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Abstract

This work is motivated by the need to deal with models with high-dimensional input spaces of real variables. One way
to tackle high-dimensional problems is to identify interaction or non-interaction among input parameters. We propose
a new variance-based sensitivity interaction index that can detect and quantify interactions among the input variables
of mathematical functions and computer simulations. The computation is very similar to first-order sensitivity indices
by Sobol’. The proposed interaction index can quantify the relative importance of input variables in interaction.
Furthermore, detection of non-interaction for screening can be done with as low as 4n+2 function evaluations, where
n is the number of input variables. Using the interaction indices based on heteroscedasticity, the original function may
be decomposed into a set of lower dimensional functions which may then be analyzed separately.

Keywords: Sensitivity Analysis, Sobol’ Indices, Problem Decomposition, Interaction, Optimization, Parameter
Estimation

1. Introduction

In today’s engineering, computer simulations are
widely used to understand the behavior of complex sys-
tems and to optimize their input variables to obtain sat-
isfactory designs before actual physical prototypes are
built. The simulators are usually black-box or too com-
plex to render a mathematical approach feasible. Sensi-
tivity analysis enables us to understand how the changes
in input variables affect the variance of the output.

As a part of the sensitivity analysis, identifying in-
teracting and additive-effect variables is important in
design optimization and engineering analysis of black
box models. Two input variables are said to interact if
their effect on the output cannot be expressed as a sum
of their single effects. If the variable is additive (non-
interacting), that variable can be treated independently
from other variables. Then, we can separate our effort
between the analysis of the interacting part which is of-
ten the more subtle and difficult part, and the analysis
of the additive effect part. In this study, we will treat a
methodology to detect and quantify this interaction of
input variables to deterministic black-box models.
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A widely recognized way of quantifying interaction
is by calculating the difference between total effect in-
dices and first order sensitivity indices in variance-based
global sensitivity analysis [1, 2, 3]. In practice, the ef-
fectiveness of this method hinges on the accuracy of the
sensitivity indices, which may demand a very high num-
ber of Monte Carlo sampling.

On the other hand, there are one-at-a-time meth-
ods often used for screening important variables by es-
timating average partial derivative magnitudes of the
outputs obtained from factor levels (i.e., sampling on
grid points) or as perturbations of Monte Carlo sam-
ples [4, 5, 6, 7]. In these methods, interaction effects are
not distinguished from non-linear effects of a particular
input variable [4, 5, 7] or it is computed in a factorial
design manner [6] with a preferred number of factors,
for example 3,6,10,15,...

We propose an approach to decompose a high-
dimensional problem into a set of lower dimensional
problems via novel interaction indices which use the
heteroscedasticity of marginal distributions. Het-
eroscedasticity refers to the circumstance in which the
variability of a variable is unequal across the range
of values of a second variable (a factor) that predicts
it. Calculation of these interaction indices is a simple



extension to Sobol indices [8] and gives information
about particular variable(s) being non-interacting or in-
teracting with other variables. The method uses Monte
Carlo integration, but is very robust against loss of accu-
racy even when the number of random samples is mod-
est. Due to this property, the proposed method can be
used for both quantification and screening of interaction
among input variables depending on the computational
budget.

In the following discussions, E( ) denotes the expec-
tation or the average value of the variable inside the
bracket. Likewise, V ( ) denotes the variance. Some-
times, we put a subscript below V to clarify the source
of the variance. We also employ an indexing convention
−i to denote “all other indices except i ”. For example,

V
x−i

(y|xi)

means variance of y given xi (so the variance of y comes
from the variance of sources other than xi, thus V

x−i
).

2. Sobol’ Indices and High-Dimensional Model Rep-
resentation (HDMR)

Consider a deterministic model

y = f (x)

where x = (x1,x2, . . . ,xn) is a vector of n input variables
and y is the model output. f (x) can be decomposed
into a form referred to as the high-dimensional model
representation.

f (x) = f0 +∑
i

fi (xi)+∑
i< j

fi j (xi,x j)

+ ∑
i< j<k

fi jk (xi,x j,xk)+ . . . (1)

This decomposition of the function is not unique as the
lower order can be selected arbitrarily and the highest
order term can be written as the difference between f (x)
and the lower order terms. However, if the average of
each of the term in the summands of the right hand side
of equation (1) is set to zero (e.g.,

∫
fi(xi)dxi = 0) and

f0 is set to be a constant, the expression is proven to be

unique [8]. The terms are given as follows:

f0 = E (y) (2)
fi (xi) = E (y|xi)− f0 (3)

fi j (xi,x j) = E (y|xi,x j)− fi (xi)

− f j (x j)− f0 (4)
fi jk (xi,x j,xk) = E (y|xi,x j,xk)− fi j (xi,x j)

− fik (xi,xk)− f jk (x j,xk)

− fi(xi)− f j(x j)− fk(xk)

− f0. (5)

The first order sensitivity index for variable xi is given
by

Si =
V
xi
[E (y|xi)]

V (y)
, (6)

and if we calculated the indices to the highest order, we
have

n

∑
i=1

Si +
n

∑
i=1

n

∑
j=i+1

Si j + . . .+S1...n = 1. (7)

The Si∈{1,2,...,n} are called first-order Sobol’ indices or
sensitivity indices [2, 9].

