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Abstract  

In this protocol, a detailed description for the construction and application of an 

operationally simple photochemical microreactor for visible light gas-liquid 

photoredox catalysis is presented. The general procedure includes details of an 

appropriate photochemical setup and representative procedures for the continuous-

flow preparation of trifluoromethylated heterocycles and thiols, and disulfides via 

generation of singlet oxygen. The reported photomicroreactors are modular, 

inexpensive and can be prepared rapidly from commercially available parts within 

one hour even by non-specialists. Interestingly, typical reaction times of gas-liquid 

visible light photocatalytic reactions can be reduced from the hour range in batch to 

the minute range in microflow. This can be attributed to the improved irradiation 

efficiency of the reaction mixture and the enhanced gas-liquid mass transfer in the 

segmented gas-liquid flow regime. 
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Introduction  

Recently, visible light photoredox catalysis has emerged as a new and innovative 

approach to enable small molecule activation. This activation mode relies on the use 

of organometallic complexes1 or organic dyes2,3 to absorb photons and to, 

subsequently, engage in single electron or energy transfer processes with organic 

substrates (Figure 1). Due to the generally mild reaction conditions and the use of 

low energy visible light as an abundant and perennial energy source, photoredox 

catalysis has received an increasing amount of attention and allows for 

unprecedented reaction pathways in high yield and selectivity.  

 

Figure | 1. Representative photocatalysts used in visible light photoredox catalysis. 

However, some inherent limitations are associated with the use of conventional 

batch reactors to enable photochemical transformations. One limitation is derived 

from the attenuation effect of photon transport, which prevents scale up of 

photochemistry in batch reactors (Lambert-Beer law). Herein, photons are 

completely absorbed in the outer rim of the reactor, while the center of the reactor 

receives no light. Consequently, scaling of photochemistry cannot be achieved by 

simply increasing the dimensions of the reactor design.4-5 Another limitation is the 

use of gaseous reactants in conjunction with batch reactors, which result in poorly 

defined interfacial contact areas between the gas and the liquid phase. Due to the 
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difficult handling of gases in batch, such reactants are often avoided by synthetic 

chemists in research laboratories.  

In the last decade, the use of continuous-flow microreactors for both photochemical 

and gas-liquid reactions has gained considerable amounts of attention as it allows 

for a high degree of control over various reaction parameters6-7. Due to the small 

dimensions of microreactors, a homogeneous irradiation of the entire reaction 

medium can be achieved which allows for shorter reaction/residence times, higher 

reaction selectivity and lower catalyst loadings8-9. Moreover, carrying out gas-liquid 

reactions in microreactors results in a segmented flow regime (Taylor flow) providing 

enhanced mixing, increased radial mass transfer and minimal axial dispersion10-13. 

Here, we report a detailed protocol for the construction and application of a gas-

liquid photochemical microreactor starting from commercially available parts. The 

reactor assembly is next demonstrated in the photocatalytic trifluoromethylation of 

heterocycles14-15 and thiols16 using cheap CF3I gas, and in the photocatalytic aerobic 

oxidation of thiols to prepare disulfides using oxygen gas (Figure 2)17-18. The 

protocols provide a safe, reproducible and scalable alternative for the traditional 

batch scale methods. 

 

Figure 2 | Overview of the compounds prepared with the photomicroreactor setup. Typical aerobic 

oxidation conditions (compounds 1-A and 2-A): Thiol, TMEDA (2 equiv.), Eosin Y (5 mol%), Ethanol, 
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Oxygen, White LED. Typical trifluoromethylation conditions (compounds 3-B–6-B): Heterocycle or 

thiol, TEA or TMEDA (2 equiv.), Ru(bpy)3Cl2.6H2O (1 mol%), CF3I (1.2 equiv.), MeCN, Blue LED. 

 

Overview of this protocol  

We describe the construction of a compact photomicroreactor which is broadly 

applicable in wide variety of visible light photocatalytic reactions. The design is 

compact and simple but, nevertheless, highly innovative as it obeys to fundamental 

chemical and engineering principles. In this protocol, we have specifically focused on 

gas-liquid photocatalytic reactions since such reaction conditions pose particular 

technological challenges to synthetic chemistry. However, the design delineated in 

this protocol is highly modular allowing it to serve as a benchmark example for other 

photochemical applications. With minor changes, it can easily be extended to other 

photocatalytic or photochemical protocols, e.g. homogeneous photocatalysis or UV 

mediated photochemistry19-20.  

While excellent commercial systems do exist, our protocol allows researchers to 

rapidly implement the technology in their laboratories as it is simple to assemble, 

inexpensive in construction and flexible in design, which allows to tailor the reactor to 

specific requirements. In addition, variation of reaction conditions and parameters 

(reaction times, gas and liquid flow rates, reagent and catalyst loadings, etc.) can be 

rapidly achieved without reengineering the design. 

In Figure 3, a schematic overview is given of the gas-liquid photomicroreactor setup. 

The microreactor is constructed using high purity perfluoroalkoxyalkane (PFA) 

capillary tubing (0.75 mm ID, 1/16” OD, 1.1 mL volume) and is coiled around a 

disposable plastic syringe coated with refractive aluminum tape. An array of light-
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emitting diodes is wrapped around the reactor and the whole assembly is fixated in a 

larger diameter disposable plastic syringe. The gas flow rate is monitored and 

controlled by a mass flow controller (MFC). The liquid flow rate is controlled by 

syringe pumps. All reactants are mixed in a cross micromixer and the segmented 

gas-liquid flow is introduced in the photomicroreactor. The reaction can be diluted or 

quenched upon exiting the photomicroreactor, allowing to control precisely the 

reaction times. 

 

 

Figure 3 | Schematic overview of a typical continuous-flow photomicroreactor setup for gas-liquid 

photocatalytic transformations, containing (i) Gas supply and pressure regulator (e.g. 

trifluoroiodomethane gas or oxygen gas); (ii) Mass flow controller (MFC) assembly to regulate the gas 

flow (mL min-1); (iii) Mixing zone before entering the photomicroreactor using a cross micromixer; (iv) 

Photomicroreactor – an assembly of a coiled PFA capillary microreactor with a LED array as light 

source; (v) Reaction quenching zone. 
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MATERIALS 

Reagents 

<Caution> All chemicals should be handled carefully and with proper personal 

protection (lab coat, chemical resistant gloves and safety goggles). All 

procedures should take place inside a fume hood; special care should be taken 

when handling volatile compounds/reagents. Solid and liquid chemical waste 

products should be disposed of appropriately, as defined by the local and 

institutional regulations. Solvents used for the preparation of the compounds 

are purchased in anhydrous form and used as received. Anhydrous solvents 

are handled using standard Schlenk techniques, hereby replacing the liquid 

volume by inert gas (argon). Solvents used for the purification of the 

compounds are of reagent quality and do not need to be anhydrous. 

