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Abstract

In engineering design, a set of potentially competitive designs is conceived in the early part of the design process. The
purpose of this research is to help such a process by investigating algorithm that enables approximate identification
of a set of inputs of real variables that return desired responses from a function or a computer simulation. We explore
sequential or adaptive sampling methods based on Self-Organizing Maps (SOM). The proposed method does not
rely on parametrized distributions, and can sample from multi-modal and non-convex distributions. Furthermore, the
proposed merit function provides infill characteristics byfavoring sampling points that lay farther from existing points.
The results indicate that multiple feasible solutions can be efficiently obtained by the new adaptive sampling algorithm.
The iterative use of the SOM in density learning to identify feasible or good designs is our new contribution and it
shows a very rapid increase in number of feasible solutions to total number of function evaluation ratio. Application
examples to planing hull designs (such as in powerboats and seaplanes) indicate the merits of the feasible region
approach to observe trends and design rules. Additionally,the well distributed sampling points of the proposed method
played favorable effect in improving the prediction performance of a classification problem learned by Support Vector
Machine.
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1. Introduction

In today’s engineering, it is common practice to use
computer simulations to understand the behavior of
complex systems and optimize their parameters to ob-
tain satisfactory designs before building actual physical
prototypes. The goal of an engineer is not only to opti-
mize the systems, but also to understand what makes a
design good. Engineers may also need to deal with sim-
ulation models that may not represent all the effects nec-
essary to make a right decision. The question - particu-
larly in the early stage of the design process - is often not
about finding the best parameter values, but establishing
what parameter values would generate a satisfactory de-
sign. At a more pragmatic simulation level, engineers
often confine the simulation runs to parameter settings
for which results are trustworthy [1]. For example, a
simulation may crash or its solution may not converge.
Such information may not be available until the simula-
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tion is running. Furthermore, there are widespread in-
centives to reduce the number of simulation runs since
high fidelity simulations often require a lot of time and
computational resources as evidenced in the research of
surrogate model based optimization [2, 3, 4] and multifi-
delity optimization [5, 6] methods. Our research is mo-
tivated by situations in which efficient identification of
diverse designs satisfying minimum specifications and
understanding about the problem are more important
than finding an accurate single optimal solution.

We propose a new adaptive sampling algorithm that
uses a Self-Organizing Map (SOM) [7, 8] to per-
form importance sampling: Self-Organizing Map Based
Adaptive Sampling (SOMBAS). The fundamental idea
is an algorithm that learns to select new samples in the
region of interest, using the density learning mecha-
nism in SOM. It is similar to Monte Carlo Optimization
methods such as Probability Collectives [9] and Cross-
Entropy Methods [10] or Subset Optimization meth-
ods [11, 12]. However, we do not use parameterized
probability density functions to represent solutions. In-
stead, SOM is used to obtain a set of solutions as rep-



resented by the weight vectors in each cell of the map.
SOM represents a densely sampled region as a larger
area on the map than a sparsely sampled region. There-
fore, a weight vector can be considered as being anal-
ogous to an instance of a random vector drawn from
a probability density distribution. Furthermore, these
vectors are mutated to improve diversity. The training
set can be iteratively enriched with, or replaced by, new
samples that exhibit desirable responses (or objective
values). SOM is retrained in each iteration with the up-
dated training set. To enhance uniform sampling in the
region of interest, a new merit function is also proposed.
The flowchart of SOMBAS is shown in Fig. 1.

The idea of using the weight vectors as candidate so-
lutions can also be seen in Liukkonen et al. [13]. They
train SOM from a set of experiments and look for a best
candidate solution from the SOM weight vector. The
chosen weight vectors are taken as representing an av-
erage solution in their respective neighborhoods of good
solutions. However, their method does not entail further
sampling, and does not have the density learning notion.
Our new method substantially extends the idea by mak-
ing the search process adaptive (i.e. iterates to further
explore good solutions).

A preliminary version of SOMBAS was presented
in Ito et al. [14]. Current work investigates the scala-
bility of SOMBAS to high-dimensional problems and
application to a conceptual design example giving extra
insights of the parameters on the results.

SOMBAS does not entail any modification of SOM
just as in Kita et al. [15]. Therefore, different implemen-
tations of SOM or other density learning algorithms can
be used instead. It focuses on interesting regions of the
input space by modifying the sample densities. While
Kita et al. use SOM to do clustering (niching), we use
SOM to generate new samples according to the density
of its training samples. Their paper shows its advan-
tage in multimodal functions and relative weakness in
non-separable unimodal functions. Our algorithm, on
the other hand, shows no such tendency.