The total effect index [1] includes interaction effects
in addition to the first-order sensitivity indices, and can
be defined as

STi = 1−S−i, (8)

where S−i signifies the sum of all the sensitivity indices
except those that include variances due to xi. For exam-
ple, if i ∈ {1,2,3}, the total effect index of x1 is

ST 1 = S1 +S12 +S13 +S123

= 1−S2−S3−S23. (9)

The total effect index defined in equation (8) is useful in
variable screening. Variables with STi ' 0 can be held
constant at an arbitrary value within its lower and up-
per bounds since it means that the variable’s value does
not contribute to the variance in the output1. The first
order sensitivity indices in equation (6) alone cannot be
used for this purpose if there is a significant amount of
interactions among the variables.

3. Computation

We now formulate a way to compute the first order
sensitivity indices. It is also assumed that the func-
tion f (x) is square integrable in x ∈ Ω where Ω is a

1Strictly speaking, this holds only to a probability [8, Theorem 2].
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n-dimensional domain of integration of real variables.
Uniform distributions are assumed on the inputs, and
inputs are uncorrelated with each other. The total vari-
ance is therefore

D = V
x
( f (x))

=
1
V

∫
x∈Ω

f 2 (x)dx− f 2
0 , (10)

where V =
∫

x∈Ω
dx and dx = dx1dx2 . . .dxn. The aver-

age of f (x) is given by

f0 =
1
V

∫
x∈Ω

f (x)dx.

The multidimensional integral of equation (10) can be
computed using Monte Carlo integration. Similarly,

fi (xi) =
1

V−i

∫
x∈Ω−i

f (x1,x2, . . . ,xn)dx−i− f0, (11)

where dx−i = dx1dx2 . . .dxi−1dxi+1 . . .dxn, Ω−i is the
domain of integration with xi fixed, and

V−i =
∫

x∈Ω−i

dx−i.

We also define V (y|xi) for later use in our discussion,

V
x−i

(y|xi) =

1
V−i

∫
x∈Ω−i

f 2 (x1,x2, . . . ,xn)dx−i− f 2
0 . (12)

This is the variance of y when xi is fixed at a certain
value. Again, in equations (11) and (12), the integra-
tions are performed using the Monte Carlo method, but
this time xi is held constant. By fixing xi at various
values, we can conduct the next integration to obtain
V [E (y|xi)].

Di =V
xi
[E (y|xi)] =V

xi
( fi (xi)) =

1
Vi

∫
xi∈Ωi

f 2
i (xi)dxi

(13)
where Ωi is the domain of integration for xi, and Vi is
the domain interval length of xi. Then,

Si =
Di

D
. (14)

The computation of fi(xi) at different values of xi to
calculate Di in equation (13) is a brute-force approach.
It requires m×(n× l+1) function evaluations, where m

is the number of Monte Carlo samples, n is the number
of input variables, and l is the number of different xi val-
ues that are used to compute equation (13). There is a
more efficient method in which all Si and STi are calcu-
lated in m× (n+ 2) function evaluations [10] provided
that all input variables’ distributions are independent.

Note that estimators have been recently developed to
extend [10] to the case of correlated and dependent in-
puts [11, 12, 13].

4. Interactions in Reliability and Optimization

In the process of optimization, for example, minimiz-
ing y by judicious choice of xi, one would also be inter-
ested in the variance of y given xi, V (y|xi) or more gen-
erally, the distribution of y given xi. Let us denote such
distribution (or probability density function) as p(y|xi).
This information can easily be obtained during the cal-
culation of the first order Sobol’ Indices. This informa-
tion can be used in three ways. First, it tells you for
what value of xi one could possibly have the smallest y.
Second, it tells you if xi has any interaction with other
variables. Finally, it tells you what value of xi would sat-
isfy certain reliability criteria. That is, one could draw
a threshold value for y beyond which these variances
should not exceed.

If some or all of the xi contain uncertainties such that
their intervals cannot be reduced beyond a certain level,
the resulting p(y|xi)s will represent the uncertainties in
the output due to the uncertainties in these xi. For relia-
bility purposes, one may also be interested in max(y|xi)
which is the maximum y (that occurred in Monte Carlo
simulations) given xi.