<Caution> Extreme care should be taken when handling gaseous reagents such as 

trifluoroiodomethane or oxygen gas. As these gases are colourless and 

odourless, extra care should be taken to check for possible gas leaks during 

and after constructing the reaction setup.  

 Acetonitrile (Sigma-Aldrich, cat. no. 271004). 

 Ethanol (VWR International, cat. no. 20816.367) <Caution> Ethanol is volatile 

and flammable. 

 Ethyl acetate (Biosolve, cat. no. 05400502) <Caution> Ethyl acetate is volatile 

and flammable. 

 Petroleum Ether (PE, Biosolve, cat. no. 17150202) <Caution> PE is volatile 

and extremely flammable. 
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 Acetone (Sigma-Aldrich, cat. no. 34850) <Caution> Acetone is volatile and 

flammable. 

 Thiophenol (Sigma-Aldrich, cat. No. 240249) <Caution> Thiophenol is a 

volatile and extremely smelly compound. Handle with care and inside the fume 

hood.  

 4-acetamidothiophenol (Sigma-Aldrich, cat. no. A8201)  

 4-mercaptotoluene (Sigma-Aldrich, cat no. T28525) 

 2-furanmethanethiol (Sigma-Aldrich, cat. no. F20408) <Caution> 2-

Furanmethanethiol is a volatile and a smelly compound. 

 Ethyl 1H-pyrrole-2-carboxylate (Sigma-Aldrich, cat. no. CDS000975) 

 5-Methoxyindole (Sigma-Aldrich, cat. no. M14900)  

 α,α,α-trifluorotoluene (Sigma-Aldrich, cat. no. 547948) <Caution> α,α,α-

trifluorotoluene is a volatile compound.  

 N,N,N’,N’-tetramethylethane-1,2-diamine (Sigma-Aldrich, cat. no. T22500) 

<Caution> N,N,N’,N’-tetramethylethane-1,2-diamine is irritating and corrosive. 

 Triethylamine (Sigma-Aldrich, cat. no. T0886) <Caution> Triethylamine is 

irritating and corrosive. 

 Eosin Y (Sigma-Aldrich, cat. no. 230251). 

 Ru(bpy)3Cl2 6H2O (Sigma-Aldrich, cat. no. 224758). 

 Trifluoroiodomethane (Fluorochem, cat. no. 001461) <Caution> 

Trifluoroiodomethane is a gaseous reagent and is delivered from a 5 bar 

pressurized bottle. 

 Demineralized water (produced with a Millipore Water Purification system).  

 Ammonium Chloride (Sigma-Aldrich, cat. no. A9434) 
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 Sodium Bicarbonate (Sigma-Aldrich, cat. no. S5761) 

 37% Hydrogen Chloride (Sigma-Aldrich, cat. no. 258148) <Caution> Hydrogen 

chloride is highly corrosive and very dangerous; handle with care and use 

proper personal protection. 

 Sodium Chloride (Sigma-Aldrich, cat. no. S7653). 

 Magnesium Sulfate (Sigma-Aldrich, cat. no. M7506).  

 Kieselgel 60 for silica gel column chromatography (Fluka, 230–400 mesh, cat. 

no. 80148) <Caution> Inhalation and contact with silica dust should be avoided 

by working in a fume hood and wearing proper personal protection. 

 Thin-layer chromatography (TLC) plates (silica gel matrix with aluminum 

support; Sigma-Aldrich, cat. no. Z193275) <Caution> Do not inhale dust and 

avoid contact with skin and eyes. 
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Equipment 

 Perfluoroalkoxyalkane (PFA) tubing, ID = 0.75 mm (1/16″ x 0.030″ x 50′, IDEX 

Health & Science, Part no. 1632L) 

 PFA tubing, ID = 0.50 mm (1/16″ x 0.020″ x 50′, IDEX Health & Science, Part 

no. 1622L) 

 PFA tubing ID = 0.25 mm (1/16″ x 0.010″ x 50′, IDEX Health & Science, Part 

no. 1902L) 

 Ethylene tetrafluoroethylene (ETFE) Super Flangeless Ferrules (1/16″, IDEX 

Health & Science, Part no. P-259X) 

 Polyether ether ketone (PEEK) Super Flangeless Nut (1/16″, IDEX Health & 

Science, Part no. LT-115X) 

 Polymer Tubing Cutter (IDEX Health & Science, Part no. A-327) 

 Extender torque wrench (IDEX Health & Science, Part no. P-291) 

 PEEK Union (1/16″, IDEX Health & Science, Part no. P-702) 

 PEEK Tee micromixer (1/16″, IDEX Health & Science, Part no. P-714) 

 PEEK Cross micromixer (1/16″, IDEX Health & Science, Part no. P-722) 

 PEEK Quick Connect Luer Adapters (IDEX Health & Science, Part no. P-658) 

 PEEK Shut-off valve (1/16″, IDEX Health & Science, Part no. P-732) 

 Inlet Check Valve (15 psi, IDEX Health & Science, Part no. CV-3301 or CV-

3320) 

 Pressure regulator (0-50 psi, Sigma Aldrich, cat. no. 23883) 

 Stainless Steel Seamless Tubing (1/8″, Swagelok, Part no. SS-T2-S-035-6ME) 

 Stainless Steel Nut (1/8″, Swagelok, Part no. SS-202-1) 

 Stainless Steel Front Ferrules (1/8″, Swagelok, Part no. SS-203-1) 
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 Stainless Steel Back Ferrules (1/8″, Swagelok, Part no. SS-204-1) 

 Stainless Steel Tube adapter (1/4-28 threads to 1/8", Valco Instruments 

Company Inc., Part no. CTA2S6) 

 Light-emitting Diode (LED) Power supply (15W, 230 to 12V, Paulmann Lighting 

GmbH, Part no. 701.99) 

 Blue LED array (3.12 W, Paulmann Lighting GmbH, Part no. 702.11) 

 White LED array (3.12 W, Paulmann Lighting GmbH, Part no. 703.18) 

 Griffon Aluminum Tape High Temperature Roll 50 m x 5 cm (Part no. 6300096) 

 Teflon tape (VWR International, cat. no. 300054) 

 BD Plastic Disposable Syringe 5 mL (VWR International) 

 BD Plastic Disposable Syringe 10 mL (VWR International) 

 BD Plastic Disposable Syringe 20 mL (VWR International) 

 BD Plastic Disposable Syringe 50 mL (VWR International) 

 Digital Mass Flow Controller (calibrated for CF3I) (Kalrez Sealing’s and Plunger, 

Bronkhorst Nederland B.V., Part no. F-201CV-020-AAD-11-K, 4 bar inlet, 1-2 

bar outlet) <CRITICAL STEP> make sure the MFC is fitted with a Kalrez O-ring 

sealing and plunger, to prevent swelling of the parts by the CF3I gas or solvent 

fumes. 