Couckuyt et al. [16] and Gorissen et al. [17] have
proposed a sequential sampling approach that samples
uniformly from the region of interest specified by up-
per and lower bounds on the output. They extended the
Efficient Global Optimization (EGO) [18] and used pre-
diction variances to determine new sampling points that
would likely produce an output in the desired range and
away from existing samples. The fundamental differ-
ence between their work and this paper is that we do not
fit interpolating surrogate models that require optimiza-
tion of the surrogate model hyperparameters. In SOM-
BAS, no optimality on SOM training is imposed and a
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Figure 1: High level flowchart of SOMBAS.

user can specify the number of training iterations. Our
novelty is in the application of SOM in adaptive sam-
pling scheme. This enables us to sample from distri-
butions without the need to parametrize them. Further-
more, SOM is scalable to high-dimensional input space.

Emmerich et al. [19] and Ulrich and Thiele [20] have
proposed algorithms with identical objectives as SOM-
BAS. They propose diversity measures in their evolu-
tionary algorithms and explicitly optimize for this mea-
sures. However, their methods involve multidimen-
sional integrations or matrix inversions that would make
the algorithms difficult to apply in high-dimensional
problems. In SOMBAS, diversity is kept by a simple
merit function that takes the distance to the nearest-
neighbor into account and a mutation algorithm.

2. Self-Organizing Map Based Adaptive Sampling
(SOMBAS)

We use Self-Organizing Maps’(SOM) weight vectors
as a representation of a sample distribution. Typically,
SOM is represented as a two-dimensional array of cells
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(be it hexagonal or square shaped). Each of these cells
has a weight vector associated with it. In this work, the
weight vector is a set of continuous design variables that
represents an instance of a possible new solution. We
initially assign random numbers to the vector elements.
Then, the weight vectors are learned from a given set
of training samples. The trained weight vectors can be
considered to be a finite sample representation of the
training sample distribution. The weight vectorsw j are
updated using the following equation for a given train-
ing samplet.

w j(k+ 1) = w j(k) + hc j(k)
[

t(k) − w j(k)
]

, (1)

where j is a spatial index that identifies the cells in
SOM,k is the training iteration index,hc j is a neighbor-
hood function that depends on the distance betweenwc

andw j on the map wherewc is the closest weight vec-
tor to the training samplet(k) in the Euclidean sense.
The neighborhood function decreases as the distance
between the cells becomes far apart on the map. Thus,
given a training sample and the closest matching weight
vector, the farther cells on the map receive less influ-
ence of the weight update. The shape and magnitude of
hc j(k) are changed ask increases in such a way that the
second term (the weight update term) on the right-hand
side of equation (1) reduces the radius and magnitude of
influence.

Algorithm 1 shows a high-level description of the
Self-Organizing Map Based Adaptive Sampling. In
each iteration, the trained Self-Organizing Map (SOM)
produces new solution candidates and their correspond-
ing objective values. Weight vector selection is based
on these estimated values. Perturbations are applied
to these selected vectors, and their objective values are
computed, replacing the estimated values. Updating of
the training set is performed and a subset of these se-
lected samples are included in the training set to train
the SOM of next iteration.

The probability of a weight vector being selected de-
pends on how close its objective value estimate is to the
known smallest value. Note that the objective values in
the weight vectors of SOM are estimates. The selection
condition is

r < exp

(

ymin − ŷ
T

)

, (2)

where 0≤ r < 1 is a random number drawn from a uni-
form distribution,ymin is the smallest output in the train-
ing sample, and ˆy is the estimated objective value from
the weight vector. The temperature 0.01 ≤ T ≤ 10 de-
fines how selective the condition is and a smaller value

Algorithm 1 SOM BASED ADAPTIVE SAMPLING

1: GenerateN samples to create initial training set
2: while Termination condition not metdo
3: Train SOM using the normalized training set
4: for all cells satisfying SELECTION CONDI-

TION do
5: Perturb the weight vectors of the selected cells

according to MUTATION
6: end for
7: Un-normalize the perturbed samples
8: Evaluate true output of the perturbed and unper-

turbed samples
9: UPDATE TRAINING SET

10: end while

of T results in fewer new samples added to the training
data set. The pseudocode of this selection condition is
given in Algorithm 2.

Algorithm 2 SELECTION CONDITION

1: Let ymin be the smallest output in the training setX,
ŷ be output from a cell weight vector, andT be the
selectivity parameter (or Temperature)

2: Generate a uniform random number 0≤ r < 1 and
check the following:

3: if r < exp
(

ymin−ŷ
T

)

then
4: Corresponding weight vector is selected
5: end if

We consider a case in which we seek to minimize an
objective valuey below certain thresholdL. Below this
threshold, diversity of solutions is sought. In this paper,
we will call such a search asfeasible region identifica-
tion or feasible region search. One idea is to use a merit
function similar to those described in Torczon and Tros-
set [21]. One could give a better chance of being se-
lected to points (i.e. cell weight vector) that are distant
from existing training samples regardless ofy value. To
achieve this, we propose the following formula for the
merit function.

