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Analyzing the effect of clock jitter on
Self-Oscillating Sigma Delta Modulators

Dries Vercaemer, Pieter Rombouts

Abstract—This paper presents simple but accurate expressions
for the noise components caused by clock jitter, in the output
signal of Self-Oscillating Sigma Delta Modulators (SOSDMs).
Contrary to conventional Continuous Time Sigma Delta Modula-
tors (CTSDM), the SOSDM’s loop contains a strong oscillation,
whose attribution to the system’s jitter caused noise has not
previously been explored. In this paper, the SOSDM system is
modeled, and the effect of the self oscillation, the input signal
and the quantization noise on the jitter caused noise in the
output signal, is calculated. Results are confirmed by system level
simulations.

Index Terms—Analog-to-digital conversion, limit cycle, Time-
encoding, jitter, self-oscillating sigma delta modulator, pulse-
width modulation.

I. INTRODUCTION

SEVERAL papers have been published ([1]–[4]) on the
effect of clock jitter on the performance of continuous

time sigma delta modulators (CTSDM). Most have considered
the jitter to be white noise, although for real world jitter this
is never the case. A clock generated by a phase locked loop
(PLL) for instance, has a more complex phase noise spectrum,
containing contributions from several noise sources, each of
them with a different spectral shape. This is important, because
the shape of the jitter spectrum has a significant influence on
the total amount of in-band jitter-caused noise at the output
of the modulator, even if the total clock jitter power remains
unchanged. This was already shown in several more recent
papers, which did include the effect of the jitter spectrum
([5,6]) on the CTSDM’s performance.

In this paper, we will expand these previous results by ana-
lyzing the effect of none-white jitter on self-oscillating sigma
delta modulators (SOSDMs [7]–[12]). Unlike CTSDMs, the
SOSDM’s loop contains a strong high frequency oscillation.
We will show that this oscillation will be modulated by clock
jitter, leading to a noise component in the SOSDM’s output
signal. This noise component can not be neglected, and it has
not previously been studied.

The rest of this paper is organized as follows: Section II
describes and models the SOSDM system. Section III explores
the effect of jitter on the system, models it, and offers the
general equations. Based on this, it will be shown that the
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Fig. 1. A self-oscillating sigma-delta modulator

noise component due to jitter in the SOSDM’s output signal,
which we will call jitter noise for brevity, consists of three
distinct components. This is a clear contrast with respect
to the CTSDM, whose output signal consists of only two
jitter related noise components. In section IV, we discuss the
SOSDM’s jitter noise components, and offer exact analytical
expressions for them. We also derive simplified approximate
expressions for the practically important case of clock signals
whose jitter spectra exhibit first order roll off. Section V
reports several system level simulation results that confirm the
analytical expressions. In section VI, we offer some qualitative
insights into the effect of spurs in the jitter spectrum on the
SOSDM’s performance, after which conclusions are drawn in
section VII.

II. SELF-OSCILLATING SIGMA DELTA MODULATORS

A. The SOSDM’s operation and properties

Fig. 1 shows a conceptual diagram of a self-oscillating
sigma delta modulator. The system is very similar in appear-
ance to a conventional single bit continuous time sigma delta
modulator. Just like a single bit CTSDM, it consists of a
feedback loop with a loop filter, a one bit quantizer, a sampler
and a digital to analog converter (DAC). However, its behavior
differs strongly from that of a conventional continuous time
sigma delta modulator, because the SOSDM’s loop is forced
to oscillate at a controlled frequency, either by inserting a
well defined explicit delay in the feedback loop, or by using a
Schmitt trigger, with a suitable hysteresis, as a quantizer. The
oscillation frequency fc, which should be much higher than
the baseband frequencies, will then be a function of the delay,
and/or of the hysteresis.

Introducing an oscillation into the modulator’s loop could
seem counter-intuitive to CTSDM designers, since the pres-
ence of an oscillation in CTSDMs is usually considered as
detrimental for performance. It has however been shown in
previous publications ([7,11,13]) that introducing a controlled
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oscillation does not necessarily render the modulator useless,
but instead can offer some attractive properties. Firstly, the
SOSDM’s loop operates at the oscillation frequency instead of
the sampling frequency, (which is always significantly higher).
This means that its power consumption can be reduced. But
at the same time, for noise shaping purposes, the SOSDM
still makes use of the much higher sampling frequency. Hence
its performance is better than that of an equivalent single
bit CTSDM sampled at the oscillation frequency. Secondly,
because an explicit delay has been introduced, the SOSDM
tends to be more robust against extra delays resulting from
parasitic capacitors or process variations. Lastly, the frequency
of operation of the SOSDM’s loop is an extra design param-
eter that offers the designer more flexibility in searching a
modulator that is tailor made for a certain application.

Several researchers have noticed these advantages, and
severall SOSDM designs have been published ([7,10,12,13]).
However, despite this interest, the SOSDM system still re-
mains a research topic, and several aspects of the SOSDM have
not sufficiently been analyzed. In this paper, we will focus on
the jitter behavior of the SOSDM system, and we will offer
analytical results that can help designers in predicting the jitter
performance of their systems.

In order not to overcomplicate the analysis, we will base
the discussion in this paper on the case of a SOSDM ar-
chitecture with an explicit delay d in the loop and without
hysteresis in the quantizer. Most of the following analysis
however remains valid for a SOSDM with hysteresis. Although
the actual expressions for the oscillation frequency and the
linearized quantizer gain differ, the jitter mechanism remains
unchanged, and the equations derived in sections III and IV are
identical for both the architectures with and without quantizer
hysteresis.

For notational convenience, we choose the quantizer’s out-
put voltage to switch between +1 and -1. We will also restrict
ourselves to DACs with non-return-to-zero (NRZ) pulses,
which is by far the most common case.