 Digital Mass Flow Controller (calibrated for O2) (Bronkhorst Nederland B.V., 

Part no. F-200CV-002-AAD-22-K, 7 bar inlet, 3 bar outlet) <CRITICAL STEP> 

It is important that the MFC is calibrated for pure oxygen since other MFC, 

including those for air, have lubricants which are flammable in combination with 

pure oxygen.  
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 Display Mass Flow Controller (Bright R/C module, Bronkhorst Nederland B.V., 

Part no. 7.09.200) 

 Power Adapter Mass Flow Controller (Bronkhorst Nederland B.V., Part no. 

7.03.422) 

 Syringe Pumps (Fusion 200 Touch, KR Analytical Ltd) 

 Vacuum Supply (vacuum is generated by a Vacuubrand RZ 6 pump) 

 Argon Supply (Purity ≥ 99.99%, through Schlenk Line) 

 Oxygen source (Purity ≥ 99.99%) 

 GC-MS (Shimadzu GC-2010 Plus and Shimadzu GCMS-QP 2010 Ultra) 

 NMR (Bruker Avance 400, 400 MHz) 

 IR (Shimadzu, MIRacle 10 ATR) 
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Equipment Setup 

 

Photomicroreactor and microfluidic connections. For optimal safety and 

flexibility, the reactor setup is always constructed and operated inside a clean and 

empty fume hood. The photomicroreactor and microfluidic connections to the pumps 

and gas bottles are constructed from commercially available microfluidic parts and 

tubing as depicted in Figure 4-A. Consult Box 1 for the construction of the general 

photomicroreactor. Consult Box 2 for the construction of the complete microfluidic 

setup for either the photocatalytic trifluoromethylation reaction or the aerobic 

oxidation reaction. 

 

Figure 4 | (A) 1: ETFE ferrules, 2: stainless steel rings, 3: PEEK nut, 4: PEEK straight union, 5: PEEK 

cross micromixer, 6: Check valve, 7: PEEK shut-off valve, 8: Extender torque wrench, 9: PFA tubing. 

(B) LED strips (top: coiled; bottom: elongated). 

 

LED Arrays. Light-emitting diode (LED) strips are used as visible light sources 

(Figure 4-B). The width and length of these LED strips are 1.05 cm and 97.5 cm, 

respectively. The number of LED pillars along each strip is 39. Light source 1 (white 

LED) is used for the photocatalytic oxidation of thiols to disulfides, light source 2 

(blue LED) is applied for the photocatalytic trifluoromethylations of pyrroles, indoles 
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and thiols. <CRITICAL STEP> Emission spectral characteristics of the light sources 

should match the absorption profiles, and more specifically the absorption maximum, 

of the chosen photocatalyst. We advise that every new light source is first 

characterized by measuring its emission profile. This can be achieved by using an 

integrating sphere equipped with a Labsphere LPS 100-0260 light detector array, 

which can measure the spectral emission flux. Absorption spectra of catalyst 

solutions can be measured via an UV-VIS spectrophotometer (see Supporting 

Information for emission spectra of the used LEDs in this protocol). 

 

Capillaries / tubing. Transparent capillaries (IDEX Health and Science) of high 

purity perfluoroalkoxyalkane (PFA) are used to construct the microreactors. They 

have a high light transmission of 91-96% for visible light (λ = 400-700 nm). The outer 

and inner diameters of this capillary are 1.58 mm (1/16 inch) and 0.75 mm (0.03 

inch), respectively. For example, a length of 2.5 m PFA tubing will give a total inner 

volume of 1.1 mL. <CRITICAL STEP> The calculation of the capillary volume (Vc) 

can be conducted based on equation 1 (where ID is the inner diameter of the 

capillary, L is the capillary length). 

 

2

2c

ID
V L    

 
          (1) 

Residence times in gas-liquid flow. The actual residence time in reactive gas-

liquid flows is affected by the pressure drop (∆p) over the capillary and the gas 

consumption. A first rough approximation for the residence time utilizes equation 2, 
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in which Vc is the volume of capillary microreactor, QG and QL are the inlet volumetric 

flow rates of the gas and the liquid phase at atmospheric pressure.  

 

c

G L

V
t

Q Q


           (2) 

A higher degree of accuracy can be obtained by including the pressure drop and gas 

consumption. Hereto, we direct the reader to the relevant references in literature18,21. 

In the case of CF3I, special care should be taken. This gas is rapidly absorbed by the 

liquid streams due to a high mass transfer coefficient and high solubility of the gas 

(especially in the presence of an organic base such as TMEDA or TEA). The actual 

residence time of the reactants in the microreactor can be calculated with a modified 

equation (3) in which f is a correction factor for the volumetric gas flow rate which 

can be determined experimentally. For CF3I, the value of f is determined to be 0.02.  

c

L G

V
t

Q f Q


            (3) 

Residence times can be correctly measured experimentally via residence time 

distribution measurements.22   
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Box 1: Construction of the PFA capillary photomicroreactor. <TIMING> ±30 

minutes 

1 |  Wrap aluminum tape around a 20 mL BD plastic disposable syringe (Figure 5-

A). <CRITICAL STEP> This action allows to refract the non-absorbed photons 

back to the transparent microreactor and thus to improve the overall efficiency 

of the reactor setup. 

2 |  Cut 2.5 meter of PFA capillary tubing (1/16″, ID = 0.75 mm, 1.10 mL volume) 

with a polymer tubing cutter and wrap it around the refractive tape coated 

syringe in a spiral fashion (Figure 5-A). <CRITICAL STEP> The volume of the 

microreactor will determine the flow velocity (m min-1), required flow rate (mL 

min-1) and thus throughput (mmol min-1) for a given residence time (min). 