F = max(L, y)− ρmin(‖s− ti‖2), i = 1,2, · · · ,N(3)

wheres is the input vector for whichF needs to be mini-
mized,ti is a set of target samples from which minimum
distance to the input vectors is calculated,N is the num-
ber of such target vectors, andρ is a weight constant.
Unlike Torczon’s merit function, our merit function in-
corporates a “truncation” valueL below which only the
separation from other target vectorsti matters. To mini-
mize this merit function, one needsy < L and maximize
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the distance to the nearest target vector min(‖s− ti‖2). In
our case, target vectors are the training set and the input
vectors is the selected weight vector from SOM. The al-
gorithm to replace the output with this merit function is
described in Algorithm 3. If ˆy is greater than the thresh-
old L, bothŷ and the new weight vector’s distance from
the training set are taken into account. If ˆy is less than
L, then the distance to the nearest training vector is the
only term affecting the objective value and smallerF is
obtained when the weight vector’s distance to the near-
est neighbor is larger. Theρ in equation 3 is a positive
weighing constant

Algorithm 3 MERIT FUNCTION

1: Let L denote the value below which objective or
output y is considered to be “good enough”,s
denote a weight vector (xT , ŷ) from SOM, and
ti=1,2,...,N denote the training samples

2: if Trunc is specifiedthen
3: NormalizeL (s, andti are already normalized)
4: ŷ← max(L, ŷ) − ρmin(‖s − ti‖2)
5: Normalizeŷ
6: end if
7: Use thisŷ in SELECTION CONDITION

Mutation, as described in Algorithm 4, is applied to
the selected weight vectors. We use the weight vec-
tors as the centers of multivariate Gaussian distribu-
tions. The covariance matrix is obtained from the se-
lected weight vectors. We use an idea similar to CMA-
ES [22] to update the covariance matrices. The covari-
ance matrix in the current iteration is combined with the
covariance matrix computed in the previous iteration:
0.2C + 0.8Cold. This is to avoid adapting too quickly
to a local minimum. On top of that, we multiply a fac-
tor which is different whether the previous iteration pro-
duced a new minimum or not. If the previous iteration
achieved a new minimum, we apply an expansion fac-
tor Fe, to which we assign a real value larger than 1.
On the other hand, if the previous iteration did not pro-
duce a new minimum, we multiply a contraction factor
Fc, to which we assign a real value between 0 and 1.
The covariance matrix is the same for all the selected
weight vectors. Each weight vector is perturbed by sam-
pling from the multivariate Gaussian distribution. Mu-
tation is very important to avoid premature convergence
in SOMBAS.

After the perturbation of new samples, the training set
is updated. Algorithm 5 and Algorithm 6 are two such
methods. Algorithm 5 has a faster convergence but is
more prone to lose diversity in the training set prema-

Algorithm 4 MUTATION

1: Let Fc be contraction factor andFe be expansion
factor

2: Let Pm be mutation probability
3: Given training samples, compute covariance matrix

C, and let the covariance matrix from previous iter-
ation beCold

4: if currentymin < previousymin then
5: C = Fe (0.2C + 0.8Cold)
6: else
7: C = Fc (0.2C + 0.8Cold)
8: end if
9: For each selected sample, perturb it by sampling

from multivariate normal distribution with center at
the selected sample with covarianceC.

10: Replace a parameter in the selected vectors with the
mutated one at probability ofPm

Algorithm 5 UPDATE TRAINING SET 1

1: Add the perturbed samples to the training set
2: if Training set sample size larger than maximum

sample sizethen
3: Sort the training set with respect to output value
4: Remove the worst samples to make the training

sample size equal to maximum sample size
5: end if

turely compared to Algorithm 6. In the latter method,
if max(L, y) of the new perturbed sample and that of the
randomly selected training sample are the same, the re-
placement of the selected training sample takes place
only if the new perturbed sample has a larger distance
to its nearest neighbor than the distance of the train-
ing sample to its nearest neighbor. Otherwise, the new
perturbed sample replaces the training sample when the
new sample has a smaller objective value. The nearest
neighbors are searched among all the sampled points. In
the next section, we will use Algorithm 6.