Before we analyze the jitter behavior of the SOSDM, we
will first model the system, and determine its output signal. In
order to do so, we will build a linear model for the quantizer.
However, because of the strong oscillation present in the
SOSDM’s loop, a straightforward linearization of the quantizer
will not provide an accurate model. But if we think of all
signals in the system of Fig. 1 as the superposition of this high
frequency oscillating signal and a low frequency component,
we will be able to linearize the comparator with respect to this
low frequency component, even if it acts non-linearly on the
oscillation. This approach is similar to established dual input
describing function techniques [14].

We model the oscillation first, after which we linearize the
comparator to determine the low frequency components at the
SOSDM’s output.

B. Modelling the self-oscillation

In order to model the oscillation, we study the simplified
system of Fig. 2. In this system, we assume the input signal
x to vary slowly with respect to the oscillation, such that we

Fig. 2. The SOSDM with the sampling neglected.

can approximate it as a constant. We also neglect the sampling,
but retain the half clock cycle delay of the NRZ pulse, which
leads to a total loop delay equal to dt:

dt = d+ Ts
2 (1)

Here, Ts represents the sampling period. By neglecting the
sampling, the system of Fig. 2 actually represents an asyn-
chronous sigma delta modulator (ASDM, [15]–[18]). The
ASDM’s output signal has been analyzed in literature and its
oscillation frequency, fc, has been calculated ([17]), for slowly
varying input signals. It takes the following form:

fc = (1− x2)f0 (2)

Here, f0 represents the oscillation frequency of the ASDM if
its input signal is zero. In the appendix, an expression for f0
is given [Eq. (49)] which was derived in [15] for general order
ASDMs (be it under certain assumptions on the loop filter).
Later in this paper we will also derive an expression for f0
for a first order loop filter [Eq. (10)], which, as we will argue,
can be used as an approximation for higher order loop filters.

To facilitate the analysis of the jitter noise, we will approx-
imate the square wave oscillation at the modulator’s output,
yc, by its first Fourier component, a sine wave with amplitude
Ac and angular frequency ωc:

yc(t) = Ac sin(ωct) (3)

As indicated by Eq. (2), and as has been shown in [17], the
oscillation signal is modulated by the ASDM’s input signal.
Furthermore, in an actual realization, the oscillation signal may
also contain phase noise caused by several noise sources in
the system. As a result, both Ac and ωc will vary (relatively
slowly) with time, and the first Fourier component of the
oscillation will have sidebands. However, for the jitter analysis
in this paper, we will neglect the phase noise. We will also
remove the side bands by calculating the average oscillation
amplitude and frequency, and using them to represent the
oscillation as a single tone. In order to do this, we assume
this input signal, x(t), to be a sinusoid with amplitude Ax
and angular frequency ωx:

x(t) = Ax sin(ωxt) and ωx � ωc (4)

For this input signal, the average value of Eq. (2) is readily
derived:

fc = f0(1−
A2
x

2
) (5)
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In the appendix, the average value of the oscillation’s ampli-
tude is calculated, starting from the theory of [15], with the
following result:

Ac =
4

π

1√
2

√
1 + J0(Axπ) (6)

Here J0 is the zeroth-order Bessel function of the first kind.
Eqs. (5) and (6) show that increasing the input signal amplitude
will shift the oscillation’s spectrum to lower frequencies, and
will lower the amplitude of the fundamental tone.

In deriving the above results, we neglected the sampling
operation. Although the resulting expressions for the frequency
and amplitude of the oscillation signal will not be identical to
those of a sampled system, we will use them as an approxi-
mation. Since the oscillation frequency is significantly lower
than the sampling frequency, we expect these expressions to
be quite accurate for SOSDMs.

To validate the analysis in this paper, we designed two third
order SOSDMs, and used them to perform several system level
simulations. The loop filters of both modulators have the same
form, shown in Table I. The loop filter coefficients and system
parameters of the modulators are listed in Table II. As can be
seen, the first modulator has a delay of one clock cycle and
an OSR of 50, while the second modulator has a delay of 2.5
clock cycles, and double the OSR. The integrator coefficients
were obtained through brute force numerical optimization for
high quantization noise suppression and good robustness.

To simulate the designed modulators, we built a behavioral
model similar to the system depicted in Fig. 1. It incorporates
a two level quantizer and a sample and hold block. For jitter
simulations, this block samples at stochastically varying time
instances, so that all jitter effects are modeled.

The results of a first set of simulations can be seen in
Fig. 3. Here, the modulators were driven by a sinusoidal input
signal with frequency fx. For the first modulator, fx equaled
fs
200 , while the input signal frequency of the second modu-
lator was fs

400 . The simulations were performed for several
values of the input signal amplitude, Ax. For every value,
the average oscillation period was calculated. The results are
plotted together with the analytical prediction of Eq. (5), using
Eq. (49) to calculate f0. Based on the plot, we can conclude
that the analytical and simulation results show reasonable
correspondence.

When the input amplitude becomes too large (i.e. roughly 70
percent of full scale), the systems shifted to another undesired
mode of oscillation with a far lower oscillation frequency.
Hence, the oscillation amplitudes at the internal nodes of the
systems went far higher than full scale. This phenomenon
is similar to instability due to overloading in a conventional
CTSDM. It is a well known phenomenon in higher order
CTSDMs, and the fact that the input signal level of a SOSDM
should also be limited to a value lower than full scale comes
as no surprise.

C. Linearized modeling

In order to obtain analytical results, and to understand the
effect of jitter on the modulator, we need a linear model for
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Fig. 3. Simulated averaged oscillation periods of two third order SOSDMs
(modulators 1 and 2 in Table II), simulated for several input signal amplitudes.
Analytical results are also plotted.