Importantly, the flow rate is directly related to the mass transfer characteristics; 

the higher the flow rate, the more intense the mixing will be in the liquid 

segments, which results in shorter reaction times. 

3 |  Drill two small holes at the end of a larger diameter BD plastic disposable 

syringe (100 mL) (Figure 6), which can fit the 20 mL syringe (wrapped with the 

PFA capillary microreactor) (Figure 5-C). One hole is used to fixate the smaller 

diameter syringe by penetrating the nozzle of the latter through the hole (Figure 

6). Through the other hole, the outlet of the capillary microreactor is pushed 

(Figure 6).  

4 |  Coat the inner wall of the larger diameter BD plastic disposable syringe (100 

mL) with aluminum tape. <CRITICAL STEP> This action allows to refract the 

non-absorbed photons back to the transparent microreactor and thus to 

improve the overall efficiency of the reactor setup. 
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5 |  Coil the LED array so that it fits the larger diameter BD plastic disposable 

syringe (100 mL) (Figure 5-C). <CRITICAL STEP> Make sure that the emission 

profile of the LED array matches the intended photocatalytic process. 

6 |  Place the syringe wrapped with the capillary microreactor inside the larger 

diameter BD plastic disposable syringe (100 mL)  (Figure 5-C). Fix the nozzle 

of the syringe through the drilled hole (Figure 6). 

7 |  Connect the ends of the PFA capillary tubing with PEEK nuts and ETFE 

ferrules (Figures 4 and 8). Use an extender torque wrench to make sure the 

stainless steel rings are pushed completely over the ferrules. <CRITICAL 

STEP> Do not overtighten the ferrules as this can be a source of gas leakage 

and solvent spills.  

<PAUSE POINT> The photomicroreactor is now completed and ready to be 

connected to the syringe pump and gas bottle (Box 2). Analogous to this 

protocol, a series of different reactor assemblies can be constructed, optionally, 

with different capillaries (e.g. different internal diameter, volume, etc.) or LED 

light sources (e.g. one can make a UV photomicroreactor using UV LEDs)19-20. 

The same photomicroreactor can be used as well for homogeneous 

photocatalytic reaction conditions. 

 

Figure 5 | (A) refractive tape around a 20 mL syringe, followed by the PFA microtubing coiled around 
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the syringe (microreactor), (B) large syringe as LED placeholder, (C) LED array and microreactor 

positioned inside the placeholder (finished photomicroreactor). 

 

 

Figure 6 | Drilled holes in the larger diameter syringe used to fixate the photomicroreactor and to fit 

the exit of the microreactor. The nozzle is used to provide air cooling. 

 

 

Mass Flow Controller (MFC). The mass flow controller is assembled according to 

the supplier’s instructions (Figure 7). Note that the MFC instrument should always be 

turned on 30-60 minutes before use. This ensures a correct working of the MFC 

according to the suppliers specifications. <CRITICAL STEP> In literature, there are 

many examples which do not use a MFC to introduce a gas phase in a microreactor. 

In such cases, often an inexpensive needle valve is used to reduce the gas pressure 

and to tune the gas/liquid ratio. However, we recommend to always use a MFC to 

ensure reproducible results, to know the exact reaction stoichiometry and to facilitate 

the startup of the experiments. <CRITICAL STEP> After use, we recommend to 

purge the MFC with a flow of argon or nitrogen gas (e.g. set the gas flow rate to 1 

mL min-1). This ensures that the residual gas and/or solvent fumes are properly 
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removed. We also recommend to disconnect the MFC from the photomicroreactor to 

avoid diffusion of solvent fumes, which might lead to malfunctioning of the MFC. 

 

Box 2: Assembly of the complete microfluidic setup for photocatalytic 

gas/liquid reactions. <TIMING> ±45 min 

1 |  Fit a pressure regulator on the trifluoroiodomethane gas bottle or on the oxygen 

supply. 

2 |  Connect the inlet of the mass flow controller (MFC) to the pressure regulator 

using standard 1/8″ stainless steel fittings and connectors (Figure 7A). 

3 |  Connect the outlet of the MFC to a stainless steel tube adaptor (1/8″ to 1/16″) 

(Figure 7B). 

4 |  Check the gas inlet system (steps 1-3) for any gas leakages. This can be done 

by submerging the connections in soap water and checking if bubbles are 

formed. <CAUTION> Both CF3I and O2 are colourless, odourless and 

hazardous. <TROUBLE SHOOTING> 

 

 

Figure 7 | (A) Connection of the MFC to the gas regulator outlet with a stainless steel tube. (B) 

Connection between the MFC to the PFA capillary tubing with a 1/8″ to 1/16″ adapter and a PEEK 
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union. Note the PEEK shut valve, which can be closed to prevent liquid entering the MFC due to back 

flow. 

 

5 |  Cut several pieces of PFA capillary tubing (1/16″, ID = 0.5 mm) at a length of 50 

cm and connect the ends of the tubing with PEEK nuts and ETFE ferrules 

(Figure 8). Note, these capillaries are used to establish connections; such as, 

connections between syringe pumps and the photomicroreactor. 

6 |  Position a PEEK cross micromixer (1/16″, ID = 0.5 mm) in a central place inside 

the fume hood and fixate with a clamp.  

7 |  Connect the photomicroreactor with the PEEK cross micromixer using a 

capillary prepared in step 5.  

8 |  Position and fixate the photomicroreactor in the fume hood using a clamp. 

<CRITICAL STEP> It is crucial that the photomicroreactor is kept in a stable 

position to maintain a steady flow regime inside the photomicroreactor. 

9 |  Connect an inlet check valve to the PEEK cross micromixer opposite to the 

connection of the photomicroreactor (Figures 9A and 9B); this is the gas inlet. 

<CRITICAL STEP> The use of check valves (also known as a no-return valve 

or one-way valve) prevents the back flow of liquid reaction streams to the mass 

flow controller, which can damage the correct working of the MFC. 

10 |  Connect the stainless steel tube adaptor (step 3) and the check valve with a 

PFA capillary prepared in step 5. Use a PEEK shut-off valve to establish a 

connection between the stainless steel tube adaptor and the PFA capillary 

(Figure 7B). <CRITICAL STEP> When the photomicroreactor is clogged, back 

flow of the liquid stream might occur despite the use of a check valve. The shut-

off valve can be used to prevent the liquid stream to enter the MFC. 
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11 |  Connect two PFA capillaries (step 5) with the remaining inlets of the PEEK 

cross micromixer (Figure 9). Connect the other end with a PEEK quick connect 

Luer adapter. These adapters are used to connect syringes, containing the 

substrate and catalyst solution, to the microreactor assembly (Figure 11C).  