Figure 1 shows an example of representing p(y|xi) as
box plots. The example shows the spreads of two out-
puts yo, o ∈ {1,2} i.e. p(yo|xi) in vertical axes with
respect to three input variables x1, x2, and x3. We see
by visual inspection that y1 is composed of purely addi-
tive effects from x1, x2 and x3 because all the spreads of
p(y1|x1), p(y|x2) and p(y|x3) as shown by the box sizes
are constant across different values of x1, x2 and x3, re-
spectively (i.e. Homoscedastic behavior). If xi produces
an additive effect in the output, it should only cause a
shift in the mean of p(y|xi) according to equation (1).

On the other hand, x2 and x3 have interactions in y2
because the spreads of p(y2|x2) and p(y2|x3) are not
constant. If the output is determined only by the three
inputs, we can conclude that x2 and x3 interact with each
other in y2. The quadratic effect x1 to y2 is additive since
the p(y2|x1) stays constant. If a variable does not inter-
act, it can be treated independently, with other variables
fixed or vice versa, without any loss of information.
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In the above example, the marginal spread of an out-
put p(y|xi) was expressed as box plots as one would get
from the brute-force approach, but the marginal scatter
plot of y vs. xi as one would obtain from the efficient
computations [10] can also be informative for the three
purposes above.

5. Interaction Indices

In order to quantify the interaction of input variables,
we propose the following interaction index,

I2
i =

V
xi

[
V

x−i
(y|xi)

]
V 2(y)

, (15)

or its square root form,

Ii =

√
V
xi

[
V

x−i
(y|xi)

]
V (y)

, (16)

where we can compute V
x−i

(y|xi) from equation (12). We

can then set a threshold ε below which we say that the
input xi does not have significant interaction with other
input variables and thus can be treated independently.
Note that the interaction index Ii is domain dependent.
Even if the underlying function is the same, different Ω

produce different values of Ii in general. For example,
two input variables xi and x j, with i 6= j, may be inter-
acting if varied substantially but may be non-interacting
if varied by a small amount around certain points. The
ε is typically very small near the arithmetic precision.
Mathematically speaking, Ii = 0 for non-interacting in-
put xi and Ii > 0 for interacting xi.

We can extend this concept to detect two and higher
dimensional subproblems.

I2
i j =

V [V (y|xi,x j)]

V 2(y)
, (17)

I2
i jk =

V [V (y|xi,x j,xk)]

V 2(y)
, (18)

. . .

The indices Ii j can be interpreted as follows. Let i and
j be the indices whose input variable has shown to have
interaction with other input variables: Ii > ε, I j > ε, and
i < j. Then, 0 ≤ Ii j ≤ ε means that input combinations
specified by xi and x j produce an additive effect to the
output y. This means that there is no higher order inter-
action for this particular pair of input variables xi and x j.
In the HDMR expression in equation (1), it means that

a term fi j(xi,x j) is not zero. On the other hand, Ii j > ε

implies second or higher order interactions exist with
some other input variables. For Ii jk and higher follows
the same argument.

6. The Basic Idea Step by Step

To clarify the idea of using heteroscedasticity in de-
tecting (non-)interactions, let us consider the following
two equations

y1 = x1 + x2, (19)
y2 = x1 · x2. (20)

We will carry out the brute-force calculation of

V
xi

[
V

x−i
(y|xi)

]
step by step. The calculation will be done with m = 2
and l = 2.

Let us start with the (contrived) two sample points
given in Table 1. In Table 2, the sample points were

Table 1: Initial two samples

x1 x2 y1 y2
1 2 3 2
3 4 7 12

replaced with x1 = 1 and in Table 3 with x1 = 3.

Table 2: x1 fixed at 1

x1 x2 y1 y2
1 2 3 2
1 4 5 4

Table 3: x1 fixed at 3

x1 x2 y1 y2
3 2 5 6
3 4 7 12

From Table 2 and Table 3 we can calculate V
x−1

(y1|x1)

and V
x−1

(y2|x1) at the two x1 locations, namely 1 and 3.

These are tabulated in Table 4. Note that for y1, its val-
ues were simply shifted by 2 if you compare Table 2 and
Table 3. Thus, in Table 4, V

x−1
(y1|x1) are identical at both

x1 = 1 and at x1 = 3. This is because the x−1 (x2 in this
case) values were identical in both tables and x1 is an
additive contribution for y1. For y2, the multiplicative
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Figure 1: Illustrative Functions: the distributions p(y|xi) of equations 23 and 24.

Table 4: Variances of y1 and y2 at x1 = 1,3

x1 V
x−1

(y1|x1) V
x−1

(y2|x1)

1 1 1
3 1 9

contribution of x1 renders different V
x−1

(y2|x1) between

x1 = 1 and x1 = 3 as observed in Table 4. With this
heteroscedasticity, we say that x1 and x2 are interacting.