TABLE I
LOOP FILTER OF THE TWO THIRD ORDER SOSDMS USED IN THE

SIMULATIONS. FIG. 1 SHOWS THE ARCHITECTURE.

H(s) = c3
s
s2+c1s+c1c2(1+g)

s2+c1c2g
g =

(0.78πOSR)2

c1c2

TABLE II
PARAMETERS OF THE TWO THIRD ORDER SOSDMS USED IN THE

SIMULATIONS. TABEL I SHOWS THE LOOP FILTER.

c1Ts c2Ts c3Ts d fs OSR

Modulator 1 0.025π 0.1π 0.05π 1 50

Modulator 2 0.004π 0.0098π 0.0225π 2.5 100

the quantizer. To obtain this linear model for low frequency
signal components, we initially assume that the input signal
to the modulator, x, is a constant. We also assume that the
loop filter of the system of Fig. 2 can be approximated by a
first order filter: H(s) = 1

sτ . Practical systems may use higher
order loop filters. However, these filters are often designed to
have approximately first order roll-off at high frequency ([7]–
[10,12,13]), such that even for such high-order systems, the
following analysis remains approximately valid.

The waveforms of the simplified system are depicted in
Fig. 4 for a positive input signal x. It shows the output signal of
the modulator, y(t), the error signal in front of the loop filter,
e(t), and the triangular waveform at the comparator’s input.
The latter is represented as the superposition of a constant,
u, and a zero-mean saw-tooth, c(t). It is known that applying
the superposition of a zero-mean saw-tooth and a constant or
slowly varying signal to a comparator, leads to a square wave
signal at its output, whose duty cycle is a linear function of this
constant signal ([19]). This mechanism is called pulse width
modulation. We also represent this pulse width modulated
square wave as the sum of a zero-mean oscillation signal yc(t),
and a constant signal yx. The mean value of a square wave
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Fig. 4. Waveforms at several points in the first order ASDM, for a constant
and positive input signal x.

with duty cycle α, is given by:

yx = 2α− 1 (7)

Keeping in mind that the loop filter is an integrator with time
constant τ , the rising and falling slopes of c(t), respectively
sr and sf , are found to be:

sr =
x+ 1

τ
, sf =

x− 1

τ
(8)

Using this result, and by examining the waveforms of Fig. 4,
the following expressions are derived:

C =
dt
τ

(9)

f0 =
1

4dt
(10)

u = Cyx (11)

Where C represents the amplitude of c(t), the oscillation in
front of the comparator. From the last equation, the comparator
gain for low frequency signals is evident:

Gu =
1

C
=

τ

dt
(12)

Not surprisingly, this gain depends on the oscillation’s am-
plitude in front of the comparator, as the oscillation acts as
a carrier for the underlying PWM mechanism. Now it is
also clear why this gain remains accurate for higher order
SOSDMs, as long as their loop filters behave approximately
as first order filters for the frequencies starting from fc. For
such filters, c(t) will still resemble the saw-tooth of Fig. 4,
and thus the comparator gain will approximate Eq. (12), and
the PWM mechanism remains linear in good approximation.

For this linearization, we assumed the input signal to be
a constant. The previous analysis however, remains approx-
imately valid if the input signal varies slowly with respect
to the oscillation. We now use the derived expression for the
comparator gain to build a linear model for the low frequency
components in the loop. As can be seen on Fig. 5, this model
contains a noise source, q(n), that is related to sampling. Until
now, sampling was neglected, but because the information
about x(t) is coded as the width of a pulse (i.e. in the time
domain), sampling (i.e. a quantization in time) leads to loss of
information. This effect was studied in [7] where it was shown

Fig. 5. Linear model for the input signal and the quantization noise

that it can be modeled as white additive Gaussian noise with
a variance of σ2

q :

σ2
q =

2

3

fc
fs

(13)

Here fs stands for the sampling frequency. We will use the
system of Fig. 5 to determine yq , the component in the overall
output signal related to the quantization noise. We expect that
the derived expression will at least be accurate for the low
frequency components in yq .

D. Combined output

We conclude that the output signal contains three com-
ponents; an input signal related component, a quantization
noise related component, and an oscillation component or
carrier. The presence of this last component is the main
difference between a conventional CTSDM and the SOSDM
system. Using the linearized model for the non-oscillating
components, we are now able to offer expressions for all
SOSDM components in the Z-domain:

Y (z) =Yx(z) + Yq(z) + Yc(z) (14)
= {X(s) STF(s)}∗ +Q(z)NTF(z) + Yc(z) (15)

STF(s) and NTF(z) are the S- and Z-domain signal and noise
transfer functions of the modulator:

NTF(z) =
1

1 + LG(z)
(16)

STF(s) =
GuH(s)

1 + LG(z)|z=esTs
≈ 1 (17)

LG(z) =
{
GuH(s)DAC(s)e−sd

}∗
(18)

{A(s)}∗ represents the star operator operating on A(s) [20]. It
is a short notation for taking the Z-transform of the sampled
inverse Laplace transform of A(s). LG(z) is the Z-domain
loop gain of the modulator. In the following analysis, the
signal transfer function will always be assumed to equal unity
for simplicity. This is a good approximation in all practically
relevant cases.