 

 

Figure 8 | (A) Assembly of the PFA capillary tubing with PEEK nuts and ETFE ferrules. (B) Tightening 

the connection with an extender torque wrench. (C) Final nut/ferule assembly. Note that the tubing 

end is flat and aligned with the yellow ferrule. The stainless steel rings must be pushed completely 

over the ETFE ferrules to avoid leakages. The coned end of the stainless steel ring must point 

towards the yellow ETFE ferrule.  

 

Figure 9 | (A and B) Connect the different microfluidic connections to the cross micromixer: Gas inlet 

(1) with check valve (2), liquid stream inlets (3) and the outlet toward the photomicroreactor (4) (Note: 

the arrows show the correct flow direction). (C) Final assembly of the cross micromixer and 

photomicroreactor mounted inside the fume hood and fixated with a clamp. 

 

12 |  The outlet of the reactor can be done in three different ways depending on the 

application (Figure 10): 
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(12-a) Standard outlet: Fit the outlet of the photomicroreactor with a PEEK 

Union and connect with another piece of PFA tubing (step 5), leading to the 

collection vial. <TROUBLESHOOTING> 

(12-b) Product dilution: Fit the outlet of the photomicroreactor with a PEEK 

tee micromixer and connect with another piece of PFA tubing (step 5), leading 

to the collection vial. Fit the other inlet of the tee micromixer with a piece of PFA 

tubing (step 5). Connect the other end of this capillary with a PEEK quick 

connect Luer adapter so it can be connected to a 10 mL syringe containing a 

suitable dilution solvent (e.g. MeCN). <TROUBLESHOOTING> 

(12-c) – Reaction mixture quenching: Similar to step 12-b but with a syringe 

containing a saturated mixture of NH4Cl in H2O which is used to quench the 

reaction mixture.  <TROUBLESHOOTING> 

13 |  Keep the collection vial under an argon atmosphere. <CRITICAL STEP> This 

is especially important for the photocatalytic aerobic oxidation of thiols as the 

reaction proceeds slowly in the presence of oxygen, which might lead to 

seemingly unreproducible results. 

14 |  Connect a rubber hose to the nozzle of the photomicroreactor assembly to 

supply pressurized air from a compressor. This ensures adequate cooling of 

the photomicroreactor to keep the reaction temperature at room temperature.  

15 |  Connect the LED array to the LED power supply. 

16 |  Check all PEEK connections for leakage by running the entire setup with pure 

solvent. In addition, check the system sealing via the soap bubble technique. 

<TROUBLESHOOTING> 

<PAUSE POINT> The entire photomicroreactor setup is now completed and ready 

for use in photocatalytic experiments. 
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Figure 10 | Example of a reactor exit and reaction mixture collection. A PEEK tee micromixer is used 

to dilute or quench the reaction stream exiting the photomicroreactor. 

 

Glassware. All reaction glassware was thoroughly cleaned and dried in the oven at 

110°C overnight prior to use. The glassware was allowed to cool to room 

temperature before use in a desiccator. 

 

NMR. Chemical shifts for 1H NMR spectra are reported relative to the TMS (0.0 ppm) 

or residual solvent peak, for 13C NMR spectra relative to chloroform (77.13 ppm) and 

for 19F NMR spectra relative to α,α,α-trifluorotoluene (-73.62 ppm).  



24 

 

PROCEDURE 

Table 1 | Overview of all the starting materials used in this protocol, the obtained yield range (as the 

average of three independent flow experiments), the flow rates of the liquid stream (QL in mL min-1) 

and gas stream, (QG in mL min-1) (the values indicate the setting on the syringe pumps and the MFC), 

total flow rate inside the photomicroreactor (QT  in mL min-1) and residence time (TR).  

 

98-100% yield 83-87% yield 92-95% yield 96-98% yield 75-77% yield 69-73% yield 

QL1 = 0.058 
QL2 = 0.058 
QG = 0.350 

QL1 = 0.009 
QL2 = 0.009 
QG = 0.036 

QL1 = 0.40 
QL2 = 0.40 
QG = 2.000a 

QL1 = 0.05 
QL2 = 0.05 
QG = 1.500a 

QL1 = 0.05 
QL2 = 0.05 
QG = 1.500a 

QL1 = 0.025 
QL2 = 0.025 
QG = 1.000a 

QT = 0.466 QT = 0.054 QT = 0.84 QT = 0.13 QT = 0.13 QT = 0.07 

TR = 2.4 min TR = 20 min TR = 0.92 min TR = 8.5 min TR = 8.5 min TR = 15.7 min 

Light source: 
White LED 

Light source: 
White LED 

Light source: 
Blue LED 

Light source: 
Blue LED 

Light source: 
Blue LED 

Light source: 
Blue LED 

Diluted at exit: 
EtOH / NH4Cl 

Diluted at exit: 
EtOH / NH4Cl 

Diluted at exit: 
- 

Diluted at exit: 
MeCN 

Diluted at exit: 
- 

Diluted at exit: 
MeCN 

a Trifluoroiodomethane has a higher solubility than oxygen in the solvent; therefore, the gas flow rates 

of trifluoroiodomethane are much higher than those of oxygen. NH4Cl = Saturated ammonium chloride 

in H2O. 
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The photocatalytic aerobic oxidation of thiols to disulfides in continuous 

microflow <TIMING> ±4 hours 

1 |  Add Eosin Y (0.25 mmol) and TMEDA (25 mmol) to an oven-dried 50 mL 

volumetric flask and fill up with ethanol to 50 mL (solution 1-A). 

2 |  Add thiol (25 mmol, consult Table 1) to a second oven-dried 50 mL volumetric 

flask and fill up with ethanol to 50 mL (solution 1-B). 

3 |  Transfer the substrate and catalyst solution from the flasks to syringes 

(syringes 1-A and 1-B, respectively).  

4 |  Prepare two other syringes (50 mL) with EtOH and saturated NH4Cl in H2O, 

(syringes 1-C and 1-D, respectively). 

