

NFVRG C. Meirosu
Internet Draft Ericsson
Intended status: Informational A. Manzalini
Expires: April 2015 Telecom Italia
 J. Kim
 Deutsche Telekom
 R. Steinert
 SICS
 S. Sharma
 iMinds
 G. Marchetto
 Politecnico di Torino

 October 27, 2014

Meirosu, et al. Expires April 27, 2015 [Page 1]

DevOps for Software-Defined Telecom Infrastructures

draft-unify-nfvrg-devops-00.txt

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at

http://www.ietf.org/shadow.html

This Internet-Draft will expire on April 27, 2015.

Internet-Draft DevOps Challenges October 2014

Meirosu, et al. Expires April 27, 2015 [Page 2]

Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Abstract

The introduction of virtualization technologies, starting from the
physical layer and going all the way up to the application plane, is
transforming the telecom network infrastructure onto an agile, model-
driven production environment for communication services. Carrier-
grade network management was optimized for environments built with
monolithic physical nodes and involves significant deployment,
integration and maintenance efforts from network service providers.
The DevOps movement in the data center is a source of inspiration
regarding how to simplify and automate management processes for

software-defined infrastructure. This first version of this draft
identifies three areas that we consider key to applying DevOps
principles in a telecom service provider environment, namely for
monitoring, verification and troubleshooting processes. Finally, we
introduce challenges associated with operationalizing DevOps
principles at scale in software-defined telecom networks.

Table of Contents

1. Introduction...3
2. Conventions used in this document..............................4
3. DevOps Principles for Software-Defined Telecom Infrastructure..4
4. Stability Challenges...6
5. Observability Challenges.......................................8
6. Verification Challenges..9
7. Troubleshooting Challenges....................................10
8. Security Considerations.......................................11
9. IANA Considerations...11
10. References...11

10.1. Normative References....................................11

Internet-Draft DevOps Challenges October 2014

Meirosu, et al. Expires April 27, 2015 [Page 3]

10.2. Informative References..................................11
11. Acknowledgments..13

1. Introduction

Carrier-grade network management was developed as an incremental
solution once a particular network technology matured and came to be
deployed in parallel with legacy technologies. This approach requires
significant integration efforts when new network services are
launched. Both centralized and distributed algorithms have been
developed in order to solve very specific problems related to
configuration, performance or fault management. However, such

algorithms consider a network that is by and large functionally
static. Thus, management processes related to introducing new or
maintaining functionality are complex, and costly due to significant
efforts required for verification and integration.

Network virtualization, by means of Software-Defined Networking (SDN)
and Network Function Virtualization (NFV), is creating an environment
where network functions are no longer static and embedded into
physical boxes deployed at fixed points. The virtualized network is
dynamic and open to fast-paced innovation enabling efficient network
management and reduction of operating cost for network operators. A
significant part of network capabilities are expected to become
available through interfaces that resemble the APIs widespread within
datacenters instead of the traditional telecom means of management

such as the Simple Network Management Protocol, Command Line
Interfaces or CORBA. Such an API-based approach, combined with the
programmability offered by SDN interfaces [I-D. draft-irtf-sdnrg-
layer-terminology-04], open opportunities for handling
infrastructure, resources, and Virtual Network Functions (VNFs) as
code, employing techniques from software engineering.

The efficiency and integration of existing management techniques in
virtualized and dynamic network environments are limited, however.
Monitoring tools, e.g. based on simple counters, physical network
taps and active probing, scale poorly and provide only a small part
of the observability features required in such a dynamic environment.
Huge amounts of monitoring data can be collected from the nodes, but
the typical granularity is coarse-grained. Although debugging and

troubleshooting techniques developed for software-defined
environments are a research topic that has gathered interest in the
research community in the last years, it is yet to be explored how to
integrate them into an operational network management system.
Moreover, tools that have been developed in academia are limited to
solving very particular, well-defined problems, while they were not

Internet-Draft DevOps Challenges October 2014

Meirosu, et al. Expires April 27, 2015 [Page 4]

built for automation and integration into network operations
workflows.