To illustrate the spectrum of the output signal of a SOSDM,
a simulation result for the first modulator in Table II is shown
in Fig 6. This simulation was performed for an input signal
amplitude of -10dBfs, and an input signal frequency equaling
fs
200 . This resulted in a signal to quantization noise ratio of
66.7dB, which corresponds well with the analytically predicted
value of 67.3dB. The average oscillation frequency obtained
through simulation equaled fs

6.85 , while Eq. (5) predicted a
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Fig. 6. Simulated and analytically obtained output signal spectrum of a
SOSDM (modulator 1 in Table II) without jitter (obtained through averaging
10 periodograms of 10000 points).

value of fs
6.75 , using Eq. (49) for f0. On Fig. 6, the lin-

ear approximation of the shaped quantization noise, and the
sinusoidal approximation of the oscillation are also plotted.
Fig. 6 shows excellent correspondence between simulation and
analytical results for frequencies almost up to the oscillation
frequency. At higher frequencies the curves deviate. This is
to be expected since the analytical model of Eq. (12) is a
low frequency approximation. The plot also illustrates that
the oscillation has a broad spectrum, because it is modulated
by the input signal and by the quantization noise. However,
for most of the clock jitter spectra considered in this paper,
approximating the oscillation as a sinusoid yields accurate
results for the jitter noise, as the simulation results will show.
Furthermore, it greatly simplifies the analysis, and yields
simple closed form expressions.

There is however one situation where approximating the
oscillation as a single tone introduces significant errors. If
the jitter noise spectrum contains spurs around the oscillation
frequency, a more accurate model should be used to describe
the oscillation.

Such spurs could, for example, be present if the clock signal
is generated by a PLL with a fractional divider [21]. The jitter
noise of a SOSDM driven by a clock whose jitter spectrum
contains spurs is not the main focus of this manuscript, but
some simulation results will be given later in this paper,
illustrating that these spurs can have a severe effect on the
modulator’s performance.

III. MODELING THE EFFECT OF JITTER

A. Clock jitter

Before we calculate the effect of jitter on the SOSDM’s
performance, we will first model the jitter as it would occur
in a real-life system. An ideal clock has rising edges at
every time instant nTs. If the clock is jittered, its rising
edges occur at time instants Ts(n + j(n)), where j(n) is a
stochastic dimensionless sequence, which we’ll call jitter. For

the analysis in this manuscript, we focus on the spectrum of
this jitter, which can be very complicated. In a PLL, several
noise sources exist, generating, among others, white noise
and 1/f noise. These contribute to the clock jitter, after they
are shaped by different filters, depending on where they are
injected in the loop. Sometimes also high frequency spurs
([22, p. 17]) are present in j(n). As was done in [6], where
CTSDMs were considered, we will model the jitter, j, as white
Gaussian noise, j0, which has been filtered by a low pass filter,
LPj(z). This is depicted at Fig 8. By a suitable choice of the
filter LPj , we can shape the spectrum of j(n) to mimic a broad
range of real world jitter spectra. This allows us to investigate
the influence of these jitter spectra on the modulator in an
analytical way.

In this study, we want to separate the effect of the jitter
spectral shape from the influence of the jitter power. Therefore
we will assume that the filter LPj is normalized, as was also
done in [6]:

1

2π

∫ π

−π
|LPj(eωI)|2dω = 1 (19)

This normalization ensures that the filter only represents the
relative distribution of the jitter’s power over frequency, and
has no influence on the total jitter power, σ2

j .

B. Jitter-caused errors

It is well known that a jittered clock degrades the perfor-
mance of a continuous time sigma delta modulator ([2,5,6]). In
the following, we will apply the analysis of [2] on SOSDMs.

As indicated on Fig. 1, small stochastic variations on the
clock edges introduce noise at two places in the system.
Firstly the jitter affects the sampling, and the associated error
is called “missampling”. This is a small error, and its effect
will be shaped by the loop filter of the system, similarly to
the suppression of the quantization noise. Hence it can be
neglected in all practical cases ([2,4]).

The second jitter-caused error is introduced at the DAC.
The DAC drives the system with two-level NRZ pulses. Every
time the output signal of the system changes, the ideal DAC
output signal switches. This normally only happens at time
instants that are multiples of the sampling period. But because
of jitter, these switching times are corrupted, which leads to
small errors on the pulse widths, as is depicted on Fig. 7.
Errors in the pulse widths are not suppressed by the loop filter.
Therefore this noise source is dominant over the missampling,
so we will restrict our analysis to this error-contribution.

Calculating the effect of these varying pulse widths at the
DAC on the modulators output signal is not straightforward. It
is far more easy to consider sampled additive error signals. We
will therefore not model the jitter induced error signal at the
DAC as a pulse with a fixed level and a stochastically varying
width, but as an equivalent pulse with a fixed width and a
varying level (see Fig. 7). If both types of error pulses have
the same area, their low frequency, in-band content will remain
the same. Hence, accurate results will be obtained for the
system’s signal to noise ratio by considering these equivalent
error pulses.
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Fig. 7. Model of jitter-caused pulse-width errors at the DAC
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Fig. 8. Jitter model based on [2] for SOSDM

Fig. 8 shows the corresponding model for the effect of jitter.
Note that the (dimensionless) jitter noise is multiplied with
the differentiated output signal, dy, indicating that errors are
only introduced when the modulator’s output signal changes.
Because of this multiplication, this model is not linear, and
to find an exact expression for the output signal, a non-linear
system equation needs to be solved. Therefore, we will use
perturbation theory ([23, p. 319]) to approximate the output
signal of the modulator. This means that we assume that the
effect of jitter on the system is small, and represent the output
signal of the modulator as the superposition of y0, the output
signal of the system without jitter, and a term yj , which is a
small disturbance on the output signal caused by the jitter:

y(n) = y0(n) + yj(n) (20)

We will call yj(n) the jitter noise of the system. Coupling
Eq. (20) with the model of figure 8 we find:

yj(n) = (dy(n)j(n))~ g(n) (21)

‘~’ represents the convolution operation and dy is to be
interpreted as the discrete differentiation operator, d, operating
on y. g(n) is the impulse response of the filter G(z):

G(z) =
LG(z)

1 + LG(z)
≈ 1 (22)

where LG(z) is the z-domain loop gain of the modulator
given by Eq. (18). By approximating the filter G(z) as a
unity operation, and neglecting the second order jitter term,
dyj(n)j(n), we finally obtain:

yj(n) ≈ dy0(n)j(n) (23)
where dy0(n) = y0(n)− y0(n− 1) (24)

For a CTSDM with high loop gain and a NRZ DAC pulse,
neglecting the second order jitter term was shown to be very
accurate by the theory in [5], and simulation results seem to
indicate that it remains accurate for SOSDMs. To calculate y0,
the output signal of the modulator in the absence of jitter, we
will use Eq. (15) derived in the previous section.