5 |  Mount the syringes (1-A and 1-B) containing the catalyst and substrate 

solutions on a first syringe pump (Fusion 200 Classic). Fit these two syringes to 

the PFA tubing by means of PEEK quick connect Luer adapters leading to the 

cross micromixer. 

6 |  Mount syringes (1-C and 1-D) containing the quench and extraction solutions 

on a second syringe pump (Fusion 200 Classic). Fit these two syringes to the 

PFA tubing by means of the PEEK quick connect Luer adapters at the 

quenching zone. 

7 |  Turn on the LED light source.   

8 |  Open the pressurized air supply to cool the photomicroreactor <CRITICAL 

STEP> This step keeps the photomicroreactor system at room temperature 

(22±1 ºC), which can be optionally monitored by a thermocouple. 

9 |  Open the oxygen gas supply, pressure regulator and set the MFC (QG, Table 1). 

<CRITICAL STEP> The MFC should be stabilized for at least one hour prior to 

use. This can be done before you prepare the reactant solutions. 
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10 |  Turn on the syringe pumps and set the correct volumetric flow rates (QL, Table 

1) which correspond to a certain flow rate and residence time (QT and RT, Table 

1). Allow the system to reach steady state.  

11 |  Collect the reaction stream exiting the photomicroreactor in a flask (50 mL).   

<CRITICAL STEP> Enough time should be taken to ensure a steady state data 

collection. For example, steady state conditions for sampling can be ensured 

after about 4 residence times. The system stability can be checked by careful 

observation of the hydrodynamics within certain sections of the capillary 

microreactor in the system (e.g. entrance and exit). In other words, the 

segmented gas-liquid flow should be stable, meaning that the slug lengths and 

the gas/liquid ratio should be constant. The total collection time depends on the 

volumetric flow rate of substrate solution. <TROUBLE SHOOTING> 

12 |  Stop the two syringe pumps.  

13 |  Replace the four syringes by four new syringes with cleaning solvents (e.g. 

ethanol), and then run these two syringe pumps again in order to clean the 

photomicroreactor system. <CRITICAL STEP> This step is necessary to 

prevent precipitation of catalyst or product which will lead to microreactor 

clogging. <TROUBLE SHOOTING> 

14 |  Stop the mass flow controller and switch off the LED light source and close the 

cooling air supply in order to shut down the entire microfluidic setup. 

15 |  Dilute the collected reaction mixture with 15 mL EtOAc and extract twice with 

15 mL 1M HCl. Wash the organic phase once with 15 mL of saturated aq. 

NaHCO3.  

16 |  Collect the combined organic layers and concentrate under reduced pressure in 

a rotary evaporator. <CRITICAL STEP> If the products are volatile, it is 
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recommended to use Et2O (bp 34.6ºC at atmospheric pressure) instead of 

EtOAc (bp 77.0ºC at atmospheric pressure). 

17 |  Purify the crude product by flash column chromatography (20 cm Silica, Ø 

column = 2.5 cm, see details in anticipated results section).  

18 |  Collect the combined fractions containing pure product and concentrate under 

reduced pressure to yield the desired product (Table 1). <TROUBLE 

SHOOTING> 

 

Figure 11 | Example of the preparation of a reaction solution (here, Ru(bpy)3Cl2 6H2O in MeCN) (A), 

transferring to syringe (B) and connecting to the microfluidic system (C). Note the absence of bubbles 

inside the syringe. 
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The photocatalytic trifluoromethylation of heterocycles and thiols with CF3I in 

continuous microflow <TIMING> ±6 hours 

19 |  Add heterocycle or thiol (5.0 mmol) and TMEDA or TEA (10 mmol) to an oven-

dried 10 mL volumetric flask and fill up with anhydrous acetonitrile to 10 mL. 

Seal the flask with a rubber septum and purge with argon (solution 2-A). 

20 |  Add Ru(bpy)3Cl2 6H2O (37.5 mg, 0.05 mmol, 1 mol%) to a second oven-dried 

10 mL volumetric flask and fill up anhydrous acetonitrile to 10 mL. Seal the 

flask with a rubber septum and purge with argon (solution 2-B) (Figure 11A for 

solution 2-B). 

<PAUSE POINT> The solutions (2-A and 2-B) can be stored for several days in 

the dark in the refrigerator. 

21 |  Transfer both solutions from the flasks to disposable syringes (syringes 2-A and 

2-B, respectively) (Figure 11B). 

22 |  Mount the syringes (2-A and 2-B) onto the syringe pump (Fusion 200 Classic) 

and connect these two syringes to the PFA tubing by means of the PEEK quick 

connect Luer adapters at the cross micromixer (Figure 11C). 

23 |  Turn on the LED light source. 

24 |  Open the pressurized air supply to cool the photomicroreactor <CRITICAL 

STEP> This step keeps the photomicroreactor system at room temperature 

(22±1 ºC), which can be optionally monitored by a thermocouple. 

25 |  Open the trifluoroiodomethane gas bottle and set the gas pressure regulator to 

4-5 Bar. Set the MFC to the correct value (QG, Table 1). <CRITICAL STEP> It 

is important to open the trifluoroiodomethane gas bottle completely, the MFC 

requires a high inlet pressure to work correctly. <TROUBLE SHOOTING> 
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26 |  Turn on the syringe pump and set the correct volumetric flow rate (QL, Table 1) 

which correspond to a certain flow rate and residence time (QT and RT, Table 

1). Allow the system to reach steady state. <TROUBLE SHOOTING> 

27 |  Collect the reaction stream exiting the photomicroreactor in a flask (50 mL).   

<CRITICAL STEP> Enough time should be taken to ensure a steady state data 

collection. For example, steady state conditions for sampling can be ensured 

after about 4 residence times. The system stability can be checked by careful 

observation of the hydrodynamics within certain sections of the capillary 

microreactor in the system (e.g. entrance and exit). In other words, the 

segmented gas-liquid flow should be stable, meaning that the slug lengths and 

the gas/liquid ratio should be constant. The total collection time depends on the 

volumetric flow rate of substrate solution. <TROUBLE SHOOTING> 

28 |  Stop the syringe pump 

29 |  Replace the four syringes by four new syringes with cleaning solvents (e.g. 

ethanol), and then run these two syringe pumps again in order to clean the 

photomicroreactor system. <CRITICAL STEP> This step is necessary to 

prevent precipitation of catalyst or product which will lead to microreactor 

clogging.   

30 |  Stop the mass flow controller and switch off the LED light source and close the 

cooling air supply in order to shut down the entire microfluidic setup.  