3. Experiments

3.1. Feasible Region Identification

In this subsection, we consider a constraint satisfac-
tion problem in which there is a constraint on the ob-
jective (to be below a certain threshold value) but one
would like to know what inputs would satisfy this con-
dition. Ideally, one would like to have as much variety
as possible in the collection of inputs that we obtain as
solutions.
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Algorithm 6 UPDATE TRAINING SET 2

1: for all perturbed weight vectors’ responseyp do
2: Randomly pick one of the training sample, and

obtain its responseyt

3: Obtaindp, the nearest neighbor distance of per-
turbed sample to sampled points thus far anddt

the nearest neighbor distance of the training sam-
ple to sampled points thus far

4: if max(L, yp) = max(L, yt) anddp > dt then
5: Replace the training sample with the perturbed

weight vector
6: else if yp < yt then
7: Replace the training sample with the perturbed

weight vector
8: end if
9: end for

The analysis and evaluation of the results are not
straightforward because we do not have established per-
formance measures. Solow and Polasky [23] and Em-
merich et al. [19] show some possibilities, but they
do not scale well to high-dimensional problems or can
cause numerical problems in matrix inversion. We first
resort to visual cues, and then propose some perfor-
mance measures.

We use the two dimensional Rosenbrock function for
non-convex region identification, the two dimensional
Rastrigin function for discrete region identification, and
the Hollow Beam [24, p. 35] problem with two design
variables for feasible region with sharp corners. Then
we look into 30 and 100 dimensional Rosenbrock and
Rastrigin functions to see the scalability of SOMBAS
to high-dimensional problems.

SOMBAS is compared with Differential Evolution
(DE). DE learns from the distribution of its population
to choose the next sampling points. It does not rely
on any parameterized model of the distribution, but the
difference vectors adapt to the objective function land-
scape. Price et al. [25, pp. 44 - 47] called this property
contour matchingand described it as one of the advan-
tages of DE. Furthermore, it is not restricted to low di-
mensional problems as in Emmerich et al. [19]. There-
fore, DE is suited for the identification of the input re-
gions of the functions described above. The purpose
of the comparison is to elucidate differences between
the two algorithms that have similar characteristics, but
serve different purposes, namely optimization and fea-
sible region identification.

In Fig. 2 through Fig. 4, we visualized different types
of feasible domains and the sampling (shown in cross)

inside them. The contour plots show the boundaries of
the domains. SOMBAS was able to produce a fairly
uniform infill of samples in the 2D input domain for the
functions tested. Since DE also has distribution learning
characteristics, it did very well in the feasible domain
infill task.

To base feasible region identification on a more sta-
tistical ground, we repeated the sampling task for each
of the three equations 20 times. We terminated the sam-
pling when all the training sample achieved the objec-
tive value f ≤ L, where L = 100 for Rosenbrock,
L = 10 for Rastrigin, andL = 0 for Hollow Beam.
Table 1 shows the results. Here,˜̃d is the average dis-
tance of nearest neighbors. The tilde on top of the sym-
bol signifies averaging and the nearest neighbor has two
tildes corresponding to the average in the feasible do-
main and an average of 20 runs. TheÑf is the average
number of function evaluations,̃Ns is the average num-
ber of samples in the feasible domain, ˜σd is the average
standard deviation of distances to the nearest neighbors.
We also define the feasible rateÑs/Ñf , coverage length

l̃ = ˜̃d × Ñs and coverage ratẽl/Ñf . The feasible rate
gives the ratio of the number of feasible samples meet-
ing the truncation valueL to the total number of func-
tion evaluations. Higher the better. The coverage length
gives the efficiency of infill. Higher the better. How-
ever, sincẽd̃ is scale dependent, the relative importance
of having smallNs but large˜̃d or largeNs but small ˜̃d
will be different from problem to problem. The cover-
age length is meaningful only when we compare differ-
ent methods on the same feasible domain identification
problem. The coverage rate is defined as the coverage
length per function evaluation. The larger the value the
better, and it is also scale-dependent. For these two di-
mensional examples, DE and SOMBAS did not show
marked difference in performance. SOMBAS showed
some advantage in feasible rate for Hollow Beam and
DE showed some advantage in Rastrigin in terms of
coverage length.

In higher dimensional problems, it is often the case
that there is no feasible solution in the beginning. The
algorithm has to search and fill the feasible region.
Fig. 5 shows the histories of feasible rates with respect
to number of function evaluationsNf . The criteria of
feasibility were set tof ≤ 20× D for Rastrigin func-
tion and f ≤ 5000× D for Rosenbrock function. Both
DE and SOMBAS were run 20 times. SOMBAS shows
very rapid gains in the feasible rateNs/Nf compared to
DE. Moreover, with the feasibility condition set above,
the number of function evaluations to reach a given fea-
sible rate (below 0.6) is about the same for both 30-
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Figure 2: Rosenbrock function: sample distribution satisfying objective conditionf ≤ 100.
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Figure 3: Rastrigin function: sample distribution satisfying objective conditionf ≤ 10.

0 1 2 3 4 5

x1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x
2

(a) SOMBAS

0 1 2 3 4 5

x1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x
2

(b) Differential Evolution

Figure 4: Hollow Beam function: sample distribution satisfying constraints.
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Table 1: Average Nearest Neighbor Distances and Space Filling Measures of Sampled Points by SOMBAS and DE.