We acknowledge that several standardization organizations have a
stake in this area. IETF working groups have activities in the area
of OAM [I-D.draft-aldrin-sfc-oam-framework] and Verification
[I-D.draft-lee-sfc-verification-00] for Service Function Chaining. At
IRTF, the authors of [RFC7149] ask a set of relevant questions
regarding operations of SDNs. The ETSI NFV ISG defines the MANO
interfaces [NFVMANO], and TMForum investigates gaps between these
interfaces and existing specifications in [TR228]. The need for
programmatic APIs in the orchestration of compute, network and

storage resources is discussed in
[I-D.draft-unify-nfvrg-challenges-00].

From a research perspective, problems related to operations of
software-defined networks are in part outlined in [SDNsurvey] and
research referring to both cloud and software-defined networks are
outlined by the EU FP7 UNIFY project in [D4.1].

The purpose of this first version of this document is to act as a
discussion opener in NFVRG by describing a set of principles that are
relevant for applying DevOps ideas to managing software-defined
telecom network infrastructures. We identify challenges related to
developing tools, interfaces and protocols that would support these
principles and leverage standard APIs for simplifying management

tasks.

2. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC-2119 [RFC2119].

In this document, these words will appear with that interpretation
only when in ALL CAPS. Lower case uses of these words are not to be
interpreted as carrying RFC-2119 significance.

3. DevOps Principles for Software-Defined Telecom Infrastructure

In an Internet company, an agile developer is focused on releasing
small iterations of their code with high velocity and high quality
into a production environment. The code needs to undergo a

Internet-Draft DevOps Challenges October 2014

Meirosu, et al. Expires April 27, 2015 [Page 5]

significant amount of automated testing and verification with pre-
defined templates in a realistic setting. From the point of view of
infrastructure management, the verification of the network
configuration as result of network policy decomposition and
refinement, as well as the configuration of virtual functions, is one
of the most sensitive operations. When troubleshooting the cause of
unexpected behavior, high-granular visibility onto all resources
supporting the virtual functions (either compute, or network-related)
is paramount to facilitating fast resolution times. While compute
resources are typically very well covered by debugging and profiling
toolsets based on many years of advances in software engineering,
programmable network resources are a still a novelty and tools

exploiting their potential are scarce.

We identify two dimensions of the “developer” role in software-
defined infrastructure. One dimension refers to the person that
determines which high-level functions should be part of a particular
service, decides what logical interconnections are needed between
these blocks and defines a set of high-level constraints or goals
related to parameters that define the a Service Function Chain. This
person might be the product owner for a particular family of services
offered by a telecom provider. They might be a key account
representative that adapts an existing service template to the
requirements of a particular customer by adding or removing a small
number of functional entities. We refer to this person as the Service
Developer and for simplicity (access control, training on technical

background, etc.) we consider the role to be internal to the telecom
provider. The other dimension of the “developer” role is a person
that writes the software code for a new virtual network function.
Depending on the actual virtual network function being developed,
this person might be internal or external to the telecom provider. We
refer to them as VNF Developers.

The role of an Operator in software-defined infrastructure is to
ensure that the deployment processes were successful and a set of
performance indicators associated to a service are met while the
service is supported on virtual infrastructure within the domain of a
telecom provider.

In line with the generic DevOps concept outlined in [DevOpsP], we

consider that the following four principles as important for adapting
DevOps ideas to software-defined infrastructure:

* Deploy with repeatable, reliable processes: Service and VNF
Developers should be supported by automated build, orchestrate and
deploy processes that are identical in the development, test and
production environments. Such processes need to be made reliable and

Internet-Draft DevOps Challenges October 2014

Meirosu, et al. Expires April 27, 2015 [Page 6]

trusted in the sense that they should reduce the chance of human
error and provide visibility at each stage of the process, as well as
have the possibility to enable manual interactions in certain key
stages.