31 |  Disconnect the MFC and purge with argon for at least 1 hour. <CRITICAL 

STEP> This is to prevent swelling of the MFC sealings. 

32 |  Dilute the collected reaction mixture with 15 mL EtOAc and extract twice with 

15 mL 1M HCl. Wash the organic phase once with 15 mL of sat. aq. NaHCO3.  
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33 |  Collect the combined organic layers and concentrate under reduced pressure in 

a rotary evaporator. <CRITICAL STEP> If the products are volatile, it is 

recommended to use Et2O (bp 34.6ºC at atmospheric pressure) instead of 

EtOAc (bp 77.0ºC at atmospheric pressure). 

34 |  Purify the crude product by flash column chromatography (50 cm Silica, Ø 

column = 2.5 cm, see details in anticipated results section).  

35 |  Collect the combined fractions containing pure product and concentrate under 

reduced pressure to yield the desired product (Table 1). <TROUBLE 

SHOOTING> 

 

TIMING 

Steps 1-2, Preparation of the reagents/catalyst solution and the starting material 

solution: ~15 min per sample 

Step 3-6, Transferring the solutions into syringes and mounting them on the syringe 

pumps: ~10 min  

Steps 7-10, Start-up procedure of the microfluidic setup (reaching steady state of 

gas and liquid flows): 2-30 min (residence time dependent, about four residence 

times is required to reach a steady state) 

Step 11, Collecting reaction mixture: 10 minutes to 2 hours (residence time + 

reaction scale dependent) 

Steps 12-14, Cleaning and shutting down microfluidic setup: 15 min 

Steps 15-16, Extracting reaction mixture: 30 min 

Steps 17-18, Purification of crude mixture with column chromatography: 1 hour 

…………………………………………………… 
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Steps 19–20, Preparation of the Reagents/Catalyst solution and the starting material 

solution: ~15 min per sample 

Steps 21-22, transferring the solutions into syringes and mounting them on the 

syringe pumps: ~5 min 

Steps 23–26, Start-up procedure of the microfluidic setup (reaching steady state of 

gas and liquid flows): 2-30 min (residence time dependent, about four residence 

times is required to reach a steady state) 

Step 27, Collecting reaction mixture: 10 minutes to 2 hours (residence time + 

reaction scale dependent) 

Step 28-31, Cleaning and shutting down microfluidic setup: 15 min 

Step 33-33, Extracting reaction mixture: 30 min 

Step 34-35, Purification of crude mixture with column chromatography: 1 hour 
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TROUBLESHOOTING 

Troubleshooting advice can be found in Table 2.  

Table 2 | Troubleshooting. 

Step  Problem Possible reason Solution 

4 (Box 2) Gas Leakage Damaged or worn 
connection parts. 

Use Teflon tape to get a 
tighter fit between the 
connecting parts. 

Replace damaged parts. 

12 (Box 2) Which outlet strategy 
should one choose? 

Different substrate from 
protocol 

Use option 11-B to prevent 
possible precipitation due 
to evaporation at the outlet 
of the microreactor.  

16 (Box 2) Liquid leakage Nuts are not sufficiently 
tightened in the 
connectors. 

Damaged or worn 
connection parts. 

Use an extender torque 
wrench to tighten the 
connection. 

Replace damaged parts. 

11 The reproducibility of 
experiments in terms 
of isolated yield is low. 

The collecting time is 
insufficient and thus the 
sample size is too low 
leading to larger 
experimental errors. 

Collect sample for a 
sufficient amount of time. 
As a rule of thumb, 1 mmol 
scale experiments and 
more are reproducible. 

13 The PFA capillary is 
blocked.  

Precipitation inside the 
PFA tubing.   

This often occurs in the 
startup phase or when the 
microreactor is stored 
without cleaning. Once the 
reaction reaches steady 
state, no clogging was 
observed. 

Wash the capillary with a 
suitable solvent which can 
solubilize the precipitation 
(acetone and water).  

It is of high importance that 
clogging is detected at the 
early stages to be able to 
remediate the situation. 

If irreversible blockage 
occurs, replace the tubing.  

18 Low yield Residence time is too 
short 

Decrease the liquid and 
gas flow rate to extend the 
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residence time. 

25 Desired pressure is 
not reached. 

Gas bottle and 
pressure regulator are 
not opened enough 

Open the gas bottle and 
make sure the pressure 
regulator is functioning 
accordingly. 

  Gas bottle is empty Check pressure regulator 
and if required connect a 
new gas cylinder 

26 MFC does not reach 
steady state. 

MFC is malfunctioning Clean the MFC with 
acetone and purge the 
MFC with argon at a 
flowrate of 1 mL min-1 
overnight. 

  MFC or pressure 
regulator connections 
are leaking 

Check for leaks, use Teflon 
tape to get a tighter fit 
between the connection 
parts 

  Exit is blocked. Pre-test your gas regulation 
system prior to connecting 
the rest of the microfluidic 
setup. 

27 No reaction mixture is 
exiting the microfluidic 
setup. 

Connections are 
leaking 

Make sure the Luer lock 
gives a tight fit  

if broken replace it for a 
new one 

  Syringe is leaking 
(rare) 

Replace syringe. 

  Photomicroreactor is 
blocked – particle 
formation at the start or 
middle of the reactor 

Remove blockage as 
mentioned above.  

  Photomicroreactor is 
blocked – particle 
formation at the end of 
the reactor 

Remove blockage; use a 
solvent stream to dilute the 
reaction mixture after the 
reactor. 

  Photomicroreactor is 
blocked – unsteady 
flow rate. 

Make sure the reactor is 
clean and that possible 
solvent inside is miscible 
with the reaction mixture 

  Photomicroreactor is 
blocked – other 
reasons. 

Pre-test the setup with 
solvent only; check for 
possible leakages. 

 Back flow into the gas 
inlet line 

Photomicroreactor is 
blocked – increase in 

Remove blockage; increase 
the pre-pressure of the gas 
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gas flowrate pressure regulator 

  Photomicroreactor is 
blocked – other 
reasons 

Use a PFA capillary of 250 
µm for the gas line. This 
ensures a high pressure 
drop for liquid back flow. 

 Back flow into the 
liquid inlet lines 

Photomicroreactor is 
blocked – leaking 
syringes 

Remove blockage; replace 
syringes (or use a smaller 
diameter syringe. 

35 Low yield Residence time is too 
short 

Decrease the liquid and 
gas flow rate. 