IV. EXPRESSIONS FOR THE JITTER NOISE POWER

A. General expressions

In order to study the jitter noise yj , we will calculate its
power spectral density Syj . In the rest of this discussion we
will use the notation Sz to represent the power spectral density
(PSD) of the signal z. To calculate Syj , we assume that
the jitter, j(n), and the differentiated jitterless output signal,
dy0(n), are uncorrelated. Starting from Eq. (23), we find:

Syj(ω) =Sdy0 ~ Sj (25)

=
σ2
j

2π

∫ π

−π
Sy0(θ)

∣∣1− e−Iθ
∣∣2
∣∣∣LPj(eI(ω−θ))

∣∣∣
2

dθ

Eq. (25) again illustrates that the differentiated jitterless output
signal of the system, dy0, is modulated by the jitter. As was
shown in section II, the jitterless output signal consists of three
distinct components: the oscillation, the input signal and the
quantization noise. If we assume that these components are
uncorrelated, we can rewrite Eq. (25) as follows:

Syj(ω) = (Sdy0,x + Sdy0,c + Sdy0,q)~ Sj (26)

From this, it is evident that the jitter noise in the output signal
can be split up in three components. The first component, yj,x,
is related to the input signal, and has a PSD equal to Syj,x.
The second component, yj,c, is related to the oscillation signal,
and its PSD is Syj,c. The last component, yj,q , is related to
the quantization noise. Its PSD is given by Syj,q .

Syj,x(ω) = Sdy0,x ~ Sj (27)
Syj,c(ω) = Sdy0,c ~ Sj (28)
Syj,q(ω) = Sdy0,q ~ Sj (29)

In other words, the clock jitter modulates the three differ-
entiated signal components in the loop, resulting in three
components in the jitter noise of the system.

B. Separate jitter contributions

Next we try to evaluate and simplify Eqs. (27-29), using the
results of section II.

1) Input signal related jitter noise: The PSD of the jitter
noise related to the sinusoidal input signal is quite easily
derived:

Syj,x(ω) = σ2
j

A2
x

4

∣∣(1− e−IωxTs)
∣∣2

(
|LPj(eI(ω−ωx)Ts)|2 + |LPj(eI(ω+ωx)Ts)|2

)
(30)

The input signal will shift the low pass jitter spectrum to
the input signal frequency, creating a skirt around the input
signal component in the output signal of the modulator. It
is important to note that this input signal related jitter noise
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component is quite fundamentally linked to sample and hold
mechanisms, and it is not specifically caused by the SOSDM
architecture. Indeed, the PSD of the output signal of a simple
open loop sample and hold circuit without quantization would
also contain such a skirt around the input signal component if it
was sampled with the same jittered sampling clock ([3]). This
input signal related jitter noise is simply phase noise caused by
sampling on varying instances. In the following treatment, this
noise will be handled as if it were additive noise. However,
this can be misleading, since several systems are quite robust
against this phase noise, and algorithms exist that mitigate its
effect, under certain circumstances (e.g. [24]).

2) Oscillation related jitter noise: For the PSD of the
oscillation related jitter noise, an exact expression is also
readily derived using Eq. (28):

Syj,c(ω) = σ2
j

A2
c

4

∣∣(1− e−IωcTs)
∣∣2

(
|LPj(eI(ω−ωc)Ts)|2 + |LPj(eI(ω+ωc)Ts)|2

)
(31)

Eq. (31) shows that the oscillation will shift the jitter spectrum
components at the oscillation frequency to base band. We can
approximate Eq. (31) as a constant for low frequencies. If
the modulator has a small bandwidth and a high oscillation
frequency, this approximation is fairly accurate, and leads to
the following simple expression for the in-band oscillation
related jitter noise power:

Pyj,c ≈
1

OSR
Syj,c(0), if

πfs
OSR

� ωc (32)

=
1

OSR
σ2
j

A2
c

2

∣∣1− e−IωcTs
∣∣2 ∣∣LPj(eIωcTs)

∣∣2 (33)

The condition of Eq. (32) is a reasonable one, since in a good
design the carrier and its spurs should lie far away from the
signal band. Eq. (33) shows that the oscillation related jitter
noise does not directly depend on the modulator’s loop filter.
For a given clock, the jitter noise mainly depends on the oscil-
lation frequency. This frequency will often be chosen early in
the design process to obtain a certain power consumption or
quantization noise suppression. Also the oscillation amplitude,
Ac, is quite constant. Hence, there is little control on the
oscillation related jitter noise while designing the modulator.
There is however some control in choosing the sampling clock.
Eq. 33 shows that choosing a clock whose jitter is small around
the oscillation frequency, will reduce the oscillation related
jitter noise.

3) Quantization noise related jitter noise: Expressions for
quantization noise related jitter noise are more difficult to
derive and depend on the exact NTF and jitter spectrum.
The exact value of the quantization related jitter noise will
be obtained in this paper through numerical evaluation of
Eq. (29). It is however clear that the noise level at low in-
band frequencies is proportional to:

Syj,q(0) ∼
∫ π

−π

∣∣NTF (θ)(1− e−Iθ)
∣∣2 ∣∣LPj(eIθ)

∣∣2 dθ (34)

Since the NTF is a high pass filter, this equation indicates
that the in-band quantization noise related jitter decreases if

the energy of the clock jitter is concentrated at low, in-band
frequencies.