* Develop and test against production-like systems: both Service
Developers and VNF Developers need to have the opportunity to verify
and debug their respective code in systems that have characteristics
which are very close to the production environment where the code is
expected to be ultimately deployed. Customizations of Service
Function Chains or VNFs could thus be released frequently to a
production environment in compliance with policies set by the

Operators. Adequate isolation and protection of the services active
in the infrastructure from services being tested or debugged should
be provided by the production environment.

* Monitor and validate operational quality: Service Developers, VNF
Developers and Operators must be equipped with tools, automated as
much as possible, that enable to continuously monitor the operational
quality of the services deployed on software-defined infrastructure,
as well as the infrastructure itself. Monitoring tools should be
complemented by tools that allow verifying and validating the
operational quality of the service in line with established
procedures which might be standardized (for example, Y.1564 Ethernet
Activation [Y1564]) or defined through best practices specific to a
particular telecom operator.

* Amplify feedback loops: An integral part of the DevOps ethos is
building a cross-cultural environment that bridges the cultural gap
between the desire for continuous change by the Developers and the
wish by the Operators for stability and reliability of the
infrastructure, and feedback from customers is collected and
transmitted throughout the organization. From a technical
perspective, such cultural aspects could be addressed through common
sets of tools and APIs that are aimed at providing a vocabulary
common to Developers and Operators, as well as simplifying the
reproduction of problematic situations in the development, test and
operations environments.

4. Stability Challenges

The dimensions, dynamicity and heterogeneity of networks are growing
continuously. Monitoring and managing the network behavior in order
to meet technical and business objectives is becoming more and more

Internet-Draft DevOps Challenges October 2014

Meirosu, et al. Expires April 27, 2015 [Page 7]

complicated and challenging, even more when considering the need of
predicting and taming potential instabilities.

In general, instability in networks may have primary effects both
jeopardizing the performance and compromising an optimized use of
resources, even across multiple layers: in fact, instability of end-
to-end communication paths may be dependent both on the underlying
transport network, as well as the higher level components specific to
flow control and dynamic routing. For example, arguments for
introducing advanced flow admission control are essentially derived
from the observation that the network otherwise behaves in an
inefficient and potentially unstable manner. Even with resources over

provisioning, a network without an efficient flow admission control
has instability regions that can even lead to congestion collapse in
certain configurations. Another example is the instability which is
characteristic of any dynamically adaptive routing system. Routing
instability, which can be (informally) defined as the quick change of
network reachability and topology information, has a number of
possible origins, including problems with connections, router
failures, high levels of congestion, software configuration errors,
transient physical and data link problems, and software bugs.

As a matter of fact, the states monitored and used to implement the
different control and management functions in network nodes are
governed by several low-level configuration commands (today still
done mostly hand-made); there are several dependencies among these

states and the logic updating the states (most of which are not kept
aligned automatically). Normally, high-level network goals (e.g.,
connectivity matrix, load-balancing, traffic engineering goals,
survivability requirements, etc) are translated into low-level
configuration commands (mostly hand-written) individually executed on
the network elements (e.g., forwarding table, packet filters, link-
scheduling weights, and queue-management parameters, as well as
tunnels and NAT mappings). Network instabilities due to configuration
errors can spread from node to node and propagate throughout the
network.

DevOps in the data center is a source of inspiration regarding how to
simplify and automate management processes for software-defined
infrastructure.

As a specific example, automated configuration functions are expected
to take the form of a “control loop” that monitors (i.e., measures)
current states of the network, performs a computation, and then
reconfigures the network. These types of functions must work
correctly even in the presence of failures, variable delays in
communicating with a distributed set of devices, and frequent changes

Internet-Draft DevOps Challenges October 2014

Meirosu, et al. Expires April 27, 2015 [Page 8]

in network conditions. Nevertheless cascading and nesting of
automated configuration processes can lead to the emergence of non-
linear network behaviors, and as such sudden instabilities (i.e.
identical local dynamic can give rise to widely different global
dynamics).