  The gas concentration 
is too low 

Increase the gas flow rate 

 Poor selectivity Residence time is too 
long 

Increase the liquid and gas 
flow rate accordingly. 
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ANTICIPATED RESULTS 

Diphenyldisulfide (1-A):  

Yield: 98-100% white solid. TLC: (1:40, EtOAc:PE, v/v): Rf = 0.31-0.35. 1H NMR 

(399 MHz, CDCl3): δ 7.48 (td, J = 1.3, 7.5 Hz, 4H), 7.28 (tt, J = 1.3, 7.5 Hz, 4H), 7.21 

(tt, J = 1.3, 7.5 Hz, 2H) ppm. 13C NMR  (100 MHz, CDCl3): δ 127.4, 127.7, 129.3, 

137.2 ppm. IR (ATR, cm-1): 2955, 2920, 2853, 1574, 1474, 1458, 1437, 1020, 735, 

685. Mp.: 58.9-59.3 ºC. GCMS (35 eV, relative intensity, m/z): 218.1 [M+], 109.1 

[C6H5S], 77.0 [C6H5]. 

 

1,2-bis(furan-2-ylmethyl)disulfane (1-B): 

Yield: 84-87% transparent oil. TLC: (1:40, EtOAc:PE, v/v): Rf = 0.29-0.33. 1H NMR 

(399 MHz, CDCl3): δ 7.40 (dd, J = 0.9, 1.9 Hz, 2H), 6.35 (dd, J = 1.9, 3.3 Hz, 2H), 

6.24 (d, J = 3.3 Hz, 2H), 3.70 (s, 4H) ppm. 13C NMR (100 MHz, CDCl3): δ 35.7, 

109.1, 110.9, 142.6, 150.3 ppm. IR (ATR, cm-1): 1500, 1238, 1148, 1121, 1069, 

1009, 934, 808, 727, 708. GCMS (35 eV, m/z): 226.2 [M+], 161.2, 81.1 [C5H5O], 

53.1. 

 

(4-methylphenyl)(trifluoromethyl)sulfane (3-B) 

Yield: 92-95% Volatile liquid (determined by 19F NMR, GC-MS). TLC: (Solvent, Rf): 

(100, PE, v/v): 0.82. 1H NMR: (399 MHz, CDCl3) 7.52 (d, J = 7.9 Hz, 1H), 7.19 (d, J = 

7.9 Hz, 1H), 2.36 (s, 3H). 13C NMR: (100 MHz, CDCl3) δ 141.52, 136.50, 130.37, 

129.85 (q, J = 307.6 Hz), 121.02 (q, J = 1.9 Hz), 21.35. 19F NMR: (377 MHz, CDCl3): 

δ -44.76. GCMS: (35 eV, m/z): 192.1 [M+], 91.0 [C7H7S], 76.1 [C6H4], 69.1 [CF3]. 
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N-(4-(trifluoromethylthio)phenyl)acetamide (4-B) 

Yield: 95-98% off-white solid. TLC: (Solvent, Rf): (10:90, Et2O:PE, v/v): 0.25-0.29, 

(20:80, Et2O:PE, v/v): 0.35-0.37. 1H NMR: (399 MHz, DMSO): δ 10.19 (bs, 1H), 7.68 

(d, J = 8.7 Hz, 2H), 7.56 (d, J = 8.7 Hz, 2H), 2.03 (s, 3H). 13C NMR: (100 MHz, 

DMSO): δ 168.82 , 142.25 , 137.17 , 129.53 (q, J = 308.2 Hz), 119.72 , 115.52 , 

109.54. 19F NMR: (377 MHz, DMSO): δ -42.99. IR: (neat, cm-1): 1665, 1650, 1607, 

1589, 1492, 1468, 1399, 1372, 1317, 1298, 1262, 1183, 1119, 1107, 1088, 1040, 

1014, 968, 960, 949, 836, 827, 796, 761, 753, 716, 706. GCMS (35 eV, m/z):  235.4 

[M+], 166.1 [C8H8NOS], 134.1 [C8H8NO], 69.1 [CF3] Mp.: 185 – 186 °C.  

 

5-methoxy-2(trifluoromethyl)-1H-indole (5-B):  

Yield: 75-77%, colourless oil. TLC: (Solvent, Rf): (10:90, Et2O:PE, v/v): 0.25-0.29, 

(20:80, Et2O:PE, v/v): 0.35-0.37. 1H NMR: (399 MHz, CDCl3) δ 8.04 (s, 1H), 7.57 (d, 

J = 7.6 Hz, 1H), 7.31 (d, J = 7.6 Hz, 1H), 7.24 (t, J = 7.6 Hz, 1H), 7.12 (t, J = 7.6 Hz, 

1H), 2.37 (s, 3H). 13C NMR: (100 MHz, CDCl3) δ 135.34, 128.20, 124.90, 123.60, 

121.68 (d, J = 37.2 Hz), 120.52, 120.22, 114.20 (d, J = 3.1 Hz), 111.70, 29.86. 19F 

NMR: (377 MHz, CDCl3): δ -56.74. IR: (neat, cm-1): 1556, 1458, 1379, 1247, 1219, 

1168, 1109, 1083, 1028, 842, 798, 684. GCMS (35 eV, m/z): 215 [M+], 200 

[C9H5F3NO], 172, 152. 

 

methyl 5-(trifluoromethyl)-1H-pyrrole-2-carboxylate (6-B):  

Yield: 69-73% white solid. TLC: (Solvent, Rf): (10:90, Et2O:PE, v/v): 0.25-0.27, 

(20:80, Et2O:PE, v/v): 0.45-0.5. 1H NMR: (399 MHz, CDCl3): δ 9.97 (s, 1H), 6.81 (s, 

1H), 6.52 (s, 1H), 3.84 (s, 3H). 13C NMR: (100 MHz, CDCl3): δ 161.3, 125.1, 124.6, 

121.8, 115.1, 111.1 (q, J = 2.7 Hz), 52.2. 19F NMR: (377 MHz, CDCl3): δ -60.54. IR 
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(neat, cm-1): 1697, 1440, 1280, 1259, 1155, 1103, 993, 804, 763, 736. HRMS (ESI): 

calculated (C7H6F3NO2 – H+): 192.0272; found: 192.0272. GCMS (35 eV, m/z): 193 

[M+], 178 [C6H3F3NO2], 162 [C6H3F3NO], 69.1 [CF3]. Mp.: 152 – 153 ºC. 
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