Function Algorithm ˜̃d σ̃d Ñs Ñf
Ñs

Ñf
l̃ = ˜̃d × Ñs

l̃
Ñf

Rosenbrock
SOMBAS 1.14 0.84 207 786 0.27 227 0.30
DE 1.37 1.11 158 689 0.23 213 0.31

Rastrigin
SOMBAS 0.38 0.28 146 1136 0.13 53.3 0.05
DE 0.41 0.31 180 989 0.18 70.4 0.07

Hollow Beam
SOMBAS 0.17 0.11 138 342 0.40 23.1 0.07
DE 0.20 0.13 112 395 0.28 21.8 0.06

dimensional functions and 100-dimensional functions.
However, this is not the case with DE. For DE, the num-
ber of function evaluations necessary to reach a given
feasible rate seems to be proportional to the number
of dimensions. The wiggles on the evolution curves of
SOMBAS show that some portion of the sampled points
is infeasible and its proportion varies from iteration to
iteration and eventually stagnates around certain values
of feasible rateNs/Nf . On the other hand, DE is an
optimization algorithm and it keeps searching for lower
objective values. Thus, the wiggles (not visible in the
plot) disappear once the populations are well within the
feasible domain. This, in turn, indicates that for DE
the feasible rateNs/Nf can eventually reach higher rate
than SOMBAS as the number of function evaluations is
increased.

3.2. Engineering Application

In this subsection, we present an application example
of SOMBAS using a simulation code for stability anal-
ysis of planing crafts [26, 27, 28]. This example uses
SOMBAS in a very simplified simulation based design
task. A boat or a seaplane is in a planing condition when
it is traveling on water and most of the lifting force of
the water comes from hydrodynamic pressure exerted
on its hull, buoyancy playing minor to negligible role in
its steady state equilibrium. In such condition, the craft
may be subject to a dangerous longitudinal oscillation
mode called porpoising. Porpoising is a coupled oscilla-
tory motion between heaving and pitching that can man-
ifest when seaplanes and power boats are traveling on
water at planing speed. This motion, once manifested,
is often unstable and can pose a significant risk to the
safe operation of these vehicles.

We numerically simulated a 1/3 scale towed tank
model as reported in [26]. The model was a catama-
ran, so we employed the half body representation for
simplicity. The model was parameterized as a two or

seven variable design problem. The dynamic stabil-
ity was computed using small perturbation analysis as
presented in Faltinsen’s book [27, chap. 9]. The two
degrees of freedom dynamics - pitching and heaving -
were thus represented as a couple of second order dif-
ferential equations with respect to time. Then, we use a
state-space formulation to represent this dynamical sys-
tem as a system of first order differential equations,

ẋ = Kx, (4)

wherex = [η̇3, η̇5, η3, η5]T andη3 is a displacement up-
ward andη5 is a pitch-up rotation. The dot above de-
notes time derivative. TheK is a 4× 4 matrix and con-
tains information about the inertia, damping, and force
reactions. By computing the eigenvalues of this matrix
we obtain the stability of this dynamical system. If one
of the eigenvalues has positive real part, it means the
system has an unstable oscillation mode.

In this example, we try to seek a stable design at a
given planing speed by varying the design variables. For
the two-design-variable case, we use the longitudinal
distance of CG along the keel linelcg measured from
the step or transom, and vertical distance of CG from
the keel linevcg. For the seven-design-variable case we
use beam lengthB, deadrise angleβ (in degrees), pitch-
ing moment of inertiaI55,thrust line distancef from
CG (positive when pitch-up moment results) and thrust
line angle with respect to keel line (positive upwards)
ǫ. Fig. 6 shows a diagram describing the design vari-
ables except the inertial variableI55. For each design, a
trim position needs to be calculated by an iterative root
finding process and thenKs are determined via semi-
empirical equations based on the trim position. Thus,
the mapping from design variables to maximum eigen-
values is non-linear and non-analytical involving loops
and branching in the algorithm of the function. This is
a typical situation in engineering applications.

Fig. 7 shows a contour plot of the largest real part
of non-dimensionalized eigenvalues with respect tolcg
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(c) Rosenbrock 30 dimensions, feasible solution asf ≤ 150000
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Figure 5: Evolution of Feasible RateNs/Nf of SOMBAS and DE on test functions.

andvcgalong with sampled points by SOMBAS in two-
design-variable case. SOMBAS was set to search feasi-
ble designs by settingL = 0 in our merit function. That
is, if the largest eigenvalue was less than 0, the design
was considered stable and thus satisfactory. The sam-
pled points that satisfyL < 0 are shown along with the
final location of the training samples for SOM. One can
see that there is an interval oflcg that produces unsta-
ble designs. There is also a large domain that is stable.
A small portion of the design space near the transom
or very small value oflcg generates stable designs, and
most seaplanes have this configuration to facilitate the
pitch up at the moment of take off.