The CAP theorem [CAP] states that any networked shared-data system
can have at most two of following three properties: 1) consistency
(C) equivalent to having a single up-to-date copy of the data; 2)
high availability (A) of that data (for updates); and 3) tolerance to
network partitions (P). Looking at a telecom software-defined
infrastructure as a distributed computational system

(routing/forwarding packets can be seen as a computational problem),
just two of the three CAP properties will be possible at the same
time. This has profound implications technologies that need to be
developed in line with the “deploy with repeatable, reliable
processes” principle for configuring the states of the software-
defined infrastructure. Latency or delay and partitioning properties
are deeply related, and such relation becomes more important in the
case of telecom service providers where Devs and Ops interact with
widely distributed infrastructure. Limitations of interactions
between centralized management and distributed control need to be
carefully examined in such environments.

5. Observability Challenges

Monitoring algorithms need to operate in a scalable manner while
providing the specified level of observability in the network, either
for operation purposes (Ops part) or for debugging in a development
phase (Dev part). We consider the following challenges:

* Scalability - relates to the granularity of network observability,
computational efficiency, communication overhead, and strategic
placement of monitoring functions.

* Distributed operation and information exchange between monitoring
functions – monitoring functions supported by the nodes may perform
specific operations (such as aggregation or filtering) locally on the

collected data or within a defined data neighborhood and forward only
the result to a management system. Such operation may require
modifications of existing standards and development of protocols for
efficient information exchange and messaging between monitoring
functions. Different levels of granularity may need to be offered for
the data exchanged through the interfaces, depending on the Dev or
Ops role.

Internet-Draft DevOps Challenges October 2014

Meirosu, et al. Expires April 27, 2015 [Page 9]

* Configurability and conditional observability – monitoring
functions that go beyond measuring simple metrics (such as delay, or
packet loss) require expressive monitoring annotation languages for
describing the functionality such that it can be programmed by a
controller. Monitoring algorithms implementing self-adaptive
monitoring behavior relative to local network situations may employ
such annotation languages to receive high-level objectives (KPIs
controlling tradeoffs between accuracy and measurement frequency, for
example) and conditions for varying the measurement intensity.

* Automation - includes mapping of monitoring functionality from a
logical forwarding graph to virtual or physical instances executing

in the infrastructure, as well as placement and re-placement of
monitoring functionality for required observability coverage and
configuration consistency upon updates in a dynamic network
environment.

6. Verification Challenges

Enabling ongoing verification of code is an important goal of
continuous integration as part of the data center DevOps concept. In
a software-defined telecom infrastructure, service definitions,
decompositions and configurations need to be expressed in machine-
readable encodings. For example, configuration parameters could be

expressed in terms of YANG models. It is acknowledged that the
infrastructure management layers (such as Software-Defined Network
Controllers and Orchestration software) might not always export such
machine-readable descriptions of the runtime configuration state. In
this case, the management layer itself could be expected to include a
verification process that has the same challenges as the stand-alone
verification processes we outline below. In that sense, verification
can be considered as a set of features providing gatekeeper functions
to verify both the abstract service models and the proposed resource
configuration before actual instantiation on the infrastructure layer
takes place.

A verification process can involve different layers of the
architecture. Starting from a high-level verification of the customer

input (for example, a Service Graph), the verification process could
go more in depth to reflect on the service chain configuration. At
the lowest layer, the verification would handle the actual set of
forwarding rules and other configuration parameters associated to the
service chain. This enables the verification of more quantitative
properties (e.g. compliance with resource availability), as well as a
more detailed and precise verification of the abovementioned

Internet-Draft DevOps Challenges October 2014

Meirosu, et al. Expires April 27, 2015 [Page 10]

topological ones. Existing verification tools for the SDN scenario
could be deployed in this context, but the majority of them only
operate on network configuration rules (commonly OpenFlow), and in
any case all of them do not consider active network functions (i.e.
VNFs or middle-boxes that dynamically change the forwarding path of a
flow according to local algorithms, e.g. load balancers, packet
marking modules and intrusion detection systems). Defining a set of
verification tools that can account for network function
virtualization is a significant challenge. In order to perform
verification based on formal properties of the system, the internal
states of a virtual network function would need to be represented and
perhaps summarized in a way that allows for the verification process

to finish within a reasonable time interval.