C. First order shaped jitter

In many PLL-based clock generation systems, the jitter
spectrum can often be well approximated as a first order
shaped spectrum, especially at the higher out of band frequen-
cies where the quantization noise and the oscillation have high
power ([6]). Considering a first order shaped spectrum also
allows us to analytically derive some closed form expressions
that can be used to understand the basic jitter mechanisms.
Therefore we will offer expressions and approximations for
the noise component in the modulator’s output signal caused
by clock jitter with a spectrum that is approximately first order
shaped. To describe those first order spectra, we will assume
that LPj has the following form ([6]):

LPj(z) =

√
1− z2p

1− zpz−1
(35)

Here LPj(z) is the Z-transform of the sampled impulse
response of the filter with transfer function 1

1+sτj
, which has

consequently been normalized using Eq. (19).

LPj(z) ∼
{

1

1 + sτj

}∗
and zp = e

−Tsτj

As in Eq. (18), {A(s)}∗ represents the star operator operating
on a filter A(s). This is equivalent to taking the Z-transform
of the sampled inverse Laplace transform of A(s).

1) Input signal related jitter noise: To find the in-band
noise power related to the modulation of the input signal
by the clock jitter, the latter’s spectrum needs to be fully
known. Calculations for a first order shaped jitter spectrum
and a sinusoidal input signal have been performed in literature,
for the case of a continuous-time sigma delta modulator.
The resulting expression will be identical for a SOSDM and
a CTSDM with the same DAC, and we give the result as
obtained in [6]:

Pyj,x =
4σ2

jA
2
x

π
sin2

(
ωxTs
2

)

arctan

[
1 + zp

1− zp tan
( π

2OSR

)]
(36)

2) Oscillation related jitter noise: Eq. (33) for the in-band
oscillation related jitter noise power, can further be approx-
imated for the case of first order shaped clock jitter, if the
bandwidth of this clock jitter is far lower than the oscillation
frequency, ωc. Under those circumstances, the differentiation
of the oscillation component, and the integration caused by
the filter cancel out, and the following simple expression is
derived:

τjωc � 1⇒ (37)

Pyj,c ≈
2σ2

jTs

τjOSR

A2
c

2
(38)

Where Ac is given by Eq. (6).
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Eq. (38) shows that the oscillation related jitter noise power
is proportional to the inverse of the jitter bandwidth, for low
jitter bandwidths. It is noteworthy that Eq. (38) does not
depend on the oscillation frequency. For higher order shaped
jitter spectra, the oscillation frequency needs to be known
together with the jitter level at that frequency in order to
calculate this noise power.

3) Quantization noise related jitter noise: As was previ-
ously mentioned, obtaining exact results for the quantization
noise related jitter noise component in the output signal of the
SOSDM, is not possible without having detailed knowledge
of the noise transfer function of the modulator. This remains
true for the case of first order shaped jitter spectra. We will
however present an approximation, based on the assumption
that the magnitude of the NTF is negligible at frequencies
lower than a certain frequency ωq:

|NTF (eIωTs)| ≈ 0 for ω < ωq (39)

Under this assumption, the power spectral density for low
frequencies of the quantization noise related jitter noise is
given by:

Syj,q(0) =
σ2
qσ

2
j

2π
2

∫ π

ωqTs

|NTF (eIθ)(1− e−Iθ)LPj(eIθ)|2dθ

(40)

If the bandwidth of the clock jitter is far lower than ωq , the
differentiation and integration by LPj again cancel out and
Eq. (40) reduces to:

τjωq � 1⇒ (41)

Syj,q ≈
2σ2

jTs

τj

σ2
q

π

∫ π

ωqTs

|NTF (eIθ)|2dθ (42)

which leads us to an approximation for the in-band power of
the quantization noise related jitter noise, Pyj,q:

Pyj,q ≈
2σ2

jTs

τjOSR
σ2
q (NTF )2 (43)

(NTF )2 is the 2-norm of the NTF. Multiplied with the quan-
tization noise variance, σ2

q , it represents the total quantization
noise power at the output of the modulator. Eq. (43) is very
similar to Eq. (38), the result for the oscillation related jitter
noise. In fact it could simply be obtained from Eq. (38) by
interchanging the power of the self-oscillation with the total
power of the quantization noise in the output signal. Both
approximations illustrate that the jitter bandwidth should be
chosen as small as possible for optimal jitter performance.

V. VALIDATION OF THE ANALYTICAL EXPRESSIONS
THROUGH SIMULATION

To illustrate the accuracy of the previous analysis, and to
show the spectra of the three components of the jitter noise
of a self-oscillating sigma delta modulator, a simulation was
performed on modulator 1 from Table II. Fig. 9 shows the
spectrum of the resulting output signal.

This simulation used a model with a quantizer and a sample
and hold block that samples at stochastically varying time
instances. These timing instances where calculated starting
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Fig. 9. Simulation results and analytical expressions for the power spectral
density of the output signal and its separate jitter noise components, obtained
through averaging 10 periodograms of 10000 points. The results are for
modulator 1 with coefficients in Table II.

from white Gaussian noise, that was filtered by a first or-
der filter LPj . Its bandwidth equaled fs

1000 . This value was
chosen to make the skirt around the input signal component
visible in the output signal’s spectrum. The jitter standard
deviation, σj has a value of 10%, which was intentionally
chosen excessively high to ensure that the quantization noise is
negligible compared to the jitter noise for in-band frequencies.
An analytical prediction for the PSD of the total jitter noise,
Syj , is also plotted on Fig. 9. It was obtained by numerically
evaluating Eq. (26). As can be seen, it excellently matches the
simulated spectrum in the low-frequency passband. At higher
frequencies, the quantization noise becomes dominant over the
jitter noise. Its analytical counterpart has not been plotted, as
not to overload the figure.