Thus, from Table 4 we compute

V
x1

[
V

x−1
(y1|x1)

]
= 0, (21)

V
x1

[
V

x−1
(y2|x1)

]
= 16. (22)

The same procedure can be repeated for x2.
The column change at xi leaves other columns x−i

unchanged (as observed in Table 2 and Table 3), thus
if xi contribution to an output y is additive, V (y|xi) re-
mains unchanged throughout the different values in xi.
This suggests that for screening purposes, we can let
the Monte Carlo samples very low, and in the example
above we had m = 2, the minimum to compute a vari-
ance. Of course, at such low number, we cannot hope to

have an accurate V (y|xi) because the distribution p(y|xi)
will not be represented adequately. However, if xi is
non-interacting,

V
xi

[
V

x−i
(y|xi)

]
should give zero to an arithmetic precision. As m is
increased, V (y|xi) becomes accurate and a quantitative
ordering of interaction among different input variables
becomes possible. Furthermore, this “variance of vari-
ance” is never negative due to its sum-of-squares com-
putations.

The normalizing factor 1/V (y) in equation (16) is
rather arbitrary, one could have equally applied, for ex-
ample,

1

∑
n
i=1 V

xi

[
V

x−i
(y|xi)

]
to mimic probability measures. However, in our opin-
ion, this would not add much to the intuitive appeal and
we have opted for the simpler expression.

A physical interpretation of Ii is as follows. Con-
sider a Dirac delta function δ(xi − a), which is a dis-
tribution of xi and has a probability mass of 1 at xi = a
and zero anywhere else. The interaction index Ii shows
the sensitivity (variance) of V

x−i
(y|xi) with respect to a
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when the original uniform distribution of xi is replaced
by δ(xi− a), a ∈ Ωi. Here, Ωi is simply a real closed
interval between upper and lower bounds of xi. If you
need to know which input variable xi, if made determin-
istic, would make the uncertainty in the output y most
different depending on its input value a, the indices can
be useful.

One may wonder, given a dataset of unknown input
distributions, if Ii = 0 would imply that the covariance
between xi and another x j with j 6= i would also be
zero. However, this is not necessarily the case. An
easy counter example is letting x2 ∼ N(x1,1) in equa-
tion (19). That is, x2 are drawn from a normal distri-
bution with mean x1 with a constant standard deviation
σ = 1. In this case, Cov(x1,x2)> 0 but Ii = 0.

7. Comparison

It is also possible to evaluate interaction via the to-
tal effect indices and first order Sobol indices, STi− Si.
However, there are some important differences between
Ii and STi−Si.

First, STi−Si gives the variance in expected values of
output y due to xi that are not due to the first-order terms
of equation (3) but by the second-order terms of equa-
tion (4) or higher. So it is a combined effect of more
than one input variables to obtain the average output,
for example E(y|xi,x j). Fixing xi and x j with different
combinations of values generates V [E(y|xi,x j)] to ob-
tain Si j. In contrast, Ii is a “first-order” index. Fixing
xi at various values generates various V (y|xi) to obtain
V [V (y|xi)]. For example, consider again Figure 1. From
Figure 1e and Figure 1f one would guess I2 < I3 be-
cause by visual inspection, the difference in variance
given a specific value in xi is greater for V (y2|x3) than
V (y2|x2). STi− Si does not give information about the
relative importance between xi and x j in driving the vari-
ance of y2. On the other hand, Ii does not distinguish the
additive effect and the interaction effect of a single in-
put variable. If xi interacts, it does not by itself give any
indication of the elementary effect that it may have as in
Si.

Second, the detection of non-interaction Ii = 0 is not
sensitive to the accuracy of V (y|xi). As long as V (y|xi)
is computed with the same samples in x−i, V (y|xi) re-
mains constant throughout different values of xi if xi
gives only an additive effect to the output. In other
words, if we have a matrix with m rows of Monte Carlo
samples with n columns corresponding to the number
of input variables and replace column i with a value
for xi, and compute the corresponding outputs to ob-
tain V (y|xi), this variance is identical regardless of the

value of xi when variable xi is not interacting with other
input variables. Thus, Ii should show zero to arith-
metic precision if xi does not interact with other vari-
ables. If the typical output variance V (y|xi) is in the
order of 100, non-interaction would typically produce
V [V (y|xi)]' 10−16 when computations are done in dou-
ble precision. On the other hand, STi− Si is subject to
the Monte Carlo integration inaccuracy.

For first order sensitivity calculations, m is typically
in the order of 1000 or above and l is typically 50 or
above in our experience. However, for screening pur-
poses Ii can be computed with m and l as low as 2 giv-
ing 4n+2 function evaluations. We need two samples to
compute the output variances at two different values of
an input variable and check that the variances of the two
output values do not change with respect to the values
of the input variable.