7. Troubleshooting Challenges

One of the problems brought up by the complexity introduced by NFV
and SDN is pinpointing the cause of a failure in an infrastructure
that is under continuous change. Developing an agile and low-
maintenance debugging mechanism for an architecture that is comprised
of multiple layers and discrete components is a particularly
challenging task to carry out. Verification, observability, and
probe-based tools are key to troubleshooting processes, regardless
whether they are followed by Dev or Ops personnel.

* Automated troubleshooting workflows

Failure is a frequently occurring event in network operation.
Therefore, it is crucial to monitor components of the system
periodically. Moreover, the troubleshooting system should search for
the cause automatically in the case of failure. If the system follows
a multi-layered architecture, monitoring and debugging actions should
be performed on components from the topmost layer to the bottom layer
in a chain. Likewise, the result of operations should be notified in
reverse order. In this regard, one should be able to define
monitoring and debugging actions through a common interface that
employs layer hopping logic. Besides, this interface should allow
fine-grained and automatic on-demand control for the integration of

other monitoring and verification mechanisms and tools.

* Troubleshooting with active measurement methods

Besides detecting network changes based on passively collected
information, active probes into delay, network utilization, loss rate
are important to debug errors and to evaluate the performance of

Internet-Draft DevOps Challenges October 2014

Meirosu, et al. Expires April 27, 2015 [Page 11]

network elements. While tools that are effective in determining such
conditions for particular technologies were defined by IETF and other
standardization organization, their use requires a significant amount
of manual labor in terms of both configuration and interpretation of
the results. In contrasts, methods that test and debug networks
systematically based on models generated from the router
configuration, router interface tables or forwarding tables, would
significantly simplify management. They could be made usable by Dev
personnel that have little expertise on diagnosing network defects.
Such tools naturally lend themselves to integration into complex
troubleshooting workflows that could be generated automatically based
on the description of a particular service chain. However, there are

scalability challenges associated with deploying such tools in a
network. Some tools may poll each networking device for the
forwarding table information to calculate the minimum number of test
packets to be transmitted in the network. Therefore, as the network
size and the forwarding table size increases, forwarding table
updates for the tools may put a non-negligible load in the network.

8. Security Considerations

TBD

9. IANA Considerations

This memo includes no request to IANA.

10. References

10.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

10.2. Informative References

[NFVMANO] ETSI, "Network Function Virtualization (NFV) Management
and Orchestration V0.6.1 (draft)", Jul. 2014

http://docbox.etsi.org/ISG/NFV/Open/Latest_Drafts/NFV-MAN001v061-20management%20and%20orchestration.pdf
http://docbox.etsi.org/ISG/NFV/Open/Latest_Drafts/NFV-MAN001v061-20management%20and%20orchestration.pdf

Internet-Draft DevOps Challenges October 2014

Meirosu, et al. Expires April 27, 2015 [Page 12]

[I-D.draft-aldrin-sfc-oam-framework] S. Aldrin, R. Pignataro, N.
Akiya. “Service Function Chaining Operations,
Administration and Maintenance Framework”, draft-aldrin-
sfc-oam-framework-00, (work in progress), July 2014.

[I-D.draft-lee-sfc-verification-00] S. Lee and M. Shin. “Service
Function Chaining Verification”, draft-lee-sfc-
verification-00, (work in progress), February 2014.

[I-D. draft-irtf-sdnrg-layer-terminology-04] E. Haleplidis (Ed.), K.
Pentikousis (Ed.), S. Denazis, J. Hadi Salim, D. Meyer, and
O. Koufopavlou, “SDN Layers and Architecture Terminology”,

Internet Draft, draft-haleplidis-sdnrg-layer-terminology-04
(work in progress), October 2014

[RFC7149] M. Boucadair, C Jaquenet. "Software-Defined Networking: A
Perspective from within a Service Provider Environment",
RFC 7149, March 2014.