Fig. 8a shows a scatter plot matrix of the seven design
variable case. The lower triangular cells show the abso-
lute values of correlation coefficients. Again, it clearly

shows the unstable “band” forlcg at the top row of the
scatter plot matrix. Other parameters do not show clear
unfeasible regions. Further restriction was applied by
settingL = −0.3 and the results are shown in Fig. 8b. It
shows some interesting trend. For example,vcgtends to
lower value as the eigenvalue becomes more negative.
On the other hand, the beam lengthB tends to larger
values as the eigenvalue becomes more negative. In the
current setup, the deadrise angleβ shows a positive cor-
relation with f . Likewise, lcg and B show a positive
correlation.

3.3. Machine Learning Application

We continue with the above example, but this time,
would like to fit a classifier on top of the sampled points.
If a classifier is constructed, a new point’s feasibility
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Figure 8: Scatter Matrix showing distribution of feasible designs.

can be predicted without evaluating the original (possi-
bly expensive) function. The planing stability example
in the previous subsection can be considered as a binary
classification problem once enough number of design
points are sampled. We employed Support Vector Ma-
chine (SVM) [29, 30] to learn the classification problem
from the points sampled by SOMBAS, DE, and random
sampling.

We run the seven-design-variable case searching
for solutions with maximum eigenvalues of oscillation
modes less than−0.3 for a given number of simulation
budget, namely 1000, 2000, and 4000. Let us call the
designs satisfying this condition as stable designs. A
test set with 2000 designs randomly sampled from the
domain is prepared to evaluate the performance of the
SVM classifiers. For performance measure, we use the
F1 score, which is defined as follows.

F1 = 2 ·
P · R
P+ R

, (5)

where, in our case, the precisionP is the proportion of
stable designs (according to the simulation) among all
designs predicted as stable (by a classifier) in the test
set, and the recallR is the proportion of designs cor-
rectly predicted as stable (by a classifier) among all the
stable designs in the test set (according to the simula-
tion). In this measure, too liberal (e.g.,P ≃ 0, R≃ 1) or
too conservative (e.g.,P ≃ 1, R ≃ 0) classifiers get low
score values.F1 = 1 means perfect prediction.

In the top row of Fig. 9, we have shown the distribu-
tion of F1 obtained by fitting Support Vector Machines
(SVM) to the sampled points from SOMBAS, DE, and
random sampling. The box plots ofF1 was computed
from 20 independent runs of each of the three sampling
methods. The figures 9a, 9b, and 9c show the results
of different function evaluation budgets of the planing
craft simulation, 1000, 2000, and 4000 respectively. In
the bottom row of Fig. 9, we have the box plots of fea-
sibility ratesNs/Nf of the three sampling methods at
corresponding sampling budgets.

In Fig. 9, we observe two trends. The first trend is
that theF1 scores for SVM on SOMBAS and random
samples increases as sampling budget increases from
1000 to 4000 while the improvement of SVM on DE
is rather small if any and the first and the third quar-
tile of the F1 scores remain between 0.7 and 0.8. The
second trend is that, contrary to theF1 scores, the fea-
sible ratesNs/Nf for DE increases from around 0.5 to
around 0.7 while those for SOMBAS increases very lit-
tle staying around 0.3 and those for random sampling
stays practically constant at 0.07.

These two trends are due to the fact that DE is min-
imum seeking and SOMBAS and random sampling are
space filling. Since SOMBAS searches and fills out the
feasible region, the feasible rates reached higher values
than those of random sampling. On the other hand,
being space filling in the feasible domain, SOMBAS
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Figure 9: Planing stability prediction performance of Support Vector Machine using samples from SOMBAS and DE. Box plots show the distribu-
tions of 20 independent runs at budgets of 1000, 2000, and 4000 function evaluations.

inevitably keeps sampling also from the infeasible do-
main, because when the mutation happens one does not
know if the perturbed points will lie inside the feasi-
ble domain. This causes the stagnation of the feasible
rateNs/Nf , but it is beneficial for a classification model
as evidenced by superiorF1 scores in Fig. 9b and in
Fig. 9c. In principle, theF1 score of SVM using ran-
dom sampling should eventually catch up with that of
SOMBAS as the number of sampled points is increased.
On the other hand, DE (or any optimization method)
keeps searching for the smaller response and the sam-
pling concentrates around the points with minimal re-
sponses. Since this trend does not help in defining the
boundary between feasible and infeasible, theF1 score
stagnates after a certain number of function evaluations,
but the feasible rateNs/Nf will keep increasing if the
minimum is in the interior of the feasible domain.