Lastly, for quantitative uses, the computation of Ii
does not require any further function evaluation (i.e.,
computation of response y) beyond what is required for
the computation of first order Sobol indices Si in brute-
force approach. Computing STi in brute-force approach
is often infeasible (requiring computation of up to n−1
order Sobol indices), but efficient ways exist [10]. Fur-
thermore, surrogate modeling techniques that facilitate
the acquisition of Si and STi exist such as using Poly-
nomial Chaos Expansions [14, 15, 16]. We expect that
there are shortcuts to economize the computation of Ii
as well. This is an open research topic and future work.

8. Examples

In this section, five functions will be analyzed using
the proposed interaction indices and the conventional
method of using the difference between total effects and
first order sensitivity indices of Sobol’. The inputs will
be assumed to be random variables with uniform distri-
butions between upper and lower bounds. The numer-
ical results and plots were obtained using a 32-bit ver-
sion of Python 2.7.5, Numpy 1.8.0, Scipy 0.13.2, and
Matplotlib 1.3.1.

The STi−Si is calculated using the methods described
in Appendix A. The Ii is calculated using the “brute-
force” approach. In both STi−Si and Ii, uniform random
sampling is used for Monte Carlo integrations.

8.1. Illustrative Functions

Consider the following simple example.

y1 = x1 +2x2 +4x3 (23)
y2 = x2

1− x2 + x2x3 (24)
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where−1 < x1,x2,x3 ≤ 1. Figure 1 shows marginal dis-
tributions as box plots. For these plots, Monte Carlo
sampling was performed using the brute-force approach
with m = 200 and l = 20.

The interaction indices are shown in Table 5. The

Table 5: First order interaction indices for the Illustrative Functions

y1 y2
I2
1 0.000 0.000

I2
2 0.000 0.036

I2
3 0.000 0.573

zero entries in Table 5 indicate that corresponding vari-
ables do not interact with other variables. For y2, x1 is
non-interacting, but x2 and x3 are interacting.

Table 6 shows the result of calculating STi− Si with
m= 30200. The column for y1 and the entry for x1 under
the column for y2 show zeros if we round to the second
decimal place. For the y2 column, the entry for x2 and

Table 6: STi−Si for the Illustrative Functions

y1 y2
ST 1−S1 0.00 0.00
ST 2−S2 0.00 0.21
ST 3−S3 0.00 0.21

x3 show the interaction. Equations (25) to (27) show the
expressions of STi−Si for y2. The reason that

ST 2−S2 = ST 3−S3

in Table 6 can be understood from equations (26)
and (27).

ST 1−S1 = S12 +S13 +S123 = 0, (25)
ST 2−S2 = S12 +S23 +S123 = S23, (26)
ST 3−S3 = S13 +S23 +S123 = S23, (27)

because S12 = S13 = S123 = 0. The difference between
Table 5 and Table 6 illustrates the difference between
the two methods of detecting interactions and non-
interactions. The reason for I2 < I3 in Table 5 can be un-
derstood by factoring equation (24) as in equation (28),

y2 = x2
1 + x2 · (−1+ x3). (28)

For the given upper and lower bounds of x2 and x3,
we have −2 < −1+ x3 ≤ 0 and −1 < x2 ≤ 1. Thus, if
we sample x2 and x3 uniformly between -1 and 1, we
have the following. If we let x2 = 1 or −1, then we get
the largest V (y2|x2) with

V [x2 · (−1+ x3)|x2 =±1] =
1
3
. (29)

On the other hand, if we let x3 =−1, then

V [x2 · (−1+ x3)|x3 =−1] =
4
3
, (30)

and V (y2|x3) is largest. Furthermore,

V [x2 · (−1+ x3)|x2 = 0] = 0, (31)
V [x2 · (−1+ x3)|x3 = 1] = 0. (32)

Thus,
I2
3

I2
2
=

V [V (y2|x3)]

V [V (y2|x2)]
=

42

12 = 16, (33)

which confirms Table 5.

8.2. Ishigami Function

Ishigami function [17, 18] is a three-variable function
with an interaction between two of its input variables.

y1 = sinx1 +asin2 x2 +bx4
3 sinx1 (34)

where −π < x1,x2,x3 < π. In this paper, we set a = 7
and b = 0.1.

Figure 2 confirms visually that x1 and x3 are the in-
teracting variables with their heteroscedastic behaviors.
Figure 3 shows the distribution of values of ST i−Si and
Ii of 20 independent runs for the function (Appendix B).
As stated before, STi−Si is calculated with m× (n+2),
and Ii with m× (n× l + 1) function evaluations. Three
different settings are tried out with different values for
m and n. The difference in the values of m between the
two methods is to make two methods perform about the
same number of function evaluations.