[TR228] TMForum Gap Analysis Related to MANO Work. TR228, May 2014

[I-D.draft-unify-nfvrg-challenges-00] R. Szabo et al. “Unifying
Carrier and Cloud Networks: Problem Statement and
Challenges”, draft-unify-nfvrg-challenges-00 (work in
progress), October 2014

[D4.1] W. John et al. D4.1 Initial requirements for the SP-DevOps
concept, universal node capabilities and proposed tools,
August 2014.

[SDNsurvey] D. Kreutz, F. M. V. Ramos, P. Verissimo, C. Esteve
Rothenberg, S. Azodolmolky, S. Uhlig. "Software-Defined
Networking: A Comprehensive Survey." To appear in
proceedings of the IEEE, 2015.

[DevOpsP] “DevOps, the IBM Approach” 2013. [Online].

[Y1564] ITU-R Recommendation Y.1564: Ethernet service activation
test methodology, March 2011

[CAP] E. Brewer, “CAP twelve years later: How the "rules" have
changed”, IEEE Computer, vol.45, no.2, pp.23,29, Feb. 2012.

http://tools.ietf.org/html/draft-aldrin-sfc-oam-framework-00
http://tools.ietf.org/html/draft-aldrin-sfc-oam-framework-00
http://tools.ietf.org/html/draft-lee-sfc-verification-00
http://tools.ietf.org/html/draft-lee-sfc-verification-00
https://tools.ietf.org/html/draft-irtf-sdnrg-layer-terminology-04
https://tools.ietf.org/html/draft-unify-nfvrg-challenges-00
https://www.fp7-unify.eu/files/fp7-unify-eu-docs/Results/Deliverables/UNIFY-WP4-D4.1%20Initial%20requirements%20for%20the%20SP-DevOps%20concept.pdf
https://www.fp7-unify.eu/files/fp7-unify-eu-docs/Results/Deliverables/UNIFY-WP4-D4.1%20Initial%20requirements%20for%20the%20SP-DevOps%20concept.pdf
http://public.dhe.ibm.com/common/ssi/ecm/en/raw14323usen/RAW14323USEN.PDF

Internet-Draft DevOps Challenges October 2014

Meirosu, et al. Expires April 27, 2015 [Page 13]

11. Acknowledgments

This work is supported by FP7 UNIFY, a research project partially
funded by the European Community under the Seventh Framework Program
(grant agreement no. 619609). The views expressed here are those of
the authors only. The European Commission is not liable for any use
that may be made of the information in this document.

We would like to thank in particular the UNIFY WP4 contributors, the
internal reviewers of the UNIFY WP4 deliverables and Konstantinos
Pentikousis from EICT, for the useful discussions and insightful
comments.

This document was prepared using 2-Word-v2.0.template.dot.

Internet-Draft DevOps Challenges October 2014

Meirosu, et al. Expires April 27, 2015 [Page 14]

Authors’ Addresses

Catalin Meirosu
Ericsson Research
S-16480 Stockholm, Sweden
Email: catalin.meirosu@ericsson.com

Antonio Manzalini
Telecom Italia
Via Reiss Romoli, 274

10148 - Torino, Italy
Email: antonio.manzalini@telecomitalia.it

Juhoon Kim
Deutsche Telekom AG
Winterfeldtstr. 21
10781 Berlin, Germany
Email: J.Kim@telekom.de

Rebecca Steinert
SICS Swedish ICT AB
Box 1263, SE-16429 Kista, Sweden
Email: rebste@sics.se

Sachin Sharma
Ghent University-iMinds
Research group IBCN - Department of Information Technology
Zuiderpoort Office Park, Blok C0
Gaston Crommenlaan 8 bus 201
B-9050 Gent, Belgium
Email: sachin.sharma@intec.ugent.be

Guido Marchetto
Politecnico di Torino
Corso Duca degli Abruzzi 24
10129 – Torino, Italy
Email: guido.marchetto@polito.it