Analytical predictions for the separate jitter noise compo-
nents are also plotted. The input signal related jitter noise
PSD, Syj,x, the oscillation related jitter noise PSD, Syj,c,
and the quantization noise related jitter noise PSD, Syj,q ,
were obtained by numerically evaluating Eqs. (27-29). We
now shortly discuss them, starting with the self-oscillation
related component. Because the jitter has a low pass spectrum,
the oscillation related jitter noise is concentrated around the
oscillation frequency, while it causes a noise floor in the
pass band. As Eq. (33) shows, this noise floor scales with
|LPj(eIωc)|2. This means that it is beneficial to have a low
jitter bandwidth with preferably a steep roll-off. In practice
however the roll-off may very often only be of 1st order (see
section IV-C).

Similar conclusions can be drawn with regard to the quan-
tization related jitter noise. The reason being that the energy
of the quantization noise is also concentrated at higher out of
band frequencies, just like the self-oscillation’s energy. So if
the clock jitter spectrum is concentrated at low frequencies,
only a small amount of the quantization noise will be modu-
lated to the pass band and vice versa. The reverse can be said
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about the PSD of the input signal related jitter, Syj,x. Its skirt
falls in the pass band, and if the jitter is concentrated at low
frequencies, the contribution of the input signal related jitter
will be concentrated in the pass band around the input signal
frequency.

To further validate the analytical expressions presented in
this paper, two additional sets of simulations were performed,
on the two self-oscillating sigma delta modulators whose
parameters are listed in Table II. Again a sinusoidal input
signal and first order shaped jitter were considered. The first
set, was obtained by sweeping the bandwidth of the jitter filter,
fj , for a constant input signal amplitude of -6dBfs. This set
of simulations was performed for severall values of the jitter
standard deviation σj . The results are plotted on Fig. 10 for
modulator 1, and Fig. 11 for modulator 2. On both figures, two
analytical SNR predictions are also plotted. The first, labeled
Analytical “exact”, results from the numerical evaluation of
Eq. (25), using the results of Section II for the jitterless output
signal y0. The second is labeled Analytical approx. It results
from the evaluation of the approximations given by Eqs. (38)
and (43), coupled with Eq. (36). Both analytical results also
include the quantization noise obtained in section II.

Good correspondence is found between simulation and the
“exact” analytical results. The error for low jitter bandwidths
is always smaller than 1.9dB. For higher jitter bandwidths,
the error on the “exact” analytical result increases. The reason
is that approximating the oscillation as a sine becomes less
accurate when the jitter bandwidth lies close to the oscillation
frequency. But even for very high jitter bandwidths, the error
remains smaller than 2.5dB. The analytical approximation
is also quite accurate. The −10 dB

dec slope predicted by the
1
τj

dependence in Eqs. (38) and (43), for the oscillation
and quantization noise related in-band jitter noise power, is
clearly visible on Fig. 10. Only for the lowest and the highest
jitter bandwidths, the SNR’s slope softens. For the lowest
jitter bandwidths the input signal related jitter noise becomes
dominant. At the highest jitter bandwidths, the assumptions
of Eqs. (37) and (41) are no longer valid, and as a result, the
accuracy of the approximations made on these assumptions
becomes less good.

The second set of simulation results consisted of sweeping
the amplitude of the sinusoidal input signal, for a constant jitter
bandwidth of fs

1000 , and again with σj = 10%. These simu-
lations were also performed on both modulators in Table II.
Fig. 12 shows the simulation results and analytical predictions
of the SNR of the modulator. Their difference is always
smaller than 1.2dB, so we can safely say that once again,
the simulation results confirm the validity of the analytical
analysis.

VI. CLOCK JITTER SPURS

Sometimes clock jitter spectra contain spurs at high out
of band frequencies [21]. Because of the presence of the
self-oscillation in the modulator’s loop, spurs in the clock
jitter spectrum at the oscillation frequency can have a severe
effect on the SOSDM’s performance. For such a clock jitter
spectrum, the carrier’s energy is modulated to baseband by
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Fig. 10. Simulated SNR for Modulator 1 (see Table II) vs. the jitter bandwidth
for several jitter variance values. The input signal was a -6dBfs sine wave.
The clock jitter had a first order shaped spectrum. The analytical results and
the approximations derived in Section IV are also plotted.
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Fig. 11. Simulated SNR for Modulator 2 (see Table II) vs. the jitter bandwidth
for several jitter variance values. The input signal was a -6dBfs sine wave.
The clock jitter had a first order shaped spectrum. The analytical results and
the approximations derived in Section IV are also plotted.

the spurious jitter. Since the self-oscillation’s energy is con-
fined to a relatively limited frequency band, this modulation
will generate jitter noise with high in-band energy, severely
degrading the modulator’s SNR.

In this paper, we approximated the self-oscillation as a
sine. Unfortunately, using this approximation for the case
of spurs in the clock jitter spectrum, would lead to results
with bad accuracy. The reason for this is that, using this
model, either all or none of the oscillation’s energy would
be modulated in-band, while in reality, always a part of the
oscillation’s energy would be modulated to baseband. Finding
a better approximation for the carrier falls out of the scope
of this paper, but to illustrate the mechanism, Fig. 13 shows
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Fig. 12. SNR obtained through simulation of two SOSDMs with parameters
listed in Table I for a sinusoidal input signal with amplitude Ax, and with
a first order shaped clock jitter spectrum. The analytical results and the
approximations derived in Section IV are also plotted.

simulation results for the power of the noise component in the
output signal of modulator 1 from Table II. It is driven by a
sampling clock, whose jitter spectrum contains a spur, i.e. the
jitter is modeled as a sine. Its amplitude, Aj , was set to 0.1%.
The in-band noise power is simulated for several values of the
jitter spur frequency, fspur, and for several amplitudes, Ax,
of the sinusoidal input signal. Every data point in Fig. 13 was
obtained by collecting 100,000 output samples.