As can be observed in Figure 3a to Figure 3c, ST i−Si
loses accuracy as m becomes smaller. At a low number
of m such as in Figure 3c, it would be impossible to
detect interactions happening between x1 and x3 or the
additive effect of x2. On the other hand, for Ii as in
Figure 3d to Figure 3f, even though their values become
less accurate as m is decreased, the non-interaction of
x2 can clearly be detected by setting a threshold ε, for
example ε = 10−9. We also see the relative importance
of x3 compared to x2 in Figure 3d and Figure 3e in terms
of variance of distribution p(y|xi) or V

xi
[V
x−i

(y|xi)].

8.3. G-Function

Sobol’s G-function [19, 20, 10] is a test function for
which global sensitivity can be controlled via its param-
eters. We use an eight-dimensional setting described
in [20].

y1 =
n

∏
i=1

gi(xi) (35)
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Figure 2: Ishigami Function: distributions of p(y|xi) or the marginal views
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Figure 3: Ishigami Function: box plots show the distribution of indices values of 20 runs.
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where

gi(xi) =
|4xi−2|+ai

1+ai
, 0≤ xi < 1, (36)

with n = 8, and {ai} = {0,1,4.5,9,99,99,99,99}. For
xi with ai = 0, the variable is very important. On the
other hand, if ai = 99, xi’s effect is negligible, but still
interacting with other variables. In Figure 4, we see that
Ii cannot reliably quantify relative importance of each
variable when m is very low as observed in Figure 4f.
However, we can still see that all the variables from x1 to
x8 that they are all interacting since Ii > 10−6� 10−16.
On the other hand, Figure 4c shows that STi− Si is too
unreliable at this number of samples.

8.4. Rosenbrock - Sphere Function

This function is simply a combination of two famous
functions. We set the first five dimensions to be the in-
puts to the Rosenbrock function and the remaining five
to be the inputs to the sphere function.

y1 =
bn/2c−1

∑
i=1

[
100(xi+1− x2

i )
2 +(1− xi)

2]
+1000

n

∑
i=bn/2c+1

x2
i (37)

where −10≤ xi ≤ 10, and n = 10.
For this function, x6 to x10 have no interactions while

the first five variables have interactions. We see in Fig-
ure 5a that STi−Si cannot provide a reliable quantitative
information about interaction, even at fairly high num-
ber of function evaluations: 33500×(10+2) = 402000.
The small interaction values make it difficult to be de-
tected under Monte Carlo integration accuracy. On the
other hand, Figure 5d to Figure 5f show that, for Ii, non-
interacting variables remained discernible, even if the
accuracy of indices deteriorated (as evidenced by the in-
crease in the spread of box plots).

8.5. Artery Simulation

In this example, we investigate an application of our
method to a physics-based problem of parameter identi-
fication. The simulation code we use was developed by
Degroote et al. [21]. This code has recently been used
as an example problem for Gradient Enhanced Krig-
ing [22] since the function exposes the gradient as well
as the objective value. For our purpose, we will ignore
the gradients and treat it as a scalar function with vector
input consisting of the parameters we want to identify.

The code simulates the hemodynamics of the arte-
rial system as one-dimensional fluid-structure interac-
tion problem. Figure 6 shows a schematic of an axisym-
metric model of the artery system along with its bound-
ary conditions. The modeled blood flow in an artery is
the unsteady flow of an incompressible, inviscid fluid, in
a straight, flexible tube. The flow rate at the inlet is pre-
scribed as a function of time. The outlet has velocity ex-
trapolated using the velocities of the last two segments
and relates to the output pressure using the Windkessel
model [23, 24]. The Windkessel model represents the
hemodynamics of the circulation downstream. Its dy-
namics is expressed using an electrical circuit analogy.
A so-called generalized string model is applied to the
structure. This is a linear elasticity theory for a thin
cylindrical tube with membrane deformations [25, 26].

In this exercise, the inputs xi are the modulus of elas-
ticities of the artery at n− 1 segments and the value of
capacitance of the downstream boundary condition, to-
taling n input variables. We let n = 20. The output y is
the sum of squared error between the simulated values
and reference values (a priori obtained by the same sim-
ulation code in this example) of the radii of the artery
at these segments. The sum y is over all time steps and
all artery segments. This sum y is normalized so that it
will not exceed 1. Exact match in time histories of radii
between the given reference values and the simulation
would give zero in the output. In a real situation, the
reference values of radii would come from non-invasive
measurements such as from ultrasound imagery.