Table 2 to Table 4 summarize the results of the sig-
nificance of differences inF1 score and feasible rate
Ns/Nf distributions among different sampling methods
and sampling budgets in Fig. 9. Wilcoxon Rank Sum
Test was used. In this test, the parametric distribu-
tions of two random variables are not assumed and sam-
ple size of the two variables can be different. It tests
whether the distribution of the two random variables,

say X and Y, are the same after a translation of sizek.
That is,

P(X < x) = P(Y < x+ k) (6)

for all x. The null hypothesis isk = 0 and the alternative
hypothesis isk , 0.

The hypothesis tests in Table 2 support (at 0.05 sig-
nificance level) that the shifts in distributions ofF1

scores exist between SVM obtained from SOMBAS and
DE in Fig. 9b and in Fig. 9c. The improvement ofF1

scores of random sampling based SVM relative toF1

scores of DE based SVM (from Fig. 9a to Fig. 9c) is
also supported by the significance test.

Table 3 summarizes whetherF1 score distributions in
Fig. 9 differ between sampling budgets 1000, 2000, and
4000 function evaluations. For SOMBAS and random
sampling, the shifts in the distributions were detected.
On the other hand, the null hypothesis was not rejected
for DE when the budget was increased from 1000 to
2000 and from 2000 to 4000, although between 1000
and 4000 the alternative hypothesis ofk , 0 was sup-
ported. This supports the observation that the increase
in F1 score of SVM using samples from DE is not as
rapid as those of the remaining two sampling methods.

Table 4 shows whether the shift in the distribution
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Table 2: Hypothesis test of shift inF1 score distributions in Fig. 9 among different sampling methods (p-values shown in the bracket)

Sampling Methods 1000 eval. 2000 eval. 4000 eval.
SOMBAS vs. DE Null(0.841) Alt.(3.407e− 07) Alt.(1.451e− 11)
SOMBAS vs. Random Alt.(3.926e− 05) Alt.(1.281e− 06) Alt.(1.233e− 07)
DE vs. Random Alt.(1.831e− 05) Null(0.2852) Alt.(1.917e− 05)

Table 3: Hypothesis test of shift inF1 score distributions in Fig. 9 among different sampling budgets (p-values shown in the bracket)

No. Function Evaluations SOMBAS DE Random
1000 vs. 2000 Alt.(1.407e− 09) Null(0.1555) Alt.(2.952e− 07)
2000 vs. 4000 Alt.(1.061e− 07) Null(0.3104) Alt.(1.407e− 05)
1000 vs. 4000 Alt.(1.451e− 11) Alt.(0.03264) Alt.(6.786e− 08)

of the feasible rateNs/Nf exists between different sam-
pling budgets. For SOMBAS null hypothesis was kept
between 2000 and 4000 function evaluations. For ran-
dom sampling, no shifts in the distributions were de-
tected among the three sampling budgets. On the other
hand, shifts were supported for all the three compar-
isons for DE. This supports along with Fig. 9 that DE’s
feasible rateNs/Nf kept increasing when the sampling
budget increased. On the other hand, the feasible rate
for SOMBAS stagnated and that of the random sam-
ple showed no shift in distribution (which was expected
from the law of large numbers).

4. Conclusions

SOMBAS is able to select samples in the design
space below a given threshold value, and in addition,
it is able to do so in a space-filling way. Our approach
to feasible region identification is different from binary
classification methods in Machine Learning. Classifica-
tion methods require both positive and negative samples
from the outset of the learning iteration. SOMBAS, on
the other hand, will search for feasible regions, even if
all of the initial training samples were unfeasible.

SOMBAS’ efficient acquisition of feasible solutions
in higher dimensions, namely for the 30 and 100-
dimensional Rastrigin function and Rosenbrock func-
tion, was shown to be superior to DE. It can be ar-
gued that feasible region identification becomes identi-
cal to optimization when the feasible region becomes in-
finitesimally small. For example, we could setf ≤ 10−6

as the feasible region in the 30-dimensional Rastrigin
function. In this case, DE would be a better choice.
Further research is needed to understand the relation-
ship between accurately finding an optimum point and
efficiently identifying a feasible region.

In the engineering example, we identified input val-
ues that generate satisfactory designs. By looking at
multiple solutions, it enabled the extraction of design
knowledge regarding how the design parameters inter-
act under certain stability criteria. This is a significant
advantage with respect to standard optimization tech-
niques.

In the application SOMBAS in Machine Learning ex-
ample, in which Support Vector Machine was used to
learn a binary classification model from the sampled
data, the accuracy of prediction improved as the number
of samples increased and the number of feasible sam-
ples for a given function evaluation budget was substan-
tially higher than the random sampling. On the other
hand, DE achieved a steady increase in the proportion
of number feasible samples (feasible rateNs/Nf ) while
the accuracy of prediction (F1 score) stagnated as the
number of data increased. It would be beneficial to in-
vestigate the merit of applying SOMBAS to different
Machine Learning tasks and methods.

