot een volledige inhibitie van de patulinevorming, maar eerder tot een 

vertraagd metabolisme. Daar idh expressie en patulineproductie sterk gecorreleerd zijn, blijkt 

dat temperatuur en atmosfeer patulineproductie beïnvloeden op het niveau van transcriptie van 

het idh gen. Tot slot kan gesteld worden dat een betrouwbare RT-qPCR werd ontwikkeld, welke 

kan gebruikt worden als hulpmiddel voor bijvoorbeeld verder onderzoek naar mogelijke 

strategieën ter beheersing van de patulinevorming in voedsel. 

Samengevat, dit doctoraatsonderzoek maakte gebruik van een multidisciplinaire 

onderzoeksbenadering ter identificatie/karakterisering van de geassocieerde mycobiota van 

zoetwaren en appels. Een snelle, gevoelige en accurate chemische (HPLC-UV) en moleculaire 

(RT-qPCR) methode werden ontwikkeld en vooropgesteld als bruikbare hulpmiddelen in 

verder onderzoek gericht op de totstandkoming van succesvolle maatregelen ter beheersing van 

de patulinecontaminatie van appels. Deze methoden in combinatie met andere methoden 

werden ook toegepast om inzicht te verschaffen in de parameters die betrokken zijn bij 

schimmelgroei en mycotoxinevorming. 
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Bijvoorbeeld, er dient gewezen te worden op het feit dat de waargenomen hoge fenotypische 

variabiliteit tussen P. expansum stammen een zeer belangrijk, niet te negeren facet is van 

invloed op de patulinecontaminatie in appels. In het geval van zoetwaren, bleken noten, en 

voornamelijk walnoten, een belangrijke initiële bron van schimmelcontaminatie te zijn. 

Vochtige verhitting werd hier voorgesteld als beheersmaatregel teneinde de initiële 

schimmeldruk van walnoten te minimaliseren en bijgevolg de impact op de houdbaarheid van 

zoetwaren te verlengen. 
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