For values of the input amplitude between 0.1 and 0.6
times full scale, the oscillation frequency ranges from 0.15fs
to 0.13fs. As the frequency of the jitter spur approaches
the oscillation frequency, the noise in the modulator’s output
signal, Pn, rises sharply. This effect is more pronounced
for smaller input signal amplitudes, because the oscillation
amplitude is higher for smaller input signals, and because the
oscillation’s energy is less spread out for those amplitudes.
Hence more energy is modulated by the jitter to the signal
band.

VII. CONCLUSION

In this paper, firstly the SOSDM system was modeled in
the absence of jitter. In this case, it was shown that the
SOSDM’s output signal contains three distinct components:
the quantization noise, the filtered input signal and the os-
cillation. The latter is not present in the output signal of a
conventional CTSDM, which contains only two components.
Next, the clock jitter was modeled. Not only white clock
jitter was considered, but jitter with a general spectrum. It
was shown that if the clock signal of a SOSDM contains
jitter, the three components in the SOSDM’s output signal are
modulated, leading to three jitter noise components. Analytical
expressions were derived for the power spectral density of
these jitter caused noise components. These expressions show
excellent correspondence with system level simulation results.
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Fig. 13. Simulation of a SOSDM (Modulator 1 in Table II) whose clock jitter
is a sine with frequency fspur . The resulting noise power is plotted versus
fspur , for different input signal amplitudes, Ax.

Based on these expressions, we can conclude that the jitter
noise performance depends heavily on the jitter bandwidth,
which should be as low as possible, such that the jitter
is concentrated at low frequency. This leads to lower in-
band quantization and oscillation related jitter noise than a
clock whose jitter has a significant amount of energy at
high frequencies. The in-band input signal related jitter noise
does increase with lower jitter bandwidths, but many practical
systems are unaffected by such a noise component.

For the important case of first order shaped clock jitter,
very simple, but accurate, approximations where obtained for
the oscillation and the quantization noise related in-band jitter
noise power. It was shown that if the oscillation frequency is
much higher than the jitter bandwidth, the oscillation related
jitter in-band noise power does not depend on the loop filter or
the oscillation frequency. It was also shown that for first order
shaped jitter spectra with a low jitter bandwidth, the amount of
in-band quantization noise related jitter noise is proportional
to the 2-norm of the noise transfer function.

In the analysis offered by this paper, the oscillation was
approximated as a single tone without sidebands. This proved
accurate for most of the considered jitter spectra. However,
the proposed model does not accurately describe the jitter
performance in one potentially very dangerous situation. When
there are spurs in the jitter spectrum near the oscillation
frequency, a large amount of noise can be modulated to the
system’s passband, and designers should take care, since this
is not accurately modeled by the proposed model.

APPENDIX

In this appendix we will derive an average oscillation
amplitude, and we will give an expression for f0, that was
derived in [15]. Like in section II, we neglect the sampling,
so that the resulting system represents an asynchronous sigma
delta modulator. We also consider a slowly varying, sinusoidal
input signal x, which remains approximately constant over
several oscillation periods. The Fourier series of the square
wave at the modulator’s output, which has a slowly varying
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duty cycle α and period Tc = 2π
ωc

, is given by [15]:

(2α− 1) + 4
∞∑

n=1

sin(nπα)

nπ
cos(nωct) (44)

The first term (2α− 1) contains the low frequency content of
the output signal. For a slowly varying input signal, and an
integrating loop filter, it is approximately equal to x.

α =
1 + x

2
(45)

The other terms in Eq. (44) are the oscillation and its har-
monics. If we neglect these harmonics and only consider the
fundamental tone, the result is not a sine wave, because α and
ωc vary in time, resulting in a broadening of the oscillation’s
spectrum. We will however represent the oscillation as a single
tone, and to this end, we calculate an average oscillation
amplitude, Ac.

Oscillation amplitude

We define Ac as that amplitude that results in a sine
wave with the same power as the first harmonic of the pulse
width modulated square wave output signal of the SOSDM.
Although this is an approximation, it gives us accurate results
for the in-band jitter noise contribution of the oscillation. From
Eq. (44) the time-varying amplitude of the fundamental tone
is

A1 =
4

π
sin(πα) (46)

By calculating the rms value of A1 we obtain:

Ac =

√(
4

π

)2
1

2π

∫ π

−π
sin2

(π
2
(1 +Ax sin(φ))

)
dφ

=
4

π

1√
2

√
1 + J0(Axπ) (47)

Where J0 is the zeroth order Bessel function of the first kind,
Ax is the amplitude of the input signal, and ωx is its angular
frequency.

Oscillation frequency

In section II, an expression was given for f0, the zero-input
oscillation frequency, for a first order ASDM. In [15] however,
an expression for f0 is derived for a general order ASDM,
under certain assumptions. Firstly, the order of the numerator
of the (continuous-time) loop filter should be exactly one order
higher than the denominator’s order. Secondly the poles and
zeros of the filter should be much lower in frequency than the
oscillation. Also the real and imaginary parts of the loop filter
should comply with the following conditions:

Re {H(jω)} ≈ 1

(τrω)2
, Im {H(jω)} ≈ 1

τiω
for ω � ωc

(48)

Here, ωc represents the average angular oscillation frequency
of the modulator. Lastly the expression was derived assuming

a slowly varying, almost constant input signal. Under these
conditions, the zero-input oscillation frequency is given by:

f0 =
(τidt − τ2r )

2dt(τidt − 2τ2r )
(49)

dt represents the total loop delay, as given by Eq. (1).
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