5. Acknowledgments

Keiichi Ito has been funded by the Institute for the
Promotion of Innovation through Science and Technol-
ogy (IWT) through the Baekeland Mandate program.
Ivo Couckuyt is a post-doctoral research fellow of the
Research Foundation Flanders (FWO). This research
has also been funded by the Interuniversity Attraction
Poles Programme BESTCOM initiated by the Belgian
Science Policy Office.

Appendix A. Test Functions

In the following, we describe the test functions used
in this paper. Theθ∗ denotes the globally optimum so-
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Table 4: Hypothesis test of shift in the feasible rateNs/Nf distributions in Fig. 9 among different sampling budgets (p-values shown in the bracket)

No. Function Evaluations SOMBAS DE Random
1000 vs. 2000 Alt.(0.01674) Alt.(6.767e− 08) Null(0.6259)
2000 vs. 4000 Null(0.6017) Alt.(1.427e− 07) Null(0.1675)
1000 vs. 4000 Alt.(0.04018) Alt.(6.767e− 08) Null(0.8497)

lution vector, andf (θ∗) its response value. TheD de-
notes the number of dimensions. The upper and lower
bounds ofθ s are by default−10 ≤ θ j ≤ 10 where
θ = [θ0, θ1, . . . , θD−1]T .

Rosenbrock

f (θ) =
D−2
∑

j=0

(

100(θ j+1 − θ
2
j )

2 + (θ j − 1)2
)

, (A.1)

j = 0,1, . . . ,D − 1, D > 1,

f (θ∗) = 0, θ∗j = 1.

Rastrigin

f (θ) =
D−1
∑

j=0

(

θ2j − 10 cos(2πθ j) + 10
)

, (A.2)

j = 0,1, . . . ,D − 1,

f (θ∗) = 0, θ∗j = 0.

Hollow Beam
Let

w = 88.9θ0θ1 − 17.8,

g1 = 0.0885− θ0θ1,

g2 = 0.994− θ0,

g3 = 0.05− θ1.

If g1 > 0 org2 > 0 org3 > 0,

f (θ) = max(0,g1)+max(0,g2)+max(0,g3),(A.3)

else,

f (θ) = w. (A.4)

For this problem, the objective is to findθ = [θ1, θ2]T

such thatf (θ) < 0. The lower and upper bounds ofθs
for this problem are 0< θ0 ≤ 5, 0< θ1 ≤ 0.3.

Appendix B. Parameter Setups

In the following tables, column nameNP signifies
number of population in DE andNT signifies number
of training samples for Self-Organizing Maps in SOM-
BAS. F andCR are scale factor and cross-over proba-
bility as typically defined for the classical DE [25, pp.

Table B.5: Parameters setups for DE for the three test functions in
Table 1

Function NP CR F
Rosenbrock 45 0.9 0.5
Rastrigin 35 0.2 0.8

Hollow Beam 30 0.65 0.75

38,39]. The number of iteration for the Self-Organizing
Map was set between 10 and 40 with no appreciable
effect on the results whether one set the number to 10
or 40. The parameter setups of DE and SOMBAS for
the feasible region identification in Table 1 are given
in Table B.5 and Table B.6 respectively. For SOM-
BAS, the parameters were set up such that the number
of feasible solutionsNf would be more or less the same
as those of DE. Fig. 5 was created with with the se-
tups described in Table B.7 for DE and Table B.8 for
SOMBAS. In the engineering example of planing craft
stability, we setup SOMBAS asL = 0, or − 0.3, ρ =
0.1,NT = 36,SOM size = 6 × 6,T = 1,Pmutation =

1, Fe = 2.0, Fc = 0.75.
The subsequent results of SVM classification prob-

lem were obtained using SVC function in “scikit-learn”
module [29] with Radial Basis Function (RBF) kernel,
penalty parameterC = 10000 and kernel coefficient
γ = 0.5. The DE and SOMBAS parameters for the Ma-
chine Learning problem shown in Fig. 9 are given in Ta-
ble B.9 and Table B.10 respectively. The random sam-
pling was done using a uniform random number gener-
ator in Python.
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Table B.8: Parameters setups for SOMBAS for Fig. 5

Function L ρ NT SOM size T Pmutation Fe Fc

Rosenbrock 5000× D 1.0 35 6× 6 1 1.0 1.2 0.15
Rastrigin 20× D 1.0 35 6× 6 1 1.0 2.0 0.15

Table B.9: Parameters setups for DE for Fig. 9

Function NP CR F
Planing Craft 40 1.0 0.75
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Table B.10: Parameters setups for SOMBAS for Fig. 9

Function L ρ NT SOM size T Pmutation Fe Fc

Planing Craft −0.3 0.2 40 5× 5 4 1.0 1.2 1.0
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