Thus, the function we are analyzing can be expressed
as

y = f (T,x),

where T is the matrix containing reference values of the
radii of all n−1 segments for all timesteps, and x is the
vector containing input variables xi. The T is given, and
we sample x to see whether its elements interact to ob-
tain the output y. We pretend that we do not know the
input x that generated the reference time histories of the
radii T, but have a rough idea to form the domain of
the function. Specifically we create a ± 50% interval
around nominal values E0 and C0 (Table 7). We inves-
tigate how the input variables interact to produce (the
sum of errors in) the output. The inputs xi are scaled to
take values between -1 and 1 such as the following.

Ei = E0

(
1+

1
2

xi

)
, i ∈ {1, · · · ,n−1}, (38)

C = C0

(
1+

1
2

xn

)
, (39)

where Ei is the modulus of elasticity of n− 1 artery
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Figure 4: G Function: box plots show the distribution of indices values of 20 runs.
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Figure 5: Rosenbrock - Sphere Function: box plots show the distribution of indices values of 20 runs.
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segments and C is the capacitance in the Windkessel
model representing the compliance of the arterial sys-
tem. Table 7 show the parameter values used in the
artery model.

C Rd

Rp
h

l
r

Figure 6: The diagram of an artery model with blood flowing
in from left with prescribed time-dependent velocities and flow-
ing out at the right with the Windkessel model pressure. The
segments (eight in the figure), the radius r, the wall thickness h
and the length l are shown. The prescribed inlet flow rate is
given by u0(t) = 0.23+0.21sin

(
2π

t
tb

)
+0.11cos

(
4π

(
t
tb
−0.2

))
+

0.07cos
(

6π

(
t
tb
−0.2

))
, where tb is the pulse period.

Table 7: Parameter values used in the artery model

r0 3×10−3 m E0 4×105 Pa
h 3×10−4 m C0 6.35×10−10 m3/Pa
l 0.126 m Rd 1.768×109 Pa s/m3

tb 1 s Rp 2.834×108 Pa s/m3

The results of computations of STi − Si and Ii are
shown in Figure 7. The computation time to obtain Fig-
ure 7a and Figure 7c combined was 233412 seconds or
approximately 65 hours on a laptop computer with In-
tel Core2 Duo 2.8 GHz CPU and 4.0 GB RAM. For the
computation of Figure 7b and Figure 7d combined, the
elapsed time was 2552 seconds or about 43 minutes on
the same computer.

For this problem, one would expect that all param-
eters have interactions. However, STi − Si values in
Figure 7a and Figure 7b were not consistent enough
throughout the 20 runs to show the interactions of elas-
ticities of the arteries, with many of the indices show-
ing below zero values. On the other hand, we obtained
Ii > 10−6� 10−16 in Figure 7c and Figure 7d and one
would be able to confirm the interactions.

The capacitance or the compliance parameter C (at
i = 20) gave markedly higher values for both STi− Si
and Ii in Figure 7a and Figure 7c. This can be un-
derstood from the fact that the parameter is part of the
downstream boundary condition affecting the time his-
tories of radii of all the 19 upstream segments. In either
case, the spread of the boxes indicates that the numbers
of m in Figure 7a and Figure 7c were not large enough
to show the relative importance of interactions among

the elasticities of the artery segments. The same holds
for smaller m. With Figure 7b and Figure 7d, neither
STi− Si nor Ii were able to capture reliably the salient
importance of the capacitance parameter (i = 20).

9. Discussion and Outlook

As can be seen in Figure 3 and Figure 4, Ii and STi−Si
do not necessarily give a consistent ranking of impor-
tance (i.e., importance ordering of interacting input vari-
ables differ between the two methods). This is due to the
fact that the indices evaluate the interaction in different
ways as explained in Section 6 and 7. In Ii, it quanti-
fies how sensitive the output variance is if we fix xi to
a value “a” rather than another value “b”, for example.
On the other hand, STi−Si quantifies the uncertainty in
output remaining after subtracting the main effect un-
certainty. Therefore, if the parameter xi is uncertain by
nature the more relevant interaction measure would be
STi− Si. However, if we can turn xi into a determinis-
tic variable and we can choose its value, Ii can give an
appropriate measure. The implication of this difference
merits further studying.

In practical situations in which the calculation of y
given an input vector x is expensive, the computation
of variance based sensitivity indices and quantitative in-
teraction analysis of input variables may be prohibitive
due to the number of model evaluations needed to do
the Monte Carlo integration. In such cases, fitting sur-
rogate models to the dataset computed by the original
model may be useful. Surrogate models [27, 28] are
approximations to the original function and are much
cheaper to compute than the original model. It is usually
fitted to a finite number of input-output data obtained
from the original model (usually a complex simulation
model). Kriging and Radial Basis Functions are some of
the popular surrogate models performing interpolations.

There are also regression methods based on HDMR
[29, 30, 31]. The basis functions in these are polynomi-
als. The representations are usually truncated at second
order or so, thus ignoring higher order terms and inter-
actions. Let us denote the output produced by the sur-
rogate model as ŷ. We can compute the indices based
on ŷ’s. However, information about interactions may be
inaccurate due to the approximate nature of the surro-
gate model. Furthermore, interpolating surrogate mod-
els are usually not very scalable to high-dimensional
problems. Our proposed method could be applied to the
high-fidelity model for screening purposes, and poten-
tially for determining what interaction terms to include
in HDMR based regressions. The same method could
then be applied for quantitative purposes in the reduced
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Figure 7: Artery fluid-structure simulation for model calibration of 19 elasticity parameters (i ∈ {1, · · · ,19}) and a downstream compliance param-
eter (the capacitance, i = 20): box plots show the distribution of index values of 20 runs.

problem (possibly on a surrogate model). Further re-
search would be beneficial to see the actual merit of this
approach.

10. Conclusion

The interaction index exposes each variable’s impor-
tance in influencing the variance in the output through
interaction. Its accuracy does not directly depend on
the accuracy of the Monte Carlo integration, but on
the change in the sample marginal distribution or het-
eroscedasticity. The examples showed its robustness
in detecting and quantifying interactions among input
variables. This is expected to be useful in (robust) op-
timization and surrogate modeling typical in engineer-
ing analysis and design. Further application to indus-
trial problems is needed to understand the effectiveness
of the proposed index. Also, further research would be
useful to exploit the concept described in this paper to
develop a surrogate model assisted optimization algo-
rithm that is scalable to high-dimensional problems.
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Appendix A. Monte Carlo Estimation of Indices

In the following, we give the Monte Carlo estimation
of the indices. The method for Ii follows the so called
“brute-force” method that would entail a double loop in
a computer code. We consider an n-dimensional unit
hypercube domain for notational brevity. Let A and B
be two matrices with uniform random value elements
between 0 and 1. The two matrices have the size of m
rows and n columns. Let j and i be row and column
indices, respectively. The notation AB

(i) means that all
columns are from A except column i which is from B.
For total variance of output y, we can use

D' 1
2m−1

2m

∑
j=1

f (C)2
j − f 2

0C
(A.1)

where C is the concatenated matrix of A and B with 2m
rows and n columns and f0C is the mean of f (C) j, or
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alternatively:

DA ' 1
m−1

m

∑
j=1

f (A)2
j − f 2

0A
, (A.2)

DB ' 1
m−1

m

∑
j=1

f (B)2
j − f 2

0B
, (A.3)

DAB ' 1
2m−1

2m

∑
j=1

f (C)2
j

− 1
m−1

m

∑
j=1

f (A) j f (B) j, (A.4)

where f0A and f0B are the mean of f (A) j and f (B) j,
respectively. In our calculation of Si and STi, we used
equation (A.1). The best-practice [10] recommends to
compute the Di in equation (13) as in the following.

Di '
1

m−1

m

∑
j=1

f (B) j

(
f (AB

(i)) j− f (A) j

)
(A.5)

Thus, first-order sensitivity index is

Si =
Di

D
.

For total effects,

STi '
1

2D(m−1)

m

∑
j=1

(
f (A) j− f (AB

(i)) j

)2
. (A.6)

Let k be the index of l levels of xi. We designate kth
level of xi as xik and matrix A with ith column replaced
by element xik as A(i)

xik . Then, interaction indices can be
computed from

V
xi

[
V

x−i
(y|xi)

]
' 1

l−1

l

∑
k=1

(
1

m−1

m

∑
j=1

f (A(i)
xik)

2
j − f 2

oA

)2

−µ2
V ( f (A(i)

xi ))
(A.7)

where µ
V ( f (A(i)

xi ))
is the average variance of f (A(i)

xi ) when

xi is varied through l levels. Then, I2
i can be obtained

by dividing the result from equation (A.7) by D2
A.

Appendix B. Sample Size for Box Plots

Our objective in the box plots was not to support any
significance tests, but to show qualitatively the prob-
lems that may arise. The number of independent runs
was not determined on statistically rigorous grounds,
but by the desire to keep the computational costs to an

easily manageable level. There seems to be no theo-
retical foundation of how large the sample size for box
plots should be, except that it should be at least 5 [32].
There is no universally agreed method of computing
the box boundaries. We employ the Tukey-Style box
plots as implemented in the Python module Matplotlib,
in which the whiskers extend up to 1.5 times the In-
ter Quartile Range. The choice of 20 independent runs
of STi− Si and Ii estimations to generate the box plots
in Figure 3, 4, 5, and 7 was determined taking into ac-
count the guidelines given by Krzywinski and Altman
[32] and Minitab Express Support [33].
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